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1 The Ellipsoid Algorithm

Definition 1 Let a be a point in R and A be an n x n positive definite matriz (i.e., A has positive
eigenvalues). The ellipsoid E(a, A) with center a is the set of points {z : (x —a)TA~'(x — a) < 1}.
Therefore, the unit sphere is E(0,1I), where I is the identity matriz.

An ellipsoid can be seen as the result of applying a linear transformation on a unit sphere. In other
words, there is a linear transformation 7' that maps E(a, A) to the unit sphere E(0, ). It is known
that for every positive definite matrix A, there is a n X n matrix B such that:

A=BTB. (1)

Therefore,

A—I =B—l (B—I)T. (2}

Using B, the transformation T' can be seen as mapping points x to (B~1)7 (z — a).

The Ellipsoid Algorithm solves the problem of finding an & subject to Cz < d by looking at succes-
sively smaller ellipsoids Ej. that contain the polyhedron P := {z : Cz < d}. Starting with an initial
ellipsoid that contains P, we check to see if its center a is in P. If it is, we are done. If not, we
look at the inequalities defining P, and choose one that is violated by a. This gives us a hyperplane
through a such that P is completely on one side of this hyperplane. Then, we try to find an ellipsoid
Ej1 that contains the half-ellipsoid defined by Ej and h.

The general step of finding the next ellipsoid Ejyy from Ej, is given below. First we assume that Ey
is a unit sphere centered at the origin, and the hyperplane h defines the half space —e] =z < 0 that
contains P. Here, by ¢; we mean the vector whose ith component is 1 and whose other components
are (. We will show later that it is easy to translate the general case to this case.

Therefore, we need an ellipsoid that contains
EO,1)n{z:—elz <0} (3)
To find an ellipsoid that contains Ej,, we showed last time that:

n—1)? { %%, 0¥=1,2 2
: a : S C sy >
{J: ( n ) (.'rl n+1) +- 2 giﬂt = 1} C B(0,I)N{z:z; >0} (4)

v

B

Therefore, we can define

1 n? 2
Ej=E Ty )
-1 (n+161’n2—1( R )) (5)
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(ere] = matrix with 1 in its top left cell, 0 elsewhere.) We also showed that
Vol(Ei1)/Vol(Bx) € T < . (6)
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For the more general case that we want to find an ellipsoid that contains E(0,I) N {z : d"z < 0}

(we let ||d|| = 1; this can be done because the other side of the inequality is 0), it is easy to verify
2

that we can take By = E(—5d, F), where F = (I — -2;dd"), and the ratio of the volumes

is < exp (—3=).

Now we deal with the case where Ej is not the unit sphere. We take advantage of the fact that

linear transformations preserve ratios of volumes.

E. 5 E@1)
+ (7)
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Let ay be the center of Ej, and ¢z < ¢Ta be the halfspace through ay that contains P. Therefore,
the half-ellipsoid that we are trying to contain is E(ax,A) N {z : ¢’z < ¢Tax}. Let’s see what
happens to this half-ellipsoid after the transformation 7" defined by T'(z) = (B~')” (2 — a). This
transformation transforms Ej = E(ay, A) to E(0,I). Also,

{z:c"x <cTay} A {z:c"(ax+BTy) <cap} ={z:c"BTy <0} ={z:d"z <0}, (8)

where d is given by the following equation.

BC BC
d= = 9
VeIBTBe VT Ac ©)
Let b= BTd = ;_CM. This implies:
1 n? 2
E = E(ax———b, BT (1-——dd" | B 1

o= (ak B+l ne—1 ( n+1dd) ) (10)

1 n? 2 o
- E(ak—n+1b,n2_l(‘4—n+1bb )) (11)

To summarize, here is the Ellipsoid Algorithm:

1. Start with k =0, Ey = E(ag,4¢) 2 P, P={z: Cz <d}.
2. While a ¢ P do:

e Let Tz < d be an inequality that is valid for all z € P but ¢Ta; > d.
o Let b= —Ak_

\/cTA;;c‘

e Let apyy =ag — n!lTb.

o Let A1 = 727 (A — -27bb7).

X Vol(Bui1)
Claim 1 —i—ﬁa,(g‘k}‘ < exp (—355)



After k iterations, Vol(E;) < Vol(Ey) exp (—%) If P is nonempty then the Ellipsoid Algorithm

should find € P in at most 2nIn %% steps.

What if P has volume 0 but is nonempty? In this case, we create an inflated polytope around P
such that this new polytope is empty iff P is empty.

Theorem 2 Let P := {ax : Az < b} and e be the vector of all ones. Assume that A has full
column rank (certainly true if Az < b contains the inequalities —Ix < (). Then P is nonempty iff
P ={z: Az <b+ 5‘;6,—2‘[‘ < zj < 2% for all j} is nonempty. (L is the size of the LP P, as we
defined in the previous lecture, but here we can remove the cp,q. term.)

This theorem allows us to choose Ey to be a ball centered at the origin containing the cube
[—2%,2%]"™. In this way, if there exists a & such that A# < b then

) 1 1 n
Z+ [—2@,22—1,] € P (12)

Indeed, for a z in this little cube, we have (Az); < (A%); + (max; ; aij)nzr < bj + 3

The time for finding an z in P’ is in O(n - nL), because the ratio of the volumes of [—2%,2]" to

[—f;, I’;_—]“ is 82" and previously we showed that finding = in P was O(nln ‘;";f((ﬁ‘,}'])). Thus, this
process is polynomial in L.

Proof of Theorem 2: We first prove the forward implication. If Az < b is nonempty then we
can consider a vertex x in P (and there exists a vertex since A has full column rank). This implies
that = will be defined by Asz = bg, where Ag is a submatrix of 4 (by problem 1 in Problem Set
1). Therefore, by a theorem from the previous lecture,

1::(&!12!""&) (13)
q 49 q
with |p;| < 2% and 1 < q < 2%. Therefore,

|zj] < Ips] < 2°. (14)
This proves the forward implication.

To show the converse, {z : Az < b} = () implies, by Farkas’ Lemma, there exists a y such that y > 0,
ATy =0, and bTy = —1. We can choose a vertex of ATy =0, b7y = —1, y > 0. We can also phrase

this as: AT
0

By using Cramer’s rule (like we did in the last lecture), we can bound the components of a basic
feasible solution y in the following way:

SN (s . ’*“_m) 16
y ( s’ sl L16)
AT
with 0 < s,r; < detjan BT ), where det;q. (D) denotes the maximum subdeterminant in abso-

lute value of any submatrix of D. By expanding the determinant along the last row, we see that
T

detyaz ( ?T < Mmbyaz detyae (where this last det,,q, refers to the matrix A). Using the fact

that 2F > 22" det,naz bnaz, We get that 0 < s,7; < %21‘ < 2%"3,.—;—2’“".
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Therefore,
2

T
1 T 1 4 m
—1
the last inequality following from the fact that m? < 2™*! for any integer m > 1. Therefore, by
Farkas’ Lemma again, this y shows that there exists no & where Az < b+ ,fre, ie, P'isempty. O

There is also the problem of when z is found within P’, # may not necessarily be in P. One solution
is to round the coefficients of the inequalities to rational numbers and "repair” these inequalities
to make x fit in P. This is called simultaneous Diophantine approximations, and will be discussed
later on.

Here we solve this problem using another method: We give a general method for finding a feasible
solution of a linear program, assuming that we have a procedure that checks whether or not the
linear program is feasible.

Assume, we want to find a solution of Az < b. The inequalities in this linear program can be written
as :13".7: <bjfori=1,---,m. We use the following algorithm:

1. I+ 0.
2. Fori + 1tomdo

e If the set of solutions of

agﬂmgbj Vi=i+1,---,m
ajz=1b; Vj e IU {i}

is nonempty, then I + I'U {i}.
3. Finally, solve z in alz = b; for i € I with Gaussian elimination.
The correctness follows from the fact that if, in step 2, the system of inequalities has no solution

then the inequality ¢ can be discarded since it is redundant (removing it does not affect the set of
solutions).

2 Applying the Ellipsoid Algorithm to Linear Programming

The algorithm we described today checks whether a set of inequalities are feasible, and if they are,
finds a feasible solution. However, our initial goal was to find a feasible solution that minimizes a
given linear objective function. Here, we give a general method for solving linear program, given a
procedure that finds a feasible solution to a set of inequalities.

To solve the LP: minc’z subject to Az = b, z > 0:

Step 1: Check if { : Az = b,z > 0} is nonempty; if it is empty, then the LP is infeasible; stop.

Step 2: Consider the dual LP: max b’y subject to ATy < e.
Check if there exists a y such that ATy < ¢. If there does not exist such a y, then the original
LP is unbounded by strong duality.

Step 3: If the dual LP is feasible, find a solution (z,y) where Az = b,z > 0, ATy < ¢, ez = bTy.
By strong duality, ¢z = bTy will be the optimal solution.
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