
1.00 Introduction to Computers and Engineering Problem Solving

Final Examination - May 19, 2004

Name:

E-mail Address:

TA:

Section:

 You have 3 hours to complete this exam. For coding questions,

you do not need to include comments, and you should assume
that all necessary files have already been imported.

Good luck!

Question Points

Question 1 / 10

Question 2 / 10

Question 3 / 20

Question 4 / 20

Question 5 /15

Question 6 / 25

Total / 100

THIS PAGE INTENTIONALLY LEFT BLANK

Page 1 of 19

Question 1. Tree traversal (10 points)

After several terms of 1.00, the TAs decided they were tired of the inorder and postorder
traversals taught in the course. After much thought, they developed new, modified inorder
and postorder traversals. These new traversals are:

A modified inorder traversal performs the following, recursively:

- Traverse the right subtree
- Visit the node
- Traverse the left subtree

A modified postorder traversal performs the following, recursively:

- Traverse the right subtree
- Traverse the left subtree
- Visit the node

3

99 33

22 66 11 55

a) If the tree shown is traversed in modified inorder, starting at the root of the tree, what

is the sequence of nodes visited?

Answer:

b) If the tree shown is traversed in modified postorder, starting at the root of the tree,

what is the sequence of nodes visited?

Answer:

5 88 77 44

55, 33, 44, 11, 3, 77, 66, 99, 88, 22, 5

55, 44, 11, 33, 77, 66, 88, 5, 22, 99, 3

Page 2 of 19

Question 2. Circular linked list (10 points)

A circular linked list is a linked list in which the last node refers to the first node. By
convention, first is a reference to the first node in the linked list. The program below
builds a circular list and manipulates it. Your task is to predict the output at three stages in
the program.
Hint: Trace the program by drawing the linked list at intermediate steps (draw the list with
the data and next fields for every node, and with the first and last references)

public class CircularList {

 public static class Node {
 int data;
 Node next;

 Node (int d, Node n) {
 data = d;
 next = n;
 }
 }

 public static void main(String[] args)
 {
 int i;
 int N = 5, M = 3;

 // Step (a)
 Node first = new Node(1, null);
 first.next = first;
 Node last = first;
 // End of Step (a)

 // Step (b)
 for (i = 2; i<= N ; i++) {
 last.next = new Node (i,first);
 last= last.next;
 }
 // End of Step (b)

 // Step (c): What’s happening here?
 while (last!= last.next) {
 for (i=1; i<M; i++)
 last= last.next;

 last.next = last.next.next;
 }
 // End of Step (c)

Page 3 of 19

 // Output the result
 System.out.println (last.data);
 }
}

 // Draw the list after step (a) finishes

 first, last 1

 // Draw the list after step (b) finishes

A circular list with first pointing to the node containing
1 and last pointing to the node containing 5. Elements are
1 2 3 4 5

 // What is the final output from step (c)?

 Output is 4 (elements are deleted one at a time)

Page 4 of 19

 Question 3. Computing grade ranges (20 points)

In order to assign overall letter grades for 1.00, the teaching staff needs to organize students’
numerical scores.

First, the staff places all student scores into an int[] array called grades. Next, they
generate an int[] array, cumulative, that contains the cumulative number of student
scores at or below that score. All scores are within the range 0 to 100. The TAs then use this
array to determine how many students scored between grades a and b.

Example: There are N=10 students in a class, with scores in the grades array as follows:

67, 68, 65, 70, 74, 70, 69, 74, 68, 70

Running the cumulativeGrades method returns an array of cumulative grades. An
example output is shown in row 3 of the table below.

grades 0 … 64 65 66 67 68 69 70 71 72 73 74 75 …. 100
frequency 0 …. 0 1 0 1 2 1 3 0 0 0 2 0 …. 0
cumulative
grades 0 … 0 1 1 2 4 5 8 8 8 8 10 10 … N=

10

Using the cumulative array it is possible to count the number of students with grades in a
range between values a and b. In the example above, the number of grades between a=67 and
b=73, inclusive, is 7, the difference between the cumulative number at 73 and 66 (one less
than 67).

Page 5 of 19

Part 1 : cumulativeGrades

Please complete the cumulativeGrades method. The method takes an int[] array
containing all the grades for the class as its argument and returns an int[] array containing
the cumulative grade distribution.

public static int[] cumulativeGrades (int[] grades){
int k = 101;
int[] frequency = new int[k];
int[] cumulative = new int[k];

for (int i = 0; i < grades.length; i++){

frequency[grades[i]] +=1;
}
cumulative[0] = frequency[0];
for (int i = 1; i < k; i++){

cumulative[i] = cumulative[i-1] + frequency[i];
}
return cumulative;

}

Page 6 of 19

Part 2: numGradeRange

Complete the numGradeRange method that calculates the number of scores in a given range.
The method takes as arguments the int[]array containing the cumulative grade distribution,
and the lower and upper bound grades a and b. The method returns an int that is the total
number of student scores within the given range, including both end points. You may assume
b ≥ a. Be careful at the limits of the range.

public static int numGradeRange (int[] cumulativeGrades, int a, int b){
if (a == 0){

return cumulativeGrades[b];
}
else{

return cumulativeGrades[b] -
 cumulativeGrades[a-1];
}

}

Page 7 of 19

Question 4. Streams (20 points)

Your business needs a way to back up its customer records. Given a Vector of Customer
objects (as defined below) you must write the Customer objects to a text file. The
Customer class is:

public class Customer{
private String customerName;
private String customerAddress;
private String customerPhoneNumber;

 public Customer(String custName, String custAddress,
 String custPhone){
customerName = custName;
customerAddress = custAddress;
customerPhoneNumber = custPhone;
}

public String getCustomerName(){
 return customerName;
}

public String getCustomerAddress (){
 return customerAddress;
}

public String getCustomerPhoneNumber (){
 return customerPhoneNumber;
}

} //End of Customer class

Page 8 of 19

Part 1: writeToFile. Please complete the writeToFile method. The writeToFile
method creates an appropriate stream and writes the customer data into a file. The output file
must have the following format, with each customer’s data on a separate line:

customerName1, customerAddress1, customerPhone1
 (...)

customerNamen, customerAddressn, customerPhonen

public class TestCustomer {

public static void writeToFile (String fname, Vector v)
throws IOException {

 FileWriter fw = new FileWriter(fname);
 PrintWriter out= new PrintWriter(fw);

 for (int i = 0; i < v.size(); i++) {
 Customer c = (Customer) v.elementAt(i);

 out.println(c.getCustomerName()+", " +
 c.getCustomerAddress()+", "+

 c.getCustomerPhoneNumber());
 }
 out.close();

}

Page 9 of 19

Part 2: main. Please complete the main method. It must create a Vector of three Customer
objects (pick their names, addresses and phones yourself) and call the writeToFile method.
It must handle the IOException that might be thrown by writeToFile by catching it and
outputting some relevant message. Assuming that you are writing to a file called “output.txt”.

public static void main(String[] args) {

 Customer cust1 = new Customer("Chris", "SP", "25333");
 Customer cust2 = new Customer("Elana", "New House", "25313");
 Customer cust3 = new Customer("George", "East Campus",

 "25223");
 Vector custVector = new Vector();

 custVector.addElement(cust1);
 custVector.addElement(cust2);
 custVector.addElement(cust3);

 try {
 writeToFile("customer.txt", custVector);
 } catch (IOException e) {
 System.out.println("File IO Error: " + e.getMessage());
 }
}

} //end of TestCustomer class

Page 10 of 19

Question 5. Threads (15 points)

In this question, you will complete Java classes that can run multiple Threads.

Part 1. SimpleThread1

Complete the SimpleThread1 class, which extends the Thread class and overrides its
run() method. Write the run() method so that it prints out message on the console
once every second, a total of five times. The static sleep() method of the Thread class
takes an int as an argument and puts the current Thread to sleep for that number of
milliseconds.

SimpleThread:

public class SimpleThread1 extends Thread {

 private String message;

 public SimpleThread1(String message) {
 this.message = message;
 }

 public void run() {
 try {

 }

for (int i = 0; i < 5; i++) {
System.out.println(message);
Thread.sleep(1000);

}

 catch (InterruptedException e) {
 }
 }
}

Page 11 of 19

Part 2. SimpleThreadTest1

Complete the main() method of the SimpleThreadTest1 class below.
In main(), create two instances of the SimpleThread1 class, the first taking "This is
thread 1" as an argument, and the second taking "This is thread 2". Then, invoke the
start() method on both instances, so that each SimpleThread1 will print out its own
message. Here is the sample output:

This is thread 1
This is thread 2
This is thread 1
This is thread 2
This is thread 1
This is thread 2
This is thread 1
This is thread 2
This is thread 1
This is thread 2

SimpleThreadTest:

public class SimpleThreadTest1 {

}

public static void main(String[] args) {
Thread t1 = new SimpleThread1("This is thread 1");
Thread t2 = new SimpleThread1("This is thread 2");
t1.start();
t2.start();

}

Part 3. SimpleThreadTest1 runtime:

In how many seconds from the start of the program will SimpleThreadTest1 terminate?
___________ 5_____________

Page 12 of 19

Part 4. SimpleThread2 and SimpleThreadTest2

In this part, you will complete SimpleThreadTest2 to test SimpleThread2. Unlike
SimpleThread1, which extends Thread, SimpleThread2 implements the
Runnable interface. The class SimpleThread2 is:

SimpleThread2:

public class SimpleThread2 implements Runnable {
 private String message;

 public SimpleThread2(String message) {
 this.message = message;
 }

 public void run() {

 // Assume the run() method has the same code
 // as your answer to Part 1

 }
}

Your job is to complete the SimpleThreadTest2 class, which creates and uses two
instances of the SimpleThread2 class. The output from running the main method of
SimpleThreadTest2 must be exactly the same as the output generated by
SimpleThreadTest1 above.

SimpleThreadTest2:

public class SimpleThreadTest2 {

 public static void main(String[] args) {

}}

Runnable r1 = new SimpleThread2("This is thread 1");
Runnable r2 = new SimpleThread2("This is thread 2");
Thread t1 = new Thread(r1);
Thread t2 = new Thread(r2);
t1.start();
t2.start();

Page 13 of 19

Question 6. Doubly linked list operations (25 points)

In a doubly linked list, every node has a reference (next) to the node after it, and another
reference (prev) to the node before it in the list. As usual, the list itself has first and
last references pointing to the first and last node, respectively. The first node has its prev
field equal to null, and the last node has its next field equal to null.

 Here is what a doubly linked list of 3 Integers looks like:

List

first

5

17

1

 l

last

l

You are given the following DoublyLinkedList class (Node is a static inner clas

public class DoublyLinkedList {

 public static class Node {

 private Object data;
 private Node prev;
 private Node next;

 public Node(Object o, Node p, Node n) {
 data = o;
 prev = p;
 next = n;
 }

 public Node(Object o) {
 this(o, null, null);
 }
 }

 private Node first;
 private Node last;

 public DoublyLinkedList() {
 first = last = null;
 }

 private boolean isEmpty() {
 return first == null;
 }

nul
nul
s).

Page 14 of 19

 private boolean hasSingleton() {
 return !isEmpty() && first == last;
 }

 private boolean inList(Node n) {
 if (n==null || isEmpty())
 return false;

 boolean exists = false;
 for (Node temp = first; temp != null; temp = temp.next)
 if (n.data.equals(temp.data)) {
 exists = true;
 break;
 }
 return exists;
 }

 private boolean isFirst(Node n) {
 return (n!=null && n==first);
 }

 private boolean isLast(Node n) {
 return (n!=null && n==last);
 }

 private void removeFirst() {
 if(!isEmpty())
 if (first == last)
 first = last = null;
 else {
 first.next.prev = null;
 first = first.next;
 }
 }

 private void removeLast() {
 if(!isEmpty())
 if (first == last)
 first = last = null;
 else {
 last.prev.next = null;
 last = last.prev;

 }
 }

 public void insertAfterLast(Node y) {
 if (y == null) return;
 if (isEmpty())
 first = last = y;
 else {
 last.next = y;
 y.prev = last;
 y.next = null;
 last = y;
 }
 }

You must write three additional methods for this class as detailed below:

Page 15 of 19

Part 1: insertBeforeFirst

Complete the method insertBeforeFirst(), which inserts a new Node y at the
beginning of the list. Hints: you may want to look at insertAfterLast() for inspiration.
Assume that Node y’s prev and next may hold arbitrary values when passed to your
method; you should explicitly set prev and next in all cases that you handle in your code.
Remember to check that Node y is not null.

public void insertBeforeFirst(Node y){
if (y == null) return;
if (isEmpty()){
 first = last = y;
 y.next=y.prev=null;

 }
 else {
 y.next = first;
 first.prev = y;
 y.prev = null;
 first = y;
 }

}

Page 16 of 19

Part 2: insertYafterX

Complete the method insertYafterX(), which inserts a new Node y after Node x in
the list. You must handle the following special cases:

- The list is empty.
- Node x not in the list.
- Node x is the only element in the list.
- Node x is the first or last element in the list.

Remember to check that Nodes x and y are not null; you don’t need to throw an exception if
they are.

public void insertYafterX(Node y, Node x) throws NoSuchElementException {

if (y==null || x==null) return;
if (!inList(x)) {
 throw new NoSuchElementException();
 } else if (isLast(x)) {
 x.next = y;
 y.prev = x;
 y.next = null;
 last = y;
 } else {
 y.next = x.next;
 x.next.prev = y;
 x.next = y;
 y.prev = x;
 }

}

Page 17 of 19

Part 3: removeY

Complete the method removeY() which removes a specific Node y from the list. You
must handle the following special cases:

- The list is empty.
- Node y not in the list
- Node y is the only element in the list.
- Node y is the first or the last element in the list.

You may find the methods removeFirst and removeLast useful. Remember to check
that Node y is not null. You don’t need to throw an exception if y is null.

public void removeY(Node y) throws NoSuchElementException{
if (y== null) return;
if (!inList(y)) {
 throw new NoSuchElementException();
}
else if (hasSingleton()) {
 first = null;
 last = null;
}
else if (isFirst(y)) {
 removeFirst();
}
else if (isLast(y)) {
 removeLast();
}
else {
 y.next.prev = y.prev;
 y.prev.next = y.next;
}

}

	1.00/1.001 Introduction to Computers and Engineering Problem
	Name:
	E-mail Address:
	TA:
	Section:
	Question
	Points
	Question 1
	/ 10
	Question 2
	/ 10
	Question 3
	/ 20
	Question 4
	/ 20
	Question 5
	/15
	Question 6
	/ 25
	Total
	/ 100
	THIS PAGE INTENTIONALLY LEFT BLANK
	Question 1. Tree traversal (10 points)
	Question 2. Circular linked list (10 points)
	Question 3. Computing grade ranges (20 points)
	0
	N=
	10
	Question 4. Streams (20 points)
	Question 6. Doubly linked list operations (25 points)

