R09

Set No. 2

Code No: R09220402

II B.Tech II Semester Examinations, April/May 2012 ELECTRONIC CIRCUIT ANALYSIS Common to ICE, E.COMP.E, ETM, EIE, ECE

Time: 3 hours Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks

- (a) Derive an expression for frequency of oscillation of a RC phase-shift oscillator using a FET.
 - (b) In a Hartley oscillator $L_2=0.04$ mH and C=0.004 μF . If the frequency of oscillation is 150 KHz, find L_1 . Neglect mutual inductance. [8+7]
- 2. (a) What is push-pull configuration and how does this circuit reduce the harmonic distortion?
 - (b) For a class B amplifier providing a 20V peak signal to a 16 Ω load operates on a power supply of $V_{cc} = 30V$. Determine the input power, output power and circuit efficiency. [8+7]
- 3. (a) For the circuit shown in figure 1, estimate A $_i$, A $_v$, R $_i$ & R $_o$ using resonable approximations. The h parameters for the transistor are given as h $_{fe} = 100$, h $_{ie} = 2k\Omega$, h $_{re}$ is negligible & h $_{oe} = 10^{-5}$ mhos.

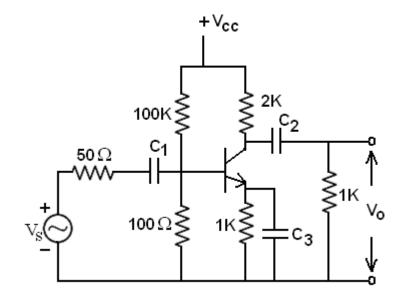


Figure 1:

- (b) Draw the ciruit diagram of Emitter follower and derive the equation for voltage & current gains. [8+7]
- 4. (a) Derive the equation for voltage gain of a Common Source FET amplifier.

(b) The amplifier shown in figure 2 uses an n - channel FET having $I_{DSS} = 2mA$, $V_P = -2V$. If the quiscent drain to ground voltage is 10V, find R_1 and the effective input impedance. [7+8]

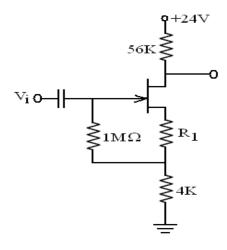


Figure 2:

- 5. (a) Draw the equivalent circuit of a double tuned amplifier and derive the expression for gain at resonance.
 - (b) Derive the expression for effective bandwidth of cascaded tuned amplifier.

[8+7]

- 6. (a) Derive an expression for the transfer gain of a feedback amplifier.
 - (b) The feedback amplifier shown in figure 3 has transistor parameters $h_{ie} = 1k$ h_{re} and h_{oe} negligible. Find $R_{mf} = V_o/I_s$, $A_{uf} = V_o/V_s$, R_{if} and R_{of} . [5+10]

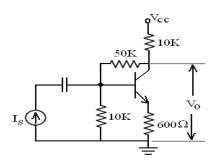


Figure 3:

- 7. (a) Prove that $h_{fe} = g_m r_{b'e}$
 - (b) How does g_m vary with $|I_C|$, $|V_{CE}| \& T$?
 - (c) Draw the small-signal high frequency CE model of a transistor. [5+5+5]
- 8. (a) How the bandwidth is effected in multistage amplifier?
 - (b) What are the advantages of direct coupled amplifiers?

R09

Set No. 2

(c) What is the use of transformer coupling in the output stage of multi-stage amplifier?

[5+5+5]

II B.Tech II Semester Examinations, April/May 2012 ELECTRONIC CIRCUIT ANALYSIS Common to ICE, E.COMP.E, ETM, EIE, ECE

Time: 3 hours Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Define f_{β} and f_{T} and also establish the relationship between f_{β} and f_{T} .
 - (b) Derive the expression for the CE short -circuit current gain as a function of frequency. [7+8]
- 2. For the circuit shown in figure 4, show that

(a)
$$(A_{VS})_{\text{max}} = -\frac{h_f}{h_i h_o - h_r h_f}$$
 if $R_L = \infty \& R_S = 0$

(b)
$$R_i = \frac{h_i h_o - h_r h_f}{h_o}$$
 if $R_L = \infty$ [8+7]

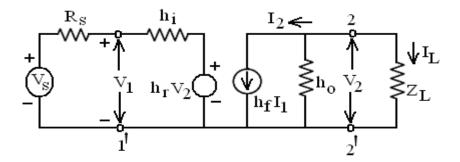


Figure 4:

- 3. (a) Sketch the circuit of a CS amplifier. Derive the expression for the voltage gain at low frequencies. What is the maximum value of voltage gain?
 - (b) The FET shown in figure 5 has the following parameters: $I_{DSS} = 5.6 \text{mA} \& V_P = -4 \text{V}$. If $V_i = 10 \text{V}$ find V_O . [8+7]
- 4. (a) Draw the equivalent circuit of a single tuned capacitive coupled ampifier and derive the expression for gain at resonance.
 - (b) Draw the circuit diagram for tuned RF amplifier and explain its working. [7+8]
- 5. (a) Derive an expression for the output power of a class A large signal amplifier in terms of V_{max} , V_{min} I_{max} & I_{min} .
 - (b) For a particular power amplifier, the optimum load impedance is 180Ω . Calculate the turns ratio required to match an 8Ω load to this transistor. If the amplifier takes a mean collector current of 2A from a 15V supply and delivers an ac load power of 2.5W to the transformer coupled load, calculate the efficiency and the collector dissipation(negleting the losses) [7+8]

R09

Set No. 4

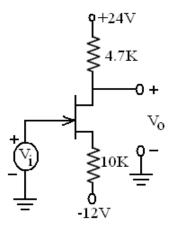


Figure 5:

- 6. (a) Discuss about the types of negative feedback amplifiers giving the effect of each type of feedback on the parameters of the amplifier.
 - (b) What sort of feedback is employed in a CE amplifier with unbypassed emitter resistor? Discuss its analysis in detail. [7+8]
- 7. Design a RC phase-shift oscillator to operate at a frequency of 5KHz. use a MOSFET with $\mu=55$ and $r_d=5.5$ K. The phase shift network not load the amplifier.
 - (a) Find the minimum value of the drain circuit resistance for which the circuit will oscillate.
 - (b) Choose reasonable values of R and find C. [8+7]
- 8. (a) Write the expressions for over all voltage gain (A_V^n) , f_L^n and f_H^n when n-nonidentical amplifier stages are cascaded.
 - (b) Compute f_H and f_L a 2-stage amplifier if f_{H_1} = 3KHz and f_{H_2} = 4KHz; f_{L_1} = 300Hz and f_{L_2} = 600Hz. [15]

* * * * * * *

R09

Set No. 1

Code No: R09220402

II B.Tech II Semester Examinations, April/May 2012 ELECTRONIC CIRCUIT ANALYSIS Common to ICE, E.COMP.E, ETM, EIE, ECE

Time: 3 hours Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks

1. (a) Prove that the following two networks (a) & (b) shown in figure 6 have the same currents if excited by same voltages.

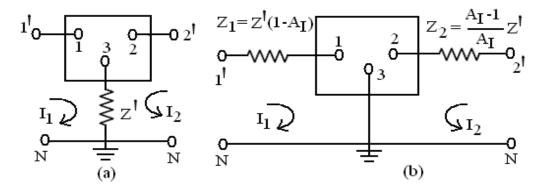


Figure 6:

- (b) Draw the simplified hybrid model for the CC circuit and derive expressions for input Resistance, output resistance voltage gain and current gain. [7+8]
- 2. (a) Write the equation for overall gain of a n stage cascaded Amplifier.
 - (b) How does the frequency response an amplifier change with cascading of amplifier stages?
 - (c) Explain the choice of configuration in a cascade of amplifiers. [5+5+5]
- 3. (a) Draw the frequency response of tapped single tuned capacitance couplped amplifier and derive the expression for L for maximum power transfer.
 - (b) Draw the circuit of double tuned amplifier and explain its working. [8+7]
- 4. (a) What is a class B amplifier? Where is it employed? Give its circuits, design equations, characteristics & limitations.
 - (b) A transformer coupled class A large signal amplifier has maximum and minimum values of collector to emitter voltage of 25V and 2.5V. Determine its collector efficiency. [10+5]
- 5. (a) What are the characteristics of an amplifier that are modified by negative feedback?
 - (b) Draw the four types of feedback amplifiers naming them.
 - (c) Define sensitivity & Desensitivity factors in feedback Amplifiers. [5+5+5]

- 6. (a) Derive an expression for voltage gain of a common source FET amplifier with and without source resistance included in the circuit.
 - (b) Calculate the voltage gain of the FET amplifier shown in the figure 7, assuming blocking capacitor to be large g_m and r_d are given as, $g_m = 4mA/V$ and $r_d = 5K.[8+7]$

Figure 7:

- 7. (a) Explain why the upper 3-dB frequency for current gain is not the same as f_H for voltage gain.
 - (b) A Silicon PNP transistor has an $f_T = 400 \text{MHz}$. What is the base thickness?
 - (c) In terms of what parameters is the high frequency response of a CE stage obtained? [5+5+5]
- 8. (a) Draw the electrical model of a piezoelectric crystal.
 - (b) Sketch the reactance Vs frequency function.
 - (c) Over what portion of the reactance curve do we desire oscillations to take place when the crystal is used as part of a sinusoidal oscillator? Explain. [4+4+7]

R09

Set No. 3

II B.Tech II Semester Examinations, April/May 2012 ELECTRONIC CIRCUIT ANALYSIS Common to ICE, E.COMP.E, ETM, EIE, ECE

Time: 3 hours Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) When n-identical stages of amplifier are cascaded. Derive the expression for lower and upper cutoff frequencies.
 - (b) Explain the effect of coupling capacitor in a CE amplifier on low frequency response of amplifier. [8+7]
- 2. (a) A transistor supplies 0.8W to a 5K load. The zero signal dc collector current is 30mA, and the dc collector current with signal is 36mA. Determine the percent second harmonic distortion.
 - (b) Define conversion efficiency. Determine the maximum value of conversion efficiency for a series fed class A power amplifier. [7+8]
- 3. (a) For the circuit shown in figure 8, compute A_I , A_V , A_{VS} , R_i and R'_o . The transistor h-parameters are $h_{ie}=1.1$ K, $h_{fe}=50$, $h_{re}=2.4\times$ and $h_{oe}=25\mu$ A/V.

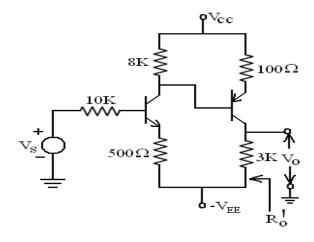


Figure 8:

- (b) Compare Direct Coupled Amplifiers with RC Coupled Amplifier. [10+5]
- 4. (a) Obtain CC 'h' parameters interms of CE parameters.
 - (b) For a CE amplifier, calculate the voltage gain, input impedance, output impedance, current gain. If $R_L = 10k\Omega$, $h_{ie} = 1.1k\Omega$, $h_{re} = 2.5 \times 10^{-4}$, $h_{fe} = 50$, $h_{oe} = 24\mu\text{A/V}$. [7+8]
- 5. (a) Why a FET cannot be explained with h-parameters?
 - (b) Derive an expression for Trans conductance using FET model.

R09

Set No. 3

(c) Draw and explain the FET high frequency model.

[3+6+6]

- 6. (a) Sketch a circuit of a crystal controlled oscillator and explain its function.
 - (b) Explain the frequency stability criterion for a sinusoidal oscillator. [8+7]
- 7. (a) Compare neutralisation and unilaterlisation methods of tuned amplifiers.
 - (b) What are the limitations of stagger tuned amplifiers?
 - (c) What happens when no. of stages is increased in single tuned cascaded amplifiers? [5+5+5]
- 8. (a) What is negative feedback? Discuss how it can improve stability in an amplifier.
 - (b) Find A_{vf} , R_{if} , R_{of} , for the circuit shown in figure 9. R_s =0, h_{fe} =50, h_{ie} =1100 Ω and h_{re} and h_{oe} are negligible. Assume Identical transistors. [5+10]

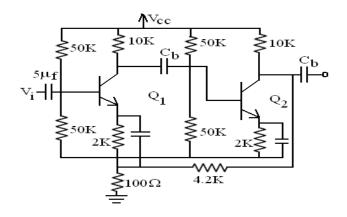


Figure 9: