Code No: 55022 200 25.74 Child. R09 ALLENS! ## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year I Semester Examinations, February/March - 2016 ANTENNAS AND WAVE PROPAGATION (Electronics and Communication Engineering) Time: 3 hours 27 27 E 53 Max. Marks: 75 ## Answer any five questions All questions carry equal marks | 1 2 | | . • | An questions carry equal marks | | | | | | AND KING | | |-----------------------------------|--|--|--------------------------------|--|------------------------------|--------------------------|--|-------------------|---------------------|--| | | | | | | | | | | | | | | 1.ş
l |) whiai | u iii uçlan a | about restar
about inductation fields | tion field. | | on field an | d find the d | distance a | at which [7+8] | | Kan V | 2.a
b | | | tion resistation is $\lambda/25$ | | | | directivity | 7. | · · · | | | | the rad | us of the lo | op is λ/25 | and mediu | m is free s | pace. | tii siiiaii cii | remar 100 | op when
[7+8] | | | 3.a) | Explain
element | the princip | ole of patte | in multipli | cation and | find the ra | adiation pa | ttern for | 4 and 8 | | | b) | Define lend fire | oroad side a
array of a | and end fire
1 element. | arrays ah | d obtain th | e expressio | on for array | y factor o | f linear | | to the second | 4.a) | Discuss | ahout Heli | cal Antenna | | | - THE ES | 5.6% Q | ELPH 4 | [7+8] | | NEW A | b) | Explain | design con | sideration o | is.
If pyramid | al horns. | de Nad | <i>ያች</i> . ሂላኤ | 27. Viv. | [8+7] | | | 5.a) | A 64 me | ter diamete | parabolo
Estimate | id reflecto | r is onerat | • | SATT- | | for the | | | | direction | al antenna. | Estimate with response | its beam v | width betw | een half r | WHZ and 1 | is ted by | a non- | | | b) | Explain i | n detail abo | n with respont the cons | ect to half
fruction o | wave dipo
f a patch a | ole. Assumo
ntenna. | e even illu | mination. | [7+8] | | - A IENa | 6.a) | Derive th | e equation | for the shaps for the m | ne of a nor | -metallia | dialage: 1 | | | _ | | SCINE
SCINE
SCINE
SAID A | b) | Explain t | he method | O TOT GILL II | neasureme | nt of gain | by using | ens.
two anten | na mätka | . d d andre | | | | three ante | nna metho | d. | | 5 | o) doing | two arrecti | па тенс | o and €
[7+8] | | | 7.a) | Derive the | e equation | of radio | horizon o | f space w | ave propa | gation cor | sidering | | | | b) | Discuss in | detail abou | ut Duct pro | pagation a | ınd wave t | ilt | apr€ 1 %. | ALM SE | - 15% AF | | .66.99°o | Q dalam | - | | | | | | | | [8+7] | | est i | 8. | a) Critical | t notes on: | | 20 254
20 255
11 25 25 | | | | 555 E. O. | 4.73 km to 1
4.73 km to 1
2.74 km to 1 | | | | b) Skip Di | stance | | | | | | -74.6 xt | Service St. | | .52.19Aq | Lanceston | c) Multi-ho | p propaga | ion. | | | | | | | | SELIPAG
TOPE B | THE STATE OF S | CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE
CARCOLLEGE | | 200 San | | | 83 800
85 8 4
84 8 4 | in one | [5+ | -5+5] | | | | | | | | | | | | | | | | 2012 | 83480g- | | ooOo | D | 5.00 00 00 00 00 00 00 00 00 00 00 00 00 | gingan
Shapers | 241 945.
2018 F. | が記述する。
第二章 (1)
第二章 (1)
第二章 (1) | | | . ** | | | | | | | | | | | 2.00g
2.00g
2.00g
2.00g | 150-1901
150-170 | | | 20: 203: | \$4s cas. | tidi ene. | | | | | 96