

## I B.Tech Examinations,May/June 2012 MATHEMATICS - I Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours Max Marks: 80 Answer any FIVE Questions

## All Questions carry equal marks

## \*\*\*\*

- 1. (a) Test the series for convergence whose  $n^{th}$  term is  $(3n-1)/2^n$ . [5]
  - (b) Examine whether the following series is absolutely convergent or conditionally convergent  $1 \frac{x^2}{2} + \frac{x^4}{3} \frac{x^6}{4} + \dots (x > 0)$ . [5]
  - (c) Write the Maclaurin's series with Lagrange's form of remainder for f(x) = cosx. [6]
- 2. (a) Obtain the differential equation of all the rectangular hyperbolas with asymptotes as the co-ordinate axes. [3]
  - (b) Solve the differential equation:  $x\frac{dy}{dx} + y = x^3 y^6$ . [7]
  - (c) The rate at which bacteria multiply is proportional to the number present initially. If the original number doubles in 2 hours; in how many hours will it be tripled?
- 3. Verify Stokes theorem for  $F=x^2i-yzj+k$  integrated around the square x=0, y=0, x=1, and y=1 [16]
- 4. (a) Solve the differential equation:  $(D^4-4)y = x \cos 2x$ 
  - (b) Solve the differential equation:  $(x^2D^2+4xD-4)y=x \log x.$  [8+8]
- 5. (a) Solve (D<sup>2</sup>+1)x= t cos2t using Laplace transforms given that x(0)=0, x(0)=0.
  (b) Evaluate ∬<sub>R</sub> x<sup>2</sup> dxdy where R is the region in the first quadrant bounded by the hyperbola xy=16 and the lines y=x, y=0 and x=8. [8+8]
- 6. (a) Prove that  $\operatorname{curl}(\mathbf{A} \times \mathbf{B}) = \mathbf{A} \operatorname{div} \mathbf{B} \cdot \mathbf{B} \operatorname{div} \mathbf{A} + (\mathbf{B} \cdot \nabla) \mathbf{A} \cdot (\mathbf{A} \cdot \nabla) \mathbf{B}$ .
  - (b) Find the directional derivative of  $\phi$  (x,y,z) = x<sup>2</sup>yz + 4xz<sup>2</sup> at the point (1, -2, -1) in the direction of the normal to the surface f(x,y,z) = x logz -y<sup>2</sup> at (-1, 2,-1). [8+8]
- 7. (a) Find the perimeter of the curve  $3ay^2 = x^2(a-x)$ 
  - (b) Find the volume of a spherical cap of height h cut off from a sphere of radius a. [8+8]
- 8. (a) If  $x = r \sin\theta \cos\phi$ ,  $y = r \sin\theta \sin\phi$  and  $z = r \cos\theta$  prove that  $\frac{\partial(x,y,z)}{\partial(r,\theta,\phi)} = r^2 \sin\theta.$ [6]
  - (b) Find the radius of curvature at any point on the curve  $y = c \cosh \frac{x}{c}$ . [10]

\*\*\*\*