
1.204 Quiz 1 Solutions

Spring 2008

Name __

Exam guidelines:

1) 80 minutes are allowed to complete the quiz.

2) Open notes; open book.

3) There are 4 questions (100 points) and 7 pages (including this one) in the exam booklet.

4) No laptop computers, calculators, cell phones or messaging devices are allowed. Please

turn off any that you have brought.

5) Please write legibly – you are welcome to use both sides of the paper; we can provide

additional paper if necessary.

Question 1. Data modeling (25 points)

There is a set of traffic sensors that count cars in an urban area. Some are at the approaches

to intersections, one sensor per lane of traffic entering the intersection. Other sensors are

between intersections, one sensor per lane of traffic on the road. An intersection has

several lanes entering it. Each lane is associated with a road. Each sensor has a status

(working or not) and a count of the number of vehicles it has detected, in 5 second intervals,

for the previous 3 minutes. Each road and each intersection has a name and a unique

identifier.

Draw a data model that corresponds to this set of system rules. You only need to create

one drawing that includes all the elements listed in steps a-e.

a. Draw a box for each entity: give each an appropriate name

b. List the attributes in the box for each entity

c. Indicate the primary key for each entity by placing the phrase (PK) next to its
name.

d. Draw all relationships between the entities in the model. Indicate foreign
keys by placing the phrase (FK) next to attributes that are foreign keys.

e. Indicate the cardinality of the relationship: many-many, many-one or one-one.
Use crows-foot notation; if you use another notation, define it.

To repeat: You only need to create one drawing that includes all the elements listed in

steps a-e above.

Please draw your data model on this page.

2. SQL (15 points)

Assume that the data model you built in the previous question has been implemented exactly as

you drew it in a relational database management system such as SQL Server. Each entity is

stored as a table, and attributes, keys and relationships are as you specified them. Write the

SQL query to return the list of intersection IDs that have more than 10 cars in a 5 second interval

in an approaching lane.

SELECT DISTINCT IntersectionIntersectionID FROM IntersectionLane, TrafficSensor,

SensorCount WHERE IntersectionLane.TrafficSensorTrafficSensorID=

TrafficSensor.TrafficSensorID AND TrafficSensor.TrafficSensorID=

SensorCount.TrafficSensorSensorID AND Count > 10

With less name duplication:

SELECT DISTINCT IntersectionID FROM IntersectionLane, TrafficSensor, SensorCount WHERE

IntersectionLane.TrafficSensorID= TrafficSensor.TrafficSensorID AND

TrafficSensor.TrafficSensorID= SensorCount.TrafficSensorID AND Count > 10

3. Analysis of algorithms. (25 points)

a. What is the best case running time for heapify? Describe the case, and state what its running

time as a function of its size n. Use the heapify code from lecture as the implementation for

which you derive the bound.

The best case for heapify is O(n). If the heap is in order, the top

half of the elements will be looked at, as always, and each will just

make one comparison to its parent. The best case must look at n/2

elements, so it's still O(n), the same as the worst case.

b. What is the best case running time for heapsort? Describe the case, and state what its

running time as a function of its size n. Use the heapsort code from lecture as the

implementation for which you derive the bound.

The best case for heapsort is the same as the worst case, which is O(n

lg n). If it's a max heap, the top element is put at the end, and the

last one at the top, from where it must bubble down. The last element

is, in general, smaller than the elements at the levels above it, so it

will go lg n levels. (If it's a min heap, the same behavior occurs.)

Thus n elements are placed at the top of the heap and bubbled down lg n

levels. There is no ordering in a heap that makes heapsort go any

faster than its worst, or average case. The proof requires some detail;

this answer is just a sketch of the analysis.

There is one odd case in which heapsort is O(n). If all elements are

equal (same value) in the heap, then putting the last element at the

top will result in only 2 comparisons (to each child) and the element

is not moved. Thus, only 3n operations are done: one to move the last

element to the top and two comparisons.

4. Algorithm design (35 points)

At a grain elevator there are n trucks in its parking lot waiting to unload. The grain elevator

owns the trucks and pays the drivers by the hour. It wishes to find an efficient order in which to

unload the trucks. (After a truck has been unloaded the driver can make another trip.) There is

one unloading facility at the elevator.

The time required to unload each truck is known; it depends on its capacity and the type and

size of its unloading hatches. The trucks can be unloaded in any order the elevator chooses.

The grain elevator chooses to minimize

n

i

itT
1

where T = total time in system for all trucks

 ti = time that truck i waits until it is unloaded

 n = number of trucks

Design an algorithm to let the grain elevator optimize its chosen objective function.

a. Write pseudocode (please define any non-Java-like symbols or conventions you use) that

defines how the algorithm works.

To minimize total waiting time, unload the trucks in order of unloading

time. The truck that’s quickest to unload is done first, then the next

quickest, and so on. Each truck waits for the n-1 trucks before it to

be unloaded, and this is minimized by having the quickest ones done

first.

Each truck imposes its unloading time on all trucks that follow it. Put

the trucks that take a long time to unload at the back of the queue.

 public static int minimize(int[] time) { // Returns total time T

 Arrays.sort(time); // In ascending order

 int totalTime= 0;

 int timeThisTruckWaits= 0;

 for (int i= 0; i < time.length; i++) {

 timeThisTruckWaits += time[i];

 totalTime += timeThisTruckWaits;

 }

 return totalTime;

 }

b. What kind of algorithm is it: divide and conquer, greedy, or ad hoc? Say why, in one

sentence.

Greedy algorithm: sort and then make a local decision.

c. What is the running time of the algorithm? Use O(), Ω() or Θ() notation as appropriate. Briefly

support your answer. No derivations are needed; justify your answer informally.

The algorithm requires a sort, which is O(n lg n), which is the

bottleneck step. The algorithm itself is O(n), since we just loop

through all the data once. (Just count the operations in the pseudocode

above.)

MIT OpenCourseWare
http://ocw.mit.edu

1.204 Computer Algorithms in Systems Engineering

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

