Code No: 123BR

× * * * *

* * * * * * * * * *

* * * *

* * ** * * ** * * *

* * * * * * * * * * *

* * **

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, March - 2017 BASIC ELECTRICAL ENGINEERING

(Common to CSE, IT)

Max. Marks: 75

R15

* * * * * * * * * * * *

* * * * * * * * * * * * * * * *

Time: 3 Hours

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks: Answer all questions in Part A Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

8.a) b)	Derive the torque equation of dc motor. The stator of a 3-phase, 4-pole induction motor is connected to a 50 Hz supply. The rotor runs at 1455 rev/min at full load. Determine (i): the synchronous speed and (ii) the slip at full load. [6+4] OR Explain the operating principle of Three phase Induction motor. A 10kW d.c shunt generator having an armature circuit resistance of 0.75 Ω and a field resistance of 125 Ω , generates a terminal voltage of 250V at full load. Determine the efficiency of the generator at full load, assuming the iron, friction and wind age losses amount to 600W. [5+5]					
9.a) b)						
10.a) b) [2][2] 11.	How are measuring Explain the constr deflection if the ins	g instruments cla uction and wor trument is sprin in the sprin action and work	assified? king of PMMC og controlled. OR strukture king of MI instru	instrument. Deri	ve the equation [4+ [in: [in:]] alp of a neat sket [10]	for -6]
RQ		RØ	ooOoo ≷ ව		RØ	
RØ		RØ	RØ		RØ	
RØ			RØ		RE	
RØ	RØ	RØ	RØ	RØ		

* * * * * * * * * * * * * * * * * *

* * * *

× * * * * × * * * × * * * * * * * * * *

*** * * * * * * * * * * * * *

×** × * × * × * * * * * × * × * **** * * * ** x • • x • x • x • x • x • x * • x • • * * * • * * * * * • * * * * * * * **** *** ****

 $\mu\delta_{i_1}$

× • • × • × • • • × • • • × • • × × • • •