
1.204 Quiz 1 Spring 2010 Solutions

1. Data model (35 points)

SalesType
SalesTypeDesc

SalesType

ProductID
SalesType (FK) (IE)

Product

ProductID (FK)
GliderDesc
GliderType (FK) (IE)

Glider

ProductID (FK)
AssemblyDesc

Assembly

GliderType
GliderTypeDesc

GliderType

VendorAssemblyVendor

VendorID VendorID (FK)
VendorName	 ProductID (FK)

VendorAssemblyID
VendorAssemblyDesc
VendorAssemblyPrice

2.	 Database/SQL. (30 points)

Based on the data model in question 2, you construct a database where the tables, attributes
and relationships correspond exactly to the data model structure. You are now asked to write

the following SQL queries against your database.

a.	 List the name and vendor ID of all vendors that supply at least one assembly
to MITG. List each vendor only once. (10 points)

SELECT DISTINCT Vendor.VendorName, Vendor.VendorID FROM Vendor, VendorAssembly

WHERE Vendor.VendorID= VendorAssembly.VendorID;

b.	 List the product ID and glider description of all high performance hang gliders
with a wholesale sales type. Assume the code for high performance is "H" and
for wholesale is "W" (10 points)

1

SELECT Glider.ProductID, Glider.GliderDesc FROM Product, Glider WHERE Product.ProductID=

Glider.ProductID AND Product.SalesType= "W" AND Glider.GliderType= "H";

c.	 List the name and vendor ID of all vendors whose average assembly price is
above $50. (10 points)

SELECT Vendor.VendorName, Vendor.VendorID
FROM Vendor, VendorAssembly WHERE Vendor.VendorID = VendorAssembly.VendorID
GROUP BY Vendor.VendorName, Vendor.VendorID
HAVING (AVG(VendorAssembly.VendorAssemblyPrice)>50);

3. Algorithm design. (35 points)

Each job in the figure below starts at a time si and finishes at a time fi. Two jobs are compatible

if they do not overlap. Find the maximum subset of compatible jobs. Give an algorithm that
solves this problem.

a. What kind of algorithm is it: divide and conquer, greedy, etc.?

Greedy.

b. Write the algorithm in pseudocode or Java; comment or explain it so that it is easy to

understand. Sort jobs by earliest finish time. Try to add each job in order.

Sort jobs by finish times so that f1 <= f2 <= ... <= fn
Solution set A is empty at start
for j = 1 to n {

if (job j compatible with A) // Compare j to all jobs in A. If incompatible, break loop
Add j to A

}
return A

2

Time

A

0 1 2 3 4 5 6 7 8 9 10 11

B

C

D

E

F

G

H

Figure by MIT OpenCourseWare.

c. Informally show that your algorithm is correct.

Counterexamples for greedy algorithms that aren’t quite right:

Optimal solution: Sort jobs by earliest finish time. Proof by contradiction. Select initial set of
jobs in greedy. Assume a job with a later finish time is in the optimal set. But this is impossible,
since

For earliest start time

For shortest interval

For fewest conflicts

it uses more of the scarce time resource and gains nothing

3

Figure by MIT OpenCourseWare.

MIT OpenCourseWare
http://ocw.mit.edu

1.204 Computer Algorithms in Systems Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

