1

Code No: 07A42304

II B.Tech II Semester Examinations, April/May 2012 BIOPROCESS ENGINEERING Bio-Technology

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks ****

- 1. Write a note on overview of traditional and modern biotechnological process. [16]
- 2. Write short notes on the following:
 - (a) Precursors and inducers in medium formulation
 - (b) Structured growth model of microorganisms
 - (c) Oxygen and Carbon dioxide exhaust gas analyzer. [5+5+6]
- 3. Describe how the microbial products can be classified along with the equations.

[16]

4. Prove analytically that cell productivity in continuous reactor is more than that of batch reactor. [16]

5. In a mixed culture medium, there is a competition of two species for the same growth - limiting substrate. Two microorganisms A and B coexist and follow Monod kinetics. Under dynamic conditions, the substrate concentration (s) is given by $s = \mu_{mB} K_{SA} - \mu_{mA} K_{SB}$

μ_{mA} - μ_{mB}

where μ and K_s are Monod parameters and have the following values.

	$\mu m, h^{-1}$	K_S , kg / m ³
Culture A	0.42	8.5
Culture B	0.38	7.6

Calculate the dynamic substrate concentration.

- 6. What are the applications of anaerobic fermentation processes in biotechnological industries? [16]
- 7. Explain in details with relevant equations the thermodynamics of microbial growth.
- 8. Distinguish between on-line and off-line control of process parameters and explain them in detail with suitable examples. [16]

Set No. 2

Max Marks: 80

 $\mathbf{R07}$

[16]

[16]

2

Code No: 07A42304

II B.Tech II Semester Examinations, April/May 2012 BIOPROCESS ENGINEERING Bio-Technology

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks ****

- 1. Write a note on overview of traditional and modern biotechnological process. [16]
- 2. Describe how the microbial products can be classified along with the equations.
- 3. In a mixed culture medium, there is a competition of two species for the same growth limiting substrate. Two microorganisms A and B coexist and follow Monod kinetics. Under dynamic conditions, the substrate concentration (s) is given by $s = \mu_{mB} K_{SA} \mu_{mA} K_{SB}$ $\mu_{mA} - \mu_{mB}$

where μ and K_s are Monod parameters and have the following values.

Calculate	the	dynamic	substrate	concentration.

- 4. Explain in details with relevant equations the thermodynamics of microbial growth.
 [16]
- 5. What are the applications of anaerobic fermentation processes in biotechnological industries? [16]
- 6. Write short notes on the following:
 - (a) Precursors and inducers in medium formulation
 - (b) Structured growth model of microorganisms
 - (c) Oxygen and Carbon dioxide exhaust gas analyzer. [5+5+6]
- 7. Distinguish between on-line and off-line control of process parameters and explain them in detail with suitable examples. [16]
- 8. Prove analytically that cell productivity in continuous reactor is more than that of batch reactor. [16]

Set No. 4

Max Marks: 80

$\mathbf{R07}$	

	$\mu m, h^{-1}$	K_S , kg / m ³
Culture A	0.42	8.5
Culture B	0.38	7.6

[16]

|16|

3

1.	Distinguish	between	on-line	and	off-line	control	of	process	parameters	and	explain

- them in detail with suitable examples. [16]
- 2. Describe how the microbial products can be classified along with the equations.
- 3. What are the applications of anaerobic fermentation processes in biotechnological industries? [16]
- 4. In a mixed culture medium, there is a competition of two species for the same growth limiting substrate. Two microorganisms A and B coexist and follow Monod kinetics. Under dynamic conditions, the substrate concentration (s) is given by $s = \mu_{mB} K_{SA} \mu_{mA} K_{SB}$ $\mu_{mA} - \mu_{mB}$

 $\mu m, \overline{h^{-1}}$

0.42

0.38

 K_S , kg / m³

8.5

7.6

where μ and K_s are Monod parameters and have the following values.

Calculate the dynamic substrate concentration.

Culture A

Culture B

- 5. Prove analytically that cell productivity in continuous reactor is more than that of batch reactor. [16]
- 6. Explain in details with relevant equations the thermodynamics of microbial growth.
 [16]
- 7. Write a note on overview of traditional and modern biotechnological process. [16]
- 8. Write short notes on the following:
 - (a) Precursors and inducers in medium formulation
 - (b) Structured growth model of microorganisms
 - (c) Oxygen and Carbon dioxide exhaust gas analyzer. [5+5+6]

Max Marks: 80

II B.Tech II Semester Examinations, April/May 2012 BIOPROCESS ENGINEERING Bio-Technology Time: 3 hours Max

Answer any FIVE Questions All Questions carry equal marks *****

 $\mathbf{R07}$

[16]

[16]

4

Calculate the dynamic substrate concentration.

- 3. What are the applications of anaerobic fermentation processes in biotechnological industries? [16]
- 4. Write a note on overview of traditional and modern biotechnological process. [16]
- 5. Describe how the microbial products can be classified along with the equations.
- 6. Prove analytically that cell productivity in continuous reactor is more than that of batch reactor. [16]
- 7. Distinguish between on-line and off-line control of process parameters and explain them in detail with suitable examples. [16]
- 8. Explain in details with relevant equations the thermodynamics of microbial growth. [16]

II B.Tech II Semester Examinations, April/May 2012 **BIOPROCESS ENGINEERING Bio-Technology**

Time: 3 hours

Code No: 07A42304

Answer any FIVE Questions All Questions carry equal marks *****

- 1. Write short notes on the following:
 - (a) Precursors and inducers in medium formulation
 - (b) Structured growth model of microorganisms
 - [5+5+6](c) Oxygen and Carbon dioxide exhaust gas analyzer.
- 2. In a mixed culture medium, there is a competition of two species for the same growth - limiting substrate. Two microorganisms A and B coexist and follow Monod kinetics. Under dynamic conditions, the substrate concentration (s) is given by $s = \mu_{mB} K_{SA} - \mu_{mA} K_{SB}$
 - μ_{mA} μ_{mB}

where μ and K_s are Monod parameters and have the following values.

	$\mu m, h^{-1}$	K_S , kg / m ³
Culture A	0.42	8.5
Culture B	0.38	7.6

 $\mathbf{R07}$

Set No. 3

Max Marks: 80

[16]

[16]