$\mathbf{R07}$

Set No. 2

II B.Tech II Semester Examinations, April/May 2012 DIGITAL IC APPLICATIONS Electronics And Instrumentation Engineering

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- (a) Generate the truth table for a code converter whose inputs are 4-bit binary numbers (B₃, B₂, B₁, B₀) and outputs are corresponding gray coded numbers (G₃, G₂, G₁, G₀). Gray code can be obtained from binary code by repeating MSB and successive bits by performing EX-OR with previous bits. Write a VHDL code for the code converter.
 - (b) Modify the VHDL code for Binary coded Decimal (BCD) inputs. [8+8]
- 2. Give the Design flow for VHDL Hardware Description language and explain the same. [16]
- 3. (a) Generate the truth table of a 4-input dual parity generator with a control signal 'Even/odd', such that, the output is even parity if 'Even/odd' = '0' and odd parity otherwise.
 - (b) Translate the truth table in to a minimized logic circuit.
 - (c) Write a VHDL code to simulate the designed dual parity generator circuit.

[16]

- 4. (a) Differentiate between synchronous binary counters and ripple counters.
 - (b) Draw the function table and timing diagram of a 4-bit ripple counter.
 - (c) Write a VHDL program to simulate a 4-bit ripple counter. [16]
- 5. Design a 10 to 4 encoder with inputs 10ut of 10 code and outputs in BCD? Write the VHDL program using data flow modeling. [16]
- 6. (a) Compare and contrast commercially available Read only memories, PROM, EPROM and EEPROM.
 - (b) Realize a 3-to-8 decoder circuit using an appropriate sized MOS transistor based Read Only Memory. [8+8]
- 7. (a) Draw the circuit diagram of a two-input LS-TTL NOR gate and explain the functional behavior.
 - (b) Mention the DC noise margin levels of ECL 10K family. [8+8]
- 8. (a) What is meant by logic family? Classify various types of logic families.
 - (b) Explain the operation of nMOS and pMOS transistors. [8+8]

 $\mathbf{R07}$

Set No. 4

II B.Tech II Semester Examinations, April/May 2012 DIGITAL IC APPLICATIONS Electronics And Instrumentation Engineering

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- (a) Generate the truth table of a 4-input dual parity generator with a control signal 'Even/odd', such that, the output is even parity if 'Even/odd' = '0' and odd parity otherwise.
 - (b) Translate the truth table in to a minimized logic circuit.
 - (c) Write a VHDL code to simulate the designed dual parity generator circuit.

[16]

- 2. (a) Differentiate between synchronous binary counters and ripple counters.
 - (b) Draw the function table and timing diagram of a 4-bit ripple counter.
 - (c) Write a VHDL program to simulate a 4-bit ripple counter. [16]
- 3. Design a 10 to 4 encoder with inputs 10ut of 10 code and outputs in BCD? Write the VHDL program using data flow modeling. [16]
- 4. (a) What is meant by logic family? Classify various types of logic families.
 - (b) Explain the operation of nMOS and pMOS transistors. [8+8]
- 5. (a) Draw the circuit diagram of a two-input LS-TTL NOR gate and explain the functional behavior.
 - (b) Mention the DC noise margin levels of ECL 10K family. [8+8]
- 6. (a) Compare and contrast commercially available Read only memories, PROM, EPROM and EEPROM.
 - (b) Realize a 3-to-8 decoder circuit using an appropriate sized MOS transistor based Read Only Memory. [8+8]
- (a) Generate the truth table for a code converter whose inputs are 4-bit binary numbers (B₃, B₂, B₁, B₀) and outputs are corresponding gray coded numbers (G₃, G₂, G₁, G₀). Gray code can be obtained from binary code by repeating MSB and successive bits by performing EX-OR with previous bits. Write a VHDL code for the code converter.
 - (b) Modify the VHDL code for Binary coded Decimal (BCD) inputs. [8+8]
- 8. Give the Design flow for VHDL Hardware Description language and explain the same. [16]

 $\mathbf{R07}$

Set No. 1

II B.Tech II Semester Examinations, April/May 2012 DIGITAL IC APPLICATIONS Electronics And Instrumentation Engineering

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Generate the truth table of a 4-input dual parity generator with a control signal 'Even/odd', such that, the output is even parity if 'Even/odd' = '0' and odd parity otherwise.
 - (b) Translate the truth table in to a minimized logic circuit.
 - (c) Write a VHDL code to simulate the designed dual parity generator circuit.

[16]

- 2. (a) Generate the truth table for a code converter whose inputs are 4-bit binary numbers (B_3, B_2, B_1, B_0) and outputs are corresponding gray coded numbers (G_3, G_2, G_1, G_0) . Gray code can be obtained from binary code by repeating MSB and successive bits by performing EX-OR with previous bits. Write a VHDL code for the code converter.
 - (b) Modify the VHDL code for Binary coded Decimal (BCD) inputs. [8+8]
- 3. Give the Design flow for VHDL Hardware Description language and explain the same. [16]
- 4. (a) Compare and contrast commercially available Read only memories, PROM, EPROM and EEPROM.
 - (b) Realize a 3-to-8 decoder circuit using an appropriate sized MOS transistor based Read Only Memory. [8+8]
- 5. (a) Draw the circuit diagram of a two-input LS-TTL NOR gate and explain the functional behavior.
 - (b) Mention the DC noise margin levels of ECL 10K family. [8+8]
- 6. (a) Differentiate between synchronous binary counters and ripple counters.
 - (b) Draw the function table and timing diagram of a 4-bit ripple counter.
 - (c) Write a VHDL program to simulate a 4-bit ripple counter. [16]
- 7. (a) What is meant by logic family? Classify various types of logic families.
 - (b) Explain the operation of nMOS and pMOS transistors. [8+8]
- 8. Design a 10 to 4 encoder with inputs 10ut of 10 code and outputs in BCD? Write the VHDL program using data flow modeling. [16]

 $\mathbf{R07}$

Set No. 3

II B.Tech II Semester Examinations, April/May 2012 DIGITAL IC APPLICATIONS Electronics And Instrumentation Engineering

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- (a) Generate the truth table of a 4-input dual parity generator with a control signal 'Even/odd', such that, the output is even parity if 'Even/odd' = '0' and odd parity otherwise.
 - (b) Translate the truth table in to a minimized logic circuit.
 - (c) Write a VHDL code to simulate the designed dual parity generator circuit.

[16]

- 2. (a) Differentiate between synchronous binary counters and ripple counters.
 - (b) Draw the function table and timing diagram of a 4-bit ripple counter.
 - (c) Write a VHDL program to simulate a 4-bit ripple counter. [16]
- 3. (a) Compare and contrast commercially available Read only memories, PROM, EPROM and EEPROM.
 - (b) Realize a 3-to-8 decoder circuit using an appropriate sized MOS transistor based Read Only Memory. [8+8]
- 4. (a) What is meant by logic family? Classify various types of logic families.
 - (b) Explain the operation of nMOS and pMOS transistors. [8+8]
- 5. Give the Design flow for VHDL Hardware Description language and explain the same. [16]
- 6. (a) Generate the truth table for a code converter whose inputs are 4-bit binary numbers (B_3, B_2, B_1, B_0) and outputs are corresponding gray coded numbers (G_3, G_2, G_1, G_0) . Gray code can be obtained from binary code by repeating MSB and successive bits by performing EX-OR with previous bits. Write a VHDL code for the code converter.
 - (b) Modify the VHDL code for Binary coded Decimal (BCD) inputs. [8+8]
- 7. (a) Draw the circuit diagram of a two-input LS-TTL NOR gate and explain the functional behavior.
 - (b) Mention the DC noise margin levels of ECL 10K family. [8+8]
- 8. Design a 10 to 4 encoder with inputs 10ut of 10 code and outputs in BCD? Write the VHDL program using data flow modeling. [16]
