Code No: 113BS

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, May/June - 2015 DIGITAL LOGIC DESIGN

(Computer Science and Engineering)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks.

PART- A

	FARI-A		
1.a)	point representation.	(2	5 Marks)
b)	Find the 2's complement for -7.		[2M]
c)	Write the canonical form of the following expression:		[3M]
450 e 1985 e 1985 e	F(A,B,C,D) = A' + BC + CD'	festa e	[2M]
d)	Implement Ex-OR gate using d×1 MVX.	. 5	
e)	Draw the logic diagram for 4×2 encoder.		[3M]
f)	Draw the block diagram for full adder using half adders and gates.		[2M]
f) g)	Compare latch and flip flop.	jan.	[3M]
h)	What are the drawbacks of ripple counters?		[2M]
i)	I latina tha fall - ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		[3M]
j)	Define the following terms: i) Hit ratio ii) Access time.		[2M]
<i>37</i> :	Draw the memory hierarchy in terms of capacity and access time. PART-B	May P	[3M]
		_{5.} (50	Marks)
2.a)	Solve for x		
	i) $(367)_8 = (x)_2$ iii) $(378.93)_{10} = (x)_8$		
, salves	ii) $(B9F.AE)_{16} = (X)_8$ iv) $(16)_{10} = (100)$		
b)	Convert (163.875) ₁₀ to binary, octal, hexadecimal.	1. 5	FC + 33
-	OR		[6+4]
3.a)	What are universal gates? Realize AND, OR, NOT, XOR gates	using u	niversal

3.8 gates.

Obtain the canonical SOP form of the following functions. b) i) Y(A,B) = A+B.

ii) Y(A,B,C,D) = AB + ACD.

[6+4]

4.a) Simplify the expression $Y = \sum m(7,9,10,11,12,13,14,15)$ using the k-map method. b)

Simplify the following Boolean function:

 $F(A,B,C,D) = \sum m(1,3,7,11,15) + \sum d(0,2,5)$

[5+5]

- Simplify $Y = \sum m(3,6,7,8,10,12,14,17,19,20,21,24,25,27,28)$ using K-map 5.a) method.
 - b) Obtain:

141

886099 06518

w.

4

1162

i) Minimal SOP and

38375

i) Minimal SOP andii) Minimal POS expressions for the following function:

 $F(A,B,C,D) = \sum m(0,1,5,8,9,10)$

[5+5]