1.00 Lecture 19

Swing Event Model, Continued
Layout Managers

Reading for next time: Big Java: review Swing sections

Event Listeners

You may select any object, as long as it
implements ActionListener, to be the event
listener. Either:

— Add an actionPerformed method to GUI element class

« Often make the containing panel listen to its buttons, etc.,
as in both examples in class so far

— Create new class as listener

— Create ‘inner class’ as listener (covered next class)
Next exercise, ComboBox, has two event sources
and we must listen and distinguish between the
two types of event

— Example displays fonts selected by user

— Font family, font size are chosen; font style is BOLD

Download CFrame, ComboPanel

CFrame

import java.awt.¥;
import javax.swing.*;

public class CFrame extends JFrame {

public static void main(string[] args) {
CFrame frame = new CFrame();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setvibible(true);

}

public CFrame() {
setTitle("ComboBox Example™);
setSize (400, 200);
comboPanel panel = new ComboPanel();
Container contentPane = getContentPane();
contentPane.add(panel);

} // Why no data members in this class?

o _ ComboPanel
import java.awt.¥*;

import java.awt.event.*;
import javax.swing.¥*;

public class ComboPanel extends JPanel implements ActionListener {
private String curFamily = "Monospaced";
private int curSize = 10;
private JLabel showFont;
private JComboBox comboFamily;
private JComboBox comboSize;

public ComboPanel() {
string[] fontFamily = { "Monospaced"”, "serif", "SansSerif" };
string[] fontSize = { "10", "12", "14", "18", "24", "36" };
comboFamily = new JComboBox(fontFamily);
comboSize = new JComboBox(fontSize);
showFont = new JLabel();
showFont.setFont(new Font(curFamily, Font.BOLD, curSize));
showFont.setText(curFamily + " " + Font.BOLD + " " + curSize);

// Add necessary components to the ComboPanel using addQ):

// Add the 3 objects you just created

// Add action listeners for the components that generate events
// using addActionListener() 1

ComboPanel, p.2

public void actionPerformed(ActionEvent e) {
if (e.getSource().equals(comboFamily))
?? = (String) comboFamily.getSelectedIitem();
else
?? = Integer.parseInt((String) comboSize.getSelectedItem());
showFont.setFont(new Font(curFamily, Font.BOLD, curSize));
showFont.setText(curFamily + " " + Font.BOLD + " " + curSize);
}

}
// Complete actionPerformed()

// Combo boxes return Objects from getSelectedItem()
// so you need to cast/convert them to Strings and then
// the desired data type/object

The Java Event Model, Again

* How do GUIs interact with users? How do
applications recognize when the user has done
something?

* In Java this depends on 3 related concepts:

— events: objects that represent a user action with the
system

— event sources: in Swing, these are components that can
recognize user action, like a button or an editable text
field

— event listeners: objects that can respond when an event
occurs

Events

« Events are instances of simple classes (tin other words,
they are objects) that supply information about what
happened.

» For example, instances of MouseEvent have getX() and
getY () methods that will tell you where the mouse event
(e.g., mouse press) occurred.

« All event listener methods take an event as an argument.

Event Sources, Listeners

* Event sources
— Event sources generate events

— The ones you will be most interested are subclasses of
JComponents like JButtons and JPanels

— You find out the kind of events they can generate by
reading the Javadoc
* Event listeners

— An object becomes an event listener when its class
implements an event listener interface.

— The event listener gets called when the event occurs if
we register the event listener with the event source

How do | Set Up to Receive an Event?

1. Figure out what type of event you are interested
in and what component it comes from.

2. Decide which object is going to handle (act on)
the event.

3. Determine the correct listener interface for the
type of event you are interested in.

4. Write the appropriate listener method(s) for the
class of the handler object.

5. Use an addEventTypeListener() method to
register the listener with the event source

Exercise

» Mark up the next three slides:

— Find where steps 1, 2, 3, 4 and 5 occur from
the previous slide

— Circle these steps and label them

Exercise: Hello Application

import javax.swing.¥*;
import java.awt.event.*;
import java.awt.Font;

public class Hello extends JFrame
implements ActionListener

{
private JButton button;
private int state = 0;

public static void main (String args[]) {
Hello hello = new Hello(Q);
hello.setvisible(true);

}

The Hello Application, 2

public Hello({
setDefaultCloseOperation(EXIT_ON_CLOSE);
button = new JButton("Hello");
button.setFont(new Font("SansSerif",

Font.BOLD, 24));

button.addActionListener(this);
getContentPane() .add(button, "Center");
setSize(200, 200);

The Hello Application, 3

public void actionPerformed(ActionEvent e) {
if (state == 0) {
button.setText("Goodbye");
state++;
} else {
System.exit(0);
}
}

Event Types

* Semantic events vs low-level events
— Semantic events are generally meaningful, often a set of low-
level events
« ActionEvent: user action on object (button click, etc.)
* AdjustmentEvent: value adjusted (scroll bar, etc.)
« ItemEvent: selectable item changed (combo box)
e TextEvent: value of text changed
— You can often just use ActionEvent, especially if a button is
present to ‘Compute’, etc.
— Low level events:
* Mouse press, mouse move, key release, etc.
e There are 7 of these

Event Types, Interfaces

Event type

Interface name

Methods in interface

ActionEvent

ActionListener

void actionPerformed(ActionEvent e)

AdjustmentEvent

AdjustmentListener

void adjustmentValuePerformed(AdjustmentEvent e)

ItemEvent ItemListener void itemStateChanged(ltemEvent e)
TextEvent TextListener void textValueChanged(TextEvent e)
ComponentEvent ComponentListener void componentHidden(ComponentEvent e)
void componentMoved(ComponentEvent e)
void componentResized(ComponentEvent e)
void componentShown(ComponentEvent e)
FocusEvent FocusListener void focusGained(FocusEvent e)
void focusLost(FocusEvent e)
KeyEvent KeyListener void keyPressed(KeyEvent e)

void keyReleased(KeyEvent e)
void keyTyped(KeyEvent e)

ContainerEvent

ContainerListener

void componentAdded(ContainerEvent e)
void componentRemoved(ContainerEvent e)

WindowEvent

WindowListener

(7 methods—see text)

MouseEvent

MouseListener

(7 methods—see text)

Layout Management

» Layout management is the process of _
determining the size and location of a container's
components.

» Java containers do not handle their own layout.
They delegate that task to their layout manager,
an instance of another class.

» Each type (class) of layout manager enforces a

different layout policy.

» Layout proceeds bottom-up: it finds the size of
individual elements, then sizes their containers
until the frame is sized

 If you do not like a container's default layout
manager, you can change it.

Container contentPane = getContentPane();
contentPane.setLayout(new FlowLayout());

BorderLayout

“A border layout lays out a container, arranging and
resizing its components to fit in five regions:
north, south, east, west, and center. Each region
may contain no more than one component, and is
identified by a corresponding constant: NORTH,
SOUTH, EAST, WEST, and CENTER.” - javadoc

North

West Center East

South

BorderLayout is the default layout manager for
contentPane

BorderLayout

» Selecting a LayoutManager affects how we add
components.

» Below we set ‘panel’ to use a BorderLayout and
we add two components, button and Tabel, to it:

// button is an existing JButton

// label is an existing JLabel

JrPanel panel = new JPanel(); // default FlowLayout
panel.setLayout(new BorderLayout());

panel.add(button, BorderLayout.NORTH);
panel.add(1abel, BorderLayout.SOUTH);

// The second argument to add(..) must be BorderLayout.
// NORTH, SOUTH, EAST, WEST, or CENTER.

FlowLayout

“A flow layout arranges components in a left-to-
right flow, much like lines of text in a paragraph.
Flow layouts are typically used to arrange
buttons in a panel. It will arrange buttons left to
right until no more buttons fit on the same line.
Each line is centered.” - javadoc

JLabel JButton JButton

JLabel

FlowLayout is the default layout manager for JPanel.

Adding Components with FlowLayout

» Below we set panel to use a FlowLayout and we add two
components, button and Tabel, to it:

// Same assumptions: button and Tabel exist
JPanel panel = new JPanel();

// Panel’s layout mgr is FlowLayout already but
// we set it here as an example
panel.setLayout(new FlowLayout());
panel.add(button);
panel.add(1abel); | putton ” abel |
// When adding to FlowLayout, order matters

// panel.add(label);
// panel.add(button);

| label || button |

10

Why Use Layout Management

1. Often you do not know how large your application will be.
Even if you call setSize(), the user can still physically
resize the window of an application.

2. Java knows better than you how large components
should be. It is hard to gauge the size of a JLabel, for
instance, except by trial and error. And if you get the size
correct on one system and then run it on another with a
different set of fonts, the JLabe1 will not be correctly
sized.

3. Once you lay out a GUI, you may want to make changes
that will compromise a layout done by hand. If you use
layout management, the new layout happens
automatically, but if you are laying out the buttons by
hand, you have an annoying task ahead of you.

JComponent Size

Components communicate their layout needs to their enclosing
container's layout manager via the methods:

- public Dimension getMinimumSize()
- public Dimension getPreferredsize()
- public Dimension getMaximumSize()

There are three corresponding set methods that allow you to
change a component's size hints.

- public Dimension setMinimumSize(Dimension d)

- public Dimension setPreferredSize(Dimension d)
- public Dimension setMaximumSize(Dimension d)
Where a Dimension argument, d, is created via:

- Dimension d = new Dimension(int width, int height)

11

Exercise: Layout

* First, download and run ClockFrame ‘as is’.
— Resize the frame and see how it behaves

e Update ClockPanel:
- ClockPanel already uses a BorderLayout

— The buttons and labels are added to a second panel,
which is then added to the ClockPanel at SOUTH

— Comment out the second panel: JPanel panel= new
JPanel();

— Add the buttons and labels directly to ClockPanel:

— Put tickButton to the NORTH, resetButton SOUTH,
hourLabel WEST, and minuteLabel EAST

Exercise: Layout, p.2

* When you are finished, run ClockFrame.
— Resize your application and see how it behaves
— The result won’t look good. Just make sure you
understand how to update the LayoutManagers and
invoke add ()
e Optional:
- Replace setLayout(new BorderLayout); with
setLayout(new FlowLayout);

— Change the add () calls to omit the second argument
(NORTH, SOUTH, ...)

— See what happens (it's not pretty either)

12

