
� �

6.851 Advanced Data Structures (Spring’10)

Prof. Erik Demaine Dr. André Schulz TA: Aleksandar Zlateski

Problem 6 Sample Solutions

Dynamizing static search structures.

(a) To perform a successor search we start from the root node, perform a search for a successor
and follow the link to it’s left until we reach a leaf node.

The runtime recurrence is then: T (n) = S(Θ(n1/c)) + T (Θ(n1−1/c))
For fusion trees we have:

T (n) = O(logω n 1/c) + T (Θ(n 1−1/c))

T (n) = O(c−1 logω n) + O(c−1 logω n 1−1/c + T (Θ(n(1−1/c)2
)))

Hence

T (n) = O(
∞

c−1 logω n
(1−1/c)i

) = O(
∞

c−1(1 − 1/c)i logω n)
i=0 i=0

T (n) = O(c−1 c logω n) = O(logω n)

(b) The space reccurence is: C(n) = Θ(n1/c)(C(n(1−1/c)) + 1). Since we have Θ(n1/c) subtrees of
size O(n(1−1/c)) plus Θ(n1/c) for the space at the current level. We see that the reccurence solves
to C(n) = O(n).

(c) We will constrain the number of nodes in a subtree rooted at a node at depth d to be

k = Θ(n(1−1/c)d
)

When inserting or deleting a node, we make sure that all the nodes on our path satisfy the
given property. when merging or splitting a node with k children we have to reconstruct its parent.
The node’s parent will have Θ(kc/(c−1)) descendands, and Θ(k1/(c−1)) children. Thus, rebuilding
the parent would take O(kb/c−1).

At any given level, we have to rebuild the node only after Θ(k) descendands have been in-
b

serted/removed. Hence the amortized cost is O(k c−1 −1). Choosing c−
b
1 − 1 <= 0, c ≥ b + 1 gives

us O(1) amortized cost per level, and the total of O(log log n)

1

MIT OpenCourseWare
http://ocw.mit.edu

6.851 Advanced Data Structures
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

