Code No: 09A1BS04

Time: 3 hours

B. Tech I Year Examinations, May/June -2012 MATHEMATICAL METHODS (Common to EEE, ECE, CSE, EIE, BME, IT, ETM, ECC, ICE)

Max. Marks: 75

R09

Answer any five questions All questions carry equal marks

1. a) Reduce the matrix into normal form, find its rank. $\begin{vmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & 7 \end{vmatrix}$

- b) Find the values of 'a' and 'b' for which the equations, x + y + z = 3, x + 2y + 2z = 6, x + 9y + az = b have
 - i) No solution
 - ii) A unique solution
 - iii) Infinite number of solutions.

- [8+7]
- 2. a) Find the Eigen values and the corresponding eigen vectors of the matrix
 - $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$

b) If λ is an Eigen value of a non-singular matrix A, then S.T. $\frac{|A|}{\lambda}$ is an Eigen value of Adj.A. [10+5]

- 3. Reduce the quadratic form $8x^2 + 7y^2 + 3z^2 12xy 8yz + 4xz$ into a sum of squares by an orthogonal transformation and give the matrix of transformation. Also state the nature of the quadratic from. [15]
- 4. a) Find a real root of the equation $3x \cos x 1 = 0$ using Newton Raphson method.
 - b) Find f(1.6) using Lagranges formula from the following table. [8+7]

Х	1.2	2.0	2.5	3.0
F(x)	1.36	0.58	0.34	0.20

5. a) Derive the normal equation to fit the parabola $y = a + bx + cx^2$.

b) Given

Х	1.0	1.1	1.2	1.3	1.4	1.5	1.6
Y=f(x)	7.989	8.403	8.781	9.129	9.451	9.750	10.031

Find y^1 and y^{11} at x = 1.2.

[7+8]

- 6. Find y(0.1) and y(0.2) using Runge Kutta fourth order formula given that $\frac{dy}{dx} = x + x^2 y$ and y(0) = 1. [15]
- 7. a) Obtain the Fourier series expansion of f(x) given that f(x) = (π x)² in 0 < x < 2π and deduce the value of 1/1² + 1/2² + 1/3² + = π²/6.
 b) Obtain Fourier cosine series for f(x) = x sin x 0 < x < π and show that 1/1.3 1/3.5 + 1/5.7 1/7.9 + = π-2/4. [7+8]
- 8. a) Solve $(x^2 yz) p + (y^2 zx) q = z^2 xy$.
 - b) Form the partial differential equations by eliminating the arbitrary functions i) $z = f(x^2 + y^2)$ ii) z = yf(x) + xg(y). [7+8]

* * * * * *