

B.Tech II Year - II Semester Examinations, April/May-2012 OPERATING SYSTEMS & SYSTEM PROGRAMMING (COMPUTER SCIENCE AND ENGINEERING)

Time: 3 hours

Max. Marks: 80

Answer any five questions All questions carry equal marks

- 1.a) Differentiate between UNIX OS and Windows OS.
 - b) Suppose that the following processes arrive for execution at the times indicated. Each process will run the listed amount of time. In answering the questions, use preemptive and non-preemptive scheduling and base all decisions on the information you have at the time the decision must be made.

Process	Arrival Time	Burst Time
P1	0.0	8
P2	0.4	4
P3	1.0	1
33.71 / 1		

What is the average turnaround time and average waiting time for these processes with the FCFS, SJF, SRTF, Priority and RR (Time Slice = 2ms) scheduling algorithms? [16]

- 2.a) What is process state diagram and what do they represent?
- b) What are the various processes involved in a typical context switch? Explain with a neat diagram. [16]
- 3.a) Compare process and a thread.
 - b) What are the principles of concurrency?
 - c) Explain how semaphores and monitors are used to achieve synchronization. [16]
- 4.a) Consider the following snapshot of a system

	0 1		
<u>Processes</u>	<u>Allocation</u>	<u>Max</u>	<u>Available</u>
	A B CD	A B CD	ABCD
<i>P</i> 0	0012	0012	1520
<i>P</i> 1	$1\ 0\ 0\ 0$	1750	
<i>P</i> 2	1354	2356	
<i>P</i> 3	0632	0652	
<i>P</i> 4	0014	0656	

Answer the following questions using the banker's algorithm:

i) What is the content of the matrix *Need*?

ii) Is the system in a safe state?

iii) If a request from process *P*1 arrives for (0, 4, 2, 0), can the request be granted immediately?

- b) What are the necessary conditions for deadlock occurance? [16]
- 5.a) What are the requirements for memory management? Explain paging technique with neat diagram.
- b) Write the syntax and purpose of malloc(), calloc() and free() system calls. [16]
- 6.a) What are the motivations for structuring file system hierarchically?
- b) Explain briefly about Record blocking and File sharing. [16]

7. Write a short note on the following:				
	a) I/O Buffering	b) Disk Caching	c) RAID Architecture.	[16]

- 8.a) Explain the design of a two pass assembler with relevant data structures and symbol tables associated with it.
 - b) What is the need of a Linker, a Loader and a Macro Processor? [16]

Code	No	RR	220)5(13
COUE	INO.	NΝ		JJU	JJ

B.Tech II Year - II Semester Examinations, April/May-2012 OPERATING SYSTEMS & SYSTEM PROGRAMMING (COMPUTER SCIENCE AND ENGINEERING)

Time: 3 hours

Max. Marks: 80

Answer any five questions All questions carry equal marks

- 1.a) Compare process and a thread.
 - b) What are the principles of concurrency?
 - c) Explain how semaphores and monitors are used to achieve synchronization. [16]

2.a)	Consider the	Consider the following snapshot of a system				
	<u>Processes</u>	<u>Allocation</u>	Max	<u>Available</u>		
		A B CD	A B CD	ABCD		
	P0	0012	0012	1520		
	<i>P</i> 1	$1\ 0\ 0\ 0$	1750			
	P2	1354	2356			
	P3	0632	0652			
	<i>P</i> 4	0014	0656			

Answer the following questions using the banker's algorithm:

i) What is the content of the matrix *Need*?

ii) Is the system in a safe state?

iii) If a request from process *P*1 arrives for (0, 4, 2, 0), can the request be granted immediately?

- b) What are the necessary conditions for deadlock occurance? [16]
- 3.a) What are the requirements for memory management? Explain paging technique with neat diagram.
 - b) Write the syntax and purpose of malloc(), calloc() and free() system calls. [16]
- 4.a) What are the motivations for structuring file system hierarchically?
- b) Explain briefly about Record blocking and File sharing. [16]

5.	Write a short note on t	he following:		
	a) I/O Buffering	b) Disk Caching	c) RAID Architecture.	[16]

- 6.a) Explain the design of a two pass assembler with relevant data structures and symbol tables associated with it.
 - b) What is the need of a Linker, a Loader and a Macro Processor? [16]

- 7.a) Differentiate between UNIX OS and Windows OS.
 - Suppose that the following processes arrive for execution at the times indicated. b) Each process will run the listed amount of time. In answering the questions, use preemptive and non-preemptive scheduling and base all decisions on the information you have at the time the decision must be made. Arrival Time **Burst** Time Process *P1* 0.0 8 *P2* 0.4 4 *P3* 1.0 1 What is the average turnaround time and average waiting time for these processes

what is the average turnaround time and average waiting time for these processes with the FCFS, SJF, SRTF, Priority and RR (Time Slice = 2ms) scheduling algorithms? [16]

- 8.a) What is process state diagram and what do they represent?
- b) What are the various processes involved in a typical context switch? Explain with a neat diagram. [16]

SET-3

B.Tech II Year - II Semester Examinations, April/May-2012 OPERATING SYSTEMS & SYSTEM PROGRAMMING (COMPUTER SCIENCE AND ENGINEERING)

Time: 3 hours

Max. Marks: 80

Answer any five questions All questions carry equal marks

- 1.a) What are the requirements for memory management? Explain paging technique with neat diagram.
 - b) Write the syntax and purpose of malloc(), calloc() and free() system calls. [16]
- 2.a) What are the motivations for structuring file system hierarchically?
 - b) Explain briefly about Record blocking and File sharing. [16]
- Write a short note on the following:
 a) I/O Buffering
 b) Disk Caching
 c) RAID Architecture. [16]
- 4.a) Explain the design of a two pass assembler with relevant data structures and symbol tables associated with it.
- b) What is the need of a Linker, a Loader and a Macro Processor? [16]

5.a) Differentiate between UNIX OS and Windows OS.

 b) Suppose that the following processes arrive for execution at the times indicated. Each process will run the listed amount of time. In answering the questions, use preemptive and non-preemptive scheduling and base all decisions on the information you have at the time the decision must be made. Process Arrival Time Burst Time

Arrival Time	Burst
0.0	8
0.4	4
1.0	1
	Arrival Time 0.0 0.4 1.0

What is the average turnaround time and average waiting time for these processes with the FCFS, SJF, SRTF, Priority and RR (Time Slice = 2ms) scheduling algorithms? [16]

- 6.a) What is process state diagram and what do they represent?
- b) What are the various processes involved in a typical context switch? Explain with a neat diagram. [16]
- 7.a) Compare process and a thread.
 - b) What are the principles of concurrency?
 - c) Explain how semaphores and monitors are used to achieve synchronization. [16]

8.a) Consider the following snapshot of a system

Processes	Allocation	Max	Available
	A B CD	A B CD	A B C D
<i>P</i> 0	0012	0012	1520
<i>P</i> 1	$1\ 0\ 0\ 0$	1750	
P2	1354	2356	
<i>P</i> 3	0632	0652	
<i>P</i> 4	0014	0656	

Answer the following questions using the banker's algorithm:

i) What is the content of the matrix *Need*?

ii) Is the system in a safe state?

iii) If a request from process *P*1 arrives for (0, 4, 2, 0), can the request be granted immediately?

b) What are the necessary conditions for deadlock occurance? [16]

Code	No	RR	220)5(13
COUE	INO.	NΝ		JJU	JJ

B.Tech II Year - II Semester Examinations, April/May-2012 OPERATING SYSTEMS & SYSTEM PROGRAMMING (COMPUTER SCIENCE AND ENGINEERING)

Time: 3 hours

Max. Marks: 80

Answer any five questions All questions carry equal marks

1.	Write a short note on th	e following:		
	a) I/O Buffering	b) Disk Caching	c) RAID Architecture.	[16]

- 2.a) Explain the design of a two pass assembler with relevant data structures and symbol tables associated with it.
 - b) What is the need of a Linker, a Loader and a Macro Processor? [16]

3.a) Differentiate between UNIX OS and Windows OS.

b) Suppose that the following processes arrive for execution at the times indicated. Each process will run the listed amount of time. In answering the questions, use preemptive and non-preemptive scheduling and base all decisions on the information you have at the time the decision must be made.

Process	Arrival Time	Burst Time
P1	0.0	8
P2	0.4	4
P3	1.0	1

What is the average turnaround time and average waiting time for these processes with the FCFS, SJF, SRTF, Priority and RR (Time Slice = 2ms) scheduling algorithms? [16]

4.a) What is process state diagram and what do they represent?

- b) What are the various processes involved in a typical context switch? Explain with a neat diagram. [16]
- 5.a) Compare process and a thread.
 - b) What are the principles of concurrency?
 - c) Explain how semaphores and monitors are used to achieve synchronization. [16]

6.a) Consider the following snapshot of a system

	0 1	5	
<u>Processes</u>	<u>Allocation</u>	<u>Max</u>	<u>Available</u>
	A B CD	A B CD	A B C D
<i>P</i> 0	0012	0012	1520
<i>P</i> 1	$1\ 0\ 0\ 0$	1750	
P2	1354	2356	
<i>P</i> 3	0632	0652	
<i>P</i> 4	0014	0656	

Answer the following questions using the banker's algorithm:

i) What is the content of the matrix *Need*?

ii) Is the system in a safe state?

iii) If a request from process *P*1 arrives for (0, 4, 2, 0), can the request be granted immediately?

- b) What are the necessary conditions for deadlock occurance? [16]
- 7.a) What are the requirements for memory management? Explain paging technique with neat diagram.
 - b) Write the syntax and purpose of malloc(), calloc() and free() system calls. [16]
- 8.a) What are the motivations for structuring file system hierarchically?
 - b) Explain briefly about Record blocking and File sharing. [16]