$|\mathbf{R05}|$

Set No. 2

Code No: R05220503

II B.Tech II Semester Examinations, April/May 2012 PRINCIPLES OF COMMUNICATIONS Common to BME, IT, E.COMP.E, CSE, CSSE

Time: 3 hours

Max Marks: 80

[10+6]

Answer any FIVE Questions All Questions carry equal marks *****

- Explain Flat-top sampling with circuit. [16]
 Explain about the effect of the modulation index β on bandwidth. [16]
 Write short notes on:

 (a) Entropy
 (b) Redundancy
 (c) Hartley-Shannon Law
 (d) Channel capacity. [16]

 (a) Discuss the following with suitable examples

 i. Hamming codes
 ii. Interlaced codes
 (b) What is meant by Hamming distance (d_{min})? Show that D errors in a received
- 5. A carrier wave of a frequency of 20 kHz is amplitude-modulated by a modulating signal $f(t) = \cos 2\pi 10^3 t + \cos 4\pi 10^3 t$. find the expression for the corresponding SSB-SC signal. [16]
- 6. (a) Explain μ -law and A-law for compression.

codeword can be detected if $D \le d_{\min} - 1$.

- (b) In what way PCM is different from other analog pulse modulations? What makes it a digital system. [10+6]
- 7. (a) Explain DPSK modulator and DPSK demodulator with block diagram and differential encoding and decoding tables.
 - (b) Distinguish between ASK and PSK modulation systems. [12+4]
- 8. (a) State and prove the frequency convolution theorem.
 - (b) If $x(t) = A \operatorname{Sinc}(2\omega t)$, use Duality and find X(f). [8+8]

 $\mathbf{R05}$

Set No. 4

Max Marks: 80

Code No: R05220503

II B.Tech II Semester Examinations, April/May 2012 PRINCIPLES OF COMMUNICATIONS Common to BME, IT, E.COMP.E, CSE, CSSE

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) State and prove the frequency convolution theorem.
 - (b) If $x(t) = A \operatorname{Sinc}(2\omega t)$, use Duality and find X(f). [8+8]
- 2. (a) Discuss the following with suitable examples
 - i. Hamming codes
 - ii. Interlaced codes
 - (b) What is meant by Hamming distance (d_{min}) ? Show that D errors in a received codeword can be detected if $D \le d_{min}-1$. [10+6]
- 3. (a) Explain μ -law and A-law for compression.
 - (b) In what way PCM is different from other analog pulse modulations? What makes it a digital system. [10+6]
- 4. Explain about the effect of the modulation index β on bandwidth. [16]
- 5. A carrier wave of a frequency of 20 kHz is amplitude-modulated by a modulating signal $f(t) = \cos 2\pi 10^3 t + \cos 4\pi 10^3 t$. find the expression for the corresponding SSB-SC signal. [16]
- 6. (a) Explain DPSK modulator and DPSK demodulator with block diagram and differential encoding and decoding tables.
 - (b) Distinguish between ASK and PSK modulation systems. [12+4]
- 7. Write short notes on:
 - (a) Entropy
 - (b) Redundancy
 - (c) Hartley-Shannon Law
 - (d) Channel capacity. [16]
- 8. Explain Flat-top sampling with circuit. [16]

3

Code No: R05220503

II B.Tech II Semester Examinations, April/May 2012 PRINCIPLES OF COMMUNICATIONS Common to BME, IT, E.COMP.E, CSE, CSSE

 $\mathbf{R05}$

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks *****

- 1. Write short notes on:
 - (a) Entropy
 - (b) Redundancy
 - (c) Hartley-Shannon Law
 - (d) Channel capacity.
- 2. A carrier wave of a frequency of 20 kHz is amplitude-modulated by a modulating signal $f(t) = \cos 2\pi 10^3 t + \cos 4\pi 10^3 t$. find the expression for the corresponding SSB-SC signal. [16]
- 3. (a) Explain μ -law and A-law for compression.
 - (b) In what way PCM is different from other analog pulse modulations? What makes it a digital system. [10+6]
- 4. (a) Discuss the following with suitable examples
 - i. Hamming codes
 - ii. Interlaced codes
 - (b) What is meant by Hamming distance (d_{min}) ? Show that D errors in a received codeword can be detected if $D \le d_{min}-1$. [10+6]
- 5. Explain about the effect of the modulation index β on bandwidth. [16]
- 6. (a) State and prove the frequency convolution theorem.
 - (b) If $x(t) = A \operatorname{Sinc}(2\omega t)$, use Duality and find X(f). [8+8]
- 7. Explain Flat-top sampling with circuit.
- 8. (a) Explain DPSK modulator and DPSK demodulator with block diagram and differential encoding and decoding tables.
 - (b) Distinguish between ASK and PSK modulation systems. [12+4]

Set No. 1

Max Marks: 80

[16]

[16]

 $\mathbf{R05}$

Set No. 3

II B.Tech II Semester Examinations, April/May 2012 PRINCIPLES OF COMMUNICATIONS Common to BME, IT, E.COMP.E, CSE, CSSE

Time: 3 hours

Code No: R05220503

Max Marks: 80

[16]

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

- 1. A carrier wave of a frequency of 20 kHz is amplitude-modulated by a modulating signal $f(t) = \cos 2\pi 10^3 t + \cos 4\pi 10^3 t$. find the expression for the corresponding SSB-SC signal. [16]
- 2. Explain Flat-top sampling with circuit.
- 3. (a) Discuss the following with suitable examples
 - i. Hamming codes
 - ii. Interlaced codes
 - (b) What is meant by Hamming distance (d_{min}) ? Show that D errors in a received codeword can be detected if $D \le d_{min}-1$. [10+6]
- 4. (a) Explain DPSK modulator and DPSK demodulator with block diagram and differential encoding and decoding tables.
 - (b) Distinguish between ASK and PSK modulation systems. [12+4]
- 5. (a) State and prove the frequency convolution theorem.

(b) If $x(t) = A \operatorname{Sinc}(2\omega t)$, use Duality and find X(f). [8+8]

- 6. Write short notes on:
 - (a) Entropy
 - (b) Redundancy
 - (c) Hartley-Shannon Law
 - (d) Channel capacity. [16]
- 7. Explain about the effect of the modulation index β on bandwidth. [16]
- 8. (a) Explain μ -law and A-law for compression.
 - (b) In what way PCM is different from other analog pulse modulations? What makes it a digital system. [10+6]
