06/06

Code No: 111AD

R13

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B.Tech I Year Examinations, June - 2014 ENGINEERING PHYSICS

(Common to all Branches)

Time: 3 hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

1.a)	Define lattice parameters, unit cell, space lattice.	[2m]
b)	Explain significance of Burger's vector.	[3m]
c)	Compare waves and particles.	[2m]
d)	Explain canonical ensemble.	[3m]
e)	Write short notes on Clausius-Mosotti equation.	[2m]
f)	Describe Hysteresis behavior of ferromagnetic material.	[3m]
g)	Explain population inversion in lasers.	[2m]
h)	Write short notes attenuation in fibers.	[3m]
i)	Write principle of photodiodes.	[2m]
j)	Discuss about sol-gel technique.	[3m]

PART-B

- 2.a) Discuss about seven crystal systems and their corresponding Bravias lattice.
 - b) Explain salient features of miller indices.

OR

- 3.a) Explain principle of X-ray diffraction.
- b) Discuss how X-ray powder method can be used for the determination of crystal parameters.
- 4.a) Explain significance of ψ .
- b) Estimate the energy of a particle limiting to one dimensional potential well and extend it to three dimensions?

OR

- 5.a) Explain the properties of microcanonical and canonical ensembles.
 - b) What is Fermi energy and derive the equation for the calculation of Fermi energy based on its density of states?
- 6.a) Derive expressions for electronic and ionic polarizations.
 - b) Discuss about internal fields in solids.

OR

- 7.a) Define permeability, susceptibility, magnetic field induction and explain classification if magnetic materials based on magnetic moment?
 - b) Explain domain theory of ferromagnetism on the basis of hysteresis curve?

- 8.a) Explain the concepts of spontaneous and stimulated emission and what is population inversion?
 - b) Describe principle and working of semiconductor diode laser?

OR

- 9.a) Describe the principle of an optical fiber and discuss briefly attenuation in optical fibers.
 - b) Discuss about Netwon's rings experiment and deduce the equation for the calculation of radius curvature of planoconvex lens.
- 10.a) Discuss about surface to volume ratio of nanomaterials and discuss about applications of nanomaterials.
 - b) Explain the fabrication of nanomaterials by physical vapor deposition and chemical vapor deposition?

OR

- 11.a) Estimate the position of Fermi level and calculate concentration of electrons in an n-type of semiconductor.
 - b) Explain the concept of Hall effect.
