$\mathbf{R07}$

Set No. 2

II B.Tech II Semester Examinations, April/May 2012 BASIC ELECTRONICS Metallurgy And Material Technology

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Sketch the input and output characteristics of NPN, BJT in C.E. configuration and explain about different regions of operation.
 - (b) What is the condition to be satisfied for a transistor to be in cut-off? If $V_{BB} = -1.0V$ and $R_B = 50 \text{ k}\Omega$, how high may the temperature increase before the transistor comes out of cut-off? [8+8]
- 2. (a) Discuss the applications of Induction Heating.
 - (b) Discuss about electrodes used in Dielectric Heating. [8+8]
- 3. (a) With the help of a block schematic explain about the concept of negative feedback and show all the four feedback configurations through corresponding block schematics.
 - (b) Explain about the terms:
 - i. Return ratio.
 - ii. Return difference. [10+6]
- 4. A sample of Germanium is doped to the extent of 10^{14} donor atoms/cm³ and 6.7×10^{13} acceptor atoms/cm³. At room temperature, the resistivity of pure Germanium is 70 Ω -cm. An electric field of 2V/cm is applied to the semiconductor. Determine the value of the resulting current density J. [16]
- 5. Compare the salient features, advantages and limitations of DIAC, TRIAC devices.
 [16]
- 6. (a) Discuss the classification of oscillators based on frequency.
 - (b) Establish the conditions required for oscillations and explain the possible configurations to meet these conditions. [6+10]
- 7. (a) Explain the basic circuit for A.C. resistance welding.
 - (b) Explain the sequence timer used in resistance welding. [8+8]
- 8. Discuss the different types of DAC's and explain functioning of each of them in detail. [16]

 $\mathbf{R07}$

Set No. 4

II B.Tech II Semester Examinations, April/May 2012 BASIC ELECTRONICS Metallurgy And Material Technology

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. A sample of Germanium is doped to the extent of 10^{14} donor atoms/cm³ and 6.7×10^{13} acceptor atoms/cm³. At room temperature, the resistivity of pure Germanium is 70 Ω -cm. An electric field of 2V/cm is applied to the semiconductor. Determine the value of the resulting current density J. [16]
- 2. (a) Discuss the classification of oscillators based on frequency.
 - (b) Establish the conditions required for oscillations and explain the possible configurations to meet these conditions. [6+10]
- 3. (a) With the help of a block schematic explain about the concept of negative feedback and show all the four feedback configurations through corresponding block schematics.
 - (b) Explain about the terms:
 - i. Return ratio.
 - ii. Return difference. [10+6]
- 4. (a) Discuss the applications of Induction Heating.
 - (b) Discuss about electrodes used in Dielectric Heating. [8+8]
- 5. Compare the salient features, advantages and limitations of DIAC, TRIAC devices.
 [16]
- 6. Discuss the different types of DAC's and explain functioning of each of them in detail. [16]
- 7. (a) Sketch the input and output characteristics of NPN, BJT in C.E. configuration and explain about different regions of operation.
 - (b) What is the condition to be satisfied for a transistor to be in cut-off? If V_{BB} = -1.0V and $R_B = 50 \text{ k}\Omega$, how high may the temperature increase before the transistor comes out of cut-off? [8+8]
- 8. (a) Explain the basic circuit for A.C. resistance welding.
 - (b) Explain the sequence timer used in resistance welding. [8+8]

 $\mathbf{R07}$

Set No. 1

II B.Tech II Semester Examinations, April/May 2012 BASIC ELECTRONICS Metallurgy And Material Technology

Time: 3 hours

Max Marks: 80

[10+6]

Answer any FIVE Questions All Questions carry equal marks ****

- 1. Discuss the different types of DAC's and explain functioning of each of them in detail. [16]
- 2. (a) With the help of a block schematic explain about the concept of negative feedback and show all the four feedback configurations through corresponding block schematics.
 - (b) Explain about the terms:
 - i. Return ratio.
 - ii. Return difference.
- 3. Compare the salient features, advantages and limitations of DIAC, TRIAC devices. [16]
- 4. (a) Sketch the input and output characteristics of NPN, BJT in C.E. configuration and explain about different regions of operation.
 - (b) What is the condition to be satisfied for a transistor to be in cut-off? If $V_{BB} = -1.0V$ and $R_B = 50 \text{ k}\Omega$, how high may the temperature increase before the transistor comes out of cut-off? [8+8]
- 5. (a) Discuss the classification of oscillators based on frequency.
 - (b) Establish the conditions required for oscillations and explain the possible configurations to meet these conditions. [6+10]
- 6. A sample of Germanium is doped to the extent of 10^{14} donor atoms/cm³ and 6.7×10^{13} acceptor atoms/cm³. At room temperature, the resistivity of pure Germanium is 70 Ω -cm. An electric field of 2V/cm is applied to the semiconductor. Determine the value of the resulting current density J. [16]
- 7. (a) Discuss the applications of Induction Heating.
 - (b) Discuss about electrodes used in Dielectric Heating. [8+8]
- 8. (a) Explain the basic circuit for A.C. resistance welding.
 - (b) Explain the sequence timer used in resistance welding. [8+8]

 $\mathbf{R07}$

Set No. 3

II B.Tech II Semester Examinations, April/May 2012 BASIC ELECTRONICS Metallurgy And Material Technology

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. A sample of Germanium is doped to the extent of 10^{14} donor atoms/cm³ and 6.7×10^{13} acceptor atoms/cm³. At room temperature, the resistivity of pure Germanium is 70 Ω -cm. An electric field of 2V/cm is applied to the semiconductor. Determine the value of the resulting current density J. [16]
- 2. (a) Discuss the classification of oscillators based on frequency.
 - (b) Establish the conditions required for oscillations and explain the possible configurations to meet these conditions. [6+10]
- 3. (a) With the help of a block schematic explain about the concept of negative feedback and show all the four feedback configurations through corresponding block schematics.
 - (b) Explain about the terms:
 - i. Return ratio.
 - ii. Return difference. [10+6]
- 4. (a) Explain the basic circuit for A.C. resistance welding.
 - (b) Explain the sequence timer used in resistance welding. [8+8]
- 5. Discuss the different types of DAC's and explain functioning of each of them in detail. [16]
- 6. Compare the salient features, advantages and limitations of DIAC, TRIAC devices.
 [16]
- 7. (a) Discuss the applications of Induction Heating.
 - (b) Discuss about electrodes used in Dielectric Heating. [8+8]
- 8. (a) Sketch the input and output characteristics of NPN, BJT in C.E. configuration and explain about different regions of operation.
 - (b) What is the condition to be satisfied for a transistor to be in cut-off? If V_{BB} = -1.0V and $R_B = 50 \text{ k}\Omega$, how high may the temperature increase before the transistor comes out of cut-off? [8+8]
