
6.851: Advanced Data Structures Spring 2010 

Lecture 4 — 11 February, 2010 
Dr. André Schulz 

1 Overview 

In the last lecture we discussed the orthogonal range query problem and solutions to it. In the 
orthogonal range query problem, we are given a set of points and a rectangular area, and are asked 
to report the points that lie in this area. We discussed three types of solutions: range trees, kd-trees 
(in the 2D case), and fractional cascading. 

In this lecture we briefly discuss extending our orthogonal range query solutions to account for 
dynamic point sets. We then introduce the problem of vertical line stabbing queries, present two 
solutions, and review an application. 

2 Orthogonal Range Queries and Dynamic Point Sets 

In our discussion of the orthogonal range query problem in lecture 3, we only considered static 
point sets. What costs are associated with modifying the point set as we do the queries? In other 
words, what if we modify our data structure to handle dynamic point sets? In “The Design of 
Dynamic Data Structures,” Mark H. Overmars discusses ideas and costs associated with turning a 
static data structure into a dynamic one.[1] 

The orthogonal range query problem entails decomposable searches. This means we can partition 
queries, q, on keys, x, into queries on subsets of x: (x, q) partitions into (x1, q) and (x2, q) where 
x1 ∪ x2 = x. In this case, insertions take O(T

n 
b log n) amortized time (where Tb is the data structure 

build time), and queries grow by a log n factor. 

Thus, for our dynamic 2D range-trees, queries will take O(log2 n + k) time and insertions will take 
O(log2 n) time. 

3 Vertical Line Stabbing Queries 

In the vertical line stabbing queries problem, we are given, as input, n intervals: 

I = {[a1, b1], [a2, b2], . . . , [an, bn]}, 

and a query q ∈ R. Our task is to report all intervals that contain q. 

1




4 Interval-Tree 

The interval-tree uses the idea of divide-and-conquer. We divide the intervals into sets based on 
their relation to the median of the interval end-points. Some will lie completely to the left or right 
of the median, and others will intersect. We will recurse on the intervals that lie to the left or right. 
For those that intersect, we will sort them, which lets us stop after we find the first interval that 
we are not interested in. 

4.1 Example Run 

As an example of this working, we will use the interval: 

I = {[1, 6], [3, 20], [3, 7], [5, 17], [10, 20], [13, 15]}. 

0 5 10 2015 

Figure 1: The intervals for the example, with the median of the end-points plotted as a dotted line. 

We take the median to be 10, so we have: 

Il = {[1, 6], [3, 7]}


Ir = {[13, 15]}


Im = {[3, 20], [5, 17], [10, 20]},


where Il is the set of intervals fully to the left of the median, Ir is the set fully right, and Im is the 
set that intersects. We then recursively create a tree. The parent node contains the set Im twice: 
one sorted by the left interval bound, the other by the right. The children are recursively created 
in the same manner on Il and Ir. Thus we have the structure in figure 2. 

If we query 18, for example, then we would report the right half of the parent node until we hit 
[5, 17], at which point we would stop, and recurse on the right child node. 

4.2 Analysis 

Method: In general terms, the data structure splits the point set into Il, Ir, and Im along the 
median. It then stores Im as two sorted lists in a parent node, and then creates children by recursing 
on Ir and Il. 

2 



[3,20] [3,20] 
[5,17] [10,20] 
[10,20] [5,17] 

[1,6] 
[3,7] 

[3,7] 
[1,6] 

[13,15] [13,15] 

Figure 2: The interval-tree from the example. 

Query: Following the path down the tree is an O(log n) operation. Once we find a node, we report 
O(k) items, where k is the number of intervals stabbed. Thus, query runs in O(log n + k) time. 

Storage: Each interval is stored exactly twice, so the structure is O(n). 

Preprocessing: The main cost in building the data structure is sorting the interval lists, which is 
O(n log n). 

5 Segment-Tree 

The idea behind the segment tree is to split the real line into elementary intervals. We can then 
build a binary search tree and store intervals in appropriate places in the tree. 

5.1 Example Run 

To split the reals into elementary intervals, we create closed intervals that create only the end
points of our input intervals, and fill in the gaps in the reals with open intervals. For example, we 
can take the end-points of the intervals from the example above, which leaves us with the intervals 
shown in figure 3. 

(−Inf,1)[1](1, 3)[3](3, 5)[5](5,6)[6](6, 7)[7](7,10)[10](10, 13)[13](13, 15)[15](15, 16)[16](16, 20)[20](20,Inf) 

0 5 10 15 20 

Figure 3: The elementary intervals we would get from the intervals given in the example. 

We can now build a binary search tree over the elementary intervals, as shown in figure 3. 

One possibility is to store intervals in all appropriate leaves, which would give us O(log n) queries 
very easily (binary search), but would leave us with bad storage in many cases. Instead, we store 
intervals in parent nodes if both children of that node are contained in that interval (and if the 
node’s sibling is not also contained in the interval). This gives us a canonical subdivision. For 
example, the canonical subdivision of [3, 7] in the example above is [3](3, 6](6, 7]. 

3 



(−Inf,Inf) 

(−Inf,15] 

(−Inf,6] (6,15] (15,Inf) 

(−Inf,3] (3,6] (6,10] (10,15] (15,20] 

(−Inf,1] (1,3] (3,5] (5,6] (6,7] (7,10] (10,13] (13,15] (15,17] (17,20] 

(−Inf,1)[1] (1,3) [3] (3,5)[5] (5,6) [6] (6,7)[7] (7,10)[10] (10,13) [13] (13,15) [15] (15,17) [17] (17,20) [20] (20,Inf) 

Figure 4: A binary search tree over the elementary intervals. 

5.2 Analysis 

Query: When we search for q, we report all intervals along the path. Thus, we again achieve 
O(log n + k) time. However, it is important to note that we report every interval we find. 

Storage: We claim that every level of the tree stores every interval at most twice. The proof of 
this is by contradiction. If we had more than two instances of an interval in a single level of the 
tree with no shared parents, there would be a gap in the interval. However, we only store closed 
interval. Storage is therefore O(n log n). This is worse than for the interval-tree. 

Preprocessing: Preprocessing is O(n log n). 

6 Application: Windowing 

An application of vertical line stabbing is windowing. We are given a large geometric structure and 
a window. We want to display only the part of the geometric structure that lies in the window. 

To do this, we have to report all line segments that lie within or intersect the window. There are 
two parts to this problem: 

1. Finding every line segment with one or two endpoints inside the window. 

2. Finding every line segment that goes straight through the window. 

For the first part, we can use our solutions to the orthogonal range searching problem. For the 
second part, we need something like vertical line stabbing. 

To make our initial discussion simpler, we will limit ourselves to the case where the geometric figure 
is made up of orthogonal line segments. 

6.1 Simple Approach 

In the case of orthogonal line segments, part 2 of the windowing problem becomes finding the lines 
with y-coordinates that are in the correct region. Our solution is then to sort the line segments by 
their y-coordinate. As an initial approach, we use an interval tree, but store a 2D range tree in 

4




0000000000011111111111
00000000000
00000000000
00000000000
00000000000
00000000000
00000000000
00000000000

each of the nodes. This makes the query time O(log2 n + k), but the structure itself takes up too 
much space. 

6.2 More complex approach 

In order to solve this problem efficiently with respect to storage, we need to introduce another data 
structure. The main task, as we can see from figure 5, is to report the points in regions next to the 
window. 

11111111111 
11111111111 

11111111111 
11111111111 
11111111111 

11111111111 
11111111111 

Figure 5: The region we are interested in finding points in. 

Priority Search Trees In a priority search tree, we store a 2D point set like a heap. This 
allows us to efficiently query points in a rectangle with one open side. We construct it by selecting 
the minimum point (with respect to the x-coordinate) as the root. We then recursively build the 
left and right subtrees out of points with y-coordinates less than and greater than the median of 
the y-coordinates. This gives us O(n) storage, and allows us to query for a rectangular region by 
searching the tree. When our search splits, we report all right subtrees recursively as we search for 
the minimum, but stop if the root is greater than our query. 

6.3 Handling Lines with Slope 

For lines with slopes, we can use modified segment trees. The key advantage is that whenever we 
touch an interval during a query, we know that interval has been stabbed. Developing this is left 
as an exercise. 

References 

[1] Mark H. Overmars, The Design of Dynamic Data Structures, Berlin: Springer-Verlag, 1983. 

5




MIT OpenCourseWare
http://ocw.mit.edu 

6.851 Advanced Data Structures 
Spring 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

