Computational Cognitive Science
Lecture Notes
|
LEC # |
TOPICS |
|
1 |
Introduction (PDF) |
|
2 |
Foundations of Inductive Learning (PDF) |
|
3 |
Knowledge Representation: Spaces, Trees, Features (PDF) |
|
4 |
Knowledge Representation: Language and Logic 1 (PDF) |
|
5 |
Knowledge Representation: Language and Logic 2 (PDF) |
|
6 |
Knowledge Representation: Great Debates 1 (PDF) |
|
7 |
Knowledge Representation: Great Debates 2 (PDF) |
|
8 |
Basic Bayesian Inference (PDF) |
|
9 |
Graphical Models and Bayes Nets (PDF) |
|
10 |
Simple Bayesian Learning 1 (PDF) |
|
11 |
Simple Bayesian Learning 2 (PDF) |
|
12 |
Probabilistic Models for Concept Learning and Categorization 1 (PDF) |
|
13 |
Probabilistic Models for Concept Learning and Categorization 2 (PDF) |
|
14 |
Unsupervised and Semi-supervised Learning (PDF) |
|
15 |
Non-parametric Classification: Exemplar Models and Neural Networks 1(PDF - 1.4 MB) |
|
16 |
Non-parametric Classification: Exemplar Models and Neural Networks 2 (PDF) |
|
17 |
Controlling Complexity and Occam's Razor 1 (PDF) |
|
18 |
Controlling Complexity and Occam's Razor 2 (PDF) |
|
19 |
Intuitive Biology and the Role of Theories (PDF) |
|
20 |
Learning Domain Structures 1 (PDF - 1.3 MB) |
|
21 |
Learning Domain Structures 2 (PDF) |
|
22 |
Causal Learning (PDF) |
|
23 |
Causal Theories 1 (PDF) |
|
24 |
Causal Theories 2 (PDF) |
|
25 |
Project Presentations |

