Code No: R07A1BS09

Max Marks: 80

I B.Tech Examinations, May/June 2012 NUMERICAL METHODS Aeronautical Engineering

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Using Gauss-Jordan method, solve 4x+y+3z=11 3x+4y+2z=11 2x+3y+z=7.
 - (b) Solve the system by LU decomposition method. 3x+4y+5z = 18 2x-y+8z = 135x-2y+7z = 20. [8+8]
- 2. (a) Find the value of $\int_{0}^{2} \frac{dx}{1+x^3}$ dividing into 4 equal parts by trapezoidal and Simpson's rule.
 - (b) A body is in the form of solid revolution. The diameter D in cms of its sections at distance x cm from one end are given below. Estimate the volume of the solid.

X:	0	2.5	5.0	7.5	10.0	12.5	15.0
D:	5	5.5	6.0	6.75	6.25	5.5	4.0

- 3. (a) If y=(3x+1)(3x+4)...(3x+22), prove that $\Delta^4 y=136080(3x+13)(3x+16)(3x+19)(3x+22)$.
 - (b) Prove that:

i.
$$\nabla = 1 - (1 - \nabla)^{-1}$$
.
ii. $(1 + \Delta)(1 - \nabla) = 1$. [8+4+4]

4. (a) Fit a parabola $y=ax^2+bx+c$ to the data:

х	10	20	30	40	50	60
у	157	179	210	252	302	361

(b) Fit a straight line for the following data:

x	12	2 15	21	25
у	50) 70	100	120

- 5. (a) Explain the rate of convergence of Newton-Raphson method.
 - (b) Solve $\sin x = 1 + x^3$ using Newton-Rapson method. [8+8]

Code No: R07A1BS09

6. (a) Solve: $\nabla^2 \mathbf{u} = 0$ in the square region bounded by $\mathbf{x} = 0$, $\mathbf{x} = 4$, $\mathbf{y} = 0$, $\mathbf{y} = 4$ and with boundary conditions $\mathbf{u}(0, \mathbf{y}) = 0$, $\mathbf{u}(4, \mathbf{y}) = 8 + 2y^2 \mathbf{u}(\mathbf{x}, 0) = (x^2/2)$, $\mathbf{u}(\mathbf{x}, 4) = 2\mathbf{x}+3$ by taking $\mathbf{h} = \mathbf{k} = 0.5$.

R07

- (b) Derive standard five point formula to solve Laplace equation by stating the assumptions made. [8+8]
- 7. (a) Show that the Fourier transform of $f(\mathbf{x}) = a^2 x^2$, $|\mathbf{x}| < a$; =0 elsewhere is $2\sqrt{\frac{2}{\pi}}(\frac{\sin as as \cos as}{s^3})$ Hence deduce that $\int_{0}^{\infty} \frac{\sin t t \cos t}{t^3} dt = \frac{\pi}{4}$.
 - (b) Using Parseval's identity show that $\int_{0}^{\infty} \left(\frac{\sin t t\cos t}{t^3}\right)^2 dt = \frac{\pi}{15}.$ [8+8]
- 8. (a) Solve $\frac{dy}{dx} = y \frac{2x}{y}$ y(0) = 1, y(0.1) = 1.0954, y(0.2) = 1.1832, y (0.3) = 1.2649, find y (0.4) by Adam's method.
 - (b) Given that $y'' + xy'^2 + y^2 = 0$. Find y (0.1), y (0.2) by Taylor's series method. [8+8]
