

[16]

B.Tech II Year - I Semester Examinations, May-June, 2012 SWITCHING THEORY AND LOGIC DESIGN (COMMON TO CSE, EEE, ECE, IT)					
Т	Fime: 3 hours Max. Marks:	80			
	Answer any five questions				
	All questions carry equal marks				
1.	 a) Divide (101101)₂ by (110)₂ b) Subtract 12 from 48 using 8 – bit 2's complement arithmetic. c) Convert (5C7)₁₆ to decimal d) Convert (3956)₁₀ to octal e) Encode data bits 1101 into 7 bit even parity Hamming code. 	[16]			
2.a)	Reduce the following i) $AB + A(B+C) + \overline{B}(B+D)$ ii) $A + B + \overline{ABC}$				
b)	Convert $A(\overline{A} + B)(\overline{A} + B + \overline{C})$ to Canonical POS form.				
c)	Convert $\overline{A} + \overline{B}C$ to Canonical SOP form.	[16]			
3.a)	Reduce the following using K- Map. $f(w, x, y, z) = \sum m(0, 1, 2, 3, 5, 7, 8, 9, 10, 12, 13)$ $f(A, B, C, D) = \overline{A} + AB + AB\overline{D} + A\overline{B}\overline{D} + C$				
b)	 i) Draw the logic diagram using only two input – NAND gates to implem following expression. F = (AB + AB)(CD + CD). ii) Write the properties of EX – OR gates. 	ent the			
4.a) b)	Implement the following function using 8×1 Multiplex $f(A, B, C, D) = \sum (0, 3, 4, 6, 8, 10, 11, 13, 15)$ Design Two bit comparator using two one bit comparators.				
c)	Give the logic implementation of a 8×4 bit ROM using a decoder of a size.	uitable [16]			
5.a) b) c)	Compare combinational and sequential circuits. What is race around condition in J-K flip flop? How do you eliminate it? Distinguish between synchronous and Asynchronous sequential circuits.	[16]			
6.a)	Design a sequence detector which produces an output 1 is whenever the sec 0101 is detected and an output 0 at all other times.	luence			
b)	Design a modulo – 6 synchronous counter.	[16]			
7.a) b)	Distinguish between Moore and Melay machines. Explain the Capabilities and Limitations of finite state Machines.	[16]			
8.	Write a brief note on i) ASM chart				

ii) Threshold Logic

B.Tech II Year - I Semester Examinations, May-June, 2012 SWITCHING THEORY AND LOGIC DESIGN (COMMON TO CSE, EEE, ECE, IT)

Time: 3 hours

Max. Marks: 80

Answer any five questions All questions carry equal marks

- 1.a) Reduce the following using K- Map. $f(w, x, y, z) = \sum m(0, 1, 2, 3, 5, 7, 8, 9, 10, 12, 13)$ $f(A, B, C, D) = \overline{A} + AB + AB\overline{D} + A\overline{B}\overline{D} + C$
 - b) i) Draw the logic diagram using only two input NAND gates to implement the following expression.

 $F = (AB + \overline{A}\overline{B})(C\overline{D} + \overline{C}D).$

- ii) Write the properties of EX OR gates. [16]
- 2.a) Implement the following function using 8×1 Multiplex $f(A, B, C, D) = \sum (0, 3, 4, 6, 8, 10, 11, 13, 15)$
 - b) Design Two bit comparator using two one bit comparators.
 - c) Give the logic implementation of a 8×4 bit ROM using a decoder of a suitable size. [16]
- 3.a) Compare combinational and sequential circuits.
 - b) What is race around condition in J-K flip flop? How do you eliminate it?
 - c) Distinguish between synchronous and Asynchronous sequential circuits. [16]
- 4.a) Design a sequence detector which produces an output 1 is whenever the sequence 0101 is detected and an output 0 at all other times.
- b) Design a modulo 6 synchronous counter. [16]
- 5.a) Distinguish between Moore and Melay machines.b) Explain the Capabilities and Limitations of finite state Machines.
- 6. Write a brief note on
 i) ASM chart
 ii) Threshold Logic
- 7. a) Divide (101101)₂ by (110)₂
 b) Subtract 12 from 48 using 8 bit 2's complement arithmetic.
 c) Convert (5C7)₁₆ to decimal
 d) Convert (3956)₁₀ to octal
 e) Encode data bits 1101 into 7 bit even parity Hamming code. [16]
- 8.a) Reduce the following i) $AB + A(B+C) + \overline{B}(B+D)$ ii) $A + B + \overline{A}\overline{B}C$
 - b) Convert $A(\overline{A} + B)(\overline{A} + B + \overline{C})$ to Canonical POS form.
 - c) Convert $\overline{A} + \overline{B}C$ to Canonical SOP form.

[16]

[16]

[16]

B.Tech II Year - I Semester Examinations, May-June, 2012 SWITCHING THEORY AND LOGIC DESIGN (COMMON TO CSE, EEE, ECE, IT)

Time: 3 hours

Max. Marks: 80

Answer any five questions All questions carry equal marks

1.a) b) c)	Compare combinational and sequential circuits. What is race around condition in J-K flip flop? How do you eliminate it? Distinguish between synchronous and Asynchronous sequential circuits.	[16]
2.a)	Design a sequence detector which produces an output 1 is whenever the sequence 0101 is detected and an output 0 at all other times.	
b)	Design a modulo – 6 synchronous counter.	[16]
3.a) b)	Distinguish between Moore and Melay machines. Explain the Capabilities and Limitations of finite state Machines.	[16]
4.	Write a brief note on i) ASM chart ii) Threshold Logic	[16]
5.	 a) Divide (101101)₂ by (110)₂ b) Subtract 12 from 48 using 8 – bit 2's complement arithmetic. c) Convert (5C7)₁₆ to decimal d) Convert (3956)₁₀ to octal e) Encode data bits 1101 into 7 bit even parity Hamming code. 	[16]
6.a)	Reduce the following i) $AB + A(B+C) + \overline{B}(B+D)$	
	ii) $A + B + \overline{ABC}$	
b)	Convert $A(\overline{A} + B)(\overline{A} + B + \overline{C})$ to Canonical POS form.	
c)	Convert $\overline{A} + \overline{B}C$ to Canonical SOP form.	[16]
7.a)	Reduce the following using K- Map. $f(w, x, y, z) = \sum m(0, 1, 2, 3, 5, 7, 8, 9, 10, 12, 13)$	
	$f(A, B, C, D) = \overline{A} + AB + AB\overline{D} + A\overline{B}\overline{D} + C$	
b)	i) Draw the logic diagram using only two input – NAND gates to impleme following expression.	nt the
	$F = (AB + A\overline{B})(C\overline{D} + CD).$	
	ii) Write the properties of $EX - OR$ gates.	[16]
8.a)	Implement the following function using 8×1 Multiplex $f(A, B, C, D) = \sum (0, 3, 4, 6, 8, 10, 11, 13, 15)$	
b)	Design Two bit comparator using two one bit comparators.	
c)	Give the logic implementation of a 8×4 bit ROM using a decoder of a su size.	itable [16]

Code	No	RR21	0203
Couc	110.	1/1/2/1	0405

B.Tech II Year - I Semester Examinations, May-June, 2012 SWITCHING THEORY AND LOGIC DESIGN (COMMON TO CSE, EEE, ECE, IT)

Т	ime: 3 hours Max. Marks: 80
	Answer any five questions All questions carry equal marks
1.a) b)	Distinguish between Moore and Melay machines. Explain the Capabilities and Limitations of finite state Machines. [16]
2.	Write a brief note on i) ASM chart ii) Threshold Logic [16]
3.	 a) Divide (101101)₂ by (110)₂ b) Subtract 12 from 48 using 8 – bit 2's complement arithmetic. c) Convert (5C7)₁₆ to decimal d) Convert (3956)₁₀ to octal e) Encode data bits 1101 into 7 bit even parity Hamming code. [16]
4.a) b)	Reduce the following i) $AB + A(B+C) + \overline{B}(B+D)$ ii) $A + B + \overline{ABC}$ Convert $A(\overline{A} + B)(\overline{A} + B + \overline{C})$ to Canonical POS form.
c)	Convert $\overline{A} + \overline{B}C$ to Canonical SOP form. [16]
5.a) b)	Reduce the following using K- Map. $f(w, x, y, z) = \sum m(0,1,2,3,5,7,8,9,10,12,13)$ $f(A, B, C, D) = \overline{A} + AB + AB\overline{D} + A\overline{B}\overline{D} + C$ i) Draw the logic diagram using only two input – NAND gates to implement the following expression.
	$F = (AB + \overline{AB})(C\overline{D} + \overline{CD}).$ ii) Write the properties of EX – OR gates. [16]
6.a) b) c)	Implement the following function using 8×1 Multiplex $f(A, B, C, D) = \sum (0, 3, 4, 6, 8, 10, 11, 13, 15)$ Design Two bit comparator using two one bit comparators. Give the logic implementation of a 8×4 bit ROM using a decoder of a suitable
7.a) b) c)	size.[16]Compare combinational and sequential circuits.What is race around condition in J-K flip flop? How do you eliminate it?Distinguish between synchronous and Asynchronous sequential circuits.[16]
8.a)	Design a sequence detector which produces an output 1 is whenever the sequence 0101 is detected and an output 0 at all other times.

b) Design a modulo – 6 synchronous counter. [16]