$\mathbf{R07}$

Code No: 07A3EC03

II B.Tech I Semester Examinations,May/June 2012 SWITCHING THEORY AND LOGIC DESIGN Common to BME, ICE, E.COMP.E, E.CONT.E, EIE, EEE Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. Design the ASM chart, Data path circuit, Control circuit using multiplexers for Binary multiplier. [16]
- 2. (a) Explain the procedure to convert a decimal number to a hexadecimal number with an example.
 - (b) Given the binary numbers w = 1010.1, x = 101.01, y = 1001.1 Perform the following binary operations:
 - i. w + y ii. w x iii. w . y iv. w / x

[4+12]

- 3. Design a 4 bit counter that counts either in Binary or gray depending on the input given to the select line. When select line = 0, the counter is to count in Binary, and when select line = 1, the counter is to count in gray. Draw the logic diagram. [16]
- 4. Minimize the following incompletely specified machine using Merger Table method.
 [16]

\mathbf{PS}	NS,Z	
	$\mathbf{X} = 0$	X = 1
А	E,0	В,0
В	F,0	A,0
С	Е,-	С,0
D	F,1	D,0
Ε	C,1	С,0
F	D,-	В,0

- 5. (a) Explain the procedure to implement the combinational logic circuit in a ROM. What is meant by programming the ROM?
 - (b) Implement the following function in the ROM. Show the internal circuit diagram. Explain the process of fusing. What is the size of ROM required to implement this function

F1 (p,q,r,s,t,u) =
$$\Sigma(1,3,5,6,12,16,20,25,27)$$

F2 (p,q,r,s,t,u) = $\Sigma(0,2,4,5,7,19,20,24,28)$ [8+8]

Code No: 07A3EC03

6. Realize the function $F(A,B,C,D) = \Pi(1,4,6,10,14) + d(0,8,11,15)$ using

 $\mathbf{R07}$

- (a) 16:1 Mux
- (b) 8:1 Mux
- (c) 4:1 Mux
- 7. (a) Design a logic circuit to provide an output when any two or three or four switches are closed.
 - (b) Minimize the following Boolean function using K-map $F = \Pi M (2, 7, 8, 9, 10, 12)$

[8+8]

[16]

- 8. (a) Convert the following SOP equation into its POS form. $\mathbf{G} = \mathbf{X}\mathbf{Y}'\mathbf{Z} + \mathbf{X}'\mathbf{Y}\mathbf{Z}'$
 - (b) Reduce the following Boolean expressions to three literals. A'C' + ABC + AC' 8+8]

Set No. 2

 $\mathbf{R07}$

II B.Tech I Semester Examinations, May/June 2012 SWITCHING THEORY AND LOGIC DESIGN Common to BME, ICE, E.COMP.E, E.CONT.E, EIE, EEE

Time: 3 hours

Code No: 07A3EC03

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Explain the procedure to implement the combinational logic circuit in a ROM. What is meant by programming the ROM?
 - (b) Implement the following function in the ROM. Show the internal circuit diagram. Explain the process of fusing. What is the size of ROM required to implement this function F1 (p,q,r,s,t,u) = $\Sigma(1,3,5,6,12,16,20,25,27)$

F2 (p,q,r,s,t,u) = $\Sigma(0,2,4,5,7,19,20,24,28)$ [8+8]

- 2. Design the ASM chart, Data path circuit, Control circuit using multiplexers for Binary multiplier. [16]
- 3. (a) Explain the procedure to convert a decimal number to a hexadecimal number with an example.
 - (b) Given the binary numbers w = 1010.1, x = 101.01, y = 1001.1 Perform the following binary operations:
 - i. w + y ii. w x iii. w . y iv. w / x

[4+12]

- 4. Realize the function $F(A,B,C,D) = \Pi(1,4,6,10,14) + d(0,8,11,15)$ using
 - (a) 16:1 Mux
 - (b) 8:1 Mux
 - (c) 4:1 Mux

- [16]
- 5. (a) Design a logic circuit to provide an output when any two or three or four switches are closed.
 - (b) Minimize the following Boolean function using K-map $F = \Pi M (2, 7, 8, 9, 10, 12)$

[8+8]

6. Design a 4 bit counter that counts either in Binary or gray depending on the input given to the select line. When select line = 0, the counter is to count in Binary, and when select line = 1, the counter is to count in gray. Draw the logic diagram. [16]

Code No: 07A3EC03

R07

Set No. 4

[16]

- 7. (a) Convert the following SOP equation into its POS form. $\mathbf{G} = \mathbf{X}\mathbf{Y}'\mathbf{Z} + \mathbf{X}'\mathbf{Y}\mathbf{Z}'$
 - (b) Reduce the following Boolean expressions to three literals. A'C' + ABC + AC'8+8]
- 8. Minimize the following incompletely specified machine using Merger Table method.

\mathbf{PS}	NS,Z		
	$\mathbf{X} = 0$	X = 1	
А	E,0	B,0	
В	F,0	A,0	
С	Е,-	С,0	
D	F,1	D,0	
Ε	C,1	С,0	
F	D,-	B,0	

 $\mathbf{R07}$

Code No: 07A3EC03

II B.Tech I Semester Examinations,May/June 2012 SWITCHING THEORY AND LOGIC DESIGN Common to BME, ICE, E.COMP.E, E.CONT.E, EIE, EEE Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

- 1. (a) Explain the procedure to convert a decimal number to a hexadecimal number with an example.
 - (b) Given the binary numbers w = 1010.1, x = 101.01, y = 1001.1 Perform the following binary operations:
 - i. w + yii. w xiii. w . yiv. w / x

[4+12]

- 2. Realize the function $F(A,B,C,D) = \Pi(1,4,6,10,14) + d(0,8,11,15)$ using
 - (a) 16:1 Mux
 - (b) 8:1 Mux
 - (c) 4:1 Mux

[16]

- 3. (a) Design a logic circuit to provide an output when any two or three or four switches are closed.
 - (b) Minimize the following Boolean function using K-map $F = \Pi M (2, 7, 8, 9, 10, 12)$

[8+8]

- 4. (a) Explain the procedure to implement the combinational logic circuit in a ROM. What is meant by programming the ROM?
 - (b) Implement the following function in the ROM. Show the internal circuit diagram. Explain the process of fusing. What is the size of ROM required to implement this function
 F1 (p,q,r,s,t,u) = Σ(1,3,5,6,12,16,20,25,27)
 F2 (p,q,r,s,t,u) = Σ(0,2,4,5,7,19,20,24,28)
- 5. Minimize the following incompletely specified machine using Merger Table method.
 [16]

$\mathbf{R07}$

Set No. 1

\mathbf{PS}	NS,Z	
	$\mathbf{X} = 0$	X = 1
А	$^{\mathrm{E,0}}$	В,0
В	$^{\mathrm{F,0}}$	A,0
С	Е,-	С,0
D	F,1	D,0
Е	C,1	С,0
F	D,-	В,0

- 6. (a) Convert the following SOP equation into its POS form. $\mathbf{G} = \mathbf{X}\mathbf{Y}'\mathbf{Z} + \mathbf{X}'\mathbf{Y}\mathbf{Z}'$
 - (b) Reduce the following Boolean expressions to three literals. A'C' + ABC + AC' 8+8]
- 7. Design the ASM chart, Data path circuit, Control circuit using multiplexers for Binary multiplier. [16]
- 8. Design a 4 bit counter that counts either in Binary or gray depending on the input given to the select line. When select line = 0, the counter is to count in Binary, and when select line = 1, the counter is to count in gray. Draw the logic diagram. [16]

 $|\mathbf{R07}|$

II B.Tech I Semester Examinations, May/June 2012

SWITCHING THEORY AND LOGIC DESIGN Common to BME, ICE, E.COMP.E, E.CONT.E, EIE, EEE

Time: 3 hours

Code No: 07A3EC03

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Explain the procedure to implement the combinational logic circuit in a ROM. What is meant by programming the ROM?
 - (b) Implement the following function in the ROM. Show the internal circuit diagram. Explain the process of fusing. What is the size of ROM required to implement this function

$$F1 (p,q,r,s,t,u) = \Sigma(1,3,5,6,12,16,20,25,27)$$

$$F2 (p,q,r,s,t,u) = \Sigma(0,2,4,5,7,19,20,24,28)$$
[8+8]

2. Minimize the following incompletely specified machine using Merger Table method.
[16]

PS	NS,Z	
	$\mathbf{X} = 0$	X = 1
А	E,0	В,0
В	F,0	A,0
С	Е,-	С,0
D	F,1	D,0
Е	C,1	С,0
F	D,-	В,0

- 3. (a) Design a logic circuit to provide an output when any two or three or four switches are closed.
 - (b) Minimize the following Boolean function using K-map $F = \Pi M (2, 7, 8, 9, 10, 12)$

[8+8]

- 4. Design the ASM chart, Data path circuit, Control circuit using multiplexers for Binary multiplier. [16]
- 5. (a) Explain the procedure to convert a decimal number to a hexadecimal number with an example.
 - (b) Given the binary numbers w = 1010.1, x = 101.01, y = 1001.1 Perform the following binary operations:
 - i. w + y ii. w x iii. w . y
 - iv. w / x

[4+12]

Code No: 07A3EC03

 $\mathbf{R07}$

Set No. 3

- 6. (a) Convert the following SOP equation into its POS form. $\mathbf{G} = \mathbf{X}\mathbf{Y}'\mathbf{Z} + \mathbf{X}'\mathbf{Y}\mathbf{Z}'$
 - (b) Reduce the following Boolean expressions to three literals. A'C' + ABC + AC'8+8]
- 7. Realize the function $F(A,B,C,D) = \Pi(1,4,6,10,14) + d(0,8,11,15)$ using
 - (a) 16:1 Mux
 - (b) 8:1 Mux
 (c) 4:1 Mux
- 8. Design a 4 bit counter that counts either in Binary or gray depending on the input given to the select line. When select line = 0, the counter is to count in Binary, and when select line = 1, the counter is to count in gray. Draw the logic diagram. [16]
