(Common to Electronics and Telematics, Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 80

Answer any five questions All questions carry equal marks

- - -

- 1. Draw the block diagram of phase modulated type FM transmitter. Explain the significance of each block. [16]
- 2. Show that an AM system using synchronous detection does not suffer from the threshold effect. [16]
- 3. For a balanced ring modulation with $f_c = 400$ kHz and the modulating signal frequency, f_m from 0 kHz to 4 kHz, determine
 - a) output frequency spectrum.
 - b) output frequency for a single frequency input, $f_m = 1.2 \text{ kHz}$.

[16]

- 4.a) Explain the need of modulation. Mention its advantages.
 - b) Define amplitude modulation. Describe the basic operation of an AM modulator.

[8+8]

- 5. Discuss about the generation of vestigial sideband modulation. What are its advantages and applications? [16]
- 6. An Armstrong FM modulator is required in order to transmit an audio signal of bandwidth 50 Hz to 15 kHz. The narrowband (NB) phase modulator used for this purpose utilizes a crystal controlled oscillator to provide a carrier frequency $f_{c1} = 0.2$ MHz. The output of the NB phase modulator is multiplied by n_1 by a multiplier and passed to a mixer with a local oscillator frequency $f_{c2} = 10.925$ MHz the desired FM wave at the transmitter output has a carrier frequency $f_c = 90$ MHz and a frequency deviation of 75 kHz, which is obtained by multiplying the mixer output frequency with n_2 using another multiplier. Find n_1 and n_2 . Assume that NBFM produces deviation of 25 Hz for the lowest base band signal.
- 7.a) What is single polarity and double polarity in PAM?
 - b) How is TDM different from FDM? Explain.

[8+8]

- 8.a) Sketch a practical diod detector with typical component values and calculate modulation index tolerate without causing negative peak clipping.
 - b) What are the functions of variable selectivity? How is it achieved in practice?

[8+8]

(Common to Electronics and Telematics, Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 80

Answer any five questions All questions carry equal marks

- - -

- 1. For a balanced ring modulation with $f_c = 400$ kHz and the modulating signal frequency, f_m from 0 kHz to 4 kHz, determine
 - a) output frequency spectrum.
 - b) output frequency for a single frequency input, $f_m = 1.2 \text{ kHz}$.

[16]

- 2.a) Explain the need of modulation. Mention its advantages.
 - b) Define amplitude modulation. Describe the basic operation of an AM modulator.

[8+8]

- 3. Discuss about the generation of vestigial sideband modulation. What are its advantages and applications? [16]
- 4. An Armstrong FM modulator is required in order to transmit an audio signal of bandwidth 50 Hz to 15 kHz. The narrowband (NB) phase modulator used for this purpose utilizes a crystal controlled oscillator to provide a carrier frequency $f_{c1} = 0.2$ MHz. The output of the NB phase modulator is multiplied by n_1 by a multiplier and passed to a mixer with a local oscillator frequency $f_{c2} = 10.925$ MHz the desired FM wave at the transmitter output has a carrier frequency $f_c = 90$ MHz and a frequency deviation of 75 kHz, which is obtained by multiplying the mixer output frequency with n_2 using another multiplier. Find n_1 and n_2 . Assume that NBFM produces deviation of 25 Hz for the lowest base band signal.
- 5.a) What is single polarity and double polarity in PAM?
 - b) How is TDM different from FDM? Explain.

[8+8]

- 6.a) Sketch a practical diod detector with typical component values and calculate modulation index tolerate without causing negative peak clipping.
 - b) What are the functions of variable selectivity? How is it achieved in practice?

[8+8]

- 7. Draw the block diagram of phase modulated type FM transmitter. Explain the significance of each block. [16]
- 8. Show that an AM system using synchronous detection does not suffer from the threshold effect. [16]

(Common to Electronics and Telematics, Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 80

Answer any five questions All questions carry equal marks

- - -

- 1. Discuss about the generation of vestigial sideband modulation. What are its advantages and applications? [16]
- 2. An Armstrong FM modulator is required in order to transmit an audio signal of bandwidth 50 Hz to 15 kHz. The narrowband (NB) phase modulator used for this purpose utilizes a crystal controlled oscillator to provide a carrier frequency $f_{c1} = 0.2$ MHz. The output of the NB phase modulator is multiplied by n_1 by a multiplier and passed to a mixer with a local oscillator frequency $f_{c2} = 10.925$ MHz the desired FM wave at the transmitter output has a carrier frequency $f_c = 90$ MHz and a frequency deviation of 75 kHz, which is obtained by multiplying the mixer output frequency with n_2 using another multiplier. Find n_1 and n_2 . Assume that NBFM produces deviation of 25 Hz for the lowest base band signal.
- 3.a) What is single polarity and double polarity in PAM?
 - b) How is TDM different from FDM? Explain.

[8+8]

- 4.a) Sketch a practical diod detector with typical component values and calculate modulation index tolerate without causing negative peak clipping.
 - b) What are the functions of variable selectivity? How is it achieved in practice?

[8+8]

- 5. Draw the block diagram of phase modulated type FM transmitter. Explain the significance of each block. [16]
- 6. Show that an AM system using synchronous detection does not suffer from the threshold effect. [16]
- 7. For a balanced ring modulation with $f_c=400\,$ kHz and the modulating signal frequency, f_m from 0 kHz to 4 kHz, determine
 - a) output frequency spectrum.
 - b) output frequency for a single frequency input, $f_m = 1.2 \text{ kHz}$. [16]
- 8.a) Explain the need of modulation. Mention its advantages.
 - b) Define amplitude modulation. Describe the basic operation of an AM modulator.

[8+8]

(Common to Electronics and Telematics, Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 80

Answer any five questions All questions carry equal marks

- - -

- 1.a) What is single polarity and double polarity in PAM?
 - b) How is TDM different from FDM? Explain.

[8+8]

- 2.a) Sketch a practical diod detector with typical component values and calculate modulation index tolerate without causing negative peak clipping.
 - b) What are the functions of variable selectivity? How is it achieved in practice?

[8+8]

- 3. Draw the block diagram of phase modulated type FM transmitter. Explain the significance of each block. [16]
- 4. Show that an AM system using synchronous detection does not suffer from the threshold effect. [16]
- 5. For a balanced ring modulation with $f_c = 400$ kHz and the modulating signal frequency, f_m from 0 kHz to 4 kHz, determine
 - a) output frequency spectrum.
 - b) output frequency for a single frequency input, $f_m = 1.2 \text{ kHz}$. [16]
- 6.a) Explain the need of modulation. Mention its advantages.
 - b) Define amplitude modulation. Describe the basic operation of an AM modulator.

[8+8]

- 7. Discuss about the generation of vestigial sideband modulation. What are its advantages and applications? [16]
- 8. An Armstrong FM modulator is required in order to transmit an audio signal of bandwidth 50 Hz to 15 kHz. The narrowband (NB) phase modulator used for this purpose utilizes a crystal controlled oscillator to provide a carrier frequency $f_{c1} = 0.2$ MHz. The output of the NB phase modulator is multiplied by n_1 by a multiplier and passed to a mixer with a local oscillator frequency $f_{c2} = 10.925$ MHz the desired FM wave at the transmitter output has a carrier frequency $f_c = 90$ MHz and a frequency deviation of 75 kHz, which is obtained by multiplying the mixer output frequency with n_2 using another multiplier. Find n_1 and n_2 . Assume that NBFM produces deviation of 25 Hz for the lowest base band signal.
