Code No: 126AN

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year II Semester Examinations, December - 2017 DIGITAL COMMUNICATIONS

e.		DIGITAL COMMUNICATIONS	, s e g	500-10
	Times	(Electronics and Communication Engineering)	Max. Marks: 75	
	i ime:	3 hours	Wida. Widi NS. / S	
	Note:	This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all que consists of 5 Units. Answer any one full question from each un 10 marks and may have a, b, c as sub questions.		
		PART - A	N DESTRI	
			(25 Marks)	
			, (
	1.a)	Define Nyquist sampling theorem.	[2]	
	b)	Compare DM and PCM.	[3]	
	c)	What is the difference between coherence detection and non co		
	d)	Write an expression for bandwidth of binary PCM with N		
		maximum frequency of f _m Hz.	[3]	51.9
	e)	Define the principle of adaptive equalization.	[2]	
	f)	Construct NRZ and RZ format for 011010.	[3]	
	g)	What is hamming distance?	[2]	
	h)	What is difference between block codes and convolutional cod		
	i)	Define frequency hopping.	[2]	
	j)	What are the types of FH spread spectrum technique?	[3]	
		PART - B	(50 Marks)	
	2.	The signal $g(t) = 10 \cos(20\pi t) \cos(200\pi t)$ is sampled at the second.	rate of 250 samples per	
		a) Determine the spectrum of the resulting sampled signal.		
		b) Specify the cut-off frequency of the ideal reconstruction for	Iter so as to recover g(t)	.,
		from its sampled version.		
	* 2	c) What is the Nyquist rate for g(t).	los [10]	
		d) Explain the reconstruction process of a message from its same OR	nples. [10]	
	2	Explain the noises in delta modulation systems. How to over	come this effect in Delta	
	3.	modulation?	[10]	
	4.	Explain the generation and detection of binary PSK. Also deriv	ve the probability of error	25000
		for PSK.	[10]	
		OR		
	5.	Draw the block diagram of FSK receiver and explain the	operation. Determine the	
		a) Peak frequency deviation		
		b) Minimum bandwidth c) Baud for FSK signal with a mark frequency of 49 kHZ, sp	ace frequency of 51 kHz	
		and input bit rate of 2kbps.	[10]	
		and input on fate of znops.	1.20	

ě.		6.	The generator polynomial of a (7, 4) Hamming code is defined by $g(D) = 1 + D^2$	$+ D^3$
			Develop the encoder and syndrome calculator for this code.	[10]
	OR			
		.7.	Explain correlation receiver with block diagram. Also explain why the correl	ation
			receiver is also called an integrated and dump filter.	[10]
		8.	Explain Viterbi algorithm to decode a convolutionally coded message.	[10]
		0.	OR	[10]
	9. Describe the steps involved in the generation of linear block codes. Define and exp		plain	
			properties of syndrome.	[10]
			and the control of th	•
		10.	Write about the Aloha and slotted aloha methods in multiple access methods. OR	[10]
		11.	Describe the operation of a CDMA multiplexing system.	[10]

---00O00---