Code No: 09A1BS01

R09

B. Tech I Year Examinations, May/June -2012 MATHEMATICS-I (Common to all Branches)

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

1. a) Find whether the series $\sum (-1)^n \frac{\sin\left(\frac{1}{\sqrt{n}}\right)}{n-1}$ is absolute convergent or conditional convergent.

- b) Test for convergence of the series $\sum_{n=1}^{\infty} \frac{1}{2^n + 3^n}$.
- c) Test the convergence of the series $\sum \frac{n^3 5n^2 + 7}{n^5 + 4n^4 n}$. [6+6+3]
- 2. a) Prove using mean value theorem $|\sin u \sin v| \le |u v|$.
 - b) If the sum of the three numbers is a constant, then prove that their product is maximum when they are equal.
 - c) Prove that the functions u = xy + yz + zx, $v = x^2 + y^2 + z^2$, w = x + y + z are functionally dependent and find the relation between them. [6+5+4]

3. a) Show that the evolute of the cycloid $x = a(\theta - \sin \theta)$, $y = a(1 - \cos \theta)$ is another cycloid.

- b) Trace the curve $x = a \cos^3 \theta$, $y = b \sin^3 \theta$. [8+7]
- 4. a) Find the volume of the solid generated by the revolution of the Cissoid $y^2 = \frac{x^2}{(2a-x)}$ about its asymptote.

b) By changing the order of integration evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y^{2} dy dx$$
. [7+8]

5. a) Solve
$$\left(1+e^{\frac{x}{y}}\right)dx+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right)dy=0$$
.

b) Obtain the orthogonal trajectories of the family of curves $r(1 + \cos \theta) = 2a$. [7+8]

6. a) By using variation of parameters solve $\frac{d^2 y}{dx^2} + 4y = \tan 2x$.

b) Solve
$$\left(\left(2x - 1 \right)^3 \frac{d^3 y}{dx^3} + \left(2x - 1 \right) \frac{dy}{dx} - 2y = x \right).$$
 [8+7]

7. a) Find the Laplace transform of $te^{2t} \sin 3t$.

b) Use Laplace Transforms, to solve
$$(D^2 + 1)x = t \cos 2t$$
 given $x(0) = x^1(0) = 0$. [7+8]

- 8. a) Verify divergence theorem for $2x^2yi y^2j + 4xz^2k$ taken over the region of first octant of the cylinder $y^2 + z^2 = 9$ and x=2.
 - b) Find the directional derivative of $\nabla . \nabla \phi$ at the point (1, -2, 1) in the direction of the normal to the surface $xy^2z = 3x + z^2$ where $\phi = 2x^3y^2z^4$. [8+7]
