Code No:RR220206

Max. Marks: 80

B.Tech II Year - II Semester Examinations, April/May-2012 CONTROL SYSTEMS (COMMON TO EEE, ECE, EIE)

Time: 3 hours

Answer any five questions All questions carry equal marks

- 1.a) Explain the merits and demerits of open loop and closed loop systems. Also explain briefly the classification of control systems.
 - b) Derive an equivalent model in terms of the coordinate x, and another in terms of θ , for the system given below (Figure.1). [8+8]

2.a) Find the transfer function of the system shown in Figure.2

Figure.2

b) Find the transfer function of a field controlled d.c. servo motor. [8+8]

3. What are the effects of feedback? Explain effect on sensitivity and determine the sensitivity of closed loop transfer function T with respect to G and H, the forward path and feedback path transfer functions respectively for $\omega = 1$ rad/sec for a simple closed loop systems with forward transfer function $G = \frac{10}{s(1+s)}$ and H = 5.

[16]

- 4.a) Measurements conducted on servomechanism show the system response to be c(t) = 1 + 0.2e^{-60t} 1.2e^{-10t}, when subjected to a unit-step unit.
 i) Obtain the expression for the closed-loop transfer function.
 ii) Determine the undamped natural frequency and damping ratio of the system.
 - b) Explain any one important time response specification of a standard second ordered system to a unit step input. [12+4]

- 5.a) A unity feedback control system is characterized by the open-loop transfer function $G(s) = \frac{K(s+13)}{s(s+3)(s+7)}$. Using the Routh's criterion, determine the range of values of K for the system to be stable.
 - b) The open-loop transfer function of a servo system with a unity feedback $is G(s) = \frac{400}{s(1+0.1s)}$. Determine the steady-state error for an input $r(t)=1+2t+t^2$. Also calculate the error constants K_p, K_v and K_a. [6+10]
- 6. Sketch the root-locus diagram of a control system whose loop transfer function is $G(s)H(s) = \frac{K}{s(s+4)(s+8)}$ Using the diagram or otherwise, find the values of gain at breakaway points and at point of intersection of the loci with the imaginary axis. Also find the gain margin. [16]
- 7.a) Sketch the Bode plot for the following transfer function and identify the gain crossover frequency for K=10.

$$G(s) = \frac{Ks^2}{(1+0.2s)(1+0.02s)}$$

b) Sketch the Nyquist plot for the transfer function: 52

G(s) H(s) =
$$\frac{32}{(s+2)(s^2+2s+5)}$$
. [8+8]

- 8.a) What are the properties of state transition matrix? Explain.
 - b) The state space representation of a system is given by

$$\begin{array}{l} \overset{\bullet}{X} = \begin{bmatrix} -5.0 & 1 \\ -6 & 0.0 \end{bmatrix} X. \\ \text{Find the value of } x_1(t) \text{ at } t=1, \text{ if } x_1(0)=1.0 \text{ and } x_2(0)=0. \end{array}$$
 [16]

[8+8]

Max. Marks: 80

B.Tech II Year - II Semester Examinations, April/May-2012 CONTROL SYSTEMS (COMMON TO EEE, ECE, EIE)

Time: 3 hours

Answer any five questions All questions carry equal marks

- 1. What are the effects of feedback? Explain effect on sensitivity and determine the sensitivity of closed loop transfer function T with respect to G and H, the forward path and feedback path transfer functions respectively for $\omega = 1$ rad/sec for a simple closed loop systems with forward transfer function $G = \frac{10}{s(1+s)}$ and H = 5. [16]
- 2.a) Measurements conducted on servomechanism show the system response to be c(t) = 1 + 0.2e^{-60t} 1.2e^{-10t}, when subjected to a unit-step unit.
 i) Obtain the expression for the closed-loop transfer function.
 ii) Determine the undamped natural frequency and damping ratio of the system.
- b) Explain any one important time response specification of a standard second ordered system to a unit step input. [12+4]
- 3.a) A unity feedback control system is characterized by the open-loop transfer function $G(s) = \frac{K(s+13)}{s(s+3)(s+7)}$. Using the Routh's criterion, determine the range

of values of K for the system to be stable.

- b) The open-loop transfer function of a servo system with a unity feedback $is G(s) = \frac{400}{s(1+0.1s)}$. Determine the steady-state error for an input $r(t)=1+2t+t^2$. Also calculate the error constants K_p, K_v and K_a. [6+10]
- 4. Sketch the root-locus diagram of a control system whose loop transfer function is $G(s)H(s) = \frac{K}{s(s+4)(s+8)}$ Using the diagram or otherwise, find the values of gain at breakaway points and at point of intersection of the loci with the imaginary axis. Also find the gain margin. [16]
- 5.a) Sketch the Bode plot for the following transfer function and identify the gain crossover frequency for K=10.

$$G(s) = \frac{Ks^2}{(1+0.2s)(1+0.02s)}$$

b) Sketch the Nyquist plot for the transfer function:
$$G(s) H(s) = \frac{52}{(s+2)(s^2+2s+5)}.$$

- 6.a) What are the properties of state transition matrix? Explain.
- b) The state space representation of a system is given by

$$\overset{\bullet}{X} = \begin{bmatrix} -5.0 & 1\\ -6 & 0.0 \end{bmatrix} \mathbf{X}$$

Find the value of $x_1(t)$ at t=1, if $x_1(0)=1.0$ and $x_2(0)=0$. [16]

- 7.a) Explain the merits and demerits of open loop and closed loop systems. Also explain briefly the classification of control systems.
 - b) Derive an equivalent model in terms of the coordinate x, and another in terms of θ , for the system given below (Figure.1). [8+8]

Figure.1

8.a) Find the transfer function of the system shown in Figure.2

Figure.2 b) Find the transfer function of a field controlled d.c. servo motor. [8+8]

Max. Marks: 80

B.Tech II Year - II Semester Examinations, April/May-2012 CONTROL SYSTEMS (COMMON TO EEE, ECE, EIE)

Time: 3 hours

Answer any five questions All questions carry equal marks

- 1.a) A unity feedback control system is characterized by the open-loop transfer function $G(s) = \frac{K(s+13)}{s(s+3)(s+7)}$. Using the Routh's criterion, determine the range of values of K for the system to be stable.
 - b) The open-loop transfer function of a servo system with a unity feedback $is G(s) = \frac{400}{s(1+0.1s)}$. Determine the steady-state error for an input $r(t)=1+2t+t^2$. Also calculate the error constants K_p, K_v and K_a. [6+10]
- 2. Sketch the root-locus diagram of a control system whose loop transfer function is $G(s)H(s) = \frac{K}{s(s+4)(s+8)}$ Using the diagram or otherwise, find the values of gain at breakaway points and at point of intersection of the loci with the imaginary axis. Also find the gain margin. [16]
- 3.a) Sketch the Bode plot for the following transfer function and identify the gain crossover frequency for K=10.

$$G(s) = \frac{Ks^2}{(1+0.2s)(1+0.02s)}$$

b) Sketch the Nyquist plot for the transfer function:

G(s) H(s) =
$$\frac{52}{(s+2)(s^2+2s+5)}$$
. [8+8]

4.a) What are the properties of state transition matrix? Explain.

b) The state space representation of a system is given by

$$\overset{\bullet}{X} = \begin{bmatrix} -5.0 & 1\\ -6 & 0.0 \end{bmatrix} \mathbf{X}$$

Find the value of $x_1(t)$ at t=1, if $x_1(0)=1.0$ and $x_2(0)=0$. [16]

- 5.a) Explain the merits and demerits of open loop and closed loop systems. Also explain briefly the classification of control systems.
 - b) Derive an equivalent model in terms of the coordinate x, and another in terms of θ , for the system given below (Figure.1). [8+8]

6.a) Find the transfer function of the system shown in Figure.2

Figure.2

b) Find the transfer function of a field controlled d.c. servo motor. [8+8]

- 7. What are the effects of feedback? Explain effect on sensitivity and determine the sensitivity of closed loop transfer function T with respect to G and H, the forward path and feedback path transfer functions respectively for $\omega = 1$ rad/sec for a simple closed loop systems with forward transfer function $G = \frac{10}{s(1+s)}$ and H = 5. [16]
- 8.a) Measurements conducted on servomechanism show the system response to be c(t) = 1 + 0.2e^{-60t} 1.2e^{-10t}, when subjected to a unit-step unit.
 i) Obtain the expression for the closed-loop transfer function.
 ii) Determine the undamped natural frequency and damping ratio of the system.
 - b) Explain any one important time response specification of a standard second ordered system to a unit step input. [12+4]

Max. Marks: 80

B.Tech II Year - II Semester Examinations, April/May-2012 CONTROL SYSTEMS (COMMON TO EEE, ECE, EIE)

Time: 3 hours

Answer any five questions All questions carry equal marks

1.a) Sketch the Bode plot for the following transfer function and identify the gain crossover frequency for K=10.

$$G(s) = \frac{Ks^2}{(1+0.2s)(1+0.02s)}$$

b) Sketch the Nyquist plot for the transfer function:

G(s) H(s) =
$$\frac{52}{(s+2)(s^2+2s+5)}$$
. [8+8]

- 2.a) What are the properties of state transition matrix? Explain.
 - b) The state space representation of a system is given by

$$\overset{\bullet}{X} = \begin{bmatrix} -5.0 & 1\\ -6 & 0.0 \end{bmatrix} \mathbf{X}$$

Find the value of $x_1(t)$ at t=1, if $x_1(0)=1.0$ and $x_2(0)=0$. [16]

- 3.a) Explain the merits and demerits of open loop and closed loop systems. Also explain briefly the classification of control systems.
- b) Derive an equivalent model in terms of the coordinate x, and another in terms of θ , for the system given below (Figure.1). [8+8]

Figure.1

4.a) Find the transfer function of the system shown in Figure.2

Figure.2

b) Find the transfer function of a field controlled d.c. servo motor.

[8+8]

- 5. What are the effects of feedback? Explain effect on sensitivity and determine the sensitivity of closed loop transfer function T with respect to G and H, the forward path and feedback path transfer functions respectively for $\omega = 1$ rad/sec for a simple closed loop systems with forward transfer function $G = \frac{10}{s(1+s)}$ and H = 5. [16]
- 6.a) Measurements conducted on servomechanism show the system response to be $c(t) = 1 + 0.2e^{-60t} 1.2e^{-10t}$, when subjected to a unit-step unit. i) Obtain the expression for the closed-loop transfer function. ii) Determine the undamped natural frequency and damping ratio of the system.
- b) Explain any one important time response specification of a standard second ordered system to a unit step input. [12+4]
- 7.a) A unity feedback control system is characterized by the open-loop transfer function $G(s) = \frac{K(s+13)}{s(s+3)(s+7)}$. Using the Routh's criterion, determine the range of values of K for the system to be stable.
 - b) The open-loop transfer function of a servo system with a unity feedback $is G(s) = \frac{400}{s(1+0.1s)}$. Determine the steady-state error for an input $r(t)=1+2t+t^2$. Also calculate the error constants K_p, K_v and K_a. [6+10]
- 8. Sketch the root-locus diagram of a control system whose loop transfer function is $G(s)H(s) = \frac{K}{s(s+4)(s+8)}$ Using the diagram or otherwise, find the values of gain at breakaway points and at point of intersection of the loci with the imaginary axis. Also find the gain margin. [16]
