6.851 ADVANCED DATA STRUCTURES (SPRING'10) Prof. Erik Demaine Dr. André Schulz TA: Aleksandar Zlateski

Problem 3 Sample Solutions

Ray Shooting in Simple Polygons With every step we reduce the WBBST total weight of the current subtree by at least a factor of 2. We finish once we reach a subtree with weight ω_i . Hence, we solve the recurrence $T(\omega) = 1 + T(\omega/2)$. The base case is $T(\omega_i) = 1$, so we get $T(\Omega) = O(1 + \log(\Omega/\omega_i))$.

Suppose each concave chain in the balanced pseudo-triangulation is stored in a WBBST, where the weight of an edge *i* equals the number edges in the opposing polygon ω_i . We consider two adjacent pseudo-triangles, t_a and t_b , crossed by the ray in this algorithm. Let *i* be the edge the ray crosses to move from t_a into t_b . In t_b the ray homes-in on the next edge it crosses, i + 1, in a concave chain, which has at most ω_i edges, and so the total time spent searching the WBBST for the home-in chain in the is $O(\log(\omega_i/\omega_{i+1}))$. The sum telescopes, and its result is the difference in the logs of two pseudo-triangle sizes, which is no larger than $O(\log n)$. The ray-shooting algorithm traverses no more than $O(\log n)$ triangles in total, giving the total runtime of $O(\log n)$. 6.851 Advanced Data Structures Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.