Code No: 124CU JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, December - 2017 ELECTROMAGNETIC THEORY AND TRANSMISSION LINES

(Common to ECE, ETM)

Time: 3 Hours

fill and fill

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

1. march 1.	and the second		. (25	Marks)
1.a)	Find Electric field intensity due	to the charge distribution ρ_v .		[2]
b)	Write poisson's and Laplace equa	ations.		[3]
c)	State Biot-Savart's law.			[2]
1	0 1 1 4 1 10' 1 4	whit low ath of an infinitaly lang	anlamaid	[2]

- d) Calculate the self inductance per unit length of an infinitely long solenoid. [3]
 e) Write a wave equation in a lossy, charge free medium based on Maxwell's
- Equation.[2]f) What is Brewster angle? Write its equation.[3]g) What is condition for distortion less transmission line?[2]h) Explain how Quarter wave transformer is used for matching?[3]
- i) What is the value of characteristic impedance and reflection coefficient for an open circuited line? [2]
 i) What are the characteristics of smith chart? [3]
- j) What are the characteristics of smith chart?

PART-B

(50 Marks)

- 2.a) Point charges 5nC and -2nC are located at (2,0,4) and (=3,0,5), respectively. Find the electric field at (1,-3,7).
 - b) Given that $E=(3x^2+y_0a_x+xa_y) kV/m$, find the work done in moving a $-2\mu C$ charge from (0,5,0) to (2,-1,0) by taking the path. [5+5]

- OR

- 3.a) An electric dipole of $100a_z pC$ is located at the origin. Find V and E at point $(1,\pi/3,\pi/2)$.
- b) Three point charges -1nC, 4nC, and 3nC are located at (0,0,0),(0,0,1) and (1,0,0) respectively. Find the energy in the system. [5+5]
- 4.a) A circular loop located on $x^2+y^2=9$, z=0 carries a direct current of 10A along a_{ϕ} . Determine H at (0,0,4) and (0,0,-4).
- b) In a certain conducting region, $H=yz(x^2+y^2)a_{x}-y^2xza_{y}+4x^2y^2a_{z}mA/m$. Determine J at (5,2,-3). [5+5]

OR

- 5.a) State Maxwell's equations in an integral and word form.
- b) A unit normal vector from region 2 (μ =2 μ_0) to region 1 (μ = μ_0) is a_{n21} =($6a_x$ +2 a_y -3az)/7. If H_1 =10 a_x + a_y +12 a_z A/m and H_2 = $H_{2x}a_x$ -5 a_y +4 a_z A/m. Determine H_{2x} . [5+5]

- 6.a) A lossy material has $\mu=5\mu0$, $\epsilon=\epsilon_0$. If at 5 MHz, the phase constant is 10 rad/m, calculate the loss tangent, conductivity of the material, complex permittivity attenuation constant and intrinsic impedance.
 - b) Derive the equation for intrinsic impedance in lossless dielectrics. [5+5]
- 7.a) Determine the Fresnel coefficients for oblique incidence from lossless medium 1 to lossless medium 2 for parallel polarization.
 - b) Region 1 is a lossless medium for which $y \ge 0$, $\mu = \mu_0$, $\varepsilon = 4\varepsilon_0$, whereas region 2 is free space, $y \le 0$. If a plane wave E=5cos $(108t+\beta t)a_z$ V/m exists in region 1, find the time average pointing vector. [5+5]
- 8.a) A transmission line operating at 500MHz has $Z_0=80\Omega$, Propagation constant = 0.04 Np/m; β =1.5 rad/m. Find the line parameters R, L, G and C?
 - b) Find the Z_{in} at any point on the line in terms load impedance starting from voltage and current wave equations on line. [5+5]

OR

- 9.a) For a lossless two wire transmission line show that the Characteristic impedance $Z_0 = \frac{120}{\sqrt{\epsilon_r}} \cosh^{-1} \frac{d}{2a}$.
 - b) A lossless transmission line operating at 4.5GHz has $L=2.4\mu$ H/m and $Z_0=85\Omega$. Calculate the phase constant and the phase velocity. [5+5]
- 10.a) A 500 Ω lossless line has $V_L = 10e^{j25^0}$ V and $Z_L = 50e^{j30^0}\Omega$. Find the current at $\lambda/4$ from the load?
 - b) A 60 Ω air line operating at 20MHz is 10m long. If the input impedance is 90 +j150 Ω . Calculate Z_L, Γ and S. [5+5]

OR

11. Explain how double stub is used for matching with suitable diagram? Derive equations for its length and location. [10]

---00000----