II B.Tech I Semester Examinations, May/June 2012 PROBABILITY THEORY AND STOCHASTIC PROCESSES

Common to Electronics And Computer Engineering, Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Define cumulative probability distribution function. And discuss distribution functions specific properties.
 - (b) What are the conditions for the function to be a random variable? Discuss. What do you mean by continuous and discrete random variable? [8+8]
- (a) Define conditional distribution and density function of two random variables X and Y.
 - (b) The joint probability density function of two random variables X and Y is given by

$$f(x,y) = \begin{cases} a(2x+y^2) & 0 \le x \le 2, & 2 \le y \le 4 \\ 0 & elsewhere \end{cases}$$
. Find

i. value of 'a'

ii.
$$P(X \le 1, Y > 3)$$
. [8+8]

- 3. (a) Based on common sense and scientific observation give the meaning of probability.
 - (b) Determine the probability of getting the sums of 10 or 11 in an experiment when two dice are rolled. [8+8]
- 4. (a) A Signal $x(t) = u(t) \exp(-\alpha t)$ is applied to a network having an impulse response $h(t) = \omega u(t) \exp(-\omega t)$. Here $\alpha \& \omega$ are real positive constants. Find the network response?
 - (b) Two systems have transfer functions $H_1(\omega)$ & $H_2(\omega)$. Show the transfer function $H(\omega)$ of the cascade of the two is $H(\omega) = H_1(\omega) H_2(\omega)$.
 - (c) For cascade of N systems with transfer functions $H_n(\omega)$, n=1,2,.... N show that H(ω) = $\pi H_n(\omega)$. [6+6+4]
- 5. (a) State and prove properties of moment generating function of a random variable X
 - (b) The characteristic function for a random variable X is given by $\Phi_X(\omega) = \frac{1}{(1-j2\omega)^{N/2}}$. Find mean and second moment of X. [8+8]
- 6. (a) A number of practical systems have "Square law" detectors that produce an output W(t) that is square of its input Y(t). Let the detector's output be defined by

$$W(t) = Y^{2}(t) = X^{2}(t) \cos^{2}(\omega_{0}t + \theta)$$
 Where ω_{0} is a constant, $X(t)$ is second

R05

Set No. 2

order stationary, and θ is a random variable independent of X(t) and uniform on $(0, 2 \Pi)$ find

- i. E[W(t)]
- ii. RWW(t, $t + \tau$) and
- iii. Whether or not W(t) is wide sense stationary
- (b) Explain briefly Gaussian random process and poisson random process. [8+8]
- 7. Two statistically independent random variables X and Y have mean values $\bar{X}=2$ and $\bar{Y}=4$. They have second moments $\bar{X}^2=8$ and $\bar{Y}^2=25$ find
 - (a) the mean value
 - (b) the second moment and
 - (c) the variance of the random variable W=3X-Y.

[5+5+6]

- 8. (a) A WSS noise process N(t) has ACF $R_{NN}(\tau) = Pe^{-3|\tau|}$. Find PSD and plot both ACF and PSD
 - (b) Find $R_{YY}(\tau)$ and hence $S_{YY}(\omega)$ interns of $S_{XX}(\omega)$ for the product device shown in figure 3 if X(t) is WSS. [8+8]

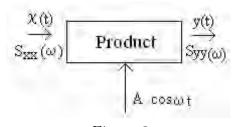


Figure 3

R05

Set No. 4

II B.Tech I Semester Examinations, May/June 2012 PROBABILITY THEORY AND STOCHASTIC PROCESSES

Common to Electronics And Computer Engineering, Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- (a) A Signal $x(t) = u(t) \exp(-\alpha t)$ is applied to a network having an impulse response $h(t) = \omega u(t) \exp(-\omega t)$. Here $\alpha \& \omega$ are real positive constants. Find the network response?
 - (b) Two systems have transfer functions $H_1(\omega)$ & $H_2(\omega)$. Show the transfer function $H(\omega)$ of the cascade of the two is $H(\omega) = H_1(\omega) H_2(\omega)$.
 - (c) For cascade of N systems with transfer functions $H_n(\omega)$, n=1,2,.... N show that $H(\omega) = \pi H_n(\omega)$. [6+6+4]
- (a) State and prove properties of moment generating function of a random variable
 - (b) The characteristic function for a random variable X is given by $\Phi_X(\omega) =$ $\frac{1}{(1-i2\omega)^{N/2}}$. Find mean and second moment of X. [8+8]
- (a) A number of practical systems have "Square law" detectors that produce an output W(t) that is square of its input Y(t). Let the detector's output be defined by
 - $W(t) = Y^{2}(t) = X^{2}(t) \cos^{2}(\omega_{0}t + \theta)$ Where ω_{0} is a constant, X(t) is second order stationary, and θ is a random variable independent of X(t) and uniform on $(0, 2 \Pi)$ find
 - i. E[W(t)]

Code No: R05210401

- ii. RWW(t, $t + \tau$) and
- iii. Whether or not W(t) is wide sense stationary
- (b) Explain briefly Gaussian random process and poisson random process. [8+8]
- (a) Define cumulative probability distribution function. And discuss distribution functions specific properties.
 - (b) What are the conditions for the function to be a random variable? Discuss. What do you mean by continuous and discrete random variable? |8+8|
- (a) Based on common sense and scientific observation give the meaning of prob-
 - (b) Determine the probability of getting the sums of 10 or 11 in an experiment when two dice are rolled. [8+8]
- 6. Two statistically independent random variables X and Y have mean values $\bar{X}=2$ and $\bar{Y}=4$. They have second moments $\bar{X}^2 = 8$ and $\bar{Y}^2 = 25$ find

R05

Set No. 4

- (a) the mean value
- (b) the second moment and
- (c) the variance of the random variable W=3X-Y.

[5+5+6]

- 7. (a) Define conditional distribution and density function of two random variables X and Y.
 - (b) The joint probability density function of two random variables X and Y is given by

$$f(x,y) = \begin{cases} a(2x+y^2) & 0 \le x \le 2, & 2 \le y \le 4 \\ 0 & elsewhere \end{cases}$$
. Find

i. value of 'a'

ii.
$$P(X \le 1, Y > 3)$$
. [8+8]

- 8. (a) A WSS noise process N(t) has ACF $R_{NN}(\tau)=Pe^{-3|\tau|}$. Find PSD and plot both ACF and PSD
 - (b) Find $R_{YY}(\tau)$ and hence $S_{YY}(\omega)$ interns of $S_{XX}(\omega)$ for the product device shown in figure 3 if X(t) is WSS. [8+8]

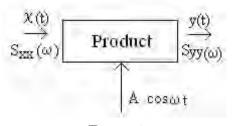


Figure 3

II B.Tech I Semester Examinations, May/June 2012 PROBABILITY THEORY AND STOCHASTIC PROCESSES

Common to Electronics And Computer Engineering, Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Define cumulative probability distribution function. And discuss distribution functions specific properties.
 - (b) What are the conditions for the function to be a random variable? Discuss. What do you mean by continuous and discrete random variable? [8+8]
- 2. (a) Based on common sense and scientific observation give the meaning of probability.
 - (b) Determine the probability of getting the sums of 10 or 11 in an experiment when two dice are rolled. [8+8]
- 3. (a) A WSS noise process N(t) has ACF $R_{NN}(\tau) = Pe^{-3|\tau|}$. Find PSD and plot both ACF and PSD
 - (b) Find $R_{YY}(\tau)$ and hence $S_{YY}(\omega)$ interns of $S_{XX}(\omega)$ for the product device shown in figure 3 if X(t) is WSS. [8+8]

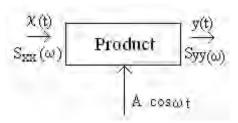


Figure 3

- 4. (a) A Signal $x(t) = u(t) \exp(-\alpha t)$ is applied to a network having an impulse response $h(t) = \omega u(t) \exp(-\omega t)$. Here $\alpha \& \omega$ are real positive constants. Find the network response?
 - (b) Two systems have transfer functions $H_1(\omega)$ & $H_2(\omega)$. Show the transfer function $H(\omega)$ of the cascade of the two is $H(\omega) = H_1(\omega) H_2(\omega)$.
 - (c) For cascade of N systems with transfer functions $H_n(\omega)$, n=1,2,.... N show that H(ω) = $\pi H_n(\omega)$. [6+6+4]
- 5. (a) Define conditional distribution and density function of two random variables X and Y.
 - (b) The joint probability density function of two random variables X and Y is given by

$$f(x,y) = \begin{cases} a(2x+y^2) & 0 \le x \le 2, & 2 \le y \le 4 \\ 0 & elsewhere \end{cases}$$
. Find

R05

Set No. 1

- i. value of 'a'
- ii. $P(X \le 1, Y > 3)$.

[8+8]

- 6. Two statistically independent random variables X and Y have mean values $\bar{X}=2$ and $\bar{Y}=4$. They have second moments $\bar{X}^2=8$ and $\bar{Y}^2=25$ find
 - (a) the mean value
 - (b) the second moment and
 - (c) the variance of the random variable W=3X-Y.

[5+5+6]

- 7. (a) State and prove properties of moment generating function of a random variable X
 - (b) The characteristic function for a random variable X is given by $\Phi_X(\omega) = \frac{1}{(1-j2\omega)^{N/2}}$. Find mean and second moment of X. [8+8]
- 8. (a) A number of practical systems have "Square law" detectors that produce an output W(t) that is square of its input Y(t). Let the detector's output be defined by
 - W(t) = $Y^2(t) = X^2(t) \cos^2(\omega_0 t + \theta)$ Where ω_0 is a constant, X(t) is second order stationary, and θ is a random variable independent of X(t) and uniform on $(0, 2 \Pi)$ find
 - i. E[W(t)]
 - ii. RWW(t, $t + \tau$) and
 - iii. Whether or not W(t) is wide sense stationary
 - (b) Explain briefly Gaussian random process and poisson random process. [8+8]

II B.Tech I Semester Examinations, May/June 2012 PROBABILITY THEORY AND STOCHASTIC PROCESSES

Common to Electronics And Computer Engineering, Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Based on common sense and scientific observation give the meaning of probability.
 - (b) Determine the probability of getting the sums of 10 or 11 in an experiment when two dice are rolled. [8+8]
- 2. (a) Define conditional distribution and density function of two random variables X and Y.
 - (b) The joint probability density function of two random variables X and Y is given by

$$f(x,y) = \begin{cases} a(2x+y^2) & 0 \le x \le 2, & 2 \le y \le 4 \\ 0 & elsewhere \end{cases}$$
. Find

i. value of 'a'

ii.
$$P(X \le 1, Y > 3)$$
. [8+8]

- 3. (a) A WSS noise process N(t) has ACF $R_{NN}(\tau) = Pe^{-3|\tau|}$. Find PSD and plot both ACF and PSD
 - (b) Find $R_{YY}(\tau)$ and hence $S_{YY}(\omega)$ interns of $S_{XX}(\omega)$ for the product device shown in figure 3 if X(t) is WSS. [8+8]

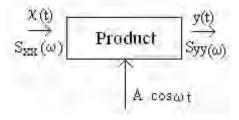


Figure 3

- 4. (a) A number of practical systems have "Square law" detectors that produce an output W(t) that is square of its input Y(t). Let the detector's output be defined by
 - W(t) = $Y^2(t) = X^2(t) \cos^2(\omega_0 t + \theta)$ Where ω_0 is a constant, X(t) is second order stationary, and θ is a random variable independent of X(t) and uniform on $(0, 2 \Pi)$ find
 - i. E[W(t)]
 - ii. RWW(t, $t + \tau$) and
 - iii. Whether or not W(t) is wide sense stationary

R05

Set No. 3

- (b) Explain briefly Gaussian random process and poisson random process. [8+8]
- 5. (a) A Signal $x(t) = u(t) \exp(-\alpha t)$ is applied to a network having an impulse response $h(t) = \omega u(t) \exp(-\omega t)$. Here $\alpha \& \omega$ are real positive constants. Find the network response?
 - (b) Two systems have transfer functions $H_1(\omega)$ & $H_2(\omega)$. Show the transfer function $H(\omega)$ of the cascade of the two is $H(\omega) = H_1(\omega) H_2(\omega)$.
 - (c) For cascade of N systems with transfer functions $H_n(\omega)$, n=1,2,.... N show that H(ω) = $\pi H_n(\omega)$. [6+6+4]
- 6. Two statistically independent random variables X and Y have mean values $\bar{X}=2$ and $\bar{Y}=4$. They have second moments $\bar{X}^2=8$ and $\bar{Y}^2=25$ find
 - (a) the mean value
 - (b) the second moment and
 - (c) the variance of the random variable W=3X-Y.

[5+5+6]

- 7. (a) Define cumulative probability distribution function. And discuss distribution functions specific properties.
 - (b) What are the conditions for the function to be a random variable? Discuss. What do you mean by continuous and discrete random variable? [8+8]
- 8. (a) State and prove properties of moment generating function of a random variable X
 - (b) The characteristic function for a random variable X is given by $\Phi_X(\omega) = \frac{1}{(1-j2\omega)^{N/2}}$. Find mean and second moment of X. [8+8]