Code No: 125AM

Time: 3 hours

 $b)$

and the company of the comp

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year I Semester Examinations, November/December - 2017 ELECTRONIC MEASUREMENTS AND INSTRUMENTATION

(Electronics and Communication Engineering)

Max. Marks: 75

R15

Note: This question paper contains two parts A and B.

s
Se

 $\frac{1}{2}$ and

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

Service States

$(25$ Marks)

PART-B

(50 Marks)

 $[5+5]$

 $[5+5]$

 $[5 + 5]$

A voltmeter having a sensitivity of 15 k Ω /V reads 80V in its 100 V scale when $(2.a)$ connected across an unknown resistance Rx. The current through the resistor is 1.8 mA. Determine the % error due to loading effect.

 $b)$ Explain working of True RMS voltmeter. $[5 + 5]$ $e^{i\theta^{\rm SM}}\equiv -\theta^{\rm in\, SM}a_{\rm th} \qquad \qquad e^{i\theta^{\rm SM}}\equiv -\theta^{\rm in\, SM}a_{\rm th} \label{eq:4}$ \sim OR Discuss the different types of errors found in a measurement. $3.a)$ $b)$ Describe the working of series type ohmmeter. $[5 + 5]$ $(4.a)$ Draw the block diagram of fundamental suppressions harmonic distortion analyzer and explain its principle of operation. Describe the operation of power analyzer. $b)$ $[5+5]$ \Box OR Explain the sweep frequency generator. $5.a)$

How to measure time, period and frequency using oscilloscope? $6.a)$ Write about different types of CRO probes. $b)$

Differentiate wave analyzer and harmonic distortion analyzer.

OR

Discuss the working of the Dual beam oscilloscope. $7.a)$ Illustrate with neat sketch about horizontal amplifier. $b)$

 -00000 ---

 $\frac{G_{\rm{in}}}{G}$ for each G . The construction of the construction of the G

 $\hat{\sigma}_{\rm (source)}$:

 $\omega_{\rm c}^{\rm (SM)}$ s \sim \sim $\omega_{\rm W}$.

 $\frac{1}{\pi}$ and $\frac{1}{\pi}$ and $\frac{1}{\pi}$ and $\frac{1}{\pi}$

 \hat{S}_{total} .
 $\hat{S}_{\text{standard}}$

 $\overline{\alpha}_{\text{max}}$

 \sim $\mathcal{L}^{\mathcal{L}}$. The final $\mathcal{L}^{\mathcal{L}}$

 $\begin{array}{l} \cos \alpha \\ \alpha \\ \beta \\ \beta \\ \cos \alpha \end{array}$

 \sim α κ \approx

n
George Sammen

 $\boldsymbol{\beta}^{(0)}$, , , , , ,

 $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n$

 $\label{eq:2.1} \mathbf{e}^{(i)}\mathbf{S}$

 $\frac{1}{\mu}$ and $\mu = -\frac{1}{2} \frac{1}{\mu} \frac$

 \sim . σ

 $\omega^{\alpha\alpha\beta\gamma} \omega_{\alpha}$. Since α

 $\mathcal{P}^{\rm (1000)}$ $\sigma_{\rm g}$ $=$ $\sigma_{\rm 0000}$ and

 $\mu^{(B)}(y)=-\infty$ seco

 $e^{i\pi i \omega^2}$. The second

 $e^{i\left(t\right) \left(t\right) t_{1}}$. The contract α_{11}

 $\sim 10^{10}$

 \sim \sim

 ~ 100

 $[5 + 5]$

 $\mathcal{L}^{(1)}(a_{\alpha})$. In this case α

.
Segeri i

 $\label{eq:2.1} \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} \right) \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} \right) \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \right) \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \right) \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \right) \frac{\partial}{\partial x} \$

 $\frac{1}{\log d} = 8$

 $\label{eq:2.1} \sigma^{\rm max} = -\frac{1}{2} \sigma \, \sigma_{\rm m}$

 $\epsilon_{\rm{avg}}$.
 $\label{eq:1} \epsilon_{\rm{avg}}$

 $\label{eq:1.1} \frac{\partial}{\partial t} \frac{\partial \mathbf{u}}{\partial t} = \frac{\partial}{\partial t} \frac{\partial \mathbf{u}}{\partial t} \frac{\partial \mathbf{u}}{\partial t} = \frac{\partial}{\partial t} \frac{\partial \mathbf{u}}{\partial t} = \frac{\partial \mathbf{u}}{\partial t} \frac{\partial \mathbf{u}}{\partial t} = \frac{\partial \mathbf{u$

 $\label{eq:1.1} \frac{1}{2}\$

 \sim $^{-100}$

 $e^{-2i\omega t}$,

 $\epsilon^{-1/2}$

 $\label{eq:1} \begin{array}{lll} \mathcal{L}^{\alpha}(\mathcal{A}) & \mathcal{L}^{\alpha}(\mathcal{A}) \end{array}$

 \hat{a}_{max}

 $\alpha_{\rm{max}}$ is $\alpha_{\rm{max}}$

 $e^{i\theta\phi\phi}$ is a matrix

 κ , and κ , and κ , and κ

 \sim 100 m

 $\mathcal{C}^{\text{inter}}$

 $\mathbb{R}^{d \times d}$

 \bar{m}

 $\pi^{(n,n)} = \pi^{n} \hat{m}_n \hat{n}$

 $\label{eq:2.1} \begin{array}{cc} \mu^{\alpha+2/2} \end{array} \begin{array}{c} \mbox{measured} \\ \mbox{measured} \end{array}$

 $\sim 10^{-13}$

b) Explain a method of measurement of liquid level.

 \sim $^{-3}$

James Garage

 $\left\langle \mathbf{G}^{\mu}\right\rangle _{0}=\frac{1}{\max\{0,1\}}$

 $\omega_{\rm{max}}$

 $\frac{d}{dt}$ are

 $\cos\phi_{\rm g}=-\sin\phi_{\rm M}$.

 $\frac{d}{2}$ and $\label{eq:2.1} \xi \geq \alpha m^{-3}.$

 \sim

 \sim

a.

 $\label{eq:2.1} \begin{array}{cccccccccc} \alpha & & & & & \\ & \alpha & & & & & \\ \end{array}$

 $\left[\cos\phi\right]_{\eta_1} = 1 \label{eq:1}$

 $\frac{1}{2}$ and $\frac{1}{2}$. In the $\frac{1}{2}$ -section ($\frac{1}{2}$

 ~ 100

 $\left\|e^{-i\omega}\right\|_{\mathcal{S}_{\mathcal{G}}}=\left\|e_{\alpha}\left(x\right)\right\|_{\mathcal{S}}$

 $_{\rm{beam}}$ $\dot{\rm{z}}^{\rm{c}}$

 $\sim 10^{-12}$ ~ 0.000

 $\label{eq:1} \mathcal{L}(\mathcal{L}_{\mathcal{M}}) = 1$

 \mathcal{F}

 $\frac{D}{\epsilon} \frac{1}{\epsilon \epsilon} \left(\frac{\epsilon \epsilon}{\epsilon} \right)$

 \sim 100

 $\label{eq:1} \frac{\partial \mathbf{u}(\mathbf{x},\mathbf{y})}{\partial \mathbf{u}(\mathbf{x},\mathbf{y})} = \frac{\partial \mathbf{u}(\mathbf{x},\mathbf{y})}{\partial \mathbf{u}(\mathbf{x},\mathbf{y})}$

 \sim \sim \sim \sim \sim \sim \sim

 $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$

 \times $\omega_{\rm B}$

 $\label{eq:zeta} \hat{\boldsymbol{z}}^{(M\boldsymbol{y},\boldsymbol{y}_1)}_{\boldsymbol{z}}\hat{\boldsymbol{z}}^{(1)}_{\boldsymbol{z}}=\hat{\boldsymbol{z}}_{M\boldsymbol{M}\boldsymbol{M}\boldsymbol{Y}}$

 $\frac{1}{\sqrt{2}}\int_{\partial \Omega} \frac{d\omega}{\omega} d\omega$.

 $\label{eq:Ricci} \phi^{\mu\nu\rho\sigma} \phi_{\sigma\rho} = - \phi^{\mu\nu\rho\sigma} \phi^{\rho\sigma} \phi_{\sigma}$

 $\sigma_{\rm{NN}}$ S $_{\rm{10000000}}$ \sim

 $\overline{\mathcal{M}}$ and $\overline{\mathcal{M}}$

 $\left\langle \frac{\partial \phi}{\partial x_{i}}\right\rangle _{i,j=1}^{N}\left\langle \phi_{i}^{(i)}\right\rangle _{i,j=1}^{N}\right\rangle _{i,j=1}^{N}\left\langle \phi_{i}^{(i)}\right\rangle _{i,j=1}^{N}\left\langle \phi_{i}^{(i)}\right\rangle _{i,j=1}^{N}\left\langle \phi_{i}^{(i)}\right\rangle _{i,j=1}^{N}\left\langle \phi_{i}^{(i)}\right\rangle _{i,j=1}^{N}\left\langle \phi_{i}^{(i)}\right\rangle _{i,j=1}^{N}\left\langle \phi_{i}^{(i)}\right\rangle _{i,j$

 $e^{-\sigma \mathbf{G}_{\mathbf{Q},\mathbf{Q}}^{\mathbf{Q}}(t)}$

 \sim 100 μ

 $e^{im\alpha_{\alpha_{1}}}-m\alpha_{\alpha_{2}}$ $\overline{\epsilon}^{\rm{2nuc}} = \frac{1}{2}$

 ~ 100

 $\label{eq:2} \mathcal{E} = \mathcal{E} \Bigg[\begin{array}{ccccc} & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ \end{array} \Bigg]$

 $\langle \alpha \rangle$ and $\langle \alpha \rangle$ and $\langle \alpha \rangle$

 \mathcal{N}

 $_{\rm max}$ S .

 $\mu^{(\rm A\bar B\bar B)}$. The map $\mu^{(\rm A\bar B\bar B)}$

nas
C^ara in Santana