Code No: 123AU **R15** JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, November/December - 2016 ELECTRONIC DEVICES AND CIRCUITS (Common to EEE, ECE, CSE, EIE, IT, ETM, MCT) Time: 3 Hours Max. Marks: 75 }**** Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. PART-A (25 Marks) Define static and dynamic resistance of P-N diode. 1.a) [2] Explain about Zener break down. b) [3] c) Define ripple factor. [2] Explain about voltage regulation. .d.) ::: e) .[3]. What are the applications of UJT? [2] What do you mean by early effect? f) [3] Explain about collector feedback bias. g) [2] Write about thermal runaway. h) [3] Mention small signal parameters of JFET. i) [2] Differentiate between BJT and JFET. PART-B (50 Marks) Compare the characteristics of PN junction diode, Zener Diode and Tunnel diode. 2.a) b) For a Ge diode, the $I_0=2\mu A$ and the voltage of 0.26V is applied. Calculate the forward and reverse dynamic resistance values at room temperature. OR ... 3.a) Derive an expression for transition capacitance of a diode. b) Explain Avalanche and Zener Breakdowns. [5+5]4.a) Explain the operation of Full Wave Rectifier with Induction filter with necessary diagrams: A diode whose internal resistance is 20Ω is to supply power to a 100Ω load from 110V (R.M.S) source of supply. Calculate: i) Peak Load Current ii) DC Load Current iii) AC Load Current iv) % Regulation from No load to given load: 5.a) Explain the operation of Full Wave Rectifier with necessary graphs. A $3K\Omega$ resistive load is to be supplied with a D.C. voltage of 300V from A.C. voltage of adequate magnitude and 50Hz frequency by wave rectification. The LC filter is used along the rectifier. Design the bleeder resistance, turns ratio of transformer; VA rating of transformer and PIV rating of diodes. [545] | | 6.a)
b) | Derive Emitter I
derive the relatio
Explain how tran | n between them | | large signal curr | rent gain and [5+5] | |------|------------|---|----------------|-----------------------------------|-------------------|--| | | 7.a) | Explain the ope | ration of CC (| OR
Configuration of | BJT and its inp | out and output | | | , b) | characteristics briefly. Explain about Punch through and Base width modulation | | | | | | | 8.a) | What is Biasing methods. | ? Explain the | need of it. List | out different typ | pes of biasing | | | b) | In a Silicon transistor circuit with a fixed bias, | | | | | | **** | | $V_{CC}=9V$, $R_{C}=3K\Omega$, $R_{B}=8K\Omega$, $\beta=50$, $V_{BE}=0.7V$.
Find the operating point and Stability factor: | | | | | | | 9.a)
b) | Derive the expression for stability factor of self bias circuit. Explain in detail about Thermal Runaway and Thermal Resistance. [5+5] | | | | | | R | 10.a) | Why we call FET as a Voltage Controlled Device. For the Common Source Amplifier, calculate the value of the voltage gain, given i) r_d =100K Ω , R_L =10K Ω , g_m =300 μ and R_O =9.09K Ω . ii) If C_{DS} =3pF, determine the output impedance at a signal frequency of 1 MHz. | | | | | | | 11. | | | OR | | [5+5] | | | b) | Define DC Drain
derive them:
What are the valu
12.4mA and -6V r | i | * * * * *
* * * * *
*** * * | ·· · · · | ************************************** | | Ē | | SR | äR | 00O0 <u>0</u> :: | | | | | | ÜK | SR | | | öK(- | | R | | . SR | | | | SR | | , | | er. | • | Sout # The | Saut Fifts | ************************************** | **** ******* ******