Lecture 35

Threads

Reading for next time: Big Java 21.4

What is a Thread?

Imagine a Java program that is reading large files over the
Internet from several different servers (or getting data from
several sensors over a local area network or...) . Some of
these servers might be under heavy load or on slow
connections to the Internet. Others might return the data
quickly.
Most of the time in our program will be spent waiting for
input over the network. One programming approach
is straightforward:

read file 1 from server A

read file 2 from server B

read file 3 from server C

What is a Thread?, 2

Doing these reads sequentially is inefficient since
the loading of file 2 from server B wouldn't start
until all of file 1 is loaded.

A much faster approach is to start reading from
each file concurrently, and handle the partial files
as they arrive.

This requires the ability to have several tasks

proceeding in parallel (as though they were each
assigned to a separate independent processor).

What is a Thread?, 3

Most computers still only have a single
processor, so what we really want is an easy way
for the program to switch among arriving data
sources.

More generally, we would like to be able to write
programs where the "flow of control” branches ,
and the branches proceed in parallel.

The processor can achieve this by switching
between the different branches of the program in
small time increments.

This is the strategy behind threads.

Threads vs. Processes

* Most operating systems allow concurrent
processes to proceed in parallel.

* Processes are expensive but safe. Processes are
so well insulated from each other that it is both
complex and often expensive to communicate
between them.

» Threads are cheap, but different threads running
in the same process are not well-insulated from
each other.

Java Support for Threads

« Java is the only widely used language
where the support for threads is a part of
the language.

» Ada, a language developed by the
Department of Defense, also has built-in
support for threads, but Ada is little used
outside DoD contexts.

* In other languages such as C and C++,
there are libraries to implement threads
which are more or less standardized.

Java is Inherently Multithreaded

In Java, the garbage collection of unreferenced objects is
performed by the Java runtime system in a separate thread.

Java also uses a separate thread to deliver user interface
events. This allows a program to remain responsive even
while it is involved in a long running calculation or I/O
operation.

Think how you would implement a "Cancel" function if you
could not use threads.

This means Java is inherently multithreaded. The Java
runtime environment uses multiple threads even if the
user's program doesn’t.

But programmers can also use threads in their own code.
Our multiple file download strategy requires threads.

Simple Thread Example

In this example we will implement a
multithreaded download program

The program uses a separate Thread to read
each URL from a Web server on the Internet and
copy the contents of that URL to a local file.

We call the class that does the work and
extends the Thread class, URLCopyThread.

URLCopyThreadMmain creates a new instance of
URLCopyThread for each copy operation.

URLCopyThreadTest

public class URLCopyThreadTest {
public static void main(string argv[]) {
string[][] fileList = {

{"server"”,"home.htm1"},

{"http://www.pepysdiary.com/", "index.html"},

{"http://microscopy.fsu.edu/micro/gallery/dinosaur/dinol.jpg",
"dinol.jpg"},

{"http://www.boston.com/","globe.htm1"},

{"http://java.sun.com/docs/books/tutorial/index.html",
"tutorial.index.html"},

}; // End string array

URLCopyThreadmain, 2

for (int i=0; i<fileList.length; i++) {

Thread th;

String threadName = new String("T" + i);

th = new URLCopyThread(threadName,
fileList[i][0],
fileList[i]1[1]);

th.startQ;

System.out.printin("Thread " + th.getName() +

to copy from " + fileList[i][0] + " to " +
fileList[i][1] + " started");

URLCopyThread

import java.io.*;

import java.net.*;

public class URLCopyThread extends Thread {
private URL fromuURL;
private BufferedInputStream input;
private BufferedoutputStream output;
private Sstring from, to;

public URLCopyThread(string n, String f, String t) {

super(n);

from = f;

to = t;

try {
fromuRL = new URL(from);
input = new BufferedInputStream(fromuURL.openstream());
output = new BufferedoutputStream(new FileOutputStream(to));

}

catch(MalformedURLException m) {
System.err.printin("MalformedURLException “+ from); }

catch(T0Exception io) {
System.err.printin("IOException

+ i0); }

URLCopyThread, 2

public void run(Q) {
byte [] buf = new byte[512];
int nread;
try {
while((nread=input.read(buf,0,512)) > 0) {
output.write(buf, 0, nread);
System.out.printin(getName() + ": " +
nread + " bytes");
}
input.close();
output.close();
System.out.printin("Thread " + getName() +
" copying " + from + " to " + to + "finished");
}
catch(I0Exception ioe) {
System.out.printin("IOException:" + ioe);
}
} // end of run() method
} // end of URLCopyThread class

Exercise

* Download and run URLCopyThreadTest

and URLCopyThread

— Which threads start first?

— Which overlap?

— If you run it multiple times, do you get different
runtime behavior?

— Switch the order of the URLs in the program
and run the program. What happens?

How Do | Tell a Thread What to Do?

There are two approaches:
1. Your class can inherit from the Thread class and override
its method public void run().
public class MyThread extends Thread {
public void run(Q) {
// code executed in the Thread goes here
}
}
In main(), for example, you create an instance of your
thread like this:
Thread t = new MyThread(Q);

. After the thread object t is created, its run() method is
executed by calling start(); it’s just like main() in an
overall program: run() means “start here”

How Do | Tell a Thread What to Do?, 2

2. You can write a separate class that implements the
Runnable interface, which contains only a single
method:

public interface Runnable {
public void runQ;

}
You create the Thread by using your Runnable object as
a constructor argument (see next slide)
One reason to use this approach is that Java classes can
only inherit from a single class. If you want to define a
thread's run() method in a class that already inherits
from another class, you cannot use the first strategy.

Runnable Example

For example, consider the class JFrameInThread defined as
public class JFrameInThread
extends JFrame implements Runnable {
// constructors and other methods go here
public void run(Q) {
// code executed in the Thread goes here
}
}

If we wanted an instance of the JFrameInThread class to run
in its own Thread, we could use the statement

Thread t = new Thread(new JFrameInThread());

Starting and Stopping Threads

e How do you start a thread working: Call start()
on the thread instance.

Thread t = new MyThread(Q);
t.start(); // Invokes run() for thread,
// which is 1ike a main(Q) for it

* How do you stop athread and destroy it: Let the
run() method complete and the thread reference
go out of scope or set the reference to null. The
garbage collector will reclaim the thread's
storage.

- t.stop(Q) is deprecated.
- t.stop() could stop a thread halfway through a method

call and leave the program in an inconsistent state. (It's
like Killing a regular program at some arbitrary point.)

How to Tell If a Thread is
Still Running

* You can ask it:
Thread t = new MyThread(Q);
t.start(Q);

if (t.isAlive(Q)) // it’s still running
else // it isn’t

e Or you can wait for it:
t.join(); // blocks until t completes

RandomExample

* Download RandomExample and run it

It runs the Java random number generator 10,000,000
times each time you enter a number, and tells you how
often that number came up
* This is not very useful, of course. It’s just a stand-in for
some computational method that takes a long time to run
— Notice that you have to wait a while for the results,
before the JOptionPane is ready for input again
— We'll put the computations into threads so that control
returns to the GUI as soon as possible
— RandomTest.java contains a package access class,
RunRandom for convenience
« We’ll have 3 versions of all this at the end

RandomExample, p.1

import java.util.*;
import javax.swing.*;

class RunRandom {
private static final int SIZE = 10000000;
private int lookup;

public RunRandom(int i) {
Tookup = 1i;

}

public void findoccurrences() {
Random r = new Random();
int count = 0;
for (int i = 0; i < SIZE; i++)
if (lookup == r.nextInt(255))
count++;
System.out.printin("Your number
" was found " + count +

+ lookup +
times.");

10

RandomExample, p.2

public class RandomExample {
public static void main(string[] args) {

int choice = 0;
while (true) {
String num = JOptionPane.showInputDialog(
"Enter a number to search [0-255, -1 to quit]
choice = Integer.parseInt(num);
if (choice == -1)
break;
RunRandom r = new RunRandom(choice);
r.findoccurrences();
}
System.out.printin("Done");
System.exit(0);

:");

1
}
EXxercise
* Modify the program to create a thread each time a number is
entered:
e In class RunRandom:
— Have RunRandom extend Thread
— Give it a public void run() method
e The method body is like a ‘main()’ for the thread. It tells it what to do
when it is started. Write the method body; it’s very short!
— No other changes in RunRandom
¢ In class RandomExample, in main method:

Create an array to hold RunRandom objects. Size 10 or so is fine
Each time the user picks a number, create a new RunRandom

object and start it
Let the threads run until completion
Remove the System.exit(0) call

11

Exercise, part 2

Experiment and observe:
— Where does ‘Done’ appear in the output? Why?
— Put the System.exit(0) call back in and see what happens. Why?
— But, without System.exit(0) and with a JOptionPane, your
program doesn’t terminate correctly.
A final change:
— In main, after the while loop, add a try-catch block:
try {
rArray[--i].join(Q); // Join (wait for) last thread
System.out.printin("Try block:"+ 1i);
System.exit(0);
} catch (Interruptedexception e) {
System.exit(l);
}
— This isn’t really enough, since the threads could finish out of
order, but it gives an introduction to the issue

— A better approach is to loop thru all threads using t.isAlive(Q)
until none are

Exercise: Runnable

Modify the program you just wrote to implement Runnable
rather than extend Thread:
In class RunRandom:

— Have RunRandom implement Runnable instead of extending
Thread.

No super() call in constructor, if you had one.

— The public void run() method is unchanged

No other changes in RunRandom

In class RandomExample, in main method:

— Create an array to hold Thread objects, not RunRandom

— Each time the user picks a number, create a new Thread object,
using anew RunRandom object in its constructor, and start it
* See the previous slide on Runnable

— No other changes in main()

12

