
MIT OpenCourseWare
http://ocw.mit.edu

6.854J / 18.415J Advanced Algorithms
Fall 2008��

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

18.415/6.854 Advanced Algorithms November 7, 2001

Lecture 16
Lecturer: Michel X. Goemans Scribes: Nicole Immorlica and Mana Taghdiri

Today we begin our discussion of approximation algorithms. We will talk about:

NP-hard Optimization Problems

Inapproximability

Analysis of Approximation Algorithms

1 NP-hard Optimization Problems

Many of the algorithms in this world of ours deal with optimization. Some of these problems we
can solve exactly in polynomial time. We spent the whole first half of this term dealing with these
types of problems (linear programming, circulations). Other optimization problems are impossible
to solve in polynomial time unless P=NP. We now focus our attention on handling these NP-hard
optimization problems.

Definition 1 An optimization problem is NP-hard if the corresponding decision problem is NP-hard,
i.e. a polynomial-time algorithm finding the exact optimum would imply P = NP.

There are many examples of NP-hard optimization problems. In fact, you can find a rather
comprehensive and up-to-date list of these problems along with known results at:

We will see three examples of NP-hard optimization problems today.

a Vertex Coloring: Given a graph G = (V,E) assign colors to the vertices so that for all
(u,w) E E, u is not the same color as w. Minimize the number of colors used.

LIN-k-MOD-q: All the computation in this problem is considered in Zq. Given a set of
variables X and a set of equations E each in lc of the variables in X , find an assignment of X .
Maximize the number of equations in E that are satisfied by this assignment of X.

Scheduling: Given a set of jobs, a processing time for each job, and a set of processors,
assign the jobs to the processors. Minimize the time it takes to complete all the jobs assuming
a processor can only process one job at a time.

In order to prove that these are NP-hard optimization problems, we must prove their corre-
sponding decision problems are NP-complete. For example, to prove vertex coloring is NP-hard, we
must show that to decide whether a given graph is colorable with less than k colors is NP-complete.
As complexity theory is not a pre-requisite for this course, we will just take these facts on faith.
However the interested reader can find a nice treatment of NP-completeness in [2, 1, 31. A proof
that k-colorability is NP-complete can be found in the exercises in each of these books.

As these problems are NP-hard, we must abandon all hope of solving them exactly. Instead,
we find ways to cope with their intractability. A common method used in practice is to design
heuristic algorithms and analyze their performance empirically. As the below definitions for the
words heuristic and empirical indicate, we won't be able to study this method in this theoretical
class. To see a treatment of this approach, take artificial intelligence.

2

heu.ris.tic \hyu.-'ris-tik\ aj [G heuristisch, fr. NL heuristicus, fr.
Gk heuriskein to disclover; akin to OIr fu-ar I have found : serving to
guide, discover, or reveal; specif : valuable for empirical research but
unproved or incapable of proof

em.pir.i.ca1 or em.pir.ic \-i-k*l\ \-ik\ \-i-k(*-)le-\ aj 1: relying on

experience or observation alone often without due regard for system and

theory 2: originating in or based on observation or experience 3: capable

of being verified or disproved by observation or experiment (" laws) -
em.pir.i.cal.1~av

Instead, we will design polynomial time algorithms that approximately solve these NP-hard
optimization problems. We will analyze the solutions returned by these algorithms in the worst-case
(i.e. the input for which the solution is farthest from the optimum solution). These algorithms are
called approximation algorithms.

Definition 2 Let cOPT(x) be the optimal solution of a minimization problem P on input x. An
a-approximation algorithm for P is a polynomial time algorithm that is guaranteed to deliver a
solution such that for all inputs x the uahe of the solution cH(x) is cH(x) 5 acopT(x). If P is a
maximization problem, we require CH (x) 2 a c o p ~(x).

Inapproximability

The problems we are trying to approximate are NP-hard. Therefore we can't hope to find an
a-approximation algorithm for which a = 1. But this does not imply that a must be bounded
away from one, and in fact for some problems we can find a = 1+ e for all E > 0 (or e < 0
if it's a maximization problem). Of course, in these cases the running time often depends on
c. However, we are not always so lucky. Sometimes we can prove that it is NP-hard to find an
approximation algorithm with a < p(n) for some function p(n) (often constant). Such results are
called inapproxima bility results.

Traditionally, inapproximability of an NP-hard optimization problem is derived from the NP-
completeness proof of the decision problem. We can use this method to prove vertex coloring is
inapproximable within 4/3. This is because k-colorability (for k > 2) is NP-complete. Therefore,
given a graph G, it is hard to distinguish whether it can be colored with at most 3 colors or if it
needs at least 4 colors. If we were able to find a 4/3 - e approximation algorithm, we could call
this algorithm on G. If G needs at most three colors, our algorithm will find a coloring that uses at
most acopT 5 3(4/3 - c) < 4 colors. But if G needs more than three colors, our algorithm must
return a coloring that uses at least four colors. Therefore, this polynomial time algorithm solves the
problem we claimed is NP-complete! This can not be, unless P=NP. There are actually stronger
(non-constant) inapproximability results for this problem.

Since 1992, another approach to proving inapproximability has emerged. This approach uses
PCPs (i.e. probabilistically checkable proofs, not the Communist Party of Peru or phencyclidine
or People for a Clearer Phish). As an example, consider the LIN-3-MOD-2 problem. Recall in
this problem we have a set of variables xi and rn equations each in three of these variables. All
computation takes place in Z2. For example, we might have

We try to maximize the number of satisfied equations. First we present a trivial approximation
algorithm for this problem. Take xO identically zero and x1 identically one. Note for any given
equation, either x0 or x1 satisfies it. Therefore, either soor x1 must satisfy m/2 of the equations.
As the optimal solution can satisfy at most rn equations, this is a 112-approximation algorithm.
Johan HQstad used PCPs to prove there is no (112 + €)-approximation algorithm for any E > 0
[4]. As a side note, Hiistad's theorem does not hold for LIN-2-MOD-2. Notice our approximation
algorithm works only for LIN-k-MOD-2 where k is odd. Can you find an algorithm that works for
LIN-2-MOD-2? What's its approximation factor?

3 Analysis of Approximation Algorithms
Since it's hard to characterize COPT, it's often quite hard to prove that CH 5 a c o p ~ ,directly
(Assume we're solving a minimization problem.) Instead, we'll find a good lower bound on COPT

(say LB) and then prove that:

Following problems are examples of using such an analysis method.

3.1 Scheduling Problem

Given m machines and n jobs, each with a certain processing time length pj, we're supposed to
minimize

CmaZ =maX C j
3

where cj is the completion time of Qth job, such that each job be assigned to exactly one machine -
no matter which one - and no 2 jobs can overlap on the same machine.

The problem is NP-Hard even in case of 2 machines. In that case we have n jobs with

and we need to determine whether there's a S {1,2, .. . ,n) s.t.

or not, which is the partition problem, known to be NP-complete.
As an approximation algorithm, we introduce Graham's List Scheduling algorithm:

a Consider jobs in any order

Put job j on the first available machine.

Claim 1 Graham's List Scheduling is a (2 - 1lm)-approsimation algorithm.

Proof:
let

Trivially COPT 2 LB. If c~ is the solution found by Graham's algorithm, let j be the job s.t.
c j = C H . SO, at time c~ -p j all machines were busy. But then

3.2 Vertex Covering Problem

Given a graph G = (V, E) and a weight function w which maps each vertex v to a non-negative
weight w (v), we have to find a vertex cover S V s.t.

is minimized, where S & V is a vertex cover iff

V(i,j) E E, {i,j) nS # 0

The VC problem is NP-hard (but it is polynomial-time solvable if G is bipartite). We'll use
linear programming to find an approximation algorithm.

In order to use LP to find a lower bound (LB) in general, a "relaxation" is used. Let Q c Rn
denote the characteristic vectors of all feasible solutions (in our case, vertex covers of G). Let f (x)
be the function we are trying to optimize. Instead of optimizing over Q, we optimize over a polytope
P such that Q P. We know that

L B = 	min f (x) 5 min f (x) = COPT
X E P x€Q

so L B is our lower bound. Finally, we have to find a feasible integer solution which will be within a
constant factor of LB.

So first, we have to formulate the problem as an integer program. For the above example we can
define:

and then try to find

min Cw (u) z(u)

with the idea of

{
1 V E S

x(v) =
0 O.W.

The LP relaxation is:

min Cw (u)x(u) = LB 5 COPT

x(u) +x(v) > 1 V(u,v) E E{ l > x () > V u E V

which can be solved in polynomial time. After solving the corresponding LP, we have LB and
O 5 z*(u) 5 1. But z*(u) is not always O or 1, e.g. in graph Kg given w(v) = 1Vv E V, COPT = 4
but L B = 2.5 with x*(u) = 112. We'll solve this problem by rounding:

Output : S = {ulx*(u) > 1/21.

Claim 2 This is a 2-approximation algorithm.

Proof:
V(U,V) E E, x*(u)+ x*(v) > 1++ max(x*(u), x*(v)) > 112 so, at least one of them is in S, thus,

S is a vertex cover and:

Remark 1 No (2 - c)-approximation algorithm is known.

But in this approach, you always have to solve the corresponding LP, exactly. Although it's not
hard in this problem, but in general it may be a bottleneck itself. In the next session we'll show how
to use duality to overcome this deficiency.

References

[I] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms.
The MIT Press, 1990.

[2] 	Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. WH Freeman & Co., 1979.

[3] Michael Sipser. Introduction to the Theory of Computation. PWS Publishing Company, 1997.

[4] Johan Histad. Some optimal inapproximability results. ECCC Report TR97-037, 1997.

