$|\mathbf{R07}|$

Set No. 2

II B.Tech II Semester Examinations, April/May 2012 PROCESS HEAT TRANSFER **Chemical Engineering**

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

1. What is Fourier's law of heat conduction? Derive the equation for heat flow through cylinder.

[16]

- 2. A 50mm dia steel pipe lagged with asbestes is exposed to ambient air at 300° k. Determine
 - (a) Critical radius of insulation
 - (b) Heat loss per unit length of tube covered with critical radius of insulation and without insulation. If the tube and Insulation interface temperature is 480° K. thermal conductivity of steel pipe = $45 \text{w/m}^{\circ}\text{K}$. thermal conductivity of asbestas insulation = $0.17 \text{w/m}^{\circ}\text{K}$. Convective heat transfer coefficient of air = $3w/m^{20}$ K. [16]
- (a) A heat exchanger is to cool organic liquid from 105 to 50° C. The hot fluid 3. liquid flow rate is 2.8 kg/sec. cooling medium is water which enters at 25° C and leaves at 40° C. It is proposed to use 1-2 heat exchanger for the above duty.

Specific heat of water = $4180 \text{ J/kg}^{\circ}\text{k}$. Specific heat of hot liquid = $26850 \text{ J/kg}^{\circ}\text{k}$. LMTD correction factor = 0.85. Over all heat transfer coefficient is $600 \text{ W/m}^{20}\text{k}$. Calculate the heat transfer area for a heat exchanger.

(b) A hot process stream available at 300° C is to be cooled to 200° C. The heat is used for heating cold stream from 25° C to 175° C. Calculate the log mean temperature difference if the streams flow in counter current manner and co current manner.

[10+6]

- 4. Liquid mercury at a velocity of 1 m/s flows through a tube having inside diameter 25mm. If the wall temperature is maintained constant, calculate the heat transfer coefficient. Properties of mercury are: Density = 12870 kg/m^3 ; thermal conductivity = 14.0 w/m ⁰K; Viscosity = 0.863×10^{-3} N-s/m²; Specific heat = 134 J/kg 0 K.Use Nu = 7 + 0.025 (Nre Npr) ${}^{0.3}$. [16]
- 5. A panel 0.35 m \times 0.35m is maintained at a temperature of 90 $^{0}\mathrm{C}.$ One surface of the panel is insulated. If the surrounding air temperature is 12 °C, Calculate the average value of the free convection heat transfer coefficient between the panel and the surrounding air when,

R07

Set No. 2

- (a) Heated surface is in vertical position
- (b) Heated surface is in horizontal position facing upward
- (c) Heated surface is in horizontal position facing downward.

Physical properties of water are: Density = 1.09 kg/m^3 ; Viscosity = 1.965×10^{-5} N-s/m²; Specific heat = $1005 \text{ J/kg} {}^{0}\text{C}$; thermal conductivity = $0.0284 \text{ w/m} {}^{0}\text{C}$; Pr = 0.695; Volume coefficient of expansion = $3.086 \times 10^{-3} {}^{0}\text{K}^{-1}$. Use for vertical: Nu = $0.59(\text{Gr Pr})^{0.25}$; Horizontal Nu = $0.54(\text{Gr Pr})^{0.25}$ [16]

- 6. (a) Determine the net heat transfer by radiation between the two surfaces A and B per hour per unit area if the temperatures of A and B are 800°C and 350°C respectively. Emissivities of A and B are 0.9 and 0.25 respectively. Both surfaces are gray and are infinite parallel lines, 3.5 m apart.
 - (b) Explain the significance of Stefan-Boltzmann's law. [10+6]
- 7. A vertical tubular condenser is to be used to condense 2100 kg/h of ethyl alcohol, which enters at atmospheric pressure. Cooling water is to flow through the tubes at an average temperature of 30°C. The tubes are 31mm OD and 27mm ID. The water-side coefficient is 2800 W/m² °C. Fouling factors and resistance of the tube wall may be neglected. If the available tubes are 3m long, how many tubes will be needed? Data: Boiling point of alcohol : $T_h = 78.4$ °C.

Heat of vaporization = 856 j/kg. Density of Liquid = 769 kg/m^3 . [16]

- 8. (a) What are advantages of multiple effect evaporator over single effect evaporator.
 - (b) Write in detail on different types of evaporators.
 - (c) Indicate the various methods of improving the overall efficiency of evaporators. $[4\!+\!6\!+\!6]$

 $|\mathbf{R07}|$

Set No. 4

II B.Tech II Semester Examinations, April/May 2012 PROCESS HEAT TRANSFER **Chemical Engineering**

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. A 50mm dia steel pipe lagged with asbestes is exposed to ambient air at 300° k. Determine
 - (a) Critical radius of insulation
 - (b) Heat loss per unit length of tube covered with critical radius of insulation and without insulation. If the tube and Insulation interface temperature is 480° k. thermal conductivity of steel pipe = $45 \text{w/m}^{\circ}\text{k}$. thermal conductivity of asbestas insulation = $0.17 \text{w/m}^{\circ}\text{k}$. Convective heat transfer coefficient of air = $3w/m^{20}k$. [16]
- 2. (a) What are advantages of multiple effect evaporator over single effect evaporator.
 - (b) Write in detail on different types of evaporators.
 - (c) Indicate the various methods of improving the overall efficiency of evaporators. [4+6+6]
- 3. What is Fourier's law of heat conduction? Derive the equation for heat flow through cylinder. [16]
- 4. Liquid mercury at a velocity of 1 m/s flows through a tube having inside diameter 25mm. If the wall temperature is maintained constant, calculate the heat transfer coefficient. Properties of mercury are: Density = 12870 kg/m^3 ; thermal conductivity = 14.0 w/m ⁰K; Viscosity = 0.863×10^{-3} N-s/m²; Specific heat = 134 J/kg 0 K.Use Nu = 7 + 0.025 (Nre Npr) ${}^{0.3}$. [16]
- 5. (a) A heat exchanger is to cool organic liquid from 105 to 50° C. The hot fluid liquid flow rate is 2.8 kg/sec. cooling medium is water which enters at 25° C and leaves at 40° C. It is proposed to use 1-2 heat exchanger for the above duty. Specific heat of water = $4180 \text{ J/kg}^{\circ}\text{k}$. Specific heat of hot liquid = $26850 \text{ J/kg}^{\circ}\text{k}$. LMTD correction factor = 0.85. Over all heat transfer coefficient is $600 \text{ W/m}^{20}\text{k}$. Calculate the heat transfer area for a heat exchanger.
 - (b) A hot process stream available at 300° C is to be cooled to 200° C. The heat is used for heating cold stream from 25° C to 175° C. Calculate the log mean temperature difference if the streams flow in counter current manner and co current manner.

[10+6]

 $\mathbf{R07}$

Set No. 4

- 6. A panel 0.35 m \times 0.35m is maintained at a temperature of 90 ^oC. One surface of the panel is insulated. If the surrounding air temperature is 12 ^oC, Calculate the average value of the free convection heat transfer coefficient between the panel and the surrounding air when,
 - (a) Heated surface is in vertical position
 - (b) Heated surface is in horizontal position facing upward
 - (c) Heated surface is in horizontal position facing downward.

Physical properties of water are: Density = 1.09 kg/m^3 ; Viscosity = 1.965×10^{-5} N-s/m²; Specific heat = $1005 \text{ J/kg} {}^{0}\text{C}$; thermal conductivity = $0.0284 \text{ w/m} {}^{0}\text{C}$; Pr = 0.695; Volume coefficient of expansion = $3.086 \times 10^{-3} {}^{0}\text{K}^{-1}$. Use for vertical: Nu = $0.59(\text{Gr Pr})^{0.25}$; Horizontal Nu = $0.54(\text{Gr Pr})^{0.25}$ [16]

- 7. (a) Determine the net heat transfer by radiation between the two surfaces A and B per hour per unit area if the temperatures of A and B are 800°C and 350°C respectively. Emissivities of A and B are 0.9 and 0.25 respectively. Both surfaces are gray and are infinite parallel lines, 3.5 m apart.
 - (b) Explain the significance of Stefan-Boltzmann's law. [10+6]
- 8. A vertical tubular condenser is to be used to condense 2100 kg/h of ethyl alcohol, which enters at atmospheric pressure. Cooling water is to flow through the tubes at an average temperature of 30°C. The tubes are 31mm OD and 27mm ID. The water-side coefficient is 2800 W/m² °C. Fouling factors and resistance of the tube wall may be neglected. If the available tubes are 3m long, how many tubes will be needed? Data: Boiling point of alcohol : $T_h = 78.4$ °C.

Heat of vaporization = 856 j/kg. Density of Liquid = 769 kg/m^3 . [16]

 $\mathbf{R07}$

Set No. 1

II B.Tech II Semester Examinations, April/May 2012 PROCESS HEAT TRANSFER Chemical Engineering

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) What are advantages of multiple effect evaporator over single effect evaporator.
 - (b) Write in detail on different types of evaporators.
 - (c) Indicate the various methods of improving the overall efficiency of evaporators. $[4\!+\!6\!+\!6]$
- 2. (a) Determine the net heat transfer by radiation between the two surfaces A and B per hour per unit area if the temperatures of A and B are 800°C and 350°C respectively. Emissivities of A and B are 0.9 and 0.25 respectively. Both surfaces are gray and are infinite parallel lines, 3.5 m apart.
 - (b) Explain the significance of Stefan-Boltzmann's law. [10+6]
- 3. (a) A heat exchanger is to cool organic liquid from 105 to 50°C. The hot fluid liquid flow rate is 2.8 kg/sec. cooling medium is water which enters at 25°C and leaves at 40°C. It is proposed to use 1-2 heat exchanger for the above duty.
 Specific heat of water= 4180 J/kg °k.
 Specific heat of hot liquid = 26850 J/kg °k.
 LMTD correction factor = 0.85.

Over all heat transfer coefficient is $600 \text{ W/m}^{20}\text{k}$.

Calculate the heat transfer area for a heat exchanger.

(b) A hot process stream available at 300°C is to be cooled to 200°C. The heat is used for heating cold stream from 25°C to 175°C. Calculate the log mean temperature difference if the streams flow in counter current manner and co current manner.

[10+6]

4. A vertical tubular condenser is to be used to condense 2100 kg/h of ethyl alcohol, which enters at atmospheric pressure. Cooling water is to flow through the tubes at an average temperature of 30°C. The tubes are 31mm OD and 27mm ID. The water-side coefficient is 2800 W/m² -°C. Fouling factors and resistance of the tube wall may be neglected. If the available tubes are 3m long, how many tubes will be needed? Data: Boiling point of alcohol : $T_h = 78.4$ °C.

Heat of vaporization = 856 j/kg. Density of Liquid = 769 kg/m³. [16]

5. What is Fourier's law of heat conduction? Derive the equation for heat flow through cylinder. [16]

$\mathbf{R07}$

Set No. 1

- 6. Liquid mercury at a velocity of 1 m/s flows through a tube having inside diameter 25mm. If the wall temperature is maintained constant, calculate the heat transfer coefficient. Properties of mercury are: Density = 12870 kg/m³; thermal conductivity = 14.0 w/m ⁰K; Viscosity = 0.863×10^{-3} N-s/m²; Specific heat = 134 J/kg ⁰K.Use Nu = 7 + 0.025 (Nre Npr)^{0.3}. [16]
- 7. A 50mm dia steel pipe lagged with a sbestes is exposed to ambient air at 300°k. Determine
 - (a) Critical radius of insulation

Code No: 07A40801

- (b) Heat loss per unit length of tube covered with critical radius of insulation and without insulation. If the tube and Insulation interface temperature is 480^{0} k. thermal conductivity of steel pipe = 45w/m⁰k. thermal conductivity of asbestas insulation = 0.17w/m⁰k. Convective heat transfer coefficient of air = $3w/m^{20}k$. [16]
- 8. A panel 0.35 m \times 0.35m is maintained at a temperature of 90 ^oC. One surface of the panel is insulated. If the surrounding air temperature is 12 ^oC, Calculate the average value of the free convection heat transfer coefficient between the panel and the surrounding air when,
 - (a) Heated surface is in vertical position
 - (b) Heated surface is in horizontal position facing upward
 - (c) Heated surface is in horizontal position facing downward.

Physical properties of water are: Density = 1.09 kg/m^3 ; Viscosity = 1.965×10^{-5} N-s/m²; Specific heat = $1005 \text{ J/kg} {}^{0}\text{C}$; thermal conductivity = $0.0284 \text{ w/m} {}^{0}\text{C}$; Pr = 0.695; Volume coefficient of expansion = $3.086 \times 10^{-3} {}^{0}\text{K}^{-1}$. Use for vertical: Nu = $0.59(\text{Gr Pr})^{0.25}$; Horizontal Nu = $0.54(\text{Gr Pr})^{0.25}$ [16]

 $|\mathbf{R07}|$

Set No. 3

II B.Tech II Semester Examinations, April/May 2012 PROCESS HEAT TRANSFER **Chemical Engineering**

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. Liquid mercury at a velocity of 1 m/s flows through a tube having inside diameter 25mm. If the wall temperature is maintained constant, calculate the heat transfer coefficient. Properties of mercury are: Density = 12870 kg/m^3 ; thermal conductivity = 14.0 w/m ⁰K; Viscosity = 0.863×10^{-3} N-s/m²; Specific heat = 134 J/kg 0 K.Use Nu = 7 + 0.025 (Nre Npr) ${}^{0.3}$. [16]
- 2. (a) What are advantages of multiple effect evaporator over single effect evaporator.
 - (b) Write in detail on different types of evaporators.
 - (c) Indicate the various methods of improving the overall efficiency of evaporators. [4+6+6]
- 3. A panel 0.35 m \times 0.35m is maintained at a temperature of 90 ⁰C. One surface of the panel is insulated. If the surrounding air temperature is 12 °C, Calculate the average value of the free convection heat transfer coefficient between the panel and the surrounding air when,
 - (a) Heated surface is in vertical position
 - (b) Heated surface is in horizontal position facing upward
 - (c) Heated surface is in horizontal position facing downward.

Physical properties of water are: Density = 1.09 kg/m^3 ; Viscosity = 1.965×10^{-5} N-s/m²; Specific heat = 1005 J/kg 0 C; thermal conductivity = 0.0284 w/m 0 C; Pr = 0.695; Volume coefficient of expansion = $3.086 \times 10^{-3} \, {}^{0}\mathrm{K}^{-1}$. Use for vertical: $Nu = 0.59(Gr Pr)^{0.25}$; Horizontal $Nu = 0.54(Gr Pr)^{0.25}$ [16]

4. (a) A heat exchanger is to cool organic liquid from 105 to 50° C. The hot fluid liquid flow rate is 2.8 kg/sec. cooling medium is water which enters at 25° C and leaves at 40° C. It is proposed to use 1-2 heat exchanger for the above duty.

Specific heat of water = $4180 \text{ J/kg}^{\circ}$ k. Specific heat of hot liquid = $26850 \text{ J/kg}^{\circ}\text{k}$. LMTD correction factor = 0.85. Over all heat transfer coefficient is $600 \text{ W/m}^{20}\text{k}$.

- Calculate the heat transfer area for a heat exchanger.
- (b) A hot process stream available at 300° C is to be cooled to 200° C. The heat is used for heating cold stream from 25° C to 175° C. Calculate the log mean temperature difference if the streams flow in counter current manner and co current manner.

[10+6]

 $\mathbf{R07}$

Set No. 3

- 5. What is Fourier's law of heat conduction? Derive the equation for heat flow through cylinder. [16]
- 6. A 50mm dia steel pipe lagged with a sbestes is exposed to ambient air at 300°k. Determine
 - (a) Critical radius of insulation
 - (b) Heat loss per unit length of tube covered with critical radius of insulation and without insulation. If the tube and Insulation interface temperature is 480° k. thermal conductivity of steel pipe = 45w/m° k. thermal conductivity of asbestas insulation = 0.17w/m° k. Convective heat transfer coefficient of air = $3w/m^{2} k$. [16]
- 7. A vertical tubular condenser is to be used to condense 2100 kg/h of ethyl alcohol, which enters at atmospheric pressure. Cooling water is to flow through the tubes at an average temperature of 30°C. The tubes are 31mm OD and 27mm ID. The water-side coefficient is 2800 W/m² -°C. Fouling factors and resistance of the tube wall may be neglected. If the available tubes are 3m long, how many tubes will be needed? Data: Boiling point of alcohol : $T_h = 78.4$ °C. Heat of vaporization = 856 j/kg. Density of Liquid = 769 kg/m³. [16]
- 8. (a) Determine the net heat transfer by radiation between the two surfaces A and B per hour per unit area if the temperatures of A and B are 800°C and 350°C respectively. Emissivities of A and B are 0.9 and 0.25 respectively. Both surfaces are gray and are infinite parallel lines, 3.5 m apart.
 - (b) Explain the significance of Stefan-Boltzmann's law. [10+6]