$\mathbf{R07}$

Set No. 2

II B.Tech II Semester Examinations, April/May 2012 EM WAVES AND TRANSMISSION LINES Common to Electronics And Telematics, Electronics And Communication

Engineering

Time: 3 hours

Max Marks: 80

[16]

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Define reflection and transmission coefficients and mention its applications.
 - (b) Derive expression for reflection coefficient of a wave on dielectric when incident normally. [8+8]
- 2. (a) Describe the characteristics of vector magnetic potential.
 - (b) If the vector magnetic potential with in a cylindrical conductor of radius 'a' is $A = \frac{\mu_0 I r^2}{4\pi a^2} a_z$, find **H**. [8+8]
- 3. What is total reflection in case of oblique incidence at a plane dielectric boundary? What is critical angle? Derive the expression for it. [16]
- 4. A transmission line of length 0.40λ ? has a characteristic impedance of 100Ω and is terminated in a load impedance of $200 + j180\omega$. Find the
 - (a) Voltage reflection coefficient
 - (b) Voltage stading wave ratio
 - (c) Input impedance of the line.
- 5. (a) Prove that the field given by $E = x^2 a_x + x a_y$ can not arise from a static distribution of charge.
 - (b) Show that the power density corresponding to the field $E = a_x \cos(\beta z \omega t) + a_y \sin(\beta z \omega t)$ is constant everywhere. [8+8]
- 6. Derive the expression for α and β in terms of primary constants of a line? [16]
- 7. (a) Differentiate polar and non-polar dielectrics in detail.
 - (b) A dielectric slab ($\in_r = 2$) is placed under the influence of electric flux density $= 10a_x \text{ C/m}^2$. The slab has a volume of 0.1 cm³. Determine polarization in the slab and total dipole moment. [8+8]
- 8. What is a rectangular wave guide? Derive the field expressions for TEm,n mode subject to the boundary conditions imposed by geometry of the wave guide. [16]

 $\mathbf{R07}$

Set No. 4

II B.Tech II Semester Examinations, April/May 2012 EM WAVES AND TRANSMISSION LINES Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Prove that the field given by $E = x^2 a_x + x a_y$ can not arise from a static distribution of charge.
 - (b) Show that the power density corresponding to the field $E = a_x \cos(\beta z \omega t) + a_y \sin(\beta z \omega t)$ is constant everywhere. [8+8]
- 2. (a) Differentiate polar and non-polar dielectrics in detail.
 - (b) A dielectric slab ($\in_r = 2$) is placed under the influence of electric flux density $= 10a_x \text{ C/m}^2$. The slab has a volume of 0.1 cm³. Determine polarization in the slab and total dipole moment. [8+8]
- 3. A transmission line of length 0.40 λ ? has a characteristic impedance of 100 Ω and is terminated in a load impedance of 200 + j180 ω . Find the
 - (a) Voltage reflection coefficient
 - (b) Voltage stading wave ratio
 - (c) Input impedance of the line. [16]
- 4. What is total reflection in case of oblique incidence at a plane dielectric boundary? What is critical angle? Derive the expression for it. [16]
- 5. What is a rectangular wave guide? Derive the field expressions for TEm,n mode subject to the boundary conditions imposed by geometry of the wave guide. [16]
- 6. Derive the expression for α and β in terms of primary constants of a line? [16]
- 7. (a) Describe the characteristics of vector magnetic potential.
 - (b) If the vector magnetic potential with in a cylindrical conductor of radius 'a' is $A = \frac{\mu_o I r^2}{4\pi a^2} a_z$, find **H**. [8+8]
- 8. (a) Define reflection and transmission coefficients and mention its applications.
 - (b) Derive expression for reflection coefficient of a wave on dielectric when incident normally. [8+8]

 $\mathbf{R07}$

Set No. 1

II B.Tech II Semester Examinations, April/May 2012 EM WAVES AND TRANSMISSION LINES Common to Electronics And Telematics, Electronics And Communication

Engineering

Time: 3 hours

Max Marks: 80

[16]

Answer any FIVE Questions All Questions carry equal marks ****

- 1. What is total reflection in case of oblique incidence at a plane dielectric boundary? What is critical angle? Derive the expression for it. [16]
- 2. (a) Define reflection and transmission coefficients and mention its applications.
 - (b) Derive expression for reflection coefficient of a wave on dielectric when incident normally. [8+8]
- 3. (a) Prove that the field given by $E = x^2 a_x + x a_y$ can not arise from a static distribution of charge.
 - (b) Show that the power density corresponding to the field $E = a_x \cos(\beta z \omega t) + a_y \sin(\beta z \omega t)$ is constant everywhere. [8+8]
- 4. (a) Describe the characteristics of vector magnetic potential.
 - (b) If the vector magnetic potential with in a cylindrical conductor of radius 'a' is $A = \frac{\mu_o I r^2}{4\pi a^2} a_z$, find **H**. [8+8]
- 5. Derive the expression for α and β in terms of primary constants of a line? [16]
- 6. (a) Differentiate polar and non-polar dielectrics in detail.
 - (b) A dielectric slab ($\in_r = 2$) is placed under the influence of electric flux density $= 10a_x \text{ C/m}^2$. The slab has a volume of 0.1 cm³. Determine polarization in the slab and total dipole moment. [8+8]
- 7. What is a rectangular wave guide? Derive the field expressions for TEm,n mode subject to the boundary conditions imposed by geometry of the wave guide. [16]
- 8. A transmission line of length 0.40 λ ? has a characteristic impedance of 100 Ω and is terminated in a load impedance of 200 + j180 ω . Find the
 - (a) Voltage reflection coefficient
 - (b) Voltage stading wave ratio
 - (c) Input impedance of the line.

 $\mathbf{R07}$

Set No. 3

II B.Tech II Semester Examinations, April/May 2012 EM WAVES AND TRANSMISSION LINES Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours

Max Marks: 80

[16]

Answer any FIVE Questions All Questions carry equal marks ****

- 1. What is a rectangular wave guide? Derive the field expressions for TEm,n mode subject to the boundary conditions imposed by geometry of the wave guide. [16]
- 2. (a) Describe the characteristics of vector magnetic potential.
 - (b) If the vector magnetic potential with in a cylindrical conductor of radius 'a' is $A = \frac{\mu_o I r^2}{4\pi a^2} a_z$, find **H**. [8+8]
- 3. (a) Differentiate polar and non-polar dielectrics in detail.
 - (b) A dielectric slab ($\in_r = 2$) is placed under the influence of electric flux density $= 10a_x \text{ C/m}^2$. The slab has a volume of 0.1 cm³. Determine polarization in the slab and total dipole moment. [8+8]
- 4. Derive the expression for α and β in terms of primary constants of a line? [16]
- 5. (a) Define reflection and transmission coefficients and mention its applications.
 - (b) Derive expression for reflection coefficient of a wave on dielectric when incident normally. [8+8]
- 6. What is total reflection in case of oblique incidence at a plane dielectric boundary? What is critical angle? Derive the expression for it. [16]
- 7. (a) Prove that the field given by $E = x^2 a_x + x a_y$ can not arise from a static distribution of charge.
 - (b) Show that the power density corresponding to the field $E = a_x \cos(\beta z \omega t) + a_y \sin(\beta z \omega t)$ is constant everywhere. [8+8]
- 8. A transmission line of length 0.40λ ? has a characteristic impedance of 100Ω and is terminated in a load impedance of $200 + j180\omega$. Find the
 - (a) Voltage reflection coefficient
 - (b) Voltage stading wave ratio
 - (c) Input impedance of the line.
