R07

Set No. 2

II B.Tech II Semester Examinations, April/May 2012 SEMI CONDUCTOR DEVICES AND CIRCUITS **Mechatronics**

Time: 3 hours

Max Marks: 80

- (a) Prove that the concentration of holes in an intrinsic semiconductor is given by 1. $P = N_{VX} e^{-(E_F - E_V)/\mathbf{k}T}$
 - (b) Define Mass Action Law & Law of junction in semiconductors. [10+6]
- 2.(a) Draw the circuit diagram of Clapp oscillator and explain the operation Enumerate advantages of this over the Colpitt's or Hartely oscillator.
 - (b) In Colpitt's oscillator circuit, $C_1 = 1$ nF, $C_2 = 10$ nF, L=110 μ H. Find feedback factor and operating frequency. [10+6]
- 3. Derive all the necessary parameters of HWR and explain. [16]
- (a) When an electron is placed in a magnetic field with a period of rotation T =4. [35.5/B] 10⁻¹² sec. Show that the trajectory of electron is a circle.
 - (b) What is the radius described by an electron placed in a magnetic field, perpendicular to its motion, when the accelerating potential is 900V, and B =0.01wb/m². What is the time period of rotation? [8+8]
- (a) Explain the operation of n channel JFET with a neat sketch and draw the 5. characteristics.
 - (b) For a fixed bias circuit shown figure 4. $I_{DSS}=6$ mA, $V_P = -6v$. Find drain current and V_{DS} . [8+8]

Figure 1:

- 6. (a) What are the different configurations of BJT? Explain briefly.
 - (b) Define I_{CBO} and I_{CEO} .

 $\mathbf{R07}$

Set No. 2

- (c) What is the order of magnitude of I_{CBO} for Si transistor and Ge transistor? How does I_{CBO} vary with temperature? [8+4+4]
- 7. (a) Explain common emitter configuration of a BJT and draw the input and output characteristics.
 - (b) Compare different parameters of CB, CE, CC configurations. [10+6]
- 8. Derive the expression for input resistance with feedback R_{if} and output resistance, R_{of} with following feedback configurations based on their equivalent circuits.
 - (a) Voltage shunt feedback amplifier
 - (b) Current series feedvback amplifier.

[8+8]

R07

Set No. 4

II B.Tech II Semester Examinations, April/May 2012 SEMI CONDUCTOR DEVICES AND CIRCUITS **Mechatronics**

Time: 3 hours

Max Marks: 80

[16]

- 1. Derive all the necessary parameters of HWR and explain.
- (a) What are the different configurations of BJT? Explain briefly. 2.
 - (b) Define I_{CBO} and I_{CEO} .
 - (c) What is the order of magnitude of I_{CBO} for Si transistor and Ge transistor? How does I_{CBO} vary with temperature? [8+4+4]
- (a) Prove that the concentration of holes in an intrinsic semiconductor is given by 3. $P = N_{VX} e^{-(E_F - E_V)/kT}$
 - (b) Define Mass Action Law & Law of junction in semiconductors. [10+6]
- (a) Explain common emitter configuration of a BJT and draw the input and 4. output characteristics.
 - (b) Compare different parameters of CB, CE, CC configurations. [10+6]
- (a) Explain the operation of n channel JFET with a neat sketch and draw the 5. characteristics.
 - (b) For a fixed bias circuit shown figure 4. $I_{DSS}=6$ mA, $V_P = -6v$. Find drain current and V_{DS} . [8+8]

Figure 2:

- (a) When an electron is placed in a magnetic field with a period of rotation T =6. $[35.5/B] 10^{-12}$ sec. Show that the trajectory of electron is a circle.
 - (b) What is the radius described by an electron placed in a magnetic field, perpendicular to its motion, when the accelerating potential is 900V, and B =0.01wb/m². What is the time period of rotation? [8+8]

 $\mathbf{R07}$

Set No. 4

- 7. (a) Draw the circuit diagram of Clapp oscillator and explain the operation Enumerate advantages of this over the Colpitt's or Hartely oscillator.
 - (b) In Colpitt's oscillator circuit, $C_1 = 1$ nF, $C_2 = 10$ nF, L=110 μ H. Find feedback factor and operating frequency. [10+6]
- 8. Derive the expression for input resistance with feedback R_{if} and output resistance, R_{of} with following feedback configurations based on their equivalent circuits.
 - (a) Voltage shunt feedback amplifier
 - (b) Current series feedvback amplifier. [8+8]

Code No: 07A41401

R07

Set No. 1

II B.Tech II Semester Examinations, April/May 2012 SEMI CONDUCTOR DEVICES AND CIRCUITS **Mechatronics**

Time: 3 hours

Max Marks: 80

- 1. (a) Explain the operation of n - channel JFET with a neat sketch and draw the characteristics.
 - (b) For a fixed bias circuit shown figure 4. $I_{DSS}=6$ mA, $V_P = -6v$. Find drain current and V_{DS} . [8+8]

Figure 3:

- 2. (a) Draw the circuit diagram of Clapp oscillator and explain the operation Enumerate advantages of this over the Colpitt's or Hartely oscillator.
 - (b) In Colpitt's oscillator circuit, $C_1 = 1$ nF, $C_2 = 10$ nF, $L = 110 \mu$ H. Find feedback factor and operating frequency. [10+6]
- (a) Explain common emitter configuration of a BJT and draw the input and 3. output characteristics.
 - (b) Compare different parameters of CB, CE, CC configurations. [10+6]
- 4. Derive the expression for input resistance with feedback R_{if} and output resistance, R_{of} with following feedback configurations based on their equivalent circuits.
 - (a) Voltage shunt feedback amplifier
 - (b) Current series feedvback amplifier. [8+8]
- 5.(a) Prove that the concentration of holes in an intrinsic semiconductor is given by $P = N_{VX} e^{-(E_F - E_V)/kT}$

 $\mathbf{R07}$

Set No. 1

[16]

- (b) Define Mass Action Law & Law of junction in semiconductors. [10+6]
- 6. Derive all the necessary parameters of HWR and explain.
- 7. (a) When an electron is placed in a magnetic field with a period of rotation $T = [35.5/B] \ 10^{-12}$ sec. Show that the trajectory of electron is a circle.
 - (b) What is the radius described by an electron placed in a magnetic field, perpendicular to its motion, when the accelerating potential is 900V, and $B = 0.01 \text{wb/m}^2$. What is the time period of rotation? [8+8]
- 8. (a) What are the different configurations of BJT? Explain briefly.
 - (b) Define I_{CBO} and I_{CEO} .
 - (c) What is the order of magnitude of I_{CBO} for Si transistor and Ge transistor? How does I_{CBO} vary with temperature? [8+4+4]

Code No: 07A41401

R07

Set No. 3

II B.Tech II Semester Examinations, April/May 2012 SEMI CONDUCTOR DEVICES AND CIRCUITS **Mechatronics**

Time: 3 hours

Max Marks: 80

[16]

- (a) Explain the operation of n channel JFET with a neat sketch and draw the 1. characteristics.
 - (b) For a fixed bias circuit shown figure 4. $I_{DSS}=6$ mA, $V_P = -6v$. Find drain current and V_{DS} . [8+8]

Figure 4:

- 2. (a) When an electron is placed in a magnetic field with a period of rotation T = $[35.5/B] 10^{-12}$ sec. Show that the trajectory of electron is a circle.
 - (b) What is the radius described by an electron placed in a magnetic field, perpendicular to its motion, when the accelerating potential is 900V, and B =0.01wb/m². What is the time period of rotation? |8+8|
- 3. Derive all the necessary parameters of HWR and explain.
- (a) Draw the circuit diagram of Clapp oscillator and explain the operation Enu-4. merate advantages of this over the Colpitt's or Hartely oscillator.
 - (b) In Colpitt's oscillator circuit, $C_1 = 1$ nF, $C_2 = 10$ nF, L=110 μ H. Find feedback factor and operating frequency. [10+6]
- (a) What are the different configurations of BJT? Explain briefly. 5.
 - (b) Define I_{CBO} and I_{CEO} .
 - (c) What is the order of magnitude of I_{CBO} for Si transistor and Ge transistor? How does I_{CBO} vary with temperature? [8+4+4]
- 6. Derive the expression for input resistance with feedback R_{if} and output resistance, R_{of} with following feedback configurations based on their equivalent circuits.

 $\mathbf{R07}$

Set No. 3

- (a) Voltage shunt feedback amplifier
- (b) Current series feedvback amplifier.

$$[8+8]$$

- 7. (a) Explain common emitter configuration of a BJT and draw the input and output characteristics.
 - (b) Compare different parameters of CB, CE, CC configurations. [10+6]
- 8. (a) Prove that the concentration of holes in an intrinsic semiconductor is given by $P = N_{VX} e^{-(E_F E_V)/kT}$
 - (b) Define Mass Action Law & Law of junction in semiconductors. [10+6]