1.00 Lecture 25

Numerical Methods:
Root Finding

Reading for next time: Big Java: section 19.4

Root Finding

* Two cases:
— One dimensional function: f(x)= 0

— Systems of equations (F(X)= 0), where
« X and 0 are vectors and
« F is an n-dimensional vector-valued function

+ We address only the 1-D function

— In 1-D, it’s possible to bracket the root between
bounding values

— In multidimensional case, it’s impossible to bound

+ (Almost) all root finding methods are iterative
— Start from an initial guess
— Improve solution until convergence limit satisfied

— For smooth 1-D functions, convergence assured,
but not otherwise

Root Finding Methods

Elementary (pedagogical use only):
— Bisection
— Secant, false position (regula falsi)
“Practical” (using the term advisedly):
— Brent’s algorithm (if derivative unknown)
— Newton-Raphson (if derivative known)
— Laguerre’s method (polynomials)
— Newton-Raphson (for n-dimensional problems)
« Only if a very good first guess can be supplied
See “Numerical Recipes in C” for methods
— Library available on Athena. Can translate or link to Java
— The C code in the book is quite (needlessly) obscure

Why is this so hard?

— The computer can’t “see” the functions. It only has
function values at a few points. You’d find it hard to solve
equations with this little information also!

Root Finding Preparation

» Before using root finding methods:
— Graph the equation(s): Matlab, etc.
+ Are they continuous, smooth; how differentiable?
Use Matlab, etc. to explore solutions

Linearize the equations and use matrix methods to get
approximate solutions

Approximate the equations in other ways and solve
analytically

Bracket the ranges where roots are expected

 For fun, look at f(x) = 3x2 — (1/7[4)ln[(7z —x)z] +1
— Plot it at 3.13, 3.14, 3.15, 3.16; f(x) is around 30
Well behaved except at x= 7
Dips below 0 in interval x= &t +/- 10-657
This interval is less than precision of doubles!
* You’ll never find these two roots numerically
This is in Pathological.java: experiment with it later

Bracketing

"

f(x)=x2-2

-8 -6 -4 -2 2 4 6 8

/'

No zero in bracket (though we can’t be sure)
Move in direction of smaller f(x) value.
Empirical multiplier of 1.6 to expand bracket size

Bracketing

f(x)=x2-2

/
/

-8 -6 -4 -2

Still no zero in bracket (though we can’t be sure)
Move again in direction of smaller f(x) value.

Bracketing

f(x)=x2-2

Done; found an interval containing a zero

“Function Passing” Again

// MathFunction is interface with one method
public interface MathFunction {

public double f(double x);
}

// FuncA implements the interface
public class FuncA implements MathFunction {
public double f(double x) {
return x¥*x - 4;

}

Bracketing Program

public class Bracket {
public static boolean zbrac(MathFunction func, double[] x){
// Java version of zbrac, p.352, Numerical Recipes
if (x[0] == x[1D) {
System.out.printin("Bad initial range in zbrac");
return false; }
double f0= func.f(x[0]);
double fl= func.f(x[1]);
for (int j= 0; j < NTRY; j++) {
if (fo*fl < 0.0)
return true;
if (Math.abs(f0) < mMath.abs(fl)) {
x[0] += FACTOR*(x[0]1-x[11);
f0= func.f(x[01); }
else {
x[1] += FACTOR*(x[1]-x[01);
fl= func.f(x[1D); } 3}
return false;
} // No guarantees that this method works!

Bracketing Program

// class Bracket continued
public static double FACTOR= 1.6;
public static int NTRY= 50;

public static void main(string[] args) {
double[] bound= {5.0, 6.0}; // Initial bracket guess
// (Use 3JOption prompt)

boolean intervalFound= zbrac(new FuncA(), bound);
System.out.printin("Bracket found? " + intervalFound);
if (intervalFound)

System.out.printin(“L:"+bound[0]+" U: "+bound[1]);
System.exit(0);

3
// This program implements what the previous slide drawings show

// Numerical Recipes has 2 bracketing program on p.352, which
// searches subintervals in bracket and records those w/zeros

Paper Exercise: Brackets

* Find intervals where the following
functions have zeros or singularities:
- 3 sin(x)
- 0.1x2
— 1/x
— 5sin(x) / x
— sin (1/x)

» Sketch these roughly

« We'll explore these 5 functions with
different root finding methods shortly

Bisection

* Bisection

— Interval passed as arguments to method must be
known to contain at least one root
— Given that, bisection “always” succeeds

« If interval contains 2 or more roots, bisection finds one of
them

+ If interval contains no roots but straddles a singularity,
bisection finds the singularity
— Robust, but converges slowly

— Tolerance should be near machine precision for
double (about 10-15)
» When root is near 0, this is feasible
* When root is near, say, 1019 this is difficult
— Numerical Recipes, p.354 gives a usable method
» Checks that a root exists in bracket defined by arguments
* Checks if f(midpoint) == 0.0 (within some tolerance)
» Has limit on number of iterations, etc.

Bisection

x1 m x2

f(x)=x2-2

\

8 6] z\\/ 2 4 6 8

f(x1)*f(m) > 0, so no root in [x1, m]

f(m)*f(x2) < 0, so root in [m, x2]. Set x1=m

Assume/analyze only a single root in the interval (e.g., [-4.0, 0.0])

Bisection

x1 m x2
f(x)=x2-2
N
-8 -6 -4 -2 \/ 2 4 6 8

f(m)*f(x2) > 0, so no root in [m, x2]

f(x1)*f(m) < 0, so root in [x1, m]. Set x2=m

Continue until (x2-x1) is small enough

Bisection- Simple Version

public class BisectSimple {
public static double bisect(MathFunction func, double x1,
double x2, double epsilon) {
double m;
// Very rare case of double loop variables being ok
for (m= (x1+x2)/2.0; Math.abs(x1-x2) > epsilon;
m= (x1+x2)/2.0)
if (func.f(x1)*func.f(m) <= 0.0)
X2= m; // Use left subinterval
else
x1= m; // Use right subinterval
return m;

}

public static void main(string[] args) {
double root= BisectSimple.bisect(new FuncA(), -8.0, 8.0, 0.0001);

System.out.printin("Root: " + root);
}
}
Bisection- NumRec Version
public class RootFinder { // NumRec, p. 354

public static final int IMAX= 40; // Max no of bisections
public static final double ERR_VAL= -10E10;

public static double rtbis(MathFunction func, double x1,
double x2, double xacc) {

double dx, xmid, rtb;

double f= func.f(x1l);

double fmid= func.f(x2);

if (F*fmid >= 0.0) {
System.out.printin("Root must be bracketed™);
return ERR_VAL; }

if (f < 0.0) { // orient search so >0 1lies at x+dx
dx= x2 - x1;
rtb= x1; }
else {
dx= x1 - x2;
rtb= x2; }

// A1l this is ‘preprocessing’; Toop on next page

Bisection- NumRec Version, p.2

for (int j=0; j < IMAX; j++) {
dx *= 0.5; // cut interval in half
xmid= rtb + dx; // Find new x
fmid= func.f(xmid);
if (fmid <= 0.0) // If f still < 0, move

rtb= xmid; // left boundary to mid
if (Math.abs(dx) < xacc || fmid == 0.0)
return rtb;

}

System.out.printin("Too many bisections™);
return ERR_VAL;

}

// Invoke with same main() but use RootFinder.rtbis()

// This is noticeably faster than the simple version,

// requiring fewer function evaluations.

// It’s also more robust, checking brackets, Timiting
// iterations, and using a better termination criterion.
// Error handling should use exceptions (we don’t here)

Exercise: Bisection

Download Roots

Use the bisection application in Roots to explore
its behavior with the 5 functions

— Choose different starting values (brackets) by clicking at
two points along the x axis; red lines appear

— Then just click anywhere. Each time you click, bisection
will divide the interval; a yellow line shows the middle

— When it thinks it has a root, the midline/dot turns green

— The app does not check whether there is a zero in the
bracket, so you can see what goes wrong...

— Record your results; note interesting or odd behaviors

Secant, False Position Methods

* For smooth functions:
— Approximate function by straight line
— Estimate root at intersection of line with x axis
+ Secant method:
— Uses most recent 2 points for next approximation line
— Faster than false position but doesn’t keep root bracketed and
may diverge
* False position method:
— Uses most recent points that have opposite function values
* Brent’s method is better than either and should be the
only one you really use:

— Combines bisection, root bracketing and quadratic rather than
linear approximation

— See p. 360 of Numerical Recipes

Secant Method

False Position Method

Exercise

» Use secant method application in Roots to
experiment with the 5 functions

— Choose different starting values by clicking at two
points along the x axis; red and orange lines appear

— Then just click anywhere. When you click, a yellow
secant line displays

— Click again, and the intersection of secant and x axis is
found, and the right and left lines (red and orange lines)
move

— When it thinks it has a root, the midline/dot turns green

— The app does not check whether there is a zero in the
limits, so you can see what goes wrong...

— Record your results; note interesting or odd behaviors

Newton’s Method

« Based on Taylor series expansion:

f(x+0) = f(X)+ ' (X)S+ [(%) /2+...
— For small increment and smooth function,
higher order derivatives are smalland f(x+6)=0
implies 6 = - f(x)/ f'(x)
— If high order derivatives are large or first
derivative is small, Newton can fail miserably
— Converges quickly if assumptions met

— Has generalization to n dimensions that is one
of the few available
— See Numerical Recipes for ‘safe’ Newton-

Raphson method, which uses bisection when
first derivative is small, etc.

Newton’s Method

/k

/ f(x)

Initial guess of root

v

Newton’s Method Pathologies

f(x)~0
f(x)
@ Initial guess of root
Infinite cycle
’
Newton’s Method
public class Newton { // NumRec, p. 365

public static double newt(MathFunction2 func, double a,
double b, double epsilon) {
double guess= 0.5*(a + b); // No real bracket, only guess
for (int j= 0; j < IMAX; j++) {
double fval= func.fn(guess);
double fder= func.fd(guess);
double dx= fval/fder;
guess -= dx;
System.out.printin(guess);
if ((a - guess)*(guess - b) < 0.0) {
system.out.printin("Error: out of bracket");
return ERR_VAL; // Experiment with this
} // It’s conservative
if (Math.abs(dx) < epsilon)
return guess;
1
System.out.println("Maximum iterations exceeded");
return guess;

Newton’s Method, p.2

public static int IMAX= 50;
public static double ERR_VAL= -10E10;

public static void main(string[] args) {
double root= Newton.newt(new FuncB(), -0.0, 8.0, 0.0001);
System.out.printin("Root: " + root);

} // End Newton

public class FuncB implements MathFunction2 {
public double fn(double x) {
return x*x - 2;
1
public double fd(double x) {
return 2*x; } }

public interface MathFunction2 {
public double fn(double x); // Function value
public double fd(double x); } // 1st derivative value

Examples

o f(x)=x2+1
— No real roots, Newton generates ‘random’
guesses

« f(x)=sin(5x) + x2-3 Root= -0.36667
— Try a= -1 and b = 2 (guess= 0.5)initially
— Using a= 0 and b = 2 (guess= 1) will fail with
conservative Newton (outside bracket)
« f(x)=In(x2-0.8x + 1) Roots= 0, 0.8
—a=0and b =1.2 (guess= 0.6) works
— a=0.0 and b= 8.0 (guess= 4.0) fails

.

|

Exercise A

* Download Newton:

— The functions on previous slide are
implemented as FuncB, FuncC and FuncD

— Newton takes doubles a and b as arguments,
but they are not a bracket. It averages them to
create its first guess

— Experiment with different initial guesses
— Solutions are on previous slide

Exercise B

* Use Newton’s method application in Roots
to experiment with the 5 functions

— Choose starting guess by clicking at one point along the
x axis; red line appears

— Then just click anywhere. When you click, a yellow
tangent line displays

— Click again, and the intersection of tangent and x axis is
found, and the guess (red line) moves

— When it thinks it has a root, the line/dot turns green

— The app does not check whether there is a zero in the
limits, so you can see what goes wrong...

— Record your results; note interesting or odd behaviors

Who Finds A Root?

Function |Bisection |Secant Newton
3 sin(x) Maybe Maybe

0.1x2

1/x

5 sin(x) / x | Maybe Maybe Maybe
sin (1/x) Maybe Maybe

Moral: You need to understand your function, its range,
its likely zeros and the method you propose to use

