
1.204 Computer Algorithms in Systems Engineering

Spring 2010

Problem Set 4: Satellite data sets

Due: 12 noon, Monday March 29, 2010

Please see the code provided for the implementation. There are three separate solutions in
the Java zip file. All use identical versions of Merge, SatelliteData and MinHeap.
a. Solution with an explicit tree uses MergeMain and TreeNode
b. Solution without an explicit tree uses MergeMainNoTree and Node
c. Solution used to answer question 3 below uses MergeMainNoTreeAnalysis and Node

Analysis questions:

1.	 In a full binary tree, each node has either zero or two children. In each step of the
algorithm, we add two children (which are either nodes or trees) to a node or a
tree. In the initial step, we add two nodes to a single node and thus creating a full
binary tree. Adding two nodes to a full binary tree also creates another full binary
tree. Joining two full binary trees also creates another full binary tree. Thus, at the
end of the optimal merge algorithm, we have a full binary tree.

2.	 For a binary heap, the insert operation takes O(lg n) steps, and the deletion
operation also takes O(lg n) steps. Creating the initial heap of all the nodes takes
O(n) steps, since it uses heapify. Thus the algorithm takes:

a. O(n) steps to create the heap initially
b. Then in each step of the algorithm, we have two delete operations and one
insert operation on the heap. After each step, we reduce the number of elements in
the heap by 1.
c. Thus the total run time is:

 O(n) + Σ[O(lg(n-1)) + O(lg(n-2)) +O(lg(n-1))]

The second term in the above expression is O(n lg n), since

lg(n) + lg(n-1)+ … = lg(n!),

and by Stirling’s formula,

lg(n!) ~n lg(n) + cn, where c is a constant.

Thus the run time for this algorithm is O(n lg n).

 3. See code provided. An example run is shown below. Note that the number of
steps per data element increases essentially exactly as lg n, which means the algorithm
performance is indeed almost exactly O(n lg n), where the number of data elements is n.
In this example run, each dataset has exactly 200 randomly generated elements.

ArraysSteps Data
1 0 200
2 400 400
3 1000 600
4 1600 800
5 2400 1000
6 3200 1200
7 4000 1400
8 4800 1600
9 5800 1800
10 6800 2000
11 7800 2200
12 8800 2400
13 9800 2600
14 10800 2800
15 11800 3000
16 12800 3200
17 14000 3400
18 15200 3600
19 16400 3800
20 17600 4000

Ratio
0.0
1.0
1.6666666
2.0
2.4
2.6666667
2.857143
3.0
3.2222223
3.4
3.5454545
3.6666667
3.7692308
3.857143
3.9333334
4.0
4.117647
4.2222223
4.3157897
4.4

MIT OpenCourseWare
http://ocw.mit.edu

1.204 Computer Algorithms in Systems Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

