

Traffic Calming

Massachusetts Institute of Technology

Urban Transportation Planning MIT Course 1.252j/11.380j
Fall 2002

Mikel Murga, MIT Research Associate Dec 6, 2002

Table of Contents

- Why traffic calming?
- Traffic calming, how?
- Techniques
- Design Criteria
- The Process

Why Traffic Calming?

- The faster you go, the higher the probability of an accident, as:
 - Your vision focus narrows with speed
 - For a given reaction time, distance covered is proportional to speed
 - The faster you go, the longer the stopping distance

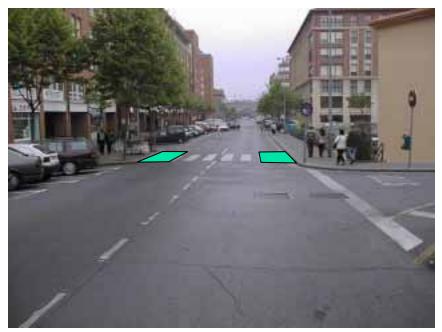
Why Traffic Calming?

- The faster you go, the higher the seriousness of an accident
 - For instance, the kinetic energy of an automobile (1.2 tons at 35 mph) is at least 150 times higher than for a pedestrian (180 pounds) at 3 mph
 - Such a collision at:
 - 20 mph, means bone fractures and concussions
 - Between 20-30 mph, medium seriousness
 - More than 30 mph, very high probability of either death or permanent disability

Why Traffic Calming?

- To avoid segregation of public spaces and maintain its livability
- Underpasses, skywalks and other "solutions", do not provide "eyes on the street"

- When you drive at 30 mph, you tend to focus your sight far ahead
- And you narrow the sight area
- You fail to see the surroundings


Massachusetts Institute of Technology

 But if you drive at 20 mph, you start to see what lies on the sides

- The basic idea is to change the perceptions of the driver through the introduction of new physical features
- These self-enforcing features tend to break the infinite continuity that encourages speed with or without speed warnings

- Raised crosswalks
- Narrower pavement widths
- Chicanes through urban furniture or parking
- Changes in the pavement texture
- Mini-roundabouts
- Cul-de-sacs
- Eliminating some movements
- Civilized green waves

Traffic Calming: How? Raised crosswalks

- Double function
- You accommodate to gradient:
 - 7% for 40-45 km/hr
 - 10% for 30 km/hr
 - 12% for 25 km/hr or less
- Every 60-100 meters plus proper warning
- The top needs a minimum width, specially for buses

Traffic Calming: How? Raised intersections

Massachusetts Institute of Technology

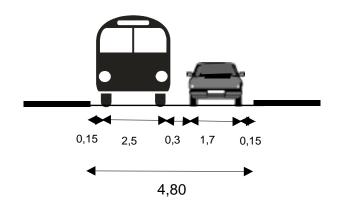
The automobile finds itself in neutral grounds...

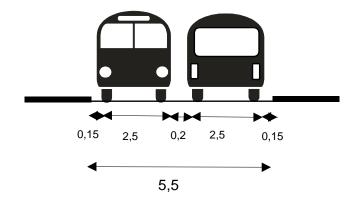
Traffic Calming: How? **Bulb-outs**

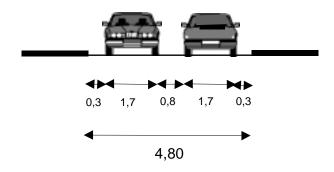
Massachusetts Institute of Technology

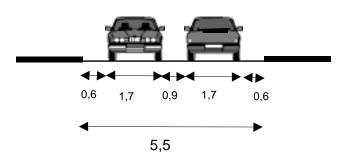
Pros:

- Decrease exposure
- Higher visibility specially for children
- Easy implementation




Traffic Calming: How? Narrower pavement widths





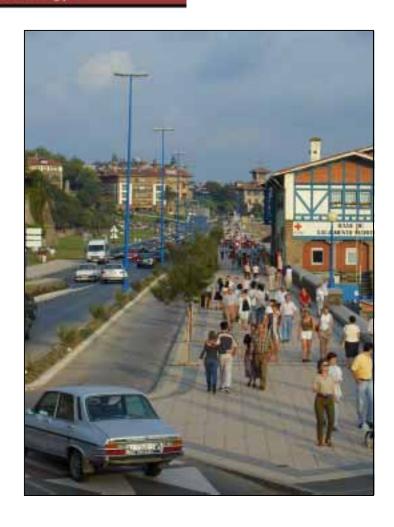
Traffic Calming: How? Narrower pavement widths

Traffic Calming: How? Narrower pavement widths

Massachusetts Institute of Technology

Nothing like a bucket of paint

Traffic Calming: How? Narrowing the pavement


Massachusetts Institute of Technology

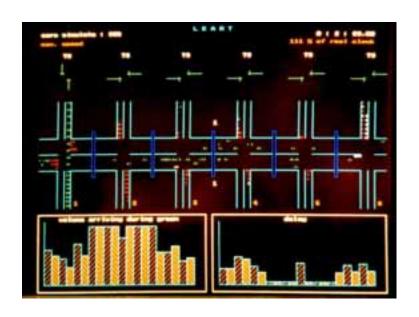
You could rearrange parking

Eliminating road lanes

Traffic Calming: How? Mini-roundabouts

They work!

Traffic Calming: How? Or all of the above


Eliminating some movements (i.e. in a roundabout)

Traffic Calming: How? Civilized Green Waves

Massachusetts Institute of Technology

They need low cycles to avoid late-comers driving fast (at night)

Traffic Calming: How? Civilized Green Waves

Massachusetts Institute of Technology


Plus often changes in horizontal alignment, refuge islands, narrowing the road width...

Traffic Calming: How? Civilized Pedestrian signals

- Longer timing for pedestrians
- Lower total cycles
- Green waves for pedestrian movements

Traffic Calming: How? Narrowing the pavement

- Improving public spaces:
 - New urban furniture, including trees
 - New activities
 - Weather shelters to encourage people use of the streets

- Not an end by itself, just the means to an end
- It must be accompanied by other measures to improve the urban environment so as to encourage more pedestrians

Design Criteria

- Including other important issues:
 - Location
 - Self-enforcement
 - Liability
 - Reversibility
 - Public participation
 - Overall traffic scheme
 - Traffic deviated to other areas

Location

- Sensitive areas:
 - Schools
 - Transit stations
 - Senior citizens
 - Areas with high accident rates
 - High speeds eg.transition areas from the expressway into the urban network

Some Bibliography

- Canadian Guide to Neighbourhood Traffic Calming – TAC-ATC/ITE 1998
- Civilised Streets Carmen Hass-Klau et al ET&P, 1992
- "Guide Les ralentisseurs de type dos d'ane et trapezoidal" CERTU, 1994

- "Guide Zone 30" CETUR, 1992
- "Pedestrian and City Traffic"
 Carmen Hass-Klau, 1990
- "City Routes, City Rights"
 Conserv Law Found, 1998
- "Reduire la Vitesse en Agglomeration" CETUR 1989
- "Voirie Urbaine" CETUR 1988
- ... plus JANE JACOBS, KEVIN LYNCH, WHYTE, etc..

Bibliography http://www.ite.org/traffic/index.htm

Bibliography
http://www.trans.ci.portland.or.us/Traffic_Management/Trafficcalming/

Traffic Calming: The Process

Not an easy process at the beginning

Massachusetts Institute of Technology

My good friend the city engineer...

But once you begin...

- There is not enough money to accommodate all the requests
- The best is the change in behavioral patterns

Look for an easy winner...

Massachusetts Institute of Technology

Nothing like a school

MIT

Once they try...

Massachusetts Institute of Technology

- "Bulb-outs "... everywhere
- Today a pedestrianized plaza

Fri Dec 6

MIT

Always go easy at the beginning...

Massachusetts Institute of Technology

Even if you have to cheat a bit like my good friend Jan Gehl...

MIT

In a nutshell, ten rules

Massachusetts Institute of Technology

- 1. Every change is hard to implement
- 2. Start by the easiest job
- 3. You need allies
- 4. You have to minimize risks
- 5. Technical competence a must
- Not isolated measures, but packages
- 7. Short term results, a must
- But don't forget to plant a few seeds
- 9. Everyone sees things differently
- 10. Success is hard to measure

But if you want, you can!