1.00 Lecture 30

Input/Output
Introduction to Streams

Reading for next time: Big Java 15.5-15.7

Sending information to a Java
program

So far: use a GUI

— limited to specific interaction with user

— sometimes tedious (entering matrix elements)

* What if you have lots of data to send to the
program?

* What if the program will generate lots of data?

 How do you tell Java where to find the data? How
does Java get the data?

Streams

Java can communicate with the outside
world using streams

Picture a pipe feeding data into your Java

program

— where can the data come from?

— keyboard input, files, other programs, network
sockets, other streams

Picture a pipe leading out of your Java

program

— where can the data go to?

— screen output, files, other programs, network
sockets, other streams

Java I/O

I/O -- input/output, how you get data into

and out of your program

Streams abstract away the details of 1/0

— have the same methods whatever your data
source or destination

Streams work in one direction only

— input streams control data coming into
program from some source

— output streams control data leaving the
program for some destination

— if you want to both read and write data, you'll
need two separate streams

Java Stream Classes

« Java provides a hierarchy of classes for
streams (in java.io.*)
— Abstract, top-level classes that define general
methods for different types of streams
 InputStream -- reads bytes
< OutputStream -- writes bytes
» Reader -- reads characters
» Writer -- writes characters

— Many, many subclasses that implement

streams
« Some are tailored for specific data sources or
destinations (FileReader reads chars from a file)
* Some add functionality to existing streams
(BufferedReader buffers input for more efficiency)

Characteristics of Streams

* FIFO queues

— input streams deliver data to program in the
order it was read from source

— output streams deliver data to destination in
order it was generated from program
» Basic streams provide sequential access

— no rewind or backup

— some streams (like RandomAccessFile)
provide more functionality

System.out

* What exactly is System.out.printin()?

* Turns out you've been using streams all along...

— System is a special class that is automatically
instantiated once when your program runs

— It has three static member variables

 in -- InputStream (connected to terminal input)

e out -- PrintStream (connected to terminal output)

 err -- PrintStream (connected to error output -- screen or
special window in IDE)

— printIn() is a (overloaded) method in PrintStream that
takes a String (or primitive data type) as an argument,
prints it to a stream and adds a line termination
character.

Connecting Streams

* Sometimes the stream you use to
input/output data doesn't have all the
functionality you need

* Some streams can be connected by using
one stream as the constructor argument
to another

— i.e., add BufferedReader to FileReader
— this reads a file more efficiently

Stream Pipeline

File Buf f ere
Reader Reader

e FileReader reads characters from a text file

« BufferedReader buffers the character stream
for efficiency and allows you to read line by line
(readLine())

Exercise 1: Download and Run

import java.io.*; // Move TestIn.txt to C: or similar
public class SimpleReader {
public static void main(String[] args) {
try {
FileReader fin = new FileReader("C:/TestIn.txt");
BufferedrReader b = new BufferedrReader(fin);
Filewriter fout = new Filewriter("C:/Testout.txt");

String currentLine = "";

int i = 1;
while ((currentLine = b.readLine()) != null) {
fout.write((i++) + " " + currentLine + "\n");}

fin.close(Q);
fout.close();
System.out.printin("Done");
}
catch (FileNotFoundException ef) {
System.out.printin("File not found");}
catch (T0Exception ei) {
System.out.printin("IO Exception™); }

Exercise 2

« Create new text file of 10 lines for your program to read
— What happens if it doesn’t exist?
e Try to change the order of the catch{} blocks
— What happens, and why?
« Change the while statement to (a bad idea):
while (b.readLine() != null) {
fout.write((i++) + " " + b.readLine() + "\n");}
— What happens, and why? (It’'s a common error)
e “Accidentally” write to your_input text file (e.g. TestIn.txt)
— Make a copy of your input text file first
— What happens?
* Other notes:
— Always check for end of file (EOF):
* readLine() returns null
» read() returns -1 (when reading characters)

— Always close your streams when done: save system
resources, avoid file corruption if system crashes

— Use Wordpad, not Notepad to look at your files. (end of lines)

The 3 Flavors of Streams

In Java, you can read and write data to a file:
— as text using FileReader and Filewriter

— as binary data using DataInputStream
connected to a FileInputStreamandas a
DataOutputStreamconnected to a
FileOutputStream

— as objects using an ObjectInputStream
connected to a FileInputStreamand as an
ObjectOutputStream connected to a
FileOutputStream

Parsing

» readLine() is okay if you want to read whole lines
» read() is okay if you want to read character by
character
* What if you have structured data?
— meaning is dependent on position or formatting
— comma-separated values (or other delimiters/separators)
¢ Reading this data in a meaningful way is called
parsing

Parsing

* When you parse (tokenize) a file, you are looking
for tokens

— sequences of one or more characters that "belong"
together

— sometimes tokens are separated by delimiters (","”, "\t","
", "\n"), sometimes not
* Two ways to parse in Java

— StreamTokenizer : reads character by character, no
delimiters

— StringTokenizer : reads entire String, has delimiters

StringTokenizer

* Injava.util
* Can tokenize any String, not just from streams

* 3 constructors, with 1, 2 or 3 arguments
— One argument: String to be parsed.
» Use default delimiter set " \t\n\r\f*
» Space, tab, new line, carriage return, line feed
— Two arguments: String to be parsed, String of delimiters
— Three arguments: 3@ argument is flag to return delimiters,
which are not returned normally
* nextToken() returns next token as a String

* hasMoreTokens() returns false when you don't have
any more tokens left

 There is also a StreamTokenizer with similar features
— Works with character streams, assembles tokens

Reading and writing Students

import java.io.*;

public class Student implements Serializable { // Object I0 only

private String name;
private int year;
private double gpa;
public Student() {}; // Constructors
public Student(String n, int y, double g) {

name = n; year = y; gpa = g; }
public double getGpa() { return gpa; } // Getters
public string getName() { return name; }
public int getyear() { return year; }
public void setGpa(double d) { gpa =d; } // Setters
public void setName(String string) { name = string; }
public void setyear(int i) { year = i; }
public string tostring() {

return (name + " \t" + year + " \t" + gpa); }

Students in text files

import java.io.*;
import java.util.*;

public class StudentFile {
public static void main(string[] args) {
Student[] team= new Student[4];
team[0]= new Student("Jennifer wang", 1984, 5.0);
team[1]= new Student("Helen Smithson", 1985, 5.0);
team[2]= new Student("Rashika Mathews", 1983, 5.0);
team[3]= new Student("Ferd Johnson", 1981, 5.0);
try {
Filewriter f= new Filewriter("student.txt");
Printwriter out= new Printwriter(f);
writeData(team, out);
out.close();
FileReader fin= new FileReader("student.txt");
BufferedrReader in= new BufferedReader(fin);
Student[] newTeam= readbata(in);
in.close(Q);
for (int i=0; i < newTeam.length; i++)
System.out.printin(newTeam[i]);
} catch(IOException e) { System.out.printin(e); } }

Students in text files, p.2

public static void writeData(Student[] s, Printwriter out)
throws IOException {
out.printin(s.length);
for (int i= 0; i < s.length; i++) {
String name= s[i].getName(Q);
int year= s[i].getYear(Q);
double gpa= s[i].getGpa(Q);
out.printin(name + "|" + year + "|" + gpa); }
}
public static Student[] readpata(BufferedReader in)
throws IOException {
int n= Integer.parseInt(in.readLine());
Sstudent[] sArr= new Student[n];
for (int i=0; i < n; i++) {
sArr[i]l= new Student();
String str = in.readLine();
StringTokenizer t = new StringTokenizer(str, "|");
sArr[i].setName(t.nextToken());
sArr[i].setYear(Integer.parseInt(t.nextToken()));
sArr[i].setGpa(Double.parseDouble(t.nextToken())); }
return sArr;

Exercise 3

 Download and run StudentFile
— Look at student.txt in Wordpad or other editor

* Questions:

— Does it still work if you use just a FileReader,
not a Buffered Reader? Remove it and see.

— Does it work with just FileWriter, not a
PrintWriter? Remove it and see.

— What would change if we didn’t have the
number of students as the first line of the file?

Exercise 4

* Modify StudentFile so that it does not write
or read the number of Students as the first
line of the file
— Use Exercise 1 as a guide

— You may assume a maximum of 100 students if
you need to at any point in the program.

— Do you see the dilemma? And a solution?

10

