
I

Robot Soccer

Robot Soccer

Edited by
Vladan Papić

In-Tech
intechweb.org

Published by In-Teh

In-Teh
Olajnica 19/2, 32000 Vukovar, Croatia

Abstracting and non-profit use of the material is permitted with credit to the source. Statements and
opinions expressed in the chapters are these of the individual contributors and not necessarily those of
the editors or publisher. No responsibility is accepted for the accuracy of information contained in the
published articles. Publisher assumes no responsibility liability for any damage or injury to persons or
property arising out of the use of any materials, instructions, methods or ideas contained inside. After
this work has been published by the In-Teh, authors have the right to republish it, in whole or part, in any
publication of which they are an author or editor, and the make other personal use of the work.

© 2010 In-teh
www.intechweb.org
Additional copies can be obtained from:
publication@intechweb.org

First published January 2010
Printed in India

Technical Editor: Goran Bajac
Cover designed by Dino Smrekar

Robot Soccer,
Edited by Vladan Papić

	 p. cm.
ISBN 978-953-307-036-0

V

Preface

Idea of using soccer game for promoting science and technology of artificial intelligence and
robotics has been presented in early 90’ of the last century. Researchers in many different
scientific fields all over the world recognized this idea as an inspiring challenge. Robot soccer
research is interdisciplinary, complex, demanding but most of all – fun and motivational.
Obtained knowledge and results of research can easily be transferred and applied to
numerous applications and projects dealing with relating fields such as robotics, electronics,
mechanical engineering, artificial intelligence, etc. As a consequence, we are witnesses of
rapid advancement in this field with numerous robot soccer competitions and vast number
of teams and team members. The best illustration is numbers from the RoboCup 2009 world
championship held in Graz, Austria which gathered around 2300 participants in over 400
teams from 44 nations. Attendance numbers at various robot soccer events shows that interest
in robot soccer goes beyond the academic and R&D community.

Several experts have been invited to present state of the art in this growing area. It was
impossible to cover all the aspects of the research in detail but through the chapters of this
book, various topics were elaborated. Among them are hardware architecture and controllers,
software design, sensor and information fusion, reasoning and control, development of more
robust and intelligent robot soccer strategies, AI-based paradigms, robot communication and
simulations as well as some other issues such as educational aspect. Some strict partition
of chapter in this book hasn’t been done because areas of research are overlapping and
interweaving. However, it can be said that beginning chapters are more system - oriented
with wider scope of presented research while later chapters are generally dealing with some
more particular aspects of robot soccer.

I would like to thank all authors for their contribution and to all those people who helped
in finalisation of this project. Finally, I hope that readers will find this book interesting and
informative.

Vladan Papić
University of Split

VII

Contents

Preface	 V

1.	 The Real-time and Embedded Soccer Robot Control System	 001
Ce Li, Takahiro Watanabe, Zhenyu Wu, Hang Li and Yijie Huangfu

2.	 CAMBADA soccer team: from robot architecture to multiagent coordination	 019
António J. R. Neves, José Luís Azevedo, Bernardo Cunha, Nuno Lau, João Silva, 	
Frederico Santos, Gustavo Corrente, Daniel A. Martins, Nuno Figueiredo, Artur Pereira, 	
Luís Almeida, Luís Seabra Lopes, Armando J. Pinho, João Rodrigues and Paulo Pedreiras

3.	 Small-size Humanoid Soccer Robot Design for FIRA HuroSot	 047
Ching-Chang Wong, Chi-Tai Cheng, Kai-Hsiang Huang, Yu-Ting Yang, 	
Yueh-Yang Hu and Hsiang-Min Chan

4.	 Humanoid soccer player design	 067
Francisco Martín, Carlos Agüero, José María Cañas and Eduardo Perdices

5.	 Robot soccer educational courses	 101
Hrvoje Turić, Vladimir Pleština, Vladan Papić and Ante Krolo

6.	 Distributed Architecture for Dynamic Role Behaviour in Humanoid Soccer Robots	 121
Carlos Antonio Acosta Calderon, Mohan Elaha Rajesh and Zhou Changjiu

7.	 Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer	 139
Jeff Riley

8.	 FIRA Mirosot Robot Soccer System Using Fuzzy Logic Algorithms	 175
Elmer A. Maravillas, PhD and Elmer P. Dadios, PhD

9.	 Artificial Immune Systems, A New Computational Technique 	
for Robot Soccer Strategies	 207
Camilo Eduardo Prieto S., Luis Fernando Nino V. and Gerardo Quintana

10.	 The Role Assignment in Robot Soccer	 225
Ji Yuandong, Zuo Hongtao, Wang Lei and Yao Jin

11.	 Multi-Robot Systems: Modeling, Specification, and Model Checking	 241
Ammar Mohammed, Ulrich Furbach and Frieder Stolzenburg

VIII

12.	 RFuzzy: an easy and expressive tool for modelling the cognitive layer 	
in RoboCupSoccer	 267
Susana Muñoz Hernández

13.	 Soccer at the Microscale: Small Robots with Big Impact	 285
S. L. Firebaugh, J. A. Piepmeier and C. D. McGray

14.	 Automated camera calibration for robot soccer	 311
Donald G Bailey and Gourab Sen Gupta

15.	 Optimal Offensive Player Positioning in the Simulated Robotic Soccer	 337
Vadim Kyrylov and Serguei Razykov

The Real-time and Embedded Soccer Robot Control System 1

The Real-time and Embedded Soccer Robot Control System

Ce Li, Takahiro Watanabe, Zhenyu Wu, Hang Li and Yijie Huangfu

X

The Real-time and Embedded
Soccer Robot Control System

Ce Li1, Takahiro Watanabe1, Zhenyu Wu2, Hang Li2 and Yijie Huangfu2

Waseda University1, Japan1
Dalian University of Technology2, China2

1. Introduction

Robot Soccer becomes more popular robot competition over the last decade. It is the passion of
the robot fans. There are some international soccer robot organizations who divide the
competitions into several leagues, each of these leagues focus on the different technologies.
In this chapter, the rules and history of RoboCup Small Size League games will be
introduced shortly. That can make the audience understand the current design style
smoothly. Comparing the small robot with our human being, we can easily find that the
mechanism looks like one’s body, the circuit looks like one’s nerve, the control logic looks
like one’s cerebellum, the vision system looks like one’s eyes and the off-field computer
which is used for decisions looks like one’s cerebrum. After all, the RoboCup motto is: “By
the year 2050, develop a team of fully autonomous humanoid robots that can play and win
against the human world champion soccer team” (Official RoboCup Org., 2007).
Nowadays, with the development of LSI, the applications of FPGA make the circuit design
more simple and convenient, especially for the soccer robot which always needs to be
programmed in the field. A soft-core CPU which can be embedded in FPGA can fill a gap in
the FPGA control logic and can also make the design more flexible. In this chapter, the
circuit design configuration of our soccer robot which is developed based on FPGA is
introduced, including real-time control system, the function of each module, the program
flow, the performance and so on.
After we got a stable control system based on single CPU in the FPGA, we start to make an
attempt to embed multiple CPUs in the control system. It gets an obvious advantage of high
performance that two CPUs can work at the same time. Although one CPU can meet the
request of global vision, multiple CPUs could pave the way for self vision systems or more
complicated control logic.

2. Background

2.1 RoboCup (Official RoboCup Org., 2007)
RoboCup is an annual international competition aimed at promoting the research and
development of artificial intelligence and robotic systems. The competition focuses on the
development of robotics in the areas of:

1

Robot Soccer2

 Multi-Agent robots planning and coordination
 Pattern Recognition and real time control
 Sensing Technology
 Vision Systems (both global and local cameras)
 Mechanical design and construction
The RoboCup World Championship consists of different levels:
 Soccer Simulation League
 Small Size Robot League
 Middle Size Robot League
 Standard Platform League
 Humanoid League
RoboCup is a competition domain designed to advance robotics and AI research through a
friendly competition. Small Size robot soccer focuses on the problems of intelligent multi-
agent cooperation and controlling in a highly dynamic environment with a hybrid
centralized or distributed system.

Vision
System

Multi-Agent
Planning System

Path Program
System

C

Fig. 1. Overview of the entire robot system

A Small Size robot soccer game takes place between two teams of five robots each. The
environment of the game shows in Figure 1. Each robot must conform to the dimensions as
specified in the rules: The robot must fit within a 180mm diameter circle and must be no
higher than 15cm unless they use on-board vision. The robots play soccer (an orange golf
ball) on a green carpeted field that is 6050mm long by 4050mm wide (Official RoboCup
Org., 2007). For the detail rules,. For the detail rules, please refer RoboCup web site. Robots
come in two ways, those with local on-board vision sensors and those with global vision.
Global vision robots, by far the most common variety, use an overhead camera and off-field
PC to identify and drive them to move around the field by wireless communication. The
overhead camera is attached to a camera bar located 4m above the playing surface. Local
vision robots have the sensing on themselves. The vision information is either processed
onboard the robot or transmitted back to the off-field PC for processing. An off-field PC is
used to communication referee commands and position information to the robots in the case
of overhead vision. Typically the off-field PC also performs most, if not all, of the processing

required for coordination and control of the robots. Communications is wireless and
Wireless communication typically uses dedicated commercial transmitter/receiver units.
Building a successful team requires clever design, implementation and integration of many
hardware and software sub-components that makes small size robot soccer a very
interesting and challenging domain for research and education.

2.2 System Overview
The robot system is a layered set containing subsystems which perform different tasks.
Figure 1 shows the flow diagram that how the system is laid out. An overview of the system
is given bellow by following the flow of the information from the camera to the robots
actuators (motors).
The overhead digital camera captures global images of the field by 60 fps. The vision system
(software installed in off-field PC) processes these images to identify and locate the robots
and the ball. The environment and state information of the field are sent to the Multi-Agent
Planning System (MAPS). MAPS is the highest level planner of the robot system, arranges
the task of the whole team, actually, arranges each individual robot’s action and its action
location. Some actions include KICK and DEFEND (Ball D., 2001).
After each robot has an action, the Path Program system calculates the path for the robot to
achieve its action, and optimizes path for each robot.
In the robots, there is a motion system which can accelerate and decelerate the robot to the
desire speed and distance by creating force limited trajectories. The motion system ensures
wheel slip to a minimum.

Fig. 2. The 3D assembly drawing of the small size robot

The Real-time and Embedded Soccer Robot Control System 3

 Multi-Agent robots planning and coordination
 Pattern Recognition and real time control
 Sensing Technology
 Vision Systems (both global and local cameras)
 Mechanical design and construction
The RoboCup World Championship consists of different levels:
 Soccer Simulation League
 Small Size Robot League
 Middle Size Robot League
 Standard Platform League
 Humanoid League
RoboCup is a competition domain designed to advance robotics and AI research through a
friendly competition. Small Size robot soccer focuses on the problems of intelligent multi-
agent cooperation and controlling in a highly dynamic environment with a hybrid
centralized or distributed system.

Vision
System

Multi-Agent
Planning System

Path Program
System

C

Fig. 1. Overview of the entire robot system

A Small Size robot soccer game takes place between two teams of five robots each. The
environment of the game shows in Figure 1. Each robot must conform to the dimensions as
specified in the rules: The robot must fit within a 180mm diameter circle and must be no
higher than 15cm unless they use on-board vision. The robots play soccer (an orange golf
ball) on a green carpeted field that is 6050mm long by 4050mm wide (Official RoboCup
Org., 2007). For the detail rules,. For the detail rules, please refer RoboCup web site. Robots
come in two ways, those with local on-board vision sensors and those with global vision.
Global vision robots, by far the most common variety, use an overhead camera and off-field
PC to identify and drive them to move around the field by wireless communication. The
overhead camera is attached to a camera bar located 4m above the playing surface. Local
vision robots have the sensing on themselves. The vision information is either processed
onboard the robot or transmitted back to the off-field PC for processing. An off-field PC is
used to communication referee commands and position information to the robots in the case
of overhead vision. Typically the off-field PC also performs most, if not all, of the processing

required for coordination and control of the robots. Communications is wireless and
Wireless communication typically uses dedicated commercial transmitter/receiver units.
Building a successful team requires clever design, implementation and integration of many
hardware and software sub-components that makes small size robot soccer a very
interesting and challenging domain for research and education.

2.2 System Overview
The robot system is a layered set containing subsystems which perform different tasks.
Figure 1 shows the flow diagram that how the system is laid out. An overview of the system
is given bellow by following the flow of the information from the camera to the robots
actuators (motors).
The overhead digital camera captures global images of the field by 60 fps. The vision system
(software installed in off-field PC) processes these images to identify and locate the robots
and the ball. The environment and state information of the field are sent to the Multi-Agent
Planning System (MAPS). MAPS is the highest level planner of the robot system, arranges
the task of the whole team, actually, arranges each individual robot’s action and its action
location. Some actions include KICK and DEFEND (Ball D., 2001).
After each robot has an action, the Path Program system calculates the path for the robot to
achieve its action, and optimizes path for each robot.
In the robots, there is a motion system which can accelerate and decelerate the robot to the
desire speed and distance by creating force limited trajectories. The motion system ensures
wheel slip to a minimum.

Fig. 2. The 3D assembly drawing of the small size robot

Robot Soccer4

2.3 Mechanical Design
The mechanical design is consisted of an omni-directional drive system, a powerful
crossbow kicker, a scoop shot kicker and a dribbler. It should be a compact and robust
design. All the robots are of the same mechanical design, a mass of 4.2 kilograms each. The
robots are constructed using aluminum that gives them a strong but light frame. The robots
have a low centre of mass, achieved by placing the solenoid, the majority of the batteries and
the motors on the chassis. It can reduce weight transfer between wheels as the robot
accelerates based on the low centre of mass. Consistent weight transfer leads to less slip of
the wheels across the playing surface. The whole assembly drawing is shown in Figure 2.
Omni-Directional Drive
For maximum agility, the robots have omni-directional drive. The robot omni-directional
drive is implemented by using four motors each with one omni-directional wheel. The angle
of the front wheels is 120 degree, because we should add ball control mechanism and kicker
between the front wheels. It is 90 degrees between the back wheels. During the year 2007,
we use the DC motors. But now, we start to use brushless motors to save more space and
improve the performance. Figure 3 shows the 3D assembly drawing of the small size robot
chassis with brushless motors.

Fig. 3. The 3D assembly drawing of the small size robot chassis with brushless motors

Kicker
The robots feature a powerful kicking mechanism that is able to project the golf ball at
6.2m/s. The kicking mechanism for the Robots is a crossbow and uses a solenoid to generate
the energy. The kicking mechanism, while mechanically simple, uses only one solenoid to
retract the crossbow. The plate that strikes the golf ball is the same mass as the golf ball. This

gives maximum efficiency of energy transfer, this experience is mentioned in reference (Ball
D., 2001). There is also another solenoid and related mechanism for scoop shot.
Ball Control Mechanism
The ball control device of Robots is a rotating rubber cylinder that applies backspin to the
golf ball when touching. Here we use a 6 Volt 2224 MiniMotor to drive the shaft. A 10:1
gearbox is used between the motor and the shaft. One feature of the Robots ball control
mechanism is that the cylinder is separated into 2 parts. When the ball is located in this
dribbler, it has the benefit as the crossbow kicker could give a more accurate and powerful
kick to a ball located in the centre of the ball control mechanism.

2.4 Electrical Control System
Comparing a robot to a human, the electrical control system of the robot would be
equivalent to a nervous system of human being. In humans, actions are commanded
through the nervous system, and sensed information is returned through the same system.
There is no difference in the robots. Sending commands and receiving sensed information
are the responsibilities of a critical human organ, the brain. The micro control system in the
soccer robot is equivalent to a brain.

Fig. 4. The Soccer Robot with Electronic Control system.

Acting as a metaphorical brain, the micro control system must process received information
and generate the appropriate response. The off-field artificial intelligence (AI) computer
does most of the required brainwork to make the robots play a recognizable game of soccer,
but the on board brain translates the AI’s decisions into robotic actions and does the

The Real-time and Embedded Soccer Robot Control System 5

2.3 Mechanical Design
The mechanical design is consisted of an omni-directional drive system, a powerful
crossbow kicker, a scoop shot kicker and a dribbler. It should be a compact and robust
design. All the robots are of the same mechanical design, a mass of 4.2 kilograms each. The
robots are constructed using aluminum that gives them a strong but light frame. The robots
have a low centre of mass, achieved by placing the solenoid, the majority of the batteries and
the motors on the chassis. It can reduce weight transfer between wheels as the robot
accelerates based on the low centre of mass. Consistent weight transfer leads to less slip of
the wheels across the playing surface. The whole assembly drawing is shown in Figure 2.
Omni-Directional Drive
For maximum agility, the robots have omni-directional drive. The robot omni-directional
drive is implemented by using four motors each with one omni-directional wheel. The angle
of the front wheels is 120 degree, because we should add ball control mechanism and kicker
between the front wheels. It is 90 degrees between the back wheels. During the year 2007,
we use the DC motors. But now, we start to use brushless motors to save more space and
improve the performance. Figure 3 shows the 3D assembly drawing of the small size robot
chassis with brushless motors.

Fig. 3. The 3D assembly drawing of the small size robot chassis with brushless motors

Kicker
The robots feature a powerful kicking mechanism that is able to project the golf ball at
6.2m/s. The kicking mechanism for the Robots is a crossbow and uses a solenoid to generate
the energy. The kicking mechanism, while mechanically simple, uses only one solenoid to
retract the crossbow. The plate that strikes the golf ball is the same mass as the golf ball. This

gives maximum efficiency of energy transfer, this experience is mentioned in reference (Ball
D., 2001). There is also another solenoid and related mechanism for scoop shot.
Ball Control Mechanism
The ball control device of Robots is a rotating rubber cylinder that applies backspin to the
golf ball when touching. Here we use a 6 Volt 2224 MiniMotor to drive the shaft. A 10:1
gearbox is used between the motor and the shaft. One feature of the Robots ball control
mechanism is that the cylinder is separated into 2 parts. When the ball is located in this
dribbler, it has the benefit as the crossbow kicker could give a more accurate and powerful
kick to a ball located in the centre of the ball control mechanism.

2.4 Electrical Control System
Comparing a robot to a human, the electrical control system of the robot would be
equivalent to a nervous system of human being. In humans, actions are commanded
through the nervous system, and sensed information is returned through the same system.
There is no difference in the robots. Sending commands and receiving sensed information
are the responsibilities of a critical human organ, the brain. The micro control system in the
soccer robot is equivalent to a brain.

Fig. 4. The Soccer Robot with Electronic Control system.

Acting as a metaphorical brain, the micro control system must process received information
and generate the appropriate response. The off-field artificial intelligence (AI) computer
does most of the required brainwork to make the robots play a recognizable game of soccer,
but the on board brain translates the AI’s decisions into robotic actions and does the

Robot Soccer6

required thought-processing which is needed to maintain these actions. Encoded commands
are received from the AI computer via a wireless module.
By decoding these commands, the microcontroller system determines whether to kick,
dribble or move. Onboard sensor feedback indicates if the robot should carry out a kick
command. Adequate microcontrollers are necessary for quick and reliable processing of
these inputs and outputs.
Microcontrollers are microprocessors with a variety of features and functionality built into
one chip, allowing for their use as a single solution for control applications. The operation of
a microcontroller revolves around the core Central Processing Unit (CPU), which runs
programs from internal memory to carry out a task. Such a task may be as simple as
performing mathematical calculations, as is done by an ordinary CPU of a personal
computer. On the other hand, the task may be more complex, involving one or many of the
microcontroller’s hardware features including: communications ports, input/output (I/O)
ports, analog-to-digital converters (A/D), timers/counters, and specialized pulse width
modulation (PWM) outputs. With access to hardware ports, the CPU can interface with
external devices to control the robot, gather input from sensors, and communicate with off-
field PC by wireless. The control of these ports, handled by the program running on the
CPU, allows for a great deal of flexibility. Inputs and outputs can be timed to occur in
specific sequences, or even based on the occurrence of another input or output. A major
drawback of microcontrollers is that, there are usually constraints to design and implement
a system in a reasonable size for integration in compact systems, because so much
processing power can be provided due to the need to fit the CPU and all of the hardware
features onto the same chip.

3. Previous Control System

3.1 Control Part
The first real-time and embedded control system of our robots was designed in competitions
of year 2006 by us (Zhenyu W. et al., 2007). It was remarkably reliable, and had run without
big failure in 2007 China RoboCup Competitions as well as periods of testing and numerous
demonstrations.
The robots’ main CPU board uses TI TMS320F2812, a 32 bit DSP processor, as a CPU. With
the high performance static CMOS technology, it works at a frequency of 150 MHz. This
processor executes the low level motor control loop. The major benefit of using this
processor is its Event Managers. The two Event Managers have 16 channels Pulse Width
Modulation (PWM) generation pins that can be configured independently for a variety of
tasks. Except for the kicker mechanism, the motors have encoders for fast and immediate
local feedback.
A DSP and FPGA based digital control system has already been developed for the control
system where FPGA gathers the data and DSP computes with it in 2006. Figure 5 describes
the frame of the previous control system. This hardware architecture takes the advantage of
the higher computation load of DSP and the rapid process.
In this Figure, there are two broken line frames, one is DSP board, and the other one is
FPGA board. On the DSP board, DSP processor communicates with wireless module by
serial interface. If the wireless module gets data from the off-field PC, it generates an
interrupt to the DSP processor. When DSP is interrupted, it resets the PID parameter, then,

starts a new PID control loop. After a new speed is calculated, DSP processor drivers the
motors by PWM signal.
On the FPGA board, there are FPGA, RAM, flash memory, kicker control circuit, LED, etc.
FPGA is used to connect with these peripherals and has the features below:
 save and fetch data in RAM and flash
 decode the signals from the 512 lines motor speed encoders
 display the system states by LED
 control the kicker
 gather the information of the acceleration

 Accelerometer
ADXL202

DSP Processor
TMS320F2812

Wireless
Module

PTR4000

Motor Drivers
L298P×3

Motors
2224006SR×4

FPGA
EP1C3

LED

Flash Memory
K9F5616U0B-Y

RAM Memory
 IS61LV25616

Flash
EPCS1

 Address Bus

Data Bus

Co
nt

ro
l B

us

Control Bus

Control Bus

POWER

KICKER

Fig. 5. The DSP and FPGA based digital control system (Zhenyu W. et al., 2007)

The innovative idea of the previous control system is that DSP controls each peripheral by
writing and reading data of the registers at specific addresses in FPGA. The rest of tasks are
done by FPGA except wireless communication and motor PWM control.

3.1.1 DSP
The TMS320F2812 devices, member of the TMS320C28x DSP generation, is highly
integrated, high-performance solutions for demanding control applications. The C28x DSP
generation is the newest member of the TMS320C2000 DSP platform. Additionally, the C28x
is a very efficient C/C++ engine, hence enabling users to develop not only their system
control software in a high-level language, but also enables math algorithms to be developed
using C/C++. The C28x is as efficient in DSP math tasks as it is in system control tasks that
typically are handled by microcontroller devices. The 32 x 32 bit MAC capabilities of the
C28x and its 64-bit processing capabilities, enable the C28x to efficiently handle higher
numerical resolution problems that would otherwise demand a more expensive floating-
point processor solution. Add to this the fast interrupt response with automatic context save
of critical registers, resulting in a device that is capable of servicing many asynchronous
events with minimal latency. Special store conditional operations further improve
performance (TI Corp., 2004).

The Real-time and Embedded Soccer Robot Control System 7

required thought-processing which is needed to maintain these actions. Encoded commands
are received from the AI computer via a wireless module.
By decoding these commands, the microcontroller system determines whether to kick,
dribble or move. Onboard sensor feedback indicates if the robot should carry out a kick
command. Adequate microcontrollers are necessary for quick and reliable processing of
these inputs and outputs.
Microcontrollers are microprocessors with a variety of features and functionality built into
one chip, allowing for their use as a single solution for control applications. The operation of
a microcontroller revolves around the core Central Processing Unit (CPU), which runs
programs from internal memory to carry out a task. Such a task may be as simple as
performing mathematical calculations, as is done by an ordinary CPU of a personal
computer. On the other hand, the task may be more complex, involving one or many of the
microcontroller’s hardware features including: communications ports, input/output (I/O)
ports, analog-to-digital converters (A/D), timers/counters, and specialized pulse width
modulation (PWM) outputs. With access to hardware ports, the CPU can interface with
external devices to control the robot, gather input from sensors, and communicate with off-
field PC by wireless. The control of these ports, handled by the program running on the
CPU, allows for a great deal of flexibility. Inputs and outputs can be timed to occur in
specific sequences, or even based on the occurrence of another input or output. A major
drawback of microcontrollers is that, there are usually constraints to design and implement
a system in a reasonable size for integration in compact systems, because so much
processing power can be provided due to the need to fit the CPU and all of the hardware
features onto the same chip.

3. Previous Control System

3.1 Control Part
The first real-time and embedded control system of our robots was designed in competitions
of year 2006 by us (Zhenyu W. et al., 2007). It was remarkably reliable, and had run without
big failure in 2007 China RoboCup Competitions as well as periods of testing and numerous
demonstrations.
The robots’ main CPU board uses TI TMS320F2812, a 32 bit DSP processor, as a CPU. With
the high performance static CMOS technology, it works at a frequency of 150 MHz. This
processor executes the low level motor control loop. The major benefit of using this
processor is its Event Managers. The two Event Managers have 16 channels Pulse Width
Modulation (PWM) generation pins that can be configured independently for a variety of
tasks. Except for the kicker mechanism, the motors have encoders for fast and immediate
local feedback.
A DSP and FPGA based digital control system has already been developed for the control
system where FPGA gathers the data and DSP computes with it in 2006. Figure 5 describes
the frame of the previous control system. This hardware architecture takes the advantage of
the higher computation load of DSP and the rapid process.
In this Figure, there are two broken line frames, one is DSP board, and the other one is
FPGA board. On the DSP board, DSP processor communicates with wireless module by
serial interface. If the wireless module gets data from the off-field PC, it generates an
interrupt to the DSP processor. When DSP is interrupted, it resets the PID parameter, then,

starts a new PID control loop. After a new speed is calculated, DSP processor drivers the
motors by PWM signal.
On the FPGA board, there are FPGA, RAM, flash memory, kicker control circuit, LED, etc.
FPGA is used to connect with these peripherals and has the features below:
 save and fetch data in RAM and flash
 decode the signals from the 512 lines motor speed encoders
 display the system states by LED
 control the kicker
 gather the information of the acceleration

 Accelerometer
ADXL202

DSP Processor
TMS320F2812

Wireless
Module

PTR4000

Motor Drivers
L298P×3

Motors
2224006SR×4

FPGA
EP1C3

LED

Flash Memory
K9F5616U0B-Y

RAM Memory
 IS61LV25616

Flash
EPCS1

 Address Bus

Data Bus

Co
nt

ro
l B

us
Control Bus

Control Bus

POWER

KICKER

Fig. 5. The DSP and FPGA based digital control system (Zhenyu W. et al., 2007)

The innovative idea of the previous control system is that DSP controls each peripheral by
writing and reading data of the registers at specific addresses in FPGA. The rest of tasks are
done by FPGA except wireless communication and motor PWM control.

3.1.1 DSP
The TMS320F2812 devices, member of the TMS320C28x DSP generation, is highly
integrated, high-performance solutions for demanding control applications. The C28x DSP
generation is the newest member of the TMS320C2000 DSP platform. Additionally, the C28x
is a very efficient C/C++ engine, hence enabling users to develop not only their system
control software in a high-level language, but also enables math algorithms to be developed
using C/C++. The C28x is as efficient in DSP math tasks as it is in system control tasks that
typically are handled by microcontroller devices. The 32 x 32 bit MAC capabilities of the
C28x and its 64-bit processing capabilities, enable the C28x to efficiently handle higher
numerical resolution problems that would otherwise demand a more expensive floating-
point processor solution. Add to this the fast interrupt response with automatic context save
of critical registers, resulting in a device that is capable of servicing many asynchronous
events with minimal latency. Special store conditional operations further improve
performance (TI Corp., 2004).

Robot Soccer8

3.1.2 FPGA
The Field Programmable Gate Array (FPGA) plays an important role in the sub-system on
the robots. In the motion control system, the FPGA provides the interface between the motor
encoder and the motion control DSP. It takes the two motor encoder signals to decode the
speed of each motor. It can also be used to control the peripherals by setting the registers at
the special address. During the design period of the previous control system, we compared
a number of FPGAs in the MAX 7000 family and Cyclone family to choose the one that
satisfied our requirements.
One major factor we considered is in-system programmability since the FPGAs are able to
be programmed on board. The capacity of MAX 7000S family chip is so little, and when we
select a suitable type, the price is very high. While most of the FPGAs in the EP1C3 family
meet our needs, our final board design uses this family FPGA. EP1C3 devices are in-system
programmable via an industry standard 10-pin Joint Test Action Group (JTAG) interface.
With a large capacity of LEs, it leaves us room for future additions. For our actual
implementation and functional testing, we chose the EP1C3T114C6 type FPGA. The number
of available LEs determines how complicated our circuit can be. The EP1C3T114C6 has 2,910
LEs. As a point of reference, our final design utilizes 27% of all the usable resource. This
covers miscellaneous logic to support enable functionality. The maximum number user I/O
pins for the EP1C3T114C6 is 144 and we used 129 in our final design. These numbers are all
on the order of nanoseconds and easily met our requirements. Our final circuit could run at
speed of 45.7MHz.

3.2 Wireless module
Fast and compatible wireless communication module is required for the heavy task such as
increasing the speed of transmission and reducing the latency of the entire system. In
addition, the system must exhibit a high level of interference rejection and low error rate.
In order that a robot works successfully, it must be able to receive up-to-date game data
rapidly and consistently. To meet these requirements, the following properties are necessary
for a communications system:
 High transmission speed
 Low latency
 Interference rejection
 Low error rate

Fig. 6. Full Duplex System

Figure 6 shows the communicated method between robots and the off-field PC. The
off-field PC sends motion instructions to the robot by a USB emitter, and also can get the
states and information of them by the wireless communication.
For fast and steady communication, we selected PTR4000 wireless module. The central chip
of PTR4000 is nRF2401 which is a single-chip radio transceiver for the world wide 2.4-2.5
GHz ISM band. The transceiver consists of a fully integrated frequency synthesizer, a power
amplifier, a crystal oscillator and a modulator. Output power and frequency channels are
easily programmable by use of the 3-wire serial bus. Current consumption is very low, only
10.5mA at an output power of -5dBm and 18mA in receive mode.

3.3 Motor control
The reactive control loop is initiated every millisecond by the Event managers (EVA and
EVB). Once robot receives its desired velocities, it can calculate the wheel velocities and then
sends and then sends them the PWM signals to the motors. Figure 7 illustrates the control
model that is implemented in the reactive control loop with motors. In determining the
output of the system the control loop calculates the proportional and integral errors of the
wheel velocities. The velocity proportional errors for each of the wheels are calculated.

Fig. 7. The control module implemented in our robots in 2006

3.4 Evaluation
In the year 2006, the control system of the robot was a modular design that is fully capable
of performing its required tasks. But the design is mainly constrained by some related
factors:
 Long design period
 hard modification

The Real-time and Embedded Soccer Robot Control System 9

3.1.2 FPGA
The Field Programmable Gate Array (FPGA) plays an important role in the sub-system on
the robots. In the motion control system, the FPGA provides the interface between the motor
encoder and the motion control DSP. It takes the two motor encoder signals to decode the
speed of each motor. It can also be used to control the peripherals by setting the registers at
the special address. During the design period of the previous control system, we compared
a number of FPGAs in the MAX 7000 family and Cyclone family to choose the one that
satisfied our requirements.
One major factor we considered is in-system programmability since the FPGAs are able to
be programmed on board. The capacity of MAX 7000S family chip is so little, and when we
select a suitable type, the price is very high. While most of the FPGAs in the EP1C3 family
meet our needs, our final board design uses this family FPGA. EP1C3 devices are in-system
programmable via an industry standard 10-pin Joint Test Action Group (JTAG) interface.
With a large capacity of LEs, it leaves us room for future additions. For our actual
implementation and functional testing, we chose the EP1C3T114C6 type FPGA. The number
of available LEs determines how complicated our circuit can be. The EP1C3T114C6 has 2,910
LEs. As a point of reference, our final design utilizes 27% of all the usable resource. This
covers miscellaneous logic to support enable functionality. The maximum number user I/O
pins for the EP1C3T114C6 is 144 and we used 129 in our final design. These numbers are all
on the order of nanoseconds and easily met our requirements. Our final circuit could run at
speed of 45.7MHz.

3.2 Wireless module
Fast and compatible wireless communication module is required for the heavy task such as
increasing the speed of transmission and reducing the latency of the entire system. In
addition, the system must exhibit a high level of interference rejection and low error rate.
In order that a robot works successfully, it must be able to receive up-to-date game data
rapidly and consistently. To meet these requirements, the following properties are necessary
for a communications system:
 High transmission speed
 Low latency
 Interference rejection
 Low error rate

Fig. 6. Full Duplex System

Figure 6 shows the communicated method between robots and the off-field PC. The
off-field PC sends motion instructions to the robot by a USB emitter, and also can get the
states and information of them by the wireless communication.
For fast and steady communication, we selected PTR4000 wireless module. The central chip
of PTR4000 is nRF2401 which is a single-chip radio transceiver for the world wide 2.4-2.5
GHz ISM band. The transceiver consists of a fully integrated frequency synthesizer, a power
amplifier, a crystal oscillator and a modulator. Output power and frequency channels are
easily programmable by use of the 3-wire serial bus. Current consumption is very low, only
10.5mA at an output power of -5dBm and 18mA in receive mode.

3.3 Motor control
The reactive control loop is initiated every millisecond by the Event managers (EVA and
EVB). Once robot receives its desired velocities, it can calculate the wheel velocities and then
sends and then sends them the PWM signals to the motors. Figure 7 illustrates the control
model that is implemented in the reactive control loop with motors. In determining the
output of the system the control loop calculates the proportional and integral errors of the
wheel velocities. The velocity proportional errors for each of the wheels are calculated.

Fig. 7. The control module implemented in our robots in 2006

3.4 Evaluation
In the year 2006, the control system of the robot was a modular design that is fully capable
of performing its required tasks. But the design is mainly constrained by some related
factors:
 Long design period
 hard modification

Robot Soccer10

There are many chips and many supply voltages, that will cause wire congestion and large
area. Many interfaces between the two boards, it is easy to make mistakes. So, we explore a
new method to simplify the design.

4. New System

4.1 System on a Chip
System on a Chip or System On Chip (SoC or SOC) is an idea of integrating all components
of a computer or other electronic system into a single integrated circuit (chip). It may
contain digital signals, analog signals, mixed-signal, and radio-frequency function on one
chip. A typical application is in the area of embedded systems (Wikipedia, 2009).
With the planned improvements and designs for new control system, the previous system
was no longer sufficient, thus we have to select and design a new system. This process of
designing the onboard brain for the new robots involved many steps. It was important to
understand the workings of the previous system in order to make educated decisions about
improving upon the old design. In addition, it was important to be in contact with the other
team members who were concurrently designing and developing electrical components that
directly interact with the DSP. It is necessary that the interface between those components
and different processors should be the easily to change. This information was the basis upon
which we selected the candidate for the new microcontroller selection and also the
succeeding evaluation process.
For the new control system, we decide to use SoC as the kernel of the control system. When
considering the new processor, Nios II processor, a soft core processor based on FPGA,
enters the field of our vision.

4.2 Nios II Processor

4.2.1 Nios II Processor
The Nios II processor is a general-purpose RISC processor core, provided by Altera Corp. Its
features are (Altera Corp. 2006):
 Full 32-bit instruction set, data path, and address space
 32 general-purpose registers
 32 external interrupt sources
 Single-instruction 32 × 32 multiply and divide producing a 32-bit result
 Dedicated instructions for computing 64-bit and 128-bit products of multiplication
 Floating-point instructions for single-precision floating-point operations
 Single-instruction barrel shifter
 Access to a variety of on-chip peripherals, and interfaces to off-chip memories and

peripherals
 Software development environment based on the GNU C/C++ tool chain and Eclipse

IDE

Fig. 8. Example of a Nios II Processor System (Altera Corp., 2006)

A Nios II processor system is the system that we can generate it with one or more Nios II
processors, on-chip ROM, RAM, GPIO, Timer and so on. It can add or delete the peripherals
and regenerate the system in minutes. Figure 8 is just an example of this system.
If the prototype system adequately meets design requirements using an Altera-provided
reference design, the reference design can be copied and used as-is in the final hardware
platform. Otherwise, we can customize the Nios II processor system until it meets cost or
performance requirements.

4.2.2 Advantage of Nios II Processor
This section introduces Nios II concepts deeply relating to our design. For more details, refer
(Altera Corp., 2006).
Configurable Soft-Core Processor
The Nios II processor is one of configurable soft-core processors provided by Altera Corp.,
as opposed to a fixed, off-the-shelf microcontroller. “Configurable” means that features can
be added or removed on a system-by-system basis to meet performance or price goals.
“Soft-core” means the CPU core is offered in “soft” design form (i.e., not fixed in silicon),
and can be targeted to any FPGA. The users can configure the Nios II processor and
peripherals to meet their specifications, and then program the system into an Altera FPGA,
and also they can use readymade Nios II system designs. If these designs meet the system
requirements, there is no need to configure the design further. In addition, software
designers can use the Nios II instruction set simulator to begin writing and debugging Nios
II applications before the final hardware configuration is determined.
Flexible Peripheral Set & Address Map
A flexible peripheral set is one of the most notable features of Nios II processor systems.
Because of the soft-core nature of the Nios II processor, designers can easily build the Nios II
processor systems with the exact peripheral set required for the target applications.
A corollary of flexible peripherals is a flexible address map. Software constructs are
provided to access memory and peripherals generically, independently of address location.

The Real-time and Embedded Soccer Robot Control System 11

There are many chips and many supply voltages, that will cause wire congestion and large
area. Many interfaces between the two boards, it is easy to make mistakes. So, we explore a
new method to simplify the design.

4. New System

4.1 System on a Chip
System on a Chip or System On Chip (SoC or SOC) is an idea of integrating all components
of a computer or other electronic system into a single integrated circuit (chip). It may
contain digital signals, analog signals, mixed-signal, and radio-frequency function on one
chip. A typical application is in the area of embedded systems (Wikipedia, 2009).
With the planned improvements and designs for new control system, the previous system
was no longer sufficient, thus we have to select and design a new system. This process of
designing the onboard brain for the new robots involved many steps. It was important to
understand the workings of the previous system in order to make educated decisions about
improving upon the old design. In addition, it was important to be in contact with the other
team members who were concurrently designing and developing electrical components that
directly interact with the DSP. It is necessary that the interface between those components
and different processors should be the easily to change. This information was the basis upon
which we selected the candidate for the new microcontroller selection and also the
succeeding evaluation process.
For the new control system, we decide to use SoC as the kernel of the control system. When
considering the new processor, Nios II processor, a soft core processor based on FPGA,
enters the field of our vision.

4.2 Nios II Processor

4.2.1 Nios II Processor
The Nios II processor is a general-purpose RISC processor core, provided by Altera Corp. Its
features are (Altera Corp. 2006):
 Full 32-bit instruction set, data path, and address space
 32 general-purpose registers
 32 external interrupt sources
 Single-instruction 32 × 32 multiply and divide producing a 32-bit result
 Dedicated instructions for computing 64-bit and 128-bit products of multiplication
 Floating-point instructions for single-precision floating-point operations
 Single-instruction barrel shifter
 Access to a variety of on-chip peripherals, and interfaces to off-chip memories and

peripherals
 Software development environment based on the GNU C/C++ tool chain and Eclipse

IDE

Fig. 8. Example of a Nios II Processor System (Altera Corp., 2006)

A Nios II processor system is the system that we can generate it with one or more Nios II
processors, on-chip ROM, RAM, GPIO, Timer and so on. It can add or delete the peripherals
and regenerate the system in minutes. Figure 8 is just an example of this system.
If the prototype system adequately meets design requirements using an Altera-provided
reference design, the reference design can be copied and used as-is in the final hardware
platform. Otherwise, we can customize the Nios II processor system until it meets cost or
performance requirements.

4.2.2 Advantage of Nios II Processor
This section introduces Nios II concepts deeply relating to our design. For more details, refer
(Altera Corp., 2006).
Configurable Soft-Core Processor
The Nios II processor is one of configurable soft-core processors provided by Altera Corp.,
as opposed to a fixed, off-the-shelf microcontroller. “Configurable” means that features can
be added or removed on a system-by-system basis to meet performance or price goals.
“Soft-core” means the CPU core is offered in “soft” design form (i.e., not fixed in silicon),
and can be targeted to any FPGA. The users can configure the Nios II processor and
peripherals to meet their specifications, and then program the system into an Altera FPGA,
and also they can use readymade Nios II system designs. If these designs meet the system
requirements, there is no need to configure the design further. In addition, software
designers can use the Nios II instruction set simulator to begin writing and debugging Nios
II applications before the final hardware configuration is determined.
Flexible Peripheral Set & Address Map
A flexible peripheral set is one of the most notable features of Nios II processor systems.
Because of the soft-core nature of the Nios II processor, designers can easily build the Nios II
processor systems with the exact peripheral set required for the target applications.
A corollary of flexible peripherals is a flexible address map. Software constructs are
provided to access memory and peripherals generically, independently of address location.

Robot Soccer12

Therefore, the flexible peripheral set and address map does not affect application
developers.
Automated System Generation
Altera’s SOPC Builder design tool is used to configure processor features and to generate a
hardware design that can be programmed into an FPGA. The SOPC Builder graphical user
interface (GUI) enables us to configure Nios II processor systems with any number of
peripherals and memory interfaces. SOPC Builder can also import a designer’s HDL design
files, providing an easy mechanism to integrate custom logic into a Nios II processor system.
After system generation, the design can be programmed into a board, and software can be
debugged executing on the board.

4.2.3 Avalon-MM interface
The Avalon Memory-Mapped (Avalon-MM) interface specification provides with a basis for
describing the address-based read/write interface found on master and slave peripherals,
such as microprocessors, memory, UART, timer, etc(Altera Corp., 2006).
The Avalon-MM interface defines:
 A set of signal types
 The behavior of these signals
 The types of transfers supported by these signals
For example, the Avalon-MM interface can be used to describe a traditional peripheral
interface, such as SRAM, that supports only simple, fixed-cycle read/write transfers.

4.3 Nios II Multi-Processor Systems
Multiprocessing is a generic term for the use of two or more CPUs within a single computer
system. It also refers to the ability of a system to support more than one processor and/or
the ability to allocate tasks between them. The CPUs are called multiprocessors. There are
many variations on this basic theme, and the definition of multiprocessing can vary with
context, mostly as a function of how multiprocessors are defined (multiple cores on one
chip, multiple chips in one package, multiple packages in one system unit, etc.). (Wikipedia,
2009).
Multiprocessing sometimes refers to the execution of multiple concurrent software
processes in a system as opposed to a single process at any one instant. However, the term
multiprogramming is more appropriate to describe this concept, which is implemented
mostly in software, whereas multiprocessing is more appropriate to describe the use of
multiple hardware processors. A system can be both multiprocessing and
multiprogramming, only one of the two, or neither of the two (Wikipedia, 2009).
Multiprocessor systems possess the benefit of increased performance, but nearly always at
the price of significantly increased system complexity. For this reason, the using of
multiprocessor systems has historically been limited to workstation and high-end PC
computing using a complex method of load-sharing often referred to as symmetric multi
processing (SMP). While the overhead of SMP is typically too high for most embedded
systems, the idea of using multiple processors to perform different tasks and functions on
different processors in embedded applications (asymmetrical) is gaining popularity (Altera
Corp., 2007).

Multiple Nios II processors are able to efficiently share system resources using the
multimaster friendly slave-side arbitration capabilities of the Avalon bus fabric. Many
processors can be controlled to a system as by SOPC Builder.
To aid in the prevention of multiple processors interfering with each other, a hardware
mutex core is included in the Nios II Embedded Design Suite (EDS). The hardware mutex
core allows different processors to claim ownership of a shared resource for a period of
time. Software debug on multiprocessor systems is performed using the Nios II IDE.

4.4 Structure of a new system
After we had selected the Nios II multiprocessor, we constructed the structure of the control
system. First, we enumerated the old function of the control system, for example, motor
control, speed sampling, wireless communication, kicker, LED display, flash data access and
so on. The new system hardware architecture of year 2007 is shown in Figure 9.
There are many methods to separate the tasks and peripheral equipments of the control
system for Multi-Processing (MP). Here we select one method which consists of two parts: a
motor control part and a peripheral control part. The kernel of each part is a Nios II
processor. One is used for the PID control of the motors. So that, motors have the real-time
control that makes them respond quickly. The other one implements other functions of the
control system, for example, wireless communication, states displaying, kicker controlling
and accelerate sampling.
In the control part, using the H-bridge circuit, processor 1 controls the motors with the PID
method. Each motor has a decoder, which can provide rotor position or speed information.

Fig. 9. The Hardware architecture of a new system

Processor 1 can read this information from speed sample module via Avalon bus. Then it
compares these values with the desired value in the RAM, and outputs control signals to the
motor device.
Processor 2 communicates with the off-field PC by wireless module, samples the
acceleration by ADXL202, and controls the kicker and LED. It gathers the information from

The Real-time and Embedded Soccer Robot Control System 13

Therefore, the flexible peripheral set and address map does not affect application
developers.
Automated System Generation
Altera’s SOPC Builder design tool is used to configure processor features and to generate a
hardware design that can be programmed into an FPGA. The SOPC Builder graphical user
interface (GUI) enables us to configure Nios II processor systems with any number of
peripherals and memory interfaces. SOPC Builder can also import a designer’s HDL design
files, providing an easy mechanism to integrate custom logic into a Nios II processor system.
After system generation, the design can be programmed into a board, and software can be
debugged executing on the board.

4.2.3 Avalon-MM interface
The Avalon Memory-Mapped (Avalon-MM) interface specification provides with a basis for
describing the address-based read/write interface found on master and slave peripherals,
such as microprocessors, memory, UART, timer, etc(Altera Corp., 2006).
The Avalon-MM interface defines:
 A set of signal types
 The behavior of these signals
 The types of transfers supported by these signals
For example, the Avalon-MM interface can be used to describe a traditional peripheral
interface, such as SRAM, that supports only simple, fixed-cycle read/write transfers.

4.3 Nios II Multi-Processor Systems
Multiprocessing is a generic term for the use of two or more CPUs within a single computer
system. It also refers to the ability of a system to support more than one processor and/or
the ability to allocate tasks between them. The CPUs are called multiprocessors. There are
many variations on this basic theme, and the definition of multiprocessing can vary with
context, mostly as a function of how multiprocessors are defined (multiple cores on one
chip, multiple chips in one package, multiple packages in one system unit, etc.). (Wikipedia,
2009).
Multiprocessing sometimes refers to the execution of multiple concurrent software
processes in a system as opposed to a single process at any one instant. However, the term
multiprogramming is more appropriate to describe this concept, which is implemented
mostly in software, whereas multiprocessing is more appropriate to describe the use of
multiple hardware processors. A system can be both multiprocessing and
multiprogramming, only one of the two, or neither of the two (Wikipedia, 2009).
Multiprocessor systems possess the benefit of increased performance, but nearly always at
the price of significantly increased system complexity. For this reason, the using of
multiprocessor systems has historically been limited to workstation and high-end PC
computing using a complex method of load-sharing often referred to as symmetric multi
processing (SMP). While the overhead of SMP is typically too high for most embedded
systems, the idea of using multiple processors to perform different tasks and functions on
different processors in embedded applications (asymmetrical) is gaining popularity (Altera
Corp., 2007).

Multiple Nios II processors are able to efficiently share system resources using the
multimaster friendly slave-side arbitration capabilities of the Avalon bus fabric. Many
processors can be controlled to a system as by SOPC Builder.
To aid in the prevention of multiple processors interfering with each other, a hardware
mutex core is included in the Nios II Embedded Design Suite (EDS). The hardware mutex
core allows different processors to claim ownership of a shared resource for a period of
time. Software debug on multiprocessor systems is performed using the Nios II IDE.

4.4 Structure of a new system
After we had selected the Nios II multiprocessor, we constructed the structure of the control
system. First, we enumerated the old function of the control system, for example, motor
control, speed sampling, wireless communication, kicker, LED display, flash data access and
so on. The new system hardware architecture of year 2007 is shown in Figure 9.
There are many methods to separate the tasks and peripheral equipments of the control
system for Multi-Processing (MP). Here we select one method which consists of two parts: a
motor control part and a peripheral control part. The kernel of each part is a Nios II
processor. One is used for the PID control of the motors. So that, motors have the real-time
control that makes them respond quickly. The other one implements other functions of the
control system, for example, wireless communication, states displaying, kicker controlling
and accelerate sampling.
In the control part, using the H-bridge circuit, processor 1 controls the motors with the PID
method. Each motor has a decoder, which can provide rotor position or speed information.

Fig. 9. The Hardware architecture of a new system

Processor 1 can read this information from speed sample module via Avalon bus. Then it
compares these values with the desired value in the RAM, and outputs control signals to the
motor device.
Processor 2 communicates with the off-field PC by wireless module, samples the
acceleration by ADXL202, and controls the kicker and LED. It gathers the information from

Robot Soccer14

PC and writes the data into the internal RAM. Then processor 1 fetches the data which is the
desired value set by each control period.

The resolving of multiprocessor
Multiprocessor environments can use the mutex core with Avalon interface to coordinate
accesses to a shared resource. The mutex core provides a protocol to ensure mutually
exclusive ownership of a shared resource.
The mutex core provides a hardware-based atomic test-and-set operation, allowing software
in a multiprocessor environment to determine which processor owns the mutex. The mutex
core can be used in conjunction with shared memory to implement additional interprocessor
coordination features, such as mailboxes and software mutexes.

4.5 Wireless module
The hardware of the wireless module is not changed for this new system. But because the
kernel of the control system has been changed to Nios II processors, we should rewrite the
wireless control model by verilog in FPGA. The interface which should accord with the
avalon bus is shown in Figure 10. As mentioned in the section 3.2, the communication
method is full duplex, so we should code the wireless module with the function of
transmitting and receiving.

Fig. 10. The block diagram of wireless module.

4.6 Motor control module
The control loop implemented in the robot team had proven itself robust and reliable both
in testing and competitions in 2006. The control system was coded by C of DSP processor.
Essentially, the motor control module provides the following interface between the
processor and the motors. The microcontroller sends two signals to the motor control
module (a PWM and direction). These two signals get transformed to voltages applied to the
DC motor terminals in our previous robot. In the reverse direction, the motor encoder sends
two signals to the motor control module (channel A and B).
The motor control module is newly coded in Verilog because we select Nios II as our
processor. The advantages of Verilog include a more optimized design. Also since the code
is similar to C, it is easier to maintain. Most significantly, the code is portable between
different FPGA families.

The motor control module consists two parts, one is speed sampling part and the other one
is PWM part. Speed sampling part, as its name, is used for sampling the motor’s real-time
speed. Figure 11 shows the speed sampling principle circuit. The output of this circuit is the
motor’s digital speed, the high bit of which is the direction of the motor.

Fig. 11. The principle of speed sampling circuit

When testing the motor control module, we do the simulation with the input signals shown
in Figure 12 which is the speed sampling module’s simulation result. Output latch is used
for latching the SPD signals (speed data) to the data bus, when Nios II processor needs to do
the PI control.

Fig. 12. The simulation result of speed sampling module

The other part of the motor control module is PWM part. The waveform shows in Figure 13.
The PMU control design should be packed with Avalon MM interface. With different input
number of duty_cycle, the waveform of pwm_out is changed easily. This combination of
PWM part and speed sampling part is just for one motor, in our robot control system, 4
modules are mounted.

Fig. 13. The simulation result of PWM module.

The Real-time and Embedded Soccer Robot Control System 15

PC and writes the data into the internal RAM. Then processor 1 fetches the data which is the
desired value set by each control period.

The resolving of multiprocessor
Multiprocessor environments can use the mutex core with Avalon interface to coordinate
accesses to a shared resource. The mutex core provides a protocol to ensure mutually
exclusive ownership of a shared resource.
The mutex core provides a hardware-based atomic test-and-set operation, allowing software
in a multiprocessor environment to determine which processor owns the mutex. The mutex
core can be used in conjunction with shared memory to implement additional interprocessor
coordination features, such as mailboxes and software mutexes.

4.5 Wireless module
The hardware of the wireless module is not changed for this new system. But because the
kernel of the control system has been changed to Nios II processors, we should rewrite the
wireless control model by verilog in FPGA. The interface which should accord with the
avalon bus is shown in Figure 10. As mentioned in the section 3.2, the communication
method is full duplex, so we should code the wireless module with the function of
transmitting and receiving.

Fig. 10. The block diagram of wireless module.

4.6 Motor control module
The control loop implemented in the robot team had proven itself robust and reliable both
in testing and competitions in 2006. The control system was coded by C of DSP processor.
Essentially, the motor control module provides the following interface between the
processor and the motors. The microcontroller sends two signals to the motor control
module (a PWM and direction). These two signals get transformed to voltages applied to the
DC motor terminals in our previous robot. In the reverse direction, the motor encoder sends
two signals to the motor control module (channel A and B).
The motor control module is newly coded in Verilog because we select Nios II as our
processor. The advantages of Verilog include a more optimized design. Also since the code
is similar to C, it is easier to maintain. Most significantly, the code is portable between
different FPGA families.

The motor control module consists two parts, one is speed sampling part and the other one
is PWM part. Speed sampling part, as its name, is used for sampling the motor’s real-time
speed. Figure 11 shows the speed sampling principle circuit. The output of this circuit is the
motor’s digital speed, the high bit of which is the direction of the motor.

Fig. 11. The principle of speed sampling circuit

When testing the motor control module, we do the simulation with the input signals shown
in Figure 12 which is the speed sampling module’s simulation result. Output latch is used
for latching the SPD signals (speed data) to the data bus, when Nios II processor needs to do
the PI control.

Fig. 12. The simulation result of speed sampling module

The other part of the motor control module is PWM part. The waveform shows in Figure 13.
The PMU control design should be packed with Avalon MM interface. With different input
number of duty_cycle, the waveform of pwm_out is changed easily. This combination of
PWM part and speed sampling part is just for one motor, in our robot control system, 4
modules are mounted.

Fig. 13. The simulation result of PWM module.

Robot Soccer16

5. Experiment

Before we start to do the experiment, we should know what we could do, and what the
result that we want to get is. We pay more attention to the system design, and test whether
the system can work with the module of motor control and wireless.

Fig. 14. The Architecture of our robot control system

The FPGA chip which contains two CPUs is EP2C8. EP2C8 is one chip of Altera Cyclone II
family. With the advanced architectural features of Cyclone II FPGAs, the enhanced
performance of Nios II embedded multiple processors becomes clearly. For the detailed
steps of multiple processors generating, please refer (Altera Corp., 2008).

We generate the Nios II MP by SOPC Builder. In this system, as it shows, we add one timer for
each Nios II CPU. One interval timer is also added. For the whole system, there are some other
contents which would be used in the control system, such as LED_pio, JTAG_UART,
message_buffer_mutex. The architecture of our MP robot control system is shown in Figure 14.

After the modules generation, the analysis and synthesis results of each module are shown
as Table 1.

Module name Total Logic elements Total
registers

Total PLLs

Nios CPUs related 5837 2985 1
Speed related
module

426 265 0

Wireless module 519 431 0
others 1216 417 0
Total 7884 3998 1

Table 1. the analysis and synthesis results of the robot control system.

6. Conclusion

To build a reliable, robust robot control system which would improve upon the previous
design, we approach the problem with a vastly different perspective which contains the MP.
In some cases, it improves upon the design tremendously. But if we can not find a best
arrangement of the task and cooperation for two processors, that is, it will not turn out to be
a splendiferous control system for the robot.
During the design, there are many troubles we have met. The most important one is how to
use the previous excellent circuit. If we achieve this, we could change our system as fast as
possible.
The electrical design is slim this year. There are still areas which can be improved even
more, but by and large, we are proud of the brevity and simplicity of the real-time and
embedded soccer robot control system. We have read references for its feasibility and
reliability, and started to embed an OS for the MP of Nios II processors.

7. Reference

Robert M. (2001). Control System Design for the RoboRoos, pp. 41~46.
Wikipedia. (2009). http://en.wikipedia.org/wiki/Multiprocessing
Wikipedia. (2009). http://en.wikipedia.org/wiki/System_on_a_Chip
Altera Corp. (2007). Creating Multiprocessor Nios II Systems Tutorial, pp. 5-11.
Altera Corp. (2006). Nios II Processor Reference Handbook, pp. 17-19.
Official Robocup Org. (2007). http://small-size.informatik.uni-bremen.de/
Official Robocup Org. (2007). http://www.robocup.org/
Ball D. (2001). Intelligence System for the 2001 RoboRoos Team. Brisbane: Univ. of

Queensland
Dingle P. et al. (2004). 2002 Cornell robocup documentation. New York: Cornell Univ.
Zhenyu W.; Ce L. & Lin F. (2006). A Multi Micro-Motor Control System Based on DSP and

FPGA. Small & Special Electrical Machines, vol. 35, No.1, Jan. 2007. pp 30-32, 1004-
7018

TI Corp. (2004). TMS320R2811/2 Digital Signal Processors Data Manual, pp 4-7

The Real-time and Embedded Soccer Robot Control System 17

5. Experiment

Before we start to do the experiment, we should know what we could do, and what the
result that we want to get is. We pay more attention to the system design, and test whether
the system can work with the module of motor control and wireless.

Fig. 14. The Architecture of our robot control system

The FPGA chip which contains two CPUs is EP2C8. EP2C8 is one chip of Altera Cyclone II
family. With the advanced architectural features of Cyclone II FPGAs, the enhanced
performance of Nios II embedded multiple processors becomes clearly. For the detailed
steps of multiple processors generating, please refer (Altera Corp., 2008).

We generate the Nios II MP by SOPC Builder. In this system, as it shows, we add one timer for
each Nios II CPU. One interval timer is also added. For the whole system, there are some other
contents which would be used in the control system, such as LED_pio, JTAG_UART,
message_buffer_mutex. The architecture of our MP robot control system is shown in Figure 14.

After the modules generation, the analysis and synthesis results of each module are shown
as Table 1.

Module name Total Logic elements Total
registers

Total PLLs

Nios CPUs related 5837 2985 1
Speed related
module

426 265 0

Wireless module 519 431 0
others 1216 417 0
Total 7884 3998 1

Table 1. the analysis and synthesis results of the robot control system.

6. Conclusion

To build a reliable, robust robot control system which would improve upon the previous
design, we approach the problem with a vastly different perspective which contains the MP.
In some cases, it improves upon the design tremendously. But if we can not find a best
arrangement of the task and cooperation for two processors, that is, it will not turn out to be
a splendiferous control system for the robot.
During the design, there are many troubles we have met. The most important one is how to
use the previous excellent circuit. If we achieve this, we could change our system as fast as
possible.
The electrical design is slim this year. There are still areas which can be improved even
more, but by and large, we are proud of the brevity and simplicity of the real-time and
embedded soccer robot control system. We have read references for its feasibility and
reliability, and started to embed an OS for the MP of Nios II processors.

7. Reference

Robert M. (2001). Control System Design for the RoboRoos, pp. 41~46.
Wikipedia. (2009). http://en.wikipedia.org/wiki/Multiprocessing
Wikipedia. (2009). http://en.wikipedia.org/wiki/System_on_a_Chip
Altera Corp. (2007). Creating Multiprocessor Nios II Systems Tutorial, pp. 5-11.
Altera Corp. (2006). Nios II Processor Reference Handbook, pp. 17-19.
Official Robocup Org. (2007). http://small-size.informatik.uni-bremen.de/
Official Robocup Org. (2007). http://www.robocup.org/
Ball D. (2001). Intelligence System for the 2001 RoboRoos Team. Brisbane: Univ. of

Queensland
Dingle P. et al. (2004). 2002 Cornell robocup documentation. New York: Cornell Univ.
Zhenyu W.; Ce L. & Lin F. (2006). A Multi Micro-Motor Control System Based on DSP and

FPGA. Small & Special Electrical Machines, vol. 35, No.1, Jan. 2007. pp 30-32, 1004-
7018

TI Corp. (2004). TMS320R2811/2 Digital Signal Processors Data Manual, pp 4-7

Robot Soccer18

CAMBADA soccer team: from robot architecture to multiagent coordination 19

CAMBADA soccer team: from robot architecture to multiagent
coordination

António J. R. Neves, José Luís Azevedo, Bernardo Cunha, Nuno Lau, João Silva,
Frederico Santos, Gustavo Corrente, Daniel A. Martins, Nuno Figueiredo, Artur Pereira,
Luís Almeida, Luís Seabra Lopes, Armando J. Pinho, João Rodrigues and Paulo Pedreiras

0

CAMBADA soccer team: from robot
architecture to multiagent coordination∗

António J. R. Neves, José Luís Azevedo, Bernardo Cunha, Nuno Lau,
João Silva, Frederico Santos, Gustavo Corrente, Daniel A. Martins,
Nuno Figueiredo, Artur Pereira, Luís Almeida, Luís Seabra Lopes,

Armando J. Pinho, João Rodrigues and Paulo Pedreiras
Transverse Activity on Intelligent Robotics, IEETA / DETI

University of Aveiro, Portugal

1. Introduction

Robotic soccer is nowadays a popular research domain in the area of multi-robot systems.
RoboCup is an international joint project to promote research in artificial intelligence, robotics
and related fields. RoboCup chose soccer as the main problem aiming at innovations to be
applied for socially relevant problems. It includes several competition leagues, each one with
a specific emphasis, some only at software level, others at both hardware and software, with
single or multiple agents, cooperative and competitive.
In the context of RoboCup, the Middle Size League (MSL) is one of the most challenging. In
this league, each team is composed of up to 5 robots with a maximum size of 50cm × 50cm,
80cm height and a maximum weight of 40Kg, playing in a field of 18m × 12m. The rules of the
game are similar to the official FIFA rules, with minor changes required to adapt them for the
playing robots
CAMBADA, Cooperative Autonomous Mobile roBots with Advanced Distributed Architecture, is the
MSL Soccer team from the University of Aveiro. The project started in 2003, coordinated by
the Transverse Activity on Intelligent Robotics group of the Institute of Electronic and Telem-
atic Engineering of Aveiro (IEETA). This project involves people working on several areas
for building the mechanical structure of the robot, its hardware architecture and controllers
(Almeida et al., 2002; Azevedo et al., 2007) and the software development in areas such as im-
age analysis and processing (Caleiro et al., 2007; Cunha et al., 2007; Martins et al., 2008; Neves
et al., 2007; 2008), sensor and information fusion (Silva et al., 2008; 2009), reasoning and con-
trol (Lau et al., 2008), cooperative sensing approach based on a Real-Time Database (Almeida
et al., 2004), communications among robots (Santos et al., 2009; 2007) and the development of
an efficient basestation.
The main contribution of this chapter is to present the new advances in the areas described
above involving the development of an MSL team of soccer robots, taking the example of
the CAMBADA team that won the RoboCup 2008 and attained the third place in the last
edition of the MSL tournament at RoboCup 2009. CAMBADA also won the last three editions

∗This work was partially supported by project ACORD, Adaptive Coordination of Robotic Teams,
FCT/PTDC/EIA/70695/2006.

2

Robot Soccer20

of the Portuguese Robotics Open 2007-2009, which confirms the efficiency of the proposed
architecture.
This chapter is organized as follows. In Section 2 it is presented the layered and modular ar-
chitecture of the robot’s hardware. Section 3 describes the vision system of the robots, starting
in the calibration of the several parameters and presenting efficient algorithms for the detec-
tion of the colored objects and algorithms for the detection of arbitrary FIFA balls, a current
challenge in the MSL. In Section 4 it is presented the process of building the representation
of the environment and the algorithms for the integration of the several sources of informa-
tion received by the robot. Section 5 presents the architecture used in CAMBADA robots to
share information between them using a real-time database. Section 6 presents the methodol-
ogy developed for the communication between robots, using an adaptive TDMA transmission
control. In Section 7 it is presented the robots coordination model based on notions like strate-
gic positioning, role and formation. Section 8 presents the Base Station application, responsible
for the control of the agents, interpreting and sending high level instructions and monitoring
information of the robots. Finally, in Section 9 we draw some conclusions.

2. Hardware architecture

The CAMBADA robots (Fig. 1) were designed and completely built in-house. The baseline for
robot construction is a cylindrical envelope, with 485 mm in diameter. The mechanical struc-
ture of the players is layered and modular. Each layer can easily be replaced by an equivalent
one. The components in the lower layer, namely motors, wheels, batteries and an electromag-
netic kicker, are attached to an aluminum plate placed 8 cm above the floor. The second layer
contains the control electronics. The third layer contains a laptop computer, at 22.5 cm from
the floor, an omni-directional vision system, a frontal camera and an electronic compass, all
close to the maximum height of 80 cm. The players are capable of holonomic motion, based
on three omni-directional roller wheels.

Fig. 1. Robots used by the CAMBADA MSL robotic soccer team.

The general architecture of the CAMBADA robots has been described in (Almeida et al., 2004;
Silva et al., 2005). Basically, the robots follow a biomorphic paradigm, each being centered
on a main processing unit (a laptop), the brain, which is responsible for the higher-level be-
havior coordination, i.e. the coordination layer. This main processing unit handles external
communication with the other robots and has high bandwidth sensors, typically vision, di-
rectly attached to it. Finally, this unit receives low bandwidth sensing information and sends

actuating commands to control the robot attitude by means of a distributed low-level sens-
ing/actuating system (Fig. 2), the nervous system.

Fig. 2. Hardware architecture with functional mapping.

The low-level sensing/actuating system follows the fine-grain distributed model where most
of the elementary functions, e.g. basic reactive behaviors and closed-loop control of complex
actuators, are encapsulated in small microcontroller-based nodes interconnected by means of
a network. For this purpose, Controller Area Network (CAN), a real-time fieldbus typical
in distributed embedded systems, has been chosen. This network is complemented with a
higher-level transmission control protocol to enhance its real-time performance, composabil-
ity and fault-tolerance, namely the FTT-CAN protocol (Flexible Time-Triggered communica-
tion over CAN) (Almeida et al., 2002). This protocol keeps all the information of periodic
flows within a master node, implemented on another basic module, which works like a mae-
stro triggering tasks and message transmissions.
The low-level sensing/actuation system executes four main functions as described in Fig. 3,
namely Motion, Odometry, Kick and System monitoring. The former provides holonomic
motion using 3 DC motors. The Odometry function combines the encoder readings from
the 3 motors and provides a coherent robot displacement information that is then sent to the
coordination layer. The Kick function includes the control of an electromagnetic kicker and of
a ball handler to dribble the ball.

Fig. 3. Layered software architecture of CAMBADA players.

The system monitor function monitors the robot batteries as well as the state of all nodes in the
low-level layer. Finally, the low-level control layer connects to the coordination layer through

CAMBADA soccer team: from robot architecture to multiagent coordination 21

of the Portuguese Robotics Open 2007-2009, which confirms the efficiency of the proposed
architecture.
This chapter is organized as follows. In Section 2 it is presented the layered and modular ar-
chitecture of the robot’s hardware. Section 3 describes the vision system of the robots, starting
in the calibration of the several parameters and presenting efficient algorithms for the detec-
tion of the colored objects and algorithms for the detection of arbitrary FIFA balls, a current
challenge in the MSL. In Section 4 it is presented the process of building the representation
of the environment and the algorithms for the integration of the several sources of informa-
tion received by the robot. Section 5 presents the architecture used in CAMBADA robots to
share information between them using a real-time database. Section 6 presents the methodol-
ogy developed for the communication between robots, using an adaptive TDMA transmission
control. In Section 7 it is presented the robots coordination model based on notions like strate-
gic positioning, role and formation. Section 8 presents the Base Station application, responsible
for the control of the agents, interpreting and sending high level instructions and monitoring
information of the robots. Finally, in Section 9 we draw some conclusions.

2. Hardware architecture

The CAMBADA robots (Fig. 1) were designed and completely built in-house. The baseline for
robot construction is a cylindrical envelope, with 485 mm in diameter. The mechanical struc-
ture of the players is layered and modular. Each layer can easily be replaced by an equivalent
one. The components in the lower layer, namely motors, wheels, batteries and an electromag-
netic kicker, are attached to an aluminum plate placed 8 cm above the floor. The second layer
contains the control electronics. The third layer contains a laptop computer, at 22.5 cm from
the floor, an omni-directional vision system, a frontal camera and an electronic compass, all
close to the maximum height of 80 cm. The players are capable of holonomic motion, based
on three omni-directional roller wheels.

Fig. 1. Robots used by the CAMBADA MSL robotic soccer team.

The general architecture of the CAMBADA robots has been described in (Almeida et al., 2004;
Silva et al., 2005). Basically, the robots follow a biomorphic paradigm, each being centered
on a main processing unit (a laptop), the brain, which is responsible for the higher-level be-
havior coordination, i.e. the coordination layer. This main processing unit handles external
communication with the other robots and has high bandwidth sensors, typically vision, di-
rectly attached to it. Finally, this unit receives low bandwidth sensing information and sends

actuating commands to control the robot attitude by means of a distributed low-level sens-
ing/actuating system (Fig. 2), the nervous system.

Fig. 2. Hardware architecture with functional mapping.

The low-level sensing/actuating system follows the fine-grain distributed model where most
of the elementary functions, e.g. basic reactive behaviors and closed-loop control of complex
actuators, are encapsulated in small microcontroller-based nodes interconnected by means of
a network. For this purpose, Controller Area Network (CAN), a real-time fieldbus typical
in distributed embedded systems, has been chosen. This network is complemented with a
higher-level transmission control protocol to enhance its real-time performance, composabil-
ity and fault-tolerance, namely the FTT-CAN protocol (Flexible Time-Triggered communica-
tion over CAN) (Almeida et al., 2002). This protocol keeps all the information of periodic
flows within a master node, implemented on another basic module, which works like a mae-
stro triggering tasks and message transmissions.
The low-level sensing/actuation system executes four main functions as described in Fig. 3,
namely Motion, Odometry, Kick and System monitoring. The former provides holonomic
motion using 3 DC motors. The Odometry function combines the encoder readings from
the 3 motors and provides a coherent robot displacement information that is then sent to the
coordination layer. The Kick function includes the control of an electromagnetic kicker and of
a ball handler to dribble the ball.

Fig. 3. Layered software architecture of CAMBADA players.

The system monitor function monitors the robot batteries as well as the state of all nodes in the
low-level layer. Finally, the low-level control layer connects to the coordination layer through

Robot Soccer22

a gateway, which filters interactions within both layers, passing through the information that
is relevant across the layers, only. Such filtering reduces the overhead of handling unnecessary
receptions at each layer as well as the network bandwidth usage at the low-level side, thus
further reducing mutual interference across the layers.
A detailed description regarding the implementation of this architecture, namely the map-
ping between the functional architecture onto hardware and the information flows and their
synchronization are presented in (Azevedo et al., 2007).

3. Vision system

The vision system of the CAMBADA robots is based on an hybrid system, formed by an omni-
directional and a perspective sub-system, that together can analyze the environment around
the robots, both at close and long distances (Neves et al., 2008). The main modules of the
vision system are presented in Fig. 4.

Fig. 4. The software architecture of the vision system developed for the CAMBADA robotic
soccer team.

The information regarding close objects, like white lines of the field, other robots and the
ball, are acquired through the omnidirectional system, whereas the perspective system is used
to locate other robots and the ball at long distances, which are difficult to detect using the
omnidirectional vision system.

3.1 Inverse distance map
The use of a catadioptric omni-directional vision system based on a regular video camera
pointed at a hyperbolic mirror is a common solution for the main sensorial element found in
a significant number of autonomous mobile robot applications. For most practical applica-
tions, this setup requires the translation of the planar field of view, at the camera sensor plane,
into real world coordinates at the ground plane, using the robot as the center of this system.
In order to simplify this non-linear transformation, most practical solutions adopted in real
robots choose to create a mechanical geometric setup that ensures a symmetrical solution for
the problem by means of single viewpoint (SVP) approach. This, on the other hand, calls for a
precise alignment of the four major points comprising the vision setup: the mirror focus, the
mirror apex, the lens focus and the center of the image sensor. Furthermore, it also demands

the sensor plane to be both parallel to the ground field and normal to the mirror axis of revolu-
tion, and the mirror foci to be coincident with the effective viewpoint and the camera pinhole
respectively. Although tempting, this approach requires a precision mechanical setup.
We developed a general solution to calculate the robot centered distances map on non-SVP
catadioptric setups, exploring a back-propagation ray-tracing approach and the mathematical
properties of the mirror surface. This solution effectively compensates for the misalignment
that may result either from a simple mechanical setup or from the use of low cost video cam-
eras. Therefore, precise mechanical alignment and high quality cameras are no longer pre-
requisites to obtain useful distance maps. The method can also extract most of the required
parameters from the acquired image itself, allowing it to be used for self-calibration purposes.
In order to allow further trimming of these parameters, two simple image feedback tools have
been developed.
The first one creates a reverse mapping of the acquired image into the real world distance
map. A fill-in algorithm is used to integrate image data in areas outside pixel mapping on
the ground plane. This produces a plane vision from above, allowing visual check of line
parallelism and circular asymmetries (Fig. 5). The second generates a visual grid with 0.5m
distances between both lines and columns, which is superimposed on the original image. This
provides an immediate visual clue for the need of possible further distance correction (Fig. 6).

Fig. 5. Acquired image after reverse-mapping into the distance map. On the left, the map
was obtained with all misalignment parameters set to zero. On the right, after automatic
correction.

Fig. 6. A 0.5m grid, superimposed on the original image. On the left, with all correction
parameters set to zero. On the right, the same grid after geometrical parameter extraction.

CAMBADA soccer team: from robot architecture to multiagent coordination 23

a gateway, which filters interactions within both layers, passing through the information that
is relevant across the layers, only. Such filtering reduces the overhead of handling unnecessary
receptions at each layer as well as the network bandwidth usage at the low-level side, thus
further reducing mutual interference across the layers.
A detailed description regarding the implementation of this architecture, namely the map-
ping between the functional architecture onto hardware and the information flows and their
synchronization are presented in (Azevedo et al., 2007).

3. Vision system

The vision system of the CAMBADA robots is based on an hybrid system, formed by an omni-
directional and a perspective sub-system, that together can analyze the environment around
the robots, both at close and long distances (Neves et al., 2008). The main modules of the
vision system are presented in Fig. 4.

Fig. 4. The software architecture of the vision system developed for the CAMBADA robotic
soccer team.

The information regarding close objects, like white lines of the field, other robots and the
ball, are acquired through the omnidirectional system, whereas the perspective system is used
to locate other robots and the ball at long distances, which are difficult to detect using the
omnidirectional vision system.

3.1 Inverse distance map
The use of a catadioptric omni-directional vision system based on a regular video camera
pointed at a hyperbolic mirror is a common solution for the main sensorial element found in
a significant number of autonomous mobile robot applications. For most practical applica-
tions, this setup requires the translation of the planar field of view, at the camera sensor plane,
into real world coordinates at the ground plane, using the robot as the center of this system.
In order to simplify this non-linear transformation, most practical solutions adopted in real
robots choose to create a mechanical geometric setup that ensures a symmetrical solution for
the problem by means of single viewpoint (SVP) approach. This, on the other hand, calls for a
precise alignment of the four major points comprising the vision setup: the mirror focus, the
mirror apex, the lens focus and the center of the image sensor. Furthermore, it also demands

the sensor plane to be both parallel to the ground field and normal to the mirror axis of revolu-
tion, and the mirror foci to be coincident with the effective viewpoint and the camera pinhole
respectively. Although tempting, this approach requires a precision mechanical setup.
We developed a general solution to calculate the robot centered distances map on non-SVP
catadioptric setups, exploring a back-propagation ray-tracing approach and the mathematical
properties of the mirror surface. This solution effectively compensates for the misalignment
that may result either from a simple mechanical setup or from the use of low cost video cam-
eras. Therefore, precise mechanical alignment and high quality cameras are no longer pre-
requisites to obtain useful distance maps. The method can also extract most of the required
parameters from the acquired image itself, allowing it to be used for self-calibration purposes.
In order to allow further trimming of these parameters, two simple image feedback tools have
been developed.
The first one creates a reverse mapping of the acquired image into the real world distance
map. A fill-in algorithm is used to integrate image data in areas outside pixel mapping on
the ground plane. This produces a plane vision from above, allowing visual check of line
parallelism and circular asymmetries (Fig. 5). The second generates a visual grid with 0.5m
distances between both lines and columns, which is superimposed on the original image. This
provides an immediate visual clue for the need of possible further distance correction (Fig. 6).

Fig. 5. Acquired image after reverse-mapping into the distance map. On the left, the map
was obtained with all misalignment parameters set to zero. On the right, after automatic
correction.

Fig. 6. A 0.5m grid, superimposed on the original image. On the left, with all correction
parameters set to zero. On the right, the same grid after geometrical parameter extraction.

Robot Soccer24

With this tool it is also possible to determine some other important parameters, namely the
mirror center and the area of the image that will be processed by the object detection algo-
rithms (Fig. 7). A more detailed description of the algorithms can be found in (Cunha et al.,
2007).

Fig. 7. On the left, the position of the radial search lines used in the omnidirectional vision
system. On the right, an example of a robot mask used to select the pixels to be processed by
the omnidirectional vision sub-system. White points represent the area that will be processed.

3.2 Autonomous configuration of the digital camera parameters
An algorithm was developed to configure the most important features of the cameras, namely
exposure, white-balance, gain and brightness without human intervention (Neves et al., 2009).
The self-calibration process for a single robot requires a few seconds, including the time nec-
essary to interact with the application, which is considered fast in comparison to the several
minutes needed for manual calibration by an expert user. The experimental results obtained
show that the algorithm converges independently of the initial configuration of the camera.
Moreover, the images acquired after the proposed calibration algorithm were analyzed using
statistical measurements and these confirm that the images have the desired characteristics.

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250

V
a
l
u
e

Frame

WB_RED
WB_BLUE
Exposure

Gain
Brightness

(a) (b) (c)
Fig. 8. An example of the autonomous configuration algorithm obtained starting with all the
parameters of the camera set to the maximum value. In (a) the initial image acquired. In
(b) the image obtained after applying the autonomous calibration procedure. In (c) a set of
graphics representing the evolution of the camera parameters over time.

The proposed approach uses measurements extracted from a digital image to quantify the
image quality. A number of typical measurements used in the literature can be computed
from the image gray level histogram, namely, the mean (µ), the entropy (E), the absolute

central moment (ACM) and the mean sample value (MSV). These measurements are used to
calibrate the exposure and gain. Moreover, the proposed algorithm analyzes a white area in
the image to calibrate the white-balance and a black area to calibrate the brightness.

3.3 Object detection
The vision software architecture is based on a distributed paradigm, grouping main tasks in
different modules. The software can be split in three main modules, namely the Utility Sub-
System, the Color Processing Sub-System and the Morphological Processing Sub-System, as can be
seen in Fig. 4. Each one of these sub-systems labels a domain area where their processes fit, as
the case of Acquire Image and Display Image in the Utility Sub-System. As can be seen in the Color
Processing Sub-System, proper color classification and extraction processes were developed,
along with an object detection process to extract information, through color analysis, from the
acquired image.
Image analysis in the RoboCup domain is simplified, since objects are color coded. This fact
is exploited by defining color classes, using a look-up-table (LUT) for fast color classification.
The table consists of 16777216 entries (24 bits: 8 bits for red, 8 bits for green and 8 bits for
blue), each 8 bits wide, occupying 16 MB in total. The pixel classification is carried out using
its color as an index into the table. The color calibration is done in HSV (Hue, Saturation and
Value) color space. In the current setup the image is acquired in RGB or YUV format and is
then converted to an image of labels using the appropriate LUT.
The image processing software uses radial search lines to analyze the color information. A
radial search line is a line that starts in the center of the robot with some angle and ends in the
limit of the image. The center of the robot in the omnidirectional subsystem is approximately
in the center of the image (an example is presented in Fig. 7), while in the perspective sub-
system the center of the robot is in the bottom of the image. The regions of the image that have
to be excluded from analysis (such as the robot itself, the sticks that hold the mirror and the
areas outside the mirror) are ignored through the use of a previously generated image mask,
as described in Section 3.1. The objects of interest (a ball, obstacles and the white lines) are
detected through algorithms that, using the color information collected by the radial search
lines, calculate the object position and/or their limits in an angular representation (distance
and angle). The white lines are detected using an algorithm that, for each search line, finds
the transition between green and white pixels. A more detailed description of the algorithms
can be found in (Neves et al., 2007; 2008).

Fig. 9. On the left, the images acquired by the omnidirectional vision system. In the center, the
corresponding image of labels. On the right, the color blobs detected in the images. A marks
over a ball points to its center of mass. The several marks near the white lines (magenta) are
the position of the white lines. Finally, the cyan marks denote the position of the obstacles.

CAMBADA soccer team: from robot architecture to multiagent coordination 25

With this tool it is also possible to determine some other important parameters, namely the
mirror center and the area of the image that will be processed by the object detection algo-
rithms (Fig. 7). A more detailed description of the algorithms can be found in (Cunha et al.,
2007).

Fig. 7. On the left, the position of the radial search lines used in the omnidirectional vision
system. On the right, an example of a robot mask used to select the pixels to be processed by
the omnidirectional vision sub-system. White points represent the area that will be processed.

3.2 Autonomous configuration of the digital camera parameters
An algorithm was developed to configure the most important features of the cameras, namely
exposure, white-balance, gain and brightness without human intervention (Neves et al., 2009).
The self-calibration process for a single robot requires a few seconds, including the time nec-
essary to interact with the application, which is considered fast in comparison to the several
minutes needed for manual calibration by an expert user. The experimental results obtained
show that the algorithm converges independently of the initial configuration of the camera.
Moreover, the images acquired after the proposed calibration algorithm were analyzed using
statistical measurements and these confirm that the images have the desired characteristics.

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250

V
a
l
u
e

Frame

WB_RED
WB_BLUE

Exposure
Gain

Brightness

(a) (b) (c)
Fig. 8. An example of the autonomous configuration algorithm obtained starting with all the
parameters of the camera set to the maximum value. In (a) the initial image acquired. In
(b) the image obtained after applying the autonomous calibration procedure. In (c) a set of
graphics representing the evolution of the camera parameters over time.

The proposed approach uses measurements extracted from a digital image to quantify the
image quality. A number of typical measurements used in the literature can be computed
from the image gray level histogram, namely, the mean (µ), the entropy (E), the absolute

central moment (ACM) and the mean sample value (MSV). These measurements are used to
calibrate the exposure and gain. Moreover, the proposed algorithm analyzes a white area in
the image to calibrate the white-balance and a black area to calibrate the brightness.

3.3 Object detection
The vision software architecture is based on a distributed paradigm, grouping main tasks in
different modules. The software can be split in three main modules, namely the Utility Sub-
System, the Color Processing Sub-System and the Morphological Processing Sub-System, as can be
seen in Fig. 4. Each one of these sub-systems labels a domain area where their processes fit, as
the case of Acquire Image and Display Image in the Utility Sub-System. As can be seen in the Color
Processing Sub-System, proper color classification and extraction processes were developed,
along with an object detection process to extract information, through color analysis, from the
acquired image.
Image analysis in the RoboCup domain is simplified, since objects are color coded. This fact
is exploited by defining color classes, using a look-up-table (LUT) for fast color classification.
The table consists of 16777216 entries (24 bits: 8 bits for red, 8 bits for green and 8 bits for
blue), each 8 bits wide, occupying 16 MB in total. The pixel classification is carried out using
its color as an index into the table. The color calibration is done in HSV (Hue, Saturation and
Value) color space. In the current setup the image is acquired in RGB or YUV format and is
then converted to an image of labels using the appropriate LUT.
The image processing software uses radial search lines to analyze the color information. A
radial search line is a line that starts in the center of the robot with some angle and ends in the
limit of the image. The center of the robot in the omnidirectional subsystem is approximately
in the center of the image (an example is presented in Fig. 7), while in the perspective sub-
system the center of the robot is in the bottom of the image. The regions of the image that have
to be excluded from analysis (such as the robot itself, the sticks that hold the mirror and the
areas outside the mirror) are ignored through the use of a previously generated image mask,
as described in Section 3.1. The objects of interest (a ball, obstacles and the white lines) are
detected through algorithms that, using the color information collected by the radial search
lines, calculate the object position and/or their limits in an angular representation (distance
and angle). The white lines are detected using an algorithm that, for each search line, finds
the transition between green and white pixels. A more detailed description of the algorithms
can be found in (Neves et al., 2007; 2008).

Fig. 9. On the left, the images acquired by the omnidirectional vision system. In the center, the
corresponding image of labels. On the right, the color blobs detected in the images. A marks
over a ball points to its center of mass. The several marks near the white lines (magenta) are
the position of the white lines. Finally, the cyan marks denote the position of the obstacles.

Robot Soccer26

The Morphological Processing Sub-System consists of a color independent ball detection algo-
rithm, that will be described in the next section. Martins et al. (2008) presents preliminary
results using this approach.
In the final of the image processing pipeline, the position of the detected objects are sent to
the real-time database, described later in Section 5, after converting its position in the image
into the real position in the environment, using the inverse distance map obtained with the
algorithms and tools proposed in (Cunha et al., 2007) and briefly described before.

3.4 Arbitrary ball detection
The arbitrary FIFA ball recognition algorithm is based on the use of edge detection and the
circular Hough transform. The search for potential ball candidates is conducted taking ad-
vantage of morphological characteristics of the ball (round shape), using a feature extraction
technique known as the Hough transform. First used to identify lines in images, the Hough
transform has been generalized through the years to identify positions of arbitrary shapes,
most commonly circles or ellipses, by a voting procedure (Grimson and Huttenlocher, 1990;
Ser and Siu, 1993; Zhang and Liu, 2000).
To feed the Hough transform process, it is necessary a binary image with the edge information
of the objects. This image, Edges Image, is obtained using an edge detector operator. In the
following, we present an explanation of this process and its implementation.
To be possible to use this image processing system in real-time, we implemented efficient data
structures to process the image data (Neves et al., 2007; 2008). We used a two-thread approach
to perform the most time consuming operations in parallel, namely image segmentation, edge
detection and Hough transform, taking advantage of the dual core processor used by the
laptop computers of our robots.
The first image processing step in the morphological detection is the edge detection. It must
be as efficient and accurate as possible in order not to compromise the efficiency of the whole
system. Besides being fast to calculate, the intended resulting image must be absent of noise
as much as possible, with well defined contours and be tolerant to the motion blur introduced
by the movement of the ball and the robots.
Some popular edge detectors were tested, namely Sobel (Zin et al., 2007; Zou et al., 2006;
Zou and Dunsmuir, 1997), Laplace (Blaffert et al., 2000; Zou and Dunsmuir, 1997) and Canny
(Canny, 1986). According to our experiments, the Canny edge detector was the most de-
manding in terms of processing time. Even so, it was fast enough for real-time operation and,
because it provided the most effective contours, it was chosen.
The next step in the proposed approach is the use of the Hough transform to find points of
interest containing possible circular objects. After finding these points, a validation procedure
is used for choosing points containing a ball, according to our characterization. The voting
procedure of the Hough transform is carried out in a parameter space. Object candidates are
obtained as local maxima of a denoted Intensity Image (Fig. 10c)), that is constructed by the
Hough Transform block (Fig. 4).
Due to the special features of the Hough circular transform, a circular object in the Edges Image
would produce an intense peak in Intensity Image corresponding to the center of the object (as
can be seen in Fig. 10c)). On the contrary, a non-circular object would produce areas of low
intensity in the Intensity Image. However, as the ball moves away, its edge circle size decreases.
To solve this problem, information about the distance between the robot center and the ball is
used to adjust the Hough transform. We use the inverse mapping of our vision system (Cunha
et al., 2007) to estimate the radius of the ball as a function of distance.

In some situations, particularly when the ball is not present in the field, false positives might
be produced. To solve this problem and improve the ball information reliability, we propose
a validation algorithm that discards false positives based on information from the Intensity
Image and the Acquired Image. This validation algorithm is based on two tests against which
each ball candidate is put through.
In the first test performed by the validation algorithm, the points with local maximum values
in the Intensity Image are considered if they are above a distance-dependent threshold. This
threshold depends on the distance of the ball candidate to the robot center, decreasing as this
distance increases. This first test removes some false ball candidates, leaving a reduced group
of points of interest.
Then, a test is made in the Acquired Image over each point of interest selected by the previous
test. This test is used to eliminate false balls that usually appear in the intersection of the lines
of the field and other robots (regions with several contours). To remove these false balls, we
analyze a square region of the image centered in the point of interest. We discard this point
of interest if the sum of all green pixels is over a certain percentage of the square area. Note
that the area of this square depends on the distance of the point of interest to the robot center,
decreasing as this distance increases. Choosing a square where the ball fits tightly makes this
test very effective, considering that the ball fills over 90% of the square. In both tests, we use
threshold values that were obtained experimentally.
Besides the color validation, it is also performed a validation of the morphology of the candi-
date, more precisely a circularity validation. Here, from the candidate point to the center of
the ball, it is performed a search of pixels at a distance r from the center. For each edge found
between the expected radius, the number of edges at that distance are determined. By the size
of the square which covers the possible ball and the number of edge pixels, it is calculated
the edges percentage. If the edges percentage is greater than 70, then the circularity of the
candidate is verified.
Figure 10 presents an example of the of the Morphological Processing Sub-System. As can be
observed, the balls in the Edges Image (Fig. 10 b)) have almost circular contours. Figure 10 c)
shows the resulting image after applying the circular Hough transform. Notice that the cen-
ter of the balls present a very high peak when compared to the rest of the image. The ball
considered was the closest to the robot due to the fact that it has the high peak in the image.

(a) (b) (c)
Fig. 10. Example of a captured image using the proposed approach. The cross over the ball
points out the detected position. In b) the image a), with the Canny edge detector applied. In
c), the image b) after applying the circular Hough transform.

CAMBADA soccer team: from robot architecture to multiagent coordination 27

The Morphological Processing Sub-System consists of a color independent ball detection algo-
rithm, that will be described in the next section. Martins et al. (2008) presents preliminary
results using this approach.
In the final of the image processing pipeline, the position of the detected objects are sent to
the real-time database, described later in Section 5, after converting its position in the image
into the real position in the environment, using the inverse distance map obtained with the
algorithms and tools proposed in (Cunha et al., 2007) and briefly described before.

3.4 Arbitrary ball detection
The arbitrary FIFA ball recognition algorithm is based on the use of edge detection and the
circular Hough transform. The search for potential ball candidates is conducted taking ad-
vantage of morphological characteristics of the ball (round shape), using a feature extraction
technique known as the Hough transform. First used to identify lines in images, the Hough
transform has been generalized through the years to identify positions of arbitrary shapes,
most commonly circles or ellipses, by a voting procedure (Grimson and Huttenlocher, 1990;
Ser and Siu, 1993; Zhang and Liu, 2000).
To feed the Hough transform process, it is necessary a binary image with the edge information
of the objects. This image, Edges Image, is obtained using an edge detector operator. In the
following, we present an explanation of this process and its implementation.
To be possible to use this image processing system in real-time, we implemented efficient data
structures to process the image data (Neves et al., 2007; 2008). We used a two-thread approach
to perform the most time consuming operations in parallel, namely image segmentation, edge
detection and Hough transform, taking advantage of the dual core processor used by the
laptop computers of our robots.
The first image processing step in the morphological detection is the edge detection. It must
be as efficient and accurate as possible in order not to compromise the efficiency of the whole
system. Besides being fast to calculate, the intended resulting image must be absent of noise
as much as possible, with well defined contours and be tolerant to the motion blur introduced
by the movement of the ball and the robots.
Some popular edge detectors were tested, namely Sobel (Zin et al., 2007; Zou et al., 2006;
Zou and Dunsmuir, 1997), Laplace (Blaffert et al., 2000; Zou and Dunsmuir, 1997) and Canny
(Canny, 1986). According to our experiments, the Canny edge detector was the most de-
manding in terms of processing time. Even so, it was fast enough for real-time operation and,
because it provided the most effective contours, it was chosen.
The next step in the proposed approach is the use of the Hough transform to find points of
interest containing possible circular objects. After finding these points, a validation procedure
is used for choosing points containing a ball, according to our characterization. The voting
procedure of the Hough transform is carried out in a parameter space. Object candidates are
obtained as local maxima of a denoted Intensity Image (Fig. 10c)), that is constructed by the
Hough Transform block (Fig. 4).
Due to the special features of the Hough circular transform, a circular object in the Edges Image
would produce an intense peak in Intensity Image corresponding to the center of the object (as
can be seen in Fig. 10c)). On the contrary, a non-circular object would produce areas of low
intensity in the Intensity Image. However, as the ball moves away, its edge circle size decreases.
To solve this problem, information about the distance between the robot center and the ball is
used to adjust the Hough transform. We use the inverse mapping of our vision system (Cunha
et al., 2007) to estimate the radius of the ball as a function of distance.

In some situations, particularly when the ball is not present in the field, false positives might
be produced. To solve this problem and improve the ball information reliability, we propose
a validation algorithm that discards false positives based on information from the Intensity
Image and the Acquired Image. This validation algorithm is based on two tests against which
each ball candidate is put through.
In the first test performed by the validation algorithm, the points with local maximum values
in the Intensity Image are considered if they are above a distance-dependent threshold. This
threshold depends on the distance of the ball candidate to the robot center, decreasing as this
distance increases. This first test removes some false ball candidates, leaving a reduced group
of points of interest.
Then, a test is made in the Acquired Image over each point of interest selected by the previous
test. This test is used to eliminate false balls that usually appear in the intersection of the lines
of the field and other robots (regions with several contours). To remove these false balls, we
analyze a square region of the image centered in the point of interest. We discard this point
of interest if the sum of all green pixels is over a certain percentage of the square area. Note
that the area of this square depends on the distance of the point of interest to the robot center,
decreasing as this distance increases. Choosing a square where the ball fits tightly makes this
test very effective, considering that the ball fills over 90% of the square. In both tests, we use
threshold values that were obtained experimentally.
Besides the color validation, it is also performed a validation of the morphology of the candi-
date, more precisely a circularity validation. Here, from the candidate point to the center of
the ball, it is performed a search of pixels at a distance r from the center. For each edge found
between the expected radius, the number of edges at that distance are determined. By the size
of the square which covers the possible ball and the number of edge pixels, it is calculated
the edges percentage. If the edges percentage is greater than 70, then the circularity of the
candidate is verified.
Figure 10 presents an example of the of the Morphological Processing Sub-System. As can be
observed, the balls in the Edges Image (Fig. 10 b)) have almost circular contours. Figure 10 c)
shows the resulting image after applying the circular Hough transform. Notice that the cen-
ter of the balls present a very high peak when compared to the rest of the image. The ball
considered was the closest to the robot due to the fact that it has the high peak in the image.

(a) (b) (c)
Fig. 10. Example of a captured image using the proposed approach. The cross over the ball
points out the detected position. In b) the image a), with the Canny edge detector applied. In
c), the image b) after applying the circular Hough transform.

Robot Soccer28

4. Sensor Fusion

Having the raw information, the Integrator module is responsible for building the represen-
tation of the environment. The integration has several sources of information input, being
the main input the raw information obtained by the cameras. Besides this information, the
integration also uses information given by other sensors, namely an electronic compass (for
localization purposes), an infra-red barrier sensor for ball engaged validation, odometry infor-
mation given by the motors encoders, robot battery status, past cycles worldstate data, shared
information obtained from team mate robots and coach information, both concerning game
states and team formation, obtained from an external agent acting as a coach.
The first task executed by the integration is the update of the low level internal status, by
updating the data structure values concerning battery and infra red ball barrier sensor. This is
information that goes directly into the structure, because no treatment or filtering is needed.
Afterwards, robot self-localization is made, followed by robot velocity estimation. The ball
information is then treated, followed by obstacle treatment. Finally, the game state and any
related issue are treated, for example, reset and update of timers, concerning setpieces.

4.1 Localization
Self-localization of the agent is an important issue for a soccer team, as strategic moves and
positioning must be defined by positions on the field. In the MSL, the environment is com-
pletely known, as every agent knows exactly the layout of the game field. Given the known
mapping, the agent has then to locate itself on it.
The CAMBADA team localization algorithm is based on the detected field lines, with fusion
information from the odometry sensors and an electronic compass. It is based on the approach
described in (Lauer et al., 2006), with some adaptations. It can be seen as an error minimization
task, with a derived measure of reliability of the calculated position so that a stochastic sensor
fusion process can be applied to increase the estimate accuracy (Lauer et al., 2006).
The idea is to analyze the detected line points, estimating a position, and through an error
function describe the fitness of the estimate. This is done by reducing the error of the matching
between the detected lines and the known field lines (Fig. 9). The error function must be
defined considering the substantial amount of noise that affect the detected line points which
would distort the representation estimate (Lauer et al., 2006).
Although the odometry measurement quality is much affected with time, within the reduced
cycle times achieved in the application, consecutive readings produce acceptable results and
thus, having the visual estimation, it is fused with the odometry values to refine the estimate.
This fusion is done based on a Kalman filter for the robot position estimated by odometry
and the robot position estimated by visual information. This approach allows the agent to
estimate its position even if no visual information is available. However, it is not reliable to
use only odometry values to estimate the position for more than a very few cycles, as slidings
and frictions on the wheels produce large errors on the estimations in short time.
The visually estimated orientation can be ambiguous, i.e. each point on the soccer field has a
symmetric position, relatively to the field center, and the robot detects exactly the same field
lines. To disambiguate, an electronic compass is used. The orientation estimated by the robot
is compared to the orientation given by the compass and if the error between them is larger
than a predefined threshold, actions are taken. If the error is really large, the robot assumes
a mirror position. If it is larger than the acceptance threshold, a counter is incremented. This
counter forces relocation if it reaches a given threshold.

4.2 Ball integration
Within RoboCup several teams have used Kalman filters for the ball position estimation (Fer-
rein et al., 2006; Lauer et al., 2005; Marcelino et al., 2003; XU et al., 2006). In (Ferrein et al.,
2006) and (Marcelino et al., 2003) several information fusion methods are compared for the
integration of the ball position using several observers. In (Ferrein et al., 2006) the authors
conclude that the Kalman reset filter shows the best performance.
The information of the ball state (position and velocity) is, perhaps, the most important, as
it is the main object of the game and is the base over which most decisions are taken. Thus,
its integration has to be as reliable as possible. To accomplish this, a Kalman filter implemen-
tation was created to filter the estimated ball position given by the visual information, and a
linear regression was applied over filtered positions to estimate its velocity.

4.2.1 Ball position
It is assumed that the ball velocity is constant between cycles. Although that is not true,
due to the short time variations between cycles, around 40 milliseconds, and given the noisy
environment and measurement errors, it is a rather acceptable model for the ball movement.
Thus, no friction is considered to affect the ball, and the model doesn’t include any kind of
control over the ball. Therefore, given the Kalman filter formulation (described in (Bishop and
Welch, 2001)), the assumed state transition model is given by

Xk =
[

1 ∆T
0 1

]
Xk−1

where Xk is the state vector containing the position and velocity of the ball. Technically, there
are two vectors of this kind, one for each cartesian dimension (x,y). This velocity is only
internally estimated by the filter, as the robot sensors can only take measurements on the ball
position. After defining the state transition model based on the ball movement assumptions
described above and the observation model, the description of the measurements and process
noises are important issues to attend. The measurements noise can be statistically estimated
by taking measurements of a static ball position at known distances.
The standard deviation of those measurements can be used to calculate the variance and thus
define the measurements noise parameter.
A relation between the distance of the ball to the robot and the measurements standard devi-
ation can be modeled by a 2nd degree polynomial best fitting the data set in a least-squares
sense. Depending on the available data, a polynomial of another degree could be used, but
we should always keep in mind the computational weight of increasing complexity.
As for the process noise, this is not trivial to estimate, since there is no way to take indepen-
dent measurements of the process to estimate its standard deviation. The process noise is
represented by a matrix containing the covariances correspondent to the state variable vector.
Empirically, one could verify that forcing a near null process noise causes the filter to prac-
tically ignore the read measures, leading the filter to emphasize the model prediction. This
makes it too smooth and therefore inappropriate. On the other hand, if it is too high, the read
measures are taken into too much account and the filter returns the measures themselves.
To face this situation, one have to find a compromise between stability and reaction. Given
the nature of the two components of the filter state, position and speed, one may consider that
their errors do not correlate.
Because we assume a uniform movement model that we know is not the true nature of the
system, we know that the speed calculation of the model is not very accurate. A process

CAMBADA soccer team: from robot architecture to multiagent coordination 29

4. Sensor Fusion

Having the raw information, the Integrator module is responsible for building the represen-
tation of the environment. The integration has several sources of information input, being
the main input the raw information obtained by the cameras. Besides this information, the
integration also uses information given by other sensors, namely an electronic compass (for
localization purposes), an infra-red barrier sensor for ball engaged validation, odometry infor-
mation given by the motors encoders, robot battery status, past cycles worldstate data, shared
information obtained from team mate robots and coach information, both concerning game
states and team formation, obtained from an external agent acting as a coach.
The first task executed by the integration is the update of the low level internal status, by
updating the data structure values concerning battery and infra red ball barrier sensor. This is
information that goes directly into the structure, because no treatment or filtering is needed.
Afterwards, robot self-localization is made, followed by robot velocity estimation. The ball
information is then treated, followed by obstacle treatment. Finally, the game state and any
related issue are treated, for example, reset and update of timers, concerning setpieces.

4.1 Localization
Self-localization of the agent is an important issue for a soccer team, as strategic moves and
positioning must be defined by positions on the field. In the MSL, the environment is com-
pletely known, as every agent knows exactly the layout of the game field. Given the known
mapping, the agent has then to locate itself on it.
The CAMBADA team localization algorithm is based on the detected field lines, with fusion
information from the odometry sensors and an electronic compass. It is based on the approach
described in (Lauer et al., 2006), with some adaptations. It can be seen as an error minimization
task, with a derived measure of reliability of the calculated position so that a stochastic sensor
fusion process can be applied to increase the estimate accuracy (Lauer et al., 2006).
The idea is to analyze the detected line points, estimating a position, and through an error
function describe the fitness of the estimate. This is done by reducing the error of the matching
between the detected lines and the known field lines (Fig. 9). The error function must be
defined considering the substantial amount of noise that affect the detected line points which
would distort the representation estimate (Lauer et al., 2006).
Although the odometry measurement quality is much affected with time, within the reduced
cycle times achieved in the application, consecutive readings produce acceptable results and
thus, having the visual estimation, it is fused with the odometry values to refine the estimate.
This fusion is done based on a Kalman filter for the robot position estimated by odometry
and the robot position estimated by visual information. This approach allows the agent to
estimate its position even if no visual information is available. However, it is not reliable to
use only odometry values to estimate the position for more than a very few cycles, as slidings
and frictions on the wheels produce large errors on the estimations in short time.
The visually estimated orientation can be ambiguous, i.e. each point on the soccer field has a
symmetric position, relatively to the field center, and the robot detects exactly the same field
lines. To disambiguate, an electronic compass is used. The orientation estimated by the robot
is compared to the orientation given by the compass and if the error between them is larger
than a predefined threshold, actions are taken. If the error is really large, the robot assumes
a mirror position. If it is larger than the acceptance threshold, a counter is incremented. This
counter forces relocation if it reaches a given threshold.

4.2 Ball integration
Within RoboCup several teams have used Kalman filters for the ball position estimation (Fer-
rein et al., 2006; Lauer et al., 2005; Marcelino et al., 2003; XU et al., 2006). In (Ferrein et al.,
2006) and (Marcelino et al., 2003) several information fusion methods are compared for the
integration of the ball position using several observers. In (Ferrein et al., 2006) the authors
conclude that the Kalman reset filter shows the best performance.
The information of the ball state (position and velocity) is, perhaps, the most important, as
it is the main object of the game and is the base over which most decisions are taken. Thus,
its integration has to be as reliable as possible. To accomplish this, a Kalman filter implemen-
tation was created to filter the estimated ball position given by the visual information, and a
linear regression was applied over filtered positions to estimate its velocity.

4.2.1 Ball position
It is assumed that the ball velocity is constant between cycles. Although that is not true,
due to the short time variations between cycles, around 40 milliseconds, and given the noisy
environment and measurement errors, it is a rather acceptable model for the ball movement.
Thus, no friction is considered to affect the ball, and the model doesn’t include any kind of
control over the ball. Therefore, given the Kalman filter formulation (described in (Bishop and
Welch, 2001)), the assumed state transition model is given by

Xk =
[

1 ∆T
0 1

]
Xk−1

where Xk is the state vector containing the position and velocity of the ball. Technically, there
are two vectors of this kind, one for each cartesian dimension (x,y). This velocity is only
internally estimated by the filter, as the robot sensors can only take measurements on the ball
position. After defining the state transition model based on the ball movement assumptions
described above and the observation model, the description of the measurements and process
noises are important issues to attend. The measurements noise can be statistically estimated
by taking measurements of a static ball position at known distances.
The standard deviation of those measurements can be used to calculate the variance and thus
define the measurements noise parameter.
A relation between the distance of the ball to the robot and the measurements standard devi-
ation can be modeled by a 2nd degree polynomial best fitting the data set in a least-squares
sense. Depending on the available data, a polynomial of another degree could be used, but
we should always keep in mind the computational weight of increasing complexity.
As for the process noise, this is not trivial to estimate, since there is no way to take indepen-
dent measurements of the process to estimate its standard deviation. The process noise is
represented by a matrix containing the covariances correspondent to the state variable vector.
Empirically, one could verify that forcing a near null process noise causes the filter to prac-
tically ignore the read measures, leading the filter to emphasize the model prediction. This
makes it too smooth and therefore inappropriate. On the other hand, if it is too high, the read
measures are taken into too much account and the filter returns the measures themselves.
To face this situation, one have to find a compromise between stability and reaction. Given
the nature of the two components of the filter state, position and speed, one may consider that
their errors do not correlate.
Because we assume a uniform movement model that we know is not the true nature of the
system, we know that the speed calculation of the model is not very accurate. A process

Robot Soccer30

noise covariance matrix was empirically estimated, based on several tests, so that a good
smoothness/reactivity relationship was kept.
Using the filter a-priori estimation, a system to detect great differences between the expected
and read positions was implemented, allowing to detect hard deviations on the ball path.

4.2.2 Ball velocity
The calculation of the ball velocity is a feature becoming more and more important over the
time. It allows that better decisions can be implemented based on the ball speed value and
direction. Assuming a ball movement model with constant ball velocity between cycles and
no friction considered, one could theoretically calculate the ball velocity by simple instanta-
neous velocity of the ball with the first order derivative of each component ∆D

∆T , being ∆D the
displacement on consecutive measures and ∆T the time interval between consecutive mea-
sures. However, given the noisy environment it is also predictable that this approach would
be greatly affected by that noise and thus its results would not be satisfactory (as it is easily
visible in Fig. 11.a).
To keep a calculation of the object velocity consistent with its displacement, an implementa-
tion of a linear regression algorithm was chosen. This approach based on linear regression
(Motulsky and Christopoulos, 2003) is similar to the velocity estimation described in (Lauer
et al., 2005). By keeping a buffer of the last m measures of the object position and sampling
instant (in this case buffers of 9 samples were used), one can calculate a regression line to fit
the positions of the object. Since the object position is composed by two coordinates (x,y), we
actually have two linear regression calculations, one for each dimension, although it is made
in a transparent way, so the description is presented generally, as if only one dimension was
considered.
When applied over the positions estimated by the Kalman filter, the linear regression velocity
estimations are much more accurate than the instant velocities calculated by ∆D

∆T , as visible in
Fig. 11.b).

a) b)

Fig. 11. Velocity representation using: In a): consecutive measures displacement; In b): linear
regression over Kalman filtered positions.

In order to try to make the regression converge more quickly on deviations of the ball path,
a reset feature was implemented, which allows deletion of the older values, keeping only the
n most recent ones, allowing a control of the used buffer size. This reset results from the

interaction with the Kalman filter described earlier, which triggers the velocity reset when it
detects a hard deviation on the ball path.
Although in this case the Kalman filter internal functioning estimates a velocity, the obtained
values were tested to confirm if the linear regression of the ball positions was still needed.
Tests showed that the velocity estimated by the Kalman filter has a slower response than the
linear regression estimation when deviations occur. Given this, the linear regression was used
to estimate the velocity because quickness of convergence was preferred over the slightly
smoother approximation of the Kalman filter in the steady state. That is because in the game
environment, the ball is very dynamic, it constantly changes its direction and thus a conver-
gence in less than half the cycles is much preferred.

4.2.3 Team ball position sharing
Due to the highly important role that the ball has in a soccer game, when a robot cannot detect
it by its own visual sensors (omni or frontal camera), it may still know the position of the ball,
through sharing of that knowledge by the other team mates.
The ball data structure include a field with the number of cycles it was not visible by the robot,
meaning that the ball position given by the vision sensors can be the “last seen” position.
When the ball is not visible for more than a given number of cycles, the robot assumes that
it cannot detect the ball on its own. When that is the case, it uses the information of the ball
communicated by the other running team mates to know where the ball is. This can be done
through a function to get the statistics on a set of positions, mean and standard deviation, to
get the mean value of the position of the ball seen by the team mates.
Another approach is to simply use the ball position of the team mate that have more confi-
dence in the detection. Whatever the case, the robot assumes that ball position as its own.
When detecting the ball on its own, there is also the need to validate that information. Cur-
rently the seen ball is only considered if it is within a given margin inside the field of play as
there would be no point in trying to play with a ball outside the field. Fig. 12 illustrates the
general ball integration activity diagram.

Fig. 12. Ball integration activity diagram.

CAMBADA soccer team: from robot architecture to multiagent coordination 31

noise covariance matrix was empirically estimated, based on several tests, so that a good
smoothness/reactivity relationship was kept.
Using the filter a-priori estimation, a system to detect great differences between the expected
and read positions was implemented, allowing to detect hard deviations on the ball path.

4.2.2 Ball velocity
The calculation of the ball velocity is a feature becoming more and more important over the
time. It allows that better decisions can be implemented based on the ball speed value and
direction. Assuming a ball movement model with constant ball velocity between cycles and
no friction considered, one could theoretically calculate the ball velocity by simple instanta-
neous velocity of the ball with the first order derivative of each component ∆D

∆T , being ∆D the
displacement on consecutive measures and ∆T the time interval between consecutive mea-
sures. However, given the noisy environment it is also predictable that this approach would
be greatly affected by that noise and thus its results would not be satisfactory (as it is easily
visible in Fig. 11.a).
To keep a calculation of the object velocity consistent with its displacement, an implementa-
tion of a linear regression algorithm was chosen. This approach based on linear regression
(Motulsky and Christopoulos, 2003) is similar to the velocity estimation described in (Lauer
et al., 2005). By keeping a buffer of the last m measures of the object position and sampling
instant (in this case buffers of 9 samples were used), one can calculate a regression line to fit
the positions of the object. Since the object position is composed by two coordinates (x,y), we
actually have two linear regression calculations, one for each dimension, although it is made
in a transparent way, so the description is presented generally, as if only one dimension was
considered.
When applied over the positions estimated by the Kalman filter, the linear regression velocity
estimations are much more accurate than the instant velocities calculated by ∆D

∆T , as visible in
Fig. 11.b).

a) b)

Fig. 11. Velocity representation using: In a): consecutive measures displacement; In b): linear
regression over Kalman filtered positions.

In order to try to make the regression converge more quickly on deviations of the ball path,
a reset feature was implemented, which allows deletion of the older values, keeping only the
n most recent ones, allowing a control of the used buffer size. This reset results from the

interaction with the Kalman filter described earlier, which triggers the velocity reset when it
detects a hard deviation on the ball path.
Although in this case the Kalman filter internal functioning estimates a velocity, the obtained
values were tested to confirm if the linear regression of the ball positions was still needed.
Tests showed that the velocity estimated by the Kalman filter has a slower response than the
linear regression estimation when deviations occur. Given this, the linear regression was used
to estimate the velocity because quickness of convergence was preferred over the slightly
smoother approximation of the Kalman filter in the steady state. That is because in the game
environment, the ball is very dynamic, it constantly changes its direction and thus a conver-
gence in less than half the cycles is much preferred.

4.2.3 Team ball position sharing
Due to the highly important role that the ball has in a soccer game, when a robot cannot detect
it by its own visual sensors (omni or frontal camera), it may still know the position of the ball,
through sharing of that knowledge by the other team mates.
The ball data structure include a field with the number of cycles it was not visible by the robot,
meaning that the ball position given by the vision sensors can be the “last seen” position.
When the ball is not visible for more than a given number of cycles, the robot assumes that
it cannot detect the ball on its own. When that is the case, it uses the information of the ball
communicated by the other running team mates to know where the ball is. This can be done
through a function to get the statistics on a set of positions, mean and standard deviation, to
get the mean value of the position of the ball seen by the team mates.
Another approach is to simply use the ball position of the team mate that have more confi-
dence in the detection. Whatever the case, the robot assumes that ball position as its own.
When detecting the ball on its own, there is also the need to validate that information. Cur-
rently the seen ball is only considered if it is within a given margin inside the field of play as
there would be no point in trying to play with a ball outside the field. Fig. 12 illustrates the
general ball integration activity diagram.

Fig. 12. Ball integration activity diagram.

Robot Soccer32

4.3 Obstacle selection and identification
With the objective of refining the information of the obstacles, and have more meaningful and
human readable information, the obstacles are selected and a matching is attempted, in order
to try to identify them as team mates or opponents.
Due to the weak precision at long distances, a first selection of the obstacles is made by se-
lecting only the obstacles closer than a given distance as available for identification (currently
5 meters). Also, obstacles that are smaller than 10 centimeters wide or outside the field of
play margin are ignored. This is done because the MSL robots are rather big, and in game
situations small obstacles are not present inside the field. Also, it would be pointless to pay
attention to obstacles that are outside the field of play, since the surrounding environment is
completely ignorable for the game development.
To be able to distinguish obstacles, to identify which of them are team mates and which are
opponent robots, a fusion between the own visual information of the obstacles and the shared
team mates positions is made. By creating a circle around the team mate positions, a matching
of the estimated center of visible obstacle is made (Fig. 13), and the obstacle is identified as the
corresponding team mate in case of a positive matching (Figs. 14c)). This matching consists
on the existence of interception points between the team mate circle and the obstacle circle or
if the obstacle center is inside the team mate circle (the obstacle circle can be smaller, and thus
no interception points would exist).

Fig. 13. When a CAMBADA robot is on, the estimated centers of the detected obstacles are
compared with the known position of the team mates and tested; the left obstacle is within
the CAMBADA acceptance radius, the right one is not.

Since the obstacles detected can be large blobs, the above described identification algorithm
cannot be applied directly to the visually detected obstacles. If the detected obstacle fulfills
the minimum size requisites already described, it is selected as candidate for being a robot
obstacle. Its size is evaluated and classified as robot if it does not exceed the maximum size
allowed for MSL robots (MSL Technical Committee 1997-2009, 2008) (Fig. 14a) and 14b)).
If the obstacle exceeds the maximum size of an MSL robot, a division of the obstacle is made,
by analyzing its total size and verifying how many robots are in that obstacle. This is a com-
mon situation, robots clashing together and thus creating a compact black blob, originating a
big obstacle. After completing the division, each obstacle is processed as described before.

a) b) c)

Fig. 14. Illustration of single obstacles identification. In a): image acquired from the robot
camera (obstacles for identification are marked); In b): the same image after processing; In c):
image of the control station. Each robot represents itself and robot 6 (the lighter gray) draws
all the 5 obstacles evaluated (squares with the same gray scale as itself). All team mates were
correctly identified (marked by its corresponding number over the obstacle square) and the
opponent is also represented with no number.

5. Real-time database

Similarly to other teams, our team software architecture emphasizes cooperative sensing as a
key capability to support the behavioral and decision-making processes in the robotic play-
ers. A common technique to achieve cooperative sensing is by means of a blackboard, which
is a database where each agent publishes the information that is generated internally and
that maybe requested by others. However, typical implementations of this technique seldom
account for the temporal validity (coherence) of the contained information with adequate ac-
curacy, since the timing information delivered by general-purpose operating systems such as
Linux is rather coarse. This is a problem when robots move fast (e.g. above 1m/s) because
their state information degrades faster, too, and temporal validity of state data becomes of the
same order of magnitude, or lower, than the operating system timing accuracy.
Another problem of typical implementations is that they are based on the client-server model
and thus, when a robot needs a datum, it has to communicate with the server holding the
blackboard, introducing an undesirable delay. To avoid this delay, we use two features: firstly,
the dissemination of the local state data is carried out using broadcasts, according to the
producer-consumer cooperation model, secondly, we replicate the blackboard according to
the distributed shared memory model. In this model, each node has local access to all the
process state variables that it requires. Those variables that are remote have a local image that
is updated automatically by an autonomous communication system (Fig. 15).
We call this replicated blackboard the Real-time Data Base (RTDB), (Almeida et al., 2004)
which holds the state data of each agent together with local images of the relevant state data
of the other team members. A specialized communication system triggers the required trans-
actions at an adequate rate to guarantee the freshness of the data.
Generally, the information within the RTDB holds the absolute positions and postures of all
players, as well as the position of the ball, goal areas and corners in global coordinates. This
approach allows a robot to easily use the other robots sensing capabilities to complement its
own. For example, if a robot temporarily loses track of the ball, it might use the position of
the ball as detected by another robot.

CAMBADA soccer team: from robot architecture to multiagent coordination 33

4.3 Obstacle selection and identification
With the objective of refining the information of the obstacles, and have more meaningful and
human readable information, the obstacles are selected and a matching is attempted, in order
to try to identify them as team mates or opponents.
Due to the weak precision at long distances, a first selection of the obstacles is made by se-
lecting only the obstacles closer than a given distance as available for identification (currently
5 meters). Also, obstacles that are smaller than 10 centimeters wide or outside the field of
play margin are ignored. This is done because the MSL robots are rather big, and in game
situations small obstacles are not present inside the field. Also, it would be pointless to pay
attention to obstacles that are outside the field of play, since the surrounding environment is
completely ignorable for the game development.
To be able to distinguish obstacles, to identify which of them are team mates and which are
opponent robots, a fusion between the own visual information of the obstacles and the shared
team mates positions is made. By creating a circle around the team mate positions, a matching
of the estimated center of visible obstacle is made (Fig. 13), and the obstacle is identified as the
corresponding team mate in case of a positive matching (Figs. 14c)). This matching consists
on the existence of interception points between the team mate circle and the obstacle circle or
if the obstacle center is inside the team mate circle (the obstacle circle can be smaller, and thus
no interception points would exist).

Fig. 13. When a CAMBADA robot is on, the estimated centers of the detected obstacles are
compared with the known position of the team mates and tested; the left obstacle is within
the CAMBADA acceptance radius, the right one is not.

Since the obstacles detected can be large blobs, the above described identification algorithm
cannot be applied directly to the visually detected obstacles. If the detected obstacle fulfills
the minimum size requisites already described, it is selected as candidate for being a robot
obstacle. Its size is evaluated and classified as robot if it does not exceed the maximum size
allowed for MSL robots (MSL Technical Committee 1997-2009, 2008) (Fig. 14a) and 14b)).
If the obstacle exceeds the maximum size of an MSL robot, a division of the obstacle is made,
by analyzing its total size and verifying how many robots are in that obstacle. This is a com-
mon situation, robots clashing together and thus creating a compact black blob, originating a
big obstacle. After completing the division, each obstacle is processed as described before.

a) b) c)

Fig. 14. Illustration of single obstacles identification. In a): image acquired from the robot
camera (obstacles for identification are marked); In b): the same image after processing; In c):
image of the control station. Each robot represents itself and robot 6 (the lighter gray) draws
all the 5 obstacles evaluated (squares with the same gray scale as itself). All team mates were
correctly identified (marked by its corresponding number over the obstacle square) and the
opponent is also represented with no number.

5. Real-time database

Similarly to other teams, our team software architecture emphasizes cooperative sensing as a
key capability to support the behavioral and decision-making processes in the robotic play-
ers. A common technique to achieve cooperative sensing is by means of a blackboard, which
is a database where each agent publishes the information that is generated internally and
that maybe requested by others. However, typical implementations of this technique seldom
account for the temporal validity (coherence) of the contained information with adequate ac-
curacy, since the timing information delivered by general-purpose operating systems such as
Linux is rather coarse. This is a problem when robots move fast (e.g. above 1m/s) because
their state information degrades faster, too, and temporal validity of state data becomes of the
same order of magnitude, or lower, than the operating system timing accuracy.
Another problem of typical implementations is that they are based on the client-server model
and thus, when a robot needs a datum, it has to communicate with the server holding the
blackboard, introducing an undesirable delay. To avoid this delay, we use two features: firstly,
the dissemination of the local state data is carried out using broadcasts, according to the
producer-consumer cooperation model, secondly, we replicate the blackboard according to
the distributed shared memory model. In this model, each node has local access to all the
process state variables that it requires. Those variables that are remote have a local image that
is updated automatically by an autonomous communication system (Fig. 15).
We call this replicated blackboard the Real-time Data Base (RTDB), (Almeida et al., 2004)
which holds the state data of each agent together with local images of the relevant state data
of the other team members. A specialized communication system triggers the required trans-
actions at an adequate rate to guarantee the freshness of the data.
Generally, the information within the RTDB holds the absolute positions and postures of all
players, as well as the position of the ball, goal areas and corners in global coordinates. This
approach allows a robot to easily use the other robots sensing capabilities to complement its
own. For example, if a robot temporarily loses track of the ball, it might use the position of
the ball as detected by another robot.

Robot Soccer34

Fig. 15. Each agent broadcasts periodically its subset state data that might be required by other
agents.

5.1 RTDB implementation
The RTDB is implemented over a block of shared memory. It contains two main areas: a
private area for local information, only, i.e., which is not to be broadcast to other robots; and
a shared area with global information. The shared area is further divided into a number of
areas, one corresponding to each agent in the team. One of the areas is written by the agent
itself and broadcast to the others while the remaining areas are used to store the information
received from the other agents.
The allocation of shared memory is carried out by means of a specific function call,
DB_init(), called once by every Linux process that needs access to the RTDB. The actual
allocation is executed only by the first such call. Subsequent calls just return the shared mem-
ory block handler and increment a process count. Conversely, the memory space used by the
RTDB is freed using the function call DB_free() that decreases the process count and, when
zero, releases the shared memory block.
The RTDB is accessed concurrently from Linux processes that capture and process images
and implement complex behaviors, and from tasks that manage the communication both with
the lower-level control layer (through the CAN gateway) and with the other agents (through
the wireless interface). The Linux processes access the RTDB with local non-blocking func-
tion calls, DB_put() and DB_get() that allow writing and reading records, respectively.
DB_get() further requires the specification of the agent from which the item to be read be-
longs to, in order to identify the respective area in the database.

6. Communications

In the MSL, the agents communicate using an IEEE 802.11 network, sharing a single channel
with the opposing team and using managed communication (through the access point), i.e.,
using a base station, and it is constrained to using a single channel, shared by, at least, both
teams in each game. In order to improve the timeliness of the communications, our team uses
a further transmission control protocol that minimizes collisions of transmissions within the
team. Each robot regularly broadcasts its own data while the remaining ones receive such
data and update their local structures. Beyond the robotic agents, there is also a coaching and
monitoring station connected to the team that allows following the evolution of the robots
status on-line and issuing high level team coordination commands.

As referred above, agents communicate using an IEEE 802.11 network, sharing a single chan-
nel with the opposing team and using managed communication (through the access point).
This raises several difficulties because the access to the channel cannot be controlled and the
available bandwidth is roughly divided by 2.
Therefore, the only alternative left for each team is to adapt to the current channel conditions
and reduce access collisions among team members. This is achieved using an adaptive TDMA
transmission control, with a predefined round period called team update period (Ttup) that
sets the responsiveness of the global communication. Within such round, there is one single
slot allocated to each team member so that all slots in the round are separated as much as
possible (Fig. 16). This allows calculating the target inter-slot period Txwin as Ttup

N , where N is
the number of running agents.

Fig. 16. TDMA round indicating the slots allocated to each robot.

The transmissions generated by each running agent are scheduled within the communication
process, according to the production periods specified in the RTDB records. Currently a rate-
monotonic scheduler is used. When the respective TDMA slot comes, all currently scheduled
transmissions are piggybacked on one single 802.11 frame and sent to the channel. The re-
quired synchronization is based on the reception of the frames sent by the other agents during
Ttup. With the reception instants of those frames and the target inter-slot period Txwin it is
possible to generate the next transmission instant. If these delays affect all TDMA frames in
a round, then the whole round is delayed from then on, thus its adaptive nature. Figure 17
shows a TDMA round indicating the slots allocated to each agent and the adaptation of the
round duration.

Fig. 17. An adaptive TDMA round.

When a robot transmits at time tnow it sets its own transmission instant tnext = tnow + Ttup, i.e.
one round after. However, it continues monitoring the arrival of the frames from the other
robots. When the frame from robot k arrives, the delay δk of the effective reception instant
with respect to the expected instant is calculated. If this delay is within a validity window
[0, ∆], with ∆ being a global configuration parameter, the next transmission instant is delayed
according to the longest such delay among the frames received in one round (Fig. 17), i.e.,

tnext = tnow + Ttup + maxk(δk)

On the other hand, if the reception instant is outside that validity window, or the frame is not
received, then (δk) is set to 0 and does not contribute to update tnext.

CAMBADA soccer team: from robot architecture to multiagent coordination 35

Fig. 15. Each agent broadcasts periodically its subset state data that might be required by other
agents.

5.1 RTDB implementation
The RTDB is implemented over a block of shared memory. It contains two main areas: a
private area for local information, only, i.e., which is not to be broadcast to other robots; and
a shared area with global information. The shared area is further divided into a number of
areas, one corresponding to each agent in the team. One of the areas is written by the agent
itself and broadcast to the others while the remaining areas are used to store the information
received from the other agents.
The allocation of shared memory is carried out by means of a specific function call,
DB_init(), called once by every Linux process that needs access to the RTDB. The actual
allocation is executed only by the first such call. Subsequent calls just return the shared mem-
ory block handler and increment a process count. Conversely, the memory space used by the
RTDB is freed using the function call DB_free() that decreases the process count and, when
zero, releases the shared memory block.
The RTDB is accessed concurrently from Linux processes that capture and process images
and implement complex behaviors, and from tasks that manage the communication both with
the lower-level control layer (through the CAN gateway) and with the other agents (through
the wireless interface). The Linux processes access the RTDB with local non-blocking func-
tion calls, DB_put() and DB_get() that allow writing and reading records, respectively.
DB_get() further requires the specification of the agent from which the item to be read be-
longs to, in order to identify the respective area in the database.

6. Communications

In the MSL, the agents communicate using an IEEE 802.11 network, sharing a single channel
with the opposing team and using managed communication (through the access point), i.e.,
using a base station, and it is constrained to using a single channel, shared by, at least, both
teams in each game. In order to improve the timeliness of the communications, our team uses
a further transmission control protocol that minimizes collisions of transmissions within the
team. Each robot regularly broadcasts its own data while the remaining ones receive such
data and update their local structures. Beyond the robotic agents, there is also a coaching and
monitoring station connected to the team that allows following the evolution of the robots
status on-line and issuing high level team coordination commands.

As referred above, agents communicate using an IEEE 802.11 network, sharing a single chan-
nel with the opposing team and using managed communication (through the access point).
This raises several difficulties because the access to the channel cannot be controlled and the
available bandwidth is roughly divided by 2.
Therefore, the only alternative left for each team is to adapt to the current channel conditions
and reduce access collisions among team members. This is achieved using an adaptive TDMA
transmission control, with a predefined round period called team update period (Ttup) that
sets the responsiveness of the global communication. Within such round, there is one single
slot allocated to each team member so that all slots in the round are separated as much as
possible (Fig. 16). This allows calculating the target inter-slot period Txwin as Ttup

N , where N is
the number of running agents.

Fig. 16. TDMA round indicating the slots allocated to each robot.

The transmissions generated by each running agent are scheduled within the communication
process, according to the production periods specified in the RTDB records. Currently a rate-
monotonic scheduler is used. When the respective TDMA slot comes, all currently scheduled
transmissions are piggybacked on one single 802.11 frame and sent to the channel. The re-
quired synchronization is based on the reception of the frames sent by the other agents during
Ttup. With the reception instants of those frames and the target inter-slot period Txwin it is
possible to generate the next transmission instant. If these delays affect all TDMA frames in
a round, then the whole round is delayed from then on, thus its adaptive nature. Figure 17
shows a TDMA round indicating the slots allocated to each agent and the adaptation of the
round duration.

Fig. 17. An adaptive TDMA round.

When a robot transmits at time tnow it sets its own transmission instant tnext = tnow + Ttup, i.e.
one round after. However, it continues monitoring the arrival of the frames from the other
robots. When the frame from robot k arrives, the delay δk of the effective reception instant
with respect to the expected instant is calculated. If this delay is within a validity window
[0, ∆], with ∆ being a global configuration parameter, the next transmission instant is delayed
according to the longest such delay among the frames received in one round (Fig. 17), i.e.,

tnext = tnow + Ttup + maxk(δk)

On the other hand, if the reception instant is outside that validity window, or the frame is not
received, then (δk) is set to 0 and does not contribute to update tnext.

Robot Soccer36

The practical effect of the protocol is that the transmission instant of a frame in each round
may be delayed up to ∆ with respect to the predefined round period Ttup. Therefore, the
effective round period will vary between Ttup and Ttup + ∆. When a robot does not receive
any frame in a round within the respective validity windows, it updates tnext using a robot
specific configuration parameter βk in the following way

tnext = tnow + Ttup + βk

with 0 ≤ βk ≤ ∆.
This is used to prevent a possible situation in which the robots could all remain transmitting
but unsynchronized, i.e. outside the validity windows of each other, and with the same period
Ttup. By imposing different periods in this situation we force the robots to resynchronize
within a limited number of rounds because the transmissions will eventually fall within the
validity windows of each other.
One of the limitations of the adaptive TDMA protocol as proposed is that the number of team
members was fixed, even if the agents were not active, causing the use of Txwin values smaller
than needed. Notice that a smaller Txwin increases the probability of collisions in the team.
Therefore, a self-configuration capability was added to the protocol, to cope with variable
number of team members. This is the specific mechanism described in this section, which
supports the dynamic insertion / removal of agents in the protocol. Currently, the Ttup period
is still constant but it is divided by the number of running agents at each instant, maximizing
the inter-slot separation between agents Txwin at each moment.
However, the number of active team members is a global variable that must be consistent so
that the TDMA round is divided in the same number of slots in all agents. To support the
synchronous adaptation of the current number of active team members a membership vector
was added to the frame transmitted by each agent in each round, containing its perception of
the team status.
When a new agent arrives it starts to transmit its periodic information in an unsynchronized
mode. In this mode all the agents, including the new one, continue updating its membership
vector with the received frames and continue refreshing the RTDB shared areas, too. The Txwin
value, however, is not yet adapted and thus the new agent has no slot in the round. When all
the team members reach the same membership vector, the number of active team members
is updated, so as the inter-slot period Txwin. The protocol enters then in the scan mode in
which the agents, using their slightly different values of Ttup, rotate their relative phases in
the round until they find their slots. From then on, all team members are again synchronized.
The removal of an absent agent uses a similar process. After a predefined number of rounds
without receiving frames from a given agent, each remaining member removes it from the
membership vector. The change in the vector leads to a new agreement process similar to
described above.
More details about the communication process in the CAMBADA team, as well as in the MSL,
can be found in (Almeida et al., 2004; Santos et al., 2009; 2007).

7. Coordination and strategy

In CAMBADA each robot is an independent agent and coordinates its actions with its team-
mates through communication and information exchange. The resulting behavior of the indi-
vidual robot should be integrated into the global team strategy, thus resulting in cooperative
actions by all the robots. This is done by the use of roles and behaviors that define each robot
attitude in the field and resulting individual actions. Behaviors are the basic sensorimotor

skills of the robot, like moving to a specific position or kicking the ball, while roles select the
active behavior at each time step, according to the attitude in cause.
For open play, CAMBADA uses an implicit coordination model based on notions like strategic
positioning, role and formation. These notions and related algorithms have been introduced
and/or extensively explored in the RoboCup Soccer Simulation League (Reis et al., 2001; Stone
and Veloso, 1999). In order to apply such algorithms in the MSL, several changes had to be
introduced.
A formation defines a movement model for the robotic players. Formations are sets of strate-
gic positioning, where each positioning is a movement model for a specific player. The as-
signment of players to specific positioning is dynamic, and it is done according to some rules
concerning ball and team mates positions. Each positioning is specified by three elements:
Home position, which is the target position of the player when the ball is at the centre of the
field, Region of the field where the player can move, and Ball attraction parameters, used to
compute the target position of the player in each moment based on the current ball position
All these items of information are given in a strategy configuration file. Using different home
positions and attraction parameters for the positioning allows a simple definition of defen-
sive, wing, midfielder and attack strategic movement models. Figure 18 shows an example of
formation of the team for several ball positions.

Fig. 18. CAMBADA Robots in some different game situations.

During open play, the CAMBADA agents use only three roles: RoleGoalie,
RoleMidfielder and RoleStriker. The RoleGoalie is activated for the goalkeeper.
RoleMidfielder moves according to its strategic positioning, defined as stated earlier.
RoleStriker is an active player role, which substitutes the highest priority position of the
formation, the one closer to the ball. It tries to catch the ball and score goals.

CAMBADA soccer team: from robot architecture to multiagent coordination 37

The practical effect of the protocol is that the transmission instant of a frame in each round
may be delayed up to ∆ with respect to the predefined round period Ttup. Therefore, the
effective round period will vary between Ttup and Ttup + ∆. When a robot does not receive
any frame in a round within the respective validity windows, it updates tnext using a robot
specific configuration parameter βk in the following way

tnext = tnow + Ttup + βk

with 0 ≤ βk ≤ ∆.
This is used to prevent a possible situation in which the robots could all remain transmitting
but unsynchronized, i.e. outside the validity windows of each other, and with the same period
Ttup. By imposing different periods in this situation we force the robots to resynchronize
within a limited number of rounds because the transmissions will eventually fall within the
validity windows of each other.
One of the limitations of the adaptive TDMA protocol as proposed is that the number of team
members was fixed, even if the agents were not active, causing the use of Txwin values smaller
than needed. Notice that a smaller Txwin increases the probability of collisions in the team.
Therefore, a self-configuration capability was added to the protocol, to cope with variable
number of team members. This is the specific mechanism described in this section, which
supports the dynamic insertion / removal of agents in the protocol. Currently, the Ttup period
is still constant but it is divided by the number of running agents at each instant, maximizing
the inter-slot separation between agents Txwin at each moment.
However, the number of active team members is a global variable that must be consistent so
that the TDMA round is divided in the same number of slots in all agents. To support the
synchronous adaptation of the current number of active team members a membership vector
was added to the frame transmitted by each agent in each round, containing its perception of
the team status.
When a new agent arrives it starts to transmit its periodic information in an unsynchronized
mode. In this mode all the agents, including the new one, continue updating its membership
vector with the received frames and continue refreshing the RTDB shared areas, too. The Txwin
value, however, is not yet adapted and thus the new agent has no slot in the round. When all
the team members reach the same membership vector, the number of active team members
is updated, so as the inter-slot period Txwin. The protocol enters then in the scan mode in
which the agents, using their slightly different values of Ttup, rotate their relative phases in
the round until they find their slots. From then on, all team members are again synchronized.
The removal of an absent agent uses a similar process. After a predefined number of rounds
without receiving frames from a given agent, each remaining member removes it from the
membership vector. The change in the vector leads to a new agreement process similar to
described above.
More details about the communication process in the CAMBADA team, as well as in the MSL,
can be found in (Almeida et al., 2004; Santos et al., 2009; 2007).

7. Coordination and strategy

In CAMBADA each robot is an independent agent and coordinates its actions with its team-
mates through communication and information exchange. The resulting behavior of the indi-
vidual robot should be integrated into the global team strategy, thus resulting in cooperative
actions by all the robots. This is done by the use of roles and behaviors that define each robot
attitude in the field and resulting individual actions. Behaviors are the basic sensorimotor

skills of the robot, like moving to a specific position or kicking the ball, while roles select the
active behavior at each time step, according to the attitude in cause.
For open play, CAMBADA uses an implicit coordination model based on notions like strategic
positioning, role and formation. These notions and related algorithms have been introduced
and/or extensively explored in the RoboCup Soccer Simulation League (Reis et al., 2001; Stone
and Veloso, 1999). In order to apply such algorithms in the MSL, several changes had to be
introduced.
A formation defines a movement model for the robotic players. Formations are sets of strate-
gic positioning, where each positioning is a movement model for a specific player. The as-
signment of players to specific positioning is dynamic, and it is done according to some rules
concerning ball and team mates positions. Each positioning is specified by three elements:
Home position, which is the target position of the player when the ball is at the centre of the
field, Region of the field where the player can move, and Ball attraction parameters, used to
compute the target position of the player in each moment based on the current ball position
All these items of information are given in a strategy configuration file. Using different home
positions and attraction parameters for the positioning allows a simple definition of defen-
sive, wing, midfielder and attack strategic movement models. Figure 18 shows an example of
formation of the team for several ball positions.

Fig. 18. CAMBADA Robots in some different game situations.

During open play, the CAMBADA agents use only three roles: RoleGoalie,
RoleMidfielder and RoleStriker. The RoleGoalie is activated for the goalkeeper.
RoleMidfielder moves according to its strategic positioning, defined as stated earlier.
RoleStriker is an active player role, which substitutes the highest priority position of the
formation, the one closer to the ball. It tries to catch the ball and score goals.

Robot Soccer38

The striker activates several behaviors that try to engage the ball (bMove, bMoveToAbs), get
into the opponent’s side avoiding obstacles (bDribble) and shoot to the goal (bKick). The
bKick behavior can perform 180◦ turns while keeping possession of the ball.
In a consistent role assignment, only one player at a time takes on the role of striker. The other
teammates take on RoleMidfielder (Lau et al., 2008). Midfielders maintain their target po-
sitions as determined by their current positioning assignments and the current ball position.
As a result, they accompany the striker as it plays along the field, without interfering. In case
the ball is captured by the opponent, some of the midfielders hopefully will be in a good posi-
tion to become the new striker. Occasionally, midfielders can take a more active behavior. This
happens when the striker can’t progress with the ball towards the opponent goal according
to defined parameters. In this case, the closest midfielder to the ball also approaches the ball,
acting as backup striker.
The role and position assignment in open play is based on considering different priorities for
the different roles and positionings, so that the most important ones are always covered. The
positioning is dynamically defined (not considering the goal keeper, which has a fixed role) by
evaluating the distances of each of the robots to each of the target positions. Then the striker
role is assigned to the robot that is closest to the highest priority strategic positioning, which
is in turn the closest to the ball. The second position to be assigned is the defense position,
then the two side positions. This algorithm results in the striker role having top priority,
followed by the defensive positioning, followed by the wingers. The assignment algorithm
may be performed by the coach agent in the base station, ensuring a coordinated assignment
result, or locally by each robot, in which case the inconsistencies of world models may lead to
unsynchronized assignments.
More explicit coordination is present on passes and setplays. Passing is a coordinated behav-
ior involving two players, in which one kicks the ball towards the other, so that the other can
continue with the ball. In the general case, the player running RoleStriker may decide to
take on RolePasser, choosing the player to receive the ball. After being notified, the second
player takes on the RoleReceiver. These roles have not been used yet for open play in in-
ternational competition games, but they have been demonstrated in RoboCup 2008 MSL Free
Technical Challenge and are used in a similar way in ball stoppage situations.
Another methodology implemented in CAMBADA is the use of coordinated procedures for
setplays, i.e. situations when the ball is introduced in open play after a stoppage, such as
kick-off, throw-in, corner kick, free kick and goal kick. Setplay procedures define a sequence
of behaviors for several robots in a coordinated way. RoleReplacer and RoleReceiver
are two exclusive roles used to overcome the MSL indirect rule in the case of indirect setplays
against the opponent. The replacer passes the ball to the receiver which tries to score a goal,
while the replacer assumes a position to defend the team mate shooting line. They position
themselves as close to the shoot alignment as possible, so that a shot can be taken soon after
the pass. If desired, a second receiver RoleReceiver2 can be assigned to provide a second
pass option for the replacer.
Finally, in the case of setplays against CAMBADA, RoleBarrier is used to protect the goal
from a direct shoot. The line connecting the ball to the own goal defines the barrier positions.
One player places itself on this line, as close to the ball as it is allowed. Two players place
themselves near the penalty area. One player is placed near the ball (as much as allowed), 45◦

degrees from the mentioned line, so that it can observe the ball coming into play and report
that to team mates.

8. The Base Station Application

In robotic soccer, the game is refereed by a human and his orders are communicated to the
teams using an application called “Referee Box”. No human interference is allowed during
the games except for removing malfunctioning robots and re-entering robots in the game. The
base station, a software application as described in this section, has a determinant role during
the development of a robotic soccer team and also during a game. This application must
control the agents interpreting and sending high level instructions, like Start or Stop, and
monitor information of the robots, for example the position and velocity, allowing easily to
attest the feasibility of the robots behavior.
The base station application must provide a set of tools to perform the activities mentioned
above. Regarding the control activity, this application must allow high level control of the
robots sending basic commands/information in particular the run and stop commands, play
mode, role assignment, etc.
This application must also provide a high level monitoring of the robots internal states,
namely the position in the field, velocity, battery charge, among other relevant information
related with the robots and the game.
Furthermore, this application should provide an easy mechanism that can be used to easily
show a specific behavior of the robot, allowing debugging.
Besides that, the base station has a fundamental role during a game, while receiving the com-
mands from the referee box, translating them to internal game states and broadcasting the
results to the robots. During a game, no human interference is allowed except for removing
malfunctioning robots and re-entering robots in the game.
The role of the base station during these phases, development and games, demands the ful-
fillment of some requirements, being the most important the following:

Reliability / Stability: during the game, the base station is not accessible for human interaction
of any kind and thus, it has to be a very robust application, all team depends on that.

Usability: the information displayed in the base station should be easy to interpret, allowing,
for instance, a fast detection of a problem in a robot. It should be possible to choose
different levels of details in the displayed information. Moreover, the base station has
to be easy to use, allowing an intuitive management of the robots.

Adaptability: a robotic soccer team is in a permanent development stage, which may lead to
significant changes within a short period of time.

Specifically to each phase the base station should provide the following features:

• Development phase

Manual role assignment: acting as a cooperative team, each robot has a specific role
which is, during a real game, dynamically assigned. In the development phase, it
should be possible to manually assign a role to a specific robot.

Local referee box: the base station should provide an interface widget to emulate a real
referee box in order to simulate events of a real game.

Visualization Tool: the application should provide a representation of the field and the
robots in that context. Moreover, some visual information should be attached in
order to improve the visual perception of the internal states of each robot.

CAMBADA soccer team: from robot architecture to multiagent coordination 39

The striker activates several behaviors that try to engage the ball (bMove, bMoveToAbs), get
into the opponent’s side avoiding obstacles (bDribble) and shoot to the goal (bKick). The
bKick behavior can perform 180◦ turns while keeping possession of the ball.
In a consistent role assignment, only one player at a time takes on the role of striker. The other
teammates take on RoleMidfielder (Lau et al., 2008). Midfielders maintain their target po-
sitions as determined by their current positioning assignments and the current ball position.
As a result, they accompany the striker as it plays along the field, without interfering. In case
the ball is captured by the opponent, some of the midfielders hopefully will be in a good posi-
tion to become the new striker. Occasionally, midfielders can take a more active behavior. This
happens when the striker can’t progress with the ball towards the opponent goal according
to defined parameters. In this case, the closest midfielder to the ball also approaches the ball,
acting as backup striker.
The role and position assignment in open play is based on considering different priorities for
the different roles and positionings, so that the most important ones are always covered. The
positioning is dynamically defined (not considering the goal keeper, which has a fixed role) by
evaluating the distances of each of the robots to each of the target positions. Then the striker
role is assigned to the robot that is closest to the highest priority strategic positioning, which
is in turn the closest to the ball. The second position to be assigned is the defense position,
then the two side positions. This algorithm results in the striker role having top priority,
followed by the defensive positioning, followed by the wingers. The assignment algorithm
may be performed by the coach agent in the base station, ensuring a coordinated assignment
result, or locally by each robot, in which case the inconsistencies of world models may lead to
unsynchronized assignments.
More explicit coordination is present on passes and setplays. Passing is a coordinated behav-
ior involving two players, in which one kicks the ball towards the other, so that the other can
continue with the ball. In the general case, the player running RoleStriker may decide to
take on RolePasser, choosing the player to receive the ball. After being notified, the second
player takes on the RoleReceiver. These roles have not been used yet for open play in in-
ternational competition games, but they have been demonstrated in RoboCup 2008 MSL Free
Technical Challenge and are used in a similar way in ball stoppage situations.
Another methodology implemented in CAMBADA is the use of coordinated procedures for
setplays, i.e. situations when the ball is introduced in open play after a stoppage, such as
kick-off, throw-in, corner kick, free kick and goal kick. Setplay procedures define a sequence
of behaviors for several robots in a coordinated way. RoleReplacer and RoleReceiver
are two exclusive roles used to overcome the MSL indirect rule in the case of indirect setplays
against the opponent. The replacer passes the ball to the receiver which tries to score a goal,
while the replacer assumes a position to defend the team mate shooting line. They position
themselves as close to the shoot alignment as possible, so that a shot can be taken soon after
the pass. If desired, a second receiver RoleReceiver2 can be assigned to provide a second
pass option for the replacer.
Finally, in the case of setplays against CAMBADA, RoleBarrier is used to protect the goal
from a direct shoot. The line connecting the ball to the own goal defines the barrier positions.
One player places itself on this line, as close to the ball as it is allowed. Two players place
themselves near the penalty area. One player is placed near the ball (as much as allowed), 45◦

degrees from the mentioned line, so that it can observe the ball coming into play and report
that to team mates.

8. The Base Station Application

In robotic soccer, the game is refereed by a human and his orders are communicated to the
teams using an application called “Referee Box”. No human interference is allowed during
the games except for removing malfunctioning robots and re-entering robots in the game. The
base station, a software application as described in this section, has a determinant role during
the development of a robotic soccer team and also during a game. This application must
control the agents interpreting and sending high level instructions, like Start or Stop, and
monitor information of the robots, for example the position and velocity, allowing easily to
attest the feasibility of the robots behavior.
The base station application must provide a set of tools to perform the activities mentioned
above. Regarding the control activity, this application must allow high level control of the
robots sending basic commands/information in particular the run and stop commands, play
mode, role assignment, etc.
This application must also provide a high level monitoring of the robots internal states,
namely the position in the field, velocity, battery charge, among other relevant information
related with the robots and the game.
Furthermore, this application should provide an easy mechanism that can be used to easily
show a specific behavior of the robot, allowing debugging.
Besides that, the base station has a fundamental role during a game, while receiving the com-
mands from the referee box, translating them to internal game states and broadcasting the
results to the robots. During a game, no human interference is allowed except for removing
malfunctioning robots and re-entering robots in the game.
The role of the base station during these phases, development and games, demands the ful-
fillment of some requirements, being the most important the following:

Reliability / Stability: during the game, the base station is not accessible for human interaction
of any kind and thus, it has to be a very robust application, all team depends on that.

Usability: the information displayed in the base station should be easy to interpret, allowing,
for instance, a fast detection of a problem in a robot. It should be possible to choose
different levels of details in the displayed information. Moreover, the base station has
to be easy to use, allowing an intuitive management of the robots.

Adaptability: a robotic soccer team is in a permanent development stage, which may lead to
significant changes within a short period of time.

Specifically to each phase the base station should provide the following features:

• Development phase

Manual role assignment: acting as a cooperative team, each robot has a specific role
which is, during a real game, dynamically assigned. In the development phase, it
should be possible to manually assign a role to a specific robot.

Local referee box: the base station should provide an interface widget to emulate a real
referee box in order to simulate events of a real game.

Visualization Tool: the application should provide a representation of the field and the
robots in that context. Moreover, some visual information should be attached in
order to improve the visual perception of the internal states of each robot.

Robot	Soccer40

Multi-windows solution: the application should be a multi-window environment, al-
lowing the user to choose between different levels of information. At least, three
different levels of information should be provided: a work level that presents the
controls of the robots and basic status information; a visual level that presents
visual information of the position of the robots and, finally a detailed level that
shows all the information related to the robots.

Adaptable windows geometry: the multi-windows system should adapt to monitors with
different resolutions. According to the new MSL rules, the base stations of each
team must use an external monitor provided by the organizing committee.

• Game situation

Robust communication skills: the correct operation of the team during the game is fully
dependent on the communication between the robots, the base station and the
referee box. Hence, the base station should provide a robust communication layer.

Automatic processing of the game states: the base station should process the commands
received from the referee box allowing the robots to change their internal game
states accordingly. One specific action should be the changing of the field side at
half time.

8.1 The CAMBADA base station approach
Regarding the challenges and requirements mentioned before, we will detail the used ap-
proaches in the conception of the base station application. We have divided, once again, the
description in the mentioned activities in order to more precisely describe the features imple-
mented for each one.

8.1.1 Performing control
Merging the available methods provided by the communication protocol of the team we were
able to implement a widget that allows an high level control of the robots. All the actions
were grouped to each robot and are accessible in a delimited space in order to improve the
usability. These actions represents the enable/disable of each robot, the team color and goal
color (in spite of the current rules don’t specify goal colors, we decide keep it in order to
facilitate the monitoring process), the role of the player, the re-location button, the start and
stop that controls remotely the software in each robot and the bottom to launch remotely the
agent.
Additionally, were created two other widgets, one to control all the team and one that imple-
ments a local referee box.

8.1.2 Monitoring
Regarding the monitoring activity, we developed a visualization widget that makes a rep-
resentation of the field and the robots. This visualization widget shows the robots number,
position and orientation and the ball that each robot view. Additionally was implemented
a mechanism that allows to change the orientation of the field, in order to turn possible to
monitor the robots in any position of the field, increasing the usability.
The base station has three separated windows representing three different levels of informa-
tion. The main level shows the controls and relevant information about the robots state, other
window only shows the visualization widget (this is the window to monitor the game, ac-
cording with the new rules) and finally we implemented a window with full information of

the robots, all the information available in the RTDB is shown in this window. In Fig. 19 is
shown the main window.

Fig. 19. The base station Main Window.

In order to perform debugging in the development phase, it was implemented, in the visual-
ization widget, a debug mechanism. Is possible to enable this mechanism writing in a specific
field of the RTDB. This field is a vector with two dimensions representing a position on the
game field. There are one point of debug per robot and if enabled in the base station this point
can be shown in the game field together with the representation of the robots. This point is
free to use and can represent whatever the developer wants.
Additionally, the third window, considered as the full information window, allows to perform
debug to the robot state, more precisely in the transition between the roles and behaviors
states.
All the project were developed using the Qt library using a modular architecture. This in-
creased the reliability and stability allowing to test each module before the integration in the
project.

9. Conclusions

This chapter presented the new advances in several areas that involves the development of an
MSL team of soccer robots, namely the mechanical structure of the robot, its hardware archi-
tecture and controllers, the software development in areas such as image processing, sensor
and information fusion, reasoning and control, cooperative sensing approach, communica-
tions among robots and some other auxiliary software.
The CAMBADA soccer robots have a hierarchical distributed hardware architecture with a
central computer to carry out vision sensing, global coordination and deliberative functions
and a low-level distributed sensing and actuation system based on a set of simple micro-
controller nodes interconnected with a Controller Area Network (CAN). The advantages of

CAMBADA	soccer	team:	from	robot	architecture	to	multiagent	coordination 41

Multi-windows solution: the application should be a multi-window environment, al-
lowing the user to choose between different levels of information. At least, three
different levels of information should be provided: a work level that presents the
controls of the robots and basic status information; a visual level that presents
visual information of the position of the robots and, finally a detailed level that
shows all the information related to the robots.

Adaptable windows geometry: the multi-windows system should adapt to monitors with
different resolutions. According to the new MSL rules, the base stations of each
team must use an external monitor provided by the organizing committee.

• Game situation

Robust communication skills: the correct operation of the team during the game is fully
dependent on the communication between the robots, the base station and the
referee box. Hence, the base station should provide a robust communication layer.

Automatic processing of the game states: the base station should process the commands
received from the referee box allowing the robots to change their internal game
states accordingly. One specific action should be the changing of the field side at
half time.

8.1 The CAMBADA base station approach
Regarding the challenges and requirements mentioned before, we will detail the used ap-
proaches in the conception of the base station application. We have divided, once again, the
description in the mentioned activities in order to more precisely describe the features imple-
mented for each one.

8.1.1 Performing control
Merging the available methods provided by the communication protocol of the team we were
able to implement a widget that allows an high level control of the robots. All the actions
were grouped to each robot and are accessible in a delimited space in order to improve the
usability. These actions represents the enable/disable of each robot, the team color and goal
color (in spite of the current rules don’t specify goal colors, we decide keep it in order to
facilitate the monitoring process), the role of the player, the re-location button, the start and
stop that controls remotely the software in each robot and the bottom to launch remotely the
agent.
Additionally, were created two other widgets, one to control all the team and one that imple-
ments a local referee box.

8.1.2 Monitoring
Regarding the monitoring activity, we developed a visualization widget that makes a rep-
resentation of the field and the robots. This visualization widget shows the robots number,
position and orientation and the ball that each robot view. Additionally was implemented
a mechanism that allows to change the orientation of the field, in order to turn possible to
monitor the robots in any position of the field, increasing the usability.
The base station has three separated windows representing three different levels of informa-
tion. The main level shows the controls and relevant information about the robots state, other
window only shows the visualization widget (this is the window to monitor the game, ac-
cording with the new rules) and finally we implemented a window with full information of

the robots, all the information available in the RTDB is shown in this window. In Fig. 19 is
shown the main window.

Fig. 19. The base station Main Window.

In order to perform debugging in the development phase, it was implemented, in the visual-
ization widget, a debug mechanism. Is possible to enable this mechanism writing in a specific
field of the RTDB. This field is a vector with two dimensions representing a position on the
game field. There are one point of debug per robot and if enabled in the base station this point
can be shown in the game field together with the representation of the robots. This point is
free to use and can represent whatever the developer wants.
Additionally, the third window, considered as the full information window, allows to perform
debug to the robot state, more precisely in the transition between the roles and behaviors
states.
All the project were developed using the Qt library using a modular architecture. This in-
creased the reliability and stability allowing to test each module before the integration in the
project.

9. Conclusions

This chapter presented the new advances in several areas that involves the development of an
MSL team of soccer robots, namely the mechanical structure of the robot, its hardware archi-
tecture and controllers, the software development in areas such as image processing, sensor
and information fusion, reasoning and control, cooperative sensing approach, communica-
tions among robots and some other auxiliary software.
The CAMBADA soccer robots have a hierarchical distributed hardware architecture with a
central computer to carry out vision sensing, global coordination and deliberative functions
and a low-level distributed sensing and actuation system based on a set of simple micro-
controller nodes interconnected with a Controller Area Network (CAN). The advantages of

Robot Soccer42

distributed architectures extend from improved composability, allowing a system to be built
by putting together different subsystems, to higher scalability, allowing to add functionality to
the system by adding more nodes, more flexibility, allowing to reconfigure the system easily,
better maintainability, due to the architecture modularity and easiness of node replacement,
and higher reduction of mutual interference, thus offering a strong potential to support reac-
tive behaviors more efficiently. Moreover, distributed architectures may also provide benefits
in terms of dependability by creating error-containment regions at the nodes and opening the
way for inexpensive spatial replication and fault tolerance.
The vision system of the CAMBADA robots is based on an hybrid system, formed by an om-
nidirectional and a perspective sub-system, that together can analyze the environment around
the robots, both at close and long distances. We presented in this chapter several algorithms
for the calibration of the most important parameters of the vision system and we propose
efficient color-based algorithms for object detection. Moreover, we proposed a promising so-
lution for the detection of arbitrary FIFA balls, as demonstrated by the first place obtained in
the mandatory technical challenge in the Robocup 2009, where the robots had to play with an
arbitrary standard FIFA ball.
Sensor and information fusion is important to maintain a more reliable description of the state
of the world. The techniques proposed for information and sensor fusion proved to be effec-
tive in accomplishing their objectives. The Kalman filter allows to filter the noise on the ball
position and provides an important prediction feature which allows fast detection of devia-
tions of the ball path. The linear regression used to estimate the velocity is also effective, and
combined with the deviation detection based on the Kalman filter prediction error, provides
a faster way to recalculate the velocity in the new trajectory. The increasing reliability of the
ball position and velocity lead to a better ball trajectory evaluation. This allowed the devel-
opment of a more effective goalie action, as well as other behaviors, such as ball interception
behaviors and pass reception. The results regarding obstacle identification, provide tools for
an improvement of the overall team coordination and strategic play.
The robots coordination is based on a replicated database, the Real-Time Data Base (RTDB)
that includes local state variables together with images of remote ones. These images are up-
dated transparently to the application software by means of an adequate real-time manage-
ment system. Moreover, the RTDB is accessible to the application using a set of non-blocking
primitives, thus yielding a fast data access.
Regarding the communication between robots, is was developed a wireless communication
protocol that reduces the probability of collisions among the team members. The protocol
called adaptive TDMA, adapts to the current channel conditions, particularly accommodating
periodic interference patterns. It was also developed an extended version of the protocol with
on-line self-configuration capabilities that allow reconfiguring the slots structure of the TDMA
round to the actual number of active team members, further reducing the collision probability.
In the CAMBADA MSL team, each robot is an independent agent and coordinates its actions
with its teammates through communication and information exchange. The resulting behav-
ior of the individual robot should be integrated into the global team strategy, thus resulting in
cooperative actions by all the robots. This is done by the use of roles and behaviors that define
each robot attitude in the field and resulting individual actions. This resulted in a coordinated
behavior of the team that largely contributed to its recent successes.
The base station application has a important role during the development of a robotic soccer
team and also during a game. This chapter presented the approach that was used by the
CAMBADA team in the design of this important application.

The CAMBADA MSL team attained the first place in the MSL at RoboCup 2008 and attained
the third place in the last edition of the MSL at RoboCup 2009. CAMBADA also won the last
three editions of the Portuguese Robotics Open 2007-2009. These results confirm the effective-
ness of the proposed architecture.

10. References

Almeida, L., P. Pedreiras, and J. A. Fonseca (2002). The FTT-CAN protocol: Why and how.
IEEE Transactions on Industrial Electronics 49(6), 1189–1201.

Almeida, L., F. Santos, T. Facchinetti, P. Pedreira, V. Silva, and L. S. Lopes (2004). Coordinating
distributed autonomous agents with a real-time database: The CAMBADA project.
In Proc. of the 19th International Symposium on Computer and Information Sciences, ISCIS
2004, Volume 3280 of Lecture Notes in Computer Science, pp. 878–886. Springer.

Azevedo, J. L., B. Cunha, and L. Almeida (2007). Hierarchical distributed architectures for au-
tonomous mobile robots: a case study. In Proc. of the 12th IEEE Conference on Emerging
Technologies and Factory Automation, ETFA2007, Greece, pp. 973–980.

Bishop, G. and G. Welch (2001). An introduction to the kalman filter. In Proc of SIGGRAPH,
Course 8, Number NC 27599-3175, Chapel Hill, NC, USA.

Blaffert, T., S. Dippel, M. Stahl, and R. Wiemker (2000). The laplace integral for a watershed
segmentation. In Proc. of the International Conference on Image Processing, 2000, Vol-
ume 3, pp. 444–447.

Caleiro, P. M. R., A. J. R. Neves, and A. J. Pinho (2007, June). Color-spaces and color segmen-
tation for real-time object recognition in robotic applications. Revista do DETUA 4(8),
940–945.

Canny, J. F. (1986, November). A computational approach to edge detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence 8(6).

Cunha, B., J. L. Azevedo, N. Lau, and L. Almeida (2007). Obtaining the inverse distance map
from a non-SVP hyperbolic catadioptric robotic vision system. In Proc. of the RoboCup
2007, Atlanta, USA.

Ferrein, A., L. Hermanns, and G. Lakemeyer (2006). Comparing sensor fusion techniques for
ball position estimation. In RoboCup 2005: Robot Soccer World Cup IX, Volume 4020 of
LNCS, pp. 154–165. Springer.

Grimson, W. E. L. and D. P. Huttenlocher (1990). On the sensitivity of the hough transform for
object recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence 12, 1255–
1274.

Lau, N., L. S. Lopes, and G. Corrente (2008, April). CAMBADA: information sharing and
team coordination. In Proc. of the 8th Conference on Autonomous Robot Systems and
Competitions, Portuguese Robotics Open - ROBOTICA’2008, Aveiro, Portugal, pp. 27–
32.

Lauer, M., S. Lange, and M. Riedmiller (2005). Modeling moving objects in a dynamically
changing robot application. In KI 2005: Advances in Artificial Intelligence, Volume 3698
of LNCS, pp. 291–303. Springer.

Lauer, M., S. Lange, and M. Riedmiller (2006). Calculating the perfect match: an efficient and
accurate approach for robot self-localization. In RoboCup 2005: Robot Soccer World
Cup IX, Lecture Notes in Computer Science, pp. 142–153. Springer.

Marcelino, P., P. Nunes, P. Lima, and M. I. Ribeiro (2003). Improving object localization
through sensor fusion applied to soccer robots. In Proc. Scientific Meeting of the Por-
tuguese Robotics Open - ROBOTICA 2003.

CAMBADA soccer team: from robot architecture to multiagent coordination 43

distributed architectures extend from improved composability, allowing a system to be built
by putting together different subsystems, to higher scalability, allowing to add functionality to
the system by adding more nodes, more flexibility, allowing to reconfigure the system easily,
better maintainability, due to the architecture modularity and easiness of node replacement,
and higher reduction of mutual interference, thus offering a strong potential to support reac-
tive behaviors more efficiently. Moreover, distributed architectures may also provide benefits
in terms of dependability by creating error-containment regions at the nodes and opening the
way for inexpensive spatial replication and fault tolerance.
The vision system of the CAMBADA robots is based on an hybrid system, formed by an om-
nidirectional and a perspective sub-system, that together can analyze the environment around
the robots, both at close and long distances. We presented in this chapter several algorithms
for the calibration of the most important parameters of the vision system and we propose
efficient color-based algorithms for object detection. Moreover, we proposed a promising so-
lution for the detection of arbitrary FIFA balls, as demonstrated by the first place obtained in
the mandatory technical challenge in the Robocup 2009, where the robots had to play with an
arbitrary standard FIFA ball.
Sensor and information fusion is important to maintain a more reliable description of the state
of the world. The techniques proposed for information and sensor fusion proved to be effec-
tive in accomplishing their objectives. The Kalman filter allows to filter the noise on the ball
position and provides an important prediction feature which allows fast detection of devia-
tions of the ball path. The linear regression used to estimate the velocity is also effective, and
combined with the deviation detection based on the Kalman filter prediction error, provides
a faster way to recalculate the velocity in the new trajectory. The increasing reliability of the
ball position and velocity lead to a better ball trajectory evaluation. This allowed the devel-
opment of a more effective goalie action, as well as other behaviors, such as ball interception
behaviors and pass reception. The results regarding obstacle identification, provide tools for
an improvement of the overall team coordination and strategic play.
The robots coordination is based on a replicated database, the Real-Time Data Base (RTDB)
that includes local state variables together with images of remote ones. These images are up-
dated transparently to the application software by means of an adequate real-time manage-
ment system. Moreover, the RTDB is accessible to the application using a set of non-blocking
primitives, thus yielding a fast data access.
Regarding the communication between robots, is was developed a wireless communication
protocol that reduces the probability of collisions among the team members. The protocol
called adaptive TDMA, adapts to the current channel conditions, particularly accommodating
periodic interference patterns. It was also developed an extended version of the protocol with
on-line self-configuration capabilities that allow reconfiguring the slots structure of the TDMA
round to the actual number of active team members, further reducing the collision probability.
In the CAMBADA MSL team, each robot is an independent agent and coordinates its actions
with its teammates through communication and information exchange. The resulting behav-
ior of the individual robot should be integrated into the global team strategy, thus resulting in
cooperative actions by all the robots. This is done by the use of roles and behaviors that define
each robot attitude in the field and resulting individual actions. This resulted in a coordinated
behavior of the team that largely contributed to its recent successes.
The base station application has a important role during the development of a robotic soccer
team and also during a game. This chapter presented the approach that was used by the
CAMBADA team in the design of this important application.

The CAMBADA MSL team attained the first place in the MSL at RoboCup 2008 and attained
the third place in the last edition of the MSL at RoboCup 2009. CAMBADA also won the last
three editions of the Portuguese Robotics Open 2007-2009. These results confirm the effective-
ness of the proposed architecture.

10. References

Almeida, L., P. Pedreiras, and J. A. Fonseca (2002). The FTT-CAN protocol: Why and how.
IEEE Transactions on Industrial Electronics 49(6), 1189–1201.

Almeida, L., F. Santos, T. Facchinetti, P. Pedreira, V. Silva, and L. S. Lopes (2004). Coordinating
distributed autonomous agents with a real-time database: The CAMBADA project.
In Proc. of the 19th International Symposium on Computer and Information Sciences, ISCIS
2004, Volume 3280 of Lecture Notes in Computer Science, pp. 878–886. Springer.

Azevedo, J. L., B. Cunha, and L. Almeida (2007). Hierarchical distributed architectures for au-
tonomous mobile robots: a case study. In Proc. of the 12th IEEE Conference on Emerging
Technologies and Factory Automation, ETFA2007, Greece, pp. 973–980.

Bishop, G. and G. Welch (2001). An introduction to the kalman filter. In Proc of SIGGRAPH,
Course 8, Number NC 27599-3175, Chapel Hill, NC, USA.

Blaffert, T., S. Dippel, M. Stahl, and R. Wiemker (2000). The laplace integral for a watershed
segmentation. In Proc. of the International Conference on Image Processing, 2000, Vol-
ume 3, pp. 444–447.

Caleiro, P. M. R., A. J. R. Neves, and A. J. Pinho (2007, June). Color-spaces and color segmen-
tation for real-time object recognition in robotic applications. Revista do DETUA 4(8),
940–945.

Canny, J. F. (1986, November). A computational approach to edge detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence 8(6).

Cunha, B., J. L. Azevedo, N. Lau, and L. Almeida (2007). Obtaining the inverse distance map
from a non-SVP hyperbolic catadioptric robotic vision system. In Proc. of the RoboCup
2007, Atlanta, USA.

Ferrein, A., L. Hermanns, and G. Lakemeyer (2006). Comparing sensor fusion techniques for
ball position estimation. In RoboCup 2005: Robot Soccer World Cup IX, Volume 4020 of
LNCS, pp. 154–165. Springer.

Grimson, W. E. L. and D. P. Huttenlocher (1990). On the sensitivity of the hough transform for
object recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence 12, 1255–
1274.

Lau, N., L. S. Lopes, and G. Corrente (2008, April). CAMBADA: information sharing and
team coordination. In Proc. of the 8th Conference on Autonomous Robot Systems and
Competitions, Portuguese Robotics Open - ROBOTICA’2008, Aveiro, Portugal, pp. 27–
32.

Lauer, M., S. Lange, and M. Riedmiller (2005). Modeling moving objects in a dynamically
changing robot application. In KI 2005: Advances in Artificial Intelligence, Volume 3698
of LNCS, pp. 291–303. Springer.

Lauer, M., S. Lange, and M. Riedmiller (2006). Calculating the perfect match: an efficient and
accurate approach for robot self-localization. In RoboCup 2005: Robot Soccer World
Cup IX, Lecture Notes in Computer Science, pp. 142–153. Springer.

Marcelino, P., P. Nunes, P. Lima, and M. I. Ribeiro (2003). Improving object localization
through sensor fusion applied to soccer robots. In Proc. Scientific Meeting of the Por-
tuguese Robotics Open - ROBOTICA 2003.

Robot Soccer44

Martins, D. A., A. J. R. Neves, and A. J. Pinho (2008, october). Real-time generic ball recogni-
tion in RoboCup domain. In Proc. of the 11th edition of the Ibero-American Conference on
Artificial Intelligence, IBERAMIA 2008, Lisbon, Portugal.

Motulsky, H. and A. Christopoulos (2003). Fitting models to biological data using linear and
nonlinear regression. GraphPad Software Inc.

MSL Technical Committee 1997-2009 (2008). Middle size robot league rules and regulations
for 2009.

Neves, A. J. R., A. J. P. B. Cunha, and I. Pinheiro (2009, June). Autonomous configuration of
parameters in robotic digital cameras. In Proc. of the 4th Iberian Conference on Pattern
Recognition and Image Analysis, ibPRIA 2009, Póvoa de Varzim, Portugal.

Neves, A. J. R., G. Corrente, and A. J. Pinho (2007). An omnidirectional vision system for
soccer robots. In Progress in Artificial Intelligence, Volume 4874 of Lecture Notes in
Artificial Inteligence, pp. 499–507. Springer.

Neves, A. J. R., D. A. Martins, and A. J. Pinho (2008, April). A hybrid vision system for
soccer robots using radial search lines. In Proc. of the 8th Conference on Autonomous
Robot Systems and Competitions, Portuguese Robotics Open - ROBOTICA’2008, Aveiro,
Portugal, pp. 51–55.

Reis, L., N. Lau, and E. Oliveira (2001). Situation based strategic positioning for coordinat-
ing a team of homogeneous agents. In Balancing Reactivity and Social Deliberation in
Multi-Agent Systems, Volume 2103 of Lecture Notes in Computer Science, pp. 175–197.
Springer.

Santos, F., L. Almeida, L. S. Lopes, J. L. Azevedo, and M. B. Cunha (2009). Communicating
among robots in the robocup middle-size league. In RoboCup 2009: Robot Soccer World
Cup XIII, Lecture Notes in Artificial Intelligence. Springer (In Press).

Santos, F., G. Corrente, L. Almeida, N. Lau, and L. S. Lopes (2007, December). Self-
configuration of an adaptive TDMA wireless communication protocol for teams of
mobile robots. In Proc. of the 13th Portuguese Conference on Artificial Intelligence, EPIA
2007, Guimarães, Portugal.

Ser, P.-K. and W.-C. Siu (1993). Invariant hough transform with matching technique for the
recognition of non-analytic objects. In IEEE International Conference on Acoustics,
Speech, and Signal Processing, ICASSP 1993., Volume 5, pp. 9–12.

Silva, J., N. Lau, J. Rodrigues, and J. L. Azevedo (2008, october). Ball sensor fusion and ball
interception behaviours for a robotic soccer team. In Proc. of the 11th edition of the
Ibero-American Conference on Artificial Intelligence, IBERAMIA 2008, Lisbon, Portugal.

Silva, J., N. Lau, J. Rodrigues, J. L. Azevedo, and A. J. R. Neves (2009). Sensor and information
fusion applied to a robotic soccer team. In RoboCup 2009: Robot Soccer World Cup XIII,
Lecture Notes in Artificial Intelligence. Springer (In Press).

Silva, V., R. Marau, L. Almeida, J. Ferreira, M. Calha, P. Pedreiras, and J. Fonseca (2005). Im-
plementing a distributed sensing and actuation system: The CAMBADA robots case
study. In Proc. of the 10th IEEE Conference on Emerging Technologies and Factory Automa-
tion, ETFA2005, Italy, pp. 781–788.

Stone, P. and M. Veloso (1999). Task decomposition, dynamic role assignment, and low-
bandwidth communication for real-time strategic teamwork. Volume 110, pp. 241–
273.

XU, Y., C. JIANG, and Y. TAN (2006). SEU-3D 2006 Soccer simulation team description. In CD
Proc. of RoboCup Symposium 2006.

Zhang, Y.-J. and Z.-Q. Liu (2000). Curve detection using a new clustering approach in the
hough space. In IEEE International Conference on Systems, Man, and Cybernetics, 2000,
Volume 4, pp. 2746–2751.

Zin, T. T., H. Takahashi, and H. Hama (2007). Robust person detection using far infrared
camera for image fusion. In Second International Conference on Innovative Computing,
Information and Control, ICICIC 2007, pp. 310–310.

Zou, J., H. Li, B. Liu, and R. Zhang (2006). Color edge detection based on morphology. In First
International Conference on Communications and Electronics, ICCE 2006, pp. 291–293.

Zou, Y. and W. Dunsmuir (1997). Edge detection using generalized root signals of 2-d median
filtering. In Proc. of the International Conference on Image Processing, 1997, Volume 1,
pp. 417–419.

CAMBADA soccer team: from robot architecture to multiagent coordination 45

Martins, D. A., A. J. R. Neves, and A. J. Pinho (2008, october). Real-time generic ball recogni-
tion in RoboCup domain. In Proc. of the 11th edition of the Ibero-American Conference on
Artificial Intelligence, IBERAMIA 2008, Lisbon, Portugal.

Motulsky, H. and A. Christopoulos (2003). Fitting models to biological data using linear and
nonlinear regression. GraphPad Software Inc.

MSL Technical Committee 1997-2009 (2008). Middle size robot league rules and regulations
for 2009.

Neves, A. J. R., A. J. P. B. Cunha, and I. Pinheiro (2009, June). Autonomous configuration of
parameters in robotic digital cameras. In Proc. of the 4th Iberian Conference on Pattern
Recognition and Image Analysis, ibPRIA 2009, Póvoa de Varzim, Portugal.

Neves, A. J. R., G. Corrente, and A. J. Pinho (2007). An omnidirectional vision system for
soccer robots. In Progress in Artificial Intelligence, Volume 4874 of Lecture Notes in
Artificial Inteligence, pp. 499–507. Springer.

Neves, A. J. R., D. A. Martins, and A. J. Pinho (2008, April). A hybrid vision system for
soccer robots using radial search lines. In Proc. of the 8th Conference on Autonomous
Robot Systems and Competitions, Portuguese Robotics Open - ROBOTICA’2008, Aveiro,
Portugal, pp. 51–55.

Reis, L., N. Lau, and E. Oliveira (2001). Situation based strategic positioning for coordinat-
ing a team of homogeneous agents. In Balancing Reactivity and Social Deliberation in
Multi-Agent Systems, Volume 2103 of Lecture Notes in Computer Science, pp. 175–197.
Springer.

Santos, F., L. Almeida, L. S. Lopes, J. L. Azevedo, and M. B. Cunha (2009). Communicating
among robots in the robocup middle-size league. In RoboCup 2009: Robot Soccer World
Cup XIII, Lecture Notes in Artificial Intelligence. Springer (In Press).

Santos, F., G. Corrente, L. Almeida, N. Lau, and L. S. Lopes (2007, December). Self-
configuration of an adaptive TDMA wireless communication protocol for teams of
mobile robots. In Proc. of the 13th Portuguese Conference on Artificial Intelligence, EPIA
2007, Guimarães, Portugal.

Ser, P.-K. and W.-C. Siu (1993). Invariant hough transform with matching technique for the
recognition of non-analytic objects. In IEEE International Conference on Acoustics,
Speech, and Signal Processing, ICASSP 1993., Volume 5, pp. 9–12.

Silva, J., N. Lau, J. Rodrigues, and J. L. Azevedo (2008, october). Ball sensor fusion and ball
interception behaviours for a robotic soccer team. In Proc. of the 11th edition of the
Ibero-American Conference on Artificial Intelligence, IBERAMIA 2008, Lisbon, Portugal.

Silva, J., N. Lau, J. Rodrigues, J. L. Azevedo, and A. J. R. Neves (2009). Sensor and information
fusion applied to a robotic soccer team. In RoboCup 2009: Robot Soccer World Cup XIII,
Lecture Notes in Artificial Intelligence. Springer (In Press).

Silva, V., R. Marau, L. Almeida, J. Ferreira, M. Calha, P. Pedreiras, and J. Fonseca (2005). Im-
plementing a distributed sensing and actuation system: The CAMBADA robots case
study. In Proc. of the 10th IEEE Conference on Emerging Technologies and Factory Automa-
tion, ETFA2005, Italy, pp. 781–788.

Stone, P. and M. Veloso (1999). Task decomposition, dynamic role assignment, and low-
bandwidth communication for real-time strategic teamwork. Volume 110, pp. 241–
273.

XU, Y., C. JIANG, and Y. TAN (2006). SEU-3D 2006 Soccer simulation team description. In CD
Proc. of RoboCup Symposium 2006.

Zhang, Y.-J. and Z.-Q. Liu (2000). Curve detection using a new clustering approach in the
hough space. In IEEE International Conference on Systems, Man, and Cybernetics, 2000,
Volume 4, pp. 2746–2751.

Zin, T. T., H. Takahashi, and H. Hama (2007). Robust person detection using far infrared
camera for image fusion. In Second International Conference on Innovative Computing,
Information and Control, ICICIC 2007, pp. 310–310.

Zou, J., H. Li, B. Liu, and R. Zhang (2006). Color edge detection based on morphology. In First
International Conference on Communications and Electronics, ICCE 2006, pp. 291–293.

Zou, Y. and W. Dunsmuir (1997). Edge detection using generalized root signals of 2-d median
filtering. In Proc. of the International Conference on Image Processing, 1997, Volume 1,
pp. 417–419.

Robot Soccer46

Small-size Humanoid Soccer Robot Design for FIRA HuroSot 47

Small-size Humanoid Soccer Robot Design for FIRA HuroSot

Ching-Chang Wong, Chi-Tai Cheng, Kai-Hsiang Huang, Yu-Ting Yang, Yueh-Yang Hu and
Hsiang-Min Chan

X

Small-size Humanoid Soccer
Robot Design for FIRA HuroSot

Ching-Chang Wong, Chi-Tai Cheng, Kai-Hsiang Huang, Yu-Ting Yang,

 Yueh-Yang Hu and Hsiang-Min Chan
Department of Electrical Engineering, Tamkang University

Tamsui, Taipei, 25137, Taiwan

1. Introduction

Robot soccer games are used to encourage the researches on the robotics and artificial
intelligence. FIRA (URL: http://www.fira.net) is an international robot soccer association to
advance this research and hold some international competitions and congresses. There are
many different leagues, such as SimuroSot, MiroSot, RoboSot, and HuroSot, in FIRA
RoboWorld Cup. Each league is established for different research purposes. In the HuroSot
league, many technology issues and scientific areas must be integrated to design a
humanoid robot. The research technologies of mechanism design, electronic system, biped
walking control, autonomous motion, direction judgment, kicking ball need to be applied on
a humanoid robot (Chemori & Loria, 2004; Esfahani & Elahinia, 2007; Guan et al., 2006;
Hemami et al., 2006; Hu et al., 2008; Haung et al., 2001; Miyazaki & Arimoto, 1980; Sugihara
et al., 2002; Wong et al., 2005; Zhou & Jagannathan, 1996). This chapter introduces an
autonomous humanoid robot, TWNHR-IV (Taiwan Humanoid Robot-IV), which is able to
play sports, such as soccer, basketball, weight lifting, and marathon. The robot is designed
to be a vision-based autonomous humanoid robot for HuroSot League of FIRA Cup.
TWNHR-IV joined FIRA Cup in 2007 and 2008. In FIRA 2007, TWNHR-IV won the first
place in robot dash, penalty kick, obstacle run, and weight lifting; the second place in
basketball and marathon. In FIRA 2008, TWNHR-IV won the first place in penalty kick,
obstacle run, and weight lifting, the second place in robot dash and the third place in
basketball. TWNHR-IV determines the environment via its sensors and executes the suitable
motion by its artificial intelligent. In order to let TWNHR-IV have the environment
perceptive ability, a vision sensor (a CMOS sensor), six distance sensors (six infrared
sensors), a posture sensor (an accelerometer sensor) and a direction sensor (a digital
compass) are equipped on the body of TWNHR-IV to obtain the information of the
environment. Two processors are used to control the robot. The first one is a DSP for the
high-level control purpose. The DSP receives and processes the image data from the CMOS
sensor via a serial port. It is in charge of the high level artificial intelligent, such as
navigation. The second one is NIOS II (an embedded soft-core processor) for the robot
locomotion control. The second processor is used as a low-level controller to control the
walking and other actions. TWNHR-IV is designed as a soccer player so that it can walk,

3

Robot Soccer48

turn, and kick the ball autonomously. A control board with a FPGA chip and a 64 Mb flash
memory are mainly utilized to control the robot. Many functions are implemented on this
FPGA chip so that it can receive motion commands from DSP via a serial port and process
the data obtained by infrared sensors, digital compass, and accelerometer. It is able to
accomplish the different challenges of HuroSot, including Penalty Kick (PK), basketball, lift-
and-carry, obstacle run, robot dash, weight lifting, and marathon autonomously and
effectively.
The rest of this chapter is organized as follows: In Section 2, the mechanical system design of
the robot TWNHR-IV is described. In Section 3, the electronic system including a vision
system, a control core, and sensor systems are described. In Section 4, some simulation and
experiments results of the proposed controller are described. Finally, some conclusions are
made in Section 5.

2. Mechanical System Design

Mechanical system design is the first step of design a humanoid robot. Human body
mechanism basically consists of bones, joints, muscles, and tendons. It is impossible to
replace all of the muscular-skeletal system by current mechanical and electrical components.
Therefore, the primary goal of the humanoid robot mechanical system design is to develop a
robot that can imitate equivalent human motions. The degrees of freedom (DOFs)
configuration of TWNHR-IV is presented in Figure 1. TWNHR-IV has 26 DOFs. In this
chapter, the rotational direction of each joint is defined by using the inertial coordinate
system fixed on the ground as shown in Figure 1 (Wong et al., 2008c).

Fig. 1. DOFs configuration

A photograph and a 3D mechanical structure of the implemented robot are shown in Figure
2 The design concepts of TWNHR-IV are light weight and compact size. The height of
TWNHR-IV is 43 cm and the weight is 3.4 kg with batteries. A human-machine interface is
designed to manipulate the servo motors. The details of the mechanical structure of the
head, arms, waist, trunk, and legs are described as follows.

Fig. 2. Photograph and mechanical structure of TWNHR-IV

The head of TWNHR-IV has 2 DOFs. Figure 3 shows the 3D mechanism design of the head.
The head is designed based on the concept that the head of the robot can accomplish the raw
and pitch motion. Table 1 presents the head DOFs relation between human and TWNHR-IV.

Human Figure TWNHR-IV Human Figure TWNHR-IV

Table 1. The head DOFs relation between human and TWNHR-IV

(a) Head 3D design

(b) DOFs diagram

Fig. 3. Head mechanism

The head of TWNHR-IV has 2 degrees of freedom. Figure 4 shows the 3D mechanism
design of the waist and trunk. The trunk is designed based on the concept that robot can
walk and maintain its balance by using gyro to adjust the trunk motions to compensate for
the robot’s walk motion. Table 2 presents the specification of the joints for the waist and
trunk.

Small-size Humanoid Soccer Robot Design for FIRA HuroSot 49

turn, and kick the ball autonomously. A control board with a FPGA chip and a 64 Mb flash
memory are mainly utilized to control the robot. Many functions are implemented on this
FPGA chip so that it can receive motion commands from DSP via a serial port and process
the data obtained by infrared sensors, digital compass, and accelerometer. It is able to
accomplish the different challenges of HuroSot, including Penalty Kick (PK), basketball, lift-
and-carry, obstacle run, robot dash, weight lifting, and marathon autonomously and
effectively.
The rest of this chapter is organized as follows: In Section 2, the mechanical system design of
the robot TWNHR-IV is described. In Section 3, the electronic system including a vision
system, a control core, and sensor systems are described. In Section 4, some simulation and
experiments results of the proposed controller are described. Finally, some conclusions are
made in Section 5.

2. Mechanical System Design

Mechanical system design is the first step of design a humanoid robot. Human body
mechanism basically consists of bones, joints, muscles, and tendons. It is impossible to
replace all of the muscular-skeletal system by current mechanical and electrical components.
Therefore, the primary goal of the humanoid robot mechanical system design is to develop a
robot that can imitate equivalent human motions. The degrees of freedom (DOFs)
configuration of TWNHR-IV is presented in Figure 1. TWNHR-IV has 26 DOFs. In this
chapter, the rotational direction of each joint is defined by using the inertial coordinate
system fixed on the ground as shown in Figure 1 (Wong et al., 2008c).

Fig. 1. DOFs configuration

A photograph and a 3D mechanical structure of the implemented robot are shown in Figure
2 The design concepts of TWNHR-IV are light weight and compact size. The height of
TWNHR-IV is 43 cm and the weight is 3.4 kg with batteries. A human-machine interface is
designed to manipulate the servo motors. The details of the mechanical structure of the
head, arms, waist, trunk, and legs are described as follows.

Fig. 2. Photograph and mechanical structure of TWNHR-IV

The head of TWNHR-IV has 2 DOFs. Figure 3 shows the 3D mechanism design of the head.
The head is designed based on the concept that the head of the robot can accomplish the raw
and pitch motion. Table 1 presents the head DOFs relation between human and TWNHR-IV.

Human Figure TWNHR-IV Human Figure TWNHR-IV

Table 1. The head DOFs relation between human and TWNHR-IV

(a) Head 3D design

(b) DOFs diagram

Fig. 3. Head mechanism

The head of TWNHR-IV has 2 degrees of freedom. Figure 4 shows the 3D mechanism
design of the waist and trunk. The trunk is designed based on the concept that robot can
walk and maintain its balance by using gyro to adjust the trunk motions to compensate for
the robot’s walk motion. Table 2 presents the specification of the joints for the waist and
trunk.

Robot Soccer50

Human Figure TWNHR-IV Human Figure TWNHR-IV

Table 2. The waist and trunk DOFs relation between human and TWNHR-IV

(a) Waist 3D design

(b) DOFs diagram

Fig. 4. Waist and trunk mechanism

Each arm of TWNHR-IV has 4 DOFs. Figure 5 shows the 3D mechanism design of the arms.
The arms are designed based on the concept of size of the general human arms. The arms of
the robot can hold an object such as a ball. Table 3 presents the specification of the joints for
each arm.

Human Figure TWNHR-IV Human Figure TWNHR-IV

Table 3. The arms DOFs relation between human and TWNHR-IV

(a) Shoulder

(b) Elbow

(c) Wrist

(d) Arm

Fig. 5. Left arm mechanism

Each leg of TWNHR-IV has 7 Degrees of freedom. Figure 6 shows the 3D mechanism design
of the legs. The legs are designed based on the concept that robot can accomplish the human
walking motion. Table 4 presents the specification of the joints for each leg.

Human Figure TWNHR-IV Human Figure TWNHR-IV

Table 4. The legs DOFs relation between human and TWNHR-IV

Small-size Humanoid Soccer Robot Design for FIRA HuroSot 51

Human Figure TWNHR-IV Human Figure TWNHR-IV

Table 2. The waist and trunk DOFs relation between human and TWNHR-IV

(a) Waist 3D design

(b) DOFs diagram

Fig. 4. Waist and trunk mechanism

Each arm of TWNHR-IV has 4 DOFs. Figure 5 shows the 3D mechanism design of the arms.
The arms are designed based on the concept of size of the general human arms. The arms of
the robot can hold an object such as a ball. Table 3 presents the specification of the joints for
each arm.

Human Figure TWNHR-IV Human Figure TWNHR-IV

Table 3. The arms DOFs relation between human and TWNHR-IV

(a) Shoulder

(b) Elbow

(c) Wrist

(d) Arm

Fig. 5. Left arm mechanism

Each leg of TWNHR-IV has 7 Degrees of freedom. Figure 6 shows the 3D mechanism design
of the legs. The legs are designed based on the concept that robot can accomplish the human
walking motion. Table 4 presents the specification of the joints for each leg.

Human Figure TWNHR-IV Human Figure TWNHR-IV

Table 4. The legs DOFs relation between human and TWNHR-IV

Robot Soccer52

(a) 3D design

 (b) DOFs diagram

Fig. 6. Legs mechanism

The head of TWNHR-IV has 2 DOFs. The head is designed based on the concept that the
head of the robot can accomplish the raw and pitch motion. The trunk of TWNHR-IV has 2
DOFs. The trunk is designed based on the concept that robot can walk to adjust the trunk
motions to compensate for the robot’s walk motion. Each arm of TWNHR-IV has 4 DOFs.
The arms are designed based on the concept of size of the general human arms. The arms of
the robot can hold an object such as a ball. Each leg of TWNHR-IV has 7 DOFs. The legs are
designed based on the concept that robot can accomplish the human walking motion. The
specification is shown in Table 5.

Specification
Height 43 cm
Weight 3.4 kg
Degree of Freedom & Motor Configuration
 DOFs Torque (kg/cm)
Head 2 1.7
Thunk 2 40.8
Legs 7(x2) 37.5
Arms 4(x2) 20
Total 26

Table 5. Mechanism specification

3. Electronic System

The electronic system diagram is show in Figure 7, where NIOS II is a 32-bit embedded soft-
core processor implement on a FPGA chip of a development board. TWNHR-IV is using the
NIOS II development board to control all of the servo motors and communicate with
sensors. The DSP processor μ’nsp decides motions and gives the NIOS II development

board order commands to do such as walk forward, turn right and left. The motions
through the RS-232 download to the NIOS II development board.

Fig. 7. System block diagram of the electronic system used for TWNHR-IV

3.1 Vision System
A 16-bits DSP processor named μ’nsp is used to receive and process the image data from the
CMOS image sensor via the serial transmission. The CMOS sensor is mounted on the head
of the robot so that the vision information of the field can be obtained. Two main electrical
parts in the vision system of the robot are a CMOS sensor and a 16-bit DSP processor. The
captured image data by the CMOS sensor is transmitted to the DSP processor via a serial
port. Based on the given color and size of the object, the DSP processor can process the
captured image data to determine the position of the object in this image. The noise of the
environmental image can be eliminated by the DSP processor. It is shown an example of
color image in Figure 8. In this image, two balls are detected. The cross marks in Figure 8
(b) denote center of each color region. Based on the extracted position information, an
appropriate strategy is made and transmitted to the FPGA chip via a serial transmission.

Small-size Humanoid Soccer Robot Design for FIRA HuroSot 53

(a) 3D design

 (b) DOFs diagram

Fig. 6. Legs mechanism

The head of TWNHR-IV has 2 DOFs. The head is designed based on the concept that the
head of the robot can accomplish the raw and pitch motion. The trunk of TWNHR-IV has 2
DOFs. The trunk is designed based on the concept that robot can walk to adjust the trunk
motions to compensate for the robot’s walk motion. Each arm of TWNHR-IV has 4 DOFs.
The arms are designed based on the concept of size of the general human arms. The arms of
the robot can hold an object such as a ball. Each leg of TWNHR-IV has 7 DOFs. The legs are
designed based on the concept that robot can accomplish the human walking motion. The
specification is shown in Table 5.

Specification
Height 43 cm
Weight 3.4 kg
Degree of Freedom & Motor Configuration
 DOFs Torque (kg/cm)
Head 2 1.7
Thunk 2 40.8
Legs 7(x2) 37.5
Arms 4(x2) 20
Total 26

Table 5. Mechanism specification

3. Electronic System

The electronic system diagram is show in Figure 7, where NIOS II is a 32-bit embedded soft-
core processor implement on a FPGA chip of a development board. TWNHR-IV is using the
NIOS II development board to control all of the servo motors and communicate with
sensors. The DSP processor μ’nsp decides motions and gives the NIOS II development

board order commands to do such as walk forward, turn right and left. The motions
through the RS-232 download to the NIOS II development board.

Fig. 7. System block diagram of the electronic system used for TWNHR-IV

3.1 Vision System
A 16-bits DSP processor named μ’nsp is used to receive and process the image data from the
CMOS image sensor via the serial transmission. The CMOS sensor is mounted on the head
of the robot so that the vision information of the field can be obtained. Two main electrical
parts in the vision system of the robot are a CMOS sensor and a 16-bit DSP processor. The
captured image data by the CMOS sensor is transmitted to the DSP processor via a serial
port. Based on the given color and size of the object, the DSP processor can process the
captured image data to determine the position of the object in this image. The noise of the
environmental image can be eliminated by the DSP processor. It is shown an example of
color image in Figure 8. In this image, two balls are detected. The cross marks in Figure 8
(b) denote center of each color region. Based on the extracted position information, an
appropriate strategy is made and transmitted to the FPGA chip via a serial transmission.

Robot Soccer54

(a) Picture from original image (b) Picture after processing the image

Fig. 8. Color detection from the input image.

3.2 Control Core
The NIOS II development board is used to process the data transmission and motion control.
The motions of the robot are stored in the flash memory of NIOS II development board. The
internal block diagram of NIOS II development is shown in Figure 9. There are several
blocks in NIOS II, such as RS232 Transmission module, Receive module, Data Analysis
module, Motion Execution module, Flash Access module, and Motor controller. These
blocks are used to download and execute the motions, and these blocks are accomplished by
the VHDL language. (Wong et al., 2008a)

Fig. 9. The internal block diagram of NIOS II development

The motions of the robot are designed on a PC, and downloaded to the RS232 transmission
module of the robot. Two different data will be sent to the RS232 transmission module,
motion data and motion execution command. The Data analysis module analyzes the data
from the RS232 transmission module. If the command is motion data, this data will be sent
to the Flash access module and stored in the flash memory. If the command is motion
execution, the Motion execution module will get the motion data from the flash memory
and execute it. The diagram of flash access is shown in Figure 10.

Fig. 10. The diagram of flash access

3.3 Sensors and Application
In order to let TWNHR-IV can go to an appointed place accurately, a digital compass is
installed on the body of TWNHR-IV to determine the head direction of the robot. The
indispensable magnetism information of the digital compass can provide the important
direction information for the robot navigation. The digital compass picks the angle of the
robot and the north geomagnetic pole. It can be used in the competition of robot dash,
marathon, or others competition.
In order to let TWNHR-IV can avoid the obstacle, six infrared sensors are installed on the
robot for detecting the distance between the obstacle and the robot. Two sensors are
installed on the back of hands, two on the waist, and two on the legs. The distance
information is sent to NIOS II decelopment board by RS232. The infrared is used in the
competition of obstacle run, robot dash and weight lifting to avoid the obstacle on the field.
In order to measure the motion state of the robot. An accelerometer is utilized on the body
of the robot for the balancing purpose. It provides important motion state information for
robot balancing. The accelerometer can offer the indispensable acceleration information of
the robot’s motion. It is used to detect and examine the acceleration of the robot on the
center of robot. This sensor can measure the speed of the earth’s axis. The acceleration
information is sent to the controller by a serial port. Then the robot can correct its actions by
itself. The robot falling down can be detected by this accelerometer so that the robot can
autonomously decide to stand up from the ground.

4. Experiments

4.1 Penalty Kick
The penalty kick is one of competitions in HuroSot League of FIRA RoboWorld Cup. In the
competition, the robot needs to approach and kick a ball positioned somewhere in the ball
area. The robot recognizes the ball by using the CMOS image sensor according to color. In
the strategy design of penalty kick, a architecture of decision based on the finite-state

Small-size Humanoid Soccer Robot Design for FIRA HuroSot 55

(a) Picture from original image (b) Picture after processing the image

Fig. 8. Color detection from the input image.

3.2 Control Core
The NIOS II development board is used to process the data transmission and motion control.
The motions of the robot are stored in the flash memory of NIOS II development board. The
internal block diagram of NIOS II development is shown in Figure 9. There are several
blocks in NIOS II, such as RS232 Transmission module, Receive module, Data Analysis
module, Motion Execution module, Flash Access module, and Motor controller. These
blocks are used to download and execute the motions, and these blocks are accomplished by
the VHDL language. (Wong et al., 2008a)

Fig. 9. The internal block diagram of NIOS II development

The motions of the robot are designed on a PC, and downloaded to the RS232 transmission
module of the robot. Two different data will be sent to the RS232 transmission module,
motion data and motion execution command. The Data analysis module analyzes the data
from the RS232 transmission module. If the command is motion data, this data will be sent
to the Flash access module and stored in the flash memory. If the command is motion
execution, the Motion execution module will get the motion data from the flash memory
and execute it. The diagram of flash access is shown in Figure 10.

Fig. 10. The diagram of flash access

3.3 Sensors and Application
In order to let TWNHR-IV can go to an appointed place accurately, a digital compass is
installed on the body of TWNHR-IV to determine the head direction of the robot. The
indispensable magnetism information of the digital compass can provide the important
direction information for the robot navigation. The digital compass picks the angle of the
robot and the north geomagnetic pole. It can be used in the competition of robot dash,
marathon, or others competition.
In order to let TWNHR-IV can avoid the obstacle, six infrared sensors are installed on the
robot for detecting the distance between the obstacle and the robot. Two sensors are
installed on the back of hands, two on the waist, and two on the legs. The distance
information is sent to NIOS II decelopment board by RS232. The infrared is used in the
competition of obstacle run, robot dash and weight lifting to avoid the obstacle on the field.
In order to measure the motion state of the robot. An accelerometer is utilized on the body
of the robot for the balancing purpose. It provides important motion state information for
robot balancing. The accelerometer can offer the indispensable acceleration information of
the robot’s motion. It is used to detect and examine the acceleration of the robot on the
center of robot. This sensor can measure the speed of the earth’s axis. The acceleration
information is sent to the controller by a serial port. Then the robot can correct its actions by
itself. The robot falling down can be detected by this accelerometer so that the robot can
autonomously decide to stand up from the ground.

4. Experiments

4.1 Penalty Kick
The penalty kick is one of competitions in HuroSot League of FIRA RoboWorld Cup. In the
competition, the robot needs to approach and kick a ball positioned somewhere in the ball
area. The robot recognizes the ball by using the CMOS image sensor according to color. In
the strategy design of penalty kick, a architecture of decision based on the finite-state

Robot Soccer56

transition mechanism is proposed to solve varied situations in the competition. Figure 11 is
the architectonic diagram of penalty kick strategy.
There are three states (Find ball, Track ball, and Shoot ball) in the strategy of penalty kick.
According to the information of environment through the CMOS image sensor, the robot
can decide what state is the next state, and decide the best behavioral motion via the relative
location and distance between the ball and the robot. For example, when the robot can see
the ball (Find ball state), then the next state is “Track ball state“. But if the robot loses the
ball in “Track ball state“, the robot state will change to “Find ball state“ to search the ball
again. The behavioral motions of robot according to the relative location and distance
between the ball and the robot are showed in Table 6 and Table 7.

Fig. 11. Architectonic diagram of penalty kick strategy

Relative location
between

the ball and
 the robot

Angle of head in
horizontal axis

Image frame

Behavioral motion Slip left Go straight Slip right

Table 6. The behavioral motion of robot according the location between object and robot

Distance between
the ball and

the robot

Angle of head in
vertical axis

Image frame

Behavioral motion Go straigh Go straigh small Shoot ball

Table 7. The behavioral motion of robot according the distance between object and robot

Some pictures of TWNHR-IV playing the competition event: Penalty Kick (PK) are shown in
Figure 12, where four pictures of TWNHR-IV are described: (a) Search and toward the ball,
(b) Search the goal, (c) Kick the ball toward the goal, and (d) Goal. In this competition event,
TWNHR-IV can use the CMOS sensor to track the ball and search the goal. The maximum
effective distance of the CMOS sensor is 200 cm. When TWNHR-IV kicks the ball, the
maximum shooting distance is 250 cm. (Wong et al., 2008b)

(a) Search and toward the ball (b) Search the goal

(c) Kick the ball toward the goal (d) Goal

Fig. 12. Photographs of TWNHR-IV for the penalty kick

Small-size Humanoid Soccer Robot Design for FIRA HuroSot 57

transition mechanism is proposed to solve varied situations in the competition. Figure 11 is
the architectonic diagram of penalty kick strategy.
There are three states (Find ball, Track ball, and Shoot ball) in the strategy of penalty kick.
According to the information of environment through the CMOS image sensor, the robot
can decide what state is the next state, and decide the best behavioral motion via the relative
location and distance between the ball and the robot. For example, when the robot can see
the ball (Find ball state), then the next state is “Track ball state“. But if the robot loses the
ball in “Track ball state“, the robot state will change to “Find ball state“ to search the ball
again. The behavioral motions of robot according to the relative location and distance
between the ball and the robot are showed in Table 6 and Table 7.

Fig. 11. Architectonic diagram of penalty kick strategy

Relative location
between

the ball and
 the robot

Angle of head in
horizontal axis

Image frame

Behavioral motion Slip left Go straight Slip right

Table 6. The behavioral motion of robot according the location between object and robot

Distance between
the ball and

the robot

Angle of head in
vertical axis

Image frame

Behavioral motion Go straigh Go straigh small Shoot ball

Table 7. The behavioral motion of robot according the distance between object and robot

Some pictures of TWNHR-IV playing the competition event: Penalty Kick (PK) are shown in
Figure 12, where four pictures of TWNHR-IV are described: (a) Search and toward the ball,
(b) Search the goal, (c) Kick the ball toward the goal, and (d) Goal. In this competition event,
TWNHR-IV can use the CMOS sensor to track the ball and search the goal. The maximum
effective distance of the CMOS sensor is 200 cm. When TWNHR-IV kicks the ball, the
maximum shooting distance is 250 cm. (Wong et al., 2008b)

(a) Search and toward the ball (b) Search the goal

(c) Kick the ball toward the goal (d) Goal

Fig. 12. Photographs of TWNHR-IV for the penalty kick

Robot Soccer58

4.2 Basketball
The basketball is one of competitions in HuroSot League of FIRA RoboWorld Cup. In the
competition, the robot needs to throw the ball into a red basket. The robot stands in start
point and then the robot need to move out of the start area. When the robot move out the
start area, the robot could throw the ball into the basket. In the competition of basketball, the
robot hold the ball and stay in the start area. When the robot move out the start area, the
robot start to search the basket. The robot moves itself to face the baseket, and shoots the
ball. Some pictures of TWNHR-IV playing the competition event: the basketball are shown
in Figure 13, where we can see four pictures: (a) Search and hold the ball, (b) Slip to the right
side, (c) Search the basket, and (d) Shoot. In this competition event, TWNHR-IV can use its
arms to hold the ball and shoot the ball. The maximum shooting distance is 45cm.

(a) Search and hold the ball (b) Slip to the right side

(c) Search the basket (d) Shoot

Fig. 13. Photographs of TWNHR-IV for the basketball

4.3 Lift-and-Carry
The lift-and-carry is one of competitions in HuroSot League of FIRA RoboWorld Cup. In the
competition, the robot needs to carry some batteries and cross an uneven surface. There are
four colors on the uneven surface, each color means different height of the field surface. The
robot need to cross the field by passsing these color steps.
Some pictures of TWNHR-IV playing the competition event: the lift-and-carry are shown in
Figure 14, where we can see four pictures: (a) Lift right leg, (b) Touch the stair by right leg,
(c) Lift left leg, and (d) Touch the stair by left leg. In this competition event, TWNHR-IV can
use the CMOS sensor to determine these stairs. The maximum crossing height is 2 cm, and
the maximum crossing distance is 11 cm.

(a) Lift right leg (b) Touch the stair by the right leg

(c) Lift left leg (d) Touch the stair by the left leg

Fig. 14. Photographs of TWNHR-IV for the lift-and-carry

4.4 Obstacle Run
The obstacle run is one of competitions in HuroSot League of FIRA RoboWorld Cup. In the
competition, the robot needs to avoid obstacles and arrive the goal area. In this competition,
six infrared sensors are installed on the robot to detect the obstacle, as shown in Figure 15.
The digital compass sensor is used to correct the head direction of the robot, when the
obstacles are detected in safe range, the robot modify its head direction to the goal direction.
(Wong et al., 2005; Wong et al., 2007a; Wong et al., 2007b)

Fig. 15. Detectable range of six IR sensors

Some pictures of TWNHR-IV playing the competition event: the obstacle run are shown in
Figure 16, where we can see two pictures: (a) Avoid obstacles, and (b) Move forward. In this
competition event, TWNHR-IV can use the CMOS sensor and 6 infrared sensors to detect
obstacles. Furthermore, TWNHR-IV can use the digital compass to determine its head
direction. The maximum effective distance of the infrared sensor is 150 cm. The digital
compass can determine 0 to 360 degree.

IR1

IR2

IR3 IR4

IR5

IR6

Small-size Humanoid Soccer Robot Design for FIRA HuroSot 59

4.2 Basketball
The basketball is one of competitions in HuroSot League of FIRA RoboWorld Cup. In the
competition, the robot needs to throw the ball into a red basket. The robot stands in start
point and then the robot need to move out of the start area. When the robot move out the
start area, the robot could throw the ball into the basket. In the competition of basketball, the
robot hold the ball and stay in the start area. When the robot move out the start area, the
robot start to search the basket. The robot moves itself to face the baseket, and shoots the
ball. Some pictures of TWNHR-IV playing the competition event: the basketball are shown
in Figure 13, where we can see four pictures: (a) Search and hold the ball, (b) Slip to the right
side, (c) Search the basket, and (d) Shoot. In this competition event, TWNHR-IV can use its
arms to hold the ball and shoot the ball. The maximum shooting distance is 45cm.

(a) Search and hold the ball (b) Slip to the right side

(c) Search the basket (d) Shoot

Fig. 13. Photographs of TWNHR-IV for the basketball

4.3 Lift-and-Carry
The lift-and-carry is one of competitions in HuroSot League of FIRA RoboWorld Cup. In the
competition, the robot needs to carry some batteries and cross an uneven surface. There are
four colors on the uneven surface, each color means different height of the field surface. The
robot need to cross the field by passsing these color steps.
Some pictures of TWNHR-IV playing the competition event: the lift-and-carry are shown in
Figure 14, where we can see four pictures: (a) Lift right leg, (b) Touch the stair by right leg,
(c) Lift left leg, and (d) Touch the stair by left leg. In this competition event, TWNHR-IV can
use the CMOS sensor to determine these stairs. The maximum crossing height is 2 cm, and
the maximum crossing distance is 11 cm.

(a) Lift right leg (b) Touch the stair by the right leg

(c) Lift left leg (d) Touch the stair by the left leg

Fig. 14. Photographs of TWNHR-IV for the lift-and-carry

4.4 Obstacle Run
The obstacle run is one of competitions in HuroSot League of FIRA RoboWorld Cup. In the
competition, the robot needs to avoid obstacles and arrive the goal area. In this competition,
six infrared sensors are installed on the robot to detect the obstacle, as shown in Figure 15.
The digital compass sensor is used to correct the head direction of the robot, when the
obstacles are detected in safe range, the robot modify its head direction to the goal direction.
(Wong et al., 2005; Wong et al., 2007a; Wong et al., 2007b)

Fig. 15. Detectable range of six IR sensors

Some pictures of TWNHR-IV playing the competition event: the obstacle run are shown in
Figure 16, where we can see two pictures: (a) Avoid obstacles, and (b) Move forward. In this
competition event, TWNHR-IV can use the CMOS sensor and 6 infrared sensors to detect
obstacles. Furthermore, TWNHR-IV can use the digital compass to determine its head
direction. The maximum effective distance of the infrared sensor is 150 cm. The digital
compass can determine 0 to 360 degree.

IR1

IR2

IR3 IR4

IR5

IR6

Robot Soccer60

(a) Avoid obstacles (b) Walk forward

Fig. 16. Photographs of TWNHR-IV for the obstacle run

4.5 Robot Dash
The robot dash is one of competitions in HuroSot League of FIRA RoboWorld Cup. In the
competition, the robot needs to go forward and backward as soon as possible. The digital
compass sensor is used to correct the head direction. As shown in Figure 17, the robot
direction is different to the goal direction that detected by a digital compass sensor, the
correct motion is executed, that is shown in Table 8. There are three motions module when
robot is walking forward. When the goal direction is on the right of the robot, the “Turn Left
Forward“ is executed, it is indicated that the turn left and forward are executed at the same
time. When the goal direction is on the left of the robot, the “Turn Right Forward“ is executed,
it is indicated that turn left and forward are executed at the same time.. Normally, the
“Forward“ is executed. In that way, the robot does not waste time to stop and turn.

Fig. 17. Description of the relative angle of the goal direction and the robot direction

Turn Left Forward Forward Turn Right Forward

Table 8. Three motions mode

Robot direction
Goal direction

Some pictures of TWNHR-IV playing the competition event: the robot dash are shown in
Figure 18, where we can see two pictures: (a) Walk forward, and (b) Walk backward. In this
competition event, TWNHR-IV can use the 2 infrared sensors to detect the wall. If the
infrared sensors detect the wall, TWNHR-IV will change the motion of walk forward to the
motion of walk backward. The walking velocity of TWNHR-IV is 12 cm per second.

(a) Walk forward (b) Walk backward

Fig. 18. Photographs of TWNHR-IV for the robot-dash

4.6 Weight Lifting
The weight lifting is one of competitions in HuroSot League of FIRA RoboWorld Cup. In the
competition, the robot needs to go forward and lift the weight. The mechanism of TWNHR-
IV is challenged in this competition, it also needs stable walking to complete.
Some pictures of TWNHR-IV playing the competition event: the weight lifting are shown in
Figure 19, where we can see four pictures: (a) Hold the dumbbells, (b) Walk forward 15 cm,
(c) Lift up the dumbbells, and (d) Walk forward 15 cm. In this competition event, TWNHR-
IV can use infrared sensors to detect the wall. If the infrared sensors detect the wall,
TWNHR-IV will lift up the discs and walk forward 15 cm. The maximum disc number lifted
by TWNHR-IV is 43.

(a) Hold the dumbbells (b) Walk forward 15 cm

(c) Lift up the dumbbells (d) Walk forward 15 cm

Fig. 19. Photographs of TWNHR-IV for the weight lifting

Small-size Humanoid Soccer Robot Design for FIRA HuroSot 61

(a) Avoid obstacles (b) Walk forward

Fig. 16. Photographs of TWNHR-IV for the obstacle run

4.5 Robot Dash
The robot dash is one of competitions in HuroSot League of FIRA RoboWorld Cup. In the
competition, the robot needs to go forward and backward as soon as possible. The digital
compass sensor is used to correct the head direction. As shown in Figure 17, the robot
direction is different to the goal direction that detected by a digital compass sensor, the
correct motion is executed, that is shown in Table 8. There are three motions module when
robot is walking forward. When the goal direction is on the right of the robot, the “Turn Left
Forward“ is executed, it is indicated that the turn left and forward are executed at the same
time. When the goal direction is on the left of the robot, the “Turn Right Forward“ is executed,
it is indicated that turn left and forward are executed at the same time.. Normally, the
“Forward“ is executed. In that way, the robot does not waste time to stop and turn.

Fig. 17. Description of the relative angle of the goal direction and the robot direction

Turn Left Forward Forward Turn Right Forward

Table 8. Three motions mode

Robot direction
Goal direction

Some pictures of TWNHR-IV playing the competition event: the robot dash are shown in
Figure 18, where we can see two pictures: (a) Walk forward, and (b) Walk backward. In this
competition event, TWNHR-IV can use the 2 infrared sensors to detect the wall. If the
infrared sensors detect the wall, TWNHR-IV will change the motion of walk forward to the
motion of walk backward. The walking velocity of TWNHR-IV is 12 cm per second.

(a) Walk forward (b) Walk backward

Fig. 18. Photographs of TWNHR-IV for the robot-dash

4.6 Weight Lifting
The weight lifting is one of competitions in HuroSot League of FIRA RoboWorld Cup. In the
competition, the robot needs to go forward and lift the weight. The mechanism of TWNHR-
IV is challenged in this competition, it also needs stable walking to complete.
Some pictures of TWNHR-IV playing the competition event: the weight lifting are shown in
Figure 19, where we can see four pictures: (a) Hold the dumbbells, (b) Walk forward 15 cm,
(c) Lift up the dumbbells, and (d) Walk forward 15 cm. In this competition event, TWNHR-
IV can use infrared sensors to detect the wall. If the infrared sensors detect the wall,
TWNHR-IV will lift up the discs and walk forward 15 cm. The maximum disc number lifted
by TWNHR-IV is 43.

(a) Hold the dumbbells (b) Walk forward 15 cm

(c) Lift up the dumbbells (d) Walk forward 15 cm

Fig. 19. Photographs of TWNHR-IV for the weight lifting

Robot Soccer62

4.7 Marathon
The marathon is one of competitions in HuroSot League of FIRA RoboWorld Cup. In the
competition, the robot needs to track a visible line for a distance of 42.195 m (1/1000 of a
human marathon distance) and finish it as quickly as possible. The robot recognizes the
visible line by using the CMOS image sensor. From Figure 20, the image which we select is
circumscribed by a white frame. (Wong et al., 2008d)
Every selected object is marked by a white fram. Through the CMOS image sensor, we can
obtain the digital image data in the visible line. From Figure 20, EndP is the terminal point in
the white frame and StaP is the starting point in the white frame. We transform the
coordinate system from the white frame to the full image. The pixel of the full image are
120 160 . According to the relation between the coordinate of the terminal point (EndP) and
the coordinate of the starting point (StaP), we can obtain the trend of the visible line from
one field to another field. The humanoid soccer robot decides the best appropriate strategy
for the movement.

Fig. 20. Reference points of image information in the relative coordinate

Some pictures of TWNHR-IV playing the competition event: the marathon is shown in
Figure 21, where we can see the TWNHR-IV follow the line. In this competition event,
TWNHR-IV can use the CMOS sensor to follow the blue line and walk about 1 hour.

(a) (b)

(c) (d)

(e) (f)

Fig. 21. A vision-based humanoid soccer robot can walk along the white line autonomously
in the competition of marathon

5. Conclusions

A humanoid soccer robot named TWNHR-IV is presented. A mechanical structure is
proposed to implement a humanoid robot with 26 degrees of freedom in this chapter. This
robot has 2 degrees of freedom on the head, 2 degrees of freedom on the trunk, 4 degrees of
freedom on each arm, and 7 degrees of freedom on each leg. A CMOS sensor, a digital
compass, an accelerometer, and six infrared sensors are equipped on the body of TWNHR-
IV to obtain the information of the environment. A CMOS sensor is installed on the head of

Small-size Humanoid Soccer Robot Design for FIRA HuroSot 63

4.7 Marathon
The marathon is one of competitions in HuroSot League of FIRA RoboWorld Cup. In the
competition, the robot needs to track a visible line for a distance of 42.195 m (1/1000 of a
human marathon distance) and finish it as quickly as possible. The robot recognizes the
visible line by using the CMOS image sensor. From Figure 20, the image which we select is
circumscribed by a white frame. (Wong et al., 2008d)
Every selected object is marked by a white fram. Through the CMOS image sensor, we can
obtain the digital image data in the visible line. From Figure 20, EndP is the terminal point in
the white frame and StaP is the starting point in the white frame. We transform the
coordinate system from the white frame to the full image. The pixel of the full image are
120 160 . According to the relation between the coordinate of the terminal point (EndP) and
the coordinate of the starting point (StaP), we can obtain the trend of the visible line from
one field to another field. The humanoid soccer robot decides the best appropriate strategy
for the movement.

Fig. 20. Reference points of image information in the relative coordinate

Some pictures of TWNHR-IV playing the competition event: the marathon is shown in
Figure 21, where we can see the TWNHR-IV follow the line. In this competition event,
TWNHR-IV can use the CMOS sensor to follow the blue line and walk about 1 hour.

(a) (b)

(c) (d)

(e) (f)

Fig. 21. A vision-based humanoid soccer robot can walk along the white line autonomously
in the competition of marathon

5. Conclusions

A humanoid soccer robot named TWNHR-IV is presented. A mechanical structure is
proposed to implement a humanoid robot with 26 degrees of freedom in this chapter. This
robot has 2 degrees of freedom on the head, 2 degrees of freedom on the trunk, 4 degrees of
freedom on each arm, and 7 degrees of freedom on each leg. A CMOS sensor, a digital
compass, an accelerometer, and six infrared sensors are equipped on the body of TWNHR-
IV to obtain the information of the environment. A CMOS sensor is installed on the head of

Robot Soccer64

the humanoid robot so that it can find the ball, track the line, and others image process. A
digital compass is installed to detect the direction of the robot. An accelerometer is installed
in the body of the humanoid robot so that it can detect the posture of robot. The
implemented TWNHR-IV can autonomously detect objects, avoid obstacles, cross uneven
surface, and walk to a destination. TWNHR-IV joined FIRA HuroSot 2007 and 2008, and
won 7 times first place, 3 times second place, and one third place in different competitions.
In the future, the localization ability is going to build in TWNHR-IV. Besides, fuzzy system
and some evolutional algorithms such as GA and PSO will be considered to improve the
speed of the motions and the movements.

6. References

Chemori, A. & Loria, A. (2004). Control of a planar underactuated biped on a complete
walking cycle, IEEE Transactions on Automatic Control, Vol.49, Issue 5, May 2004, pp.
838-843, ISBN 0018-9286.

Esfahani, E. T. & Elahinia, M. H. (2007). Stable walking pattern for an SMA-actuated biped,
IEEE/ASME Transactions on Mechatronics, Vol. 12, Issue 5, Oct. 2007, pp. 534-541,
ISBN 1083-4435.

Guan, Y.; Neo, E.S.; Yokoi, K. & Tanie, K. (2006). Stepping over obstacle with humanoid
robot, IEEE Transaction on Robotics, Vol. 22, Oct. 2006, pp. 958-973, ISBN 1552-3098.

Hemami, H.; Barin, K. & Pai, Y.C. (2006). Quantitative analysis of the ankle strategy under
translational platform disturbance, IEEE Transactions on Neural Systems and
Rehabilitation Engineering, Vol. 14, Issue 4, Dec. 2006, pp. 470-480, ISBN 1534-4320.

Hu, L.; Zhou C. & Sun Z. (2008). Estimating biped gait using spline-based probability
distribution function with Q-learning, IEEE Transactions on Industrial Electronics, Vol.
55, Issue 3, Mar. 2008, pp. 1444-1452, ISBN 0278-0046.

Huang, Q.; Li, K. & Nakamura, Y. (2001). Humanoid walk control with feedforward
dynamic pattern and feedback sensory reflection, IEEE International Symposium on
Computational intelligence in Robotics and Automation, pp. 29-34, ISBN 0-7803-7203-4,
Aug. 2001.

Miyazaki, F. & Arimoto S. (1980). A control theoretic study on dynamical biped locomotion,
ASME J. Dyna. Syst. Meas. Contr., Vol.102, pp.233-239, 1980.

Pauk J. H. & Chung H. (1999). ZMP compensation by on-line trajectory generation for biped
robots, IEEE International Conference on Systems, Man, and Cybernetics, Vol.4, pp. 960-
965, ISB 0-7803-5731-0, Oct. 1999.

Sugihara, T.; Nakamura, Y. & Inoue, H. (2002). Real time humanoid motion generation
through ZMP manipulation based on inverted pendulum control, IEEE International
Conference on Robotics and Automation, Vol.2, pp. 1404-1409, ISBN 0-7803-7272-7,
2002.

Wong, C.C.; Cheng, C.T.; Wang, H.Y.; Li, S.A.; Huang, K.H.; Wan, S.C. Yang, Y.T.; Hsu, C.L.;
Wang, Y.T.; Jhou, S.D.; Chan, H.M.; Huang, J.C.; Hu, Y.Y. (2005). Description of
TKU-PaPaGo team for humanoid league of RoboCup 2005, RoboCup International
Symposium, 2005.

Wong, C.C.; Cheng, C.T.; Huang, K.X.; Wu, H.C.; Hsu, C.L.; Yang, Y.T.; Wan, S.C.; Chen, L.C.
& Hu, Y.Y. (2007a). Design and implementation of humanoid robot for obstacle
avoidance, FIRA Robot World Congress, San Francisco, USA, 2007.

Wong, C.C.; Cheng, C.T.; Huang, K.H.; Yang, Y.T. & Chan, H.M. (2007b). Humanoid robot
design and implementation for obstacle run competition of FIRA Cup, 2007 CACS
International Automatic Control Conference, pp. 876-881, Nov. 2007.

Wong, C.C.; Cheng, C.T. & Chan, H.M. (2008a). TWNHR-IV: Humanoid soccer robot, 5th
International Conference on Computational Intelligence, Robotics and Autonomous
Systems (CIRAS 2008), pp. 173-177, Jun. 2008.

Wong, C.C. ; Cheng, C.T. ; Huang, K.H. ; Yang, Y.T.; Hu, Y.Y.; Chan, H.M. & Chen, H.C.
(2008b). Humanoid soccer robot: TWNHR-IV, Journal of Harbin Institute of
Technology, Vol.15, Sup. 2, Jul. 2008, pp. 27-30, ISSN 1005-9113.

Wong, C.C.; Cheng, C.T.; Huang, K.H.; Yang, Y.T.; Chan, H.M.; Hu, Y.Y. & Chen, H.C.
(2008c). Mechanical design of small-size humanoid robot: TWNHR-IV, Journal of
Harbin Institute of Technology, Vol.15, Sup. 2, Jul. 2008, pp. 31-34, ISSN 1005-9113.

Wong, C.C.; Huang, K.H.; Yang, Y.T.; Chan, H.M.; Hu, Y.Y.; Chen, H.C.; Hung, C.H. & Lo,
Y.W. (2008d). Vision-based humanoid soccer robot design for marathon, 2008 CACS
International Automatic Control Conference, pp. 27-29, ISBN 978-986-84845-0-4, Nov.
2008.

Zhou, C. & Jagannathan, K. (1996). Adaptive network based fuzzy of a dynamic biped
walking control robot, IEEE Int. Conf. on Robotics and Automation, pp. 109-116, ISBN
0-8186-7728-7, Nov. 1996.

Small-size Humanoid Soccer Robot Design for FIRA HuroSot 65

the humanoid robot so that it can find the ball, track the line, and others image process. A
digital compass is installed to detect the direction of the robot. An accelerometer is installed
in the body of the humanoid robot so that it can detect the posture of robot. The
implemented TWNHR-IV can autonomously detect objects, avoid obstacles, cross uneven
surface, and walk to a destination. TWNHR-IV joined FIRA HuroSot 2007 and 2008, and
won 7 times first place, 3 times second place, and one third place in different competitions.
In the future, the localization ability is going to build in TWNHR-IV. Besides, fuzzy system
and some evolutional algorithms such as GA and PSO will be considered to improve the
speed of the motions and the movements.

6. References

Chemori, A. & Loria, A. (2004). Control of a planar underactuated biped on a complete
walking cycle, IEEE Transactions on Automatic Control, Vol.49, Issue 5, May 2004, pp.
838-843, ISBN 0018-9286.

Esfahani, E. T. & Elahinia, M. H. (2007). Stable walking pattern for an SMA-actuated biped,
IEEE/ASME Transactions on Mechatronics, Vol. 12, Issue 5, Oct. 2007, pp. 534-541,
ISBN 1083-4435.

Guan, Y.; Neo, E.S.; Yokoi, K. & Tanie, K. (2006). Stepping over obstacle with humanoid
robot, IEEE Transaction on Robotics, Vol. 22, Oct. 2006, pp. 958-973, ISBN 1552-3098.

Hemami, H.; Barin, K. & Pai, Y.C. (2006). Quantitative analysis of the ankle strategy under
translational platform disturbance, IEEE Transactions on Neural Systems and
Rehabilitation Engineering, Vol. 14, Issue 4, Dec. 2006, pp. 470-480, ISBN 1534-4320.

Hu, L.; Zhou C. & Sun Z. (2008). Estimating biped gait using spline-based probability
distribution function with Q-learning, IEEE Transactions on Industrial Electronics, Vol.
55, Issue 3, Mar. 2008, pp. 1444-1452, ISBN 0278-0046.

Huang, Q.; Li, K. & Nakamura, Y. (2001). Humanoid walk control with feedforward
dynamic pattern and feedback sensory reflection, IEEE International Symposium on
Computational intelligence in Robotics and Automation, pp. 29-34, ISBN 0-7803-7203-4,
Aug. 2001.

Miyazaki, F. & Arimoto S. (1980). A control theoretic study on dynamical biped locomotion,
ASME J. Dyna. Syst. Meas. Contr., Vol.102, pp.233-239, 1980.

Pauk J. H. & Chung H. (1999). ZMP compensation by on-line trajectory generation for biped
robots, IEEE International Conference on Systems, Man, and Cybernetics, Vol.4, pp. 960-
965, ISB 0-7803-5731-0, Oct. 1999.

Sugihara, T.; Nakamura, Y. & Inoue, H. (2002). Real time humanoid motion generation
through ZMP manipulation based on inverted pendulum control, IEEE International
Conference on Robotics and Automation, Vol.2, pp. 1404-1409, ISBN 0-7803-7272-7,
2002.

Wong, C.C.; Cheng, C.T.; Wang, H.Y.; Li, S.A.; Huang, K.H.; Wan, S.C. Yang, Y.T.; Hsu, C.L.;
Wang, Y.T.; Jhou, S.D.; Chan, H.M.; Huang, J.C.; Hu, Y.Y. (2005). Description of
TKU-PaPaGo team for humanoid league of RoboCup 2005, RoboCup International
Symposium, 2005.

Wong, C.C.; Cheng, C.T.; Huang, K.X.; Wu, H.C.; Hsu, C.L.; Yang, Y.T.; Wan, S.C.; Chen, L.C.
& Hu, Y.Y. (2007a). Design and implementation of humanoid robot for obstacle
avoidance, FIRA Robot World Congress, San Francisco, USA, 2007.

Wong, C.C.; Cheng, C.T.; Huang, K.H.; Yang, Y.T. & Chan, H.M. (2007b). Humanoid robot
design and implementation for obstacle run competition of FIRA Cup, 2007 CACS
International Automatic Control Conference, pp. 876-881, Nov. 2007.

Wong, C.C.; Cheng, C.T. & Chan, H.M. (2008a). TWNHR-IV: Humanoid soccer robot, 5th
International Conference on Computational Intelligence, Robotics and Autonomous
Systems (CIRAS 2008), pp. 173-177, Jun. 2008.

Wong, C.C. ; Cheng, C.T. ; Huang, K.H. ; Yang, Y.T.; Hu, Y.Y.; Chan, H.M. & Chen, H.C.
(2008b). Humanoid soccer robot: TWNHR-IV, Journal of Harbin Institute of
Technology, Vol.15, Sup. 2, Jul. 2008, pp. 27-30, ISSN 1005-9113.

Wong, C.C.; Cheng, C.T.; Huang, K.H.; Yang, Y.T.; Chan, H.M.; Hu, Y.Y. & Chen, H.C.
(2008c). Mechanical design of small-size humanoid robot: TWNHR-IV, Journal of
Harbin Institute of Technology, Vol.15, Sup. 2, Jul. 2008, pp. 31-34, ISSN 1005-9113.

Wong, C.C.; Huang, K.H.; Yang, Y.T.; Chan, H.M.; Hu, Y.Y.; Chen, H.C.; Hung, C.H. & Lo,
Y.W. (2008d). Vision-based humanoid soccer robot design for marathon, 2008 CACS
International Automatic Control Conference, pp. 27-29, ISBN 978-986-84845-0-4, Nov.
2008.

Zhou, C. & Jagannathan, K. (1996). Adaptive network based fuzzy of a dynamic biped
walking control robot, IEEE Int. Conf. on Robotics and Automation, pp. 109-116, ISBN
0-8186-7728-7, Nov. 1996.

Robot Soccer66

Humanoid soccer player design 67

Humanoid soccer player design

Francisco Martín, Carlos Agüero, José María Cañas and Eduardo Perdices

X

Humanoid soccer player design

Francisco Martín, Carlos Agüero, José María Cañas and Eduardo Perdices
Rey Juan Carlos University

Spain

1. Introduction

The focus of robotic research continues to shift from industrial environments, in which
robots must perform a repetitive task in a very controlled environment, to mobile service
robots operating in a wide variety of environments, often in human-habited ones. There are
robots in museums (Thrun et al, 1999), domestic robots that clean our houses, robots that
present news, play music or even are our pets. These new applications for robots make arise
a lot of problems which must be solved in order to increase their autonomy. These problems
are, but are not limited to, navigation, localisation, behavior generation and human-machine
interaction. These problems are focuses on the autonomous robots research.

In many cases, research is motivated by accomplishment of a difficult task. In Artificial
Intelligence research, for example, a milestone was to win to the chess world champion. This
milestone was achieved when deep blue won to Kasparov in 1997. In robotics there are
several competitions which present a problem and must be solved by robots. For example,
Grand Challenge propose a robotic vehicle to cross hundred of kilometers autonomously.
This competition has also a urban version named Urban Challenge.

Fig. 1. Standard Platform League at RoboCup.

4

Robot Soccer68

section 6, we will introduce the experiment carried out to test the proposed approach and
also the robotic soccer player. Finally, section 7 will be the conclusion.

2. Related work

In this section, we will describe the previous works which try to solve the robot behavior
generation and the following behaviors. First of all, the classic approaches to generate robot
behaviors will be described. These approaches have been already successfully tested in
wheeled robots. After that, we will present other approaches related to the RoboCup
domain. To end up, we will describe a following behavior that uses an approach closely
related to the one used in this work.

There are many approaches that try to solve the behavior generation problem. One of the
first successful works on mobile robotics is Xavier (Simmons et al, 1997). The architecture
used in these works is made out of four layers: obstacle avoidance, navigation, path
planning and task planning. The behavior arises from the combination of these separate
layers, with an specific task and priority each. The main difference with regard to our work
is this separation. In our work, there are no layers with any specific task, but the tasks are
broken into components in different layers.

Another approach is (Stoytchev & Arkin, 2000), where a hybrid architecture, which behavior
is divided into three components, was proposed: deliberative planning, reactive control and
motivation drives. Deliberative planning made the navigation tasks. Reactive control
provided with the necessary sensorimotor control integration for response reactively to the
events in its surroundings. The deliberative planning component had a reactive behavior
that arises from a combination of schema-based motor control agents responding to the
external stimulus. Motivation drives were responsible of monitoring the robot behavior.
This work has in common with ours the idea of behavior decomposition into smaller
behavioral units. This behavior unit was explained in detail in (Arkin, 2008).

In (Calvo et al, 2005) a follow person behavior was developed by using an architecture
called JDE (Cañas & Matellán, 2007). This reactive behavior arises from the
activation/deactivation of components called schemes. This approach has several
similarities with the one presented in this work.

In the RoboCup domain, a hierarchical behavior-based architecture was presented in
(Lenser et al, 2002). This architecture was divided in several levels. The upper levels set
goals that the bottom level had to achieve using information generated by a set of virtual
sensors, which were an abstraction of the actual sensors.

Saffiotti (Saffiotti & Zbigniew, 2003) presented another approach in this domain: the
ThinkingCap architecture. This architecture was based in a fuzzy approach, extended in
(Gómez & Martínez, 1997). The perceptual and global modelling components manage
information in a fuzzy way and they were used for generating the next actions. This
architecture was tested in the four legged league RoboCup domain and it was extended in
(Herrero & Martínez, 2008) to the Standar Platform League, where the behaviors were

Our work is related to RoboCup. This is an international initiative to promote research on
the field of Robotics and Artificial Intelligence. This initiative proposes a very complex
problem, a soccer match, in which several techniques related to these field can be tested,
evaluated and compared. The long term goal of the RoboCup project is, by 2050, develop a
team of fully autonomous humanoid robots that can win against the human world
champion team in soccer.

This work is focused on the Standard Platform League. In this league, all the teams use the
same robot and changes in hardware are not allowed. This is the key factor that makes that
the efforts concentrate on the software aspects rather than in the hardware. This is why this
league is known as The Software League. Until 2007, the chosen robot to play in this league
was Aibo robot. But since 2008 there is a new platform called Nao (figure 1). Nao is a biped
humanoid robot, this is the main difference with respect Aibo that is a quadruped robot.
This fact has had a big impact in the way the robot moves and its stability while moving.
Also, the sizes of both robots is not the same. Aibo is 15 cm tall while Nao is about 55 cm
tall. That causes the big difference on the way of perception. In addition to it, both robots
use a single camera to perceive. In Aibo the perception was 2D because the camera was very
near the floor. Robot Nao perceives in 3D because the camera is at a higher position and that
enables the robot to calculate the position of the elements that are located on the floor with
one single camera.

Many problems have to be solved before having a fully featured soccer player. First of all,
the robot has to get information from the environment, mainly using the camera. It must
detect the ball, goals, lines and the other robots. Having this information, the robot has to
self-localise and decide the next action: move, kick, search another object, etc. The robot
must perform all these tasks very fast in order to be reactive enough to be competitive in a
soccer match. It makes no sense within this environment to have a good localisation method
if that takes several seconds to compute the robot position or to decide the next movement
in few seconds based on the old percerpetion. The estimated sense-think-act process must
take less than 200 millisecond to be truly eficient. This is a tough requirement for any
behavior architecture that wishes to be applied to solve the problem.

With this work we are proposing a behavior based architecture that meets with the
requirements needed to develop a soccer player. Every behavior is obtained from a
combination of reusable components that execute iteratively. Every component has a
specific function and it is able to activate, deactivate o modulate other components. This
approach will meet the vivacity, reactivy and robustness needed in this environment. In this
chapter we will show how we have developed a soccer player behavior using this
architecture and all the experiments carried out to verify these properties.

This paper is organised as follows: First, we will present in section 2 all relevant previous
works which are also focused in robot behavior generation and following behaviors. In
section 3, we will present the Nao and the programming framework provided to develop
the robot applications. This framework is the ground of our software. In section 4, the
behavior based architecture and their properties will be described. Next, in section 5, we
will describe how we have developed a robotic soccer player using this architecture. In

Humanoid soccer player design 69

section 6, we will introduce the experiment carried out to test the proposed approach and
also the robotic soccer player. Finally, section 7 will be the conclusion.

2. Related work

In this section, we will describe the previous works which try to solve the robot behavior
generation and the following behaviors. First of all, the classic approaches to generate robot
behaviors will be described. These approaches have been already successfully tested in
wheeled robots. After that, we will present other approaches related to the RoboCup
domain. To end up, we will describe a following behavior that uses an approach closely
related to the one used in this work.

There are many approaches that try to solve the behavior generation problem. One of the
first successful works on mobile robotics is Xavier (Simmons et al, 1997). The architecture
used in these works is made out of four layers: obstacle avoidance, navigation, path
planning and task planning. The behavior arises from the combination of these separate
layers, with an specific task and priority each. The main difference with regard to our work
is this separation. In our work, there are no layers with any specific task, but the tasks are
broken into components in different layers.

Another approach is (Stoytchev & Arkin, 2000), where a hybrid architecture, which behavior
is divided into three components, was proposed: deliberative planning, reactive control and
motivation drives. Deliberative planning made the navigation tasks. Reactive control
provided with the necessary sensorimotor control integration for response reactively to the
events in its surroundings. The deliberative planning component had a reactive behavior
that arises from a combination of schema-based motor control agents responding to the
external stimulus. Motivation drives were responsible of monitoring the robot behavior.
This work has in common with ours the idea of behavior decomposition into smaller
behavioral units. This behavior unit was explained in detail in (Arkin, 2008).

In (Calvo et al, 2005) a follow person behavior was developed by using an architecture
called JDE (Cañas & Matellán, 2007). This reactive behavior arises from the
activation/deactivation of components called schemes. This approach has several
similarities with the one presented in this work.

In the RoboCup domain, a hierarchical behavior-based architecture was presented in
(Lenser et al, 2002). This architecture was divided in several levels. The upper levels set
goals that the bottom level had to achieve using information generated by a set of virtual
sensors, which were an abstraction of the actual sensors.

Saffiotti (Saffiotti & Zbigniew, 2003) presented another approach in this domain: the
ThinkingCap architecture. This architecture was based in a fuzzy approach, extended in
(Gómez & Martínez, 1997). The perceptual and global modelling components manage
information in a fuzzy way and they were used for generating the next actions. This
architecture was tested in the four legged league RoboCup domain and it was extended in
(Herrero & Martínez, 2008) to the Standar Platform League, where the behaviors were

Our work is related to RoboCup. This is an international initiative to promote research on
the field of Robotics and Artificial Intelligence. This initiative proposes a very complex
problem, a soccer match, in which several techniques related to these field can be tested,
evaluated and compared. The long term goal of the RoboCup project is, by 2050, develop a
team of fully autonomous humanoid robots that can win against the human world
champion team in soccer.

This work is focused on the Standard Platform League. In this league, all the teams use the
same robot and changes in hardware are not allowed. This is the key factor that makes that
the efforts concentrate on the software aspects rather than in the hardware. This is why this
league is known as The Software League. Until 2007, the chosen robot to play in this league
was Aibo robot. But since 2008 there is a new platform called Nao (figure 1). Nao is a biped
humanoid robot, this is the main difference with respect Aibo that is a quadruped robot.
This fact has had a big impact in the way the robot moves and its stability while moving.
Also, the sizes of both robots is not the same. Aibo is 15 cm tall while Nao is about 55 cm
tall. That causes the big difference on the way of perception. In addition to it, both robots
use a single camera to perceive. In Aibo the perception was 2D because the camera was very
near the floor. Robot Nao perceives in 3D because the camera is at a higher position and that
enables the robot to calculate the position of the elements that are located on the floor with
one single camera.

Many problems have to be solved before having a fully featured soccer player. First of all,
the robot has to get information from the environment, mainly using the camera. It must
detect the ball, goals, lines and the other robots. Having this information, the robot has to
self-localise and decide the next action: move, kick, search another object, etc. The robot
must perform all these tasks very fast in order to be reactive enough to be competitive in a
soccer match. It makes no sense within this environment to have a good localisation method
if that takes several seconds to compute the robot position or to decide the next movement
in few seconds based on the old percerpetion. The estimated sense-think-act process must
take less than 200 millisecond to be truly eficient. This is a tough requirement for any
behavior architecture that wishes to be applied to solve the problem.

With this work we are proposing a behavior based architecture that meets with the
requirements needed to develop a soccer player. Every behavior is obtained from a
combination of reusable components that execute iteratively. Every component has a
specific function and it is able to activate, deactivate o modulate other components. This
approach will meet the vivacity, reactivy and robustness needed in this environment. In this
chapter we will show how we have developed a soccer player behavior using this
architecture and all the experiments carried out to verify these properties.

This paper is organised as follows: First, we will present in section 2 all relevant previous
works which are also focused in robot behavior generation and following behaviors. In
section 3, we will present the Nao and the programming framework provided to develop
the robot applications. This framework is the ground of our software. In section 4, the
behavior based architecture and their properties will be described. Next, in section 5, we
will describe how we have developed a robotic soccer player using this architecture. In

Robot Soccer70

Fig. 2. Brokers tree.

Every binary, also called broker, runs independently and is attached to an address and port.
Every broker is able to run both in the robot (cross compiled) and the computer. Then we
are able to develop a complete application composed by several brokers, some running in a
computer and some in the robot, that communicate among them. This is useful because high
cost processing tasks can be done in a high performance computer instead of in the robot,
which is computationally limited.

The broker's functionality is performed by modules. Each broker may have one or more
modules. Actually, brokers only provide some services to the modules in order to
accomplish their tasks. Brokers deliver call messages among the modules, subscription to
data and so on. They also provide a way to solve module names in order to avoid specifying
the address and port of the module.

Fig. 3. Modules within MainBroker.

A set of brokers are hierarchically structured as a tree, as we can see in figure 2. The most
important broker is the MainBroker. This broker contains modules to access to robot sensors
and actuators and other modules provide some interesting functionality (figure 3). We will
describe some of the modules intensively used in this work:

• The main information source our application is the camera. The images are fetched

by ALVideoDevice module. This module uses the Video4Linux driver and makes the
images available for any module that create a proxy to it, as we can observe in
figure 4. This proxy can be obtained locally or remotelly. If locally, only a reference

developed using a LUA interpreter. This work is important to the work presented in this
paper because this was the previous architecture used in our RoboCup team.

Many researches have been done over the Standar Platform League. The B-Human Team
(Röfer et al, 2008) divides their architecture in four levels: perception, object modelling,
behavior control and motion control. The execution starts in the upper level which perceives
the environment and finishes at the low level which sends motion commands to actuators.
The behavior level was composed by several basic behavior implemented as finite state
machines. Only one basic behavior could be activated at same time. These finite state
machine was written in XABSL language (Loetzsch et al, 2006), that was interpreted at
runtime and let change and reload the behavior during the robot operation. A different
approach was presented by Cerberus Team (Akin et al, 2008), where the behavior generation
is done using a four layer planner model, that operates in discrete time steps, but exhibits
continuous behaviors. The topmost layer provides a unified interface to the planner object.
The second layer stores the different roles that a robot can play. The third layer provides
behaviors called “Actions”, used by the roles. Finally, the fourth layer contains basic skills,
built upon the actions of the third layer.
The behavior generation decomposition in layers is widely used to solve the soccer player
problem. In (Chown et al 2008) a layered architecture is also used, but including
coordination among the robots. They developed a decentralized dynamic role switching
system that obtains the desired behavior using different layers: strategies (the topmost
layer), formations, roles and sub-roles. The first two layers are related to the coordination
and the other two layers are related to the local actions that the robot must take.

3. Nao and NaoQi framework

The behavior based architecture proposed in this work has been tested using the Nao robot.
The applications that run in this robot must be implemented in software. The hardware
cannot be improved and all the work must be focused in improving the software. The robot
manufacturer provides an easy way to access to the hardware and also to several high level
functions, useful to implement the applications.

Our soccer robot application uses some of the functionality provided by this underlying
software. This software is called NaoQi1

1 http://www.aldebaran-robotics.com/

 and provides a framework to develop applications
in C++ and Python.

NaoQi is a distributed object framework which allows to several distributed binaries be
executed, all of them containing several software modules which communicate among
them. Robot functionality is encapsulated in software modules, so we can communicate to
specific modules in order to access sensors and actuators.

Humanoid soccer player design 71

Fig. 2. Brokers tree.

Every binary, also called broker, runs independently and is attached to an address and port.
Every broker is able to run both in the robot (cross compiled) and the computer. Then we
are able to develop a complete application composed by several brokers, some running in a
computer and some in the robot, that communicate among them. This is useful because high
cost processing tasks can be done in a high performance computer instead of in the robot,
which is computationally limited.

The broker's functionality is performed by modules. Each broker may have one or more
modules. Actually, brokers only provide some services to the modules in order to
accomplish their tasks. Brokers deliver call messages among the modules, subscription to
data and so on. They also provide a way to solve module names in order to avoid specifying
the address and port of the module.

Fig. 3. Modules within MainBroker.

A set of brokers are hierarchically structured as a tree, as we can see in figure 2. The most
important broker is the MainBroker. This broker contains modules to access to robot sensors
and actuators and other modules provide some interesting functionality (figure 3). We will
describe some of the modules intensively used in this work:

• The main information source our application is the camera. The images are fetched

by ALVideoDevice module. This module uses the Video4Linux driver and makes the
images available for any module that create a proxy to it, as we can observe in
figure 4. This proxy can be obtained locally or remotelly. If locally, only a reference

developed using a LUA interpreter. This work is important to the work presented in this
paper because this was the previous architecture used in our RoboCup team.

Many researches have been done over the Standar Platform League. The B-Human Team
(Röfer et al, 2008) divides their architecture in four levels: perception, object modelling,
behavior control and motion control. The execution starts in the upper level which perceives
the environment and finishes at the low level which sends motion commands to actuators.
The behavior level was composed by several basic behavior implemented as finite state
machines. Only one basic behavior could be activated at same time. These finite state
machine was written in XABSL language (Loetzsch et al, 2006), that was interpreted at
runtime and let change and reload the behavior during the robot operation. A different
approach was presented by Cerberus Team (Akin et al, 2008), where the behavior generation
is done using a four layer planner model, that operates in discrete time steps, but exhibits
continuous behaviors. The topmost layer provides a unified interface to the planner object.
The second layer stores the different roles that a robot can play. The third layer provides
behaviors called “Actions”, used by the roles. Finally, the fourth layer contains basic skills,
built upon the actions of the third layer.
The behavior generation decomposition in layers is widely used to solve the soccer player
problem. In (Chown et al 2008) a layered architecture is also used, but including
coordination among the robots. They developed a decentralized dynamic role switching
system that obtains the desired behavior using different layers: strategies (the topmost
layer), formations, roles and sub-roles. The first two layers are related to the coordination
and the other two layers are related to the local actions that the robot must take.

3. Nao and NaoQi framework

The behavior based architecture proposed in this work has been tested using the Nao robot.
The applications that run in this robot must be implemented in software. The hardware
cannot be improved and all the work must be focused in improving the software. The robot
manufacturer provides an easy way to access to the hardware and also to several high level
functions, useful to implement the applications.

Our soccer robot application uses some of the functionality provided by this underlying
software. This software is called NaoQi1

1 http://www.aldebaran-robotics.com/

 and provides a framework to develop applications
in C++ and Python.

NaoQi is a distributed object framework which allows to several distributed binaries be
executed, all of them containing several software modules which communicate among
them. Robot functionality is encapsulated in software modules, so we can communicate to
specific modules in order to access sensors and actuators.

Robot Soccer72

Fig. 6. Access time to the image depending on resolution and space color. Last column is
direct raw mode.

• In order to move the robot, NaoQi provides the ALMotion module. This module is
responsible for the actuators of the robot. This module's API let us move a single
joint, a set of joints or the entire body. The movements can be very simple (p.e. set a
joint angle with a selected speed) or very complex (walk a selected distance). We
use these high level movement calls to make the robot walk, turn o walk sideways.
As a simple example, the walkStraight function is:

void walkStraight (float distance, int pNumSamplesPerStep)

This function makes the robot walk straight a distance. If a module, in any
broker, wants to make the robot walk, it has to create a proxy to the ALMotion
module. Then, it can use this proxy to call any function of the ALMotion module.

The movement generation to make the robot walk is a critical task that NaoQi
performs. The operations to obtain each joint position are critical. If these real time
operations miss the deadlines, the robot may lost the stability and fall down.

• NaoQi provides a thread-safe module for information sharing among modules,

called ALMemory. By its API, modules write data in this module, which are read by
any module. NaoQi also provides a way to subscribe and unsubscribe to any data
in ALMemory when it changes or periodically, selecting a class method as a callback
to manage the reception. Besides this, ALMemory also contains all the information
related to the sensors and actuators in the system, and other information. This
module can be used as a blackboard where any data produced by any module is
published, and any module that needs a data reads from ALMemory in order to
obtain it.

As we said before, each module has an API with the functionality that it provides. Brokers
also provide useful information about their modules and their APIs via web services. If you
use a browser to connect to any broker, it shows all the modules it contains, and the API of
each one.

to the data image is obtained, but if remotelly all the image data must be
encapsulated in a SOAP message and sent over the network.
To access the image, we can use the normal mode or the direct raw mode. Figure 5
will help to explain the difference. Video4Linux driver maintains in kernel space a
buffer where it stores the information taken from the camera. It is a round robin
buffer with a limited capacity. NaoQi unmaps one image information from Kernel
space to driver space and locks it. The difference in the modes comes here. In
normal mode, the image transformations (resolution and color space) are applied,
storing the result and unlocking the image information. This result will be
accessed, locally or remotelly, by the module interested in this data. In direct raw
mode, the locked image information is available (only locally and in native color
space, YUV422) to be accessed by the module interested in this data. This module
should manually unlock the data before the driver in kernel space wants to use this
buffer position (around 25 ms). Fetching time varying depending on the desired
color space, resolution and access mode, as we can see in figure 6.

Fig. 4. NaoQi vision architecture overview.

Fig. 5. Access to an image in the NaoQi framework.

Humanoid soccer player design 73

Fig. 6. Access time to the image depending on resolution and space color. Last column is
direct raw mode.

• In order to move the robot, NaoQi provides the ALMotion module. This module is
responsible for the actuators of the robot. This module's API let us move a single
joint, a set of joints or the entire body. The movements can be very simple (p.e. set a
joint angle with a selected speed) or very complex (walk a selected distance). We
use these high level movement calls to make the robot walk, turn o walk sideways.
As a simple example, the walkStraight function is:

void walkStraight (float distance, int pNumSamplesPerStep)

This function makes the robot walk straight a distance. If a module, in any
broker, wants to make the robot walk, it has to create a proxy to the ALMotion
module. Then, it can use this proxy to call any function of the ALMotion module.

The movement generation to make the robot walk is a critical task that NaoQi
performs. The operations to obtain each joint position are critical. If these real time
operations miss the deadlines, the robot may lost the stability and fall down.

• NaoQi provides a thread-safe module for information sharing among modules,

called ALMemory. By its API, modules write data in this module, which are read by
any module. NaoQi also provides a way to subscribe and unsubscribe to any data
in ALMemory when it changes or periodically, selecting a class method as a callback
to manage the reception. Besides this, ALMemory also contains all the information
related to the sensors and actuators in the system, and other information. This
module can be used as a blackboard where any data produced by any module is
published, and any module that needs a data reads from ALMemory in order to
obtain it.

As we said before, each module has an API with the functionality that it provides. Brokers
also provide useful information about their modules and their APIs via web services. If you
use a browser to connect to any broker, it shows all the modules it contains, and the API of
each one.

to the data image is obtained, but if remotelly all the image data must be
encapsulated in a SOAP message and sent over the network.
To access the image, we can use the normal mode or the direct raw mode. Figure 5
will help to explain the difference. Video4Linux driver maintains in kernel space a
buffer where it stores the information taken from the camera. It is a round robin
buffer with a limited capacity. NaoQi unmaps one image information from Kernel
space to driver space and locks it. The difference in the modes comes here. In
normal mode, the image transformations (resolution and color space) are applied,
storing the result and unlocking the image information. This result will be
accessed, locally or remotelly, by the module interested in this data. In direct raw
mode, the locked image information is available (only locally and in native color
space, YUV422) to be accessed by the module interested in this data. This module
should manually unlock the data before the driver in kernel space wants to use this
buffer position (around 25 ms). Fetching time varying depending on the desired
color space, resolution and access mode, as we can see in figure 6.

Fig. 4. NaoQi vision architecture overview.

Fig. 5. Access to an image in the NaoQi framework.

Robot Soccer74

The robot hardware design also imposes some restrictions. The main restriction is related to
the two cameras in the robot. These cameras are not stereo, as we can observe in the right
side of the figure 7. Actually, the bottom camera was included in the last version of the robot
after RoboCup 2008, when the robot designer took into account that it was difficult track the
ball with the upper camera (the only present at that time) when the distance to the ball was
less than one meter. Because of this non stereo camera characteristic, we can’t estimate
elements position in 3D using two images of the element, but supposing some other
characteristics as the heigh position, the element size, etc.

Besides of that, the two cameras can’t be used at same time. We are restricted to use only
one camera at the time, and the switching time is not negligible (about 70 ms). All these
restrictions have to taken into account when designing our software.

The software developed on top of NaoQi can be tested both in real robot and simulator. We
use Webots (figure 8) (MSR is also available) to test the software as the first step before
testing it in the real robot. This let us to speed up the development and to take care of the
real robot, whose hardware is fragile.

Fig. 8. Simulated and real robot.

4. Behavior based architecture for robot applications

The framework we presented in the last section provides useful functionality to develop a
software architecture that makes a robot perform any task. We can decompose the
functionality in modules that communicate among them. This framework also hides almost
all the complexity of movement generation and makes easy to access sensors (ultrasound,
camera, bumpers…) and actuators (motors, color lights, speaker…).

When a programmer develops an application composed by several modules, she decides to
implement it as a dynamic library or as a binary (broker). In the dynamic library (like a
plug-in) way, the modules that it contains can be loaded by the MainBroker as its own
modules. Using this mechanism the execution speeds up, from point of the view of
communication among modules. As the main disadvantage, if any of the modules crashes,
then MainBroker also crashes, and the robot falls to the floor. To develop an application as a
separate broker makes the execution safer. If the module crashes, only this module is
affected.

The use of NaoQi framework is not mandatory, but it is recommended. NaoQi offers high
and medium level APIs which provide all the methods needed to use all the robot's
functionality. The movement methods provided by NaoQi send low level commands to a
microcontroller allocated in the robot's chest. This microcontroller is called DCM and is in
charge of controlling the robot's actuators. Some developers prefer (and the development
framework allows it) not to use NaoQi methods and use directly low level DCM
functionality instead. This is much laborious, but it takes absolute control of robot and
allows to develop an own walking engine, for example.

Nao robot is a fully programmable humanoid robot. It is equipped with a x86 AMD Geode
500 Mhz CPU, 1 GB flash memory, 256 MB SDRAM, two speakers, two cameras (non
stereo), Wi-fi connectivity and Ethernet port. It has 25 degrees of freedom. The operating
system is Linux 2.6 with some real time patches. The robot is eqquiped with a
microcontroller ARM 7 allocated in its chest to controll the robot’s motors and sensors,
called DCM.

Fig. 7. Aldebaran Robotics’ Nao Robot.

These features impose some restrictions to our behavior based architecture design. The
microprocessor is not very powerful and the memory is very limited. These restrictions
must be taken into account to run complex localization or sophisticathed image processing
algorithms. Moreover, the processing time and memory must be shared with the OS itself
(an GNU/Linux embedded distribution) and all the software that is running in the robot,
including the services that let us access to sensors and motors, which we mentioned before.
Only the OS and all this software consume about 67% of the total memory available and
25% of the processing time.

Humanoid soccer player design 75

The robot hardware design also imposes some restrictions. The main restriction is related to
the two cameras in the robot. These cameras are not stereo, as we can observe in the right
side of the figure 7. Actually, the bottom camera was included in the last version of the robot
after RoboCup 2008, when the robot designer took into account that it was difficult track the
ball with the upper camera (the only present at that time) when the distance to the ball was
less than one meter. Because of this non stereo camera characteristic, we can’t estimate
elements position in 3D using two images of the element, but supposing some other
characteristics as the heigh position, the element size, etc.

Besides of that, the two cameras can’t be used at same time. We are restricted to use only
one camera at the time, and the switching time is not negligible (about 70 ms). All these
restrictions have to taken into account when designing our software.

The software developed on top of NaoQi can be tested both in real robot and simulator. We
use Webots (figure 8) (MSR is also available) to test the software as the first step before
testing it in the real robot. This let us to speed up the development and to take care of the
real robot, whose hardware is fragile.

Fig. 8. Simulated and real robot.

4. Behavior based architecture for robot applications

The framework we presented in the last section provides useful functionality to develop a
software architecture that makes a robot perform any task. We can decompose the
functionality in modules that communicate among them. This framework also hides almost
all the complexity of movement generation and makes easy to access sensors (ultrasound,
camera, bumpers…) and actuators (motors, color lights, speaker…).

When a programmer develops an application composed by several modules, she decides to
implement it as a dynamic library or as a binary (broker). In the dynamic library (like a
plug-in) way, the modules that it contains can be loaded by the MainBroker as its own
modules. Using this mechanism the execution speeds up, from point of the view of
communication among modules. As the main disadvantage, if any of the modules crashes,
then MainBroker also crashes, and the robot falls to the floor. To develop an application as a
separate broker makes the execution safer. If the module crashes, only this module is
affected.

The use of NaoQi framework is not mandatory, but it is recommended. NaoQi offers high
and medium level APIs which provide all the methods needed to use all the robot's
functionality. The movement methods provided by NaoQi send low level commands to a
microcontroller allocated in the robot's chest. This microcontroller is called DCM and is in
charge of controlling the robot's actuators. Some developers prefer (and the development
framework allows it) not to use NaoQi methods and use directly low level DCM
functionality instead. This is much laborious, but it takes absolute control of robot and
allows to develop an own walking engine, for example.

Nao robot is a fully programmable humanoid robot. It is equipped with a x86 AMD Geode
500 Mhz CPU, 1 GB flash memory, 256 MB SDRAM, two speakers, two cameras (non
stereo), Wi-fi connectivity and Ethernet port. It has 25 degrees of freedom. The operating
system is Linux 2.6 with some real time patches. The robot is eqquiped with a
microcontroller ARM 7 allocated in its chest to controll the robot’s motors and sensors,
called DCM.

Fig. 7. Aldebaran Robotics’ Nao Robot.

These features impose some restrictions to our behavior based architecture design. The
microprocessor is not very powerful and the memory is very limited. These restrictions
must be taken into account to run complex localization or sophisticathed image processing
algorithms. Moreover, the processing time and memory must be shared with the OS itself
(an GNU/Linux embedded distribution) and all the software that is running in the robot,
including the services that let us access to sensors and motors, which we mentioned before.
Only the OS and all this software consume about 67% of the total memory available and
25% of the processing time.

Robot Soccer76

Fig. 10. Activation tree composed by several components.

Two differents components are able to activate the same child component, as we can observe in
figure 11. This property lets two components to get the same information from a component.
Any of them may modulate it, and the changes affect to the result obtained in both component.

Fig. 11. Activation tree where B and D activates D component.

The activation tree is no fixed during the robot operation. Actually, it changes dinamically
depending on many factors: main task, environment element position, interaction with
robots or humans, changes in the environment, error or falls… The robot must adapt to the
changes in these factors by modulating the lower level components or activating and
deactivating components, changing in this way the static view of the tree.

The main idea of our approach is to decompose the robot functionality in these components,
which cooperate among them to make arise more complex behaviors. As we said before,
component can be active or inactive. When it is active, a step() function is called
iteratively to perform the component task.

Fig. 12. Activation tree with two low level components and a high level components that
modulates them.

It is possible to develop basic behaviors using only this framework, but it is not enough for
our needs. We need an architecture that let us to activate and deactivate components, which
is more related to the cognitive organization of a behavior based system. This is the first step
to have a wide variety of simple applications available. It’s hard to develop complex
applications using NaoQi only.

In this section we will describe the design concepts of the robot architecture we propose in
this chapter. We will address aspects such as how we interact with NaoQi software layer,
which of its functionality we use and which not, what are the elements of our architecture,
how they are organized and timing related aspects.

The main element in the proposed architecture is the component. This is the basic unit of
functionality. In any time, each component can be active or inactive. This property is set
using the start/stop interface, as we can observe in figure 6. When it is active, it is running
and performing a task. When inactive, it is stopped and it does not consume computation
resources. A component also accepts modulations to its actuation and provides information
of the task it is performing.

For example, lets suppose a component whose function is perceive the distance to an object
using the ultrasound sensors situated in the robot chest. The only task of this component is
to detect, using the sensor information, if a obstacle is in front of the robot, on its left, on its
right or there is not obstacle in a distance less than D mm. If we would like to use this
functionality, we have to activate this component using its start/stop interface (figure 9). We
may modulate the D distance and ask whenever we want what is this component output
(front, left, right or none). When this is information is no longer needed, we may deactivate
this component to stop calculating the obstacle position, saving valuable resources.

Fig. 9. Component inputs and outputs.

A component, when active, can activate another components to achieve its goal, and these
components can also activate another ones. This is a key idea in our architecture. This let to
decompose funtionality in several components that work together. An application is a set of
components which some of them are activated and another ones are deactivated. The subset
of the components that are activated and the activation relations are called activation tree. In
figure 10 there is an example af an activation tree. When component A, the root component,
is activated, it activates component B and E. Component B activates C and D. Component A
needs all these components actived to achieve its goal. This estructure may change when a
component is modulated and decides to stop a component and activate another more
adequate one. In this example, component A does not need to know that B has activated C
and D. The way component B performs its task is up to it. Component A is only interested in
the component B and E execution results.

Humanoid soccer player design 77

Fig. 10. Activation tree composed by several components.

Two differents components are able to activate the same child component, as we can observe in
figure 11. This property lets two components to get the same information from a component.
Any of them may modulate it, and the changes affect to the result obtained in both component.

Fig. 11. Activation tree where B and D activates D component.

The activation tree is no fixed during the robot operation. Actually, it changes dinamically
depending on many factors: main task, environment element position, interaction with
robots or humans, changes in the environment, error or falls… The robot must adapt to the
changes in these factors by modulating the lower level components or activating and
deactivating components, changing in this way the static view of the tree.

The main idea of our approach is to decompose the robot functionality in these components,
which cooperate among them to make arise more complex behaviors. As we said before,
component can be active or inactive. When it is active, a step() function is called
iteratively to perform the component task.

Fig. 12. Activation tree with two low level components and a high level components that
modulates them.

It is possible to develop basic behaviors using only this framework, but it is not enough for
our needs. We need an architecture that let us to activate and deactivate components, which
is more related to the cognitive organization of a behavior based system. This is the first step
to have a wide variety of simple applications available. It’s hard to develop complex
applications using NaoQi only.

In this section we will describe the design concepts of the robot architecture we propose in
this chapter. We will address aspects such as how we interact with NaoQi software layer,
which of its functionality we use and which not, what are the elements of our architecture,
how they are organized and timing related aspects.

The main element in the proposed architecture is the component. This is the basic unit of
functionality. In any time, each component can be active or inactive. This property is set
using the start/stop interface, as we can observe in figure 6. When it is active, it is running
and performing a task. When inactive, it is stopped and it does not consume computation
resources. A component also accepts modulations to its actuation and provides information
of the task it is performing.

For example, lets suppose a component whose function is perceive the distance to an object
using the ultrasound sensors situated in the robot chest. The only task of this component is
to detect, using the sensor information, if a obstacle is in front of the robot, on its left, on its
right or there is not obstacle in a distance less than D mm. If we would like to use this
functionality, we have to activate this component using its start/stop interface (figure 9). We
may modulate the D distance and ask whenever we want what is this component output
(front, left, right or none). When this is information is no longer needed, we may deactivate
this component to stop calculating the obstacle position, saving valuable resources.

Fig. 9. Component inputs and outputs.

A component, when active, can activate another components to achieve its goal, and these
components can also activate another ones. This is a key idea in our architecture. This let to
decompose funtionality in several components that work together. An application is a set of
components which some of them are activated and another ones are deactivated. The subset
of the components that are activated and the activation relations are called activation tree. In
figure 10 there is an example af an activation tree. When component A, the root component,
is activated, it activates component B and E. Component B activates C and D. Component A
needs all these components actived to achieve its goal. This estructure may change when a
component is modulated and decides to stop a component and activate another more
adequate one. In this example, component A does not need to know that B has activated C
and D. The way component B performs its task is up to it. Component A is only interested in
the component B and E execution results.

Robot Soccer78

Fig. 13. Activation tree with a root component in the higher level. As higher is the level,
lower is the frequency.

Using this approach, we can modulate every module frequency, and be aware of situations
where the system has a high load. If a module does not meet with its (soft) deadline, it only
makes the next component to executed a little bit late, but its execution is not discarted
(graceful degradation).

In next section we will describe some of the components developed using this approach for
our soccer player application, clarifying some aspects not fully described .

5. Soccer player design

The concepts presented in last section summarizes the key ideas of this architecture design.
We have presented the component element, how these components can be activated in a
activation tree and how they execute. This architecture is focused to develop robot
applications using a behavioral approach. In this section we will present how, using this
architecture, we solve the problem previously introduced in the section 1: play soccer.
A soccer player implementation is defined by the set of activation trees and how the
components modulate another ones. These components are related to perception and
actuations and are part of the basis of this architecture. High level components make use of
these lower level components to achieve higher level components. So, the changes between
soccer player implementations depends on these higher level components. We will review
in next sections how particular components to make a robot play soccer are designed and
implemented.

5.1 Soccer player perception
At RoboCup competition, the environment is designed to be perceived using vision and all
the elements have a particular color and shape. Nao is equipped with two (non-stereo)
cameras because they are the richest sensors available in robotics. This particular robot has
also ultrasound sensors to detect obstacles in front of it, but a image processing could also
detect the obstacle and, additionally, recognize whether it is a robot (and what teams it
belong) or another element. This is why we have based the robot perception in vision.

The perception is carried out by the Perception component. This component obtains the
image from one of the two cameras, process it and makes this information available to any
component interested on it using the API it implements. Furthermore, it may calculate the
3D position of some elements in the environment. Finally, we have developed a novel
approach to detect the goals, calculating at same time an estimation of the robot pose in 3D.

As an example, in figure 12 we show an activation tree composed by 3 components.
ObjectPerception is a low level component that determines the position of an
interesting object in the image taken by the robot’s camera. Head is a low level component
that moves the head. These components functionality is used by a higher level component
called FaceObject. This component activates both low level components, that execute
iteratively. Each time FaceObject component performs its step() function, it asks to
FaceObject for the object position and modulates Head movement to obtain the global
behavior: facing the object.

Components can be very simple or very complex. For example, the ObjectPerception
component of the example is a perceptive iterative component. It does’t modulate or
activate another component. It only extract information from an image. The
ObjectPerception component is a iterative controller, that activate and modulate
another components. Another components may activate and deactivate components
dinamically dependining on some stimulus. They are implemented as finite state machine. In
each state there is set of active components, and this set is eventually different to the one in
other state. Transitions among states reflect the need to adapt to the new conditions the
robot must face to.

Using this guideline, we have implemented our architecture in a single NaoQi module. The
components are implemented as Singleton C++ classes and they communicate among them
by method calls. It speeds up the communications with respect the SOAP message passing
approach.

When NaoQi module is created, it starts a thread which continuosly call to step() method
of the root component (the higher level component) in the activation tree. Each
step()method of every component at level n has the same structure:

1. Calls to step() method of components in n-1 level in its branch that it wants to
be active to get information.

2. Performs some processing to achieve its goal. This could include calls to
components methods in level n-1 to obtain information and calls to lower level
components methods in level n-1 to modulate their actuation.

3. Calls to step() methods of component in n-1 level in its branch that it wants to
be active to modulate them.

Each module runs iteratively at a configured frequency. It has not sense that all the
components execute at the same frequency. Some informations are needed to be refreshed
very fast, and some decisions are not needed to be taken such fast. Some components may
need to be configured at the maximun frame rate, but another modules may not need such
high rate. When a step() method is called, it checks if the elapsed time since last
execution is equal or higher to the established according to its frequency. In that case, it
executes 1, 2 and 3 parts of the structure the have just described. If the elapsed time is lower,
it only executes 1 and 3 parts. Tipically, higher level components are set up with lower
frequency than lower level ones, as we can observe in figure 13.

Humanoid soccer player design 79

Fig. 13. Activation tree with a root component in the higher level. As higher is the level,
lower is the frequency.

Using this approach, we can modulate every module frequency, and be aware of situations
where the system has a high load. If a module does not meet with its (soft) deadline, it only
makes the next component to executed a little bit late, but its execution is not discarted
(graceful degradation).

In next section we will describe some of the components developed using this approach for
our soccer player application, clarifying some aspects not fully described .

5. Soccer player design

The concepts presented in last section summarizes the key ideas of this architecture design.
We have presented the component element, how these components can be activated in a
activation tree and how they execute. This architecture is focused to develop robot
applications using a behavioral approach. In this section we will present how, using this
architecture, we solve the problem previously introduced in the section 1: play soccer.
A soccer player implementation is defined by the set of activation trees and how the
components modulate another ones. These components are related to perception and
actuations and are part of the basis of this architecture. High level components make use of
these lower level components to achieve higher level components. So, the changes between
soccer player implementations depends on these higher level components. We will review
in next sections how particular components to make a robot play soccer are designed and
implemented.

5.1 Soccer player perception
At RoboCup competition, the environment is designed to be perceived using vision and all
the elements have a particular color and shape. Nao is equipped with two (non-stereo)
cameras because they are the richest sensors available in robotics. This particular robot has
also ultrasound sensors to detect obstacles in front of it, but a image processing could also
detect the obstacle and, additionally, recognize whether it is a robot (and what teams it
belong) or another element. This is why we have based the robot perception in vision.

The perception is carried out by the Perception component. This component obtains the
image from one of the two cameras, process it and makes this information available to any
component interested on it using the API it implements. Furthermore, it may calculate the
3D position of some elements in the environment. Finally, we have developed a novel
approach to detect the goals, calculating at same time an estimation of the robot pose in 3D.

As an example, in figure 12 we show an activation tree composed by 3 components.
ObjectPerception is a low level component that determines the position of an
interesting object in the image taken by the robot’s camera. Head is a low level component
that moves the head. These components functionality is used by a higher level component
called FaceObject. This component activates both low level components, that execute
iteratively. Each time FaceObject component performs its step() function, it asks to
FaceObject for the object position and modulates Head movement to obtain the global
behavior: facing the object.

Components can be very simple or very complex. For example, the ObjectPerception
component of the example is a perceptive iterative component. It does’t modulate or
activate another component. It only extract information from an image. The
ObjectPerception component is a iterative controller, that activate and modulate
another components. Another components may activate and deactivate components
dinamically dependining on some stimulus. They are implemented as finite state machine. In
each state there is set of active components, and this set is eventually different to the one in
other state. Transitions among states reflect the need to adapt to the new conditions the
robot must face to.

Using this guideline, we have implemented our architecture in a single NaoQi module. The
components are implemented as Singleton C++ classes and they communicate among them
by method calls. It speeds up the communications with respect the SOAP message passing
approach.

When NaoQi module is created, it starts a thread which continuosly call to step() method
of the root component (the higher level component) in the activation tree. Each
step()method of every component at level n has the same structure:

1. Calls to step() method of components in n-1 level in its branch that it wants to
be active to get information.

2. Performs some processing to achieve its goal. This could include calls to
components methods in level n-1 to obtain information and calls to lower level
components methods in level n-1 to modulate their actuation.

3. Calls to step() methods of component in n-1 level in its branch that it wants to
be active to modulate them.

Each module runs iteratively at a configured frequency. It has not sense that all the
components execute at the same frequency. Some informations are needed to be refreshed
very fast, and some decisions are not needed to be taken such fast. Some components may
need to be configured at the maximun frame rate, but another modules may not need such
high rate. When a step() method is called, it checks if the elapsed time since last
execution is equal or higher to the established according to its frequency. In that case, it
executes 1, 2 and 3 parts of the structure the have just described. If the elapsed time is lower,
it only executes 1 and 3 parts. Tipically, higher level components are set up with lower
frequency than lower level ones, as we can observe in figure 13.

Robot Soccer80

Fig. 15. Element detection process.

The element detected is coded as a tuple {[-1,1],[-1,1]}, indicating the normalized position
{X,Y} of the object in the image. When step() method finishes, any component can ask for
this information using method such us getBallX(),getBlueNetY(), etc.

Fig. 16. Tuple containing the ball position.

5.1.2 Ball in ground coordinates
In last subsection we describe how the element information is calculated. This information is
2D and is related to the image space. Sometimes it is not enough to achieve some task. For
example, if the robot wants to be aligned in order to kick the ball, it is desired to have the
ball position available in the robot space reference, as we can see in figure 17.

Obtain the element position in 3D is not an easy task, and it is more difficult in the case of an
humanoid robot that walks and perceive an element with a single camera. We have placed
the robot axes in the floor, centered under the chest, as we can see in figure 17. The 3D
position {OX, OY, OZ=0} of the observed element O (red lines in figure 11) is with respect the
robot axes (blue lines in figure 17).

To calculate the 3D position, we start from the 2D position of the center of the detected
element related to the image space in one camera. Using the pinhole model, we can calculate
the a 3D point situated in the line that joints the center of the camera and the element
position in the camera space.

The relevant elements in the environment are the ball, the green carpet, the blue net, the
yellow net, the lines and the other robots. The ilumination is not controlled, but it is
supposed to be addequate and stable. The element detection is made attending to its color,
shape, dimensions and position with respect the detected border of the carpet (to detect if it
is in the field).

We want to use direct raw mode because the fetching time varying depending on the desired
color space, resolution and access mode, as we can see in figure 14.

Fig. 14. Relevant elements in the environment.

Perception component can be modulated by other components that uses it to set different
aspects related to the perception:

• Camera selection. Only bottom or upper camera is active at same time.
• Set the stimulus of interest.

We have designed this module to detect only one stimulus at the same time. There are four
types of stimulus: ball in the image, goals in the image, ball in ground coordinates and goal
in robot coordinates. This is usefull to avoid unncecessary processing when any of the
elements are not usefull.

5.1.1 Ball and goal in image
These stimulus detection is performed in the step() method of this component. Once the
image obtained is filtered attending only to the color of the element we want to detect. To
speed up this process we use a lookup table. In the next step, the resulting pixels on the
filtering step are grouped in blobs that indicate connected pixels with the same color. In the
last step, we apply some conditions to each blob. We test the size, the density, the center
mass position with respect the horizont, etc. The horizon is the line that indicates the upper
border of the green carpet. Ball is always under horizon, and nets have a maximun and
minimum distance to it. All this process for ball and net is shown in figure 15.

Humanoid soccer player design 81

Fig. 15. Element detection process.

The element detected is coded as a tuple {[-1,1],[-1,1]}, indicating the normalized position
{X,Y} of the object in the image. When step() method finishes, any component can ask for
this information using method such us getBallX(),getBlueNetY(), etc.

Fig. 16. Tuple containing the ball position.

5.1.2 Ball in ground coordinates
In last subsection we describe how the element information is calculated. This information is
2D and is related to the image space. Sometimes it is not enough to achieve some task. For
example, if the robot wants to be aligned in order to kick the ball, it is desired to have the
ball position available in the robot space reference, as we can see in figure 17.

Obtain the element position in 3D is not an easy task, and it is more difficult in the case of an
humanoid robot that walks and perceive an element with a single camera. We have placed
the robot axes in the floor, centered under the chest, as we can see in figure 17. The 3D
position {OX, OY, OZ=0} of the observed element O (red lines in figure 11) is with respect the
robot axes (blue lines in figure 17).

To calculate the 3D position, we start from the 2D position of the center of the detected
element related to the image space in one camera. Using the pinhole model, we can calculate
the a 3D point situated in the line that joints the center of the camera and the element
position in the camera space.

The relevant elements in the environment are the ball, the green carpet, the blue net, the
yellow net, the lines and the other robots. The ilumination is not controlled, but it is
supposed to be addequate and stable. The element detection is made attending to its color,
shape, dimensions and position with respect the detected border of the carpet (to detect if it
is in the field).

We want to use direct raw mode because the fetching time varying depending on the desired
color space, resolution and access mode, as we can see in figure 14.

Fig. 14. Relevant elements in the environment.

Perception component can be modulated by other components that uses it to set different
aspects related to the perception:

• Camera selection. Only bottom or upper camera is active at same time.
• Set the stimulus of interest.

We have designed this module to detect only one stimulus at the same time. There are four
types of stimulus: ball in the image, goals in the image, ball in ground coordinates and goal
in robot coordinates. This is usefull to avoid unncecessary processing when any of the
elements are not usefull.

5.1.1 Ball and goal in image
These stimulus detection is performed in the step() method of this component. Once the
image obtained is filtered attending only to the color of the element we want to detect. To
speed up this process we use a lookup table. In the next step, the resulting pixels on the
filtering step are grouped in blobs that indicate connected pixels with the same color. In the
last step, we apply some conditions to each blob. We test the size, the density, the center
mass position with respect the horizont, etc. The horizon is the line that indicates the upper
border of the green carpet. Ball is always under horizon, and nets have a maximun and
minimum distance to it. All this process for ball and net is shown in figure 15.

Robot Soccer82

There are three line segments in the goal detected in the image: two goalposts and the
crossbar. Taking into consideration only one of the posts (for instance GP1 at figure 18) the
way in which it appears in the image imposes some restrictions to the camera location. As
we will explain later, a 3D thorus contains all the camera locations from which that goalpost
is seen with that length in pixels (figure 19). It also includes the two corresponding goalpost
vertices. A new 3D thorus is computed considering the second goalpost (for instance GP2 at
figure 18), and a third one considering the crossbar. The real camera location belongs to the
three thorus, so it can be computed as the intersection of them.

Fig. 19. Camera 3D position estimation using a 3D thorus built from the perception.

Nevertheless the analytical solution to the intersection of three 3D thorus is not simple. A
numerical algorithm could be used. Instead of that, we assume that the height of the camera
above the floor is known. The thorus coming from the crossbar is not needed anymore and it
is replaced by a horizontal plane, at h meters above the ground. Then, the intersection
between three thorus becomes the intersection between two parallel thorus and a plane. The
thorus coming from the left goalpost becomes a circle in that horizontal plane, centered at
the goalpost intersection with the plane. The thorus coming from the right goalpost also
becomes a circle. The intersection of both circles gives the camera location. Usually, due to
simmetry, two different solutions are valid. Only the position inside the field is selected.

To compute the thorus coming from one post, we take its two vertices in the image. Using
projective geometry and the intrisinc parameters of the camera, a 3D projection ray can be
computed that traverses the focus of the camera and the top vertex pixel. The same can be
computed for the bottom vertex. The angle α between these two rays in 3D is calculated
using the dot product.

Let's now consider one post at its absolute coordinates and a vertical plane that contains it.
Inside that plane only the points in a given circle see the post segment with an angle α . The
thorus is generated rotating such circle around the axis of the goalpost. Such thorus contains
all the camera 3D locations from which that post is seen with a angle α, regardless its
orientation. In other words, all the camera positions from which that post is seen with such
pixel length.

Once obtained this point we represent this point and the center of the camera in the robot
space axes. We use NaoQi functions to help to obtain the transformation from robot space to
camera space. Using Denavit and Hartenberg method (Denavit, 1955), we obtain the (4x4)
matrix that correspond to that transform (composed by rotations and translations).

Fig. 17. Element 3D position and the robot axes.

Each time this component is asked for the 3D position of an image element, it has to
calculate this transformation matrix (each time the joint angles from foots to camera are
differents) and apply to to the 2D element position in the camera frame calculated in the last
step() iteration.

5.1.3 Goal in robot coordinates
Once the goal has been properly detected in the image, spatial information can be obtained
from the that goal using geometric 3D computations. Let Pix1, Pix2, Pix3 and Pix4 be the
pixels of the goal vertices in the image. The position and orientation of the goal relative to
the camera can be inferred, that is, the 3D points P1, P2, P3 and P4 corresponding to the goal
vertices. Because the absolute positions of both goals are known (AP1,AP2,AP3,AP4) that
information can be reversed to compute the camera position relative to the goal, and so, the
absolute location of the camera (and the robot) in the field. In order to perform such 3D
geometric computation the robot camera must be calibrated.

Fig. 18. Goal detection.

Two different 3D coordinates are used: the absolute field based reference system and the
system tied to the robot itself, to its camera. Our algorithm deals with line segments. It
works in the absolute reference system and finds the absolute camera position computing
some restrictions coming from the pixels where the goal appears in the image.

Humanoid soccer player design 83

There are three line segments in the goal detected in the image: two goalposts and the
crossbar. Taking into consideration only one of the posts (for instance GP1 at figure 18) the
way in which it appears in the image imposes some restrictions to the camera location. As
we will explain later, a 3D thorus contains all the camera locations from which that goalpost
is seen with that length in pixels (figure 19). It also includes the two corresponding goalpost
vertices. A new 3D thorus is computed considering the second goalpost (for instance GP2 at
figure 18), and a third one considering the crossbar. The real camera location belongs to the
three thorus, so it can be computed as the intersection of them.

Fig. 19. Camera 3D position estimation using a 3D thorus built from the perception.

Nevertheless the analytical solution to the intersection of three 3D thorus is not simple. A
numerical algorithm could be used. Instead of that, we assume that the height of the camera
above the floor is known. The thorus coming from the crossbar is not needed anymore and it
is replaced by a horizontal plane, at h meters above the ground. Then, the intersection
between three thorus becomes the intersection between two parallel thorus and a plane. The
thorus coming from the left goalpost becomes a circle in that horizontal plane, centered at
the goalpost intersection with the plane. The thorus coming from the right goalpost also
becomes a circle. The intersection of both circles gives the camera location. Usually, due to
simmetry, two different solutions are valid. Only the position inside the field is selected.

To compute the thorus coming from one post, we take its two vertices in the image. Using
projective geometry and the intrisinc parameters of the camera, a 3D projection ray can be
computed that traverses the focus of the camera and the top vertex pixel. The same can be
computed for the bottom vertex. The angle α between these two rays in 3D is calculated
using the dot product.

Let's now consider one post at its absolute coordinates and a vertical plane that contains it.
Inside that plane only the points in a given circle see the post segment with an angle α . The
thorus is generated rotating such circle around the axis of the goalpost. Such thorus contains
all the camera 3D locations from which that post is seen with a angle α, regardless its
orientation. In other words, all the camera positions from which that post is seen with such
pixel length.

Once obtained this point we represent this point and the center of the camera in the robot
space axes. We use NaoQi functions to help to obtain the transformation from robot space to
camera space. Using Denavit and Hartenberg method (Denavit, 1955), we obtain the (4x4)
matrix that correspond to that transform (composed by rotations and translations).

Fig. 17. Element 3D position and the robot axes.

Each time this component is asked for the 3D position of an image element, it has to
calculate this transformation matrix (each time the joint angles from foots to camera are
differents) and apply to to the 2D element position in the camera frame calculated in the last
step() iteration.

5.1.3 Goal in robot coordinates
Once the goal has been properly detected in the image, spatial information can be obtained
from the that goal using geometric 3D computations. Let Pix1, Pix2, Pix3 and Pix4 be the
pixels of the goal vertices in the image. The position and orientation of the goal relative to
the camera can be inferred, that is, the 3D points P1, P2, P3 and P4 corresponding to the goal
vertices. Because the absolute positions of both goals are known (AP1,AP2,AP3,AP4) that
information can be reversed to compute the camera position relative to the goal, and so, the
absolute location of the camera (and the robot) in the field. In order to perform such 3D
geometric computation the robot camera must be calibrated.

Fig. 18. Goal detection.

Two different 3D coordinates are used: the absolute field based reference system and the
system tied to the robot itself, to its camera. Our algorithm deals with line segments. It
works in the absolute reference system and finds the absolute camera position computing
some restrictions coming from the pixels where the goal appears in the image.

Robot Soccer84

deactivates Turn component if it was active, modulates and activates GoStraight
component. When w is different to 0, it deactivates GoStraight and activates Turn.

Fig. 21. Body component and its lower level components, which comumnicate with NaoQi
to move the robot.

5.2.2 Head component
Body component makes move all the robot but the robot head. Robot head is involved in the
perception and attention process and can be controlled independiently from the rest of the
robot. The robot head is controlled by the Head component. This component, when active,
can be modulated in velocity and position to control the pan and tilt movement. While the
head control in position is quite simple (it sends motion commands to ALMotion to set the
joint to the desired angle), the control in velocity is more sophisticated. We developed a PID
controller to adjust the movement speed. The modulation parameter for this type of control,
in range [-1,1] in each pan and tilt, is taken as the input of this controller. The value -1 means
the maximun value in one turn sense, 1 in the other sense, and 0 means to stop the head in
this axe.

5.2.3 Fixed Movement behavior
The last component involved in actuation is the FixMove component. Sometimes it is
required to perform a fixed complex movement composed by several joint positions in
determined times. For example, when we want that robot kicks the ball we have to made a
coordinate movement that involves all the body joints and takes several seconds to
complete. These movements are coded in several files, one for each fixed movement, that
describe the joints involved in the movement, the positions and when these positions should
applied. Lets look an example of this file:

Fig. 20. Estimation of the robot position

5.2 Basic movements
Robot actuation is not trivial in a legged robot. It is even more complicated in biped robots.
The movement is carried out by moving the projection of center of mass in the floor (zero
moment point, ZMP) to be in the support foot. This involves the coordination of almost all
the joints in the robot. In fact, it is common even use the arms to improve the balance.

It is hard to develop complete walking mechanism. This means to generate all the joint
positions in every moment, which is not mathematically trivial. It also involves real time
aspects because if a joint command is sent late, even few milliseconds, the result is fatal, and
the robot may fall to floor. All this work is critical for any task that the robot performs, but it
has not very valuable, from the scientific point of view. Sometimes there is not chance, and
this work has to be done. For example, we had to calculate every joint position each 8
milliseconds to make walk the quadruped AiBo robot because there were not any library or
function to make it walk. Luckily, NaoQi provides some high level functions to make the
robot move. There are function to walk (straight or side), turn or move in many ways an
only joint. It is not mandatory to use it, and everyone can develop his own walking
mechanism, but it is difficult to improve the results that NaoQi provides.

We have chosen to use NaoQi high level functionality to move the robot. We do not use
these function in every component that wants to move the robot in any way. This would
incur in conflicts and it is not desiderable mix high and low level functions. For these
reasons, we have developed some components to manage the robot movement, providing
and standard and addequate interface for all the component that wants to perform any
actuation. This interface is implemented by the Body, Head and FixMove components.

5.2.1 Body component
The Body component manages the robot walk. Its modulation consists in two parameters:
straight velocity (v) and rotation velocity (w). Each parameters accepts values in the [-1,1]. If
v is 1, the robot walks forward straight; if v is -1, the robot walks backward straight; if v is 0,
robot doesn’t move straight. If w is 1, the robot turn left; if w is -1, the robot turn right; if w is
0, robot doesn’t turn. Unfortunately, this movements can’t be combined and only one of
them is active at the same time.

Actually, Body doesn’t this work directly but it activates and modulates two lower level
components: GoStraight and Turn, as we can see in figure 21. When v is different to 0, it

Humanoid soccer player design 85

deactivates Turn component if it was active, modulates and activates GoStraight
component. When w is different to 0, it deactivates GoStraight and activates Turn.

Fig. 21. Body component and its lower level components, which comumnicate with NaoQi
to move the robot.

5.2.2 Head component
Body component makes move all the robot but the robot head. Robot head is involved in the
perception and attention process and can be controlled independiently from the rest of the
robot. The robot head is controlled by the Head component. This component, when active,
can be modulated in velocity and position to control the pan and tilt movement. While the
head control in position is quite simple (it sends motion commands to ALMotion to set the
joint to the desired angle), the control in velocity is more sophisticated. We developed a PID
controller to adjust the movement speed. The modulation parameter for this type of control,
in range [-1,1] in each pan and tilt, is taken as the input of this controller. The value -1 means
the maximun value in one turn sense, 1 in the other sense, and 0 means to stop the head in
this axe.

5.2.3 Fixed Movement behavior
The last component involved in actuation is the FixMove component. Sometimes it is
required to perform a fixed complex movement composed by several joint positions in
determined times. For example, when we want that robot kicks the ball we have to made a
coordinate movement that involves all the body joints and takes several seconds to
complete. These movements are coded in several files, one for each fixed movement, that
describe the joints involved in the movement, the positions and when these positions should
applied. Lets look an example of this file:

Fig. 20. Estimation of the robot position

5.2 Basic movements
Robot actuation is not trivial in a legged robot. It is even more complicated in biped robots.
The movement is carried out by moving the projection of center of mass in the floor (zero
moment point, ZMP) to be in the support foot. This involves the coordination of almost all
the joints in the robot. In fact, it is common even use the arms to improve the balance.

It is hard to develop complete walking mechanism. This means to generate all the joint
positions in every moment, which is not mathematically trivial. It also involves real time
aspects because if a joint command is sent late, even few milliseconds, the result is fatal, and
the robot may fall to floor. All this work is critical for any task that the robot performs, but it
has not very valuable, from the scientific point of view. Sometimes there is not chance, and
this work has to be done. For example, we had to calculate every joint position each 8
milliseconds to make walk the quadruped AiBo robot because there were not any library or
function to make it walk. Luckily, NaoQi provides some high level functions to make the
robot move. There are function to walk (straight or side), turn or move in many ways an
only joint. It is not mandatory to use it, and everyone can develop his own walking
mechanism, but it is difficult to improve the results that NaoQi provides.

We have chosen to use NaoQi high level functionality to move the robot. We do not use
these function in every component that wants to move the robot in any way. This would
incur in conflicts and it is not desiderable mix high and low level functions. For these
reasons, we have developed some components to manage the robot movement, providing
and standard and addequate interface for all the component that wants to perform any
actuation. This interface is implemented by the Body, Head and FixMove components.

5.2.1 Body component
The Body component manages the robot walk. Its modulation consists in two parameters:
straight velocity (v) and rotation velocity (w). Each parameters accepts values in the [-1,1]. If
v is 1, the robot walks forward straight; if v is -1, the robot walks backward straight; if v is 0,
robot doesn’t move straight. If w is 1, the robot turn left; if w is -1, the robot turn right; if w is
0, robot doesn’t turn. Unfortunately, this movements can’t be combined and only one of
them is active at the same time.

Actually, Body doesn’t this work directly but it activates and modulates two lower level
components: GoStraight and Turn, as we can see in figure 21. When v is different to 0, it

Robot Soccer86

void
FaceBall::step(void)
{
 perception->step();

 if (isTime2Run())
 {
 head->setPan(perception->getBallX());
 head->setTilt(perception->getBallY());

}

 head->step();
}

5.4 Follow Ball behavior
The main function of FollowBall component is going to the ball when it is detected by the
robot. This component activates FaceBall and Body components. The modulation of the
Body component is the position of the robot head, that is tracking the ball. Simplifying, the
code of the step function of this component is something like this:

void
FollowBall::step(void)
{
 faceball->step();

 if (isTime2Run())
 {
 float panAngle = toDegrees(headYaw);
 float tiltAngle = toDegrees(headPitch);

 if(panAngle > 35) body->setVel(0, panAngle/fabs(panAngle));
 else body->setVel(1, 0);

 }

 body->step();
}

Fig. 23. FollowBall component.

5.5 Search Ball behavior
The main function of SearchBall component is search the ball when it is not detected by
the robot. This component introduces the concept of finite state machine in a component.

Movement_name
name_joint_1 name _joint_2 name _joint_3 ... name _joint_n
angle_1_joint_1 angle_2_joint_1 angle_3_joint_1 ... angle_m1_joint_1
angle_1_joint_2 angle_2_joint_2 angle_3_joint_2 ... angle_m2_joint_2
angle_1_joint_3 angle_2_joint_3 angle_3_joint_3 ... angle_m3_joint_3
...
angle_1_joint_n angle_2_joint_n angle_3_joint_n ... angle_mn_joint_n
time_1_joint_1 time_2_joint_1 time_3_joint_1 ... time_m1_joint_1
time_1_joint_2 time_2_joint_2 time_3_joint_2 ... time_m2_joint_2
time_1_joint_3 time_2_joint_3 time_3_joint_3 ... time_m3_joint_3
...
time_1_joint_n time_2_joint_n time_3_joint_n ... time_mn_joint_n

In addition to the desired fixed movement, we can modulate two parameters that indicates a
walking displacement in straight and side senses. This is useful to align the robot with the
ball when kicking the ball. If this values are not zero, a walk preceed the execution of the
fixed movement.

As we have just introduced, we use this component for kicking the ball and for standing up
when the robot is pushed and falls to the floor.

5.3 Face Ball behavior
FaceBall component tries to center the ball in the image taken from the camera. To
achieve this goal, when active, this component activates both Perception and Head
components, as we see in figure 22.

Fig. 22. FaceBall component.

This component activates Perception and Head while it is active. It modulates Perception
to detect the ball. In its step() function, it simply takes the output of the perception
component and uses this value as the input of the Head component. These values are in the [-
1,1] range. When the ball is centered, the X and Y value of the ball are 0, so the head is stopped.
If the ball is in the extreme right, the X value, 1, will be the modulation of the pan velocity,
turning the head to the left. Here is the code of the step() funtion of FaceBall.

Humanoid soccer player design 87

void
FaceBall::step(void)
{
 perception->step();

 if (isTime2Run())
 {
 head->setPan(perception->getBallX());
 head->setTilt(perception->getBallY());

}

 head->step();
}

5.4 Follow Ball behavior
The main function of FollowBall component is going to the ball when it is detected by the
robot. This component activates FaceBall and Body components. The modulation of the
Body component is the position of the robot head, that is tracking the ball. Simplifying, the
code of the step function of this component is something like this:

void
FollowBall::step(void)
{
 faceball->step();

 if (isTime2Run())
 {
 float panAngle = toDegrees(headYaw);
 float tiltAngle = toDegrees(headPitch);

 if(panAngle > 35) body->setVel(0, panAngle/fabs(panAngle));
 else body->setVel(1, 0);

 }

 body->step();
}

Fig. 23. FollowBall component.

5.5 Search Ball behavior
The main function of SearchBall component is search the ball when it is not detected by
the robot. This component introduces the concept of finite state machine in a component.

Movement_name
name_joint_1 name _joint_2 name _joint_3 ... name _joint_n
angle_1_joint_1 angle_2_joint_1 angle_3_joint_1 ... angle_m1_joint_1
angle_1_joint_2 angle_2_joint_2 angle_3_joint_2 ... angle_m2_joint_2
angle_1_joint_3 angle_2_joint_3 angle_3_joint_3 ... angle_m3_joint_3
...
angle_1_joint_n angle_2_joint_n angle_3_joint_n ... angle_mn_joint_n
time_1_joint_1 time_2_joint_1 time_3_joint_1 ... time_m1_joint_1
time_1_joint_2 time_2_joint_2 time_3_joint_2 ... time_m2_joint_2
time_1_joint_3 time_2_joint_3 time_3_joint_3 ... time_m3_joint_3
...
time_1_joint_n time_2_joint_n time_3_joint_n ... time_mn_joint_n

In addition to the desired fixed movement, we can modulate two parameters that indicates a
walking displacement in straight and side senses. This is useful to align the robot with the
ball when kicking the ball. If this values are not zero, a walk preceed the execution of the
fixed movement.

As we have just introduced, we use this component for kicking the ball and for standing up
when the robot is pushed and falls to the floor.

5.3 Face Ball behavior
FaceBall component tries to center the ball in the image taken from the camera. To
achieve this goal, when active, this component activates both Perception and Head
components, as we see in figure 22.

Fig. 22. FaceBall component.

This component activates Perception and Head while it is active. It modulates Perception
to detect the ball. In its step() function, it simply takes the output of the perception
component and uses this value as the input of the Head component. These values are in the [-
1,1] range. When the ball is centered, the X and Y value of the ball are 0, so the head is stopped.
If the ball is in the extreme right, the X value, 1, will be the modulation of the pan velocity,
turning the head to the left. Here is the code of the step() funtion of FaceBall.

Robot Soccer88

In the Recovering state the Perception component is modulated to detect the ball, and the
head moves to the position stored when Scanning state started.

5.7 Field Player behavior
The Player component is the root component of the forward player behavior. Its
functionality is decomposed in five states: LookForBall, Approach, SeekNet, Fallen and Kick.
These five states encode all the behavior that makes the robot play soccer.

In LookForBall state, Player component activates SearchBall and Perception components, as
is shown in figure 25. For clarity reasons, in this figure we don’t display all the activation
tree but the components that Player component directly activates.

When the Perception components indicates that the ball is detected, this component
transitates to Approach state. It deactivates SearchBall State, and the ball is supposed to be in
the active camera. In this state is activated the FollowBall component in order to make the
robot walk to the ball.

It is common that the robot initially detects the ball with the upper camera, and it starts the
approach to the ball using this camera. When the ball is nearer than one meter, it can’t
follow it with the upper camera bacause of the neck limitations and the ball is lost. It
transitates to the LookForBall state again and starts searching the ball, changing the camera.
When the ball is detected with the lower camera, it continues the approaching with the right
camera.

Fig. 25. Player component finite state machine with its corresponding activation tree.

When this component is active, it can be in two states: HeadSearch or BodySearch. It starts
from HeadSearch state and it only moves the head to search the ball. When it has scanned all
the space in front of the robot it transitates to BodySearch state and the robot starts to turn
while it is scanning with the head. In any state, SearchBall component modulates
Perception component in order to periodically change the active camera.

Depending on the state, the activation tree is different, as we can see in figure 24. At start,
the active state is HeadSearch. In this state only Head component is active. During this state,
Head component is modulated directly from SearchBall component. It starts moving the
head up and it continues moving the head to scan the space in front of the robot. When this
scan is completed, it transitates to BodySearch state. In this state, Body component is also
activated in order to make turn the robot in one direction.

Fig. 24. The two states that this component can be and the activation tree in each state.

This component does not use the Perception component to get information about the ball
presence. This component only manages the robot movement and the camera selection. Any
other component has to activate SearchBall and Perception components, and stop
SearchBall once the ball is found. Next we will see which component do this work.

5.6 Search Net behavior
This behavior is implemented by the SearchNet component is used to search the net where
the robot must kick the ball to. It activates Head and Perception components. Its work is
divided in two states: Scanning and Recovering.

When the Scanning state starts, the head position is stored (it is supposed to be tracking the
ball) and the robot modulates Perception component to detect the nets instead of the ball.
It has not sense continuing doing processing to detect the ball if now it is not the interesting
element, saving processing resources.

While Scanning state, this component also modulates Head component to move the head
along the horizont, searching the ball. When this component is active, the robot is stopped,
and we can suppose where is the horinzont. If the scanning is complete, or the net is
detected, this component tansitates to the Recovering state.

Humanoid soccer player design 89

In the Recovering state the Perception component is modulated to detect the ball, and the
head moves to the position stored when Scanning state started.

5.7 Field Player behavior
The Player component is the root component of the forward player behavior. Its
functionality is decomposed in five states: LookForBall, Approach, SeekNet, Fallen and Kick.
These five states encode all the behavior that makes the robot play soccer.

In LookForBall state, Player component activates SearchBall and Perception components, as
is shown in figure 25. For clarity reasons, in this figure we don’t display all the activation
tree but the components that Player component directly activates.

When the Perception components indicates that the ball is detected, this component
transitates to Approach state. It deactivates SearchBall State, and the ball is supposed to be in
the active camera. In this state is activated the FollowBall component in order to make the
robot walk to the ball.

It is common that the robot initially detects the ball with the upper camera, and it starts the
approach to the ball using this camera. When the ball is nearer than one meter, it can’t
follow it with the upper camera bacause of the neck limitations and the ball is lost. It
transitates to the LookForBall state again and starts searching the ball, changing the camera.
When the ball is detected with the lower camera, it continues the approaching with the right
camera.

Fig. 25. Player component finite state machine with its corresponding activation tree.

When this component is active, it can be in two states: HeadSearch or BodySearch. It starts
from HeadSearch state and it only moves the head to search the ball. When it has scanned all
the space in front of the robot it transitates to BodySearch state and the robot starts to turn
while it is scanning with the head. In any state, SearchBall component modulates
Perception component in order to periodically change the active camera.

Depending on the state, the activation tree is different, as we can see in figure 24. At start,
the active state is HeadSearch. In this state only Head component is active. During this state,
Head component is modulated directly from SearchBall component. It starts moving the
head up and it continues moving the head to scan the space in front of the robot. When this
scan is completed, it transitates to BodySearch state. In this state, Body component is also
activated in order to make turn the robot in one direction.

Fig. 24. The two states that this component can be and the activation tree in each state.

This component does not use the Perception component to get information about the ball
presence. This component only manages the robot movement and the camera selection. Any
other component has to activate SearchBall and Perception components, and stop
SearchBall once the ball is found. Next we will see which component do this work.

5.6 Search Net behavior
This behavior is implemented by the SearchNet component is used to search the net where
the robot must kick the ball to. It activates Head and Perception components. Its work is
divided in two states: Scanning and Recovering.

When the Scanning state starts, the head position is stored (it is supposed to be tracking the
ball) and the robot modulates Perception component to detect the nets instead of the ball.
It has not sense continuing doing processing to detect the ball if now it is not the interesting
element, saving processing resources.

While Scanning state, this component also modulates Head component to move the head
along the horizont, searching the ball. When this component is active, the robot is stopped,
and we can suppose where is the horinzont. If the scanning is complete, or the net is
detected, this component tansitates to the Recovering state.

Robot Soccer90

6.1 Component debugging tool
Inside the Manager we can debug any component individually. We can activate a
component, modulate it and change its frequency. It is also possible to take measures related
to the CPU consumption.

In figure 26 we show the GUI of this tool and how the Turn component is debugged. We
can activate independiently using a checkbox. We can also configurate the frequency, in this
case it is set to run at 5 Hz. We use the slider to modulate this component setting its input in
the [-1,1] range. In the figure the modulation is 0, so the robot is stopped. Finally, we can
obtain the mean, maximum and minimum CPU consumption time in each iteration.

Fig. 26. Component debugging tool and how the Turn component is debugged.

6.2 Perception tool
The environment conditions are not similar in every place the robot must work. Even in the
same place, the conditions are not similar along the day. For this reason to calibrate the
camera characteristics and the color definitions is essential to face these changes in the ligt
conditions.

Fig. 27. Camera values tunning.

The Manager contains some tools to do this calibratarion. Figure 27 shows the tool used to
calibrate the camera values (brightness, contrast, …). Each relevant element to the robot has

When the ball is close to the robot, the robot is ready to kick the ball, but it has to detect the
net first in order to select the addecuate movement to score. For this reason, the Player
component transitates to SeekNet state, activating SearchNet component.

Once detected the net, the robot must kick the ball in the right direction according to the net
position. Player component makes this decission in the Kick state. Before activating
FixMove component, Player component ask to Perception component the 3D ball
position. With this information, it can calculate the displacement needed by the selected kick
to perform this kick correctly. Once activated the FixMove component, the robot performs
the kick.

In this state, this component also activates FaceBall component to track the ball while the
robot is kicking the ball.

The last state is Fallen. This component goes to transitates to this state when the robot falls to
the floor. It activates Fixmove component and modulates it with the right movement to
make it getting up.

These are the components needed for the forward player behavior. In next sections we will
explain the tools developed to tune, configurate and debug these components, and also the
components developed to make a complete soccer player.

6. Tools

In previous section we described the software that the robot runs onboard. This is the
software needed to make the robot perform any task. Actually, this is the only software that
is working while the robot is playing soccer in an official match, but some work on
calibrating and debugging must be done before a game starts.

We have developed a set of tools useful to do all the previous work needed to make the
robot play. Manager application contains all the tools used to manage the robot. This
application runs in a PC connected to the robot by an ethernet cable or using wireless
communications.

To make possible the communication between the robot and the computer we have used the
SOAP protocol that NaoQi provides. This simplify the development process because we do
not have to implement a socket based communication or anything similar. We only obtain a
proxy to the NaoQi module that contains our software, and we make calls to methods to
send and receive all the management information.

Next, we will describe the main tools developed inside the Manager. These tool let to debug
any component, tune the vision filters and the robot movements.

Humanoid soccer player design 91

6.1 Component debugging tool
Inside the Manager we can debug any component individually. We can activate a
component, modulate it and change its frequency. It is also possible to take measures related
to the CPU consumption.

In figure 26 we show the GUI of this tool and how the Turn component is debugged. We
can activate independiently using a checkbox. We can also configurate the frequency, in this
case it is set to run at 5 Hz. We use the slider to modulate this component setting its input in
the [-1,1] range. In the figure the modulation is 0, so the robot is stopped. Finally, we can
obtain the mean, maximum and minimum CPU consumption time in each iteration.

Fig. 26. Component debugging tool and how the Turn component is debugged.

6.2 Perception tool
The environment conditions are not similar in every place the robot must work. Even in the
same place, the conditions are not similar along the day. For this reason to calibrate the
camera characteristics and the color definitions is essential to face these changes in the ligt
conditions.

Fig. 27. Camera values tunning.

The Manager contains some tools to do this calibratarion. Figure 27 shows the tool used to
calibrate the camera values (brightness, contrast, …). Each relevant element to the robot has

When the ball is close to the robot, the robot is ready to kick the ball, but it has to detect the
net first in order to select the addecuate movement to score. For this reason, the Player
component transitates to SeekNet state, activating SearchNet component.

Once detected the net, the robot must kick the ball in the right direction according to the net
position. Player component makes this decission in the Kick state. Before activating
FixMove component, Player component ask to Perception component the 3D ball
position. With this information, it can calculate the displacement needed by the selected kick
to perform this kick correctly. Once activated the FixMove component, the robot performs
the kick.

In this state, this component also activates FaceBall component to track the ball while the
robot is kicking the ball.

The last state is Fallen. This component goes to transitates to this state when the robot falls to
the floor. It activates Fixmove component and modulates it with the right movement to
make it getting up.

These are the components needed for the forward player behavior. In next sections we will
explain the tools developed to tune, configurate and debug these components, and also the
components developed to make a complete soccer player.

6. Tools

In previous section we described the software that the robot runs onboard. This is the
software needed to make the robot perform any task. Actually, this is the only software that
is working while the robot is playing soccer in an official match, but some work on
calibrating and debugging must be done before a game starts.

We have developed a set of tools useful to do all the previous work needed to make the
robot play. Manager application contains all the tools used to manage the robot. This
application runs in a PC connected to the robot by an ethernet cable or using wireless
communications.

To make possible the communication between the robot and the computer we have used the
SOAP protocol that NaoQi provides. This simplify the development process because we do
not have to implement a socket based communication or anything similar. We only obtain a
proxy to the NaoQi module that contains our software, and we make calls to methods to
send and receive all the management information.

Next, we will describe the main tools developed inside the Manager. These tool let to debug
any component, tune the vision filters and the robot movements.

Robot Soccer92

7. Experiments

In this behavior we have presented our behavior based architecture and a complete soccer
player application using it. In this chapter we will show the experiments carried out during
and after its development.

7.1 First behavior architecture attempt
Not always the first steps are the right ones. In this architecture design, the proposed
solution wasn’t the first approximation we took. At initial we tried to exploit all the benefits
that NaoQi provides. This software element lets to decompose our application functionality
in modules which cooperate among them to achieve a goal. Each module perfoms some
processing task and sends data to other modules. This would lets to implement our
architecture in a natural way using this approximation. NaoQi has a funtionality to start and
stop calling iteratively a method, using a callback to a periodic clock event. This solves the
execution cycle to call step() method iteratively. Communications among modules are
solved by the SOAP messages mechanism that NaoQi provides. We also could use
ALMemory as a blackboard where all the information from sensorial components and all
the modulations to actuation modules are registered and taken. Even callbacks can be set up
in each module to be called each time an interesting value in this blackboard changes. In
fact, this was the first approach we took to design our architecture. Unfortunately, and
intensive use of these mechanisms had a big impact in NaoQi performance and some real
time critical tasks were severely affected. One of these real time critical tasks is movement
generation. When the performace in this task was poor, the movement was affected and the
robot fallen to floor.

7.2 General behavior creation process using the proposed architecture
The final design tried to use as less NaoQi mechanisms as possible. We use NaoQi to access
sensors and actuators, but all the communication via SOAP messages are reduced to the
minimun possible. ALMemory as a blackboard was discarded and callbacks to data are used
only to the essential information generated by NaoQi that are useful to our tasks. Although
we have taken this decission, some of the NaoQi functionality is still essential to us. We use
NaoQi for accessing to the camera images or for walking generation. We are not interesed in
developing our own locomotion mechanism because this is being improved continuosly by
the robot manufacturer and we want to concentrate in hich level topics.

With the changes from the initial to the final version we obtained better performance and
we avoid to affect NaoQi locomotion mechanism. Althought our software wants to consume
too much processing time, only our software will be affected. This is a redical improvement
with respect the initial version.

The robot soccer behavior is itself an experiment to test the proposed behavioral
architecture. Using this architecture, we have developed a complete behavior able to cope
with the requirements that a RoboCup match imposes. We have shown some of the
characteristics of this robot architecture during this process:

a different color, as we explained in section 5.1.1. These colors and the recognization values
are set using the tools shown previously in figure 15.

6.3 Fixed Movement tool
In some situations the robot must perform a fixed movement. To kick the ball or to get up,
the robot needs to follow a sequence of movements that involves many joints. It is difficult
to create these movements without a specific tool.

We have implemented a tool to create sequences of movemenet. For each sequence we have
to specify the joints involved, the angles that each joint has to be set and the time these
angles are set. This was explained when we presented the component that performs these
movements, Fixmove (section 5.3), where we shown an example of the file that stores the
sequence. The goal of this tool, shown in figure 28, is to create these sequence files.

Using this tool we can create the sequence step by step. En each step we define the duration
and we change the joint values needed in this step. We can turn off a single joint and move
it manually to the desired position, and then get that position. This makes easy to create
movement using this process for each step and for each joint.

We have created three types of kicks using this tool. Each kick can be done simetrically with
both legs, then we really have six kicks. Also, we have created two movements to make the
robot get up from the floor.

Fig. 28. Fixed movement sequence generation tool.

Humanoid soccer player design 93

7. Experiments

In this behavior we have presented our behavior based architecture and a complete soccer
player application using it. In this chapter we will show the experiments carried out during
and after its development.

7.1 First behavior architecture attempt
Not always the first steps are the right ones. In this architecture design, the proposed
solution wasn’t the first approximation we took. At initial we tried to exploit all the benefits
that NaoQi provides. This software element lets to decompose our application functionality
in modules which cooperate among them to achieve a goal. Each module perfoms some
processing task and sends data to other modules. This would lets to implement our
architecture in a natural way using this approximation. NaoQi has a funtionality to start and
stop calling iteratively a method, using a callback to a periodic clock event. This solves the
execution cycle to call step() method iteratively. Communications among modules are
solved by the SOAP messages mechanism that NaoQi provides. We also could use
ALMemory as a blackboard where all the information from sensorial components and all
the modulations to actuation modules are registered and taken. Even callbacks can be set up
in each module to be called each time an interesting value in this blackboard changes. In
fact, this was the first approach we took to design our architecture. Unfortunately, and
intensive use of these mechanisms had a big impact in NaoQi performance and some real
time critical tasks were severely affected. One of these real time critical tasks is movement
generation. When the performace in this task was poor, the movement was affected and the
robot fallen to floor.

7.2 General behavior creation process using the proposed architecture
The final design tried to use as less NaoQi mechanisms as possible. We use NaoQi to access
sensors and actuators, but all the communication via SOAP messages are reduced to the
minimun possible. ALMemory as a blackboard was discarded and callbacks to data are used
only to the essential information generated by NaoQi that are useful to our tasks. Although
we have taken this decission, some of the NaoQi functionality is still essential to us. We use
NaoQi for accessing to the camera images or for walking generation. We are not interesed in
developing our own locomotion mechanism because this is being improved continuosly by
the robot manufacturer and we want to concentrate in hich level topics.

With the changes from the initial to the final version we obtained better performance and
we avoid to affect NaoQi locomotion mechanism. Althought our software wants to consume
too much processing time, only our software will be affected. This is a redical improvement
with respect the initial version.

The robot soccer behavior is itself an experiment to test the proposed behavioral
architecture. Using this architecture, we have developed a complete behavior able to cope
with the requirements that a RoboCup match imposes. We have shown some of the
characteristics of this robot architecture during this process:

a different color, as we explained in section 5.1.1. These colors and the recognization values
are set using the tools shown previously in figure 15.

6.3 Fixed Movement tool
In some situations the robot must perform a fixed movement. To kick the ball or to get up,
the robot needs to follow a sequence of movements that involves many joints. It is difficult
to create these movements without a specific tool.

We have implemented a tool to create sequences of movemenet. For each sequence we have
to specify the joints involved, the angles that each joint has to be set and the time these
angles are set. This was explained when we presented the component that performs these
movements, Fixmove (section 5.3), where we shown an example of the file that stores the
sequence. The goal of this tool, shown in figure 28, is to create these sequence files.

Using this tool we can create the sequence step by step. En each step we define the duration
and we change the joint values needed in this step. We can turn off a single joint and move
it manually to the desired position, and then get that position. This makes easy to create
movement using this process for each step and for each joint.

We have created three types of kicks using this tool. Each kick can be done simetrically with
both legs, then we really have six kicks. Also, we have created two movements to make the
robot get up from the floor.

Fig. 28. Fixed movement sequence generation tool.

Robot Soccer94

component for the ball presence, and when the ball is detected in the image (fourth image in
the sequence), SearchBall component is deactivated and FollowBall component is activates,
approaching to the ball (last image in the sequence). Take note that in this example, the
upper camera is now active.

FollowBall component activates FaceBall component to center the ball in the image while the
robot is approaching to the ball. FollowBall activates Body to approach the ball. As the neck
angle is less than a fixed value, i.e 35 degrees (the ball is in front of the robot), Body activates
GoStraight component in order to make the robot walk straight.

The approaching to the ball, as we said before is made using FaceBall component and Body
component. Note that in any moment no distance to the ball is take into account. Only the
head pan is used by the body component to approach the ball.

In figure 30, while the robot the robot is approaching to the ball, it has to turn to correct the
walk direction. In this situation, the head pan angle is higher than a fixed value (35 degrees,
for example) indicating that the ball is not in front of the robot. Immediately, after this
condition is true, FollowBall modulates to Body so the angular speed is not null and
forward speed is zero. Then, Body component deactivates GoStraight component and
activates Turn Components, which makes the robot turn in the desired direction.

Fig. 30. Ball appraching modulation to make the robot turn.

The robot reached the ball when it is walking to the ball, the bottom camera is active, the
head tilt is higher than a threshold, and the head pan is low. This situation is shown in the
first image in the figure 31. In that moment, the robot has to decide which kick it has to
execute. For this reason, the net has to be detected. In the last image, the conditions to kick
the ball are held and the player component deactivates FollowBall component and activates
the SearchNet component. The SearchNet component has as output a value that indicates if
the scan is complete. The Player component queries in each iteration if the scan is complete.
Once completed, depending on the net position (or if it has been detected) a kick is selected.
In the second image of the same figure, the blue net is detected at the right of the robot. For
this test we have created 3 types of kicks: front, diagonal and lateral. Actually, we have 6
kicks available because each one can be done by both legs. In this situation the robot selects
a lateral kick with the right leg to kick the ball.

• FaceBall, SearchNet and SearchBall components reuses the component
Head. In this way we have shown how a component can be reused only changing
its modulation.

• Only Perception, GoStraight and Turn components face to the complexity of
the robot hardware, which let in the other levels to ignore this complexity.

• Component activations and deactivations, for example in section 5.5, let to have
diferent behaviors on the robot.

7.3 Forward soccer player test
The final experiment is the real application of this behavior. We have tested it at RoboCup
2009 in Graz. Before the test we had to use the tools described in section 6 to calibrate the
colors of the relevant elements in the environment. Once tuned, the robot is ready to work.
This sequence has been extracted from a video which full version may be visualized at
http://www.teamchaos.es/index.php/URJC#RoboCup-2009.

Fig. 29. Ball searching sequence.

Figure 29 shows a piece of an experiment of the soccer player behavior. In this experiment
the robot starts with total uncertainty about the ball. Initially, the Player component is in
LookForBall state and it has activated the SearchBall component to look for the ball.
SearchBall component uses first the bottom camera. The shadow area respresents the
camera coverage, where the red area represents the bottom camera coverage and the blue
area the upper camera coverage. In the two first images the robot is scanning the nearest
space with the bottom camera and it doesn’t find any ball. Once completed the near scan,
SearchBall component modulates Perception component in order to change the camera,
covering the blue marked area. Player component is continously asking Perception

Humanoid soccer player design 95

component for the ball presence, and when the ball is detected in the image (fourth image in
the sequence), SearchBall component is deactivated and FollowBall component is activates,
approaching to the ball (last image in the sequence). Take note that in this example, the
upper camera is now active.

FollowBall component activates FaceBall component to center the ball in the image while the
robot is approaching to the ball. FollowBall activates Body to approach the ball. As the neck
angle is less than a fixed value, i.e 35 degrees (the ball is in front of the robot), Body activates
GoStraight component in order to make the robot walk straight.

The approaching to the ball, as we said before is made using FaceBall component and Body
component. Note that in any moment no distance to the ball is take into account. Only the
head pan is used by the body component to approach the ball.

In figure 30, while the robot the robot is approaching to the ball, it has to turn to correct the
walk direction. In this situation, the head pan angle is higher than a fixed value (35 degrees,
for example) indicating that the ball is not in front of the robot. Immediately, after this
condition is true, FollowBall modulates to Body so the angular speed is not null and
forward speed is zero. Then, Body component deactivates GoStraight component and
activates Turn Components, which makes the robot turn in the desired direction.

Fig. 30. Ball appraching modulation to make the robot turn.

The robot reached the ball when it is walking to the ball, the bottom camera is active, the
head tilt is higher than a threshold, and the head pan is low. This situation is shown in the
first image in the figure 31. In that moment, the robot has to decide which kick it has to
execute. For this reason, the net has to be detected. In the last image, the conditions to kick
the ball are held and the player component deactivates FollowBall component and activates
the SearchNet component. The SearchNet component has as output a value that indicates if
the scan is complete. The Player component queries in each iteration if the scan is complete.
Once completed, depending on the net position (or if it has been detected) a kick is selected.
In the second image of the same figure, the blue net is detected at the right of the robot. For
this test we have created 3 types of kicks: front, diagonal and lateral. Actually, we have 6
kicks available because each one can be done by both legs. In this situation the robot selects
a lateral kick with the right leg to kick the ball.

• FaceBall, SearchNet and SearchBall components reuses the component
Head. In this way we have shown how a component can be reused only changing
its modulation.

• Only Perception, GoStraight and Turn components face to the complexity of
the robot hardware, which let in the other levels to ignore this complexity.

• Component activations and deactivations, for example in section 5.5, let to have
diferent behaviors on the robot.

7.3 Forward soccer player test
The final experiment is the real application of this behavior. We have tested it at RoboCup
2009 in Graz. Before the test we had to use the tools described in section 6 to calibrate the
colors of the relevant elements in the environment. Once tuned, the robot is ready to work.
This sequence has been extracted from a video which full version may be visualized at
http://www.teamchaos.es/index.php/URJC#RoboCup-2009.

Fig. 29. Ball searching sequence.

Figure 29 shows a piece of an experiment of the soccer player behavior. In this experiment
the robot starts with total uncertainty about the ball. Initially, the Player component is in
LookForBall state and it has activated the SearchBall component to look for the ball.
SearchBall component uses first the bottom camera. The shadow area respresents the
camera coverage, where the red area represents the bottom camera coverage and the blue
area the upper camera coverage. In the two first images the robot is scanning the nearest
space with the bottom camera and it doesn’t find any ball. Once completed the near scan,
SearchBall component modulates Perception component in order to change the camera,
covering the blue marked area. Player component is continously asking Perception

Robot Soccer96

Fig. 32. Any Ball Challenge. The robot must detect and kick hetereogeneuos balls.

7.5 Camera switching experiment
In the experiment described in section 7.2, between the instant 3 and 4 sequence, a camera
switch has made. For clarity, lets use another texperiment to explain this change with
another sequence. In figure 33, the robot is approaching to the ball using the upper camera.
The Player component has activated FollowBall component and the robot is walking
straight to the ball using the upper camera.

Fig. 33. Camera switching.

Before kick the ball, the robot must be aligned in order to situate itself in the right position to
do an effective kick. For this purpouse, the player component ask to the Perception module
the ball position in 3D with respect the robot. This is the only time the ball position is
estimated. The player components activates Fixmove component with the selected kick and
a lateral and straight alignement. As we can see in third and fourth image, the robot moves
on its left and back to do the kick.

Fig. 31. Search net behavior and kick.

While the kick is performing and after the kick, FaceBall component is activeted to continue
traking the ball. This spped up the recovering after the kick and sometimes it is not needed
to transitate to the searching ball state, but the approaching to the ball state.

This experiment has been carried out at the RoboCup 2009 in Graz. This behavior was tested
in the real competition environment, where the robot operation showed robust to the noise
produced by other robots and persons.

7.4 Any Ball challenge
In RoboCup 2009 competitions we also took part in the Any Ball Challenge. The goal was to
kick ball differents to the orange official one. To achieve this goal we changed the Perception
component to detects the non-green objects under the orizont that seemed like balls. In the
figure 32 (and in the video we mentioned before) we can see how the robot was able to kick
differents balls.

Humanoid soccer player design 97

Fig. 32. Any Ball Challenge. The robot must detect and kick hetereogeneuos balls.

7.5 Camera switching experiment
In the experiment described in section 7.2, between the instant 3 and 4 sequence, a camera
switch has made. For clarity, lets use another texperiment to explain this change with
another sequence. In figure 33, the robot is approaching to the ball using the upper camera.
The Player component has activated FollowBall component and the robot is walking
straight to the ball using the upper camera.

Fig. 33. Camera switching.

Before kick the ball, the robot must be aligned in order to situate itself in the right position to
do an effective kick. For this purpouse, the player component ask to the Perception module
the ball position in 3D with respect the robot. This is the only time the ball position is
estimated. The player components activates Fixmove component with the selected kick and
a lateral and straight alignement. As we can see in third and fourth image, the robot moves
on its left and back to do the kick.

Fig. 31. Search net behavior and kick.

While the kick is performing and after the kick, FaceBall component is activeted to continue
traking the ball. This spped up the recovering after the kick and sometimes it is not needed
to transitate to the searching ball state, but the approaching to the ball state.

This experiment has been carried out at the RoboCup 2009 in Graz. This behavior was tested
in the real competition environment, where the robot operation showed robust to the noise
produced by other robots and persons.

7.4 Any Ball challenge
In RoboCup 2009 competitions we also took part in the Any Ball Challenge. The goal was to
kick ball differents to the orange official one. To achieve this goal we changed the Perception
component to detects the non-green objects under the orizont that seemed like balls. In the
figure 32 (and in the video we mentioned before) we can see how the robot was able to kick
differents balls.

Robot Soccer98

Robot also moves by performing a sequence of basic joint-level movements. This
functionality is obtained from the FixMove component execution. This is useful to create
kicking sequences or getting up sequences.

These components use the NaoQi API directly and are usually in the lower level of the
activation tree. They are iterative components and no decision are taken in each step. There
are other more complex components. These components activate other components and
may vary dinamically the set of components that it activates.

The FaceBall component activates Perception and Head component in order to center
the ball in the image. This component is very important, because when it is activated, we
can assume that the ball position is where the ball is pointing at. This is used by the
FollowBall component. This components uses Body component to make the robot move
ahead when the neck pan angle is small, and turning when it is big. There is not need to
know the real distance or angle to the ball, only the neck pan angle.

When the ball is not detected in the image, the SearchBall component activates and
modulates Head and Body components to detect the ball. In the same way, the SearchNet
component component uses the Head component to look for the goals, in order to calculate
the right kick to use in order to score.

The higher level component is the Player component. This component is implemented as a
finite state machine and activates the previously described components in order to obtain
the forward player behavior.

This behavior, created with this architecture, has been tested in the RoboCup environment,
but it is not limited to it. We want to use this architecture to create robot behaviors to solve
another problems out of this environment.

9. References

Thrun, S.; Bennewitz, M.; Burgard, W.; Cremers, A. B.; Dellaert, F.; Fox, D.; Hahnel, D.;
Rosenberg, C. R.; Roy, N.; Schulte, J; Schulz, D. (1999). MINERVA: A Tour-Guide
Robot that Learns. Kunstliche Intelligenz, pp. 14-26. Germany

Reid, S. ; Goodwin, R.; Haigh, K.; Koenig, S.; O'Sullivan, J.; Veloso, M. (1997). Xavier:
Experience with a Layered Robot Architecture. Agents '97, 1997.

Stoytchev, A.; Arkin, R. (2000). Combining Deliberation, Reactivity, and Motivation in the
Context of a Behavior-Based Robot Architecture. In Proceedings 2001 IEEE International
Symposium on Computational Intelligence in Robotics and Automation. 290-295.
Banff, Alberta, Canada. 2000.

Arkin, R. (1989). Motor Schema Based Mobile Robot Navigation. The International Journal of
Robotics Research, Vol. 8, No. 4, 92-112 (1989).

Saffiotti, A. ; Wasik, Z. (2003). Using hierarchical fuzzy behaviors in the RoboCup domain.
Autonomous robotic systems: soft computing and hard computing methodologies
and applications. pp. 235-262. Physica-Verlag GmbH. Heidelberg, Germany, 2003.

When ball enters in the red area and the tilt head has the maximun value, ball dissapears
from the image taken by the upper camera. Then, the Player components deactivates
FollowBall components (and their activated components in cascade) and activates
SearchBall component. SearchBall component always starts with the bottom camera
activated and moves the head up. In few steps (maybe 1 or two are enough) ball is detected
again. Player component deactivates SearchBall component and activates FollowBall
component, that starts with the bottom camera selected. The camera change is made.

8. Conclusions

In this chapter we have proposed a robotic behavior based architecture. With this
architecture we can create robotics behaviors. The behavior arises from a cooperative
execution of iterative processing units called components. These units are hierarchically
organized, where a component may activate and modulate another components. In every
moment, there are active components an latent components that are waiting for be activated.
This hierarchy is called activation tree, and dinamically changes during the robot operation.
The components whose ouput is not needed are deactivated in order to save the limited
resources of the robot.

We can use this behavior architecture for create any robotic behavior. In this chapter we
have shown how the behaviors are implemented within the architecture. We have created a
forward player behavior to play soccer in Standar Platform League at RoboCup. This is a
dynamic environment where the conditions are very hard. Robots must react very fast to the
stimulus in order to play soccer in this league. This is an excellent test to the behaviors
created within our architecture.

We have developed a set of component to get a forward soccer player behavior. These
components are latent until a component activate it to use it. These component have a
standar modulation interface, perfect to be reused by several component without any
modification in the source code or to support multiple different interfaces.

Perception is done by the Perception component. This component uses the camera to get
different stimulus form the environment. The stimulus that it detect are the ball and the net
in image coordinates, the ball in ground coordinates and the goal in camera coordinates.
This component only perceives one stimulus at the same time, saving the limited resources.

Locomotion is done by the Body component, that uses Turn or GoStraight components
alternatively to make the robot walk to the ball. This component is modulated by
introducing a lineal or rotational speed. We found this interface is more appropiate that the
one provided by the NaoQi high level locomotion API to create our behaviors.

The head movement is not managed from the Body components because it is involved in the
perception process and we think that it is better to have a sepparate component for this
element. This component is the Head component, and moves the robot’s neck in pan and tilt
frames.

Humanoid soccer player design 99

Robot also moves by performing a sequence of basic joint-level movements. This
functionality is obtained from the FixMove component execution. This is useful to create
kicking sequences or getting up sequences.

These components use the NaoQi API directly and are usually in the lower level of the
activation tree. They are iterative components and no decision are taken in each step. There
are other more complex components. These components activate other components and
may vary dinamically the set of components that it activates.

The FaceBall component activates Perception and Head component in order to center
the ball in the image. This component is very important, because when it is activated, we
can assume that the ball position is where the ball is pointing at. This is used by the
FollowBall component. This components uses Body component to make the robot move
ahead when the neck pan angle is small, and turning when it is big. There is not need to
know the real distance or angle to the ball, only the neck pan angle.

When the ball is not detected in the image, the SearchBall component activates and
modulates Head and Body components to detect the ball. In the same way, the SearchNet
component component uses the Head component to look for the goals, in order to calculate
the right kick to use in order to score.

The higher level component is the Player component. This component is implemented as a
finite state machine and activates the previously described components in order to obtain
the forward player behavior.

This behavior, created with this architecture, has been tested in the RoboCup environment,
but it is not limited to it. We want to use this architecture to create robot behaviors to solve
another problems out of this environment.

9. References

Thrun, S.; Bennewitz, M.; Burgard, W.; Cremers, A. B.; Dellaert, F.; Fox, D.; Hahnel, D.;
Rosenberg, C. R.; Roy, N.; Schulte, J; Schulz, D. (1999). MINERVA: A Tour-Guide
Robot that Learns. Kunstliche Intelligenz, pp. 14-26. Germany

Reid, S. ; Goodwin, R.; Haigh, K.; Koenig, S.; O'Sullivan, J.; Veloso, M. (1997). Xavier:
Experience with a Layered Robot Architecture. Agents '97, 1997.

Stoytchev, A.; Arkin, R. (2000). Combining Deliberation, Reactivity, and Motivation in the
Context of a Behavior-Based Robot Architecture. In Proceedings 2001 IEEE International
Symposium on Computational Intelligence in Robotics and Automation. 290-295.
Banff, Alberta, Canada. 2000.

Arkin, R. (1989). Motor Schema Based Mobile Robot Navigation. The International Journal of
Robotics Research, Vol. 8, No. 4, 92-112 (1989).

Saffiotti, A. ; Wasik, Z. (2003). Using hierarchical fuzzy behaviors in the RoboCup domain.
Autonomous robotic systems: soft computing and hard computing methodologies
and applications. pp. 235-262. Physica-Verlag GmbH. Heidelberg, Germany, 2003.

When ball enters in the red area and the tilt head has the maximun value, ball dissapears
from the image taken by the upper camera. Then, the Player components deactivates
FollowBall components (and their activated components in cascade) and activates
SearchBall component. SearchBall component always starts with the bottom camera
activated and moves the head up. In few steps (maybe 1 or two are enough) ball is detected
again. Player component deactivates SearchBall component and activates FollowBall
component, that starts with the bottom camera selected. The camera change is made.

8. Conclusions

In this chapter we have proposed a robotic behavior based architecture. With this
architecture we can create robotics behaviors. The behavior arises from a cooperative
execution of iterative processing units called components. These units are hierarchically
organized, where a component may activate and modulate another components. In every
moment, there are active components an latent components that are waiting for be activated.
This hierarchy is called activation tree, and dinamically changes during the robot operation.
The components whose ouput is not needed are deactivated in order to save the limited
resources of the robot.

We can use this behavior architecture for create any robotic behavior. In this chapter we
have shown how the behaviors are implemented within the architecture. We have created a
forward player behavior to play soccer in Standar Platform League at RoboCup. This is a
dynamic environment where the conditions are very hard. Robots must react very fast to the
stimulus in order to play soccer in this league. This is an excellent test to the behaviors
created within our architecture.

We have developed a set of component to get a forward soccer player behavior. These
components are latent until a component activate it to use it. These component have a
standar modulation interface, perfect to be reused by several component without any
modification in the source code or to support multiple different interfaces.

Perception is done by the Perception component. This component uses the camera to get
different stimulus form the environment. The stimulus that it detect are the ball and the net
in image coordinates, the ball in ground coordinates and the goal in camera coordinates.
This component only perceives one stimulus at the same time, saving the limited resources.

Locomotion is done by the Body component, that uses Turn or GoStraight components
alternatively to make the robot walk to the ball. This component is modulated by
introducing a lineal or rotational speed. We found this interface is more appropiate that the
one provided by the NaoQi high level locomotion API to create our behaviors.

The head movement is not managed from the Body components because it is involved in the
perception process and we think that it is better to have a sepparate component for this
element. This component is the Head component, and moves the robot’s neck in pan and tilt
frames.

Robot Soccer100

Lenser, S.; Bruce, J.; Veloso, M. (2002). A Modular Hierarchical Behavior-Based Architecture,
Lecture Notes in Computer Science. RoboCup 2001: Robot Soccer World Cup V. pp.
79-99. Springer Berlin / Heidelberg, 2002.

Röfer, T.; Burkhard, H. ; von Stryk, O. ; Schwiegelshohn, U.; Laue, T.; Weber, M.; Juengel,
M.; Gohring D.; Hoffmann, J.; Altmeyer, B.; Krause, T.; Spranger, M.; Brunn, R.;
Dassler, M.; Kunz, M.; Oberlies, T.; Risler, M.; Hebbela, M.; Nistico, W.;
Czarnetzkia, S.; Kerkhof, T.; Meyer, M.; Rohde, C.; Schmitz, B.; Wachter, M.;
Wegner, T.; Zarges. C. (2008). B-Human. Team Description and code release 2008.
Robocup 2008. Technical report, Germany, 2008.

Calvo, R.; Cañas, J.M.; García-Pérez, L. (2005). Person following behavior generated with JDE
schema hierarchy. ICINCO 2nd Int. Conf. on Informatics in Control, Automation and
Robotics. Barcelona (Spain), sep 14-17, 2005. INSTICC Press, pp 463-466, 2005.
ISBN: 972-8865-30-9.

Cañaas, J. M.; and Matellán, V. (2007). From bio-inspired vs. psycho-inspired to etho-inspired
robots. Robotics and Autonomous Systems, Volume 55, pp 841-850, 2007. ISSN 0921-
8890.

Gómez, A.; Martínez, H.; (1997). Fuzzy Logic Based Intelligent Agents for Reactive Navigation in
Autonomous Systems. Fitth International Conference on Fuzzy Theory and
Technology, Raleigh (USA), 1997

Loetzsch, M.; Risler, M.; Jungel, M. (2006). XABSL - A pragmatic approach to behavior
engineering. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2006), pages 5124-5129, Beijing, October 2006.

Denavit, J. (1955). Hartenberg RS. A kinematic notation for lower-pair mechanisms based on
matrices. Transactions of ASME 1955;77: 215–221 Journal of Applied Mechanics,
2006.

Herrero, D. ; Martínez, H. (2008). Embedded Behavioral Control of Four-legged Robots. RoboCup
Symposium 2008. Suzhou (China), 2008.

Akin, H.L.; Meriçli, Ç.; Meriçli, T.; Gökçe, B.; Özkucur, E.; Kavakhoglu, C.; Yildiz, O.T.
(2008). Cerberus’08 Team Report. Technical Report. Turkey, 2008.

Chown, E.; Fishman, J.; Strom, J.; Slavov, G.; Hermans T.; Dunn, N.; Lawrence, A.; Morrison,
J.; Krob, E. (2008). The Northern Bites 2008 Standard Platform Robot Team. Technical
Report. USA, 2008.

Robot soccer educational courses 101

Robot soccer educational courses

Hrvoje Turić, Vladimir Pleština, Vladan Papić and Ante Krolo

X

Robot soccer educational courses

Hrvoje Turić, Vladimir Pleština, Vladan Papić and Ante Krolo
 University of Split

Croatia

1. Introduction

Robotics encompasses multiple disciplines, including mechanical engineering, software
programming, electronics and even human psychology. Robot soccer is an international
project intended to promote these disciplines as well as other related fields due to increasing
demand for the properly educated engineers. Basically, it is an attempt to foster AI and
intelligent robotics research by providing a standard problem where wide range of
technologies can be integrated and examined. The idea of introducing robot soccer and
robot soccer league turned out as a great success in popularization of robotics and AI but
also the other fields such as mechanical engineering and electronics.
Practical courses for the undergraduate and graduate students can be domain – focused
towards a particular research field such as intelligent agents (Coradeschi & Malec, 1999;
Anderson & Baltes, 2006), computer vision, artificial intelligence (Riley, 2007), control
(Bushnell & Crick, 2003), etc. During the courses students are either constructing the robots,
developing software for the robots or doing the both things (Beard et al., 2002; Nagasaka et
al., 2006), usually divided into different research teams (Archibald & Beard, 2002, Cornell).
Anyhow, they are presented with the real-life problems and have the opportunity to work
on challenging project that has a motivating goal. Learning theory that supports this
approach is constructionism (Piaget & Inhelder, 1966; Papert, 1980; Papert, 1986).
Constructionism holds that learning can happen most effectively when people are also
active in making tangible objects in the real world so we can say that experiential learning is
optimal for adoption of new knowledge.
Even early works have acknowledged the need to divide robotics courses into different
groups depending on their educational goal and complexity (prerequested knowledge). In
his survey, Lund presented three set-ups that have been designed as a three step
educational process (Lund, 1999). He considers his approach as a guided constructionism
because, unlike unguided constructionism approach, it combines the constructionism
approach with other methods (guidance) in order to allow the students to acquire
knowledge in the most profound way. Strengthening of Educational Robotics as a
pedagogic tool and integration of the Educational Robotics into the Curriculum has been
subject of investigation for several years (Bruder & Wedeward, 2003; Novales et al., 2006).
Although practical courses for the university students are the most obvious choice because
of generally high prerequested domain knowledge, children in elementary and secondary
schools (K-12) are also targeted audience. With the current negative enrolment trends at the

5

Robot Soccer102

expensive and complicated. The robot presented here is much cheaper but still, it has all
main components and functionality in order to fulfil educational goals and learning
outcomes. Basic parts of designed robot soccer player (Figure 1.) are:

• RF two channel communication on 433/434 MHz
• 4 DC electro motors (12 V)
• Solenoid kicker which operates on 6 V
• Special made battery charger
• Microcontroller AT89C4051 with electronics
• 7.2V battery for DC electro motors and solenoid
• 4.8V battery for electronics

Fig. 1. Robot soccer player

Robot consists of four levels. The first three levels represent drive and the fourth is the
control level. At the first level there are four DC electro motors with gearbox and wheels. At
the same level there is also a solenoid which is used to kick the ball. At the second level the
two batteries are placed. The first, 7.2 V battery, supplies four DC electro motors and the
second, 4.8 V battery, supplies the electronics. Battery charger is placed on the third level. At
the uppermost, fourth level, there is a microcontroller and a RF receiver. This level is also
known as control level, because it contains electronics for managing electro motors. It
controls their speed and orientation depending of signals received from RF receiver. This
electronics also controls the kick of solenoid. RF signal is sent by RF transceiver which is
connected to personal computer.
The main feature of this robot is the use of a global vision system (Figure 2). Local vision is
also possible, but in order to simplify the solution, global vision option was chosen which
means that only one camera is used and placed over the soccer field. The camera is
connected to computer which is used for image processing and strategy planning.
Computer acquires picture from the camera and recognizes the field ground, the robots and
the ball. Recognition is mainly based on color segmentation because the colors of the robot
teams are predefined (yellow and blue circles placed in the centre on the robot’s top plate)
and the ball color is predefined also (orange golf ball). Depending on the number of robots
in each team, robots have additional color marks on their top so they can be distinguished
by the strategy planning program. Picture background has to be green as it is the field

technical universities and the increasing demands on the labour market, early days
popularization of the technical sciences is necessary in order to provide better and more
massive input for the technical sciences oriented studies. Robot soccer has the capability of
attracting attention of younger population because it provides both fun and educational
experiences. The term sometimes used is ‘edutainment robotics’ (Miglino et al., 1999; Lund,
2001). Of course, robotic soccer is not the only approach in motivating children for the
robotics (McComb, 2008), but it is one of the most popular and perhaps the most
comprehensive one. Choice of the platform for children and process adopting courses for
their education is certainly interesting and demanding task (Baltes & Anderson, 2005).
Various researchers present different modular concepts for the introduction of robotics and
computer science education in high schools (Verner & Hershko, 2003; Nourbakhsh et al.,
2004; Henkel et al., 2009). In fact, robot design is considered as the suitable school
graduation project (Verner & Hershko, 2003). Even very young children (8 to 9 years of age)
can be included in courses that can change their way of thinking and teach them basics of
robotic technology as well as team work (Chambers et al., 2008).
Introduction of robot soccer courses into K-12 education has some other issues to be solved
other than only adopting course difficulty level. One of the most important issues that have
to be solved (other than finances) is proper education of the school teachers because they
have a broad range of educational backgrounds (Matarić, 2004). Proper documentation and
hardware should be available to the teachers because they are best prepared to innovate
when working from a solid foundation, prepared by robotics educator, not when starting
from the beginning (Wedeward & Bruder, 2002; Matarić et al., 2007). An interesting project
that should be mentioned is the TERECOP project (Teacher Education on Robotics-
Enhanced Constructivist Pedagogical Methods). It's overall aim is to develop a framework
for teacher education courses in order to enable teachers to implement the robotics-
enhanced constructivist learning in school classrooms (Arlegui et al., 2008).
As it has already been said, different age groups require an adaptive and modular approach
and that was the main idea behind the concept that will be presented here. Short practical
courses for three age groups have been developed and proposed: 1) younger K-12 school
children (ages 13-15), 2) senior K-12 school children (ages 15-18) and 3) university students
(ages > 18).
In this chapter, different modules incorporated in the practical courses are explained and
curriculum, aims and tasks for each course level is described. The attention is focused on the
modules integration. Although there are some commercial systems available at the market
(Lund & Pagliarini, 1999; Gage, 2003; Baltes, J. et al., 2004), in order to provide courses with
full range of possible learning themes as a basis for the proposed constructive education
courses, development of cheap and simple robots for the robot soccer team is explained in
detail.

2. Robot design

First, it should be stated that an inspiration and great help in understanding the most
important problems and issues that have to be resolved during design process of a soccer
robot was very detailed documentation that can be found on the Cornell University web site
(Cornell). Because the robots presented in mentioned documentation are state of the art,
development of similar robot for the purpose of an educational course would be too

Robot soccer educational courses 103

expensive and complicated. The robot presented here is much cheaper but still, it has all
main components and functionality in order to fulfil educational goals and learning
outcomes. Basic parts of designed robot soccer player (Figure 1.) are:

• RF two channel communication on 433/434 MHz
• 4 DC electro motors (12 V)
• Solenoid kicker which operates on 6 V
• Special made battery charger
• Microcontroller AT89C4051 with electronics
• 7.2V battery for DC electro motors and solenoid
• 4.8V battery for electronics

Fig. 1. Robot soccer player

Robot consists of four levels. The first three levels represent drive and the fourth is the
control level. At the first level there are four DC electro motors with gearbox and wheels. At
the same level there is also a solenoid which is used to kick the ball. At the second level the
two batteries are placed. The first, 7.2 V battery, supplies four DC electro motors and the
second, 4.8 V battery, supplies the electronics. Battery charger is placed on the third level. At
the uppermost, fourth level, there is a microcontroller and a RF receiver. This level is also
known as control level, because it contains electronics for managing electro motors. It
controls their speed and orientation depending of signals received from RF receiver. This
electronics also controls the kick of solenoid. RF signal is sent by RF transceiver which is
connected to personal computer.
The main feature of this robot is the use of a global vision system (Figure 2). Local vision is
also possible, but in order to simplify the solution, global vision option was chosen which
means that only one camera is used and placed over the soccer field. The camera is
connected to computer which is used for image processing and strategy planning.
Computer acquires picture from the camera and recognizes the field ground, the robots and
the ball. Recognition is mainly based on color segmentation because the colors of the robot
teams are predefined (yellow and blue circles placed in the centre on the robot’s top plate)
and the ball color is predefined also (orange golf ball). Depending on the number of robots
in each team, robots have additional color marks on their top so they can be distinguished
by the strategy planning program. Picture background has to be green as it is the field

technical universities and the increasing demands on the labour market, early days
popularization of the technical sciences is necessary in order to provide better and more
massive input for the technical sciences oriented studies. Robot soccer has the capability of
attracting attention of younger population because it provides both fun and educational
experiences. The term sometimes used is ‘edutainment robotics’ (Miglino et al., 1999; Lund,
2001). Of course, robotic soccer is not the only approach in motivating children for the
robotics (McComb, 2008), but it is one of the most popular and perhaps the most
comprehensive one. Choice of the platform for children and process adopting courses for
their education is certainly interesting and demanding task (Baltes & Anderson, 2005).
Various researchers present different modular concepts for the introduction of robotics and
computer science education in high schools (Verner & Hershko, 2003; Nourbakhsh et al.,
2004; Henkel et al., 2009). In fact, robot design is considered as the suitable school
graduation project (Verner & Hershko, 2003). Even very young children (8 to 9 years of age)
can be included in courses that can change their way of thinking and teach them basics of
robotic technology as well as team work (Chambers et al., 2008).
Introduction of robot soccer courses into K-12 education has some other issues to be solved
other than only adopting course difficulty level. One of the most important issues that have
to be solved (other than finances) is proper education of the school teachers because they
have a broad range of educational backgrounds (Matarić, 2004). Proper documentation and
hardware should be available to the teachers because they are best prepared to innovate
when working from a solid foundation, prepared by robotics educator, not when starting
from the beginning (Wedeward & Bruder, 2002; Matarić et al., 2007). An interesting project
that should be mentioned is the TERECOP project (Teacher Education on Robotics-
Enhanced Constructivist Pedagogical Methods). It's overall aim is to develop a framework
for teacher education courses in order to enable teachers to implement the robotics-
enhanced constructivist learning in school classrooms (Arlegui et al., 2008).
As it has already been said, different age groups require an adaptive and modular approach
and that was the main idea behind the concept that will be presented here. Short practical
courses for three age groups have been developed and proposed: 1) younger K-12 school
children (ages 13-15), 2) senior K-12 school children (ages 15-18) and 3) university students
(ages > 18).
In this chapter, different modules incorporated in the practical courses are explained and
curriculum, aims and tasks for each course level is described. The attention is focused on the
modules integration. Although there are some commercial systems available at the market
(Lund & Pagliarini, 1999; Gage, 2003; Baltes, J. et al., 2004), in order to provide courses with
full range of possible learning themes as a basis for the proposed constructive education
courses, development of cheap and simple robots for the robot soccer team is explained in
detail.

2. Robot design

First, it should be stated that an inspiration and great help in understanding the most
important problems and issues that have to be resolved during design process of a soccer
robot was very detailed documentation that can be found on the Cornell University web site
(Cornell). Because the robots presented in mentioned documentation are state of the art,
development of similar robot for the purpose of an educational course would be too

Robot Soccer104

Fig. 3. Appearance of the motor with gearbox and motor caracteristis.

3.2.1. Drive motor and wheel layout
Drive motor and therefore wheel layout as in Figure 4 was chosen because the robot has to
be agile and able to turn quickly around its axis. To increase the speed of robot motion
forward, the front motors are set at the angle of 33 degrees.

Fig. 4. Drive motor layout

Due to possibility of robot motion linearly with this set of wheels, it is necessary to use special
wheels called omniwheel wheels. Although some robot soccer teams develop their own
‘home-made’ multidirectional wheels (Brumhorn et al., 2007), a commercial solution presented
in Figure 5 is used. Wheels have transverse rollers that can rotate, so the wheel, without
creating high resistance, can move vertically according to the first direction of motion.

Fig. 5. Omniwheel.

ground. This “color rules” are set according to the rules of “small robot league” (Robocup
Official Page). Software package used for the image processing and communication with the
serial port is MATLAB. Image processing has to be fast and in real-time.

Fig. 2. Robot soccer player system using the global vision

Depending on the positions of the recognized objects, computer sends signals to the
microcontrollers in robots. These signals are the upper level instructions that will be
translated by the microcontrollers to the lower level instructions for the actuators.
Processed results are sent through the RF transmitter to the robot’s RF receiver. Actually, RF
transceivers were used, so the communication could be done in both directions. Detailed
explanation of all the basic modules will be given in the following sections.

3. Robot modules

3.1 Operative module
Operative module consists of four DC motors that drive the robot and one solenoid. Motors
themselves have gearboxes that reduce motor speed but also increase the torque. When
choosing motor, the price was crucial and this is because the professional micro-motors for
robotics are expensive. Table 1 shows the characteristics of the chosen motor. Figure 3 shows
the appearance of the motor with gearbox and motor characteristics.

 No Load Max efficiency Stall
Voltage Speed Current Speed Torque Current Output Eff. Torque Current

V RPM A RPM mN-m g-cm oz-in A W % mN-m g-cm oz-in A
12 94.7 0.023 69 28.8 294 4.08 0.06 0.21 28.0 106 1080 15.0 0.17

Table 1. Characteristics of the chosen motor

Robot soccer educational courses 105

Fig. 3. Appearance of the motor with gearbox and motor caracteristis.

3.2.1. Drive motor and wheel layout
Drive motor and therefore wheel layout as in Figure 4 was chosen because the robot has to
be agile and able to turn quickly around its axis. To increase the speed of robot motion
forward, the front motors are set at the angle of 33 degrees.

Fig. 4. Drive motor layout

Due to possibility of robot motion linearly with this set of wheels, it is necessary to use special
wheels called omniwheel wheels. Although some robot soccer teams develop their own
‘home-made’ multidirectional wheels (Brumhorn et al., 2007), a commercial solution presented
in Figure 5 is used. Wheels have transverse rollers that can rotate, so the wheel, without
creating high resistance, can move vertically according to the first direction of motion.

Fig. 5. Omniwheel.

ground. This “color rules” are set according to the rules of “small robot league” (Robocup
Official Page). Software package used for the image processing and communication with the
serial port is MATLAB. Image processing has to be fast and in real-time.

Fig. 2. Robot soccer player system using the global vision

Depending on the positions of the recognized objects, computer sends signals to the
microcontrollers in robots. These signals are the upper level instructions that will be
translated by the microcontrollers to the lower level instructions for the actuators.
Processed results are sent through the RF transmitter to the robot’s RF receiver. Actually, RF
transceivers were used, so the communication could be done in both directions. Detailed
explanation of all the basic modules will be given in the following sections.

3. Robot modules

3.1 Operative module
Operative module consists of four DC motors that drive the robot and one solenoid. Motors
themselves have gearboxes that reduce motor speed but also increase the torque. When
choosing motor, the price was crucial and this is because the professional micro-motors for
robotics are expensive. Table 1 shows the characteristics of the chosen motor. Figure 3 shows
the appearance of the motor with gearbox and motor characteristics.

 No Load Max efficiency Stall
Voltage Speed Current Speed Torque Current Output Eff. Torque Current

V RPM A RPM mN-m g-cm oz-in A W % mN-m g-cm oz-in A
12 94.7 0.023 69 28.8 294 4.08 0.06 0.21 28.0 106 1080 15.0 0.17

Table 1. Characteristics of the chosen motor

Robot Soccer106

Fig. 7. M2 Motor control

Motor speed is controlled by transistor switch shown in Figure 8. Robot motion is defined
by synchronized movement of all four motors. If the robot receives command "move left" or
"move right", then the motors M1, M2, M3 and M4, each through its driver (Figure 7) receive
orders from the table 2. Depending on these commands motors rotate and bring the robot
into desired position.

Fig. 8. Motor speed control

Motor speed (over M_SPEED pin) is common for all motors. Applying digital logic on
MOS_PWM pin performs speed control. Depending on frequency of digital signal, voltage
on M_SPEED pin changes. That results in greater or lesser number of revolutions of the
motor.
Presented robot soccer player can move with four different speeds. Speed variation is
achieved by sending four different rectangular signal frequencies on MOS_PWM. Also,
robot speed depends on distance between robot and ball. If robot is far away from the ball it
moves faster. In the immediate vicinity of the ball, the robot is moving slowly to be as
accurate as possible.

3.2.2. Solenoid control
Solenoid is electromagnet used to hit the ball. In the immediate vicinity of the ball, the robot
slows down and tries to kick ball with solenoid.

3.2. Electronics module
Electronics module has function to receive control signals and operate motors and solenoid.
Receiver placed on robot receives signals from computer transmitter and forwards them to
the microcontroller (Figure 6).

Fig. 6. Electric scheme – microcontroller

For this operation an AT89C4051 microcontroller is used and programmed. Control signals
are commands for turning motors on and off in order to settle the direction of the robot
motion. Input pins 2, 3, 9, 11 (Figure 6) are connected to the receiver pins 12, 14, 15, 16
(Figure 20). Microcontroller operates four motors (M1, M2, M3, and M4).

3.2.1. Motor controllers
TA7288P drivers are used to control motors speed and direction. There are four drivers, one
for each motor. Electric scheme for control of one motor is shown in Figure 7.
Motor management is quite simple. Combination of A and B pins from microcontroller as a
result has three functions (Table 2):
- rotate motor left
- rotate motor right
- stop motor rotation

 A B
Rotate left 0 1

Rotate right 1 0
Stop 0 0

Table 2. Motor control function

Robot soccer educational courses 107

Fig. 7. M2 Motor control

Motor speed is controlled by transistor switch shown in Figure 8. Robot motion is defined
by synchronized movement of all four motors. If the robot receives command "move left" or
"move right", then the motors M1, M2, M3 and M4, each through its driver (Figure 7) receive
orders from the table 2. Depending on these commands motors rotate and bring the robot
into desired position.

Fig. 8. Motor speed control

Motor speed (over M_SPEED pin) is common for all motors. Applying digital logic on
MOS_PWM pin performs speed control. Depending on frequency of digital signal, voltage
on M_SPEED pin changes. That results in greater or lesser number of revolutions of the
motor.
Presented robot soccer player can move with four different speeds. Speed variation is
achieved by sending four different rectangular signal frequencies on MOS_PWM. Also,
robot speed depends on distance between robot and ball. If robot is far away from the ball it
moves faster. In the immediate vicinity of the ball, the robot is moving slowly to be as
accurate as possible.

3.2.2. Solenoid control
Solenoid is electromagnet used to hit the ball. In the immediate vicinity of the ball, the robot
slows down and tries to kick ball with solenoid.

3.2. Electronics module
Electronics module has function to receive control signals and operate motors and solenoid.
Receiver placed on robot receives signals from computer transmitter and forwards them to
the microcontroller (Figure 6).

Fig. 6. Electric scheme – microcontroller

For this operation an AT89C4051 microcontroller is used and programmed. Control signals
are commands for turning motors on and off in order to settle the direction of the robot
motion. Input pins 2, 3, 9, 11 (Figure 6) are connected to the receiver pins 12, 14, 15, 16
(Figure 20). Microcontroller operates four motors (M1, M2, M3, and M4).

3.2.1. Motor controllers
TA7288P drivers are used to control motors speed and direction. There are four drivers, one
for each motor. Electric scheme for control of one motor is shown in Figure 7.
Motor management is quite simple. Combination of A and B pins from microcontroller as a
result has three functions (Table 2):
- rotate motor left
- rotate motor right
- stop motor rotation

 A B
Rotate left 0 1

Rotate right 1 0
Stop 0 0

Table 2. Motor control function

Robot Soccer108

is included as presented in our schematics, battery changing which can be quite tricky is
avoided.

Fig. 11. Batteries

Fig. 12. Battery charger

Fig. 13. Battery charger electronic scheme

Fig. 9. Solenoid control

When the control software estimates that the robot is near the ball, it sends commands to
kick it (optional). Command signal is applied on MOS_SOL pin of solenoid control.
Electromagnet is activated and throws the solenoid armature; a little spring provides that
solenoid return to its original position. Figure 9 shows the transistor switch that controls the
solenoid. SOL1 and SOL2 are connected directly to the solenoid.

3.2.3. Power supply
Designed robot uses two battery power systems. 7.2 V battery is used for motors and
solenoid and four 1.2 V batteries are connected in series and power electronics. In Figure 10
is shown the voltage stabilizer.

Fig. 10. Voltage stabilizer

Batteries (Figure 11) are rated at 1.2 V, four serial connected should give a voltage of 4.8 V.
When batteries are full, they give the slightly higher voltage. In this case measured voltage
is 5.6 V. Therefore, the stabilizer shown in Figure 10 is used. Battery charger (Figure 12 and
13) is specifically designed for this robot. There are two ways of charging. Quick 3 hours
charge and slow 12 hours charge. Slow charging is safer but fast charging is option for
special circumstances. This charger, of course, doesn’t need to be a part of the robot, but, if it

Robot soccer educational courses 109

is included as presented in our schematics, battery changing which can be quite tricky is
avoided.

Fig. 11. Batteries

Fig. 12. Battery charger

Fig. 13. Battery charger electronic scheme

Fig. 9. Solenoid control

When the control software estimates that the robot is near the ball, it sends commands to
kick it (optional). Command signal is applied on MOS_SOL pin of solenoid control.
Electromagnet is activated and throws the solenoid armature; a little spring provides that
solenoid return to its original position. Figure 9 shows the transistor switch that controls the
solenoid. SOL1 and SOL2 are connected directly to the solenoid.

3.2.3. Power supply
Designed robot uses two battery power systems. 7.2 V battery is used for motors and
solenoid and four 1.2 V batteries are connected in series and power electronics. In Figure 10
is shown the voltage stabilizer.

Fig. 10. Voltage stabilizer

Batteries (Figure 11) are rated at 1.2 V, four serial connected should give a voltage of 4.8 V.
When batteries are full, they give the slightly higher voltage. In this case measured voltage
is 5.6 V. Therefore, the stabilizer shown in Figure 10 is used. Battery charger (Figure 12 and
13) is specifically designed for this robot. There are two ways of charging. Quick 3 hours
charge and slow 12 hours charge. Slow charging is safer but fast charging is option for
special circumstances. This charger, of course, doesn’t need to be a part of the robot, but, if it

Robot Soccer110

kind of applications due to the high correlation between color components. Although HSI
(Hue, Saturation, Intensity) as well as HSV (Hue, Saturation, Value) color spaces has also
some problems especially with the low saturation images, they are better choice for wide
range of Computer Vision applications (Cheng et al., 2001; Barišić et al., 2008). After that,
component H has been isolated. Component H represents hue, i.e. wavelength color. Figure
16. shows the isolated H component in gray scale.

3.3.3. Segmentation
Segmentation refers to the process of partitioning an image into multiple segments. The goal
of segmentation is to simplify the representation of an image into something that is more
meaningful and easier to analyze. Image segmentation is used to locate objects in images.
In the case example, objects are the robot and the ball. Robot has two markers placed on its
top plate. One marker indicates the robot while the other one is used to obtain information
on its orientation. In Figure 17, result of region separation is shown.

a) b) c)

Fig. 17. Separated regions: a) red regions; b) ball – orange regions; c) yellow regions

a) b) c)

Fig. 18. Filtered regions: a) red regions; b) ball – orange regions; c) yellow regions

3.3. Vision module
Simple local vision scheme of our vision module that uses MATLAB software package for
the image processing on the central processor is presented in Figure 14.

Image capture RGB HSV Segmentation H Filtering Identification:
-ball
-robot
-robot orientation

Fig. 14. robot soccer vision module scheme

3.3.1. Image capture
Image capture is the process where a color image is grabbed from the camera and placed
into a memory location (buffer) on the host computer. This image must be transformed into
a packed RGB image before it can be processed. Figure 15. shows simple example.

Fig. 15. Image capture example

Fig. 16. H component

3.3.2. Color model transformation
Before the segmentation, image has to be converted from RGB color model into HSV color
model. Generally, it can be stated that traditional RGB color space is not convenient for this

Robot soccer educational courses 111

kind of applications due to the high correlation between color components. Although HSI
(Hue, Saturation, Intensity) as well as HSV (Hue, Saturation, Value) color spaces has also
some problems especially with the low saturation images, they are better choice for wide
range of Computer Vision applications (Cheng et al., 2001; Barišić et al., 2008). After that,
component H has been isolated. Component H represents hue, i.e. wavelength color. Figure
16. shows the isolated H component in gray scale.

3.3.3. Segmentation
Segmentation refers to the process of partitioning an image into multiple segments. The goal
of segmentation is to simplify the representation of an image into something that is more
meaningful and easier to analyze. Image segmentation is used to locate objects in images.
In the case example, objects are the robot and the ball. Robot has two markers placed on its
top plate. One marker indicates the robot while the other one is used to obtain information
on its orientation. In Figure 17, result of region separation is shown.

a) b) c)

Fig. 17. Separated regions: a) red regions; b) ball – orange regions; c) yellow regions

a) b) c)

Fig. 18. Filtered regions: a) red regions; b) ball – orange regions; c) yellow regions

3.3. Vision module
Simple local vision scheme of our vision module that uses MATLAB software package for
the image processing on the central processor is presented in Figure 14.

Image capture RGB HSV Segmentation H Filtering Identification:
-ball
-robot
-robot orientation

Fig. 14. robot soccer vision module scheme

3.3.1. Image capture
Image capture is the process where a color image is grabbed from the camera and placed
into a memory location (buffer) on the host computer. This image must be transformed into
a packed RGB image before it can be processed. Figure 15. shows simple example.

Fig. 15. Image capture example

Fig. 16. H component

3.3.2. Color model transformation
Before the segmentation, image has to be converted from RGB color model into HSV color
model. Generally, it can be stated that traditional RGB color space is not convenient for this

Robot Soccer112

Command Command meaning
Rotol Rotate left
Rotor Rotate right
Pravo Go straight
Nazad Go back
Stani Stop
Udari Hit the ball
Brzi1 Speed 1
Brzi2 Speed 2
Brzi3 Speed 3
Brzi4 Speed 4
Brzi5 Speed 5

Table 3. Commands

Fig. 20. Electrical scheme transmitter / receiver

4. Curriculum, aim and tasks

Because of wide educational scope provided with the robot soccer idea, instructor and
designer of a particular course should be aware of various possibilities available for
different groups of students. A simplified overview of the most dominant educational areas
is shown in Figure 21. It should be stressed that presented schema does not include all
possible areas of investigation and education as well as all possible connections between
presented areas. Complexity level should be taken as provisional information because upper
complexity boundaries are almost infinite. Only lover boundary of the position at which
certain term occur in the figure roughly correspond to the suggested level of needed student
previous education in order to attend a course.

3.3.4. Image filtering
Image filtering is a process by which we can enhance images. The first step in objects
analysis process is erosion. Erosion gets rid of most of the image noise and reduces the
objects to those used to identify the robots and the ball. Figure 18 shows filtered regions.

3.3.5. Identification and orientation
The ball is easily identified because it has distinguishing orange color. If no ball is located it
is considered missing and no location is sent to the computer.
Determining the general location of our robots is done by locating the center marker. In our
case example that is the yellow regions. Red region is used to determine the orientation of
the robot in relation to the ball. Figure 19 shows the position and orientation of robot and
the ball.

Fig. 19. Position and orientation of robot and the ball

3.4. Communication module
When robot position, orientation and distance from the ball are known, software determines
what the robot should do. For example, rotate it, move forward to the ball, or kick the ball.
In order to make robot do this operations, it is needed to receive predefined control
commands. Although it is possible to apply Bluetooth-based control as well, in our example
control commands are sent by radio transmitter and received by receiver that works on
433/434 MHz. The transmitter is connected to a computer via serial port.
Image that is obtained from the camera is processed using the image processing software on
PC. Results of the image analysis are used to produce commands that are sent via the RF
transmitter. RF receiver located on robot receives commands and forwards them to
microcontroller. Microcontroller manages four motors and the solenoid according to the
received commands. Table 3 contains set of all commands used to control designed robot
soccer player and their meanings.
In Figure 20 transmitter/receiver electrical scheme is shown. For transmitter RXD, TXD,
TX_SEL and RX_SEL are connected to the computer RS232 (serial) port through which
computer sent commands. Same device is on robot and works as receiver. RXD, TXD,
TX_SEL and RX_SEL are connected to microcontroller.

Robot soccer educational courses 113

Command Command meaning
Rotol Rotate left
Rotor Rotate right
Pravo Go straight
Nazad Go back
Stani Stop
Udari Hit the ball
Brzi1 Speed 1
Brzi2 Speed 2
Brzi3 Speed 3
Brzi4 Speed 4
Brzi5 Speed 5

Table 3. Commands

Fig. 20. Electrical scheme transmitter / receiver

4. Curriculum, aim and tasks

Because of wide educational scope provided with the robot soccer idea, instructor and
designer of a particular course should be aware of various possibilities available for
different groups of students. A simplified overview of the most dominant educational areas
is shown in Figure 21. It should be stressed that presented schema does not include all
possible areas of investigation and education as well as all possible connections between
presented areas. Complexity level should be taken as provisional information because upper
complexity boundaries are almost infinite. Only lover boundary of the position at which
certain term occur in the figure roughly correspond to the suggested level of needed student
previous education in order to attend a course.

3.3.4. Image filtering
Image filtering is a process by which we can enhance images. The first step in objects
analysis process is erosion. Erosion gets rid of most of the image noise and reduces the
objects to those used to identify the robots and the ball. Figure 18 shows filtered regions.

3.3.5. Identification and orientation
The ball is easily identified because it has distinguishing orange color. If no ball is located it
is considered missing and no location is sent to the computer.
Determining the general location of our robots is done by locating the center marker. In our
case example that is the yellow regions. Red region is used to determine the orientation of
the robot in relation to the ball. Figure 19 shows the position and orientation of robot and
the ball.

Fig. 19. Position and orientation of robot and the ball

3.4. Communication module
When robot position, orientation and distance from the ball are known, software determines
what the robot should do. For example, rotate it, move forward to the ball, or kick the ball.
In order to make robot do this operations, it is needed to receive predefined control
commands. Although it is possible to apply Bluetooth-based control as well, in our example
control commands are sent by radio transmitter and received by receiver that works on
433/434 MHz. The transmitter is connected to a computer via serial port.
Image that is obtained from the camera is processed using the image processing software on
PC. Results of the image analysis are used to produce commands that are sent via the RF
transmitter. RF receiver located on robot receives commands and forwards them to
microcontroller. Microcontroller manages four motors and the solenoid according to the
received commands. Table 3 contains set of all commands used to control designed robot
soccer player and their meanings.
In Figure 20 transmitter/receiver electrical scheme is shown. For transmitter RXD, TXD,
TX_SEL and RX_SEL are connected to the computer RS232 (serial) port through which
computer sent commands. Same device is on robot and works as receiver. RXD, TXD,
TX_SEL and RX_SEL are connected to microcontroller.

Robot Soccer114

Pedagogical tasks
To develop the culture of communication and to express their own views
To acquire the habit of tidiness in the work room

4.2.2. Secondary school (K-12, age 15-18)
Secondary school students will have more complex tasks. Through those tasks, they will
manufacture the certain modules by themselves. However, the programming of control
functions, just like the manufacturing of image recognition software is not the main task for
the students and it is playing just an informative role. In this case, students will just have to
change the certain parameters inside of the computer software.

Educational tasks
To enumerate all the robot modules
To explain the working principle of every single module
To explain the working principle of the entire robot system
To explain the particular parts of the module and their role (in it)

Functional tasks
To braze the elements on ready made circuit board individually
To identify each part of the robot
To identify each part of the modules
To identify the certain modules
To assemble robot modules into one unit
To change the parameters of image processing computer software individually

Pedagogical tasks
To develop the culture of communication and to express their own views
To acquire the habit of tidiness in the work room

4.2.3. Students
The students will reach the aim by themselves. Their tasks are the most complex ones. The
students will have all the required electrical and mechanical schemes, plans of robot and the
prepared material. They will individually manufacture the certain module and finally they
will develop the image recognition computer software.

Educational tasks
To enumerate all the robot modules
To explain the working principle of every single module
To explain the working principle of the entire robot system
To explain the certain parts of the module and their role in it
To explain the certain function of each element inside of the module

Functional tasks
To manufacture the module circuit board according to electrical scheme by themselves
To braze the elements on already made module circuit board by themselves
To identify each part of the robot

Fig. 21. Simplified chart of course complexity, level of education and area of education

Some terms in the Figure 21 overlap or can be regarded as a part of some other but the idea
is to accentuate possible autonomous courses and modules that can also be further
combined in order to achieve desired educational goal.

4.1 Curriculum aim
Combine acquired mechanics, electronics, informatics and programming knowledge
through autonomous construction of robot soccer player.

4.2 Curriculum tasks

4.2.1 Elementary school (K-12, age 13-15)
As we already mentioned, the course is different for three age groups. The final result is the
same - construction of a robot soccer player. The difference is in the amount of autonomous
work, which, of course, depends on educational level of certain groups. Therefore, the
elementary school students will get ready made modules that they will have to assemble in
the one unit. The aim is the same, but their knowledge from this field is lower, therefore
their tasks through this course will be simpler.
Educational tasks
To enumerate all the robot modules
To explain the working principle of every single module
To explain the working principle of the entire robot system

Functional tasks
To identify the each part of robot
To identify each module
To assemble robot modules into one unit

Robot soccer educational courses 115

Pedagogical tasks
To develop the culture of communication and to express their own views
To acquire the habit of tidiness in the work room

4.2.2. Secondary school (K-12, age 15-18)
Secondary school students will have more complex tasks. Through those tasks, they will
manufacture the certain modules by themselves. However, the programming of control
functions, just like the manufacturing of image recognition software is not the main task for
the students and it is playing just an informative role. In this case, students will just have to
change the certain parameters inside of the computer software.

Educational tasks
To enumerate all the robot modules
To explain the working principle of every single module
To explain the working principle of the entire robot system
To explain the particular parts of the module and their role (in it)

Functional tasks
To braze the elements on ready made circuit board individually
To identify each part of the robot
To identify each part of the modules
To identify the certain modules
To assemble robot modules into one unit
To change the parameters of image processing computer software individually

Pedagogical tasks
To develop the culture of communication and to express their own views
To acquire the habit of tidiness in the work room

4.2.3. Students
The students will reach the aim by themselves. Their tasks are the most complex ones. The
students will have all the required electrical and mechanical schemes, plans of robot and the
prepared material. They will individually manufacture the certain module and finally they
will develop the image recognition computer software.

Educational tasks
To enumerate all the robot modules
To explain the working principle of every single module
To explain the working principle of the entire robot system
To explain the certain parts of the module and their role in it
To explain the certain function of each element inside of the module

Functional tasks
To manufacture the module circuit board according to electrical scheme by themselves
To braze the elements on already made module circuit board by themselves
To identify each part of the robot

Fig. 21. Simplified chart of course complexity, level of education and area of education

Some terms in the Figure 21 overlap or can be regarded as a part of some other but the idea
is to accentuate possible autonomous courses and modules that can also be further
combined in order to achieve desired educational goal.

4.1 Curriculum aim
Combine acquired mechanics, electronics, informatics and programming knowledge
through autonomous construction of robot soccer player.

4.2 Curriculum tasks

4.2.1 Elementary school (K-12, age 13-15)
As we already mentioned, the course is different for three age groups. The final result is the
same - construction of a robot soccer player. The difference is in the amount of autonomous
work, which, of course, depends on educational level of certain groups. Therefore, the
elementary school students will get ready made modules that they will have to assemble in
the one unit. The aim is the same, but their knowledge from this field is lower, therefore
their tasks through this course will be simpler.
Educational tasks
To enumerate all the robot modules
To explain the working principle of every single module
To explain the working principle of the entire robot system

Functional tasks
To identify the each part of robot
To identify each module
To assemble robot modules into one unit

Robot Soccer116

Secondary school students: Explain them the way of working and the principles of the
computer vision. They autonomously change the parameters inside of the image processing
computer software.
University students: With teacher’s assistance, they manufacture the computer software
using Matlab software package.
Day 5:
Robot activation. Synchronization and adjusting of the computer software. Demonstration.

6. Discussion

It is important to accentuate that presented courses are short-termed. Longer courses that
last for one semester or even longer can handle much more topics and go in more details
(Archibald & Beard, 2002; Bushnell & Crick, 2003; Baltes et al., 2004; Hill & van den Hengel,
2005) or can even allow students to manage complete robot building project by themselves
(Pucher et al., 2005). If the focus of the course is shifted from building a robot towards
artificial intelligence, an approach using the commercial solution of already made robots
such as Khepera or LEGO Mindstorms can be used (Miglino et al., 1999; Lund, 2001). Also,
size of the student group, number of available teachers must be considered before
presenting course plan in order to set achievable goals.
As for the proposed and presented courses, they have been conducted for K-12 children and
undergraduate and graduate students as well. In all of these courses, final result of this age
levels courses are fully operational soccer robots. Each robot is made by team of 4-5 students
with their mentor.
Computer vision education modules were already included as a part of the present Image
processing and Computer vision course for the undergraduate and graduate students of
informatics and technics at the University of Split. Another module that has already been
included as a part of the Computers in technical systems course is the microcontroller
programming module.
Preliminary results are encouraging, scholars are highly motivated and the response and
working atmosphere is great. Members of the K-12 groups are, according to their
statements, very keen on continuing with the work related with the presented problem.
University students also showed great interest in the presented course modules. During the
development of the system occurred some real life problems such as light and vision, noise
in communication, speed of communication with PC port. Students had to deal with them or
were given an insight because these are the problems that are preparing them for the actual
work after graduation.
So far, curriculum described in Section 3 and 4 did not included collaboration between
robots and global strategy planning. This option should be added soon especially for the
undergraduate and graduate students in computer science that are listening some of the AI
courses in their regular curriculum. Also, robot simulation software has not been developed
yet so it has not been included here although simulators are providing significant
possibilities in investigation of artificial intelligence.

To identify each part of the modules
To identify the particular modules
To assemble robot modules into one unit
To manufacture the image processing computer software by themselves

Pedagogical tasks
To develop the culture of communication and to express their own views
To acquire the habit of tidiness in the work room

5. Curriculum schedule

Day 1:
Introducing robotics and robot soccer players to the students. Introducing to students the
tasks they will need to accomplish. After the short introduction with the tasks, we start with
manufacturing of the actuating module of the robot soccer player. The actuating module is
the first level of the robot. It consists of a platform with four motors (with gearboxes), the
wheels and a solenoid shooter.
Day 2:
Manufacturing the second and the third level of the robot.
Elementary school students: They connect batteries with ready made rechargeable circuit
and assemble it all together on the metal platform which makes the second and the third
level of the robot.
Secondary school students: They braze the elements of rechargeable circuit on ready made
circuit board. Then they connect the batteries with rechargeable circuit and assemble it all
together on the metal platform.
University students: They manufacture the module circuit board according to electrical
scheme. They braze the elements of rechargeable circuit on the circuit board. Then they
connect the batteries with rechargeable circuit and assemble it all together on the metal
platform.
Day 3:
Manufacturing the last (fourth) level. This is the most complex level. At this level there is a
controlling and receiving circuit.
Elementary school students: They get ready made module. The module is explained and
described to them in detail. They assemble the module on the metal platform and put them
all together in the one unit (robot).
Secondary school students: They braze the elements of the controlling and receiving circuit
on ready made circuit board. Then they assemble the module on the metal platform and put
them all together in the one unit (robot).
University students: They manufacture the module circuit board according to electrical
scheme. They braze the elements of the controlling and receiving circuit on the circuit board.
Finally, they assemble the module on the metal platform and put them all together in the
one unit (robot).
Day 4:
Manufacturing the computer software or explaining the way of working for the lower levels.
Elementary school students: Explaining the way of working of the image processing and the
computer vision software.

Robot soccer educational courses 117

Secondary school students: Explain them the way of working and the principles of the
computer vision. They autonomously change the parameters inside of the image processing
computer software.
University students: With teacher’s assistance, they manufacture the computer software
using Matlab software package.
Day 5:
Robot activation. Synchronization and adjusting of the computer software. Demonstration.

6. Discussion

It is important to accentuate that presented courses are short-termed. Longer courses that
last for one semester or even longer can handle much more topics and go in more details
(Archibald & Beard, 2002; Bushnell & Crick, 2003; Baltes et al., 2004; Hill & van den Hengel,
2005) or can even allow students to manage complete robot building project by themselves
(Pucher et al., 2005). If the focus of the course is shifted from building a robot towards
artificial intelligence, an approach using the commercial solution of already made robots
such as Khepera or LEGO Mindstorms can be used (Miglino et al., 1999; Lund, 2001). Also,
size of the student group, number of available teachers must be considered before
presenting course plan in order to set achievable goals.
As for the proposed and presented courses, they have been conducted for K-12 children and
undergraduate and graduate students as well. In all of these courses, final result of this age
levels courses are fully operational soccer robots. Each robot is made by team of 4-5 students
with their mentor.
Computer vision education modules were already included as a part of the present Image
processing and Computer vision course for the undergraduate and graduate students of
informatics and technics at the University of Split. Another module that has already been
included as a part of the Computers in technical systems course is the microcontroller
programming module.
Preliminary results are encouraging, scholars are highly motivated and the response and
working atmosphere is great. Members of the K-12 groups are, according to their
statements, very keen on continuing with the work related with the presented problem.
University students also showed great interest in the presented course modules. During the
development of the system occurred some real life problems such as light and vision, noise
in communication, speed of communication with PC port. Students had to deal with them or
were given an insight because these are the problems that are preparing them for the actual
work after graduation.
So far, curriculum described in Section 3 and 4 did not included collaboration between
robots and global strategy planning. This option should be added soon especially for the
undergraduate and graduate students in computer science that are listening some of the AI
courses in their regular curriculum. Also, robot simulation software has not been developed
yet so it has not been included here although simulators are providing significant
possibilities in investigation of artificial intelligence.

To identify each part of the modules
To identify the particular modules
To assemble robot modules into one unit
To manufacture the image processing computer software by themselves

Pedagogical tasks
To develop the culture of communication and to express their own views
To acquire the habit of tidiness in the work room

5. Curriculum schedule

Day 1:
Introducing robotics and robot soccer players to the students. Introducing to students the
tasks they will need to accomplish. After the short introduction with the tasks, we start with
manufacturing of the actuating module of the robot soccer player. The actuating module is
the first level of the robot. It consists of a platform with four motors (with gearboxes), the
wheels and a solenoid shooter.
Day 2:
Manufacturing the second and the third level of the robot.
Elementary school students: They connect batteries with ready made rechargeable circuit
and assemble it all together on the metal platform which makes the second and the third
level of the robot.
Secondary school students: They braze the elements of rechargeable circuit on ready made
circuit board. Then they connect the batteries with rechargeable circuit and assemble it all
together on the metal platform.
University students: They manufacture the module circuit board according to electrical
scheme. They braze the elements of rechargeable circuit on the circuit board. Then they
connect the batteries with rechargeable circuit and assemble it all together on the metal
platform.
Day 3:
Manufacturing the last (fourth) level. This is the most complex level. At this level there is a
controlling and receiving circuit.
Elementary school students: They get ready made module. The module is explained and
described to them in detail. They assemble the module on the metal platform and put them
all together in the one unit (robot).
Secondary school students: They braze the elements of the controlling and receiving circuit
on ready made circuit board. Then they assemble the module on the metal platform and put
them all together in the one unit (robot).
University students: They manufacture the module circuit board according to electrical
scheme. They braze the elements of the controlling and receiving circuit on the circuit board.
Finally, they assemble the module on the metal platform and put them all together in the
one unit (robot).
Day 4:
Manufacturing the computer software or explaining the way of working for the lower levels.
Elementary school students: Explaining the way of working of the image processing and the
computer vision software.

Robot Soccer118

Bruder, S. & Wedeward, K. (2003). An Outreach Program to Integrate Robotics into
Secondary Education. IEEE Robotics & Automation Magazine, Vol. 10, September,
2003, pp. 25-29, ISSN 1070-9932.

Brumhorn, J.; Tenechio, O. & Rojas, R. (2007). A Novel Omnidirectional Wheel Based on
Reuleaux-Triangles. In: RoboCup 2006 : Robot Soccer World Cup X. Lakemeyer, G.;
Sklar, E.; Sorrenti, D. G.; Takahashi, T. (Eds.), 516-522, Springer Verlag LNAI 4434,
ISBN 978-3-540-74023-0.

Bushnell, L.G. & Crick, A.P. (2003). Control Education via Autonomous Robotics, Proceeding
of 42nd IEEE Conference on Decision and Control, Vol.3, pp.3011-3017, ISBN 0-7803-
7924-1, Maui, Hawaii, USA, December, 2003, IEEE Control Systems Society.

Chambers, J.M.; Carbonaro, M. & Murray, H. (2008). Developing conceptual understanding
of mechanical advantage through the use of Lego robotic technology. Australasian
Journal of Educational Technology, Vol. 24(4), pp. 387-401, ISSN 1449-3098.

Cheng, H. D.; Jiang, X. H.; Sun, Y. & Wang, J. L. (2001). Color Image Segmentation:
Advances & Prospects, Pattern Recognition, Vol. 34(12), pp. 2259-2281, ISSN 0031-
3203.

Coradeschi, S. & Malec, J. (1999). How to make a challenging AI course enjoyable using the
RoboCup soccer simulation system. In : RoboCup98: The Second Robot World Cup
Soccer Games and Conferences. Asada, M. & Kitano, H. (Eds.), 120-124, Springer
Verlag LNAI, ISBN 978-3-540-66320-1, Berlin / Heidelberg.

Cornell RoboCup Team documentation. (31.08.2009.). http://www.cis.cornell.edu/
boom/2005/ProjectArchive/robocup/documentation.php.

Gage, A. & Murphy, R. R. (2003). Principles and Experiences in Using Legos to Teach
Behavioral Robotics, Proceedings of 33rd ASEE/IEEE Frontiers in Education Conference,
pp. 1-6, ISBN 0-7803-7961-6, November 5-8, 2003, Boulder, CO, IEEE.

Hill, R. & van den Hengel, A. (2005). Experiences with Simulated Robot Soccer as a Teaching
Tool, Proceedings of the Third International Conference on Information Technology and
Applications (ICITA'05), Vol.1, pp. 387-390, ISBN 0-7695-2316-1, Sydney, Australia
July, 2005, IEEE Computer Society, Los Alamitos, California, USA.

Henkel, Z.; Doerschuk, P. & Mann, J. (2009). Exploring Computer Science through
Autonomous Robotics, Proceedings of 39th ASEE/IEEE Frontiers in Education
Conference, October, 2009, San Antonio, USA.

Lund, H. H. (1999). Robot soccer in education. Advanced Robotics, Vol. 13, No.6-8, 1999, pp.
737-752(16), VSP, an imprint of Brill, ISSN 0169-1864.

Lund, H. H. & Pagliarini, L. (1999). Robot soccer with lego mindstorms. In : RoboCup98: The
Second Robot World Cup Soccer Games and Conferences. Asada, M. & Kitano, H. (Eds.),
141-151, Springer Verlag LNAI, ISBN 978-3-540-66320-1, Berlin / Heidelberg.

Lund, H. H. (2001). Adaptive Robotics in Entertainment. Applied Soft Computing, Vol.1, pp. 3-
20, Elsevier, ISSN 1568-4946.

Matarić, M. (2004). Robotics Education for All Ages, Proceedings of the AAAI Spring
Symposium on Accessible Hands-on Artificial Intelligence and Robotics Education,
Stanford, CA, March, 2004.

Matarić, M.J.; Koenig, N. & Feil-Seifer, D.J. (2007). Materials for Enabling Hands-On
Robotics and STEM Education, Papers from the AAAI Spring Symposium on Robots
and Robot Venues: Resources for AI Education, 2007, pp. 99-102, ISBN 9781577353171,
March, 2007, Stanford University, Stanford, CA, USA, AAAI Press, Stanford.

7. Conclusion

In this chapter we have presented a framework for modular practical courses using robotics
and robot soccer problem as an educational tool. Presented approach is flexible so it can be
adapted for various age groups with different scopes of interest and previous knowledge.
Some case examples have been shown. Also, we have described the robot electronics,
mechanics and the whole global vision system that was developed for this purpose. Main
requirements for the system and robots were: simplicity, overall price (around 300
EUR/robot + PC and a camera) and openness for further improvements.
Integration and need of interdisciplinary knowledge and its application for the successful
completion of the project defined by the course aims provides possibility of collaboration
between different departments and teachers. It offers the possibility to apply slightly
adopted courses to different age groups. Constructive education approach and the
possibility of using the presented practical course modules as a support for wide range of
existing engineering courses along with a great first response from the scholars motivates
authors to continue with the development of the course and its modules. Further
development of the courses for the youngest children, as well as specialized AI courses, is
expected in the future.

8. References

Anderson, J. & Baltes, J. (2006). An agent-based approach to introductory robotics using
robotic soccer. International Journal of Robotics and Automation, Vol. 21, Issue 2 (April
2006), pp. 141 – 152, ISSN 0826-8185, ACTA Press Anaheim, CA, USA.

Archibald, J. K. & Beard, R. W. (2002). Competitive robot soccer: a design experience for
undergraduate students, Proceedings of the 32nd Annual Frontiers in Education, fir,
Vol. 3., pp. F3D14-19, Boston, MA, USA, November, 2002.

Arlegui, J.; Fava, N.; Menegatti, E.; Monfalcon, S.; Moro, M. & Pina, A. (2008). Robotics at
primary and secondary education levels: technology, methodology, curriculum and
science, Proceedings of 3rd International Conference ISSEP
Informatics in Secondary Schools Evolution and Perspectives, July, 2008, Torun, Poland.

Beard, R.W.; Archibald, J.K. & Olson, S.A. (2002). Robot soccer as a culminating design
project for undergraduates, Proceedings of the 2002 American Control Conference, Vol.
2, pp. 1086-1091, ISBN 978-0780372986, Anchorage, Alaska, USA, May, 2002, IEEE,
Los Alamitos, CA, USA.

Baltes, J. & Anderson, J. (2005). Introductory programming workshop for children using
robotics. International Journal of Human-Friendly Welfare Robotic Systems, Vol.6, No.2,
17-26, ISSN 0929-5593.

Baltes, J.; Sklar, E. & Anderson, J. (2004). Teaching with robocup, Proceedings of the AAAI
Spring Symposium on Accessible Hands-on Artificial Intelligence and Robotics Education,
pp. 146-152, Stanford, CA, March, 2004.

Barišić, B.; Bonković, M. & Papić, V. (2008). Evaluation of fuzzy clustering methods for
segmentation of environmental images, Proceedings of 2008 International Conference
on Software, Telecommunications and Computer Networks, ISBN 978-953-290-009-5,
Split-Dubrovnik, Croatia, September, 2008, FESB, University of Split.

Robot soccer educational courses 119

Bruder, S. & Wedeward, K. (2003). An Outreach Program to Integrate Robotics into
Secondary Education. IEEE Robotics & Automation Magazine, Vol. 10, September,
2003, pp. 25-29, ISSN 1070-9932.

Brumhorn, J.; Tenechio, O. & Rojas, R. (2007). A Novel Omnidirectional Wheel Based on
Reuleaux-Triangles. In: RoboCup 2006 : Robot Soccer World Cup X. Lakemeyer, G.;
Sklar, E.; Sorrenti, D. G.; Takahashi, T. (Eds.), 516-522, Springer Verlag LNAI 4434,
ISBN 978-3-540-74023-0.

Bushnell, L.G. & Crick, A.P. (2003). Control Education via Autonomous Robotics, Proceeding
of 42nd IEEE Conference on Decision and Control, Vol.3, pp.3011-3017, ISBN 0-7803-
7924-1, Maui, Hawaii, USA, December, 2003, IEEE Control Systems Society.

Chambers, J.M.; Carbonaro, M. & Murray, H. (2008). Developing conceptual understanding
of mechanical advantage through the use of Lego robotic technology. Australasian
Journal of Educational Technology, Vol. 24(4), pp. 387-401, ISSN 1449-3098.

Cheng, H. D.; Jiang, X. H.; Sun, Y. & Wang, J. L. (2001). Color Image Segmentation:
Advances & Prospects, Pattern Recognition, Vol. 34(12), pp. 2259-2281, ISSN 0031-
3203.

Coradeschi, S. & Malec, J. (1999). How to make a challenging AI course enjoyable using the
RoboCup soccer simulation system. In : RoboCup98: The Second Robot World Cup
Soccer Games and Conferences. Asada, M. & Kitano, H. (Eds.), 120-124, Springer
Verlag LNAI, ISBN 978-3-540-66320-1, Berlin / Heidelberg.

Cornell RoboCup Team documentation. (31.08.2009.). http://www.cis.cornell.edu/
boom/2005/ProjectArchive/robocup/documentation.php.

Gage, A. & Murphy, R. R. (2003). Principles and Experiences in Using Legos to Teach
Behavioral Robotics, Proceedings of 33rd ASEE/IEEE Frontiers in Education Conference,
pp. 1-6, ISBN 0-7803-7961-6, November 5-8, 2003, Boulder, CO, IEEE.

Hill, R. & van den Hengel, A. (2005). Experiences with Simulated Robot Soccer as a Teaching
Tool, Proceedings of the Third International Conference on Information Technology and
Applications (ICITA'05), Vol.1, pp. 387-390, ISBN 0-7695-2316-1, Sydney, Australia
July, 2005, IEEE Computer Society, Los Alamitos, California, USA.

Henkel, Z.; Doerschuk, P. & Mann, J. (2009). Exploring Computer Science through
Autonomous Robotics, Proceedings of 39th ASEE/IEEE Frontiers in Education
Conference, October, 2009, San Antonio, USA.

Lund, H. H. (1999). Robot soccer in education. Advanced Robotics, Vol. 13, No.6-8, 1999, pp.
737-752(16), VSP, an imprint of Brill, ISSN 0169-1864.

Lund, H. H. & Pagliarini, L. (1999). Robot soccer with lego mindstorms. In : RoboCup98: The
Second Robot World Cup Soccer Games and Conferences. Asada, M. & Kitano, H. (Eds.),
141-151, Springer Verlag LNAI, ISBN 978-3-540-66320-1, Berlin / Heidelberg.

Lund, H. H. (2001). Adaptive Robotics in Entertainment. Applied Soft Computing, Vol.1, pp. 3-
20, Elsevier, ISSN 1568-4946.

Matarić, M. (2004). Robotics Education for All Ages, Proceedings of the AAAI Spring
Symposium on Accessible Hands-on Artificial Intelligence and Robotics Education,
Stanford, CA, March, 2004.

Matarić, M.J.; Koenig, N. & Feil-Seifer, D.J. (2007). Materials for Enabling Hands-On
Robotics and STEM Education, Papers from the AAAI Spring Symposium on Robots
and Robot Venues: Resources for AI Education, 2007, pp. 99-102, ISBN 9781577353171,
March, 2007, Stanford University, Stanford, CA, USA, AAAI Press, Stanford.

7. Conclusion

In this chapter we have presented a framework for modular practical courses using robotics
and robot soccer problem as an educational tool. Presented approach is flexible so it can be
adapted for various age groups with different scopes of interest and previous knowledge.
Some case examples have been shown. Also, we have described the robot electronics,
mechanics and the whole global vision system that was developed for this purpose. Main
requirements for the system and robots were: simplicity, overall price (around 300
EUR/robot + PC and a camera) and openness for further improvements.
Integration and need of interdisciplinary knowledge and its application for the successful
completion of the project defined by the course aims provides possibility of collaboration
between different departments and teachers. It offers the possibility to apply slightly
adopted courses to different age groups. Constructive education approach and the
possibility of using the presented practical course modules as a support for wide range of
existing engineering courses along with a great first response from the scholars motivates
authors to continue with the development of the course and its modules. Further
development of the courses for the youngest children, as well as specialized AI courses, is
expected in the future.

8. References

Anderson, J. & Baltes, J. (2006). An agent-based approach to introductory robotics using
robotic soccer. International Journal of Robotics and Automation, Vol. 21, Issue 2 (April
2006), pp. 141 – 152, ISSN 0826-8185, ACTA Press Anaheim, CA, USA.

Archibald, J. K. & Beard, R. W. (2002). Competitive robot soccer: a design experience for
undergraduate students, Proceedings of the 32nd Annual Frontiers in Education, fir,
Vol. 3., pp. F3D14-19, Boston, MA, USA, November, 2002.

Arlegui, J.; Fava, N.; Menegatti, E.; Monfalcon, S.; Moro, M. & Pina, A. (2008). Robotics at
primary and secondary education levels: technology, methodology, curriculum and
science, Proceedings of 3rd International Conference ISSEP
Informatics in Secondary Schools Evolution and Perspectives, July, 2008, Torun, Poland.

Beard, R.W.; Archibald, J.K. & Olson, S.A. (2002). Robot soccer as a culminating design
project for undergraduates, Proceedings of the 2002 American Control Conference, Vol.
2, pp. 1086-1091, ISBN 978-0780372986, Anchorage, Alaska, USA, May, 2002, IEEE,
Los Alamitos, CA, USA.

Baltes, J. & Anderson, J. (2005). Introductory programming workshop for children using
robotics. International Journal of Human-Friendly Welfare Robotic Systems, Vol.6, No.2,
17-26, ISSN 0929-5593.

Baltes, J.; Sklar, E. & Anderson, J. (2004). Teaching with robocup, Proceedings of the AAAI
Spring Symposium on Accessible Hands-on Artificial Intelligence and Robotics Education,
pp. 146-152, Stanford, CA, March, 2004.

Barišić, B.; Bonković, M. & Papić, V. (2008). Evaluation of fuzzy clustering methods for
segmentation of environmental images, Proceedings of 2008 International Conference
on Software, Telecommunications and Computer Networks, ISBN 978-953-290-009-5,
Split-Dubrovnik, Croatia, September, 2008, FESB, University of Split.

Robot Soccer120

McComb, G. (2008). Getting kids into Robotics. Servo Magazine, October, 2008, pp. 73-75,
T&L Publications, Inc., North Hollywood, CA, USA, ISSN 1546-0592.

Miglino, O.; Lund, H. H. & Cardaci, M. (1999). Robotics as an educational tool. Journal of
Interactive Learning Research, Vol.10, Issue 1 (April 1999), pp. 25-47, ISSN 1093-023X,
Association for the Advancement of Computing in Education, USA

Nagasaka, Y. ; Saeki, M.; Shibata, S. ; Fujiyoshi, H.; Fujii, T. & Sakata. T. (2006). A New
Practice Course for Freshmen Using RoboCup Based Small Robots. In: RoboCup
2005 : Robot Soccer World Cup IX. Bredenfeld, A.; Jacoff, A.; Noda, I.; Takahashi, Y.
(Eds.), 428-435, Springer Verlag LNAI 4020, ISBN 978-3-540-35437-6.

Nourbakhsh, I.R.; Hamner, E.; Crowley, K. & Wilkinson, K. (2004). The educational impact
of the Robotic Autonomy mobile robotics course, Proceedings of 2004 IEEE
International Conference on Robotics and Automation, Vol.2, pp. 1831-1836, April-May,
2004, New Orleans, LA, USA, IEEE, USA.

Novales, M.R.; Zapata, N.G. & Chandia, S.M. (2006). A strategy of an Introduction of
Educational Robotics in the School System. In: Current Developments in Technology-
Assisted Education, Vol.2, Méndez-Vilas, A.; Martín, A.S.; González, J.A.M. &
González, J.M (Eds.), pp. 752-756, Formatex, ISBN 978-84-690-2472-8, Badajoz,
Spain.

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. NY, New York: Basic
Books.

Papert, S. (1986). Constructionism: A New Opportunity for Elementary Science Education. A MIT
proposal to the National Science Foundation.

Piaget, J. & Inhelder, B. (1966). La psychologie de L'enfant. Paris: P.U.F.
Pucher, R.K.; Wahl, H.; Hofmann, A. & Schmöllebeck, F. (2005). Managing large projects

with changing students – the example of the roboter soccer team “Vienna Cubes”,
Proceedings of the 22nd ASCILITE Conference, Vol. 2, pp. 561-567, ISBN 0975709313,
Brisbane, December, 2005, Australasian Society for Computers in Learning in
Tertiary Education, Figtree, NSW, Australia.

Riley, J. (2007). Learning to Play Soccer with the Simple Soccer Robot Soccer Simulator, In :
Robotic Soccer, Lima, P. (Ed.), pp. 281-306, Itech Education and Publishing, ISBN
978-3-902613-21-9, Vienna, Austria.

Robocup official page. (31.08.2009.). http://www.robocup.org.
Verner, I.M. & Hershko, E. (2003). School Graduation Project in Robot Design: A Case Study

of Team Learning Experiences and Outcomes. Journal of Technology Education, Vol.
14, No. 2, pp. 40-55, ISSN 1045-1064.

Wedeward, K. & Bruder, S. (2002). Incorporating robotics into secondary education,
Proceedings of the 5th Biannual World Automation Congress (WAC 2002), Vol. 14, pp.
411-416, ISBN 1-889335-18-5, Orlando, USA. June, 2002, Albuquerque, New Mexico
: TSI Press.

Distributed Architecture for Dynamic Role Behaviour in Humanoid Soccer Robots 121

Distributed Architecture for Dynamic Role Behaviour in Humanoid
Soccer Robots

Carlos Antonio Acosta Calderon, Mohan Elaha Rajesh and Zhou Changjiu

X

Distributed Architecture for Dynamic Role
Behaviour in Humanoid Soccer Robots

Carlos Antonio Acosta Calderon, Rajesh Elara Mohan and Changjiu Zhou

Advanced Robotics and Intelligent Control Centre, Singapore Polytechnic
500 Dover Road, Singapore 139651

1. Introduction

In recent years, robotics competitions have flourished all over the world. These competitions
have been accepted among the scientific community because of their roles in the in the
advancement of science. Roboticists have understood that competitions do not only nurture
innovative ideas, but they also serve as a common testbed, where approaches, algorithms,
and hardware devices could be compared by evaluating them in the same environment and
under identical conditions. Competitions also motivate students to be involved in robotics to
acquire new technological and problem solving skills. Robot soccer has proved to be a
challenging and inspiring benchmark problem for artificial intelligence and robotics
research. In a soccer game, one team of multiple players must cooperate in a dynamic
environment and sensory signals must be interpreted in real time to take appropriate
actions. The soccer competitions test two multi-robot systems competing with each other.
The presence of opponent teams, which continuously improve their systems, makes the
problem harder every year. The number of goals scored is an objective performance metric
that allows a comparison of the systems.
Two of the most successful competitions for robot soccer are FIRA (Federation of
International Robot-soccer Association) and RoboCup. Both FIRA and RoboCup have their
international conferences co-located with the games to promote scientific dissemination of
the novel ideas and solutions proposed by the teams. Currently, there is a number of
different soccer leagues in RoboCup and FIRA focusing on different aspects of the soccer
challenge. Both competitions have a humanoid league, where autonomous robots with a
human-like body and human-like senses play soccer against each other. RoboCup has set
the final target of the humanoid robot soccer competitions for being able to develop a team
of humanoid soccer robots capable of defeating the human world champion team by 2050
(Kitano & Asada, 2000). Although humanoid soccer robots are far from human performance,
their progress is particularly visible. Nowadays, the robots manage basic soccer skills like
walking, kicking, getting-up, dribbling, and passing.
The early stages of these competitions consisted only of basic robotic soccer skills, such as
walking, getting-up, penalty kick, and obstacle avoidance. In 2005 RoboCup introduced the
2 vs. 2 soccer games for the Humanoid League, which became 3 vs. 3 soccer games in 2008.
It is planned to increase the number of robot players in the games until eventually it reaches

6

Robot Soccer122

2. Literature Review

Cooperative behaviour is an intrinsic feature of the soccer robot competitions. It has been
addressed from different points of view; these approaches are based on the capabilities of
the robots to perceive the world. The perception of the system would bring advantages and
disadvantages and not all these approaches can be shared among the different soccer
leagues. For example, the Small Size League of the RoboCup and FIRA use a global vision
system that obtains the positions of the robots and the ball from the images. This
information is used by a server computer to calculate and send the next positions of all the
robots. In this scenario, the cooperative behaviour of the system is conceived by one central
orchestrator, who has a full picture of the game. In this work, despite the main focus are
humanoid robots, relevant approaches of other leagues are also discussed.
The RoboCup Four-Legged League successfully addressed many aspects of the soccer
problem. In this league, four autonomous Sony AIBO robots play in each team. Each robot
perceives the environment from a camera and tries to estimate its position as well as the
positions of its teammates, foes, and the ball. Cooperative behaviour in this league is an
emergent behaviour achieved by all the independent robots in the team. The challenge is to
have the group of robots working together towards the same goal, without interfering
among themselves, but also supporting their roles.
Previous work in the RoboCup Four-Legged League had addressed the cooperative
behaviour problem. Phillips and Veloso presented an approach to coordinate two robots for
supporting the team attack. The robots achieved this behaviour by assigning roles to the
robots, i.e. attacker and supporter. The supporter robot will position itself to not interfere
with the attacker, yet able to receive a pass or recover a lost ball (Phillips & Veloso, 2009).
Other researchers have focused on the autonomous positioning of the robots at the
beginning of a game or after a goal. Most of the leagues consider it a foul to manually place
the robots to resume a game, and each league would assign some kind of penalty to the
team that incurs in such situation. In addition, after a goal the robots would have a certain
amount of time to self-position themselves before the game is resumed. It is quite common
to have robots that played as defenders located in a different region than a defender should
be located. If that is the case it might be more meaningful to place the robot behaving as
another role just for that specific period of time, instead of having the robots moving back to
its defending area, which would require more time than the allowed. Work et. al. proposed
a method for player positioning based on potential fields. The method relies on roles that
are assigned by a given strategy for the game. The potential fields calculate the shortest
paths for the robot to self-position after a goal (Work et al., 2009). Zickler and Veloso
proposed random behaviour tactics for the robots in the team. The proposed method can be
used to generate a shorter plan in contrast with plans which are too far in the future. The
main advantage of the method is the ability of re-planning short plans (Zickler & Veloso,
2009).
Teams in the RoboCup Four-Legged League, Standard Platform League, and Humanoid
League have studied the problem of cooperative behaviour from the point of view of player
role. A robot with a specific role in the game would contribute to the final objective of the
team in a different way. Some teams have addressed the role assignation as a static problem
(Acosta et al., 2007) others have addressed the problem as a dynamic assignation. An
example of role assignment concept in the planning layer is used in NimbRo humanoid
robots (Behnke & Stueckler, 2008). It implements default role negotiation and role switching.

11. Raising the number of players poses new challenges for the roboticists and further
expands the possibilities of team play. The increased complexity of soccer games with more
players will make structured behaviour a key factor for a good humanoid soccer team.
Cooperative behaviour of the humanoid robots would give advantage to the team to achieve
its ultimate goal, to win the game.
In soccer, cooperative behaviour is displayed as coordinated passing, role playing, and
game strategy. Wheeled robots with global vision systems and centralized control have
achieved such behaviours; example of this is the RoboCup Small-Size League. In the
RoboCup Small- Size League, teams are able to display formations according to the strategy
of the team. In addition, the robots show a well-defined behaviour according to their
assigned roles during the game. The robot’s role would determine the type of contribution
of a robot to the strategy of the team. Passing is therefore a consequence of the behaviour for
the roles and the support for the strategy. In RoboCup Small-Size, a central computer is
responsible for deciding the roles, positions and behaviour of the five robots of the team.
The central computer receives a complete image of the soccer field from an overhead
camera; this image is then processed and used to calculate new positions and states for each
robot. Finally, the position and states are sent to the robots. In the humanoid soccer games,
there is no central computer; each robot is meant to be autonomous and is equipped with a
camera as a main source of information about its environment. The partial information
about the environment that the humanoid robot can collect with the camera, along with
received information from the team-mates, is the information used to determine its
behaviour. As it could be guessed, the partial information about the environment and other
robots makes the problem of behaviour control quite challenging. Most of the teams in the
RoboCup Humanoid League have identified the need to have different roles for the robots
in the team. This role assignation is then useful to specify particular behaviours that must be
unique to the role of the robot, e.g. the goalie is the only robot that is allowed to dive to
block the ball when it is drawing near the goal. Despite the obvious advantages to the static
role assignation, some drawbacks are still observed. The roles can only be changed before or
after the game, i.e. during a normal game, the roles of the robots are not allowed to change.
If a robot is damaged, and cannot continue the game, the other robots could not adjust their
roles to compensate for the team’s disadvantage.
This Chapter describes the approach developed at the Advanced Robotics and Intelligent
Control Centre (ARICC) of the Singapore Polytechnic with the team of humanoid robots
named Robo-Erectus. Robo-Erectus team has taken part in the RoboCup Humanoid League
since 2002 (Zhou & Yue, 2004). The work described here deals with role assignation for the
robots, team formation and the relation of strategy and behaviour for the humanoid robots.
The rest of the Chapter is organized as follows. First, a review of related works are
presented; part of this work has been done in different robotic platforms. After reviewing
these approaches, the proposed method is then presented. Next is an introduction of the
Robo-Erectus humanoid robot, the hardware, the control, and the software architecture used
for the experiments. Section 5 presents the experiments and results obtained with the
proposed approach. These experiments were conducted on a simulator as well as the actual
robots. Finally, Section 6 provides concluding remarks about this approach and future work.

Distributed Architecture for Dynamic Role Behaviour in Humanoid Soccer Robots 123

2. Literature Review

Cooperative behaviour is an intrinsic feature of the soccer robot competitions. It has been
addressed from different points of view; these approaches are based on the capabilities of
the robots to perceive the world. The perception of the system would bring advantages and
disadvantages and not all these approaches can be shared among the different soccer
leagues. For example, the Small Size League of the RoboCup and FIRA use a global vision
system that obtains the positions of the robots and the ball from the images. This
information is used by a server computer to calculate and send the next positions of all the
robots. In this scenario, the cooperative behaviour of the system is conceived by one central
orchestrator, who has a full picture of the game. In this work, despite the main focus are
humanoid robots, relevant approaches of other leagues are also discussed.
The RoboCup Four-Legged League successfully addressed many aspects of the soccer
problem. In this league, four autonomous Sony AIBO robots play in each team. Each robot
perceives the environment from a camera and tries to estimate its position as well as the
positions of its teammates, foes, and the ball. Cooperative behaviour in this league is an
emergent behaviour achieved by all the independent robots in the team. The challenge is to
have the group of robots working together towards the same goal, without interfering
among themselves, but also supporting their roles.
Previous work in the RoboCup Four-Legged League had addressed the cooperative
behaviour problem. Phillips and Veloso presented an approach to coordinate two robots for
supporting the team attack. The robots achieved this behaviour by assigning roles to the
robots, i.e. attacker and supporter. The supporter robot will position itself to not interfere
with the attacker, yet able to receive a pass or recover a lost ball (Phillips & Veloso, 2009).
Other researchers have focused on the autonomous positioning of the robots at the
beginning of a game or after a goal. Most of the leagues consider it a foul to manually place
the robots to resume a game, and each league would assign some kind of penalty to the
team that incurs in such situation. In addition, after a goal the robots would have a certain
amount of time to self-position themselves before the game is resumed. It is quite common
to have robots that played as defenders located in a different region than a defender should
be located. If that is the case it might be more meaningful to place the robot behaving as
another role just for that specific period of time, instead of having the robots moving back to
its defending area, which would require more time than the allowed. Work et. al. proposed
a method for player positioning based on potential fields. The method relies on roles that
are assigned by a given strategy for the game. The potential fields calculate the shortest
paths for the robot to self-position after a goal (Work et al., 2009). Zickler and Veloso
proposed random behaviour tactics for the robots in the team. The proposed method can be
used to generate a shorter plan in contrast with plans which are too far in the future. The
main advantage of the method is the ability of re-planning short plans (Zickler & Veloso,
2009).
Teams in the RoboCup Four-Legged League, Standard Platform League, and Humanoid
League have studied the problem of cooperative behaviour from the point of view of player
role. A robot with a specific role in the game would contribute to the final objective of the
team in a different way. Some teams have addressed the role assignation as a static problem
(Acosta et al., 2007) others have addressed the problem as a dynamic assignation. An
example of role assignment concept in the planning layer is used in NimbRo humanoid
robots (Behnke & Stueckler, 2008). It implements default role negotiation and role switching.

11. Raising the number of players poses new challenges for the roboticists and further
expands the possibilities of team play. The increased complexity of soccer games with more
players will make structured behaviour a key factor for a good humanoid soccer team.
Cooperative behaviour of the humanoid robots would give advantage to the team to achieve
its ultimate goal, to win the game.
In soccer, cooperative behaviour is displayed as coordinated passing, role playing, and
game strategy. Wheeled robots with global vision systems and centralized control have
achieved such behaviours; example of this is the RoboCup Small-Size League. In the
RoboCup Small- Size League, teams are able to display formations according to the strategy
of the team. In addition, the robots show a well-defined behaviour according to their
assigned roles during the game. The robot’s role would determine the type of contribution
of a robot to the strategy of the team. Passing is therefore a consequence of the behaviour for
the roles and the support for the strategy. In RoboCup Small-Size, a central computer is
responsible for deciding the roles, positions and behaviour of the five robots of the team.
The central computer receives a complete image of the soccer field from an overhead
camera; this image is then processed and used to calculate new positions and states for each
robot. Finally, the position and states are sent to the robots. In the humanoid soccer games,
there is no central computer; each robot is meant to be autonomous and is equipped with a
camera as a main source of information about its environment. The partial information
about the environment that the humanoid robot can collect with the camera, along with
received information from the team-mates, is the information used to determine its
behaviour. As it could be guessed, the partial information about the environment and other
robots makes the problem of behaviour control quite challenging. Most of the teams in the
RoboCup Humanoid League have identified the need to have different roles for the robots
in the team. This role assignation is then useful to specify particular behaviours that must be
unique to the role of the robot, e.g. the goalie is the only robot that is allowed to dive to
block the ball when it is drawing near the goal. Despite the obvious advantages to the static
role assignation, some drawbacks are still observed. The roles can only be changed before or
after the game, i.e. during a normal game, the roles of the robots are not allowed to change.
If a robot is damaged, and cannot continue the game, the other robots could not adjust their
roles to compensate for the team’s disadvantage.
This Chapter describes the approach developed at the Advanced Robotics and Intelligent
Control Centre (ARICC) of the Singapore Polytechnic with the team of humanoid robots
named Robo-Erectus. Robo-Erectus team has taken part in the RoboCup Humanoid League
since 2002 (Zhou & Yue, 2004). The work described here deals with role assignation for the
robots, team formation and the relation of strategy and behaviour for the humanoid robots.
The rest of the Chapter is organized as follows. First, a review of related works are
presented; part of this work has been done in different robotic platforms. After reviewing
these approaches, the proposed method is then presented. Next is an introduction of the
Robo-Erectus humanoid robot, the hardware, the control, and the software architecture used
for the experiments. Section 5 presents the experiments and results obtained with the
proposed approach. These experiments were conducted on a simulator as well as the actual
robots. Finally, Section 6 provides concluding remarks about this approach and future work.

Robot Soccer124

In a robot soccer game, the environment is highly competitive and dynamic. In order to
work in the dynamically changing environment, the decision-making system of a soccer
robot system should have the flexibility and online adaptation. Thus, fixed roles are not the
best approach, even though it is possible to display some level of cooperative behaviour, the
system lacks the flexibility to adapt to unforeseen situations. A solution to the fixed roles of
the robots is to allow a flexible change of strategies and roles of the robots in a soccer game,
according to the game time and goal difference (Acosta et al., 2008). The robot’s area of
coverage may be limited according to their current roles. This is to allow better deployment
and efficiency of the robots movement.
The proposed approach conceived the team as a self-organizing strategy-based decision-
making system, in which the robots are able to perform a dynamic switching of roles in the
soccer game.

3.1 Cooperative behaviour
In order to achieve a designated goal, agents must work together as a team. However, one
thing to remember is that each agent has a different role, and that performing the role is
crucial to achieve the desire goal. The changing of roles will be filtered based on three
criteria; Strategy, Game Time and Goal Difference respectively.

 Strategy, the strategy to be used for the game will be selected before kick-off and half

time of the game. The strategy defines the final objective of the team, and specifies if
team should be more offensive or defensive in their play.

 Game Time, the time of the game, 10 minutes for each half of the normal game, and 5
minutes for each half of extra time when required.

 Goal Difference, defined as the difference of own team goal score and opponent team
goal score.

The above criteria would then determine a particular formation for the team. Formation
here is the number of players for particular roles, not directly the position of the robots on
the field. For example, a formation for a team of three robots could be one goalie, one
defender, and one striker; another formation could be one goalie and two strikers. In this
regard, the formation would specify the number of players with different roles that are
required at that moment.
Each role would specify the behaviour of the robot and the region where the robot should be
located. However, the robots are free to move around the field, but the specified regions are
used as reference for the robots and also for some other behaviour like self-positioning.
The change of formations based on the three criteria has been implemented as a finite state
machine on all the robots. The three criteria are updated as follows:

 Strategy, the strategy can only be selected before kick-off and half time of game. The

strategy would remain the same for as long as the game last.
 Game Time, the time of the game is kept by each robot, and it is updated when a

signal is received from the computer that provides messages like kickoff, stop, etc.
 Goal Difference, it is updated when receive signals from the computer that provides

the messages.

A player can be assigned as a striker, a defender, or a goalkeeper. If only one player is on the
field, it plays offensive. When the team consists of more than one field player, the players
negotiate roles by claiming ball control. As long as no player is in control of the ball, all
players attack. If one of the players takes control, the other player switches to the defensive
role. Another application of the role concept is goal clearance by the goalkeeper. The
goalkeeper switches its role to field player when the ball gets closer than a certain distance.
In this case, it starts negotiating roles with other field players like a standard field player.
Thus, the goalie might walk toward the ball in order to kick it across the field.
Coelho et. al. approached the coordination and the behaviour of the robots in a team from
the point of view of genetic algorithm (Coelho et al., 2001). They use the genetic algorithms
to optimize the coordination of the team. The fitness of the objective function is associated
with the solution of the soccer problem as a team, not just as player of the team. The
algorithm is flexible in the sense that we can produce different configurations of the team.
One drawback of the method is that this process must be done offline and it does not permit
online adjustments.
Communication between the Darmstadt Dribblers humanoid robots is used for modelling
and behaviour planning (Friedmann et al., 2006). The change of positions of opponents or
team members can be realized. A dynamical behaviour assignment is implemented on the
robots in such a way that several field players can change their player roles between striker
and supporter in a two on two humanoid robot soccer game. This change is based on their
absolute field position and relative ball pose.
Risler and von Strik presented an approach based on hierarchical state machines that can be
used to define behaviour of the robots and specify how and when the robots would
coordinate (Risler & von Strik, 2009). The roles of the robots are assigned dynamically
according to the definition given inside the state machines. For example, if a robot is
approaching towards the ball with a good chance to score, the robot’s role would become
striker, and if the state machine defines that only one striker should be in the team, the
previous striker would negotiate for another role.
Previous works on cooperation of the behaviour are mainly based on the role of the player.
As presented, some works focus on static roles of the players that cannot change during the
execution of the game. Others use dynamic assignation of the roles during a game, the
criteria are based on the position of the players. The work presented here uses a dynamic
role assignation based on the strategy that the team has for the game. Other factors like
remaining time and goal difference are used to determine the new formation of the team.

3. Dynamic Role Assignation

On a three versus three humanoid robots game, each robot has assigned a role, e.g. goalie,
defender, striker. The fixed or static roles of the robots do not change throughout the whole
duration of a robot soccer game, regardless of the game time and goal difference. This
method does not cater for scenarios when the team needs to win the game to qualify for the
next round, or a premeditated draw game as part of a league game strategy. In some cases
the roles of robots are not bounded or limited to an area of the soccer field, where the robots
are free to roam in the field. This will cause unnecessary and inefficient movement of the
robots.

Distributed Architecture for Dynamic Role Behaviour in Humanoid Soccer Robots 125

In a robot soccer game, the environment is highly competitive and dynamic. In order to
work in the dynamically changing environment, the decision-making system of a soccer
robot system should have the flexibility and online adaptation. Thus, fixed roles are not the
best approach, even though it is possible to display some level of cooperative behaviour, the
system lacks the flexibility to adapt to unforeseen situations. A solution to the fixed roles of
the robots is to allow a flexible change of strategies and roles of the robots in a soccer game,
according to the game time and goal difference (Acosta et al., 2008). The robot’s area of
coverage may be limited according to their current roles. This is to allow better deployment
and efficiency of the robots movement.
The proposed approach conceived the team as a self-organizing strategy-based decision-
making system, in which the robots are able to perform a dynamic switching of roles in the
soccer game.

3.1 Cooperative behaviour
In order to achieve a designated goal, agents must work together as a team. However, one
thing to remember is that each agent has a different role, and that performing the role is
crucial to achieve the desire goal. The changing of roles will be filtered based on three
criteria; Strategy, Game Time and Goal Difference respectively.

 Strategy, the strategy to be used for the game will be selected before kick-off and half

time of the game. The strategy defines the final objective of the team, and specifies if
team should be more offensive or defensive in their play.

 Game Time, the time of the game, 10 minutes for each half of the normal game, and 5
minutes for each half of extra time when required.

 Goal Difference, defined as the difference of own team goal score and opponent team
goal score.

The above criteria would then determine a particular formation for the team. Formation
here is the number of players for particular roles, not directly the position of the robots on
the field. For example, a formation for a team of three robots could be one goalie, one
defender, and one striker; another formation could be one goalie and two strikers. In this
regard, the formation would specify the number of players with different roles that are
required at that moment.
Each role would specify the behaviour of the robot and the region where the robot should be
located. However, the robots are free to move around the field, but the specified regions are
used as reference for the robots and also for some other behaviour like self-positioning.
The change of formations based on the three criteria has been implemented as a finite state
machine on all the robots. The three criteria are updated as follows:

 Strategy, the strategy can only be selected before kick-off and half time of game. The

strategy would remain the same for as long as the game last.
 Game Time, the time of the game is kept by each robot, and it is updated when a

signal is received from the computer that provides messages like kickoff, stop, etc.
 Goal Difference, it is updated when receive signals from the computer that provides

the messages.

A player can be assigned as a striker, a defender, or a goalkeeper. If only one player is on the
field, it plays offensive. When the team consists of more than one field player, the players
negotiate roles by claiming ball control. As long as no player is in control of the ball, all
players attack. If one of the players takes control, the other player switches to the defensive
role. Another application of the role concept is goal clearance by the goalkeeper. The
goalkeeper switches its role to field player when the ball gets closer than a certain distance.
In this case, it starts negotiating roles with other field players like a standard field player.
Thus, the goalie might walk toward the ball in order to kick it across the field.
Coelho et. al. approached the coordination and the behaviour of the robots in a team from
the point of view of genetic algorithm (Coelho et al., 2001). They use the genetic algorithms
to optimize the coordination of the team. The fitness of the objective function is associated
with the solution of the soccer problem as a team, not just as player of the team. The
algorithm is flexible in the sense that we can produce different configurations of the team.
One drawback of the method is that this process must be done offline and it does not permit
online adjustments.
Communication between the Darmstadt Dribblers humanoid robots is used for modelling
and behaviour planning (Friedmann et al., 2006). The change of positions of opponents or
team members can be realized. A dynamical behaviour assignment is implemented on the
robots in such a way that several field players can change their player roles between striker
and supporter in a two on two humanoid robot soccer game. This change is based on their
absolute field position and relative ball pose.
Risler and von Strik presented an approach based on hierarchical state machines that can be
used to define behaviour of the robots and specify how and when the robots would
coordinate (Risler & von Strik, 2009). The roles of the robots are assigned dynamically
according to the definition given inside the state machines. For example, if a robot is
approaching towards the ball with a good chance to score, the robot’s role would become
striker, and if the state machine defines that only one striker should be in the team, the
previous striker would negotiate for another role.
Previous works on cooperation of the behaviour are mainly based on the role of the player.
As presented, some works focus on static roles of the players that cannot change during the
execution of the game. Others use dynamic assignation of the roles during a game, the
criteria are based on the position of the players. The work presented here uses a dynamic
role assignation based on the strategy that the team has for the game. Other factors like
remaining time and goal difference are used to determine the new formation of the team.

3. Dynamic Role Assignation

On a three versus three humanoid robots game, each robot has assigned a role, e.g. goalie,
defender, striker. The fixed or static roles of the robots do not change throughout the whole
duration of a robot soccer game, regardless of the game time and goal difference. This
method does not cater for scenarios when the team needs to win the game to qualify for the
next round, or a premeditated draw game as part of a league game strategy. In some cases
the roles of robots are not bounded or limited to an area of the soccer field, where the robots
are free to roam in the field. This will cause unnecessary and inefficient movement of the
robots.

Robot Soccer126

Fig. 3.2 The finite state machine for the Must Win Strategy.

3.2.3 At Least Draw Strategy
The At Least Draw strategy is used when the game strategy is just to aim for a draw or a
marginal win. This strategy can be used as a part of first round game, when the team does
not want to unnecessarily reveal the full potential of the robots to rival teams. This strategy
will implement a normal formation when draw, and a defensive formation when the team is
leading. Figure 3.3 below illustrates the At Least Draw Strategy.

Fig. 3.3 The finite state machine for the At Least Draw Strategy.

3.2.4 Close-Up Strategy
The Close-Up strategy is used to narrow the goal difference when the team is losing to the
opponent team. For example, when opponent team scores 10 goals and own team scores 3
goals, this strategy will try to narrow the goal difference to 10 goals versus 6 goals. Figure
3.4 below illustrates the Close-Up Goals Strategy.

The computer that sends the signals for kickoff, stop, resume, etc is known as a referee box.
Many leagues in the RoboCup have implemented the use of the referee box with two
purposes. First, to standardize the signals that are sent to the teams, the referee box
broadcasts the signals to the wireless networks of both teams; and second, to reduce the
human interference in the game and to increase the autonomy of the system. The referee box
sends signal only when the referee wants to let the robots know about particular situation
e.g. a free kick. Most of the referee boxes include some other kind of information that robots
are not able to perceive just yet, information such as time and goal difference. In our
proposal, we have included both into the referee box messages.

3.2 Strategies
The strategy of a team will define the main objective of the team for a particular game. The
strategy is fixed for our approach, which means that it can only be changed if the game
stops i.e. half time or of full time (when playing extra time). However, from our experiments
we have discovered that it is more meaningful not to change the strategy during a game,
unless it is really necessary. While other works have defined some strategies for the games,
we have defined four strategies that embrace, in our opinion, all the possibilities of the
soccer games.

3.2.1 Normal Game Strategy
The Normal Game strategy is used when the team does not have a specific agenda, which
may be used in a friendly game so as not to reveal unnecessary strategies. This strategy uses
a Normal Formation throughout the whole game including extra time, regardless of game
time and goal difference. Figure 3.1 below illustrates the Normal Game Strategy.

Fig. 3.1 The finite state machine for the Normal Game Strategy.

3.2.2 Must Win Strategy
The Must Win strategy is used when the team has to win the game. The nature of this
strategy is more aggressive, with Offensive Formation implemented during the second half
of normal game time, and All Out Formation implemented during the second half of extra
time, if the team is still losing or draw. When the team is winning, the formations will
change to defensive mode to maintain the lead. Figure 3.2 below illustrates the Must Win
Strategy.

Distributed Architecture for Dynamic Role Behaviour in Humanoid Soccer Robots 127

Fig. 3.2 The finite state machine for the Must Win Strategy.

3.2.3 At Least Draw Strategy
The At Least Draw strategy is used when the game strategy is just to aim for a draw or a
marginal win. This strategy can be used as a part of first round game, when the team does
not want to unnecessarily reveal the full potential of the robots to rival teams. This strategy
will implement a normal formation when draw, and a defensive formation when the team is
leading. Figure 3.3 below illustrates the At Least Draw Strategy.

Fig. 3.3 The finite state machine for the At Least Draw Strategy.

3.2.4 Close-Up Strategy
The Close-Up strategy is used to narrow the goal difference when the team is losing to the
opponent team. For example, when opponent team scores 10 goals and own team scores 3
goals, this strategy will try to narrow the goal difference to 10 goals versus 6 goals. Figure
3.4 below illustrates the Close-Up Goals Strategy.

The computer that sends the signals for kickoff, stop, resume, etc is known as a referee box.
Many leagues in the RoboCup have implemented the use of the referee box with two
purposes. First, to standardize the signals that are sent to the teams, the referee box
broadcasts the signals to the wireless networks of both teams; and second, to reduce the
human interference in the game and to increase the autonomy of the system. The referee box
sends signal only when the referee wants to let the robots know about particular situation
e.g. a free kick. Most of the referee boxes include some other kind of information that robots
are not able to perceive just yet, information such as time and goal difference. In our
proposal, we have included both into the referee box messages.

3.2 Strategies
The strategy of a team will define the main objective of the team for a particular game. The
strategy is fixed for our approach, which means that it can only be changed if the game
stops i.e. half time or of full time (when playing extra time). However, from our experiments
we have discovered that it is more meaningful not to change the strategy during a game,
unless it is really necessary. While other works have defined some strategies for the games,
we have defined four strategies that embrace, in our opinion, all the possibilities of the
soccer games.

3.2.1 Normal Game Strategy
The Normal Game strategy is used when the team does not have a specific agenda, which
may be used in a friendly game so as not to reveal unnecessary strategies. This strategy uses
a Normal Formation throughout the whole game including extra time, regardless of game
time and goal difference. Figure 3.1 below illustrates the Normal Game Strategy.

Fig. 3.1 The finite state machine for the Normal Game Strategy.

3.2.2 Must Win Strategy
The Must Win strategy is used when the team has to win the game. The nature of this
strategy is more aggressive, with Offensive Formation implemented during the second half
of normal game time, and All Out Formation implemented during the second half of extra
time, if the team is still losing or draw. When the team is winning, the formations will
change to defensive mode to maintain the lead. Figure 3.2 below illustrates the Must Win
Strategy.

Robot Soccer128

and approach to the ball could be used to determine which robot would get the role. This
means that if we have a situation as the one presented in Figure 3.5, where robot A and
robot B are disputing for the role of striker and defender, how should they solve this
situation? There are two criteria employed to solve this problem. First, the robots should
evaluate if they are attacking or defending. This is evaluated by determining if the
opponents are close to the ball, in that case it is considered that the team is defending;
otherwise, it is considered that the team is attacking. Second, the robots will evaluate the
distance to the ball. If the robot believes that its distance is shorter than that of the other
robot, it will approach to the ball and win the role, i.e. defender when the team is defending
or striker when attacking.
The robots in the field can approach the ball based on proximity, the robot nearer to the ball
will move forward. As illustrated in Figure 3.5, Robot A will approach the ball rather than
Robot B due to its proximity, as distance A is shorter compared to distance B. This is taken
into consideration that both Robot A and B heading is facing the ball. As each robot has the
ability of knowing its own heading orientation, the ball approach method considers the
heading of the robot. Illustrated in Figure 3.6 below, Robot A is heading away from the ball,
while Robot B is heading towards the ball. Although Robot A distance is nearer compared to
Robot B, however it will take time for Robot A to turn its heading position towards the ball.
Hence Robot B will approach the ball instead, while Robot A will proceed with heading
adjustment. This method is limited to a difference in distances, defined by a threshold, in
comparison to the other nearby robots. If the ball distance for Robot A is less than the
threshold difference compared to Robot B, then Robot A will still adjust its heading and
approach the ball.

Fig. 3.6 Robots approach through ball approximation and heading.

Figure 3.7 below illustrates the close-up view of the robots approach through ball
approximation and heading. With the robot heading perpendicular to the ball as the 90°

Fig. 3.4 The finite state machine for the Close-up Strategy.

3.3 Negotiation of roles
At several points during the robot soccer game, the robots need to communicate with one
another. This may involve informing agents of events or responses, asking for help or
information, and negotiating to iron out inconsistencies in information or to agree on a
course of action. Negotiation will be necessary when changing of roles is required. This
process is complicated since each robot must have its own decisions and there is no central
coordinator to assign the roles to each robot.

Fig. 3.5 Robots approach through ball approximation

In review of the dynamic roles design, the ball approach method should be taken into
consideration. This is for better robot deployment and efficiency during dynamic role
change. Team formation change may be based on the positions of the three robots. This
could be useful when two robots required negotiating for a particular role. The proximity

Distributed Architecture for Dynamic Role Behaviour in Humanoid Soccer Robots 129

and approach to the ball could be used to determine which robot would get the role. This
means that if we have a situation as the one presented in Figure 3.5, where robot A and
robot B are disputing for the role of striker and defender, how should they solve this
situation? There are two criteria employed to solve this problem. First, the robots should
evaluate if they are attacking or defending. This is evaluated by determining if the
opponents are close to the ball, in that case it is considered that the team is defending;
otherwise, it is considered that the team is attacking. Second, the robots will evaluate the
distance to the ball. If the robot believes that its distance is shorter than that of the other
robot, it will approach to the ball and win the role, i.e. defender when the team is defending
or striker when attacking.
The robots in the field can approach the ball based on proximity, the robot nearer to the ball
will move forward. As illustrated in Figure 3.5, Robot A will approach the ball rather than
Robot B due to its proximity, as distance A is shorter compared to distance B. This is taken
into consideration that both Robot A and B heading is facing the ball. As each robot has the
ability of knowing its own heading orientation, the ball approach method considers the
heading of the robot. Illustrated in Figure 3.6 below, Robot A is heading away from the ball,
while Robot B is heading towards the ball. Although Robot A distance is nearer compared to
Robot B, however it will take time for Robot A to turn its heading position towards the ball.
Hence Robot B will approach the ball instead, while Robot A will proceed with heading
adjustment. This method is limited to a difference in distances, defined by a threshold, in
comparison to the other nearby robots. If the ball distance for Robot A is less than the
threshold difference compared to Robot B, then Robot A will still adjust its heading and
approach the ball.

Fig. 3.6 Robots approach through ball approximation and heading.

Figure 3.7 below illustrates the close-up view of the robots approach through ball
approximation and heading. With the robot heading perpendicular to the ball as the 90°

Fig. 3.4 The finite state machine for the Close-up Strategy.

3.3 Negotiation of roles
At several points during the robot soccer game, the robots need to communicate with one
another. This may involve informing agents of events or responses, asking for help or
information, and negotiating to iron out inconsistencies in information or to agree on a
course of action. Negotiation will be necessary when changing of roles is required. This
process is complicated since each robot must have its own decisions and there is no central
coordinator to assign the roles to each robot.

Fig. 3.5 Robots approach through ball approximation

In review of the dynamic roles design, the ball approach method should be taken into
consideration. This is for better robot deployment and efficiency during dynamic role
change. Team formation change may be based on the positions of the three robots. This
could be useful when two robots required negotiating for a particular role. The proximity

Robot Soccer130

3.5 Area of Coverage
The proposed method also defines the area of coverage or region where the robots should be
limited according to their roles. This is to facilitate effectiveness and prevent unnecessary
movement during the role changing. This roles area of coverage proposal is to enhance the
ball approach criteria described in the previous Section 3.4. Figure 3.8 shows the areas of
coverage for the roles of goalie, defender and striker. These areas are also used for the self-
positioning behaviour, the robots defined points on the field as starting positions, but they
have a higher priority to be inside the area rather than to reach the point. Only during the
self-positioning behaviour the area of coverage of a striker becomes the same as that of the
defender, but the attraction points are different; i.e. for the striker is closer to the half line.

 Goalie - Movement limited to the Goal Area. This is to cater for cases when the ball

stops just at the goal line, and the goalie has to move behind the goal line to kick out
the ball, or else the goalie would not know how to react in a situation when ball stops
just at the goal line.

 Defender - Movement limited to the own half of the field, as illustrated in Figure
3.8(b) below. The defender’s area also includes the goal area.

 Striker - Movement limited from the middle of lower half of field, to the opponent’s
goal, as illustrated in Figure 3.8(c). However, when the formation has more than one
striker, the striker’s area becomes the whole field.

(a) (b) (c)

Fig. 3.8 Area of coverage for roles of (a) goalie, (b) defender, and (c) striker.

4. Robo-Erectus, The Humanoid Soccer Robot

The Robo-Erectus project (www.robo-erectus.org) has been developed in the Advanced
Robotics and Intelligent Control Centre (ARICC) of Singapore Polytechnic. The humanoid
robot Robo-Erectus is one of the pioneering soccer-playing humanoid robots in the
RoboCup Humanoid League (Acosta et al., 2007). Robo-Erectus has collected several awards
since its first participation in the Humanoid League of RoboCup in 2002. Robo-Erectus won

heading reference, robot heading 181° to 359° will not initiate the approach. As illustrated
below, Robot A heading falls out of the 0° to 180° heading range. While Robot B distance is
less or equal to the threshold, therefore Robot B will proceed to approach the ball, and will
change its role accordingly e.g. from defender to striker.

Fig. 3.7 Robots approach through ball approximation and heading.

3.4 Formations, roles, and players
During a game there could be situations where a team must play with substitute robots, and
occasionally the team must play with fewer players. To deal with these situations, the
proposed formations have roles with priorities. These priorities indicate which roles must be
filled first, and which roles must always remain filled. Each robot keeps a list of the other
robots broadcasting in its network; with this information each robot is aware of the number
of team members of the team. However, when a robot that is currently playing fails and
needs to be replaced by another robot. This new robot will be added to the list, the previous
robot will identify that there are four robots in the list when this happen, the robots monitor
the messages to discover which robot went dead. If a robot is not able to discover the
missing robot, it will broadcast a request, so that the playing robots will reply. This request
is also broadcasted if one robot does not broadcast any message for a period of time. This is
done to try to identify any dead robot. When a robot is faulty and its role is a priority one
after the replacement is in the field the robot will renegotiate their roles. In the scenario that
there is no replacement, a robot with a non-priority role will switch to the priority role. The
Table 3.1 below presents the different formations and the priority of the roles.

Formation Highest High Low
Defensive Goalie Defender Defender
Normal Goalie Defender Striker

Offensive Goalie Striker Striker
Super

Offensive
Defender Striker Striker

All Out Striker Striker Striker
Table 3.1 Formations and priorities of the roles per formation.

Distributed Architecture for Dynamic Role Behaviour in Humanoid Soccer Robots 131

3.5 Area of Coverage
The proposed method also defines the area of coverage or region where the robots should be
limited according to their roles. This is to facilitate effectiveness and prevent unnecessary
movement during the role changing. This roles area of coverage proposal is to enhance the
ball approach criteria described in the previous Section 3.4. Figure 3.8 shows the areas of
coverage for the roles of goalie, defender and striker. These areas are also used for the self-
positioning behaviour, the robots defined points on the field as starting positions, but they
have a higher priority to be inside the area rather than to reach the point. Only during the
self-positioning behaviour the area of coverage of a striker becomes the same as that of the
defender, but the attraction points are different; i.e. for the striker is closer to the half line.

 Goalie - Movement limited to the Goal Area. This is to cater for cases when the ball

stops just at the goal line, and the goalie has to move behind the goal line to kick out
the ball, or else the goalie would not know how to react in a situation when ball stops
just at the goal line.

 Defender - Movement limited to the own half of the field, as illustrated in Figure
3.8(b) below. The defender’s area also includes the goal area.

 Striker - Movement limited from the middle of lower half of field, to the opponent’s
goal, as illustrated in Figure 3.8(c). However, when the formation has more than one
striker, the striker’s area becomes the whole field.

(a) (b) (c)

Fig. 3.8 Area of coverage for roles of (a) goalie, (b) defender, and (c) striker.

4. Robo-Erectus, The Humanoid Soccer Robot

The Robo-Erectus project (www.robo-erectus.org) has been developed in the Advanced
Robotics and Intelligent Control Centre (ARICC) of Singapore Polytechnic. The humanoid
robot Robo-Erectus is one of the pioneering soccer-playing humanoid robots in the
RoboCup Humanoid League (Acosta et al., 2007). Robo-Erectus has collected several awards
since its first participation in the Humanoid League of RoboCup in 2002. Robo-Erectus won

heading reference, robot heading 181° to 359° will not initiate the approach. As illustrated
below, Robot A heading falls out of the 0° to 180° heading range. While Robot B distance is
less or equal to the threshold, therefore Robot B will proceed to approach the ball, and will
change its role accordingly e.g. from defender to striker.

Fig. 3.7 Robots approach through ball approximation and heading.

3.4 Formations, roles, and players
During a game there could be situations where a team must play with substitute robots, and
occasionally the team must play with fewer players. To deal with these situations, the
proposed formations have roles with priorities. These priorities indicate which roles must be
filled first, and which roles must always remain filled. Each robot keeps a list of the other
robots broadcasting in its network; with this information each robot is aware of the number
of team members of the team. However, when a robot that is currently playing fails and
needs to be replaced by another robot. This new robot will be added to the list, the previous
robot will identify that there are four robots in the list when this happen, the robots monitor
the messages to discover which robot went dead. If a robot is not able to discover the
missing robot, it will broadcast a request, so that the playing robots will reply. This request
is also broadcasted if one robot does not broadcast any message for a period of time. This is
done to try to identify any dead robot. When a robot is faulty and its role is a priority one
after the replacement is in the field the robot will renegotiate their roles. In the scenario that
there is no replacement, a robot with a non-priority role will switch to the priority role. The
Table 3.1 below presents the different formations and the priority of the roles.

Formation Highest High Low
Defensive Goalie Defender Defender
Normal Goalie Defender Striker

Offensive Goalie Striker Striker
Super

Offensive
Defender Striker Striker

All Out Striker Striker Striker
Table 3.1 Formations and priorities of the roles per formation.

Robot Soccer132

Figure 4.1 shows the design of the humanoid robot REJr-X1. The skeleton of the robot is
constructed with aluminium braces, the head and arms of the robot are made of plastic.
Despite its simplicity, the mechanical design of the robot is robust and lighter than their
predecessors. Its human-like body has a height of 52cm and weight of just 3.3kg, including
batteries.
Robo-Erectus Junior has a total of 21 degrees of freedom. Table 4.1 shows the body parts and
their associated degrees of freedom. Each degree of freedom uses as actuator a Dynamixel
DX-117 Digital Servomotor. These servomotors have a typical torque of 28.89kg·cm and a
speed of 0.172sec/60◦. Each knee joint uses a Dynamixel RX-64 Digital Servomotor that
provides a higher torque than that of DX-117. Each smart actuator has a micro-controller in
charge of receiving commands and monitoring the performance of the actual motor. An
RS485 serial network connects all the servomotors to a host processor, which sends positions
and receives the current data (angular positions, speed, voltage, and temperature) of each
actuator.

Body Part Roll Pitch Yaw
Head  
Body 

Shoulder  
Elbow 

Hip   
Knee 
Ankle  

Table 4.1 List of Degrees of Freedom for the humanoid robot Robo-Erectus Jr.

The control system of the Robo-Erectus Jr-X1 consists of a network with two micro-
processors and several devices. Instead of using a single processor to deal with sensory data,
processing and actuators control, Robo-Erectus uses dedicated processors for particular
tasks. This design was implemented firstly in the Robo-Erectus Junior-AX and it has proven
to improve the performance of the system (Acosta et al., 2008). Below are listed the tasks of
each processor:

1. The main processor is responsible to coordinate all behaviours of the robot. It receives

the processed sensorial information from the sensor-motor processor, which is used to
take decisions and finally send the motors commands back to the sensor-motor
processor. This processor has a wireless network interface that allows communication
with the other robots and a computer that sends game signals. This processor also
processes the images from an USB camera.

2. The sensor-motor processor is a dual DSP microcontroller, which receives the motor
commands from the main processor. These commands are parameters for the gait
generator. The gaits of the humanoid robot are generated online and finally sent to the
servo-motors by a RS485 bus. The motor feedback is collected, processed, and sent back
to the main processor by a RS232 bus. The data of servo-motors is updated every 16.6
ms. Along with the motor information, this processor also collects data from the
accelerometers and gyroscopes before passing these data to a Kaman filter to produce
more relevant information, about the state of the robot.

the 2nd place in the Humanoid Walk competition at the RoboCup 2002 and got 1st place in
the Humanoid Free Performance competition at the RoboCup 2003. In 2004, Robo-Erectus
won the 2nd place in Humanoid Walk, Penalty Kick, and Free Performance. In 2007, it
finished 6th in the 2 vs. 2 games, and 3rd in the technical challenge. In the RoboCup 2009, it
qualified to the second round of round robin of 3 vs. 3 games.

Fig. 4.1 REJr-X1, the latest generation of the family Robo-Erectus.

The Robo-Erectus project aims to create a humanoid robot that can be used for teaching,
research and competition. After the introduction of the TeenSize to the RoboCup Humanoid
League, the team has developed two parallel types of Robo-Erectus. Robo-Erectus Junior is
the name for the robots that take part in the RoboCup Humanoid KidSize, as a group of at
least three robots, where the restriction is that the robots must be less than 60cm in height.
The second type of Robo-Erectus is called Robo-Erectus Senior and this robot competes in
the RoboCup Humanoid TeenSize, in which only one robot takes part, whereby the
restriction of the league is that the robots should be more than 1m tall.
The proposed method in this Chapter applies to a team of humanoid kidsize robots.
Therefore, the rest of this Section will focus on the Robo-Erectus Junior. Each robot in the
team has the same hardware and software features as described here.

4.1 Robo-Erectus Junior
The latest version of Robo-Erectus named Robo-Erectus Junior-X1 (REJr-X1), as shown in
Figure 3, has been designed to be fully autonomous and to deal with the challenges of the
3 vs. 3 games.

Distributed Architecture for Dynamic Role Behaviour in Humanoid Soccer Robots 133

Figure 4.1 shows the design of the humanoid robot REJr-X1. The skeleton of the robot is
constructed with aluminium braces, the head and arms of the robot are made of plastic.
Despite its simplicity, the mechanical design of the robot is robust and lighter than their
predecessors. Its human-like body has a height of 52cm and weight of just 3.3kg, including
batteries.
Robo-Erectus Junior has a total of 21 degrees of freedom. Table 4.1 shows the body parts and
their associated degrees of freedom. Each degree of freedom uses as actuator a Dynamixel
DX-117 Digital Servomotor. These servomotors have a typical torque of 28.89kg·cm and a
speed of 0.172sec/60◦. Each knee joint uses a Dynamixel RX-64 Digital Servomotor that
provides a higher torque than that of DX-117. Each smart actuator has a micro-controller in
charge of receiving commands and monitoring the performance of the actual motor. An
RS485 serial network connects all the servomotors to a host processor, which sends positions
and receives the current data (angular positions, speed, voltage, and temperature) of each
actuator.

Body Part Roll Pitch Yaw
Head  
Body 

Shoulder  
Elbow 

Hip   
Knee 
Ankle  

Table 4.1 List of Degrees of Freedom for the humanoid robot Robo-Erectus Jr.

The control system of the Robo-Erectus Jr-X1 consists of a network with two micro-
processors and several devices. Instead of using a single processor to deal with sensory data,
processing and actuators control, Robo-Erectus uses dedicated processors for particular
tasks. This design was implemented firstly in the Robo-Erectus Junior-AX and it has proven
to improve the performance of the system (Acosta et al., 2008). Below are listed the tasks of
each processor:

1. The main processor is responsible to coordinate all behaviours of the robot. It receives

the processed sensorial information from the sensor-motor processor, which is used to
take decisions and finally send the motors commands back to the sensor-motor
processor. This processor has a wireless network interface that allows communication
with the other robots and a computer that sends game signals. This processor also
processes the images from an USB camera.

2. The sensor-motor processor is a dual DSP microcontroller, which receives the motor
commands from the main processor. These commands are parameters for the gait
generator. The gaits of the humanoid robot are generated online and finally sent to the
servo-motors by a RS485 bus. The motor feedback is collected, processed, and sent back
to the main processor by a RS232 bus. The data of servo-motors is updated every 16.6
ms. Along with the motor information, this processor also collects data from the
accelerometers and gyroscopes before passing these data to a Kaman filter to produce
more relevant information, about the state of the robot.

the 2nd place in the Humanoid Walk competition at the RoboCup 2002 and got 1st place in
the Humanoid Free Performance competition at the RoboCup 2003. In 2004, Robo-Erectus
won the 2nd place in Humanoid Walk, Penalty Kick, and Free Performance. In 2007, it
finished 6th in the 2 vs. 2 games, and 3rd in the technical challenge. In the RoboCup 2009, it
qualified to the second round of round robin of 3 vs. 3 games.

Fig. 4.1 REJr-X1, the latest generation of the family Robo-Erectus.

The Robo-Erectus project aims to create a humanoid robot that can be used for teaching,
research and competition. After the introduction of the TeenSize to the RoboCup Humanoid
League, the team has developed two parallel types of Robo-Erectus. Robo-Erectus Junior is
the name for the robots that take part in the RoboCup Humanoid KidSize, as a group of at
least three robots, where the restriction is that the robots must be less than 60cm in height.
The second type of Robo-Erectus is called Robo-Erectus Senior and this robot competes in
the RoboCup Humanoid TeenSize, in which only one robot takes part, whereby the
restriction of the league is that the robots should be more than 1m tall.
The proposed method in this Chapter applies to a team of humanoid kidsize robots.
Therefore, the rest of this Section will focus on the Robo-Erectus Junior. Each robot in the
team has the same hardware and software features as described here.

4.1 Robo-Erectus Junior
The latest version of Robo-Erectus named Robo-Erectus Junior-X1 (REJr-X1), as shown in
Figure 3, has been designed to be fully autonomous and to deal with the challenges of the
3 vs. 3 games.

Robot Soccer134

The behaviours of each role have been implemented in a finite state machine, with simple
actions for each robot and self-positioning. The opponents for all the sets played with static
formation: goalie, defender, striker.
Table 5.1 shows the resulting analysis of the data. The data presented is the percentage of
wrong formation during the possible changes in the game. The possible changes happen
every five minutes or after a goal. The 7% of wrong role selection in the simulation is due to
situation where two robots decided to have the same role. In all these cases, the role was
successfully corrected after one or two seconds to conclude their negotiation. In the case of
the Robo-Erectus Jr robots the percentage was higher, because of some unexpected
situations with a few robots and they have to be taken out, serviced and their computer
rebooted. This situation caused a wrong role assignment, however the robots corrected their
roles after negotiation. In a similar way, the wrong formation is due to the faulty robot.

Set Wrong Formation Wrong Role
Simulation 0% 7%

Robo-Erectus Jr 5% 18%
Table 5.1 Percentage of wrong formation and wrong role selection for possible changes
without faulty robots.

Table 5.2 shows the wrong formation and wrong role selection with faulty robot with and
without replacement. For the replacement sets, the problem was similar to the one observed
in the Robo-Erectus Jr in the previous experiments due to the faulty robot. In both
simulation and real robot experiments, the robots managed to correct their wrong roles after
few seconds. For the no replacement set, all the robots managed to switch to a higher
priority role, except for one trial where the actual robot maintained its role, but this was
because the robot’s program entered into a deadlock and has to be reset.

Set Wrong Formation Wrong Role
Simulation

(Replacement)
7% 7%

Robo-Erectus Jr
(Replacement)

15% 23%

Simulation
(No Replacement)

0% 0%

Robo-Erectus Jr
(No Replacement)

0% 7%

Table 5.2 Percentage of wrong formation and wrong role selection for possible changes with
faulty robots.

4.2 Virtual RE, The Robo-Erectus Junior Simulator
Robo-Erectus is equipped with sensors and actuators that allow it to navigate autonomously
and display an intelligent behaviour. The robot uses a camera as main sensor, and it is able
to perceive different colours and to track them. It also contains a dedicated processor to
control the behaviour of the robot, wireless communication with the control PC and the
teammates, and a sub-system to control sensors and actuators. A simulator was developed
to simulate all the sensor of the robot. In addition the simulator is able to simulate two teams
with a number variable of robots to reproduce a game (see Figure 4.2). The simulator uses
the server-client framework, where each robot is considered a server and a single client
could connect to it and control it.

Fig. 4.2 Virtual RE the simulator for the Robo-Erectus Jr.

The simulator of Robo-Erectus Junior-AX, called Virtual-RE, was also used during these
experiments. Virtual-RE provides several possibilities of visualization and interaction with
the simulated worlds (Acosta et al., 2007). To simulate rigid body dynamics, Virtual-RE uses
the Open Dynamics Engine (ODE), which has a wide variety of features and has been used
successfully in many other projects. The visualization, as well as the computation of imaging
sensor data is based on OpenGL libraries, because this standard offers the best performance
with modern hardware on different platforms.

5. Experimental results

In order to test the effectiveness of our algorithms, we performed two sets of experiments:
one with the simulator Virtual-RE and the other with the actual Robo-Erectus Jr robots. All
the sets involve the four strategies as well as winning and losing scores for both the regular
time and the extra time. In addition, each set contains games with faulty players, some with
substitute robot and others without.

Distributed Architecture for Dynamic Role Behaviour in Humanoid Soccer Robots 135

The behaviours of each role have been implemented in a finite state machine, with simple
actions for each robot and self-positioning. The opponents for all the sets played with static
formation: goalie, defender, striker.
Table 5.1 shows the resulting analysis of the data. The data presented is the percentage of
wrong formation during the possible changes in the game. The possible changes happen
every five minutes or after a goal. The 7% of wrong role selection in the simulation is due to
situation where two robots decided to have the same role. In all these cases, the role was
successfully corrected after one or two seconds to conclude their negotiation. In the case of
the Robo-Erectus Jr robots the percentage was higher, because of some unexpected
situations with a few robots and they have to be taken out, serviced and their computer
rebooted. This situation caused a wrong role assignment, however the robots corrected their
roles after negotiation. In a similar way, the wrong formation is due to the faulty robot.

Set Wrong Formation Wrong Role
Simulation 0% 7%

Robo-Erectus Jr 5% 18%
Table 5.1 Percentage of wrong formation and wrong role selection for possible changes
without faulty robots.

Table 5.2 shows the wrong formation and wrong role selection with faulty robot with and
without replacement. For the replacement sets, the problem was similar to the one observed
in the Robo-Erectus Jr in the previous experiments due to the faulty robot. In both
simulation and real robot experiments, the robots managed to correct their wrong roles after
few seconds. For the no replacement set, all the robots managed to switch to a higher
priority role, except for one trial where the actual robot maintained its role, but this was
because the robot’s program entered into a deadlock and has to be reset.

Set Wrong Formation Wrong Role
Simulation

(Replacement)
7% 7%

Robo-Erectus Jr
(Replacement)

15% 23%

Simulation
(No Replacement)

0% 0%

Robo-Erectus Jr
(No Replacement)

0% 7%

Table 5.2 Percentage of wrong formation and wrong role selection for possible changes with
faulty robots.

4.2 Virtual RE, The Robo-Erectus Junior Simulator
Robo-Erectus is equipped with sensors and actuators that allow it to navigate autonomously
and display an intelligent behaviour. The robot uses a camera as main sensor, and it is able
to perceive different colours and to track them. It also contains a dedicated processor to
control the behaviour of the robot, wireless communication with the control PC and the
teammates, and a sub-system to control sensors and actuators. A simulator was developed
to simulate all the sensor of the robot. In addition the simulator is able to simulate two teams
with a number variable of robots to reproduce a game (see Figure 4.2). The simulator uses
the server-client framework, where each robot is considered a server and a single client
could connect to it and control it.

Fig. 4.2 Virtual RE the simulator for the Robo-Erectus Jr.

The simulator of Robo-Erectus Junior-AX, called Virtual-RE, was also used during these
experiments. Virtual-RE provides several possibilities of visualization and interaction with
the simulated worlds (Acosta et al., 2007). To simulate rigid body dynamics, Virtual-RE uses
the Open Dynamics Engine (ODE), which has a wide variety of features and has been used
successfully in many other projects. The visualization, as well as the computation of imaging
sensor data is based on OpenGL libraries, because this standard offers the best performance
with modern hardware on different platforms.

5. Experimental results

In order to test the effectiveness of our algorithms, we performed two sets of experiments:
one with the simulator Virtual-RE and the other with the actual Robo-Erectus Jr robots. All
the sets involve the four strategies as well as winning and losing scores for both the regular
time and the extra time. In addition, each set contains games with faulty players, some with
substitute robot and others without.

Robot Soccer136

with Nao robots with the strategy of At Least Draw, with a formation goalie, defender,
defender. In Figure 5.2 the strategy employed is Must Win with an All Out formation. In this
game one robot was taken out to simulate a faulty robot. Robot in Figure 5.2(b) is taken out
as can be seen in Figure 5.2(c). In Figure 5.2(c) both robots try to approach to the ball.

Fig. 5.3 Screenshot from the Virtual-RE with a Close-up Strategy and a formation Goalie and
two strikers. This is during the first half of extra time.

The set of experiments with the simulator Virtual-RE were conducted in a similar way as the
real Robo-Erectus Jr, i.e. three versus three games with different strategies (see Figure 5.3).
Due to the flexibility that the simulator offered, we were able to set, besides the normal
game, scenarios where the robots were placed in certain positions, with specific roles, score,
and time; to test situations like approaching to the ball, or self-positioning. For the self-
positioning behaviour 85% of trials was successful. This is because we placed the striker
inside the goal keeper area or in one of the corners, and the robot should go back to its half
of the field, in the way back the robot should avoid other robots, but sometimes it collides
with them, falling and not reaching the position on time.

6. Conclusion

Humanoid robot soccer is getting popular recently, and the advances in the technology have
made it possible to see exciting displays from the humanoid robots. Nevertheless, most of
the teams have achieved a position where the robots are able to show several skills. It is
challenging to have a team of robots displaying team behaviour without interfering with
each other and supporting their objectives. The work presented here uses a dynamic role
assignation but is based on the strategy that the team has for the game. Besides, other factors

(a) (b)

(c) (d)

Fig. 5.1 Sequence of the game with formation At Least Draw with formation one Goalie and
two defenders.

(a) (b)

(c) (d)

Fig. 5.2 Sequence of a game with a strategy Must Win with a formation three strikers.
Experiment with one faulty robot.

In this set of experiments, the Robo-Erectus Jr played against a team of Nao robots with a
fixed formation of goalie, defender and striker. Figure 5.1 shows a sequence of the game

Distributed Architecture for Dynamic Role Behaviour in Humanoid Soccer Robots 137

with Nao robots with the strategy of At Least Draw, with a formation goalie, defender,
defender. In Figure 5.2 the strategy employed is Must Win with an All Out formation. In this
game one robot was taken out to simulate a faulty robot. Robot in Figure 5.2(b) is taken out
as can be seen in Figure 5.2(c). In Figure 5.2(c) both robots try to approach to the ball.

Fig. 5.3 Screenshot from the Virtual-RE with a Close-up Strategy and a formation Goalie and
two strikers. This is during the first half of extra time.

The set of experiments with the simulator Virtual-RE were conducted in a similar way as the
real Robo-Erectus Jr, i.e. three versus three games with different strategies (see Figure 5.3).
Due to the flexibility that the simulator offered, we were able to set, besides the normal
game, scenarios where the robots were placed in certain positions, with specific roles, score,
and time; to test situations like approaching to the ball, or self-positioning. For the self-
positioning behaviour 85% of trials was successful. This is because we placed the striker
inside the goal keeper area or in one of the corners, and the robot should go back to its half
of the field, in the way back the robot should avoid other robots, but sometimes it collides
with them, falling and not reaching the position on time.

6. Conclusion

Humanoid robot soccer is getting popular recently, and the advances in the technology have
made it possible to see exciting displays from the humanoid robots. Nevertheless, most of
the teams have achieved a position where the robots are able to show several skills. It is
challenging to have a team of robots displaying team behaviour without interfering with
each other and supporting their objectives. The work presented here uses a dynamic role
assignation but is based on the strategy that the team has for the game. Besides, other factors

(a) (b)

(c) (d)

Fig. 5.1 Sequence of the game with formation At Least Draw with formation one Goalie and
two defenders.

(a) (b)

(c) (d)

Fig. 5.2 Sequence of a game with a strategy Must Win with a formation three strikers.
Experiment with one faulty robot.

In this set of experiments, the Robo-Erectus Jr played against a team of Nao robots with a
fixed formation of goalie, defender and striker. Figure 5.1 shows a sequence of the game

Robot Soccer138

like remaining time and goal difference are used to determine the new formation of the
team. The roles of the players underlie team behaviour, while the strategy defines the
objective of the team. Experimental results support our proposal, showing that the
percentage of wrong role selection among the robots is low less than 20%. Results also prove
that this wrong role selection is soon corrected by the robots after negotiation. Future work
is to deal with situations of negotiation when having more players, and to define more team
behaviours with this framework.

7. References

Acosta Calderon, C.A.; Zhou, C.; Yue, P.K.; Wong, M. & Mohan, R.E. (2007). A Distributed
Embedded Control Architecture for Humanoid Soccer Robots. Proceedings of
Advances in Climbing and Walking Robots, pp. 487-496, Singapore, July 2007.

Acosta Calderon, C.A.; Mohan, R.E. & Zhou, C. (2007). A Humanoid Robotic Simulator with
Application to RoboCup, Proceedings of IEEE Latin American Robotic Simposium,
Mexico, November 2007.

Acosta Calderon, C.A.; Mohan, R.E.; Zhou, C.; Hu, L.; Yue, P.K. & Hu, H. (2008) A Modular
Architecture for Soccer Robots with Distributed Behaviour Control, International
Journal of Humanoid Robotics, Vol. 5, No. 3, September, pp. 397–416.

Behnke, S.; & Stueckler, J. (2008). Hierarchical Reactive Control for Humanoid Soccer Robots.
International Journal of Humanoid Robots, Vol 5, No 3, September, pp. 375-396.

Coelho, A.L.V.; Weingaertner, D. & Gomide, F.A.C. (2001). Evolving Coordination Strategies
in Simulated Robot Soccer. Proceeding of the 5th International Conference on
Autonomous Agents, pp. 147-148, 1-58113-326-X, Montreal, Canada, May-June 2001.

Friedmann, M.; Kiener, J.; Petters, S.; Thomas, D. & von Stryk, O. (2006). Modular Software
Architecture for Teams of Cooperating, Heterogeneous Robots. Proceedings of IEEE
International Conference on Robotics and Biomimetics, pp 24-29, Kunming, China,
December 2006.

Kitano, H. & Asada, H. (2000). The RoboCup Humanoid Challenge As The Millennium
Challenge for Advanced Robotics. Advanced Robotics, Vol. 13, No. 8, pp723–736.

Phillips, M. & Veloso, M. (2009). Robust Support Role in Coordinated Two-Robot Soccer
Attack, In: RoboCup 2008, LNAI 5399, Iocchi, L, Matsubara, H., Weitzenfeld, A. &
Zhou, C., pp. 235-246, Springer-Verlag, 3-642-02920-5, Germany.

Risler, M. & von Stryk, O. (2008). Formal Behavior Specification of Multi-robot Systems
Using Hierarchical State Machines in XABSL. Proceedings of AAMAS08-Workshop on
Formal Models and Methods for Multi-Robot Systems, Estoril, Portugal, May 2008.

Work, H.; Chown, E.; Hermans, T.; Butterfield, J. & McGranaghan, M. (2009). Player
Positioning in the Four-Legged League, In: RoboCup 2008, LNAI 5399, Iocchi, L,
Matsubara, H., Weitzenfeld, A. & Zhou, C., pp. 391-402, Springer-Verlag, 3-642-
02920-5, Germany.

Zickler, S. & Veloso, M. (2009). Playing Creative Soccer: Randomized Behavioral
Kinodynamic Flanning of Robot Tactics, In: RoboCup 2008, LNAI 5399, Iocchi, L,
Matsubara, H., Weitzenfeld, A. & Zhou, C., pp. 414-425, Springer-Verlag, 3-642-
02920-5, Germany.

Zhou, C. & Yue, P.K. (2004). Robo-Erectus: A Low Cost Autonomous Humanoid Soccer
Robot. Advanced Robotics, Vol. 18, No. 7, pp. 717–720.

Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 139

Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer

Jeff Riley

X

Evolving Fuzzy Rules for
Goal-Scoring Behaviour in Robot Soccer

Jeff Riley

RMIT University
Australia

1. Introduction

If a soccer player is able to learn behaviours it should exhibit in response to stimuli, it may
adapt to unpredictable, dynamic environments. Even though the overall objective a player is
expected to achieve is able to be described, it is not always possible to precisely describe the
behaviours a player should exhibit in achieving that objective. If a function can be described
to evaluate the results of the player’s behaviour against the desired outcome, that function
can be used by some reinforcement learning algorithm to evolve the behaviours necessary to
achieve the desired objective.
Fuzzy Sets (Zadeh 1965; Kandel 1986; Klir and Folger 1988; Kruse, Gebhardt et al. 1994) are
powerful tools for the representation of uncertain and vague data. Fuzzy inference systems
make use of this by applying approximate reasoning techniques to make decisions based on
such uncertain, vague data. However, a Fuzzy Inference System (FIS) on its own is not
usually self-adaptive and not able to modify its underlying rulebase to adapt to changing
circumstances.
There has not been a great deal of success in the automatic generation of robot soccer
players, and in fact hand-coded players, or players with hand-coded skills, generally
outplay automatically generated players. Genetic algorithms (Holland 1975) are adaptive
heuristic search algorithms premised on the evolutionary ideas of natural selection. By
combining the adaptive learning capabilities of the genetic algorithm (GA) with the
approximate reasoning capabilities of the fuzzy inference system, a hybrid system is
produced, and the expectation is that this hybrid system will be capable of learning the
behaviours a player needs to exhibit in order to achieve a defined objective – in this case
developing goal-scoring behaviour. While the combination of genetic algorithms and fuzzy
inference systems have been studied in other areas, they have not generally been studied in
an environment as complex, uncertain and dynamic as the robot soccer environment.

2. Related Work

2.1 RoboCup
The Robot World Cup Initiative, RoboCup, has become an international research and
education initiative, providing a standard platform and benchmark problem for research in

7

Robot Soccer140

objective. The objective in (Luke, Hohn et al. 1998) was scaled back to attempt to evolve co-
operative behaviour over hand-coded low-level behaviours. The players in (Andre and
Teller 1999) developed some successful individual behaviours with the use of a
sophisticated composite fitness function, but the objective of collaborative team behaviour
was not realised.
In (Luke 1998b) a team of soccer players with a rich set of innate soccer-playing skills was
developed, using genetic programming and co-evolution, that worked through sub-optimal
behaviour described as “kiddie-soccer” (where all players chase the ball) to reasonable goal-
scoring and defensive behaviour.
A layered learning technique was introduced in (Stone 1998) and (Stone and Veloso 2000),
the essential principle of which is to provide the algorithm with a bottom-up hierarchical
decomposition of a large task into smaller sub-tasks, or layers, and have the algorithm learn
each sub-task separately and feed the output of one learned sub-task into the next layer.
The layered learning technique is based upon the following four principles (Stone and
Veloso 2000):
 A mapping directly from inputs to outputs is not tractably learnable.
 A bottom-up, hierarchical task decomposition is given.
 Machine learning exploits data to train and/or adapt. Learning occurs separately at

each level.
 The output of learning in one layer feeds into the next.

Stone and Veloso used the layered learning technique to produce good results when
training robot soccer players for RoboCupSoccer (Stone and Veloso 2000).
Keepaway Soccer (Stone, Sutton et al. 2001) is a sub-domain of robot soccer in which the
objective is not to score goals but to gain and maintain possession of the ball. There are two
teams in keepaway soccer: the keepers and the takers. The task of the keepers is to maintain
possession of the ball, while the objective of the takers is to take the ball away from the
keepers. The keepaway soccer field is generally smaller than the RoboCupSoccer field, and
no goal areas are required. The keepaway soccer teams are usually smaller than a full team
in RoboCupSoccer, and are often numerically unbalanced (e.g. 3 vs 2 Keepaway Soccer
(Kuhlmann and Stone 2004)).
Gustafson (Gustafson 2000) and Gustafson and Hsu (Gustafson and Hsu 2001; Hsu, Harmon
et al. 2004) applied genetic programming and the layered learning technique of Stone and
Veloso to keepaway soccer. For this method the problem was decomposed into smaller sub-
problems, and genetic programming applied to the sub-problems sequentially - the
population in the last generation of a sub-problem was used as the initial population of the
next sub-problem. The results presented by Gustafson and Hsu indicate that for the problem
studied layered learning in genetic programming outperformed the standard genetic
programming method.
Asada et al. (Asada, Noda et al. 1996) describe the Learning from Easy Missions (LEM)
method, in which a reinforcement learning technique (Q-learning, (Watkins 1989)) is used to
teach a robot soccer player to kick a ball through a goal. The reinforcement learning
technique implemented requires the robot soccer player to be capable of discriminating a
finite set of distinct world states and also be capable of taking one of a finite set of actions.
The robot’s world is then modelled as a Markov process, making stochastic transitions
based on the current state and action taken. A significant problem with this method is that

the fields of artificial intelligence and robotics. It provides a realistic research environment
by using a soccer game as a platform for a wide range of research problems including
autonomous agent design, multi-agent collaboration, real-time reasoning, reactive
behaviour and intelligent robot control (Kitano, Asada et al. 1997a; Kitano, Asada et al.
1997b; Kitano, Tambe et al. 1997).
RoboCup currently consists of three major domains: RoboCupSoccer, RoboCupRescue and
RoboCupJunior. The RoboCupSoccer domain includes a simulation league and is the
environment used for the RoboCup part of this work.

2.1.1 The RoboCupSoccer Simulation League
The RoboCupSoccer Simulation League provides a simulated but realistic soccer
environment which obviates the need for robot hardware and its associated difficulties,
allowing researchers to focus on issues such as autonomous agent design, learning,
planning, real-time multi-agent reasoning, teamwork and collaboration. The
RoboCupSoccer simulator has been in continual development since its inception in 1995,
and allows researchers to study many aspects of machine learning techniques and multi-
agent systems in a complex, dynamic domain. The RoboCupSoccer environment is
described in detail in (Noda 1995; Noda, Matsubara et al. 1998; Noda and Stone 2001).

2.2 The SimpleSoccer Environment
The RoboCupSoccer simulation league is an important and useful tool for multi-agent and
machine learning research which provides a distributed, multi-agent environment in which
agents have an incomplete and uncertain world view. The RoboCupSoccer state-space is
extremely large, and the agent perception and action cycles in the RoboCupSoccer
environment are asynchronous, sometimes resulting in long and unpredictable delays in the
completion of actions in response to some stimuli. The large state-space, the inherent delays,
and the uncertain and incomplete world view of the agents can increase the learning cycle of
some machine learning techniques onerously.
There is a large body of work in the area of the application of machine learning techniques
to the challenges of RoboCupSoccer (e.g. (Luke 1998a; Luke 1998b; Luke, Hohn et al. 1998;
Ciesielski and Wilson 1999; Stone and Veloso 1999; Uchibe 1999; Ciesielski and Lai 2001;
Riedmiller, Merke et al. 2001; Stone and Sutton 2001; Ciesielski, Mawhinney et al. 2002;
Lima, Custódio et al. 2005; Riedmiller, Gabel et al. 2005)), but because the RoboCupSoccer
environment is so large, complex and unpredictable, the extent to which such techniques
can meet these challenges is not certain. The SimpleSoccer environment was designed and
developed to address the problem of the complexity of the RoboCupSoccer environment
inhibiting further research, and is described in detail in (Riley 2003) and (Riley 2007).

2.3 Machine Learning, Evolutionary Algorithms and Simulated Robot Soccer
Machine learning and evolutionary algorithms in various forms have been applied to the
problem of robot soccer. Some representative examples, with emphasis on evolutionary
algorithms, are described briefly in the following paragraphs.
Two early attempts to learn competent soccer playing skills from scratch via genetic
programming are described in (Luke, Hohn et al. 1998) and (Andre and Teller 1999). Both
set out to create complete, cooperative soccer playing teams, but neither achieved that

Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 141

objective. The objective in (Luke, Hohn et al. 1998) was scaled back to attempt to evolve co-
operative behaviour over hand-coded low-level behaviours. The players in (Andre and
Teller 1999) developed some successful individual behaviours with the use of a
sophisticated composite fitness function, but the objective of collaborative team behaviour
was not realised.
In (Luke 1998b) a team of soccer players with a rich set of innate soccer-playing skills was
developed, using genetic programming and co-evolution, that worked through sub-optimal
behaviour described as “kiddie-soccer” (where all players chase the ball) to reasonable goal-
scoring and defensive behaviour.
A layered learning technique was introduced in (Stone 1998) and (Stone and Veloso 2000),
the essential principle of which is to provide the algorithm with a bottom-up hierarchical
decomposition of a large task into smaller sub-tasks, or layers, and have the algorithm learn
each sub-task separately and feed the output of one learned sub-task into the next layer.
The layered learning technique is based upon the following four principles (Stone and
Veloso 2000):
 A mapping directly from inputs to outputs is not tractably learnable.
 A bottom-up, hierarchical task decomposition is given.
 Machine learning exploits data to train and/or adapt. Learning occurs separately at

each level.
 The output of learning in one layer feeds into the next.

Stone and Veloso used the layered learning technique to produce good results when
training robot soccer players for RoboCupSoccer (Stone and Veloso 2000).
Keepaway Soccer (Stone, Sutton et al. 2001) is a sub-domain of robot soccer in which the
objective is not to score goals but to gain and maintain possession of the ball. There are two
teams in keepaway soccer: the keepers and the takers. The task of the keepers is to maintain
possession of the ball, while the objective of the takers is to take the ball away from the
keepers. The keepaway soccer field is generally smaller than the RoboCupSoccer field, and
no goal areas are required. The keepaway soccer teams are usually smaller than a full team
in RoboCupSoccer, and are often numerically unbalanced (e.g. 3 vs 2 Keepaway Soccer
(Kuhlmann and Stone 2004)).
Gustafson (Gustafson 2000) and Gustafson and Hsu (Gustafson and Hsu 2001; Hsu, Harmon
et al. 2004) applied genetic programming and the layered learning technique of Stone and
Veloso to keepaway soccer. For this method the problem was decomposed into smaller sub-
problems, and genetic programming applied to the sub-problems sequentially - the
population in the last generation of a sub-problem was used as the initial population of the
next sub-problem. The results presented by Gustafson and Hsu indicate that for the problem
studied layered learning in genetic programming outperformed the standard genetic
programming method.
Asada et al. (Asada, Noda et al. 1996) describe the Learning from Easy Missions (LEM)
method, in which a reinforcement learning technique (Q-learning, (Watkins 1989)) is used to
teach a robot soccer player to kick a ball through a goal. The reinforcement learning
technique implemented requires the robot soccer player to be capable of discriminating a
finite set of distinct world states and also be capable of taking one of a finite set of actions.
The robot’s world is then modelled as a Markov process, making stochastic transitions
based on the current state and action taken. A significant problem with this method is that

the fields of artificial intelligence and robotics. It provides a realistic research environment
by using a soccer game as a platform for a wide range of research problems including
autonomous agent design, multi-agent collaboration, real-time reasoning, reactive
behaviour and intelligent robot control (Kitano, Asada et al. 1997a; Kitano, Asada et al.
1997b; Kitano, Tambe et al. 1997).
RoboCup currently consists of three major domains: RoboCupSoccer, RoboCupRescue and
RoboCupJunior. The RoboCupSoccer domain includes a simulation league and is the
environment used for the RoboCup part of this work.

2.1.1 The RoboCupSoccer Simulation League
The RoboCupSoccer Simulation League provides a simulated but realistic soccer
environment which obviates the need for robot hardware and its associated difficulties,
allowing researchers to focus on issues such as autonomous agent design, learning,
planning, real-time multi-agent reasoning, teamwork and collaboration. The
RoboCupSoccer simulator has been in continual development since its inception in 1995,
and allows researchers to study many aspects of machine learning techniques and multi-
agent systems in a complex, dynamic domain. The RoboCupSoccer environment is
described in detail in (Noda 1995; Noda, Matsubara et al. 1998; Noda and Stone 2001).

2.2 The SimpleSoccer Environment
The RoboCupSoccer simulation league is an important and useful tool for multi-agent and
machine learning research which provides a distributed, multi-agent environment in which
agents have an incomplete and uncertain world view. The RoboCupSoccer state-space is
extremely large, and the agent perception and action cycles in the RoboCupSoccer
environment are asynchronous, sometimes resulting in long and unpredictable delays in the
completion of actions in response to some stimuli. The large state-space, the inherent delays,
and the uncertain and incomplete world view of the agents can increase the learning cycle of
some machine learning techniques onerously.
There is a large body of work in the area of the application of machine learning techniques
to the challenges of RoboCupSoccer (e.g. (Luke 1998a; Luke 1998b; Luke, Hohn et al. 1998;
Ciesielski and Wilson 1999; Stone and Veloso 1999; Uchibe 1999; Ciesielski and Lai 2001;
Riedmiller, Merke et al. 2001; Stone and Sutton 2001; Ciesielski, Mawhinney et al. 2002;
Lima, Custódio et al. 2005; Riedmiller, Gabel et al. 2005)), but because the RoboCupSoccer
environment is so large, complex and unpredictable, the extent to which such techniques
can meet these challenges is not certain. The SimpleSoccer environment was designed and
developed to address the problem of the complexity of the RoboCupSoccer environment
inhibiting further research, and is described in detail in (Riley 2003) and (Riley 2007).

2.3 Machine Learning, Evolutionary Algorithms and Simulated Robot Soccer
Machine learning and evolutionary algorithms in various forms have been applied to the
problem of robot soccer. Some representative examples, with emphasis on evolutionary
algorithms, are described briefly in the following paragraphs.
Two early attempts to learn competent soccer playing skills from scratch via genetic
programming are described in (Luke, Hohn et al. 1998) and (Andre and Teller 1999). Both
set out to create complete, cooperative soccer playing teams, but neither achieved that

Robot Soccer142

to higher-level reasoning using “concurrent layered learning” – a method in which
predefined tasks are learned incrementally with the use of a composite fitness function. The
player uses a hand-coded decision tree to make decisions, with the leaves of the tree being
the learned skills.
Whiteson et al. (Whiteson, Kohl et al. 2003; Whiteson, Kohl et al. 2005) study three different
methods for learning the sub-tasks of a decomposed task in order to examine the impact of
injecting human expert knowledge into the algorithm with respect to the trade-off between:
 making an otherwise unlearnable task learnable
 the expert knowledge constraining the hypothesis space
 the effort required to inject the human knowledge.

Coevolution, layered learning, and concurrent layered learning are applied to two versions
of keepaway soccer that differ in the difficulty of learning. Whiteson et al. conclude that
given a suitable task decomposition an evolutionary-based algorithm (in this case
neuroevolution) can master difficult tasks. They also conclude, somewhat unsurprisingly,
that the appropriate level of human expert knowledge injected and therefore the level of
constraint depends critically on the difficulty of the problem.
Castillo et al. (Castillo, Lurgi et al. 2003) modified an existing RoboCupSoccer team – the
11Monkeys team (Kinoshita and Yamamoto 2000) – replacing its offensive hand-coded, state
dependent rules with an XCS genetic classifier system. Each rule was translated into a
genetic classifier, and then each classifier evolved in real time. Castillo et al. reported that
their XCS classifier system outperformed the original 11Monkeys team, though did not
perform quite so well against other, more recently developed, teams.
In (Nakashima, Takatani et al. 2004) Nakashima et al. describe a method for learning certain
strategies in the RoboCupSoccer environment, and report some limited success. The method
uses an evolutionary algorithm similar to evolution strategies, and implements mutation as
the only evolutionary operator. The player uses the learned strategies to decide which of
several hand-coded actions will be taken. The strategies learned are applicable only when
the player is in possession of the ball.
Bajurnow and Ciesielski used the SimpleSoccer environment to examine genetic
programming and layered learning for the robot soccer problem (Bajurnow and Ciesielski
2004). Bajurnow and Ciesielski concluded that layered learning is able to evolve goal-scoring
behaviour comparable to standard genetic programs more reliably and in a shorter time, but
the quality of solutions found by layered learning did not exceed those found using
standard genetic programming. Furthermore, Bajurnow and Ciesielski claim that layered
learning in this fashion requires a “large amount of domain specific knowledge and programmer
effort to engineer an appropriate layer and the effort required is not justified for a problem of this
scale.” (Bajurnow and Ciesielski 2004), p.7.
Other examples of research in this or related areas can be found in, for example, (Luke and
Spector 1996) where breeding and co-ordination strategies were studied for evolving teams
in a simple predator/prey environment; (Stone and Sutton 2001; Kuhlmann and Stone 2004;
Stone, Sutton et al. 2005) where reinforcement learning was used to train players in the
keepaway soccer environment; (Lazarus and Hu 2003) in which genetic programming was
used in a specific training environment to evolve goal-keeping behaviour for
RoboCupSoccer; (Aronsson 2003) where genetic programming was used to develop a team
of players for RoboCupSoccer; (Hsu, Harmon et al. 2004) in which the incremental reuse of

for a real robot in the real world, or the simulation of a real robot in the real world, the state
and action spaces are continuous spaces that are not adequately represented by finite sets.
Asada et al. overcome this by constructing a set of sub-states into which the representation
of the robot’s world is divided, and similarly a set of sub-actions into which the robot’s full
range of actions is divided. This is roughly analogous to the fuzzy sets for input variables
and actions implemented for this work.
The LEM method involves using human input to modify the starting state of the soccer
player, beginning with easy states and progressing over time to more difficult states. In this
way the robot soccer player learns easier sub-tasks allowing it to use those learned sub-tasks
to develop more complex behaviour enabling it to score goals in more difficult situations.
Asada et al. concede that the LEM method has limitations, particularly with respect to
constructing the state space for the robot soccer player. Asada et al. also point out that the
method suffers from a lack of historical information that would allow the soccer player to
define context, particularly in the situation where the player is between the ball and the
goal: with only current situation context the player does not know how to move to a
position to shoot the ball into the goal (or even that it should). Some methods suggested by
Asada et al. to overcome this problem are to use task decomposition (i.e. find ball, position
ball between player and goal, move forward, etc.), or to place reference objects on the field
(corner posts, field lines, etc.) to give the player some context. It is also interesting to note
that after noticing that the player performed poorly whenever it lost sight of the ball, Asada
et al. introduced several extra states to assist the player in that situation: the ball-lost-into-
right and ball-lost-into-left states, and similarly for losing sight of the goal, goal-lost-into right
and goal-lost-into-left states. These states, particularly the ball-lost-into-right and ball-lost-into-
left states are analogous to the default hunt actions implemented as part of the work
described in this chapter, and another indication of the need for human expertise to be
injected to adequately solve the problem.
Di Pietro et al. (Di Pietro, While et al. 2002) reported some success using a genetic algorithm
to train 3 keepers against 2 takers for keepaway soccer in the RoboCup soccer simulator.
Players were endowed with a set of high-level skills, and the focus was on learning
strategies for keepers in possession of the ball.
Three different approaches to create RoboCup players using genetic programming are
described in (Ciesielski, Mawhinney et al. 2002) – the approaches differing in the level of
innate skill the players have. In the initial experiment described, the players were given no
innate skills beyond the actions provided by the RoboCupSoccer server. The third
experiment was a variation of the first experiment. Ciesielski et al. reported that the players
from the first and third experiments – players with no innate skills - performed poorly. In
the second experiment described, players were given some innate higher-level hand-coded
skills such as the ability to kick the ball toward the goal, or to pass to the closest teammate.
The players from the second experiment – players with some innate hand-coded skills –
performed a little more adequately than the other experiments described. Ciesielski et al.
concluded that the robot soccer problem is a very difficult problem for evolutionary
algorithms and that a significant amount of work is still needed for the development of
higher-level functions and appropriate fitness measures.
Using keepaway soccer as a machine learning testbed, Whiteson and Stone (Whiteson and
Stone 2003) used neuro-evolution to train keepers in the Teambots domain (Balch 2005). In
that work the players were able to learn several conceptually different tasks from basic skills

Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 143

to higher-level reasoning using “concurrent layered learning” – a method in which
predefined tasks are learned incrementally with the use of a composite fitness function. The
player uses a hand-coded decision tree to make decisions, with the leaves of the tree being
the learned skills.
Whiteson et al. (Whiteson, Kohl et al. 2003; Whiteson, Kohl et al. 2005) study three different
methods for learning the sub-tasks of a decomposed task in order to examine the impact of
injecting human expert knowledge into the algorithm with respect to the trade-off between:
 making an otherwise unlearnable task learnable
 the expert knowledge constraining the hypothesis space
 the effort required to inject the human knowledge.

Coevolution, layered learning, and concurrent layered learning are applied to two versions
of keepaway soccer that differ in the difficulty of learning. Whiteson et al. conclude that
given a suitable task decomposition an evolutionary-based algorithm (in this case
neuroevolution) can master difficult tasks. They also conclude, somewhat unsurprisingly,
that the appropriate level of human expert knowledge injected and therefore the level of
constraint depends critically on the difficulty of the problem.
Castillo et al. (Castillo, Lurgi et al. 2003) modified an existing RoboCupSoccer team – the
11Monkeys team (Kinoshita and Yamamoto 2000) – replacing its offensive hand-coded, state
dependent rules with an XCS genetic classifier system. Each rule was translated into a
genetic classifier, and then each classifier evolved in real time. Castillo et al. reported that
their XCS classifier system outperformed the original 11Monkeys team, though did not
perform quite so well against other, more recently developed, teams.
In (Nakashima, Takatani et al. 2004) Nakashima et al. describe a method for learning certain
strategies in the RoboCupSoccer environment, and report some limited success. The method
uses an evolutionary algorithm similar to evolution strategies, and implements mutation as
the only evolutionary operator. The player uses the learned strategies to decide which of
several hand-coded actions will be taken. The strategies learned are applicable only when
the player is in possession of the ball.
Bajurnow and Ciesielski used the SimpleSoccer environment to examine genetic
programming and layered learning for the robot soccer problem (Bajurnow and Ciesielski
2004). Bajurnow and Ciesielski concluded that layered learning is able to evolve goal-scoring
behaviour comparable to standard genetic programs more reliably and in a shorter time, but
the quality of solutions found by layered learning did not exceed those found using
standard genetic programming. Furthermore, Bajurnow and Ciesielski claim that layered
learning in this fashion requires a “large amount of domain specific knowledge and programmer
effort to engineer an appropriate layer and the effort required is not justified for a problem of this
scale.” (Bajurnow and Ciesielski 2004), p.7.
Other examples of research in this or related areas can be found in, for example, (Luke and
Spector 1996) where breeding and co-ordination strategies were studied for evolving teams
in a simple predator/prey environment; (Stone and Sutton 2001; Kuhlmann and Stone 2004;
Stone, Sutton et al. 2005) where reinforcement learning was used to train players in the
keepaway soccer environment; (Lazarus and Hu 2003) in which genetic programming was
used in a specific training environment to evolve goal-keeping behaviour for
RoboCupSoccer; (Aronsson 2003) where genetic programming was used to develop a team
of players for RoboCupSoccer; (Hsu, Harmon et al. 2004) in which the incremental reuse of

for a real robot in the real world, or the simulation of a real robot in the real world, the state
and action spaces are continuous spaces that are not adequately represented by finite sets.
Asada et al. overcome this by constructing a set of sub-states into which the representation
of the robot’s world is divided, and similarly a set of sub-actions into which the robot’s full
range of actions is divided. This is roughly analogous to the fuzzy sets for input variables
and actions implemented for this work.
The LEM method involves using human input to modify the starting state of the soccer
player, beginning with easy states and progressing over time to more difficult states. In this
way the robot soccer player learns easier sub-tasks allowing it to use those learned sub-tasks
to develop more complex behaviour enabling it to score goals in more difficult situations.
Asada et al. concede that the LEM method has limitations, particularly with respect to
constructing the state space for the robot soccer player. Asada et al. also point out that the
method suffers from a lack of historical information that would allow the soccer player to
define context, particularly in the situation where the player is between the ball and the
goal: with only current situation context the player does not know how to move to a
position to shoot the ball into the goal (or even that it should). Some methods suggested by
Asada et al. to overcome this problem are to use task decomposition (i.e. find ball, position
ball between player and goal, move forward, etc.), or to place reference objects on the field
(corner posts, field lines, etc.) to give the player some context. It is also interesting to note
that after noticing that the player performed poorly whenever it lost sight of the ball, Asada
et al. introduced several extra states to assist the player in that situation: the ball-lost-into-
right and ball-lost-into-left states, and similarly for losing sight of the goal, goal-lost-into right
and goal-lost-into-left states. These states, particularly the ball-lost-into-right and ball-lost-into-
left states are analogous to the default hunt actions implemented as part of the work
described in this chapter, and another indication of the need for human expertise to be
injected to adequately solve the problem.
Di Pietro et al. (Di Pietro, While et al. 2002) reported some success using a genetic algorithm
to train 3 keepers against 2 takers for keepaway soccer in the RoboCup soccer simulator.
Players were endowed with a set of high-level skills, and the focus was on learning
strategies for keepers in possession of the ball.
Three different approaches to create RoboCup players using genetic programming are
described in (Ciesielski, Mawhinney et al. 2002) – the approaches differing in the level of
innate skill the players have. In the initial experiment described, the players were given no
innate skills beyond the actions provided by the RoboCupSoccer server. The third
experiment was a variation of the first experiment. Ciesielski et al. reported that the players
from the first and third experiments – players with no innate skills - performed poorly. In
the second experiment described, players were given some innate higher-level hand-coded
skills such as the ability to kick the ball toward the goal, or to pass to the closest teammate.
The players from the second experiment – players with some innate hand-coded skills –
performed a little more adequately than the other experiments described. Ciesielski et al.
concluded that the robot soccer problem is a very difficult problem for evolutionary
algorithms and that a significant amount of work is still needed for the development of
higher-level functions and appropriate fitness measures.
Using keepaway soccer as a machine learning testbed, Whiteson and Stone (Whiteson and
Stone 2003) used neuro-evolution to train keepers in the Teambots domain (Balch 2005). In
that work the players were able to learn several conceptually different tasks from basic skills

Robot Soccer144

y is Bn
Rule n

x is A2

x is An

Fu
zz

ifi
er

A
gg

re
ga

to
r

D
ef

uz
zi

fie
r

y is B2
Rule 2

So
cc

er
 S

er
ve

r I
nf

or
m

at
io

n

A
ct

io
n

Se
le

ct
or

Player
Action

x is A1 y is B1

Rule 1

Fig. 3. Player Architecture Detail

3.1.1 Soccer Server Information
The application by the inferencing mechanism of the fuzzy rulebase to external stimuli
provided by the soccer server results in one or more fuzzy rules being executed and some
resultant action being taken by the client. The external stimuli used as input to the fuzzy
inference system are a subset of the visual information supplied by the soccer server: only
sufficient information to situate the player and locate the ball is used. The environments
studied in this work differ slightly with regard to the information supplied to the player:

 In the RoboCupSoccer environment the soccer server delivers regular sense, visual and
aural messages to the players. The player implemented in this work uses only the
object name, distance and direction information from the visual messages in order to
determine its own position on the field and that of the ball. The player ignores any
aural messages, and uses the information in the sense messages only to synchronise
communication with the RoboCupSoccer server. Since the information supplied by the
RoboCupSoccer server is not guaranteed to be complete or certain, the player uses its
relative distance and direction from all fixed objects in its field of vision to estimate its
position on the field. The player is then able to use the estimate of its position to
estimate the direction and distance to the known, fixed location of its goal. The player
is only aware of the location of the ball if it is in its field of vision, and only to the
extent that the RoboCupSoccer server reports the relative direction and distance to the
ball.

 In the SimpleSoccer environment the soccer server delivers only regular visual
messages to the players: there are no aural or sense equivalents. Information supplied
by the SimpleSoccer server is complete, in so far as the objects actually with the
player’s field of vision are concerned, and certain. Players in the SimpleSoccer
environment are aware at all times of their exact location on the field, but are only
aware of the location of the ball and the goal if they are in the player’s field of vision.
The SimpleSoccer server provides the object name, distance and direction information for
objects in a player’s field of vision. The only state information kept by a player in the
SimpleSoccer environment is the co-ordinates of its location and the direction in which
it is facing.

Perception
Modelling
Planning

Task Execution
Movement

Actions

Sensors

Detect Ball
Detect Players

Movement
Avoid Objects

Actions Sensors

intermediate solutions for genetic programming in the keepaway soccer environment is
studied.

3. The Player

3.1 Player Architecture
The traditional decomposition for an intelligent control system is to break processing into a
chain of information processing modules proceeding from sensing to action (Fig. 1).

Fig. 1. Traditional Control Architecture

The control architecture implemented for this work is similar to the subsumption
architecture described in (Brooks 1985). This architecture implements a layering process
where simple task achieving behaviours are added as required. Each layer is behaviour
producing in its own right, although it may rely on the presence and operation of other
layers. For example, in Fig. 2 the Movement layer does not explicitly need to avoid obstacles:
the Avoid Objects layer will take care of that. This approach creates players with reactive
architectures and with no central locus of control (Brooks 1991).

Fig. 2. Soccer Player Layered Architecture

For the work presented here, the behaviour producing layers are implemented as fuzzy if-
then rules and governed by a fuzzy inference system comprised of the fuzzy rulebase,
definitions of the membership functions of the fuzzy sets operated on by the rules in the
rulebase, and a reasoning mechanism to perform the inference procedure. The fuzzy
inference system is embedded in the player architecture, where it receives input from the
soccer server and generates output necessary for the player to act Fig. 3.

Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 145

y is Bn
Rule n

x is A2

x is An

Fu
zz

ifi
er

A
gg

re
ga

to
r

D
ef

uz
zi

fie
r

y is B2
Rule 2

So
cc

er
 S

er
ve

r I
nf

or
m

at
io

n

A
ct

io
n

Se
le

ct
or

Player
Action

x is A1 y is B1

Rule 1

Fig. 3. Player Architecture Detail

3.1.1 Soccer Server Information
The application by the inferencing mechanism of the fuzzy rulebase to external stimuli
provided by the soccer server results in one or more fuzzy rules being executed and some
resultant action being taken by the client. The external stimuli used as input to the fuzzy
inference system are a subset of the visual information supplied by the soccer server: only
sufficient information to situate the player and locate the ball is used. The environments
studied in this work differ slightly with regard to the information supplied to the player:

 In the RoboCupSoccer environment the soccer server delivers regular sense, visual and
aural messages to the players. The player implemented in this work uses only the
object name, distance and direction information from the visual messages in order to
determine its own position on the field and that of the ball. The player ignores any
aural messages, and uses the information in the sense messages only to synchronise
communication with the RoboCupSoccer server. Since the information supplied by the
RoboCupSoccer server is not guaranteed to be complete or certain, the player uses its
relative distance and direction from all fixed objects in its field of vision to estimate its
position on the field. The player is then able to use the estimate of its position to
estimate the direction and distance to the known, fixed location of its goal. The player
is only aware of the location of the ball if it is in its field of vision, and only to the
extent that the RoboCupSoccer server reports the relative direction and distance to the
ball.

 In the SimpleSoccer environment the soccer server delivers only regular visual
messages to the players: there are no aural or sense equivalents. Information supplied
by the SimpleSoccer server is complete, in so far as the objects actually with the
player’s field of vision are concerned, and certain. Players in the SimpleSoccer
environment are aware at all times of their exact location on the field, but are only
aware of the location of the ball and the goal if they are in the player’s field of vision.
The SimpleSoccer server provides the object name, distance and direction information for
objects in a player’s field of vision. The only state information kept by a player in the
SimpleSoccer environment is the co-ordinates of its location and the direction in which
it is facing.

Perception
Modelling
Planning

Task Execution
Movement

Actions

Sensors

Detect Ball
Detect Players

Movement
Avoid Objects

Actions Sensors

intermediate solutions for genetic programming in the keepaway soccer environment is
studied.

3. The Player

3.1 Player Architecture
The traditional decomposition for an intelligent control system is to break processing into a
chain of information processing modules proceeding from sensing to action (Fig. 1).

Fig. 1. Traditional Control Architecture

The control architecture implemented for this work is similar to the subsumption
architecture described in (Brooks 1985). This architecture implements a layering process
where simple task achieving behaviours are added as required. Each layer is behaviour
producing in its own right, although it may rely on the presence and operation of other
layers. For example, in Fig. 2 the Movement layer does not explicitly need to avoid obstacles:
the Avoid Objects layer will take care of that. This approach creates players with reactive
architectures and with no central locus of control (Brooks 1991).

Fig. 2. Soccer Player Layered Architecture

For the work presented here, the behaviour producing layers are implemented as fuzzy if-
then rules and governed by a fuzzy inference system comprised of the fuzzy rulebase,
definitions of the membership functions of the fuzzy sets operated on by the rules in the
rulebase, and a reasoning mechanism to perform the inference procedure. The fuzzy
inference system is embedded in the player architecture, where it receives input from the
soccer server and generates output necessary for the player to act Fig. 3.

Robot Soccer146

Distance

0

0.5

1

0 25 50
At VeryNear Near SlightlyNear MediumDistant SlightlyFar Far VeryFar

M
em

be
rs

hi
p

Fig. 4. Distance, Power and Direction Fuzzy Sets

Power

0

0.5

1

0 50 100
VeryLow Low SlightlyLow MediumPower SlightlyHigh High VeryHigh

M
em

be
rs

hi
p

Direction

0

0.5

1

-180o 0o 180o

Left180 VeryLeft Left SlightlyLeft Straight SlightlyRight Right VeryRight Right180

M
em

be
rs

hi
p

3.1.2 Fuzzification
Input variables for the fuzzy rules are fuzzy interpretations of the visual stimuli supplied to
the player by the soccer server: the information supplied by the soccer server is fuzzified to
represent the degree of membership of one of three fuzzy sets: direction, distance and power;
and then given as input to the fuzzy inference system. Output variables are the fuzzy
actions to be taken by the player. The universe of discourse of both input and output
variables are covered by fuzzy sets (direction, distance and power), the parameters of which
are predefined and fixed. Each input is fuzzified to have a degree of membership in the
fuzzy sets appropriate to the input variable.
Both the RoboCupSoccer and the SimpleSoccer servers provide crisp values for the
information they deliver to the players. These crisp values must be transformed into
linguistic terms in order to be used as input to the fuzzy inference system. This is the
fuzzification step: the process of transforming crisp values into degrees of membership for
linguistic terms of fuzzy sets. The membership functions shown in Fig. 4 on are used to
associate crisp values with a degree of membership for linguistic terms. The parameters for
these fuzzy sets were not learned by the evolutionary process, but were fixed empirically.
The initial values were set having regard to RoboCupSoccer parameters and variables, and
fine-tuned after minimal experimentation in the RoboCupSoccer environment.

3.1.3 Implication and Aggregation
The core section of the fuzzy inference system is the part which combines the facts obtained
from the fuzzification with the rule base and conducts the fuzzy reasoning process: this is
where the fuzzy inferencing is performed. The FIS model used in this work is a Mamdani
FIS (Mamdani and Assilian 1975). The method implemented to apply the result of the
antecedent evaluation to the membership function of the consequent is the correlation
minimum, or clipping method, where the consequent membership function is truncated at
the level of the antecedent truth. The aggregation method used is the min/max aggregation
method as described in (Mamdani and Assilian 1975). These methods were chosen because
they are computationally less complex than other methods and generate an aggregated
output surface that is relatively easy to defuzzify.

3.1.4 Defuzzification
The defuzzification method used is the mean of maximum method, also employed by
Mamdani’s fuzzy logic controllers. This technique takes the output distribution and finds its
mean of maxima in order to compute a single crisp number. This is calculated as follows:

where z is the mean of maximum, zi is the point at which the membership function is
maximum, and n is the number of times the output distribution reaches the maximum level.





n

i

i

n
z

z
1

Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 147

Distance

0

0.5

1

0 25 50
At VeryNear Near SlightlyNear MediumDistant SlightlyFar Far VeryFar

M
em

be
rs

hi
p

Fig. 4. Distance, Power and Direction Fuzzy Sets

Power

0

0.5

1

0 50 100
VeryLow Low SlightlyLow MediumPower SlightlyHigh High VeryHigh

M
em

be
rs

hi
p

Direction

0

0.5

1

-180o 0o 180o

Left180 VeryLeft Left SlightlyLeft Straight SlightlyRight Right VeryRight Right180

M
em

be
rs

hi
p

3.1.2 Fuzzification
Input variables for the fuzzy rules are fuzzy interpretations of the visual stimuli supplied to
the player by the soccer server: the information supplied by the soccer server is fuzzified to
represent the degree of membership of one of three fuzzy sets: direction, distance and power;
and then given as input to the fuzzy inference system. Output variables are the fuzzy
actions to be taken by the player. The universe of discourse of both input and output
variables are covered by fuzzy sets (direction, distance and power), the parameters of which
are predefined and fixed. Each input is fuzzified to have a degree of membership in the
fuzzy sets appropriate to the input variable.
Both the RoboCupSoccer and the SimpleSoccer servers provide crisp values for the
information they deliver to the players. These crisp values must be transformed into
linguistic terms in order to be used as input to the fuzzy inference system. This is the
fuzzification step: the process of transforming crisp values into degrees of membership for
linguistic terms of fuzzy sets. The membership functions shown in Fig. 4 on are used to
associate crisp values with a degree of membership for linguistic terms. The parameters for
these fuzzy sets were not learned by the evolutionary process, but were fixed empirically.
The initial values were set having regard to RoboCupSoccer parameters and variables, and
fine-tuned after minimal experimentation in the RoboCupSoccer environment.

3.1.3 Implication and Aggregation
The core section of the fuzzy inference system is the part which combines the facts obtained
from the fuzzification with the rule base and conducts the fuzzy reasoning process: this is
where the fuzzy inferencing is performed. The FIS model used in this work is a Mamdani
FIS (Mamdani and Assilian 1975). The method implemented to apply the result of the
antecedent evaluation to the membership function of the consequent is the correlation
minimum, or clipping method, where the consequent membership function is truncated at
the level of the antecedent truth. The aggregation method used is the min/max aggregation
method as described in (Mamdani and Assilian 1975). These methods were chosen because
they are computationally less complex than other methods and generate an aggregated
output surface that is relatively easy to defuzzify.

3.1.4 Defuzzification
The defuzzification method used is the mean of maximum method, also employed by
Mamdani’s fuzzy logic controllers. This technique takes the output distribution and finds its
mean of maxima in order to compute a single crisp number. This is calculated as follows:

where z is the mean of maximum, zi is the point at which the membership function is
maximum, and n is the number of times the output distribution reaches the maximum level.





n

i

i

n
z

z
1

Robot Soccer148

format of the genes on the chromosome, thus reducing the complexity of the rule encoding
from the traditional genetic algorithm. With this method the individual player behaviours
are defined by sets of fuzzy if-then rules evolved by a messy-coded genetic algorithm.
Learning is achieved through testing and evaluation of the fuzzy rulebase generated by the
genetic algorithm. The fitness function used to determine the fitness of an individual
rulebase takes into account the performance of the player based upon the number of goals
scored, or attempts made to move toward goal-scoring, during a game.
The genetic algorithm implemented in this work is a messy-coded genetic algorithm
implemented using the Pittsburgh approach: each individual in the population is a complete
ruleset.

4. Representation of the Chromosome

For these experiments, a chromosome is represented as a variable length vector of genes,
and rule clauses are coded on the chromosome as genes. The encoding scheme implemented
exploits the capability of messy-coded genetic algorithms to encode information of variable
structure and length. It should be noted that while the encoding scheme implemented is a
messy encoding, the algorithm implemented is the classic genetic algorithm: there are no
primordial or juxtapositional phases implemented.
The basic element of the coding of the fuzzy rules is a tuple representing, in the case of a
rule premise, a fuzzy clause and connector; and in the case of a rule consequent just the
fuzzy consequent. The rule consequent gene is specially coded to distinguish it from
premise genes, allowing multiple rules, or a ruleset, to be encoded onto a single
chromosome.
For single-player trials, the only objects of interest to the player are the ball and the player’s
goal, and what is of interest is where those objects are in relation to the player. A premise is
of the form:

(Object, Qualifier, {Distance | Direction}, Connector)

and is constructed from the following range of values:

Object: { BALL, GOAL }
Qualifier: { IS, IS NOT }
Distance: { AT, VERYNEAR, NEAR, SLIGHTLYNEAR, MEDIUMDISTANT,
 SLIGHTLYFAR, FAR, VERYFAR }
Direction: { LEFT180, VERYLEFT, LEFT, SLIGHTLYLEFT, STRAIGHT,
 SLIGHTLYRIGHT, RIGHT, VERYRIGHT, RIGHT180 }
Connector: { AND, OR }

Each rule consequent specifies and qualifies the action to be taken by the player as a
consequent of that rule firing thus contributing to the set of (action, value) pairs output by the
fuzzy inference system. A consequent is of the form:

(Action, {Direction | Null}, {Power | Null})

An example outcome of this computation is shown in Fig. 5. This method of defuzzification
was chosen because it is computationally less complex than other methods yet produces
satisfactory results.

Fig. 5. Mean of Maximum defuzzification method
(Adapted from (Jang, Sun et al. 1997))

3.1.5 Player Actions
A player will perform an action based on its skillset and in response to external stimuli; the
specific response being determined in part by the fuzzy inference system. The action
commands provided to the players by the RoboCupSoccer and SimpleSoccer simulation
environments are described in (Noda 1995) and (Riley 2007) respectively. For the
experiments conducted for this chapter the SimpleSoccer simulator was, where appropriate,
configured for RoboCupSoccer emulation mode.

3.1.6 Action Selection
The output of the fuzzy inference system is a number of (action, value) pairs, corresponding
to the number of fuzzy rules with unique consequents. The (action, value) pairs define the
action to be taken by the player, and the degree to which the action is to be taken. For
example:

(KickTowardGoal, power)
(RunTowardBall, power)
(Turn, direction)

where power and direction are crisp values representing the defuzzified fuzzy set
membership of the action to be taken.
Only one action is performed by the player in response to stimuli provided by the soccer
server. Since several rules with different actions may fire, the action with the greatest level
of support, as indicated by the value for truth of the antecedent, is selected.

3.2 Player Learning
This work investigates the use of an evolutionary technique in the form of a messy-coded
genetic algorithm to efficiently construct the rulebase for a fuzzy inference system to solve a
particular optimisation problem: goal-scoring behaviour for a robot soccer player. The
flexibility provided by the messy-coded genetic algorithm is exploited in the definition and

Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 149

format of the genes on the chromosome, thus reducing the complexity of the rule encoding
from the traditional genetic algorithm. With this method the individual player behaviours
are defined by sets of fuzzy if-then rules evolved by a messy-coded genetic algorithm.
Learning is achieved through testing and evaluation of the fuzzy rulebase generated by the
genetic algorithm. The fitness function used to determine the fitness of an individual
rulebase takes into account the performance of the player based upon the number of goals
scored, or attempts made to move toward goal-scoring, during a game.
The genetic algorithm implemented in this work is a messy-coded genetic algorithm
implemented using the Pittsburgh approach: each individual in the population is a complete
ruleset.

4. Representation of the Chromosome

For these experiments, a chromosome is represented as a variable length vector of genes,
and rule clauses are coded on the chromosome as genes. The encoding scheme implemented
exploits the capability of messy-coded genetic algorithms to encode information of variable
structure and length. It should be noted that while the encoding scheme implemented is a
messy encoding, the algorithm implemented is the classic genetic algorithm: there are no
primordial or juxtapositional phases implemented.
The basic element of the coding of the fuzzy rules is a tuple representing, in the case of a
rule premise, a fuzzy clause and connector; and in the case of a rule consequent just the
fuzzy consequent. The rule consequent gene is specially coded to distinguish it from
premise genes, allowing multiple rules, or a ruleset, to be encoded onto a single
chromosome.
For single-player trials, the only objects of interest to the player are the ball and the player’s
goal, and what is of interest is where those objects are in relation to the player. A premise is
of the form:

(Object, Qualifier, {Distance | Direction}, Connector)

and is constructed from the following range of values:

Object: { BALL, GOAL }
Qualifier: { IS, IS NOT }
Distance: { AT, VERYNEAR, NEAR, SLIGHTLYNEAR, MEDIUMDISTANT,
 SLIGHTLYFAR, FAR, VERYFAR }
Direction: { LEFT180, VERYLEFT, LEFT, SLIGHTLYLEFT, STRAIGHT,
 SLIGHTLYRIGHT, RIGHT, VERYRIGHT, RIGHT180 }
Connector: { AND, OR }

Each rule consequent specifies and qualifies the action to be taken by the player as a
consequent of that rule firing thus contributing to the set of (action, value) pairs output by the
fuzzy inference system. A consequent is of the form:

(Action, {Direction | Null}, {Power | Null})

An example outcome of this computation is shown in Fig. 5. This method of defuzzification
was chosen because it is computationally less complex than other methods yet produces
satisfactory results.

Fig. 5. Mean of Maximum defuzzification method
(Adapted from (Jang, Sun et al. 1997))

3.1.5 Player Actions
A player will perform an action based on its skillset and in response to external stimuli; the
specific response being determined in part by the fuzzy inference system. The action
commands provided to the players by the RoboCupSoccer and SimpleSoccer simulation
environments are described in (Noda 1995) and (Riley 2007) respectively. For the
experiments conducted for this chapter the SimpleSoccer simulator was, where appropriate,
configured for RoboCupSoccer emulation mode.

3.1.6 Action Selection
The output of the fuzzy inference system is a number of (action, value) pairs, corresponding
to the number of fuzzy rules with unique consequents. The (action, value) pairs define the
action to be taken by the player, and the degree to which the action is to be taken. For
example:

(KickTowardGoal, power)
(RunTowardBall, power)
(Turn, direction)

where power and direction are crisp values representing the defuzzified fuzzy set
membership of the action to be taken.
Only one action is performed by the player in response to stimuli provided by the soccer
server. Since several rules with different actions may fire, the action with the greatest level
of support, as indicated by the value for truth of the antecedent, is selected.

3.2 Player Learning
This work investigates the use of an evolutionary technique in the form of a messy-coded
genetic algorithm to efficiently construct the rulebase for a fuzzy inference system to solve a
particular optimisation problem: goal-scoring behaviour for a robot soccer player. The
flexibility provided by the messy-coded genetic algorithm is exploited in the definition and

Robot Soccer150

BNO B,nF,A) (G,N,A) (RB,n,L) (B,A,A) (G,vN,O) (KG,n,M) (B,L,A) (T,L,n)

Premise Consequent

Rule 1: if Ball is Near or Ball is not Far and Goal is Near then RunTowardBall Low
Rule 2: if Ball is At and Goal is VeryNear then KickTowardGoal MediumPower
Rule 3: if Ball is Left then Turn Left
Fig. 7. Chromosome and corresponding rules

In contrast to classic genetic algorithms which use a fixed size chromosome and require
“don’t care” values in order to generalise, no explicit don’t care values are, or need be,
implemented for any attributes in this method. Since messy-coded genetic algorithms
encode information of variable structure and length, not all attributes, particularly premise
variables, need be present in any rule or indeed in the entire ruleset. A feature of the messy-
coded genetic algorithm is that the format implies don’t care values for all attributes since
any premise may be omitted from any or all rules, so generalisation is an implicit feature of
this method.
For the messy-coded genetic algorithm implemented in this work the selection operator is
implemented in the same manner as for classic genetic algorithms. Roulette wheel selection
was used in the RoboCupSoccer trials and the initial SimpleSoccer trials. Tests were
conducted to compare several selection methods, and elitist selection was used in the
remainder of the SimpleSoccer trials. Crossover is implemented by the cut and splice
operators, and mutation is implemented as a single-allele mutation scheme.

5. Experimental Evaluation

A series of experiments was performed in both the RoboCupSoccer and the SimpleSoccer
simulation environments in order to test the viability of the fuzzy logic-based controller for
the control of the player and the genetic algorithm to evolve the fuzzy ruleset. The following
sections describe the trials performed, the parameter settings for each of the trials and other
fundamental properties necessary for conducting the experiments.
An initial set of 20 trials was performed in the RoboCupSoccer environment in order to
examine whether a genetic algorithm can be used to evolve a set of fuzzy rules to govern the
behaviour of a simulated robot soccer player which produces consistent goal-scoring
behaviour. This addresses part of the research question examined by this chapter.
Because the RoboCupSoccer environment is a very complex real-time simulation
environment, it was found to be prohibitively expensive with regard to the time taken for
the fitness evaluations for the evolutionary search. To overcome this problem the
SimpleSoccer environment was developed so as to reduce the time taken for the trials.
Following the RoboCupSoccer trials, a set of similar trials was performed in the
SimpleSoccer environment to verify that the method performs similarly in the new
environment.
Trials were conducted in the SimpleSoccer environment where the parameters controlling
the operation of the genetic algorithm were varied in order to determine the parameters that
should be used for the messy-coded genetic algorithm in order to produce acceptable
results.

and is constructed from the following range of values (depending upon the skillset with
which the player is endowed):

Action: { TURN, DASH, KICK, RUNTOWARDGOAL, RUNTOWARDBALL,
 GOTOBALL, KICKTOWARDGOAL, DRIBBLETOWARDGOAL,
 DRIBBLE, DONOTHING }
Direction: { LEFT180, VERYLEFT, LEFT, SLIGHTLYLEFT, STRAIGHT,
 SLIGHTLYRIGHT, RIGHT, VERYRIGHT, RIGHT180 }
Power: { VERYLOW, LOW, SLIGHTLYLOW, MEDIUMPOWER,
 SLIGHTLYHIGH, HIGH, VERYHIGH }

Fuzzy rules developed by the genetic algorithm are of the form:

if Ball is Near and Goal is Near then KickTowardGoal Low
if Ball is Far or Ball is SlightlyLeft then RunTowardBall High

In the example chromosome fragment shown in Fig. 6 the shaded clause has been specially
coded to signify that it is a consequent gene, and the fragment decodes to the following rule:

if Ball is Left and Ball is At or Goal is not Far then Dribble Low

In this case the clause connector OR in the clause immediately prior to the consequent clause
is not required, so ignored.

Fig. 6. Messy-coded Genetic Algorithm Example Chromosome Fragment

Chromosomes are not fixed length: the length of each chromosome in the population varies
with the length of individual rules and the number of rules on the chromosome. The
number of clauses in a rule and the number of rules in a ruleset is only limited by the
maximum size of a chromosome. The minimum size of a rule is two clauses (one premise
and one consequent), and the minimum number of rules in a ruleset is one. Since the cut,
splice and mutation operators implemented guarantee no out-of-bounds data in the
resultant chromosomes, a rule is only considered invalid if it contains no premises. A
complete ruleset is considered invalid only if it contains no valid rules. Some advantages of
using a messy encoding in this case are:

 a ruleset is not limited to a fixed size
 a ruleset can be overspecified (i.e. clauses may be duplicated)
 a ruleset can be underspecified (i.e. not all genes are required to be represented)
 clauses may be arranged in any way

An example complete chromosome and corresponding rules are shown in Fig. 7 (with
appropriate abbreviations).

 (Ball, is Left, And) (Ball, is At, Or) (Goal, is not Far, Or) (Dribble, Null, Low)

Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 151

BNO B,nF,A) (G,N,A) (RB,n,L) (B,A,A) (G,vN,O) (KG,n,M) (B,L,A) (T,L,n)

Premise Consequent

Rule 1: if Ball is Near or Ball is not Far and Goal is Near then RunTowardBall Low
Rule 2: if Ball is At and Goal is VeryNear then KickTowardGoal MediumPower
Rule 3: if Ball is Left then Turn Left
Fig. 7. Chromosome and corresponding rules

In contrast to classic genetic algorithms which use a fixed size chromosome and require
“don’t care” values in order to generalise, no explicit don’t care values are, or need be,
implemented for any attributes in this method. Since messy-coded genetic algorithms
encode information of variable structure and length, not all attributes, particularly premise
variables, need be present in any rule or indeed in the entire ruleset. A feature of the messy-
coded genetic algorithm is that the format implies don’t care values for all attributes since
any premise may be omitted from any or all rules, so generalisation is an implicit feature of
this method.
For the messy-coded genetic algorithm implemented in this work the selection operator is
implemented in the same manner as for classic genetic algorithms. Roulette wheel selection
was used in the RoboCupSoccer trials and the initial SimpleSoccer trials. Tests were
conducted to compare several selection methods, and elitist selection was used in the
remainder of the SimpleSoccer trials. Crossover is implemented by the cut and splice
operators, and mutation is implemented as a single-allele mutation scheme.

5. Experimental Evaluation

A series of experiments was performed in both the RoboCupSoccer and the SimpleSoccer
simulation environments in order to test the viability of the fuzzy logic-based controller for
the control of the player and the genetic algorithm to evolve the fuzzy ruleset. The following
sections describe the trials performed, the parameter settings for each of the trials and other
fundamental properties necessary for conducting the experiments.
An initial set of 20 trials was performed in the RoboCupSoccer environment in order to
examine whether a genetic algorithm can be used to evolve a set of fuzzy rules to govern the
behaviour of a simulated robot soccer player which produces consistent goal-scoring
behaviour. This addresses part of the research question examined by this chapter.
Because the RoboCupSoccer environment is a very complex real-time simulation
environment, it was found to be prohibitively expensive with regard to the time taken for
the fitness evaluations for the evolutionary search. To overcome this problem the
SimpleSoccer environment was developed so as to reduce the time taken for the trials.
Following the RoboCupSoccer trials, a set of similar trials was performed in the
SimpleSoccer environment to verify that the method performs similarly in the new
environment.
Trials were conducted in the SimpleSoccer environment where the parameters controlling
the operation of the genetic algorithm were varied in order to determine the parameters that
should be used for the messy-coded genetic algorithm in order to produce acceptable
results.

and is constructed from the following range of values (depending upon the skillset with
which the player is endowed):

Action: { TURN, DASH, KICK, RUNTOWARDGOAL, RUNTOWARDBALL,
 GOTOBALL, KICKTOWARDGOAL, DRIBBLETOWARDGOAL,
 DRIBBLE, DONOTHING }
Direction: { LEFT180, VERYLEFT, LEFT, SLIGHTLYLEFT, STRAIGHT,
 SLIGHTLYRIGHT, RIGHT, VERYRIGHT, RIGHT180 }
Power: { VERYLOW, LOW, SLIGHTLYLOW, MEDIUMPOWER,
 SLIGHTLYHIGH, HIGH, VERYHIGH }

Fuzzy rules developed by the genetic algorithm are of the form:

if Ball is Near and Goal is Near then KickTowardGoal Low
if Ball is Far or Ball is SlightlyLeft then RunTowardBall High

In the example chromosome fragment shown in Fig. 6 the shaded clause has been specially
coded to signify that it is a consequent gene, and the fragment decodes to the following rule:

if Ball is Left and Ball is At or Goal is not Far then Dribble Low

In this case the clause connector OR in the clause immediately prior to the consequent clause
is not required, so ignored.

Fig. 6. Messy-coded Genetic Algorithm Example Chromosome Fragment

Chromosomes are not fixed length: the length of each chromosome in the population varies
with the length of individual rules and the number of rules on the chromosome. The
number of clauses in a rule and the number of rules in a ruleset is only limited by the
maximum size of a chromosome. The minimum size of a rule is two clauses (one premise
and one consequent), and the minimum number of rules in a ruleset is one. Since the cut,
splice and mutation operators implemented guarantee no out-of-bounds data in the
resultant chromosomes, a rule is only considered invalid if it contains no premises. A
complete ruleset is considered invalid only if it contains no valid rules. Some advantages of
using a messy encoding in this case are:

 a ruleset is not limited to a fixed size
 a ruleset can be overspecified (i.e. clauses may be duplicated)
 a ruleset can be underspecified (i.e. not all genes are required to be represented)
 clauses may be arranged in any way

An example complete chromosome and corresponding rules are shown in Fig. 7 (with
appropriate abbreviations).

 (Ball, is Left, And) (Ball, is At, Or) (Goal, is not Far, Or) (Dribble, Null, Low)

Robot Soccer152

This combination was chosen to reward players primarily for goals scored, while players
that do not score goals are rewarded for the number of times the ball is kicked on the
assumption that a player which actually kicks the ball is more likely to produce offspring
capable of scoring goals. The actual fitness function implemented in the RoboCupSoccer
trials was:

where

 goals = the number of goals scored by the player during the trial
 kicks = the number of times the player kicked the ball during the trial
 ticks = the number of RoboCupSoccer server time steps of the trial
Equation 2 RoboCupSoccer Composite Fitness Function

5.2.2 SimpleSoccer Fitness Function
A similar composite fitness function was used in the trials in the SimpleSoccer environment,
where individuals were rewarded for, in order of importance:

 the number of goals scored in a game
 minimising the distance of the ball from the goal

This combination was chosen to reward players primarily for goals scored, while players
that do not score goals are rewarded on the basis of how close they are able to move the ball
to the goal on the assumption that a player which kicks the ball close to the goal is more
likely to produce offspring capable of scoring goals. This decomposes the original problem
of evolving goal-scoring behaviour into the two less difficult problems:

 evolve ball-kicking behaviour that minimises the distance between the ball and goal
 evolve goal-scoring behaviour from the now increased base level of skill and

knowledge
The actual fitness function implemented in the SimpleSoccer trials was:

 where
 goals = the number of goals scored by the player during the trial
 kicks = the number of times the player kicked the ball during the trial
 dist = the minimum distance of the ball to the goal during the trial
 fieldLen = the length of the field
Equation 3 SimpleSoccer Composite Fitness Function

f
goals0.2
0.1

ticks
kicks



0.2

0.1

0, goals

0, goals
0, kicks

0, kicks01.

f
goals0.2
0.1

fieldLen
dist




0.2
5.0

0, goals

0, goals
0, kicks

0, kicks01.

5.1 Trials
For the results reported, a single trial consisted of a simulated game of soccer played with
the only player on the field being the player under evaluation. The player was placed at a
randomly selected position on its half of the field and oriented so that it was facing the end
of the field to which it was kicking. For the RoboCupSoccer trials the ball was placed at the
centre of the field, and for the SimpleSoccer trials the ball was placed at a randomly selected
position along the centre line of the field.

5.2 Fitness Evaluation
The objective of the fitness function for the genetic algorithm is to reward the fitter
individuals with a higher probability of producing offspring, with the expectation that
combining the fittest individuals of one generation will produce even fitter individuals in
later generations. All fitness functions implemented in this work indicate better fitness as a
lower number, so representing the optimisation of fitness as a minimisation problem.

5.2.1 RoboCupSoccer Fitness Function
Since the objective of this work was to produce goal-scoring behaviour, the first fitness
function implemented rewarded individuals for goal-scoring behaviour only, and was
implemented as:

where goals is the number of goals scored by the player during the trial.
Equation 1 RoboCupSoccer Simple Goals-only Fitness Function

In early trials in the RoboCupSoccer environment the initial population of randomly
generated individuals demonstrated no goal-scoring behaviour, so the fitness of each
individual was the same across the entire population. This lack of variation in the fitness of
the population resulted in the selection of individuals for reproduction being reduced to
random choice. To overcome this problem a composite fitness function was implemented
which effectively decomposes the difficult problem of evolving goal-scoring behaviour
essentially from scratch - actually from the base level of skill and knowledge implicit in the
primitives supplied by the environment – into two less difficult problems:

 evolve ball-kicking behaviour, and
 evolve goal-scoring behaviour from the now increased base level of skill and

knowledge

In the RoboCupSoccer trials, individuals were rewarded for, in order of importance:

 the number of goals scored in a game
 the number of times the ball was kicked during a game

f
goals0.2
0.1 0, goals

0, goals01.

Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 153

This combination was chosen to reward players primarily for goals scored, while players
that do not score goals are rewarded for the number of times the ball is kicked on the
assumption that a player which actually kicks the ball is more likely to produce offspring
capable of scoring goals. The actual fitness function implemented in the RoboCupSoccer
trials was:

where

 goals = the number of goals scored by the player during the trial
 kicks = the number of times the player kicked the ball during the trial
 ticks = the number of RoboCupSoccer server time steps of the trial
Equation 2 RoboCupSoccer Composite Fitness Function

5.2.2 SimpleSoccer Fitness Function
A similar composite fitness function was used in the trials in the SimpleSoccer environment,
where individuals were rewarded for, in order of importance:

 the number of goals scored in a game
 minimising the distance of the ball from the goal

This combination was chosen to reward players primarily for goals scored, while players
that do not score goals are rewarded on the basis of how close they are able to move the ball
to the goal on the assumption that a player which kicks the ball close to the goal is more
likely to produce offspring capable of scoring goals. This decomposes the original problem
of evolving goal-scoring behaviour into the two less difficult problems:

 evolve ball-kicking behaviour that minimises the distance between the ball and goal
 evolve goal-scoring behaviour from the now increased base level of skill and

knowledge
The actual fitness function implemented in the SimpleSoccer trials was:

 where
 goals = the number of goals scored by the player during the trial
 kicks = the number of times the player kicked the ball during the trial
 dist = the minimum distance of the ball to the goal during the trial
 fieldLen = the length of the field
Equation 3 SimpleSoccer Composite Fitness Function

f
goals0.2
0.1

ticks
kicks



0.2

0.1

0, goals

0, goals
0, kicks

0, kicks01.

f
goals0.2
0.1

fieldLen
dist




0.2
5.0

0, goals

0, goals
0, kicks

0, kicks01.

5.1 Trials
For the results reported, a single trial consisted of a simulated game of soccer played with
the only player on the field being the player under evaluation. The player was placed at a
randomly selected position on its half of the field and oriented so that it was facing the end
of the field to which it was kicking. For the RoboCupSoccer trials the ball was placed at the
centre of the field, and for the SimpleSoccer trials the ball was placed at a randomly selected
position along the centre line of the field.

5.2 Fitness Evaluation
The objective of the fitness function for the genetic algorithm is to reward the fitter
individuals with a higher probability of producing offspring, with the expectation that
combining the fittest individuals of one generation will produce even fitter individuals in
later generations. All fitness functions implemented in this work indicate better fitness as a
lower number, so representing the optimisation of fitness as a minimisation problem.

5.2.1 RoboCupSoccer Fitness Function
Since the objective of this work was to produce goal-scoring behaviour, the first fitness
function implemented rewarded individuals for goal-scoring behaviour only, and was
implemented as:

where goals is the number of goals scored by the player during the trial.
Equation 1 RoboCupSoccer Simple Goals-only Fitness Function

In early trials in the RoboCupSoccer environment the initial population of randomly
generated individuals demonstrated no goal-scoring behaviour, so the fitness of each
individual was the same across the entire population. This lack of variation in the fitness of
the population resulted in the selection of individuals for reproduction being reduced to
random choice. To overcome this problem a composite fitness function was implemented
which effectively decomposes the difficult problem of evolving goal-scoring behaviour
essentially from scratch - actually from the base level of skill and knowledge implicit in the
primitives supplied by the environment – into two less difficult problems:

 evolve ball-kicking behaviour, and
 evolve goal-scoring behaviour from the now increased base level of skill and

knowledge

In the RoboCupSoccer trials, individuals were rewarded for, in order of importance:

 the number of goals scored in a game
 the number of times the ball was kicked during a game

f
goals0.2
0.1 0, goals

0, goals01.

Robot Soccer154

Parameter Value
Maximum Chromosome Length 64 genes
Population Size 200
Maximum Generations 25
Selection Method Roulette Wheel
Crossover Method Single Point
Crossover Probability 0.8
Mutation Rate 10%
Mutation Probability 0.35

Table 2. Genetic Algorithm Control Parameters

In initial trials in the RoboCup environment players were evaluated over five separate
games and then assigned the average fitness value of those games. Since each game in the
Robocup environment is played in real time, this was a very time consuming method. The
results of experiments where the player’s fitness was calculated as the average of five games
were compared with results where the player’s fitness was assigned after a single game and
were found to be almost indistinguishable. Due to the considerable time savings gained by
assigning fitness after a single game, this is the method used throughout this work. Since
players evolved using the average fitness method are exposed to different starting
conditions they may be more robust than those evolved using single-game fitness, but the
effect is extremely small considering the number of different starting positions players could
be evaluated against and the fact that the starting positions of the player and ball really only
affect the first kick of the ball.

5.3 Control Parameters
The genetic algorithm parameters common to all 20 initial trials in both the RoboCupSoccer
and SimpleSoccer environments are shown in Table 2.
A game was terminated when:

 the target fitness of 0.05 was reached
 the ball was kicked out of play (RoboCupSoccer only)
 the elapsed time expired:

o 120 seconds real time for RoboCupSoccer
o 1000 ticks of simulator time for SimpleSoccer

 A period of no player movement or action expired
o 10 seconds real time for RoboCupSoccer
o 100 ticks of simulator time for SimpleSoccer

The target fitness of 0.05 reflects a score of 10 goals in the allotted playing time. This figure
was chosen to allow the player a realistic amount of time to develop useful strategies yet
terminate the search upon finding an acceptably good individual.
Two methods of terminating the evolutionary search were implemented. The first stops the
search when a specified maximum number of generations have occurred; the second stops
the search when the best fitness in the current population becomes less than the specified
target fitness. Both methods were active, with the first to be encountered terminating the
search. Early stopping did not occur in any of the experiments reported in this chapter.

The difference between the composite fitness function implemented in the RoboCupSoccer
environment and the composite fitness function implemented in the SimpleSoccer
environment is just an evolution of thinking – rewarding a player for kicking the ball often
when no goal is kicked could reward a player that kicks the ball very often in the wrong
direction more than a player that kicks the ball fewer times but in the right direction. The
SimpleSoccer implementation of the composite fitness function rewards players more for
kicking the ball closer to the goal irrespective of the number of times the ball was kicked.
This is considered a better approach to encourage behaviour that leads to scoring goals.

5.2.3 Fitness Values
To facilitate the interpretation of fitness graphs and fitness values presented throughout this
chapter, following is an explanation of the fitness values generated by the fitness functions
used in this work. All fitness functions implemented in this work generate a real number R ,
where 0.10.0  R , 0.1R indicates no ball movement and 0.0R indicates very good
performance – smaller fitness values indicate better performance.
For ball movement in the RoboCupSoccer environment where a composite fitness function
is implemented, fitness values are calculated in the range yRx  , where 5.0x and

0.1y . For ball movement in the SimpleSoccer environment where a composite fitness
function is implemented, fitness values are calculated in the range yRx  , where 5.0x
and 77.0y . Where a simple goals-only fitness function is implemented, ball movement
alone is not rewarded: if no goals are scored the fitness function assigns 0.1R . In both
environments all fitness functions assign discrete values for goal-scoring, depending upon
the number of goals scored. Table 1 summarises the fitness values returned by the various
fitness functions.

 Simple

Goals-only
Fitness Function

RoboCupSoccer
Composite

Fitness Function

SimpleSoccer
Composite

Fitness Function
No

Goals
Scored

No Ball
Movement

1.0000 1.0000 1.0000

Ball
Movement

n/a [0.5, 1.0] [~0.5, ~0.77]

Goals
Scored

1 0.5000 0.5000 0.5000
2 0.2500 0.2500 0.2500
3 0.1667 0.1667 0.1667
4 0.1250 0.1250 0.1250
5 0.1000 0.1000 0.1000
6 0.0833 0.0833 0.0833
7 0.0714 0.0714 0.0714
8 0.0625 0.0625 0.0625
9 0.0556 0.0556 0.0556

10 0.0500 0.0500 0.0500
… … … …
n 0.5/n 0.5/n 0.5/n

Table 1. Fitness Assignment Summary

Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 155

Parameter Value
Maximum Chromosome Length 64 genes
Population Size 200
Maximum Generations 25
Selection Method Roulette Wheel
Crossover Method Single Point
Crossover Probability 0.8
Mutation Rate 10%
Mutation Probability 0.35

Table 2. Genetic Algorithm Control Parameters

In initial trials in the RoboCup environment players were evaluated over five separate
games and then assigned the average fitness value of those games. Since each game in the
Robocup environment is played in real time, this was a very time consuming method. The
results of experiments where the player’s fitness was calculated as the average of five games
were compared with results where the player’s fitness was assigned after a single game and
were found to be almost indistinguishable. Due to the considerable time savings gained by
assigning fitness after a single game, this is the method used throughout this work. Since
players evolved using the average fitness method are exposed to different starting
conditions they may be more robust than those evolved using single-game fitness, but the
effect is extremely small considering the number of different starting positions players could
be evaluated against and the fact that the starting positions of the player and ball really only
affect the first kick of the ball.

5.3 Control Parameters
The genetic algorithm parameters common to all 20 initial trials in both the RoboCupSoccer
and SimpleSoccer environments are shown in Table 2.
A game was terminated when:

 the target fitness of 0.05 was reached
 the ball was kicked out of play (RoboCupSoccer only)
 the elapsed time expired:

o 120 seconds real time for RoboCupSoccer
o 1000 ticks of simulator time for SimpleSoccer

 A period of no player movement or action expired
o 10 seconds real time for RoboCupSoccer
o 100 ticks of simulator time for SimpleSoccer

The target fitness of 0.05 reflects a score of 10 goals in the allotted playing time. This figure
was chosen to allow the player a realistic amount of time to develop useful strategies yet
terminate the search upon finding an acceptably good individual.
Two methods of terminating the evolutionary search were implemented. The first stops the
search when a specified maximum number of generations have occurred; the second stops
the search when the best fitness in the current population becomes less than the specified
target fitness. Both methods were active, with the first to be encountered terminating the
search. Early stopping did not occur in any of the experiments reported in this chapter.

The difference between the composite fitness function implemented in the RoboCupSoccer
environment and the composite fitness function implemented in the SimpleSoccer
environment is just an evolution of thinking – rewarding a player for kicking the ball often
when no goal is kicked could reward a player that kicks the ball very often in the wrong
direction more than a player that kicks the ball fewer times but in the right direction. The
SimpleSoccer implementation of the composite fitness function rewards players more for
kicking the ball closer to the goal irrespective of the number of times the ball was kicked.
This is considered a better approach to encourage behaviour that leads to scoring goals.

5.2.3 Fitness Values
To facilitate the interpretation of fitness graphs and fitness values presented throughout this
chapter, following is an explanation of the fitness values generated by the fitness functions
used in this work. All fitness functions implemented in this work generate a real number R ,
where 0.10.0  R , 0.1R indicates no ball movement and 0.0R indicates very good
performance – smaller fitness values indicate better performance.
For ball movement in the RoboCupSoccer environment where a composite fitness function
is implemented, fitness values are calculated in the range yRx  , where 5.0x and

0.1y . For ball movement in the SimpleSoccer environment where a composite fitness
function is implemented, fitness values are calculated in the range yRx  , where 5.0x
and 77.0y . Where a simple goals-only fitness function is implemented, ball movement
alone is not rewarded: if no goals are scored the fitness function assigns 0.1R . In both
environments all fitness functions assign discrete values for goal-scoring, depending upon
the number of goals scored. Table 1 summarises the fitness values returned by the various
fitness functions.

 Simple

Goals-only
Fitness Function

RoboCupSoccer
Composite

Fitness Function

SimpleSoccer
Composite

Fitness Function
No

Goals
Scored

No Ball
Movement

1.0000 1.0000 1.0000

Ball
Movement

n/a [0.5, 1.0] [~0.5, ~0.77]

Goals
Scored

1 0.5000 0.5000 0.5000
2 0.2500 0.2500 0.2500
3 0.1667 0.1667 0.1667
4 0.1250 0.1250 0.1250
5 0.1000 0.1000 0.1000
6 0.0833 0.0833 0.0833
7 0.0714 0.0714 0.0714
8 0.0625 0.0625 0.0625
9 0.0556 0.0556 0.0556

10 0.0500 0.0500 0.0500
… … … …
n 0.5/n 0.5/n 0.5/n

Table 1. Fitness Assignment Summary

Robot Soccer156

RoboCupSoccer trials, and plateau towards a fitness of around 0.75 which, in the
SimpleSoccer environment indicates ball-kicking behaviour rather than goal-scoring
behaviour.

Fig. 9. RoboCupSoccer: Best Fitness - Initial 20 Trials

Fig. 10. RoboCupSoccer: Frequency of Individuals Scoring Goals

Fig. 12 shows the best individual fitness from the population after each generation for each
of 20 trials for the SimpleSoccer environment and, as for the RoboCupSoccer trials, this
graph shows that good individuals are found after very few generations. It is evident from a
comparison of Fig. 9 and Fig. 12 that while good individuals are found quickly in both

1 5 9 1 3 1 7 2 1 2 5

0

0 .2 5

0 .5

0 .7 5

1

Fi
tn

es
s

G e n e r a t io n

0%

25%

50%

75%

100%

1 5 9 13 17 21 25

Generation

Pe
rc

en
ta

ge

0 Goals 1 Goal 2 Goals 3 Goals 4 Goals >4 Goals

0

0.25

0.5

0.75

1

1 5 9 13 17 21 25

Generation

Fi
tn

es
s

6. Results

The following sections describe the results for the experiments performed for both the
RoboCupSoccer and the SimpleSoccer environments. Discussion and analysis of the results
is also presented.

6.1 RoboCupSoccer Initial Trial Results
Fig. 8 shows the average fitness of the population after each generation for each of the 20
trials for the RoboCupSoccer environment, showing that the performance of the population
does improve steadily and, in some of the trials, plateaus towards a fitness of 0.5, or goal-
scoring behaviour. Fig. 9 shows the best individual fitness from the population after each
generation for each of 20 trials for the RoboCupSoccer environment, showing that good
individuals are found after very few generations, in contrast to the gradual improvement in
average fitness shown in Fig. 8.
Fig. 10 is another visualisation of the progressive learning of the population from generation
to generation, showing that not only do more players learn to kick goals over time, they
learn to kick more goals more quickly. The histogram shows, for the initial 20
RoboCupSoccer trials, the average percentage of the population which scored 0, 1, 2, 3, 4 or
more than 4 goals for each generation. The maximum number of goals scored by any
individual was 3.

Fig. 8. RoboCupSoccer: Average Fitness - Initial 20 Trials

6.2 SimpleSoccer Initial Trial Results
Fig. 11 shows the average fitness of the population after each generation for each of the 20
trials for the SimpleSoccer environment, and as for the RoboCupSoccer trials, this graph
shows that the performance of the population does improve steadily and plateaus, but
unlike the RoboCupSoccer trials the average performance of the population does not
approach a fitness of 0.5, or goal-scoring behaviour. Fig. 11 also shows that the average
fitness curves for the SimpleSoccer trials are more tightly clustered than those of the

Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 157

RoboCupSoccer trials, and plateau towards a fitness of around 0.75 which, in the
SimpleSoccer environment indicates ball-kicking behaviour rather than goal-scoring
behaviour.

Fig. 9. RoboCupSoccer: Best Fitness - Initial 20 Trials

Fig. 10. RoboCupSoccer: Frequency of Individuals Scoring Goals

Fig. 12 shows the best individual fitness from the population after each generation for each
of 20 trials for the SimpleSoccer environment and, as for the RoboCupSoccer trials, this
graph shows that good individuals are found after very few generations. It is evident from a
comparison of Fig. 9 and Fig. 12 that while good individuals are found quickly in both

1 5 9 1 3 1 7 2 1 2 5

0

0 .2 5

0 .5

0 .7 5

1

Fi
tn

es
s

G e n e r a t io n

0%

25%

50%

75%

100%

1 5 9 13 17 21 25

Generation

Pe
rc

en
ta

ge

0 Goals 1 Goal 2 Goals 3 Goals 4 Goals >4 Goals

0

0.25

0.5

0.75

1

1 5 9 13 17 21 25

Generation

Fi
tn

es
s

6. Results

The following sections describe the results for the experiments performed for both the
RoboCupSoccer and the SimpleSoccer environments. Discussion and analysis of the results
is also presented.

6.1 RoboCupSoccer Initial Trial Results
Fig. 8 shows the average fitness of the population after each generation for each of the 20
trials for the RoboCupSoccer environment, showing that the performance of the population
does improve steadily and, in some of the trials, plateaus towards a fitness of 0.5, or goal-
scoring behaviour. Fig. 9 shows the best individual fitness from the population after each
generation for each of 20 trials for the RoboCupSoccer environment, showing that good
individuals are found after very few generations, in contrast to the gradual improvement in
average fitness shown in Fig. 8.
Fig. 10 is another visualisation of the progressive learning of the population from generation
to generation, showing that not only do more players learn to kick goals over time, they
learn to kick more goals more quickly. The histogram shows, for the initial 20
RoboCupSoccer trials, the average percentage of the population which scored 0, 1, 2, 3, 4 or
more than 4 goals for each generation. The maximum number of goals scored by any
individual was 3.

Fig. 8. RoboCupSoccer: Average Fitness - Initial 20 Trials

6.2 SimpleSoccer Initial Trial Results
Fig. 11 shows the average fitness of the population after each generation for each of the 20
trials for the SimpleSoccer environment, and as for the RoboCupSoccer trials, this graph
shows that the performance of the population does improve steadily and plateaus, but
unlike the RoboCupSoccer trials the average performance of the population does not
approach a fitness of 0.5, or goal-scoring behaviour. Fig. 11 also shows that the average
fitness curves for the SimpleSoccer trials are more tightly clustered than those of the

Robot Soccer158

reported in the remainder of this chapter are for experiments conducted exclusively in the
SimpleSoccer environment.

Fig. 12. SimpleSoccer: Best Fitness - Initial 20 Trials

Fig. 13. SimpleSoccer: Frequency of Individuals Scoring Goals

1 5 9 1 3 1 7 2 1 2 5

0

0 . 2 5

0 . 5

0 . 7 5

1

Fi
tn

es
s

G e n e r a t i o n

0%

25%

50%

75%

100%

1 5 9 13 17 21 25
Generation

Pe
rc

en
ta

ge

0 Goals 1 Goal 2 Goals 3 Goals 4 Goals >4 Goals

environments, the algorithm seems to be more stable in the RoboCupSoccer environment.
The data shows that once a good individual is found in the RoboCupSoccer environment,
good individuals are then more consistently found in future generations than in the
SimpleSoccer environment.
Fig. 13 shows, for the initial 20 SimpleSoccer trials, the average percentage of the population
which scored 0, 1, 2, 3, 4 or more than 4 goals for each generation. The maximum number of
goals scored by an individual was 10. The contrast with the equivalent graph for the
RoboCupSoccer environment (Fig. 10) is striking since, although some individuals in the
SimpleSoccer environment scored more goals than any individual in the RoboCupSoccer
environment, the average goal-scoring behaviour of the population was less developed in
the SimpleSoccer environment. This inconsistency is likely to be an indication that the
combination of parameters used for the SimpleSoccer environment causes the genetic
algorithm to converge more quickly than in the RoboCupSoccer environment, and a
possible explanation for the lower average performance of the population when compared
to that of the RoboCupSoccer environment as seen in Fig. 11. Since these SimpleSoccer
experiments were performed primarily as a comparison with the RoboCupSoccer
experiments the genetic algorithm parameters were kept the same, but the soccer simulator
implementations differ considerably and no tuning of simulator parameters to ensure
similar performance was performed.

Fig. 11. SimpleSoccer: Average Fitness – Initial 20 Trials

6.3 SimpleSoccer as a Model for RoboCupSoccer
While the difference in the results of the experiments in the RoboCupSoccer and
SimpleSoccer environments indicate that SimpleSoccer is not an exact model of
RoboCupSoccer (as indeed it was not intended to be), there is a broad similarity in the
results which is sufficient to indicate that the SimpleSoccer environment is a good simplified
model of the RoboCupSoccer environment. Because SimpleSoccer is considered a reasonable
model for RoboCupSoccer, and to take advantage of the significantly reduced training times
provided by the SimpleSoccer environment when compared to RoboCupSoccer, all results

0

0.25

0.5

0.75

1

1 5 9 13 17 21 25

Generation

Fi
tn

es
s

Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 159

reported in the remainder of this chapter are for experiments conducted exclusively in the
SimpleSoccer environment.

Fig. 12. SimpleSoccer: Best Fitness - Initial 20 Trials

Fig. 13. SimpleSoccer: Frequency of Individuals Scoring Goals

1 5 9 1 3 1 7 2 1 2 5

0

0 . 2 5

0 . 5

0 . 7 5

1

Fi
tn

es
s

G e n e r a t i o n

0%

25%

50%

75%

100%

1 5 9 13 17 21 25
Generation

Pe
rc

en
ta

ge

0 Goals 1 Goal 2 Goals 3 Goals 4 Goals >4 Goals

environments, the algorithm seems to be more stable in the RoboCupSoccer environment.
The data shows that once a good individual is found in the RoboCupSoccer environment,
good individuals are then more consistently found in future generations than in the
SimpleSoccer environment.
Fig. 13 shows, for the initial 20 SimpleSoccer trials, the average percentage of the population
which scored 0, 1, 2, 3, 4 or more than 4 goals for each generation. The maximum number of
goals scored by an individual was 10. The contrast with the equivalent graph for the
RoboCupSoccer environment (Fig. 10) is striking since, although some individuals in the
SimpleSoccer environment scored more goals than any individual in the RoboCupSoccer
environment, the average goal-scoring behaviour of the population was less developed in
the SimpleSoccer environment. This inconsistency is likely to be an indication that the
combination of parameters used for the SimpleSoccer environment causes the genetic
algorithm to converge more quickly than in the RoboCupSoccer environment, and a
possible explanation for the lower average performance of the population when compared
to that of the RoboCupSoccer environment as seen in Fig. 11. Since these SimpleSoccer
experiments were performed primarily as a comparison with the RoboCupSoccer
experiments the genetic algorithm parameters were kept the same, but the soccer simulator
implementations differ considerably and no tuning of simulator parameters to ensure
similar performance was performed.

Fig. 11. SimpleSoccer: Average Fitness – Initial 20 Trials

6.3 SimpleSoccer as a Model for RoboCupSoccer
While the difference in the results of the experiments in the RoboCupSoccer and
SimpleSoccer environments indicate that SimpleSoccer is not an exact model of
RoboCupSoccer (as indeed it was not intended to be), there is a broad similarity in the
results which is sufficient to indicate that the SimpleSoccer environment is a good simplified
model of the RoboCupSoccer environment. Because SimpleSoccer is considered a reasonable
model for RoboCupSoccer, and to take advantage of the significantly reduced training times
provided by the SimpleSoccer environment when compared to RoboCupSoccer, all results

0

0.25

0.5

0.75

1

1 5 9 13 17 21 25

Generation

Fi
tn

es
s

Robot Soccer160

evolutionary process. It is evident from Fig. 14 that while a maximum chromosome length
of 100 offers a very slight advantage, it is not significant. This is further substantiated by Fig.
15 which shows the best fitness in the population throughout the evolutionary process. The
results shown indicate that while the method is not sensitive in any significant way to
variations in the maximum chromosome length, a maximum chromosome length of
somewhere between 50 and 100 genes, and most probably between 50 and 75 genes,
produces less variation in the best fitness over the duration of the process.

Fig. 15. Best Fitness: Maximum Chromosome Length Variation

Since the actual chromosome length may vary up to the maximum, the average
chromosome length for each of the variations in maximum length was measured
throughout the evolutionary process, as was the average number of valid rules per
chromosome. These data are shown in Fig. 16 and Fig. 17 respectively. The chromosome
lengths in the initial populations are initialised randomly between the minimum length of
two genes (the smallest number of genes for a valid ruleset) and the maximum chromosome
length, so the average chromosome lengths for the initial population shown in Fig. 16 are as
expected. All trials show the average chromosome length rising in the initial few
generations, then settling to around two-thirds of the maximum length. Given this, and
since single-point crossover was used in these trials, with the cut point chosen randomly
and chromosomes truncated at the maximum length after the cut-and-splice operation, the
results indicate that chromosome length is unaffected by selection pressure. However, Fig.
17 shows the average number of rules per chromosome rising for all of the trials. This would
indicate that there is some selection pressure for more rules per chromosome or shorter
rules, but since the chromosome length is bounded, so is the number of rules per
chromosome. Though outside the scope of this chapter, some further trials to investigate
whether the pressure is for more rules or shorter rules, and the optimum number and/or
length of rules per chromosome, would be useful work to undertake in the future.

1 5 9 13
17

21
25

0

0.25

0.5

0.75

1

Fi
tn

es
s

Generation

50 100 75 30 40

6.4 GA Parameter Determination
Several experiments were conducted in order to determine a set of genetic algorithm
parameters conducive to producing acceptable results. The following GA parameters were
varied in these trials:

 Maximum Chromosome Length
 Population Size
 Selection Method
 Crossover Method
 Mutation Rate
 Maximum Generations

The values for the parameters shown in Table 2 on are used as control values, and in each of
the trials presented in the following sections the value for a single GA parameter is varied.
In the experiments conducted a series of 10 trials was performed for each different value of
the parameter being varied, and in each case, with the exception of the experiment varying
the maximum number of generations, the results presented are the averages of the 10 trials –
each line on the graphs shown represents the average of the 10 trials. For the experiment
varying the maximum number of generations, only 10 trials were conducted, and the results
for each trial is reported individually – each line on the graph represents a single trial.

Fig. 14. Average Fitness: Maximum Chromosome Length Variation

6.4.1 Maximum Chromosome Length
While the actual length of the chromosome, measured as the number of genes on the
chromosome, may vary depending upon the location of the cut point during the cut-and-
splice operation of crossover, the maximum length of the chromosome is fixed throughout
the evolutionary process. In order to determine if the maximum length of the chromosome
is a significant factor in determining the quality of the evolutionary search, and if so what
value is a good value, a series of trials was performed with different maximums for the
chromosome length. Fig. 14 shows the average fitness of the population throughout the

0

0.25

0.5

0.75

1

1 5 9 13 17 21 25
Generation

Fi
tn

es
s

30 40 50 75 100

Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 161

evolutionary process. It is evident from Fig. 14 that while a maximum chromosome length
of 100 offers a very slight advantage, it is not significant. This is further substantiated by Fig.
15 which shows the best fitness in the population throughout the evolutionary process. The
results shown indicate that while the method is not sensitive in any significant way to
variations in the maximum chromosome length, a maximum chromosome length of
somewhere between 50 and 100 genes, and most probably between 50 and 75 genes,
produces less variation in the best fitness over the duration of the process.

Fig. 15. Best Fitness: Maximum Chromosome Length Variation

Since the actual chromosome length may vary up to the maximum, the average
chromosome length for each of the variations in maximum length was measured
throughout the evolutionary process, as was the average number of valid rules per
chromosome. These data are shown in Fig. 16 and Fig. 17 respectively. The chromosome
lengths in the initial populations are initialised randomly between the minimum length of
two genes (the smallest number of genes for a valid ruleset) and the maximum chromosome
length, so the average chromosome lengths for the initial population shown in Fig. 16 are as
expected. All trials show the average chromosome length rising in the initial few
generations, then settling to around two-thirds of the maximum length. Given this, and
since single-point crossover was used in these trials, with the cut point chosen randomly
and chromosomes truncated at the maximum length after the cut-and-splice operation, the
results indicate that chromosome length is unaffected by selection pressure. However, Fig.
17 shows the average number of rules per chromosome rising for all of the trials. This would
indicate that there is some selection pressure for more rules per chromosome or shorter
rules, but since the chromosome length is bounded, so is the number of rules per
chromosome. Though outside the scope of this chapter, some further trials to investigate
whether the pressure is for more rules or shorter rules, and the optimum number and/or
length of rules per chromosome, would be useful work to undertake in the future.

1 5 9 13
17

21
25

0

0.25

0.5

0.75

1

Fi
tn

es
s

Generation

50 100 75 30 40

6.4 GA Parameter Determination
Several experiments were conducted in order to determine a set of genetic algorithm
parameters conducive to producing acceptable results. The following GA parameters were
varied in these trials:

 Maximum Chromosome Length
 Population Size
 Selection Method
 Crossover Method
 Mutation Rate
 Maximum Generations

The values for the parameters shown in Table 2 on are used as control values, and in each of
the trials presented in the following sections the value for a single GA parameter is varied.
In the experiments conducted a series of 10 trials was performed for each different value of
the parameter being varied, and in each case, with the exception of the experiment varying
the maximum number of generations, the results presented are the averages of the 10 trials –
each line on the graphs shown represents the average of the 10 trials. For the experiment
varying the maximum number of generations, only 10 trials were conducted, and the results
for each trial is reported individually – each line on the graph represents a single trial.

Fig. 14. Average Fitness: Maximum Chromosome Length Variation

6.4.1 Maximum Chromosome Length
While the actual length of the chromosome, measured as the number of genes on the
chromosome, may vary depending upon the location of the cut point during the cut-and-
splice operation of crossover, the maximum length of the chromosome is fixed throughout
the evolutionary process. In order to determine if the maximum length of the chromosome
is a significant factor in determining the quality of the evolutionary search, and if so what
value is a good value, a series of trials was performed with different maximums for the
chromosome length. Fig. 14 shows the average fitness of the population throughout the

0

0.25

0.5

0.75

1

1 5 9 13 17 21 25
Generation

Fi
tn

es
s

30 40 50 75 100

Robot Soccer162

0

0.25

0.5

0.75

1

Fi
tn

es
s

25 50 100 200 300 400

Overall, the difference in performance between the population sizes tested is not significant,
suggesting that it is the number of solutions evaluated, or the extent of the search, that is a
significant factor affecting performance. This is consistent with the findings of other work in
the area (Luke 2001).

 0 2000 4000 6000 8000 10000
 Evaluations
Fig. 18. Average Fitness: Population Size Variation

 0
 Evaluations
 10000
Fig. 19. Best Fitness: Population Size Variation

0

0.25

0.5

0.75

1

Fi
tn

es
s

400 300 200 100 50 25

0

25

50

75

1 5 9 13 17 21 25
Generation

Fi
tn

es
s

30 40 50 75 100

Fig. 16. Average Chromosome Length: Maximum Chromosome Length Variation

6.4.2 Population Size
Since the size of the population differs in this experiment, the number of generations was
also varied according to the population size for each set of 10 trials to ensure the comparison
between population sizes was for the same number of evaluations. Fig. 18 shows the
average fitness of the population over 10,000 evaluations, and Fig. 19 shows the best fitness
values for the same trials. It can be seen from the graphs that varying the population size
has little effect on the population average fitness with only marginally better results for
smaller population sizes, and a similarly small effect on individual best fitness, with larger
populations producing slightly more stable results.

Fig. 17. Average Valid Rules per Chromosome: Maximum Chromosome Length Variation

0

2.5

5

7.5

10

1 5 9 13 17 21 25
Generation

Fi
tn

es
s

30 40 50 75 100

N
um

be
r o

f G
en

es

N
um

be
r o

f R
ul

es

Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 163

0

0.25

0.5

0.75

1

Fi
tn

es
s

25 50 100 200 300 400

Overall, the difference in performance between the population sizes tested is not significant,
suggesting that it is the number of solutions evaluated, or the extent of the search, that is a
significant factor affecting performance. This is consistent with the findings of other work in
the area (Luke 2001).

 0 2000 4000 6000 8000 10000
 Evaluations
Fig. 18. Average Fitness: Population Size Variation

 0
 Evaluations
 10000
Fig. 19. Best Fitness: Population Size Variation

0

0.25

0.5

0.75

1

Fi
tn

es
s

400 300 200 100 50 25

0

25

50

75

1 5 9 13 17 21 25
Generation

Fi
tn

es
s

30 40 50 75 100

Fig. 16. Average Chromosome Length: Maximum Chromosome Length Variation

6.4.2 Population Size
Since the size of the population differs in this experiment, the number of generations was
also varied according to the population size for each set of 10 trials to ensure the comparison
between population sizes was for the same number of evaluations. Fig. 18 shows the
average fitness of the population over 10,000 evaluations, and Fig. 19 shows the best fitness
values for the same trials. It can be seen from the graphs that varying the population size
has little effect on the population average fitness with only marginally better results for
smaller population sizes, and a similarly small effect on individual best fitness, with larger
populations producing slightly more stable results.

Fig. 17. Average Valid Rules per Chromosome: Maximum Chromosome Length Variation

0

2.5

5

7.5

10

1 5 9 13 17 21 25
Generation

Fi
tn

es
s

30 40 50 75 100

N
um

be
r o

f G
en

es

N
um

be
r o

f R
ul

es

Robot Soccer164

1 5
9

13
17

21
25

0

0.25

0.5

0.75

1

Fi
tn

es
s

Generation

Tournament Elitist Roulette

0

0.25

0.5

0.75

1

1 5 9 13 17 21 25
Generation

Fi
tn

es
s

One-point Two-point

Fig. 21. Best Fitness: Selection Method Variation

Fig. 22. Average Fitness: Crossover Method Variation

6.4.4 Mutation Rate
To determine the effect of the rate of mutation on the evolutionary process, 10 trials for each
of several mutation rates were performed, and the averages of those trials presented. Fig. 24
shows the population average fitness for each mutation rate tested, and Fig. 25 the best
fitness for those mutation rates throughout the evolutionary search. While varying the
mutation rate has only a marginal effect on the population average fitness and, for the most

0

0.25

0.5

0.75

1

1 5 9 13 17 21 25
Generation

Fi
tn

es
s

Roulette Tournament Elitist

6.4.3 Selection Methods
Trials were conducted to compare the performance of three methods of selection: roulette
wheel selection, tournament selection with tournament size = 2 and tournament selector =
0.75, and elitist selection with 5% retention. The population average fitness for the 10 trials
conducted for each method is shown in Fig. 20, and shows clearly that in terms of the
population average fitness the method of selection is not a significant determinant. Fig. 21
shows the best fitness curves for these trials and shows that the elitist method produces
similar results to the tournament method, with the roulette wheel method producing
slightly less stable results. The good performance of the elitist method is probably due to the
stochastic nature of the environment. Since the placement of the ball and the player is
random, a player evaluated twice would likely be assigned different fitness values for each
evaluation. The elitist method works well in this type of environment, allowing the better
solutions to be evaluated several times thus allowing the reliability of the estimate of fitness
to increase over time.

6.4.4 Crossover Methods
Since the chromosomes involved in crossover may be of different lengths, crossover
methods that assume equal length chromosomes are not defined. The performance of two
methods of crossover was compared: one-point and two-point. Fig. 22 shows the population
average fitness over the duration of the evolutionary process, and Fig. 23 shows the best
fitness values for the same period. It can be seen from this data that there is no meaningful
difference in performance between the two methods, either with respect to the population
average fitness or the best fitness achieved. While two-point crossover is more disruptive
than one-point crossover, it is not clear from this data if a much more disruptive crossover
method, such as uniform crossover, would significantly affect the performance of the
method. It is likely that the messy-coding of the genetic algorithm and the rules-based
nature of the representation causes the method to be somewhat less sensitive to disruptive
crossover.

Fig. 20. Average Fitness: Selection Method Variation

Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 165

1 5
9

13
17

21
25

0

0.25

0.5

0.75

1
Fi

tn
es

s

Generation

Tournament Elitist Roulette

0

0.25

0.5

0.75

1

1 5 9 13 17 21 25
Generation

Fi
tn

es
s

One-point Two-point

Fig. 21. Best Fitness: Selection Method Variation

Fig. 22. Average Fitness: Crossover Method Variation

6.4.4 Mutation Rate
To determine the effect of the rate of mutation on the evolutionary process, 10 trials for each
of several mutation rates were performed, and the averages of those trials presented. Fig. 24
shows the population average fitness for each mutation rate tested, and Fig. 25 the best
fitness for those mutation rates throughout the evolutionary search. While varying the
mutation rate has only a marginal effect on the population average fitness and, for the most

0

0.25

0.5

0.75

1

1 5 9 13 17 21 25
Generation

Fi
tn

es
s

Roulette Tournament Elitist

6.4.3 Selection Methods
Trials were conducted to compare the performance of three methods of selection: roulette
wheel selection, tournament selection with tournament size = 2 and tournament selector =
0.75, and elitist selection with 5% retention. The population average fitness for the 10 trials
conducted for each method is shown in Fig. 20, and shows clearly that in terms of the
population average fitness the method of selection is not a significant determinant. Fig. 21
shows the best fitness curves for these trials and shows that the elitist method produces
similar results to the tournament method, with the roulette wheel method producing
slightly less stable results. The good performance of the elitist method is probably due to the
stochastic nature of the environment. Since the placement of the ball and the player is
random, a player evaluated twice would likely be assigned different fitness values for each
evaluation. The elitist method works well in this type of environment, allowing the better
solutions to be evaluated several times thus allowing the reliability of the estimate of fitness
to increase over time.

6.4.4 Crossover Methods
Since the chromosomes involved in crossover may be of different lengths, crossover
methods that assume equal length chromosomes are not defined. The performance of two
methods of crossover was compared: one-point and two-point. Fig. 22 shows the population
average fitness over the duration of the evolutionary process, and Fig. 23 shows the best
fitness values for the same period. It can be seen from this data that there is no meaningful
difference in performance between the two methods, either with respect to the population
average fitness or the best fitness achieved. While two-point crossover is more disruptive
than one-point crossover, it is not clear from this data if a much more disruptive crossover
method, such as uniform crossover, would significantly affect the performance of the
method. It is likely that the messy-coding of the genetic algorithm and the rules-based
nature of the representation causes the method to be somewhat less sensitive to disruptive
crossover.

Fig. 20. Average Fitness: Selection Method Variation

Robot Soccer166

1 5 9 13 17 21 25

0

0.25

0.5

0.75

1

Fi
tn

es
s

Generation

15% 5% 40% 45% 50%
30% 10% 20% 25% 35%

0

0.25

0.5

0.75

1

1 10 19 28 37 46 55 64 73 82 91 100

Generation

Fi
tn

es
s

Fig. 25. Best Fitness: Mutation Rate Variation

Fig. 26. Average Fitness: 100 Generations

6.4.4 Maximum Generations
In order to determine the effect of allowing the evolutionary process to continue for an
extended time, a series of 10 trials was conducted with each trial continuing the
evolutionary process for 100 generations. Two graphs of the results of these trials are
presented. Fig. 26 shows the average fitness of the population for each of the 10 trials, and it
can be seen that for more than half the trials the average fitness does not improve
significantly after the tenth generation. Fig. 27 shows the best individual fitness from the
population after each generation for each of the trials, and presents a similar scenario to that
of the average fitness values: the best fitness does not improve significantly in most of the

1
5

9
13

17
21

25

0

0.25

0.5

0.75

1

Fi
tn

es
s

Generation

Two-point One-point

0

0.25

0.5

0.75

1

1 4 7 10 13 16 19 22 25
Generation

Fi
tn

es
s

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

part the individual best fitness, a mutation rate of 15% does seem to improve the population
average fitness slightly, and the individual best fitness more markedly. This suggests that a
mutation rate of 15% is the best balance between maintaining sufficient diversity in the
population to help drive the evolutionary process while minimising the disruption to the
good building blocks being created throughout the process.

Fig. 23. Best Fitness: Crossover Method Variation

Fig. 24. Average Fitness: Mutation Rate Variation

Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 167

1 5 9 13 17 21 25

0

0.25

0.5

0.75

1
Fi

tn
es

s

Generation

15% 5% 40% 45% 50%
30% 10% 20% 25% 35%

0

0.25

0.5

0.75

1

1 10 19 28 37 46 55 64 73 82 91 100

Generation

Fi
tn

es
s

Fig. 25. Best Fitness: Mutation Rate Variation

Fig. 26. Average Fitness: 100 Generations

6.4.4 Maximum Generations
In order to determine the effect of allowing the evolutionary process to continue for an
extended time, a series of 10 trials was conducted with each trial continuing the
evolutionary process for 100 generations. Two graphs of the results of these trials are
presented. Fig. 26 shows the average fitness of the population for each of the 10 trials, and it
can be seen that for more than half the trials the average fitness does not improve
significantly after the tenth generation. Fig. 27 shows the best individual fitness from the
population after each generation for each of the trials, and presents a similar scenario to that
of the average fitness values: the best fitness does not improve significantly in most of the

1
5

9
13

17
21

25

0

0.25

0.5

0.75

1

Fi
tn

es
s

Generation

Two-point One-point

0

0.25

0.5

0.75

1

1 4 7 10 13 16 19 22 25
Generation

Fi
tn

es
s

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

part the individual best fitness, a mutation rate of 15% does seem to improve the population
average fitness slightly, and the individual best fitness more markedly. This suggests that a
mutation rate of 15% is the best balance between maintaining sufficient diversity in the
population to help drive the evolutionary process while minimising the disruption to the
good building blocks being created throughout the process.

Fig. 23. Best Fitness: Crossover Method Variation

Fig. 24. Average Fitness: Mutation Rate Variation

Robot Soccer168

0

10

20

30

40

50

1 10 19 28 37 46 55 64 73 82 91 100
Generation

Co
un

t

0

100

200

300

400

1 10 19 28 37 46 55 64 73 82 91 100
Generation

Po
ol

 S
iz

e

Total Gene Pool Unique Premise Pool Unique Consequent Pool

chromosome length, and although the graph shows the number of rules approaching the
upper bound, it has not reached that figure after 100 generations. Though outside the scope
of this chapter, some more experimentation to observe the effect of reaching the upper
bound would be useful work to undertake in the future.

 Per Chromosome: Genes Premises Rules Valid Rules

Fig. 28. Population Composition Mean and Standard Deviation: 100 Generations

Fig. 29. Gene Pools: 100 Generations

The population gene pool sizes throughout the evolutionary process are show in Figure 29.
The graph shows raw numbers of unique premise genes, unique consequent genes, and the
total gene pool available to each generation of individuals. It is evident from the graph that

1 10 19 28 37 46 55 64 73 82 91 100

0

0.25

0.5

0.75

1

Fi
tn

es
s

Generation

trials after the first few generations, though for a small proportion of the trials some
significantly fitter individuals are evolved. These graphs suggest that although for some
instances continuing to allow the population to evolve for an extended period can produce
an improved population average, and that in those instances the best performing
individuals from the population are consistently better, there is no real advantage in
extending the evolutionary process. In almost every case an individual from the first 10 to 15
generations achieved the equal best fitness seen over the 100 generations, so given that the
objective is to find good goal-scoring behaviour there would seem to be no real advantage in
extended evolution of the population. This is a similar to the result reported in (Luke 2001),
where Luke suggests that for some problems genetic programming encounters a critical
point beyond which further evolution yields no improvement. Luke further suggests that
performing many shorter experiments is likely to produce better results than a single very
long experiment.

Fig. 27. Best Fitness: 100 Generations

6.4.5 Gene Pools
The trials reported in the previous section provide an opportunity to study, in broad terms,
the genetic makeup of the population being evolved. For each of the 100 generations, Fig. 28
shows the average number of genes per chromosome, premises per chromosome, rules per
chromosome, and valid rules per chromosome, with standard deviations for each. This
graph shows that average chromosome length does not grow uncontrollably, and in fact
plateaus at about 2/3 the maximum possible length. The average number of rules per
chromosome, and hence the average number of consequents per chromosome, grows
steadily throughout the evolutionary run. This agrees with the data presented earlier for the
maximum chromosome length variation trials. It is interesting to note that the number of
rules per chromosome is still increasing after 100 generations. Since the minimum number
of genes per rule is 2 the number of rules per chromosome is bounded by half the

Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 169

0

10

20

30

40

50

1 10 19 28 37 46 55 64 73 82 91 100
Generation

Co
un

t

0

100

200

300

400

1 10 19 28 37 46 55 64 73 82 91 100
Generation

Po
ol

 S
iz

e

Total Gene Pool Unique Premise Pool Unique Consequent Pool

chromosome length, and although the graph shows the number of rules approaching the
upper bound, it has not reached that figure after 100 generations. Though outside the scope
of this chapter, some more experimentation to observe the effect of reaching the upper
bound would be useful work to undertake in the future.

 Per Chromosome: Genes Premises Rules Valid Rules

Fig. 28. Population Composition Mean and Standard Deviation: 100 Generations

Fig. 29. Gene Pools: 100 Generations

The population gene pool sizes throughout the evolutionary process are show in Figure 29.
The graph shows raw numbers of unique premise genes, unique consequent genes, and the
total gene pool available to each generation of individuals. It is evident from the graph that

1 10 19 28 37 46 55 64 73 82 91 100

0

0.25

0.5

0.75

1

Fi
tn

es
s

Generation

trials after the first few generations, though for a small proportion of the trials some
significantly fitter individuals are evolved. These graphs suggest that although for some
instances continuing to allow the population to evolve for an extended period can produce
an improved population average, and that in those instances the best performing
individuals from the population are consistently better, there is no real advantage in
extending the evolutionary process. In almost every case an individual from the first 10 to 15
generations achieved the equal best fitness seen over the 100 generations, so given that the
objective is to find good goal-scoring behaviour there would seem to be no real advantage in
extended evolution of the population. This is a similar to the result reported in (Luke 2001),
where Luke suggests that for some problems genetic programming encounters a critical
point beyond which further evolution yields no improvement. Luke further suggests that
performing many shorter experiments is likely to produce better results than a single very
long experiment.

Fig. 27. Best Fitness: 100 Generations

6.4.5 Gene Pools
The trials reported in the previous section provide an opportunity to study, in broad terms,
the genetic makeup of the population being evolved. For each of the 100 generations, Fig. 28
shows the average number of genes per chromosome, premises per chromosome, rules per
chromosome, and valid rules per chromosome, with standard deviations for each. This
graph shows that average chromosome length does not grow uncontrollably, and in fact
plateaus at about 2/3 the maximum possible length. The average number of rules per
chromosome, and hence the average number of consequents per chromosome, grows
steadily throughout the evolutionary run. This agrees with the data presented earlier for the
maximum chromosome length variation trials. It is interesting to note that the number of
rules per chromosome is still increasing after 100 generations. Since the minimum number
of genes per rule is 2 the number of rules per chromosome is bounded by half the

Robot Soccer170

0

0.25

0.5

0.75

1

Fi
tn

es
s

Messy GA Random Search

envisaged when first considering the problem. The solution space defined is one populated
by players with mid-level, hand-coded skills available to them, as well as a “smart” default
hunt action, which is a much richer solution space than the one usually envisaged when
considering the problem of evolving goal-scoring behaviour “from scratch”. As evidenced
by the results of the random search shown here, the density of “reasonably good” solutions
in the solution space is sufficiently high that random search will occasionally, and with
some consistency, find one of those “reasonably good” solutions.

 0
 Evaluations
 20000
Fig. 31. Best Fitness: Random Search Comparison

7. Summary and Discussion

The work presented in this chapter has provided an implementation and empirical analysis
of a fuzzy logic-based robot soccer player and the messy-coded genetic algorithm training
algorithm. Several trials were performed to test the capacity of the method to produce goal-
scoring behaviour. The results of the trials performed indicate that the player defined by the
evolved fuzzy rules of the controller is capable of displaying consistent goal-scoring
behaviour. This outcome indicates that for the problem of developing goal-scoring
behaviour in a simulated robot soccer environment, when the initial population is endowed
with a set of mid-level hand-coded skills, taking advantage of the flexible representation
afforded by the messy-coded genetic algorithm and combining that with a fuzzy logic-based
controller enables a fast and efficient search technique to be constructed.
Several experiments were performed to vary the genetic algorithm parameters being
studied. The results of those tests indicate that within the range of the values tested, most
parameters have little effect on the performance of the search. The Maximum Chromosome
Length and Selection Method parameters had a marginal influence over the efficacy of the
search, and although better performance was sometimes achieved after a long period of
evolution, the Maximum Generations parameter is not considered to have a large effect on the
performance of the algorithm after an upper bound of about 15 generations.

0

0.25

0.5

0.75

1

Fi
tn

es
s

Messy GA Random Search

the pool of unique premises falls slowly, but steadily, from the first generation, while the
pool of unique consequent genes stays reasonably constant for close to 40 generations after
an initial decrease. This is not unexpected, and is an indication that some selection pressure
is evident, but that the number of rules remains fairly constant.

6.5 Performance Comparison – GA vs Random Search
In this section, in order to gauge the relative difficulty of the problem, the results obtained
using the messy-coded GA search are compared to results obtained from random search.
The messy-coded GA results shown are the average of the 10 trials conducted for the
“maximum generations” experiments described earlier. The random search technique was
simply the random generation and evaluation of a “population” of 500 individuals repeated
40 times – to equal the number of evaluations completed for the messy-coded GA trials. The
“population” average fitness is shown in Fig. 30, and the best individual fitness at intervals
of 500 evaluations is shown in Fig. 31. The average fitness curves are included only to
illustrate that the genetic algorithm is able to consistently improve the quality of the
population for the duration of the evolutionary process: random search would not be
expected to perform in the same manner. The best fitness curves (Fig. 31) show that
although random search is able to find individuals that exhibit goal-scoring behaviour
(i.e. fitness 5.0), evolutionary search finds better individuals and finds them more
consistently, indicating that evolutionary search is not only a more successful search
technique than random search, it is more robust.

 0 4000 8000 12000 16000 20000
 Evaluations
Fig. 30. Average Fitness: Random Search Comparison

As noted, random search does successfully find individuals with reasonably good goal-
scoring skills. This result is a little surprising at first glance, but on closer inspection of the
problem an explanation does present itself – the problem of finding goal-scoring behaviour
in the solution space defined, whether by evolutionary search or random search, is not as
difficult as it first seems, and this is because the solution space defined is not the one

Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 171

0

0.25

0.5

0.75

1

Fi
tn

es
s

Messy GA Random Search

envisaged when first considering the problem. The solution space defined is one populated
by players with mid-level, hand-coded skills available to them, as well as a “smart” default
hunt action, which is a much richer solution space than the one usually envisaged when
considering the problem of evolving goal-scoring behaviour “from scratch”. As evidenced
by the results of the random search shown here, the density of “reasonably good” solutions
in the solution space is sufficiently high that random search will occasionally, and with
some consistency, find one of those “reasonably good” solutions.

 0
 Evaluations
 20000
Fig. 31. Best Fitness: Random Search Comparison

7. Summary and Discussion

The work presented in this chapter has provided an implementation and empirical analysis
of a fuzzy logic-based robot soccer player and the messy-coded genetic algorithm training
algorithm. Several trials were performed to test the capacity of the method to produce goal-
scoring behaviour. The results of the trials performed indicate that the player defined by the
evolved fuzzy rules of the controller is capable of displaying consistent goal-scoring
behaviour. This outcome indicates that for the problem of developing goal-scoring
behaviour in a simulated robot soccer environment, when the initial population is endowed
with a set of mid-level hand-coded skills, taking advantage of the flexible representation
afforded by the messy-coded genetic algorithm and combining that with a fuzzy logic-based
controller enables a fast and efficient search technique to be constructed.
Several experiments were performed to vary the genetic algorithm parameters being
studied. The results of those tests indicate that within the range of the values tested, most
parameters have little effect on the performance of the search. The Maximum Chromosome
Length and Selection Method parameters had a marginal influence over the efficacy of the
search, and although better performance was sometimes achieved after a long period of
evolution, the Maximum Generations parameter is not considered to have a large effect on the
performance of the algorithm after an upper bound of about 15 generations.

0

0.25

0.5

0.75

1

Fi
tn

es
s

Messy GA Random Search

the pool of unique premises falls slowly, but steadily, from the first generation, while the
pool of unique consequent genes stays reasonably constant for close to 40 generations after
an initial decrease. This is not unexpected, and is an indication that some selection pressure
is evident, but that the number of rules remains fairly constant.

6.5 Performance Comparison – GA vs Random Search
In this section, in order to gauge the relative difficulty of the problem, the results obtained
using the messy-coded GA search are compared to results obtained from random search.
The messy-coded GA results shown are the average of the 10 trials conducted for the
“maximum generations” experiments described earlier. The random search technique was
simply the random generation and evaluation of a “population” of 500 individuals repeated
40 times – to equal the number of evaluations completed for the messy-coded GA trials. The
“population” average fitness is shown in Fig. 30, and the best individual fitness at intervals
of 500 evaluations is shown in Fig. 31. The average fitness curves are included only to
illustrate that the genetic algorithm is able to consistently improve the quality of the
population for the duration of the evolutionary process: random search would not be
expected to perform in the same manner. The best fitness curves (Fig. 31) show that
although random search is able to find individuals that exhibit goal-scoring behaviour
(i.e. fitness 5.0), evolutionary search finds better individuals and finds them more
consistently, indicating that evolutionary search is not only a more successful search
technique than random search, it is more robust.

 0 4000 8000 12000 16000 20000
 Evaluations
Fig. 30. Average Fitness: Random Search Comparison

As noted, random search does successfully find individuals with reasonably good goal-
scoring skills. This result is a little surprising at first glance, but on closer inspection of the
problem an explanation does present itself – the problem of finding goal-scoring behaviour
in the solution space defined, whether by evolutionary search or random search, is not as
difficult as it first seems, and this is because the solution space defined is not the one

Robot Soccer172

Kinoshita, S. and Y. Yamamoto (2000). 11Monkeys Description. Veloso et al., eds,
Proceedings of Robocup-99: Robot Soccer World Cup III. Lecture Notes In
Computer Science, Vol. 1856, p. 550-553, Springer-Verlag, London.

Kitano, H., M. Asada, et al. (1997a). RoboCup: The Robot World Cup Initiative. Proceedings
of the First International Conference on Autonomous Agents, p. 340-347, Marina
Del Rey, CA.

Kitano, H., M. Asada, et al. (1997b). RoboCup: A Challenge Problem for AI. AI Magazine,
18(1): p.73-85. 18.

Kitano, H., M. Tambe, et al. (1997). The RoboCup Synthetic Agent Challenge 97. Proceedings
of the Fifteenth International Joint Conference on Artificial Intelligence, p. 24-29,
Nagoya, Japan.

Klir, G. J. and T. A. Folger (1988). Fuzzy Sets, Uncertainty and Information, Prentice Hall.
Kruse, R., J. Gebhardt, et al. (1994). Foundations of Fuzzy Systems, Wiley.
Kuhlmann, G. and P. Stone (2004). Progress in Learning 3 vs. 2 Keepaway. D. Polani et al.,

eds, RoboCup-2003: Robot Soccer World Cup VII, Springer Verlag, Berlin.
Lazarus, C. and H. Hu (2003). Evolving Goalkeeper Behaviour for Simulated Soccer

Competition. Proceedings of the Third IASTED International Conference on
Artificial Intelligence and Applications, Benalmádena, Spain.

Lima, P., L. Custódio, et al. (2005). RoboCup 2004 Competitions and Symposium: A Small
Kick for Robots, a Giant Score for Science. AI Magazine 6(2). 6.

Luke, S. (1998a). Evolving SoccerBots: A Retrospective. Proceedings of the Twelfth Annual
Conference of the Japanese Society for Artificial Intelligence, Tokyo, Japan.

Luke, S. (1998b). Genetic Programming Produced Competitive Soccer Softbot Teams for
RoboCup97. J. Koza et al., eds, Proceedings of the Third Annual Genetic
Programming Conference, p. 204-222, Morgan Kaufmann, San Francisco.

Luke, S. (2001). When Short Runs Beat Long Runs. Proceedings of the 2001 Genetic and
Evolutionary Computation Conference, p. 74-80, San Francisco CA.

Luke, S., C. Hohn, et al. (1998). Co-evolving Soccer Softbot Team Coordination with Genetic
Programming. H. Kitano, ed., RoboCup-97: Robot Soccer World Cup I. Lecture
Notes in Artificial Intelligence, p. 398-411, Springer-Verlag, Berlin.

Luke, S. and L. Spector (1996). Evolving Teamwork and Coordination with Genetic
Programming. J.R. Koza et al., eds, Proceedings of the First Annual Conference on
Genetic Programming, p. 150-156, Cambridge MA, The MIT Press.

Mamdani, E. and S. Assilian (1975). "An Experiment in Linguistic Synthesis with a Fuzzy
Logic Controller." International Journal of Man-Machine Studies 7(1): 1-13.

Nakashima, T., M. Takatani, et al. (2004). An Evolutionary Approach for Strategy Learning
in RoboCup Soccer. Proceedings of the 2004 IEEE International Conference on
Systems, Man and Cybernetics, Vol. 2, p. 2023-2028.

Noda, I. (1995). Soccer Server: A Simulator of Robocup. Proceedings of AI Symposium '95.
Japanese Society for Artificial Intelligence, pp. 29-34.

Noda, I., H. Matsubara, et al. (1998). "Soccer Server: A Tool for Research on Multiagent
Systems." Applied Artificial Intelligence 12: 233-250.

Noda, I. and P. Stone (2001). The RoboCup Soccer Server and CMUnited: Implemented
Infrastructure for MAS research. T. Wagner and O. Rana, eds, International
Workshop on Infrastructure for Multi-Agent Systems (Agents 2000). Lecture Notes
in Computer Science, p. 94-101, Barcelona, Spain.

8. References

Andre, D. and A. Teller (1999). Evolving Team Darwin United. M. Asada and H. Kitano eds,
RoboCup-98: Robot Soccer World Cup II. Lecture Notes in Computer Science,
Springer-Verlag.

Aronsson, J. (2003). Genetic Programming of Multi-agent System in the RoboCup Domain.
Masters Thesis, Department of Computer Science. Lund, Sweden, Lund Institute of
Technology.

Asada, M., S. Noda, et al. (1996). "Purposive Behavior Acquisition for a Real Robot by
Vision-Based Reinforcement Learning." Machine Learning 23(2-3): 279-203.

Bajurnow, A. and V. Ciesielski (2004). Layered Learning for Evolving Goal Scoring
Behaviour in Soccer Players. G. Greenwood, ed., Proceedings of the 2004 Congress
on Evolutionary Computation, Vol. 2, p. 1828-1835, IEEE.

Balch, T. (2005). Teambots Domain, http://www.teambots.org.
Brooks, R. (1985). Robust Layered Control System for a Mobile Robot. A.I. Memo 864,

Massachusetts Institute of Technology, Artificial Intelligence Laboratory.
Brooks, R. (1991). "Intelligence Without Representation." Artificial Intelligence 47: 139-159.
Castillo, C., M. Lurgi, et al. (2003). Chimps: An Evolutionary Reinforcement Learning

Approach for Soccer Agents. Proceedings of the 2003 IEEE International
Conference on Systems, Man and Cybernetics, Vol. 1, p. 60-65.

Ciesielski, V. and S. Y. Lai (2001). Developing a Dribble-and-Score Behaviour for Robot
Soccer using Neuro Evolution. Proceedings of the Fifth Australia-Japan Joint
Workshop on Intelligent and Evolutionary Systems, p. 70-78, Dunedin, New
Zealand.

Ciesielski, V., D. Mawhinney, et al. (2002). Genetic Programming for Robot Soccer.
Proceedings of the RoboCup 2001 Symposium. Lecture Notes in Artificial
Intelligence, p. 319-324.

Ciesielski, V. and P. Wilson (1999). Developing a Team of Soccer Playing Robots by Genetic
Programming. Proceedings of the Third Australia-Japan Joint Workshop on
Intelligent and Evolutionary Systems, p. 101-108, Canberra, Australia.

Di Pietro, A., L. While, et al. (2002). Learning in RohoCup Keepaway Using Evolutionary
Algorithms. Langdon et al., eds, Proceedings of the Genetic and Evolutionary
Computation Conference, p. 1065-1072, New York, NY, Morgan Kaufmann.

Gustafson, S. M. (2000). Layered Learning in Genetic Programming for a Cooperative Robot
Soccer Problem. Masters Thesis, Department of Computing and Information
Science, College of Engineering. Manhattan, KS, Kansas State University.

Gustafson, S. M. and W. H. Hsu (2001). Layered Learning in Genetic Programming for a Co-
operative Robot Soccer Problem. Proceedings of the Fourth European Conference
on Genetic Programming, Lake Como, Italy, Springer.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, The University
of Michigan Press.

Hsu, W. H., S. J. Harmon, et al. (2004). Empirical Comparison of Incremental Reuse
Strategies in Genetic Programming for Keep-Away Soccer. Late Breaking Papers of
the 2004 Genetic and Evolutionary Computation Conference, Seattle WA.

Jang, J.-S., C.-T. Sun, et al. (1997). Neuro-Fuzzy and Soft Computing, Prentice Hall.
Kandel, A. (1986). Fuzzy Mathematical Techniques with Applications, Addison-Wesley,

Reading MA.

Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 173

Kinoshita, S. and Y. Yamamoto (2000). 11Monkeys Description. Veloso et al., eds,
Proceedings of Robocup-99: Robot Soccer World Cup III. Lecture Notes In
Computer Science, Vol. 1856, p. 550-553, Springer-Verlag, London.

Kitano, H., M. Asada, et al. (1997a). RoboCup: The Robot World Cup Initiative. Proceedings
of the First International Conference on Autonomous Agents, p. 340-347, Marina
Del Rey, CA.

Kitano, H., M. Asada, et al. (1997b). RoboCup: A Challenge Problem for AI. AI Magazine,
18(1): p.73-85. 18.

Kitano, H., M. Tambe, et al. (1997). The RoboCup Synthetic Agent Challenge 97. Proceedings
of the Fifteenth International Joint Conference on Artificial Intelligence, p. 24-29,
Nagoya, Japan.

Klir, G. J. and T. A. Folger (1988). Fuzzy Sets, Uncertainty and Information, Prentice Hall.
Kruse, R., J. Gebhardt, et al. (1994). Foundations of Fuzzy Systems, Wiley.
Kuhlmann, G. and P. Stone (2004). Progress in Learning 3 vs. 2 Keepaway. D. Polani et al.,

eds, RoboCup-2003: Robot Soccer World Cup VII, Springer Verlag, Berlin.
Lazarus, C. and H. Hu (2003). Evolving Goalkeeper Behaviour for Simulated Soccer

Competition. Proceedings of the Third IASTED International Conference on
Artificial Intelligence and Applications, Benalmádena, Spain.

Lima, P., L. Custódio, et al. (2005). RoboCup 2004 Competitions and Symposium: A Small
Kick for Robots, a Giant Score for Science. AI Magazine 6(2). 6.

Luke, S. (1998a). Evolving SoccerBots: A Retrospective. Proceedings of the Twelfth Annual
Conference of the Japanese Society for Artificial Intelligence, Tokyo, Japan.

Luke, S. (1998b). Genetic Programming Produced Competitive Soccer Softbot Teams for
RoboCup97. J. Koza et al., eds, Proceedings of the Third Annual Genetic
Programming Conference, p. 204-222, Morgan Kaufmann, San Francisco.

Luke, S. (2001). When Short Runs Beat Long Runs. Proceedings of the 2001 Genetic and
Evolutionary Computation Conference, p. 74-80, San Francisco CA.

Luke, S., C. Hohn, et al. (1998). Co-evolving Soccer Softbot Team Coordination with Genetic
Programming. H. Kitano, ed., RoboCup-97: Robot Soccer World Cup I. Lecture
Notes in Artificial Intelligence, p. 398-411, Springer-Verlag, Berlin.

Luke, S. and L. Spector (1996). Evolving Teamwork and Coordination with Genetic
Programming. J.R. Koza et al., eds, Proceedings of the First Annual Conference on
Genetic Programming, p. 150-156, Cambridge MA, The MIT Press.

Mamdani, E. and S. Assilian (1975). "An Experiment in Linguistic Synthesis with a Fuzzy
Logic Controller." International Journal of Man-Machine Studies 7(1): 1-13.

Nakashima, T., M. Takatani, et al. (2004). An Evolutionary Approach for Strategy Learning
in RoboCup Soccer. Proceedings of the 2004 IEEE International Conference on
Systems, Man and Cybernetics, Vol. 2, p. 2023-2028.

Noda, I. (1995). Soccer Server: A Simulator of Robocup. Proceedings of AI Symposium '95.
Japanese Society for Artificial Intelligence, pp. 29-34.

Noda, I., H. Matsubara, et al. (1998). "Soccer Server: A Tool for Research on Multiagent
Systems." Applied Artificial Intelligence 12: 233-250.

Noda, I. and P. Stone (2001). The RoboCup Soccer Server and CMUnited: Implemented
Infrastructure for MAS research. T. Wagner and O. Rana, eds, International
Workshop on Infrastructure for Multi-Agent Systems (Agents 2000). Lecture Notes
in Computer Science, p. 94-101, Barcelona, Spain.

8. References

Andre, D. and A. Teller (1999). Evolving Team Darwin United. M. Asada and H. Kitano eds,
RoboCup-98: Robot Soccer World Cup II. Lecture Notes in Computer Science,
Springer-Verlag.

Aronsson, J. (2003). Genetic Programming of Multi-agent System in the RoboCup Domain.
Masters Thesis, Department of Computer Science. Lund, Sweden, Lund Institute of
Technology.

Asada, M., S. Noda, et al. (1996). "Purposive Behavior Acquisition for a Real Robot by
Vision-Based Reinforcement Learning." Machine Learning 23(2-3): 279-203.

Bajurnow, A. and V. Ciesielski (2004). Layered Learning for Evolving Goal Scoring
Behaviour in Soccer Players. G. Greenwood, ed., Proceedings of the 2004 Congress
on Evolutionary Computation, Vol. 2, p. 1828-1835, IEEE.

Balch, T. (2005). Teambots Domain, http://www.teambots.org.
Brooks, R. (1985). Robust Layered Control System for a Mobile Robot. A.I. Memo 864,

Massachusetts Institute of Technology, Artificial Intelligence Laboratory.
Brooks, R. (1991). "Intelligence Without Representation." Artificial Intelligence 47: 139-159.
Castillo, C., M. Lurgi, et al. (2003). Chimps: An Evolutionary Reinforcement Learning

Approach for Soccer Agents. Proceedings of the 2003 IEEE International
Conference on Systems, Man and Cybernetics, Vol. 1, p. 60-65.

Ciesielski, V. and S. Y. Lai (2001). Developing a Dribble-and-Score Behaviour for Robot
Soccer using Neuro Evolution. Proceedings of the Fifth Australia-Japan Joint
Workshop on Intelligent and Evolutionary Systems, p. 70-78, Dunedin, New
Zealand.

Ciesielski, V., D. Mawhinney, et al. (2002). Genetic Programming for Robot Soccer.
Proceedings of the RoboCup 2001 Symposium. Lecture Notes in Artificial
Intelligence, p. 319-324.

Ciesielski, V. and P. Wilson (1999). Developing a Team of Soccer Playing Robots by Genetic
Programming. Proceedings of the Third Australia-Japan Joint Workshop on
Intelligent and Evolutionary Systems, p. 101-108, Canberra, Australia.

Di Pietro, A., L. While, et al. (2002). Learning in RohoCup Keepaway Using Evolutionary
Algorithms. Langdon et al., eds, Proceedings of the Genetic and Evolutionary
Computation Conference, p. 1065-1072, New York, NY, Morgan Kaufmann.

Gustafson, S. M. (2000). Layered Learning in Genetic Programming for a Cooperative Robot
Soccer Problem. Masters Thesis, Department of Computing and Information
Science, College of Engineering. Manhattan, KS, Kansas State University.

Gustafson, S. M. and W. H. Hsu (2001). Layered Learning in Genetic Programming for a Co-
operative Robot Soccer Problem. Proceedings of the Fourth European Conference
on Genetic Programming, Lake Como, Italy, Springer.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, The University
of Michigan Press.

Hsu, W. H., S. J. Harmon, et al. (2004). Empirical Comparison of Incremental Reuse
Strategies in Genetic Programming for Keep-Away Soccer. Late Breaking Papers of
the 2004 Genetic and Evolutionary Computation Conference, Seattle WA.

Jang, J.-S., C.-T. Sun, et al. (1997). Neuro-Fuzzy and Soft Computing, Prentice Hall.
Kandel, A. (1986). Fuzzy Mathematical Techniques with Applications, Addison-Wesley,

Reading MA.

Robot Soccer174

Riedmiller, M., T. Gabel, et al. (2005). Brainstormers 2D - Team Description 2005. Team
Description Papers, Proceedings of RoboCup 2005 (CD) (to appear).

Riedmiller, M., A. Merke, et al. (2001). Karlsruhe Brainstormers - a Reinforcement Learning
Approach to Robotic Soccer. P. Stone, T. Balch and G. Kraetszchmar, eds,
RoboCup-2000: Robot Soccer World Cup IV. Lecture Notes in Artificial
Intelligence., Springer Verlag, Berlin.

Riley, J. (2003). The SimpleSoccer Machine Learning Environment. S.-B. Cho, H. X. Nguen
and Y. Shan, eds, Proceedings of the First Asia-Pacific Workshop on Genetic
Programming, p. 24-30, Canberra, Australia.

Riley, J. (2007). Learning to Play Soccer with the SimpleSoccer Robot Soccer Simulator.
Robotic Soccer. P. Lima. Vienna, I-Tech Education and Publishing,: 281-306.

Stone, P. (1998). Layered Learning in Multiagent Systems. PhD Thesis, Computer Science
Department, Technical Report CMU-CS98-187, Carnegie Mellon University.

Stone, P. and R. Sutton (2001). Scaling Reinforcement Learning Toward RoboCup Soccer.
Proceedings of the Eighteenth International Conference on Machine Learning,
Williamstown MA.

Stone, P., R. S. Sutton, et al. (2005). "Reinforcement Learning for RoboCup-Soccer
Keepaway." Adaptive Behavior 13(3): 165-188.

Stone, P., R. S. Sutton, et al. (2001). Reinforcement Learning for 3 vs. 2 Keepaway. Robocup
2000: Robot Soccer World Cup IV. P. Stone, T.R. Balch, and G.K. Kraetzschmar, eds.
Lecture Notes In Computer Science, vol. 2019, p. 249-258, Springer-Verlag, London.

Stone, P. and M. Veloso (1999). Team-partitioned, Opaque-transition Reinforcement
Learning. Proceedings of the Third International Conference on Autonomous
Agents, Seattle WA.

Stone, P. and M. M. Veloso (2000). Layered Learning. Proceedings of the Eleventh European
Conference on Machine Learning, p. 369-381, Springer, Berlin.

Uchibe, E. (1999). Cooperative Behavior Acquisition by Learning and Evolution in a Multi-
Agent Environment for Mobile Robots. PhD Thesis, Osaka University.

Watkins, C. (1989). Learning from Delayed Rewards. PhD Thesis, King's College, University
of Cambridge.

Whiteson, S., N. Kohl, et al. (2003). Evolving Keepaway Soccer Players through Task
Decomposition. E. Cantu-Paz et al., eds, Genetic and Evolutionary Computation -
GECCO-2003, volume 2723 of Lecture Notes in Computer Science, p. 356-368,
Chicago IL, Spinger-Verlag.

Whiteson, S., N. Kohl, et al. (2005). "Evolving Keepaway Soccer Players through Task
Decomposition." Machine Learning 59: 5-30.

Whiteson, S. and P. Stone (2003). Concurrent Layered Learning. Proceedings of the Second
International Joint Conference on Autonomous Agents and Multiagent Systems, p.
193-200.

Zadeh, L. (1965). "Fuzzy Sets." Journal of Information and Control Vol. 8.

FIRA Mirosot Robot Soccer System Using Fuzzy Logic Algorithms 175

FIRA Mirosot Robot Soccer System Using Fuzzy Logic Algorithms

Elmer A. Maravillas, PhD and Elmer P. Dadios, PhD

X

FIRA Mirosot Robot Soccer System
Using Fuzzy Logic Algorithms

*Elmer A. Maravillas, PhD and **Elmer P. Dadios, PhD

* Cebu Institute Of Technology (CIT), N. Bacalso Avenue, 6000 Cebu City, Philippines
**De La Salle University-Manila, Taft Avenue, 1000 Manila, Philippines

1. Introduction

In November of 1996, the first Micro-Robot World Cup Soccer Tournament (MIROSOT) was
held in Korea participated in by several countries. Three robots per team play soccer on a
130 cm x 150 cm soccer field. There were more than 25 research papers submitted on the
proceedings and technical sessions dealing with various aspects of robot soccer system
development and game control strategies (1996 Micro-Robot World Cup Soccer Tournament
Proceedings, November 9-12, 1996, KAIST, Taejon, KOREA). From then on several robot
soccer tournaments were held in many places of the world.
A robot soccer system is a multi-agent intelligent control system composed of two or more
robots, vision system, communication equipment, and a personal computer. Each robot in
the system has its own movement mechanism and therefore can move independently as
well as cooperate with other robots.
Robot soccer game is an ideal venue for finding solutions to the many challenging problems
facing the multi-agent robotic system. These problems include coordination between robots,
motion planning of robots, recognition of objects visually, obstacle avoidance, and so on
[24]. The robots must be taught different behaviors so that they will be able to react
appropriately in any given situation. These behaviors shall be put into action in
coordination with other robots so that a specific game plan shall be accomplished. It is
therefore imperative that better soccer players (robots) are made to follow a deliberate plan
of action from a module that provides very swift decisions especially in critical situations,
which in a real-time game can mean a difference of many goals [25].
Since 1996 there are already lots of developments in multi-agent robotic system as a result of
the MIROSOT undertaking. The behaviors of robots were improved dramatically as major
breakthroughs in the control system are piling one after another.
This chapter will focus on the development of intelligent behaviors for the Mirosot wheeled
robots to generate human interest in the framework of entertainment using fuzzy logic
algorithms. Algorithms for scorer, goalie, obstacle detection and avoidance will be
developed into the robot soccer system. In addition, a game strategy is also implemented in
real-time using fuzzy logic algorithms.

8

Robot Soccer176

y

F
 u

 z
 z

 i
 f

 i
 c

 a
 t

 i
 o

 n

Inference
Mechanism

D
 e

 f
 u

 z
 z

 i
 f

 i
 c

 a
 t

 i
 o

 n

Rule Base

Scoring
Process Output(x ,y)ball ball

points

Fig. 1. Fuzzy scorer for FIRA Robot Soccer System.

When the ball’s coordinates fall within these ranges, a scoring process will be done to
determine whether a score could be awarded or not. The scoring process will be invoked
only if the ball arrives within the specified areas of the field considered very close to the
goals. Figure 3 shows some of these critical instances on the LEFT goal where the scoring
process could be invoked. The same occurrences could happen on the RIGHT goal. In Figure
3, the ball’s positions show that a greater portion of its body is beyond the goal line towards
the goal area. Since the goal line is imaginary to the human referee, a particular team could
be deprived of a score if the human referee fails to recognize the scoring situation. With
fuzzy scorer, these things are not possible to happen.

Y

X
O

150 cm

10 cm

20 cm

20 cm

20 cm

20 cm

10 cm

65 cm

RIGHTLEFT

goal area
goal area

Y

X
O

LEFT

goal area

goal line

Y

X
O

LEFT

goal area

goal line
ball

ball

Y

X
O

LEFT

goal area

goal line

ball

 (a) (b) (c)

Fig. 2. Cartesian coordinates of FIRA Fig. 3. Examples of critical ball positions
robot soccer system’s playing field. where scoring process could be invoked.

Fuzzy sets map each element of the subsets of the “universe of discourse” to a continuous
membership value (membership grade) ranging from 0 to 1. Input and output entities of a
fuzzy logic system are composed or several maps (also called membership functions) with
varying shapes common of which are, gaussian, triangular, and trapezoidal. Each map is
assigned a linguistic term that best describes a range of values of the input and output
entities. Figures 4 & 5 show the membership functions of the ball’s x-coordinate. CL
functions’ maximum value is placed on the goal line (at 0 cm). Figure 6 shows the
membership functions of the ball’s y-coordinate. CR’s maximum value is located at 65 cm.
The maximum values of LR and UR are placed at the extremities of the goal area. Figure 7

2. Fuzzy Logic FIRA Robot Soccer Game On-line Scorer

Since 1996 when the first FIRA robot soccer world cup tournament was held in South Korea,
scoring for robot soccer games were always done by a human scorer. Because of the
human’s susceptibility to biases and assumptions many researchers have proven that the
reliability of most decisions made by humans is greatly undermined. Therefore faulty
decision-making tends to be present in almost all systems managed by humans employing
only instincts as their tool. In several competitions such as horse racing, dog racing, track
and field, swimming, etc., video camera is used on the finish line to determine the true
winner of hotly contested competition.
The existing FIRA robot soccer system uses a camera also but as a component of its vision
system hardware for locating the positions of the robots and the ball. The information
gathered through this camera is fed to the computer for use in the game strategy adopted by
the competing teams. The decision-making, as far as scoring is concerned, is still made by a
human game official.
This section presents an artificial scoring system for FIRA robot soccer games given the
Cartesian coordinates of the ball. It aims to resolve very contentious scoring situations that a
human scorer will most likely fail to recognize. The system incorporates cheering sounds
and physical coordinated/synchronized movements of robots after a score is made. Fuzzy
logic system is a formal methodology for representing, manipulating, and implementing a
human’s heuristic knowledge about how to make decisions [1,2,3]. Fuzzy logic scorer for
FIRA robot soccer game is an artificial decision maker that operates in real-time. Figure 1
shows the block diagram of the fuzzy logic scorer. The system has four main components:
(1) the “rule-base” holds the knowledge in the form of rules, of how best to score a FIRA
robot soccer game; (2) the inference mechanism evaluates which control rules are relevant at
the current time and then decides what the input to the scoring process should be; (3) the
fuzzification interface simply modifies the inputs so that they can be interpreted and
compared to the rules in the rule base; and (4) the defuzzification interface converts the
conclusions reached by the inference mechanism into inputs to the scoring process. The
fuzzy scorer takes the Cartesian coordinates (x,y) of the ball and output a score (1) or
noscore(0) depending on the points computed by the defuzzification interface which ranges
from 0 to 100. The scoring process receives the value of points and gives output according to
the following:

Figure 2 shows the Cartesian coordinates of FIRA robot soccer system’s soccer field. The
shaded portions of the field indicate the goal areas on both sides. The Cartesian coordinates
for the LEFT goal are –10cm <= x <= 0cm, 45cm <= y <=85cm, and for the RIGHT goal are
150cm <= x <= 160cm, 45cm <= y <= 85cm.

FIRA Mirosot Robot Soccer System Using Fuzzy Logic Algorithms 177

y

F
 u

 z
 z

 i
 f

 i
 c

 a
 t

 i
 o

 n

Inference
Mechanism

D
 e

 f
 u

 z
 z

 i
 f

 i
 c

 a
 t

 i
 o

 n

Rule Base

Scoring
Process Output(x ,y)ball ball

points

Fig. 1. Fuzzy scorer for FIRA Robot Soccer System.

When the ball’s coordinates fall within these ranges, a scoring process will be done to
determine whether a score could be awarded or not. The scoring process will be invoked
only if the ball arrives within the specified areas of the field considered very close to the
goals. Figure 3 shows some of these critical instances on the LEFT goal where the scoring
process could be invoked. The same occurrences could happen on the RIGHT goal. In Figure
3, the ball’s positions show that a greater portion of its body is beyond the goal line towards
the goal area. Since the goal line is imaginary to the human referee, a particular team could
be deprived of a score if the human referee fails to recognize the scoring situation. With
fuzzy scorer, these things are not possible to happen.

Y

X
O

150 cm

10 cm

20 cm

20 cm

20 cm

20 cm

10 cm

65 cm

RIGHTLEFT

goal area
goal area

Y

X
O

LEFT

goal area

goal line

Y

X
O

LEFT

goal area

goal line
ball

ball

Y

X
O

LEFT

goal area

goal line

ball

 (a) (b) (c)

Fig. 2. Cartesian coordinates of FIRA Fig. 3. Examples of critical ball positions
robot soccer system’s playing field. where scoring process could be invoked.

Fuzzy sets map each element of the subsets of the “universe of discourse” to a continuous
membership value (membership grade) ranging from 0 to 1. Input and output entities of a
fuzzy logic system are composed or several maps (also called membership functions) with
varying shapes common of which are, gaussian, triangular, and trapezoidal. Each map is
assigned a linguistic term that best describes a range of values of the input and output
entities. Figures 4 & 5 show the membership functions of the ball’s x-coordinate. CL
functions’ maximum value is placed on the goal line (at 0 cm). Figure 6 shows the
membership functions of the ball’s y-coordinate. CR’s maximum value is located at 65 cm.
The maximum values of LR and UR are placed at the extremities of the goal area. Figure 7

2. Fuzzy Logic FIRA Robot Soccer Game On-line Scorer

Since 1996 when the first FIRA robot soccer world cup tournament was held in South Korea,
scoring for robot soccer games were always done by a human scorer. Because of the
human’s susceptibility to biases and assumptions many researchers have proven that the
reliability of most decisions made by humans is greatly undermined. Therefore faulty
decision-making tends to be present in almost all systems managed by humans employing
only instincts as their tool. In several competitions such as horse racing, dog racing, track
and field, swimming, etc., video camera is used on the finish line to determine the true
winner of hotly contested competition.
The existing FIRA robot soccer system uses a camera also but as a component of its vision
system hardware for locating the positions of the robots and the ball. The information
gathered through this camera is fed to the computer for use in the game strategy adopted by
the competing teams. The decision-making, as far as scoring is concerned, is still made by a
human game official.
This section presents an artificial scoring system for FIRA robot soccer games given the
Cartesian coordinates of the ball. It aims to resolve very contentious scoring situations that a
human scorer will most likely fail to recognize. The system incorporates cheering sounds
and physical coordinated/synchronized movements of robots after a score is made. Fuzzy
logic system is a formal methodology for representing, manipulating, and implementing a
human’s heuristic knowledge about how to make decisions [1,2,3]. Fuzzy logic scorer for
FIRA robot soccer game is an artificial decision maker that operates in real-time. Figure 1
shows the block diagram of the fuzzy logic scorer. The system has four main components:
(1) the “rule-base” holds the knowledge in the form of rules, of how best to score a FIRA
robot soccer game; (2) the inference mechanism evaluates which control rules are relevant at
the current time and then decides what the input to the scoring process should be; (3) the
fuzzification interface simply modifies the inputs so that they can be interpreted and
compared to the rules in the rule base; and (4) the defuzzification interface converts the
conclusions reached by the inference mechanism into inputs to the scoring process. The
fuzzy scorer takes the Cartesian coordinates (x,y) of the ball and output a score (1) or
noscore(0) depending on the points computed by the defuzzification interface which ranges
from 0 to 100. The scoring process receives the value of points and gives output according to
the following:

Figure 2 shows the Cartesian coordinates of FIRA robot soccer system’s soccer field. The
shaded portions of the field indicate the goal areas on both sides. The Cartesian coordinates
for the LEFT goal are –10cm <= x <= 0cm, 45cm <= y <=85cm, and for the RIGHT goal are
150cm <= x <= 160cm, 45cm <= y <= 85cm.

Robot Soccer178

2.1 Incorporating Sounds
Adding sounds to robot soccer games can make the game more entertaining and brings the
game closer to the real world. Sounds can give feedback as an appreciation when a team
scores and as criticism when a team commits foul action on the field.
Different recorded sounds can be played as the game progresses. Instances where playing of
sounds is appropriate are: (1) when robots are executing field demonstrations simulating a
cheering competition music can be played, (2) when a team made a goal a sound of
applause can be played, (3) when a team committed foul a booing sound can be played, (4)
when a team executes a defense strategy a sound shouting defense! Defense! … may be
played, and (5) when a team executes an offense strategy a sound of encouragement may be
played. Sometimes a game situation requires the playing of different tunes at the same time.
Support for playing waveform audio is included in Visual C++. The Windows multimedia
library winmm.lib and the Wave class library give a fast and handy way for adding sound
effects to any Windows 95, Windows 98, or Windows NT application. A class can be created
also to play multiple wave files at the same time. The Wave class is only added to any Visual
C++ project, after linking the winmm.lib, it is now ready to add sound to the application.
There are only three (3) methods required from the Wave class that enables an application to
play sound from given medium. First, the recorded sound must be loaded into memory by
the Load method. Second, the loaded sound will be played by the Play method. Third,
played sound will be stopped by the Stop method [4].
Just like real soccer games, the playing of sounds and robot movements must occur
simultaneously but independent of each other. When a team scores a goal, the robots of such
team celebrates by moving around the robot soccer field while the sound of applause is
playing. These tasks cannot be accomplished in ordinary sequential execution of
components in a program. Because when the sound instructions grab the control of
execution, the robots have to stop or enter in an uncontrollable situation. It is only when the
sound finished playing that the robots gain control of execution. It is at this point that a
separate line of execution is deemed necessary to allow playing of sounds on different
occasions as the game progresses without encroaching on the roles of the robots.
The concept of multithreading is appropriate in this respect. A thread is a path of execution
through a process’ code. A preemptive scheduler inside the operating system divides CPU
time among active threads so that they appear to run simultaneously. Secondary threads are
ideal for performing tasks such as playing sounds while robots are doing their thing on the
robot soccer field.

2.2 Robots Synchronized Movements
When the robots are playing soccer, their movements are not predetermined but depend
most on the position of the ball and the game strategy being applied. However, when robots
celebrate resulting from a score being made, their movements are predetermined so that
proper coordination is attained thus making it more appealing to the audience. Different
paths can be generated and loaded in memory at the start of the game so that they are
readily available when needed. Geometric curves may be used as patterns for these
coordinated movements of robots. Figure 14 shows the robots converging at the center of
the playing field after a score has been made.

shows the membership functions of the consequence. Defuzzification of the relevant
membership functions of the consequence generates a value that will be assigned to points
(0-100) as input to the scoring process. The value of points determines whether a score is to
be awarded or not. It should be noted that the shapes of the membership functions are
products of heuristics (trial and error).

0 3-3

(inside) (close) (far)
IN CL FA

centimeters
1 2 4 5 6-1-2-4-5-6

148 145151

(inside) (close) (far)
IN CL FA

centimeters

147 146 144149150152153154155160 ...

Fig. 4. Membership functions of Fig. 5. Membership functions of ball’s
 ball’s X-coordinate. X-coordinate.

Reliable scoring decisions are made only when there is a clear outline of the set of rules
provided by experts. Inputs are associated with each other from which a consequence will
be assigned. The table that shows the consequences resulting from all possible associations
of the input quantities is called the fuzzy associative memory (FAM) which represents the
rule base of the fuzzy logic scorer. Table 1 shows the FAM of the fuzzy logic scorer.
The rules whose antecedents have membership function values greater than zero participate
in the defuzzification process using their individual consequences to determine the points to
be used in the scoring process.

65

(lower)
(near lower)

(upper)
LR NL UR

centimeters
75 855545

CR
(center)

 NU

(near upper)

8050

50

(poor)

(need
improvement)

(very good)
PR NI VG

centimeters
75 100250

AV
(average)

SA

(satisfactory)

Fig. 6. Membership functions of Fig. 7. Membership functions
 ball’s Y-coordinate. of consequence.

Ba
ll’

s
x-

co
or

di
na

te
s

Ball’s y-coordinates

 LR NL CR NU UR

IN VG VG VG VG VG

CL NI AV SA AV NI

FA PR NI AV NI PR
Table 1. Fuzzy logic scorer fuzzy associative memory (FAM).

FIRA Mirosot Robot Soccer System Using Fuzzy Logic Algorithms 179

2.1 Incorporating Sounds
Adding sounds to robot soccer games can make the game more entertaining and brings the
game closer to the real world. Sounds can give feedback as an appreciation when a team
scores and as criticism when a team commits foul action on the field.
Different recorded sounds can be played as the game progresses. Instances where playing of
sounds is appropriate are: (1) when robots are executing field demonstrations simulating a
cheering competition music can be played, (2) when a team made a goal a sound of
applause can be played, (3) when a team committed foul a booing sound can be played, (4)
when a team executes a defense strategy a sound shouting defense! Defense! … may be
played, and (5) when a team executes an offense strategy a sound of encouragement may be
played. Sometimes a game situation requires the playing of different tunes at the same time.
Support for playing waveform audio is included in Visual C++. The Windows multimedia
library winmm.lib and the Wave class library give a fast and handy way for adding sound
effects to any Windows 95, Windows 98, or Windows NT application. A class can be created
also to play multiple wave files at the same time. The Wave class is only added to any Visual
C++ project, after linking the winmm.lib, it is now ready to add sound to the application.
There are only three (3) methods required from the Wave class that enables an application to
play sound from given medium. First, the recorded sound must be loaded into memory by
the Load method. Second, the loaded sound will be played by the Play method. Third,
played sound will be stopped by the Stop method [4].
Just like real soccer games, the playing of sounds and robot movements must occur
simultaneously but independent of each other. When a team scores a goal, the robots of such
team celebrates by moving around the robot soccer field while the sound of applause is
playing. These tasks cannot be accomplished in ordinary sequential execution of
components in a program. Because when the sound instructions grab the control of
execution, the robots have to stop or enter in an uncontrollable situation. It is only when the
sound finished playing that the robots gain control of execution. It is at this point that a
separate line of execution is deemed necessary to allow playing of sounds on different
occasions as the game progresses without encroaching on the roles of the robots.
The concept of multithreading is appropriate in this respect. A thread is a path of execution
through a process’ code. A preemptive scheduler inside the operating system divides CPU
time among active threads so that they appear to run simultaneously. Secondary threads are
ideal for performing tasks such as playing sounds while robots are doing their thing on the
robot soccer field.

2.2 Robots Synchronized Movements
When the robots are playing soccer, their movements are not predetermined but depend
most on the position of the ball and the game strategy being applied. However, when robots
celebrate resulting from a score being made, their movements are predetermined so that
proper coordination is attained thus making it more appealing to the audience. Different
paths can be generated and loaded in memory at the start of the game so that they are
readily available when needed. Geometric curves may be used as patterns for these
coordinated movements of robots. Figure 14 shows the robots converging at the center of
the playing field after a score has been made.

shows the membership functions of the consequence. Defuzzification of the relevant
membership functions of the consequence generates a value that will be assigned to points
(0-100) as input to the scoring process. The value of points determines whether a score is to
be awarded or not. It should be noted that the shapes of the membership functions are
products of heuristics (trial and error).

0 3-3

(inside) (close) (far)
IN CL FA

centimeters
1 2 4 5 6-1-2-4-5-6

148 145151

(inside) (close) (far)
IN CL FA

centimeters

147 146 144149150152153154155160 ...

Fig. 4. Membership functions of Fig. 5. Membership functions of ball’s
 ball’s X-coordinate. X-coordinate.

Reliable scoring decisions are made only when there is a clear outline of the set of rules
provided by experts. Inputs are associated with each other from which a consequence will
be assigned. The table that shows the consequences resulting from all possible associations
of the input quantities is called the fuzzy associative memory (FAM) which represents the
rule base of the fuzzy logic scorer. Table 1 shows the FAM of the fuzzy logic scorer.
The rules whose antecedents have membership function values greater than zero participate
in the defuzzification process using their individual consequences to determine the points to
be used in the scoring process.

65

(lower)
(near lower)

(upper)
LR NL UR

centimeters
75 855545

CR
(center)

 NU

(near upper)

8050

50

(poor)

(need
improvement)

(very good)
PR NI VG

centimeters
75 100250

AV
(average)

SA

(satisfactory)

Fig. 6. Membership functions of Fig. 7. Membership functions
 ball’s Y-coordinate. of consequence.

Ba
ll’

s
x-

co
or

di
na

te
s

Ball’s y-coordinates

 LR NL CR NU UR

IN VG VG VG VG VG

CL NI AV SA AV NI

FA PR NI AV NI PR
Table 1. Fuzzy logic scorer fuzzy associative memory (FAM).

Robot Soccer180

Fig. 10. Fuzzy scorer performance on the left side lower extreme portion of goal area.

Fig. 11. Fuzzy scorer performance on the right side upper extreme portion of goal area.

Fuzzy Scorer (Y: Right side middle of
goal area)

135
140
145
150
155
160

37
.5

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

76
.5

Points

B
al

l's
 x

-c
oo

rd
in

at
es

,
cm

Fig. 12. Fuzzy scorer performance on the right side middle portion of goal area.

2.3 Experimental Results Of Scorer
Figures 8 to 10 show the performance of the fuzzy scorer on the left goal of the playing field.
Three experiments were conducted on the left goal, namely, on the upper portion of the goal
where the ball is made to approach the goal area with yball > 75, another where yball = 65 ± 5,
and another with yball < 55. The figures show the values of points, output of the
defuzzification interface, as the ball approaches the goal line towards the goal area. Values
of points equal or greater than 85 means that the scorer have decided it is a score.
Experiments show that as the ball crosses the goal line (xball = 0), the fuzzy scorer gives
points values that translate to a score.
The above experiments were also done on the right side goal of the playing field the results
of which are shown on Figures 11 to 13. Consistent with the results of the above
experiments, the fuzzy scorer gives points values that also translate to score as the ball
passes thru the goal line (xball = 150) towards the goal area.
Figure 14 shows the coordinated movements of the robots after their attacker made a score.
These actuations mimic the behavior of a human soccer player after making a score.

Fuzzy Scorer (Y: Left side upper
extreme of goal area)

-10

-5

0

5

10

18 68 10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0 90 58 28

Points

B
al

l's
 x

-c
oo

rd
in

at
e,

 c
m

Fig. 8. Fuzzy scorer performance on the left side upper extreme portion of goal area.

Fuzzy Scorer (Y: Left side middle of goal area)

-12
-10
-8
-6
-4
-2
0
2
4
6

0.
74 10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

Points

B
al

l's
 x

-c
oo

rd
in

at
e

Fig. 9. Fuzzy scorer performance on the left side portion of goal area.

FIRA Mirosot Robot Soccer System Using Fuzzy Logic Algorithms 181

Fig. 10. Fuzzy scorer performance on the left side lower extreme portion of goal area.

Fig. 11. Fuzzy scorer performance on the right side upper extreme portion of goal area.

Fuzzy Scorer (Y: Right side middle of
goal area)

135
140
145
150
155
160

37
.5

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

76
.5

Points

B
al

l's
 x

-c
oo

rd
in

at
es

,
cm

Fig. 12. Fuzzy scorer performance on the right side middle portion of goal area.

2.3 Experimental Results Of Scorer
Figures 8 to 10 show the performance of the fuzzy scorer on the left goal of the playing field.
Three experiments were conducted on the left goal, namely, on the upper portion of the goal
where the ball is made to approach the goal area with yball > 75, another where yball = 65 ± 5,
and another with yball < 55. The figures show the values of points, output of the
defuzzification interface, as the ball approaches the goal line towards the goal area. Values
of points equal or greater than 85 means that the scorer have decided it is a score.
Experiments show that as the ball crosses the goal line (xball = 0), the fuzzy scorer gives
points values that translate to a score.
The above experiments were also done on the right side goal of the playing field the results
of which are shown on Figures 11 to 13. Consistent with the results of the above
experiments, the fuzzy scorer gives points values that also translate to score as the ball
passes thru the goal line (xball = 150) towards the goal area.
Figure 14 shows the coordinated movements of the robots after their attacker made a score.
These actuations mimic the behavior of a human soccer player after making a score.

Fuzzy Scorer (Y: Left side upper
extreme of goal area)

-10

-5

0

5

10

18 68 10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0 90 58 28

Points

B
al

l's
 x

-c
oo

rd
in

at
e,

 c
m

Fig. 8. Fuzzy scorer performance on the left side upper extreme portion of goal area.

Fuzzy Scorer (Y: Left side middle of goal area)

-12
-10
-8
-6
-4
-2
0
2
4
6

0.
74 10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

Points

B
al

l's
 x

-c
oo

rd
in

at
e

Fig. 9. Fuzzy scorer performance on the left side portion of goal area.

Robot Soccer182

characterized by different goalie-ball situations and will be handled by a separate rule-base.
The first fuzzy system takes the x-coordinates of the robot and the ball then outputs the
category number that determines the rule-base to be used in the second fuzzy system. The
second fuzzy system handles the goalie’s movements. It takes the current y-coordinate of
the goalie-robot and the ball then outputs the y-coordinate of the goalie’s next position
(destination) which is located along its line-of-action (a line with predefined x-coordinate
where the goalie moves back and forth just in front of the goal it is defending). Experiment
shows that this strategy is feasible, efficient, and robust.
Robot soccer games are scored by the number of times the ball actually entered the
opponent goal. The entity that is tasked to prevent the ball from entering the goal is called
the goalie. The goalie plays a very vital role in the game since a weak goalie means a lost
game. It moves over an area just in front of the goal, called goal area, to block and clear the
ball out from this area. Thus, preventing the opponent team from scoring.
Conventional goalie strategies [5,6,7,8] would use mathematics to predict the next position
of the ball and subsequently generates a path to block it. But the data utilized in the
mathematical process are imprecise in the sense that they are the result of the image
processing procedure of the robot soccer vision system that is laden with varying degrees of
imperfections aside from the fact that robot soccer is a very dynamic system. Thus, the
results would have far-reaching effects on the actual performance of the goalie robot.
In [6], the goalie predicts the point of intersection between the goalline and the path of the
ball and moves to it to block the ball when it threatens to enter the goal. When the ball is far
from the goal area, the goalie moves to the center of the goalline. If the ball is blocked and
sticks on the goalie, the goalie makes a spin move to drive the ball away from the goal area.
This move is a bit dangerous because the possibility of having the ball driven to its own goal
is present. Four states are assumed by the goalie in [7]. The first state is assumed when the
game begins by moving the goalie to the center of the goal. The second state is assumed
when the point of entry of the moving ball towards the goal is predicted and so the goalie
moves to that point. The third state is assumed when the ball and the center point of the
goal are connected that it is necessary for the goalie to move between this connection. The
last state is assumed when the ball is in the goal area that the goalie has to kick it out. The
goalie strategy described in [8] places the goalie in front of the goal until the ball arrives at
the goal area. The goalie would follow the ball location in the y direction when the ball is
outside the goal area. The goalie would move towards the ball as soon as the ball enters the
goal area.
The goalie strategies discussed above do have some of the necessary qualities of an effective
goal defender. What is lacking however is the fact that these strategies do not provide
solution when the goalie is trapped and do not prevent the goalie from pushing the ball
towards its own goal. This paper offers an encompassing solution to all possible problems
that may prevent the goalie from performing its task of defending the goal effectively. The
use of fuzzy logic systems in determining the next position of the goalie not only take care of
the imprecise data to dampen its negative effects but also provide sufficient measures to
counter the countless possibilities that might confront the goalie.

3.1 Description of the Goalie Function
The importance of the goalie’s task in defending the goal cannot be overemphasized.
Experience tells us that the most effective way to defend the goal is to have the goalie move

Fuzzy Scorer (Y: Right Side lower extreme
of goal area)

130
140
150
160
170

12
.5

33
.5

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

84
.2

77
.1

47
.4

48
.4

37
.5

Points

B
al

l's
 x

-
co

or
di

na
te

s,
 c

m

Fig. 13. Fuzzy scorer performance on the right side lower extreme portion of goal area.

Fuzzy Scorer Performance

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160

Play Field's X-axis

Pla
y F

ied
's

Y-
ax

is

Ball Robot1 Robot2 Robot3

Goal Area

Robots' final positions
Converging at the center

Attacker kicks the ball

Fig. 14. Fuzzy scorer performance showing coordinated movement of robots by converging
at the center after the attacker made a score.

The performance of the fuzzy scorer is greatly dependent on the shapes of the membership
functions of xball and yball. Inaccurate adjustment of these shapes would result in a score even
if the ball has not yet touched the goal line or no score in spite of the ball’s being inside the
goal area. The speed of the ball can also affect the performance of the fuzzy scorer. If the ball
crosses the goal line at high speed, a situation that seldom happens in actual games, the
vision system of the robot soccer will not be reliable enough in tracking the ball’s position
since its frame grabbing speed is constant. This will cause the fuzzy scorer to decide
affirmatively a little late, that is, when the ball is already few units from the goal line
towards the goal area.
The performance on synchronized movements of the robots after a score is made, depends
on the ability of the robots to follow exactly the path design. The robots have difficulty in
positioning themselves on the different points that composes the designated path. Actually,
the robots cannot be perfectly positioned on the points where we want them to be. But the
closeness of the robots to these points can be optimized.

3. Soccer Robot Goalie Strategy Using Fuzzy Logic

This section presents a control strategy for the FIRA robot soccer game goalie using fuzzy
logic systems. This strategy adopts the divide and conquer concept by decomposing the
goalie’s task of defending the goal into four (4) categories. Consequently, each category is

FIRA Mirosot Robot Soccer System Using Fuzzy Logic Algorithms 183

characterized by different goalie-ball situations and will be handled by a separate rule-base.
The first fuzzy system takes the x-coordinates of the robot and the ball then outputs the
category number that determines the rule-base to be used in the second fuzzy system. The
second fuzzy system handles the goalie’s movements. It takes the current y-coordinate of
the goalie-robot and the ball then outputs the y-coordinate of the goalie’s next position
(destination) which is located along its line-of-action (a line with predefined x-coordinate
where the goalie moves back and forth just in front of the goal it is defending). Experiment
shows that this strategy is feasible, efficient, and robust.
Robot soccer games are scored by the number of times the ball actually entered the
opponent goal. The entity that is tasked to prevent the ball from entering the goal is called
the goalie. The goalie plays a very vital role in the game since a weak goalie means a lost
game. It moves over an area just in front of the goal, called goal area, to block and clear the
ball out from this area. Thus, preventing the opponent team from scoring.
Conventional goalie strategies [5,6,7,8] would use mathematics to predict the next position
of the ball and subsequently generates a path to block it. But the data utilized in the
mathematical process are imprecise in the sense that they are the result of the image
processing procedure of the robot soccer vision system that is laden with varying degrees of
imperfections aside from the fact that robot soccer is a very dynamic system. Thus, the
results would have far-reaching effects on the actual performance of the goalie robot.
In [6], the goalie predicts the point of intersection between the goalline and the path of the
ball and moves to it to block the ball when it threatens to enter the goal. When the ball is far
from the goal area, the goalie moves to the center of the goalline. If the ball is blocked and
sticks on the goalie, the goalie makes a spin move to drive the ball away from the goal area.
This move is a bit dangerous because the possibility of having the ball driven to its own goal
is present. Four states are assumed by the goalie in [7]. The first state is assumed when the
game begins by moving the goalie to the center of the goal. The second state is assumed
when the point of entry of the moving ball towards the goal is predicted and so the goalie
moves to that point. The third state is assumed when the ball and the center point of the
goal are connected that it is necessary for the goalie to move between this connection. The
last state is assumed when the ball is in the goal area that the goalie has to kick it out. The
goalie strategy described in [8] places the goalie in front of the goal until the ball arrives at
the goal area. The goalie would follow the ball location in the y direction when the ball is
outside the goal area. The goalie would move towards the ball as soon as the ball enters the
goal area.
The goalie strategies discussed above do have some of the necessary qualities of an effective
goal defender. What is lacking however is the fact that these strategies do not provide
solution when the goalie is trapped and do not prevent the goalie from pushing the ball
towards its own goal. This paper offers an encompassing solution to all possible problems
that may prevent the goalie from performing its task of defending the goal effectively. The
use of fuzzy logic systems in determining the next position of the goalie not only take care of
the imprecise data to dampen its negative effects but also provide sufficient measures to
counter the countless possibilities that might confront the goalie.

3.1 Description of the Goalie Function
The importance of the goalie’s task in defending the goal cannot be overemphasized.
Experience tells us that the most effective way to defend the goal is to have the goalie move

Fuzzy Scorer (Y: Right Side lower extreme
of goal area)

130
140
150
160
170

12
.5

33
.5

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

84
.2

77
.1

47
.4

48
.4

37
.5

Points

B
al

l's
 x

-
co

or
di

na
te

s,
 c

m

Fig. 13. Fuzzy scorer performance on the right side lower extreme portion of goal area.

Fuzzy Scorer Performance

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160

Play Field's X-axis

Pla
y F

ied
's

Y-
ax

is

Ball Robot1 Robot2 Robot3

Goal Area

Robots' final positions
Converging at the center

Attacker kicks the ball

Fig. 14. Fuzzy scorer performance showing coordinated movement of robots by converging
at the center after the attacker made a score.

The performance of the fuzzy scorer is greatly dependent on the shapes of the membership
functions of xball and yball. Inaccurate adjustment of these shapes would result in a score even
if the ball has not yet touched the goal line or no score in spite of the ball’s being inside the
goal area. The speed of the ball can also affect the performance of the fuzzy scorer. If the ball
crosses the goal line at high speed, a situation that seldom happens in actual games, the
vision system of the robot soccer will not be reliable enough in tracking the ball’s position
since its frame grabbing speed is constant. This will cause the fuzzy scorer to decide
affirmatively a little late, that is, when the ball is already few units from the goal line
towards the goal area.
The performance on synchronized movements of the robots after a score is made, depends
on the ability of the robots to follow exactly the path design. The robots have difficulty in
positioning themselves on the different points that composes the designated path. Actually,
the robots cannot be perfectly positioned on the points where we want them to be. But the
closeness of the robots to these points can be optimized.

3. Soccer Robot Goalie Strategy Using Fuzzy Logic

This section presents a control strategy for the FIRA robot soccer game goalie using fuzzy
logic systems. This strategy adopts the divide and conquer concept by decomposing the
goalie’s task of defending the goal into four (4) categories. Consequently, each category is

Robot Soccer184

the line is extended to the line-of-action of the goalie by finding their point of intersection. If
the point of intersection falls in front of the home goal, the goalie has to move ahead to this
point to be able to block the ball there. When the slope of the path of the moving ball is
infinity, it means that the direction of the ball is vertical and the goalie would have to block
the connection of the ball to any point of the goal by following the ball in the y direction.

3.3 Goalie Fuzzy Logic System
The objective of goalie fuzzy logic system is to generate the y-coordinate of the goalie’s next
position given its current position and the ball’s. The line-of-action of the goalie is
predefined therefore the point of its next position, where the y-coordinate is output of the
fuzzy logic system, lies on this line. The block diagram of the fuzzy logic system used in this
research is shown in Figure 19. The goalie moves back-and-forth on its line-of-action so its x-
coordinate (X in Figure 19) is predefined and it is fed directly to the goalie. The
determination of the y-coordinate for the goalie’s next position begins by feeding the x-
coordinates of the goalie and ball (Xb and Xr) to the first fuzzy system which outputs the
rule-base number that will be used in the second fuzzy system. The y-coordinates of the ball
and goalie (Yb and Yr) are inputs to the second fuzzy system that outputs the y-coordinate
of the goalie’s next position.

Fig. 19. Goalie’s fuzzy logic system block diagram.

3.4 Membership Functions
Table 2 shows the variables used to represent the membership functions (fuzzy sets) of the
goalie fuzzy logic system with their corresponding linguistic definitions to describe the
system’s behavior.

back-and-forth along a specified line (line-of-action) just in front of the goal without ever
changing its orientation on it (the goalie should either be oriented 900 or 2700 with respect to
the x-axis). This means that if the goalie happens to be moderately far from its line-of-action,
it should return immediately to it but with careful consideration on the ball’s position.

Fig. 15. Category 1 goalie and ball situation. Fig. 16. Category 2 goalie and ball situation.

When the goalie is on its line-of-action as shown in Figure 15, it can block the moving ball by
moving ahead to the position (along the goalie’s line-of-action) where the ball is supposed to
enter. This is referred to as category 1. However, when the ball is sensed to be within the
goal area, as shown Figure 16, the goalie immediately kicks the ball out as it is about to cross
the line-of-action and immediately moves back to prevent from being blocked by an
opponent robot. This is referred to as category 2.
As shown in Figure 17, the goalie is far from its line of action so it has to be returned back to
it but the point where the robot should enter must be carefully chosen so as not to
accidentally push the ball into its own goal if it happens to be around. Otherwise, if the ball
is not in the goal area, the goalie can go back to its line-of-action on the point nearest it. This
is referred to as category 3. When the goalie is trapped in its own goal as shown in Figure
18, it has to move back to its line-of-action immediately to block or kick the ball out. This
situation is referred to as category 4.

Fig. 17. Category 3 goalie and ball situation. Fig. 18. Category 4 goalie and ball situation.

3.2 Predicting the Position of the Moving Ball
For category 1 goalie-ball situation, the strategy predicts the point where the ball would
intersect along the line-of-action of the goalie (see Figure 15). By inspection the path of the
moving ball is always a series of straight lines. Being so, it only requires two points to sense
the direction of the ball at any given time and that is by knowing its current and previous
positions. When the difference between the x-coordinates of the former and the latter is
increasing, the goalie doesn’t have to worry because the ball is going away from the home
goal. Otherwise, the slope of the line connecting these two points can be computed and then

FIRA Mirosot Robot Soccer System Using Fuzzy Logic Algorithms 185

the line is extended to the line-of-action of the goalie by finding their point of intersection. If
the point of intersection falls in front of the home goal, the goalie has to move ahead to this
point to be able to block the ball there. When the slope of the path of the moving ball is
infinity, it means that the direction of the ball is vertical and the goalie would have to block
the connection of the ball to any point of the goal by following the ball in the y direction.

3.3 Goalie Fuzzy Logic System
The objective of goalie fuzzy logic system is to generate the y-coordinate of the goalie’s next
position given its current position and the ball’s. The line-of-action of the goalie is
predefined therefore the point of its next position, where the y-coordinate is output of the
fuzzy logic system, lies on this line. The block diagram of the fuzzy logic system used in this
research is shown in Figure 19. The goalie moves back-and-forth on its line-of-action so its x-
coordinate (X in Figure 19) is predefined and it is fed directly to the goalie. The
determination of the y-coordinate for the goalie’s next position begins by feeding the x-
coordinates of the goalie and ball (Xb and Xr) to the first fuzzy system which outputs the
rule-base number that will be used in the second fuzzy system. The y-coordinates of the ball
and goalie (Yb and Yr) are inputs to the second fuzzy system that outputs the y-coordinate
of the goalie’s next position.

Fig. 19. Goalie’s fuzzy logic system block diagram.

3.4 Membership Functions
Table 2 shows the variables used to represent the membership functions (fuzzy sets) of the
goalie fuzzy logic system with their corresponding linguistic definitions to describe the
system’s behavior.

back-and-forth along a specified line (line-of-action) just in front of the goal without ever
changing its orientation on it (the goalie should either be oriented 900 or 2700 with respect to
the x-axis). This means that if the goalie happens to be moderately far from its line-of-action,
it should return immediately to it but with careful consideration on the ball’s position.

Fig. 15. Category 1 goalie and ball situation. Fig. 16. Category 2 goalie and ball situation.

When the goalie is on its line-of-action as shown in Figure 15, it can block the moving ball by
moving ahead to the position (along the goalie’s line-of-action) where the ball is supposed to
enter. This is referred to as category 1. However, when the ball is sensed to be within the
goal area, as shown Figure 16, the goalie immediately kicks the ball out as it is about to cross
the line-of-action and immediately moves back to prevent from being blocked by an
opponent robot. This is referred to as category 2.
As shown in Figure 17, the goalie is far from its line of action so it has to be returned back to
it but the point where the robot should enter must be carefully chosen so as not to
accidentally push the ball into its own goal if it happens to be around. Otherwise, if the ball
is not in the goal area, the goalie can go back to its line-of-action on the point nearest it. This
is referred to as category 3. When the goalie is trapped in its own goal as shown in Figure
18, it has to move back to its line-of-action immediately to block or kick the ball out. This
situation is referred to as category 4.

Fig. 17. Category 3 goalie and ball situation. Fig. 18. Category 4 goalie and ball situation.

3.2 Predicting the Position of the Moving Ball
For category 1 goalie-ball situation, the strategy predicts the point where the ball would
intersect along the line-of-action of the goalie (see Figure 15). By inspection the path of the
moving ball is always a series of straight lines. Being so, it only requires two points to sense
the direction of the ball at any given time and that is by knowing its current and previous
positions. When the difference between the x-coordinates of the former and the latter is
increasing, the goalie doesn’t have to worry because the ball is going away from the home
goal. Otherwise, the slope of the line connecting these two points can be computed and then

Robot Soccer186

Fig. 22. Membership functions category.

3.5 Fuzzy Associative Memory (FAM) For The Goalie
Tables 3, 4, 5, 6, and 7 show the FAMs (fuzzy associative memory or rule-base) of the first
and second fuzzy logic systems of the goalie. They contain the sets of rules provided by
experts in associating the antecedents in order to generate the consequence. Logical
implications are utilized in formulating these rules like as follows:
(1) IF Yr is SD(slightly down) AND Yb is GU(going up) THEN Y is GU(going up) or SD Ù
GU or GU
(2) IF Yr is GU(going up) AND Yb is TP(top) THEN Y is SU(slightly up) or GU Ù TP or SU
and so on…
The rules whose antecedents have membership function values greater than zero participate
in the defuzzification process using their individual consequences. Looking at Table 5, there
are cells that are empty. This is because Table 5 is a rule-base used by the second fuzzy
system for category 4 which is a trap situation for the goalie. That is, the goalie is inside the
goal and is being restraint by the goal’s boundary walls. This means that the goalie’s Yr
cannot go beyond SD and SU.

Table 3. Fuzzy Associative Memory (FAM) Table 4. Fuzzy Associative Memory (FAM) for
category 1. for category 2 of the second fuzzy system.

Figure 20 shows the membership functions for the x-coordinates of the ball and the goalie
used in the first fuzzy logic system of the goalie. Please refer to Table 2 for the variables’
descriptions. In Figure 6 the minimum crisp value of SO is pegged at 4 cm from the goal-
line (at 0 cm) instead at the goal-line itself to ensure that when the goalie goes closer to the
goal-line than 4 cm, the first fuzzy logic system declares it as a trap situation (category 4)
and the second fuzzy logic system utilizes the rule-base 4 for the goalie’s movement.
Similarly, the minimum crisp value of MO is pegged at 7 cm to ensure that the goalie kicks
the ball out when the ball is in the goal area.

X-coordinates (Xb and Xr) Y-coordinates (Yb and Yr)
Category (1,2,3,or
4)

IN: Inside the goal
SI: Slightly inside the goal
ZO: At x=0
SO: Slightly outside the
goal
MO: Moderately outside
the goal
FO: Far outside the goal
VF: Very far from the goal

DN: Down the origin y=0
MD: Moderately down the origin
SD: Slightly down the origin
GD: Going down the origin
CR: At y-coordinate’s center line
GU: Going up
SU: Slightly up
MU: Moderately up
TP: Top or at maximum value of y-
coordinate

ONE: Category
number 1
TWO: Category
number 2
TRE: Category
number 3
FOR: Category
number 4

Table 2. Variables used in the membership functions.

Figure 20 shows the membership functions for the x-coordinates of the ball and the goalie
used in the first fuzzy logic system of the goalie. Please refer to Table 2 for the variables’
descriptions. In Figure 20 the minimum crisp value of SO is pegged at 4 cm from the
goalline (at 0 cm) instead at the goalline itself to ensure that when the goalie goes closer to
the goalline than 4 cm, the first fuzzy logic system declares it as a trap situation (category 4)
and the second fuzzy logic system utilizes the rule-base 4 for the goalie’s movement.
Similarly, the minimum crisp value of MO is pegged at 7 cm to ensure that the goalie kicks
the ball out when the ball is in the goal area. Figure 21 shows the membership functions of
the y-coordinates used in the second fuzzy logic system of the goalie. The distance from MD
to MU is the length of the goal area and the distance from SD to SU is the length of the goal.
CR is the location of the horizontal centerline of the robot soccer playing field.

Fig. 20. Membership functions of x- coordinates. Fig. 21. Membership functions of y-coordinates.

FIRA Mirosot Robot Soccer System Using Fuzzy Logic Algorithms 187

Fig. 22. Membership functions category.

3.5 Fuzzy Associative Memory (FAM) For The Goalie
Tables 3, 4, 5, 6, and 7 show the FAMs (fuzzy associative memory or rule-base) of the first
and second fuzzy logic systems of the goalie. They contain the sets of rules provided by
experts in associating the antecedents in order to generate the consequence. Logical
implications are utilized in formulating these rules like as follows:
(1) IF Yr is SD(slightly down) AND Yb is GU(going up) THEN Y is GU(going up) or SD Ù
GU or GU
(2) IF Yr is GU(going up) AND Yb is TP(top) THEN Y is SU(slightly up) or GU Ù TP or SU
and so on…
The rules whose antecedents have membership function values greater than zero participate
in the defuzzification process using their individual consequences. Looking at Table 5, there
are cells that are empty. This is because Table 5 is a rule-base used by the second fuzzy
system for category 4 which is a trap situation for the goalie. That is, the goalie is inside the
goal and is being restraint by the goal’s boundary walls. This means that the goalie’s Yr
cannot go beyond SD and SU.

Table 3. Fuzzy Associative Memory (FAM) Table 4. Fuzzy Associative Memory (FAM) for
category 1. for category 2 of the second fuzzy system.

Figure 20 shows the membership functions for the x-coordinates of the ball and the goalie
used in the first fuzzy logic system of the goalie. Please refer to Table 2 for the variables’
descriptions. In Figure 6 the minimum crisp value of SO is pegged at 4 cm from the goal-
line (at 0 cm) instead at the goal-line itself to ensure that when the goalie goes closer to the
goal-line than 4 cm, the first fuzzy logic system declares it as a trap situation (category 4)
and the second fuzzy logic system utilizes the rule-base 4 for the goalie’s movement.
Similarly, the minimum crisp value of MO is pegged at 7 cm to ensure that the goalie kicks
the ball out when the ball is in the goal area.

X-coordinates (Xb and Xr) Y-coordinates (Yb and Yr)
Category (1,2,3,or
4)

IN: Inside the goal
SI: Slightly inside the goal
ZO: At x=0
SO: Slightly outside the
goal
MO: Moderately outside
the goal
FO: Far outside the goal
VF: Very far from the goal

DN: Down the origin y=0
MD: Moderately down the origin
SD: Slightly down the origin
GD: Going down the origin
CR: At y-coordinate’s center line
GU: Going up
SU: Slightly up
MU: Moderately up
TP: Top or at maximum value of y-
coordinate

ONE: Category
number 1
TWO: Category
number 2
TRE: Category
number 3
FOR: Category
number 4

Table 2. Variables used in the membership functions.

Figure 20 shows the membership functions for the x-coordinates of the ball and the goalie
used in the first fuzzy logic system of the goalie. Please refer to Table 2 for the variables’
descriptions. In Figure 20 the minimum crisp value of SO is pegged at 4 cm from the
goalline (at 0 cm) instead at the goalline itself to ensure that when the goalie goes closer to
the goalline than 4 cm, the first fuzzy logic system declares it as a trap situation (category 4)
and the second fuzzy logic system utilizes the rule-base 4 for the goalie’s movement.
Similarly, the minimum crisp value of MO is pegged at 7 cm to ensure that the goalie kicks
the ball out when the ball is in the goal area. Figure 21 shows the membership functions of
the y-coordinates used in the second fuzzy logic system of the goalie. The distance from MD
to MU is the length of the goal area and the distance from SD to SU is the length of the goal.
CR is the location of the horizontal centerline of the robot soccer playing field.

Fig. 20. Membership functions of x- coordinates. Fig. 21. Membership functions of y-coordinates.

Robot Soccer188

Fig. 26. Category 3 test performance of goalie. Fig. 27. Category 4 test performance of goalie.

Fig. 28. Category 4 test performance of goalie.

Figure 23 shows the result of the test made on the goalie with a situation that falls under
category 1. The ball was initially placed moderately far from the goal and was pushed
towards the center of the goal. The goalie which was initially positioned at the lower part of
the goal reacted by moving ahead towards the predicted point of intersection between the
ball’s path and the goalie’s line-of-action and successfully blocked the ball there.
The situation in Figure 24 still falls under category 1 except that the ball was not moving
towards the goal but to the lower portion of the playing field. The goalie initially on the
upper part of the goal reacted by moving towards the lower part of the goal and positioned
itself there to close the connecting line between the goal and the ball.
Figure 25 is a situation where the goalie is on its line-of-action and sensed the ball was
entering the goal area. This situation falls under category 2. The goalie’s reaction was to kick
the ball out from the goal area and moved back to the lower portion of the goal again
waiting for the ball’s next approach.
Figure 26 shows a situation where the goalie is out from its line-of-action with the ball
threatening to enter the goal. This situation falls under category 3. The goalie cannot go

Table 5. Fuzzy Associative Memory (FAM) Table 6. Fuzzy Associative Memory (FAM) for
category 3 of the second fuzzy system. for category 4 of the second fuzzy system.

3.6 Experimental Results Of Goalie Strategy
To test the performance of the goalie using the above strategies, a series of real-time
experiments were run. Tests were conducted for each of the goalie-ball situation categories.
Figures 23, 24, 25, 26, 27, and 28 show the results of such test runs.

Table 7. Fuzzy Associative Memory (FAM) Fig. 23. Category 1 test performance of for the
first fuzzy system. goalie.

Fig. 24. Category 1 test performance of goalie. Fig. 25. Category 2 test performance of goalie.

FIRA Mirosot Robot Soccer System Using Fuzzy Logic Algorithms 189

Fig. 26. Category 3 test performance of goalie. Fig. 27. Category 4 test performance of goalie.

Fig. 28. Category 4 test performance of goalie.

Figure 23 shows the result of the test made on the goalie with a situation that falls under
category 1. The ball was initially placed moderately far from the goal and was pushed
towards the center of the goal. The goalie which was initially positioned at the lower part of
the goal reacted by moving ahead towards the predicted point of intersection between the
ball’s path and the goalie’s line-of-action and successfully blocked the ball there.
The situation in Figure 24 still falls under category 1 except that the ball was not moving
towards the goal but to the lower portion of the playing field. The goalie initially on the
upper part of the goal reacted by moving towards the lower part of the goal and positioned
itself there to close the connecting line between the goal and the ball.
Figure 25 is a situation where the goalie is on its line-of-action and sensed the ball was
entering the goal area. This situation falls under category 2. The goalie’s reaction was to kick
the ball out from the goal area and moved back to the lower portion of the goal again
waiting for the ball’s next approach.
Figure 26 shows a situation where the goalie is out from its line-of-action with the ball
threatening to enter the goal. This situation falls under category 3. The goalie cannot go

Table 5. Fuzzy Associative Memory (FAM) Table 6. Fuzzy Associative Memory (FAM) for
category 3 of the second fuzzy system. for category 4 of the second fuzzy system.

3.6 Experimental Results Of Goalie Strategy
To test the performance of the goalie using the above strategies, a series of real-time
experiments were run. Tests were conducted for each of the goalie-ball situation categories.
Figures 23, 24, 25, 26, 27, and 28 show the results of such test runs.

Table 7. Fuzzy Associative Memory (FAM) Fig. 23. Category 1 test performance of for the
first fuzzy system. goalie.

Fig. 24. Category 1 test performance of goalie. Fig. 25. Category 2 test performance of goalie.

Robot Soccer190

The consequences of the fuzzy rules can be designed such that as the robot becomes nearer
to the obstacle, the motors’ speeds drive the robot away from it but towards the designated
destination. Figures 30 to 32 show the membership functions of the inputs and out entities of
the fuzzy logic system used for obstacle avoidance. Table 8 shows the description of the
variables used. Tables 9 and 10 show the fuzzy associative memory (FAM) for the left and
right motors.

Fig. 30. Membership functions of input Fig. 31. Membership functions of input
distance for obstacle avoidance. angle for obstacle avoidance.

Fig. 32. Membership functions of motor speeds for obstacle avoidance.

Table 9. Left Motor FAM for obstacle Table 10. Right Motor FAM for obstacle
avoidance. avoidance.

4.1 Obstacle Avoidance Experimental Results
Figure 33 and Table 11 show a home robot prevents collision with other robots by effectively
avoiding them before hitting the ball towards the goal.

directly to the ball because it would drive the ball to its own goal. Instead, the goalie made a
circling move to successfully block the ball from the inside of the goal.
Figures 27 and 28 are situations where the goalie in both cases was initially trapped inside
the goal. These are situations that fall under category 4. In both cases the goalie remained on
its initial positions until the ball approached the goal then it followed the ball in the y
direction until the ball threatens no more.

4. Obstacle Avoidance

Obstacle avoidance uses a fuzzy logic system that has the angle and distance of the robot
with respect to the obstacle as its inputs and generates the velocities of the robot’s left and
right motors that will effectively avoid any perceived obstacle.
As shown in Figure 29, obstacle avoidance starts by detecting obstacles (walls, teammates,
and opponents) within a 30 cm circle whose center is 50 cm ahead of the robot along its path
towards a given destination. The detected obstacle that is nearest to the robot will be
considered as the foremost obstacle and will be the one to be avoided as soon as the robot
draws nearer to it by a distance lower than 35 cm. When this happens the input entities to
the fuzzy logic system will be computed and the appropriate velocities for the left and right
motors are generated to effectively avoid the perceived obstacle.

Fig. 29. Detecting obstacles.

Input Distance Input Angle Motor Speed
ZE: Zero
VN: Very Near from the obstacle
NE: Near the obstacle
SF: Slightly far from the obstacle
FA: Far from the obstacle
VF: Very far from the obstacle

NL : Negatively Large
NM: Negatively Medium
NS: Negatively Small
ZE: Zero
PS: Positively Small
PM: Positively Medium
PL: Positively Large

VL: Very Low
ML: Moderately Low
SL: Slightly Low
LO: Low
SH: Slightly High
MH: Moderately High
VH: Very High

Table 8. Variables used in the membership functions of fuzzy logic obstacle avoidance.

FIRA Mirosot Robot Soccer System Using Fuzzy Logic Algorithms 191

The consequences of the fuzzy rules can be designed such that as the robot becomes nearer
to the obstacle, the motors’ speeds drive the robot away from it but towards the designated
destination. Figures 30 to 32 show the membership functions of the inputs and out entities of
the fuzzy logic system used for obstacle avoidance. Table 8 shows the description of the
variables used. Tables 9 and 10 show the fuzzy associative memory (FAM) for the left and
right motors.

Fig. 30. Membership functions of input Fig. 31. Membership functions of input
distance for obstacle avoidance. angle for obstacle avoidance.

Fig. 32. Membership functions of motor speeds for obstacle avoidance.

Table 9. Left Motor FAM for obstacle Table 10. Right Motor FAM for obstacle
avoidance. avoidance.

4.1 Obstacle Avoidance Experimental Results
Figure 33 and Table 11 show a home robot prevents collision with other robots by effectively
avoiding them before hitting the ball towards the goal.

directly to the ball because it would drive the ball to its own goal. Instead, the goalie made a
circling move to successfully block the ball from the inside of the goal.
Figures 27 and 28 are situations where the goalie in both cases was initially trapped inside
the goal. These are situations that fall under category 4. In both cases the goalie remained on
its initial positions until the ball approached the goal then it followed the ball in the y
direction until the ball threatens no more.

4. Obstacle Avoidance

Obstacle avoidance uses a fuzzy logic system that has the angle and distance of the robot
with respect to the obstacle as its inputs and generates the velocities of the robot’s left and
right motors that will effectively avoid any perceived obstacle.
As shown in Figure 29, obstacle avoidance starts by detecting obstacles (walls, teammates,
and opponents) within a 30 cm circle whose center is 50 cm ahead of the robot along its path
towards a given destination. The detected obstacle that is nearest to the robot will be
considered as the foremost obstacle and will be the one to be avoided as soon as the robot
draws nearer to it by a distance lower than 35 cm. When this happens the input entities to
the fuzzy logic system will be computed and the appropriate velocities for the left and right
motors are generated to effectively avoid the perceived obstacle.

Fig. 29. Detecting obstacles.

Input Distance Input Angle Motor Speed
ZE: Zero
VN: Very Near from the obstacle
NE: Near the obstacle
SF: Slightly far from the obstacle
FA: Far from the obstacle
VF: Very far from the obstacle

NL : Negatively Large
NM: Negatively Medium
NS: Negatively Small
ZE: Zero
PS: Positively Small
PM: Positively Medium
PL: Positively Large

VL: Very Low
ML: Moderately Low
SL: Slightly Low
LO: Low
SH: Slightly High
MH: Moderately High
VH: Very High

Table 8. Variables used in the membership functions of fuzzy logic obstacle avoidance.

Robot Soccer192

Path planning and path following are the most basic behaviors of a multi-agent system. The
realization of the system’s goal depends primarily on the efficient navigational performance
of the agents. In [9] the motions of multiple robots are coordinated by plotting their paths into
a coordinate diagram and searching for a coordination configuration that is free of collision
sub paths. This method requires a lot of computing time and has the possibility of ending with
no solutions or deadlocks and does not suit well in a competitive environment where time is
very critical. Iterative transportation technique [10] provides path planning activity by
cooperative exploration of the environment by multiple robots before laying paths consisting
of 1- and 2-lane types then a strategy is devised for controlling the flow of robots on said paths.
This method allows the reuse of previous paths and focuses on the non-dynamic and non-
hostile obstacles that make it less essential in the very competitive environment.
The main problem that this research primarily wants to address is that of cooperative
behavior design problem. As stated in [16], it is a problem of investigating “how given a
group of robots, an environment, and a task, cooperative behavior should arise.”
In Mirosot, the atomistic approach in which no relationships between robots are assumed in
rushing to the ball will not work because the robots may run into their teammates, or foul
their opponents. If one is assigned to attack the ball then its teammates may not do so. This
establishes relationship between robots. While robots are not attacking, they will move to
specified objective positions or remain still [23,13]. If they are on collision course with other
robots then implement obstacle avoidance. It is equally important to know the positions of
all objects (robots and ball) in the playing field including their structure. As this will enable
the team to extract information from it where a sound move can be decided upon [22].
We propose a hierarchical or top down line of control using intelligent techniques, such as
fuzzy logic systems, to solve this problem. The global goals of the multi-agent system are
clearly defined beforehand and imposed upon the agents by adopting centralized control
[21] using global parameters from the environment dynamics [11] and fuzzy logic system to
determine the desired control actions. The problem of conflicting goals and interactions
among agents will be addressed.

5.1 Hierarchical Multi-agent Cooperative Control Structure
The global goal is divided into two main tasks, namely offense- and defense-states. Each of
these tasks is further subdivided into subtasks that are individually executed by the agents.
Each agent is given functions to be able to accomplish these subtasks and does implicit
communication and coordination with other agents in the multi-agent system. The fact that
no two- or more agents assume the same subtask shows some kind of communication
between agents though its communicative character is not being codified or not-manifest (it
is called “implicit communication”). An exploration of the environment combines the
actions of all agents at the highest level of the hierarchy. This simplifies the communication
between agents hence cooperation is maximized. This point is especially important since
scoring a goal is also the individual goal of each agent.

Figure 34 shows the hierarchical multi-agent cooperation strategy that we propose for
middle-league robot-soccer. This strategy allows the agents to master the skills of
coordinated/joint execution of the main goal. Each agent concentrates in executing the
individual tasks at the subtasks level. Centralized control is achieved by means of global
information available to the agents to constantly guide them so their individual actions (S1,

Fig. 33. An autonomous robot obstacle avoidance performance.

T r i a l s
1 2 3 4 5 Total

Avoids 2 0 2 2 2 8
Goal scores 2 2 2 2 2 10
Total points 18

Success 0.2 0.1 0.2 0.2 0.2 90%
Failure 0 0.1 0 0 0 10%

Table 11. Performance evaluation of the robot for obstacle avoidance.

5. Game Strategy

This section presents a hierarchical control for the cooperative behavior of autonomous
mobile robots using fuzzy logic systems with 5 vs. 5 Mirosot as the platform for its
investigation. The strategy begins by identifying the state of the game, offense or defense,
using a fuzzy logic main-task-identifier. During offense a fuzzy control system is used by
the ball handler to decide whether to shoot, pass, or just dribble the ball. To ensure success
for these tasks they are preceded by lane checking activity to assign a lane free of obstacles.
Experimental results show that the proposed strategy is effective and robust.
Multi-agent systems have attracted a lot of interests from roboticists today because of its
numerous advantages over single agent systems [10,11,19,20]. One of the most famous
activities of a multi-agent system is the MIROSOT, which is a soccer tournament played by
autonomous robots. In multi-agent system, the agents can be made to work cooperatively.
However, in [10] it was revealed that even two robots given with simple interaction tasks
display complicated behaviors. Problems such as this arise because of (1) lack of knowledge
and information like any other new technology, (2) sometimes conflicting goals and
interactions among agents, (3) requirement of an effective learning and cooperative
capabilities [19]. Faced with this predicament, researchers came up with different solutions
some of which are focused on the following:(1) the generation of efficient algorithm for
coordinating paths of multiple robots [9,10,13,14], (2) the use of special sensor-based
navigational tools and onboard processing power [12,21], (3) stigmergic or evolutionary
approach of generating cooperative behaviors [11,20], (4) development of a multi-agent
learning systems for cooperation [19], etc.

FIRA Mirosot Robot Soccer System Using Fuzzy Logic Algorithms 193

Path planning and path following are the most basic behaviors of a multi-agent system. The
realization of the system’s goal depends primarily on the efficient navigational performance
of the agents. In [9] the motions of multiple robots are coordinated by plotting their paths into
a coordinate diagram and searching for a coordination configuration that is free of collision
sub paths. This method requires a lot of computing time and has the possibility of ending with
no solutions or deadlocks and does not suit well in a competitive environment where time is
very critical. Iterative transportation technique [10] provides path planning activity by
cooperative exploration of the environment by multiple robots before laying paths consisting
of 1- and 2-lane types then a strategy is devised for controlling the flow of robots on said paths.
This method allows the reuse of previous paths and focuses on the non-dynamic and non-
hostile obstacles that make it less essential in the very competitive environment.
The main problem that this research primarily wants to address is that of cooperative
behavior design problem. As stated in [16], it is a problem of investigating “how given a
group of robots, an environment, and a task, cooperative behavior should arise.”
In Mirosot, the atomistic approach in which no relationships between robots are assumed in
rushing to the ball will not work because the robots may run into their teammates, or foul
their opponents. If one is assigned to attack the ball then its teammates may not do so. This
establishes relationship between robots. While robots are not attacking, they will move to
specified objective positions or remain still [23,13]. If they are on collision course with other
robots then implement obstacle avoidance. It is equally important to know the positions of
all objects (robots and ball) in the playing field including their structure. As this will enable
the team to extract information from it where a sound move can be decided upon [22].
We propose a hierarchical or top down line of control using intelligent techniques, such as
fuzzy logic systems, to solve this problem. The global goals of the multi-agent system are
clearly defined beforehand and imposed upon the agents by adopting centralized control
[21] using global parameters from the environment dynamics [11] and fuzzy logic system to
determine the desired control actions. The problem of conflicting goals and interactions
among agents will be addressed.

5.1 Hierarchical Multi-agent Cooperative Control Structure
The global goal is divided into two main tasks, namely offense- and defense-states. Each of
these tasks is further subdivided into subtasks that are individually executed by the agents.
Each agent is given functions to be able to accomplish these subtasks and does implicit
communication and coordination with other agents in the multi-agent system. The fact that
no two- or more agents assume the same subtask shows some kind of communication
between agents though its communicative character is not being codified or not-manifest (it
is called “implicit communication”). An exploration of the environment combines the
actions of all agents at the highest level of the hierarchy. This simplifies the communication
between agents hence cooperation is maximized. This point is especially important since
scoring a goal is also the individual goal of each agent.

Figure 34 shows the hierarchical multi-agent cooperation strategy that we propose for
middle-league robot-soccer. This strategy allows the agents to master the skills of
coordinated/joint execution of the main goal. Each agent concentrates in executing the
individual tasks at the subtasks level. Centralized control is achieved by means of global
information available to the agents to constantly guide them so their individual actions (S1,

Fig. 33. An autonomous robot obstacle avoidance performance.

T r i a l s
1 2 3 4 5 Total

Avoids 2 0 2 2 2 8
Goal scores 2 2 2 2 2 10
Total points 18

Success 0.2 0.1 0.2 0.2 0.2 90%
Failure 0 0.1 0 0 0 10%

Table 11. Performance evaluation of the robot for obstacle avoidance.

5. Game Strategy

This section presents a hierarchical control for the cooperative behavior of autonomous
mobile robots using fuzzy logic systems with 5 vs. 5 Mirosot as the platform for its
investigation. The strategy begins by identifying the state of the game, offense or defense,
using a fuzzy logic main-task-identifier. During offense a fuzzy control system is used by
the ball handler to decide whether to shoot, pass, or just dribble the ball. To ensure success
for these tasks they are preceded by lane checking activity to assign a lane free of obstacles.
Experimental results show that the proposed strategy is effective and robust.
Multi-agent systems have attracted a lot of interests from roboticists today because of its
numerous advantages over single agent systems [10,11,19,20]. One of the most famous
activities of a multi-agent system is the MIROSOT, which is a soccer tournament played by
autonomous robots. In multi-agent system, the agents can be made to work cooperatively.
However, in [10] it was revealed that even two robots given with simple interaction tasks
display complicated behaviors. Problems such as this arise because of (1) lack of knowledge
and information like any other new technology, (2) sometimes conflicting goals and
interactions among agents, (3) requirement of an effective learning and cooperative
capabilities [19]. Faced with this predicament, researchers came up with different solutions
some of which are focused on the following:(1) the generation of efficient algorithm for
coordinating paths of multiple robots [9,10,13,14], (2) the use of special sensor-based
navigational tools and onboard processing power [12,21], (3) stigmergic or evolutionary
approach of generating cooperative behaviors [11,20], (4) development of a multi-agent
learning systems for cooperation [19], etc.

Robot Soccer194

Figs. 36, 37, 38, & 39 show the membership functions of the inputs to the main task
identifier. The FAM (fuzzy associative memory) of the main task identifier will be composed
of seventy-five (75) entries. It contains the set of rules provided by experts in associating the
input entities in order to generate the consequence. Logical implications are utilized in
formulating these rules like as follows:
(1) IF ND is LEW(leading widely) AND D is VN(very near) AND O is VG(very good)

THEN SV is HO(high offense) or LEW ∧ VN ∧ VG → HO
(2) IF ND is LES(leading slightly) AND D is VF(very far) AND O is GD(good) THEN SV is

MO(moderate offense) or LES ∧ VF ∧ GD → MO and so on …

Fig. 35. Fuzzy logic main task identifier.

Fig. 36. Membership Functions of the difference of the nearest distances between the
opponent and home robots from the ball, ND: LEW(leading widely), LES(leading slightly),
SE(same), LAS(lagging slightly), LAW(lagging widely).

Fig. 37. Membership functions of home robot orientation with the ball, O: VG(very good),
GD(good), BD(bad).

Fig. 38. Membership functions of calculated distance of ball from opponent goal, D: VN(very
ear), MN(moderately near), MD(medium), MF(moderately far), VF(very far).

S2, ..) are always in conjunction with the team’s main goal. Thus, confusion resulting from
conflicting goals will be avoided.

Fig. 34. Hierarchical Multi-agent Cooperation Strategy.

5.2 Roles Assignment and Robot Coordination
Individual positions of robots and ball are made available by the vision system of the robot
soccer. Given these data, information that is of primary importance for the performance of
the roles to be assigned to the robots is extracted at the highest level of the hierarchy. For
example the predicted coordinates of the ball, which robot is nearest to the ball, the degree
of opening on the opponent’s goal, etc., are just few of the necessary information that play
pivotal role in the outcome of the game. As soon as they are available they’re immediately
broadcasted to all robots thus executions of the low level actions such as blocking and
intercepting the ball are straightforward and faster.

5.3 Main Task Identification
When the team is on offense, the objective is to score. While on defense, the objective is to
control the ball. In this strategy, specific subtasks are in line for each of these main tasks.
Given sufficient information of the environment the identification of the main task to be
pursued by the team is done by means of a main task identifier using fuzzy logic as shown in
Figure 35. The main task identifier takes the robot’s orientation with respect to the ball, the
calculated distance of the ball from the opponent goal, and the difference of the nearest
distances between the home robots and the opponents from the ball. The fuzzy logic system
output is assigned to switchval whose value ranges from 0 to 10. The switchval value will be
evaluated to determine the desired state of the game using the following rules:

FIRA Mirosot Robot Soccer System Using Fuzzy Logic Algorithms 195

Figs. 36, 37, 38, & 39 show the membership functions of the inputs to the main task
identifier. The FAM (fuzzy associative memory) of the main task identifier will be composed
of seventy-five (75) entries. It contains the set of rules provided by experts in associating the
input entities in order to generate the consequence. Logical implications are utilized in
formulating these rules like as follows:
(1) IF ND is LEW(leading widely) AND D is VN(very near) AND O is VG(very good)

THEN SV is HO(high offense) or LEW ∧ VN ∧ VG → HO
(2) IF ND is LES(leading slightly) AND D is VF(very far) AND O is GD(good) THEN SV is

MO(moderate offense) or LES ∧ VF ∧ GD → MO and so on …

Fig. 35. Fuzzy logic main task identifier.

Fig. 36. Membership Functions of the difference of the nearest distances between the
opponent and home robots from the ball, ND: LEW(leading widely), LES(leading slightly),
SE(same), LAS(lagging slightly), LAW(lagging widely).

Fig. 37. Membership functions of home robot orientation with the ball, O: VG(very good),
GD(good), BD(bad).

Fig. 38. Membership functions of calculated distance of ball from opponent goal, D: VN(very
ear), MN(moderately near), MD(medium), MF(moderately far), VF(very far).

S2, ..) are always in conjunction with the team’s main goal. Thus, confusion resulting from
conflicting goals will be avoided.

Fig. 34. Hierarchical Multi-agent Cooperation Strategy.

5.2 Roles Assignment and Robot Coordination
Individual positions of robots and ball are made available by the vision system of the robot
soccer. Given these data, information that is of primary importance for the performance of
the roles to be assigned to the robots is extracted at the highest level of the hierarchy. For
example the predicted coordinates of the ball, which robot is nearest to the ball, the degree
of opening on the opponent’s goal, etc., are just few of the necessary information that play
pivotal role in the outcome of the game. As soon as they are available they’re immediately
broadcasted to all robots thus executions of the low level actions such as blocking and
intercepting the ball are straightforward and faster.

5.3 Main Task Identification
When the team is on offense, the objective is to score. While on defense, the objective is to
control the ball. In this strategy, specific subtasks are in line for each of these main tasks.
Given sufficient information of the environment the identification of the main task to be
pursued by the team is done by means of a main task identifier using fuzzy logic as shown in
Figure 35. The main task identifier takes the robot’s orientation with respect to the ball, the
calculated distance of the ball from the opponent goal, and the difference of the nearest
distances between the home robots and the opponents from the ball. The fuzzy logic system
output is assigned to switchval whose value ranges from 0 to 10. The switchval value will be
evaluated to determine the desired state of the game using the following rules:

Robot Soccer196

Fig. 40c. Basic offense formations of robots.(Yellow-home robots;Blue-opponent)

Fig. 41. Fuzzy logic arbiter of the ball handler.

5.5 Membership Functions Of The Output And Input Entities To The Fuzzy Logic
Arbiter Of The Ball Handler

Fig. 42. Membership functions of ball’s x-coordinate: VN (very near), MN (moderately near),
NR(near), FR(far), VF(very far).

Fig. 43. Membership functions of ball’s y-coordinate: EL(extreme low), NL(near low),
NH(near high), EH(extreme high).

Fig. 39. Membership functions of switchval: MD(more defense), LD(light defense),
DO(defense-offfense), MO(moderately offense), HO(high offense).

5.4 Offense Strategy
Figure 40 shows the different robot formations with respect to the different locations of the
ball. The ball handler’s fuzzy logic arbiter, as shown in Figure 41, takes the x- and y-
coordinates of the ball, and the statuses of P1, P2, P3 (free or blocked) as inputs then a
decision, whether to shoot, pass, or dribble, will be made. The arbiter’s fuzzy system
outputs a crisp value that is assigned to the priority variable. The value stored in the priority
variable is then evaluated to determine the desired action like as follows:

When the ball handler dribbles the ball, it is done in such a way that the ball will be brought
away from the opponent robots or nearer to the opponent goal. Figs. 42, 43, 44, & 45 show
the membership functions of x- and y-coordinates of the ball, of the shooting and passing
lanes statuses, and of the priority variable. The FAM (fuzzy associative memory) of the ball
handler’s arbiter will be composed of one-hundred eighty (180) entries. It contains the set of
rules provided by experts in associating the input entities in order to generate the
consequence. Logical implications are utilized in formulating these rules like as follows:

(1) IF Xball is VN(very near) AND Yball is EL(extreme low) AND Spass is BK(blocked) AND

Sshoot is CR(clear) THEN Priority is MH(moderately high); (VN∧EL∧BK∧CR → MH)
(2) IF Xball is FR(far) AND Yball is NL(near low) AND Spass is CR(clear) AND Sshoot is

BK(blocked) THEN Priority is ML(moderately low) or FR ∧ NL ∧ CR ∧ BK → ML and
so on…

Fig. 40a. Basic offense formations of robots. Fig. 40b. Basic offense formations of robots.
(Yellow-home robots; Blue-opponent) (Yellow-home robots; Blue-opponent)

FIRA Mirosot Robot Soccer System Using Fuzzy Logic Algorithms 197

Fig. 40c. Basic offense formations of robots.(Yellow-home robots;Blue-opponent)

Fig. 41. Fuzzy logic arbiter of the ball handler.

5.5 Membership Functions Of The Output And Input Entities To The Fuzzy Logic
Arbiter Of The Ball Handler

Fig. 42. Membership functions of ball’s x-coordinate: VN (very near), MN (moderately near),
NR(near), FR(far), VF(very far).

Fig. 43. Membership functions of ball’s y-coordinate: EL(extreme low), NL(near low),
NH(near high), EH(extreme high).

Fig. 39. Membership functions of switchval: MD(more defense), LD(light defense),
DO(defense-offfense), MO(moderately offense), HO(high offense).

5.4 Offense Strategy
Figure 40 shows the different robot formations with respect to the different locations of the
ball. The ball handler’s fuzzy logic arbiter, as shown in Figure 41, takes the x- and y-
coordinates of the ball, and the statuses of P1, P2, P3 (free or blocked) as inputs then a
decision, whether to shoot, pass, or dribble, will be made. The arbiter’s fuzzy system
outputs a crisp value that is assigned to the priority variable. The value stored in the priority
variable is then evaluated to determine the desired action like as follows:

When the ball handler dribbles the ball, it is done in such a way that the ball will be brought
away from the opponent robots or nearer to the opponent goal. Figs. 42, 43, 44, & 45 show
the membership functions of x- and y-coordinates of the ball, of the shooting and passing
lanes statuses, and of the priority variable. The FAM (fuzzy associative memory) of the ball
handler’s arbiter will be composed of one-hundred eighty (180) entries. It contains the set of
rules provided by experts in associating the input entities in order to generate the
consequence. Logical implications are utilized in formulating these rules like as follows:

(1) IF Xball is VN(very near) AND Yball is EL(extreme low) AND Spass is BK(blocked) AND

Sshoot is CR(clear) THEN Priority is MH(moderately high); (VN∧EL∧BK∧CR → MH)
(2) IF Xball is FR(far) AND Yball is NL(near low) AND Spass is CR(clear) AND Sshoot is

BK(blocked) THEN Priority is ML(moderately low) or FR ∧ NL ∧ CR ∧ BK → ML and
so on…

Fig. 40a. Basic offense formations of robots. Fig. 40b. Basic offense formations of robots.
(Yellow-home robots; Blue-opponent) (Yellow-home robots; Blue-opponent)

Robot Soccer198

Fig. 46c. Basic defense formations of robots (Yellow-home robots; Blue-opponents).

5.8 Shooting
Shoot algorithm is implemented by attacking the ball with the intent of kicking it towards
the opponent goal. In Figure 47, the robot moves toward point E, just behind the ball, while
it constantly calculates ϕ (the angle between L1 and L2). When the value of ϕ falls below the
set minimum value, the robot changes its direction by moving towards the ball kicking it
directly to the opponent’s goal. The algorithm requires a robot number and coordinates of
the point where the ball will be kicked to.

Fig. 47. Shoot algorithm.

Let m1 = slope of L1

 m2 = slope of L2

 ϕ = angle between L1 and L2

 r1 = distance of target from E
 r2 = distance of ball from E (arbitrary value)
 r3 = distance of ball from target

 ϕ = tan -1 [(m2-m1)/(1+ m1 m2)] ; r1=r2 + r3 ; r3 = sqrt((xb-xt)2 + (yb-yt)2)
 xe = (r2 xt + r1 xb)/(r1 + r2) ; ye = (r2 yt + r1 yb)/(r1+r2) (1)

5.9 Experimental Results of Hierarchical Multi-agent Cooperative Control Structure
To illustrate the performance of the main task identifier fuzzy logic controller, let’s say for
example in Table 4, it has the following inputs: ND=-11, O=60, and D=15. When these

Fig. 44. Membership functions of shooting and passing lanes statuses: BK(blocked),
CR(clear), VC(very clear).

Fig. 45. Membership functions of priority variable: LO(low), ML(moderately low),
MD (medium), MH(moderately high), HI(high).

5.6 Checking the Paths Lanes
Passing and shooting are two similar tasks that require lane checking, to determine whether
the lane is clear or blocked, to ensure completion or success of said tasks. In avoiding
obstacles alternate paths are first generated. These paths are then checked before they are
being considered for inclusion in the pool of alternative paths. The same is done for the
shooting and passing lanes. In shooting the target is any open part of the opponent goal,
preferably the point that is farthest from the opponent goalie at the instant it is kicked.
Passing is pushing the ball to a teammate robot so it can be controlled immediately.
To check the availability of the lane for passing, shooting, or for alternative paths is to
determine the distances of all objects (teammates or opponents) from the line passing
through the robot and the target using analytic geometry. The lane is free when the distance
of the nearest object from the line exceeds a threshold value.

5.7 Defense Strategy
Figure 46 shows the three basic defense formations of robots with the ball located on
different vertical coordinates of the playing field. At any instance two robots are assigned to
block the ball and one of them is tasked to intercept it. The boundaries of the areas where
the defender robots operate are flexible except on the home goal area where the goalie robot
is in charge.

Fig. 46a. Basic defense formations of robots Fig. 46b. Basic defense formations of robots
(Yellow-home robots; Blue-opponents). (Yellow-home robots; Blue-opponents).

FIRA Mirosot Robot Soccer System Using Fuzzy Logic Algorithms 199

Fig. 46c. Basic defense formations of robots (Yellow-home robots; Blue-opponents).

5.8 Shooting
Shoot algorithm is implemented by attacking the ball with the intent of kicking it towards
the opponent goal. In Figure 47, the robot moves toward point E, just behind the ball, while
it constantly calculates ϕ (the angle between L1 and L2). When the value of ϕ falls below the
set minimum value, the robot changes its direction by moving towards the ball kicking it
directly to the opponent’s goal. The algorithm requires a robot number and coordinates of
the point where the ball will be kicked to.

Fig. 47. Shoot algorithm.

Let m1 = slope of L1

 m2 = slope of L2

 ϕ = angle between L1 and L2

 r1 = distance of target from E
 r2 = distance of ball from E (arbitrary value)
 r3 = distance of ball from target

 ϕ = tan -1 [(m2-m1)/(1+ m1 m2)] ; r1=r2 + r3 ; r3 = sqrt((xb-xt)2 + (yb-yt)2)
 xe = (r2 xt + r1 xb)/(r1 + r2) ; ye = (r2 yt + r1 yb)/(r1+r2) (1)

5.9 Experimental Results of Hierarchical Multi-agent Cooperative Control Structure
To illustrate the performance of the main task identifier fuzzy logic controller, let’s say for
example in Table 4, it has the following inputs: ND=-11, O=60, and D=15. When these

Fig. 44. Membership functions of shooting and passing lanes statuses: BK(blocked),
CR(clear), VC(very clear).

Fig. 45. Membership functions of priority variable: LO(low), ML(moderately low),
MD (medium), MH(moderately high), HI(high).

5.6 Checking the Paths Lanes
Passing and shooting are two similar tasks that require lane checking, to determine whether
the lane is clear or blocked, to ensure completion or success of said tasks. In avoiding
obstacles alternate paths are first generated. These paths are then checked before they are
being considered for inclusion in the pool of alternative paths. The same is done for the
shooting and passing lanes. In shooting the target is any open part of the opponent goal,
preferably the point that is farthest from the opponent goalie at the instant it is kicked.
Passing is pushing the ball to a teammate robot so it can be controlled immediately.
To check the availability of the lane for passing, shooting, or for alternative paths is to
determine the distances of all objects (teammates or opponents) from the line passing
through the robot and the target using analytic geometry. The lane is free when the distance
of the nearest object from the line exceeds a threshold value.

5.7 Defense Strategy
Figure 46 shows the three basic defense formations of robots with the ball located on
different vertical coordinates of the playing field. At any instance two robots are assigned to
block the ball and one of them is tasked to intercept it. The boundaries of the areas where
the defender robots operate are flexible except on the home goal area where the goalie robot
is in charge.

Fig. 46a. Basic defense formations of robots Fig. 46b. Basic defense formations of robots
(Yellow-home robots; Blue-opponents). (Yellow-home robots; Blue-opponents).

Robot Soccer200

 T r i a l s
1 2 3 4 Total

Intercepts 2 0 2 2 6
Goal scores 2 0 2 2 6
Total points 12

Success 0.25 0 0.25 0.25 75%
Failure 0 0.25 0 0 25%

Table 12. Performance evaluation of the robot for passing and scoring.

Fig. 49. Shoot algorithm performance.

Fig. 50. Sample result of goalkeeper .

values are fuzzified: ND will be LEW(leading widely) of degree=0.1 and LES(leading
slightly) of degree=0.9 which means that the home robot is slightly nearer to the ball than its
nearest opponent; O will be VG(very good) of degree=0.67 and GD(good) of degree=0.33
which means that the nearest home robot’s front is adequately facing the ball; D will be
MN(moderately near) of degree=0.91 and MD(medium) of degree=0.09 which means that
the ball is quite near the opponent’s goal. In other words, the situation can be translated into
English as “a home robot can take possession of the ball near the opponent’s goal”. A
rational agent given this situation will decide to assume the offensive task, since the chance
of scoring is high, which is the actual output of the main task identifier fuzzy logic
controller.
Likewise, to illustrate the performance of the ball handler fuzzy logic arbiter, let’s say for
example in Table 5, it has the following inputs: Xball=170, Yball=73, Sshoot=6, and Spass=3. When
these values are fuzzified: Xball will be NR(near) of degree=0.08 and FR(far) of degree=0.92
which means that the ball is slightly beyond the midcourt towards the opponent’s goal; Yball
will be EL(extremely low) of degree=0.77 and NL(near low) of degree=0.23 which means
that the ball is quite near on the abscissa of the field; Sshoot will be CR(clear) of degree=0.50
and VC(very clear) of degree=0.50 which means that the shooting lane is half clear; Spass will
be BK(blocked) of degree=0.25 and CR(clear) of degree 0.75 which means that the passing
lane is partially blocked. In other words, the situation can be translated into English as “the
ball handler is on the lower part of the opponent’s side, it’s not okay to shoot, and the
passing lane is partially blocked.” A rational agent given this situation will decide to pass
the ball, since the chance of scoring is low, which is the actual output of the ball handler
fuzzy logic arbiter.
Figs. 48, 49, & 50 show how cooperative behaviors between autonomous mobile robots can
produce positive results during experimentations on the actual robot-soccer system. In
Figure 48 two- friendly robots display their passing abilities. Robot 2 goes to the ball and
passes it to its teammate allowing the latter to shoot. Table 12 gives the performance of two
cooperating robots in passing and scoring. Figure 49 shows a robot implementing the
aforementioned shoot algorithm. In Figure 50 illustrates how the goalie robot blocks every
attempt of the ball to enter the goal. This performance is tabulated in Table 13 which shows
an overall success of 66.66%.

Fig. 48. A cooperative behavior through passing.

FIRA Mirosot Robot Soccer System Using Fuzzy Logic Algorithms 201

 T r i a l s
1 2 3 4 Total

Intercepts 2 0 2 2 6
Goal scores 2 0 2 2 6
Total points 12

Success 0.25 0 0.25 0.25 75%
Failure 0 0.25 0 0 25%

Table 12. Performance evaluation of the robot for passing and scoring.

Fig. 49. Shoot algorithm performance.

Fig. 50. Sample result of goalkeeper .

values are fuzzified: ND will be LEW(leading widely) of degree=0.1 and LES(leading
slightly) of degree=0.9 which means that the home robot is slightly nearer to the ball than its
nearest opponent; O will be VG(very good) of degree=0.67 and GD(good) of degree=0.33
which means that the nearest home robot’s front is adequately facing the ball; D will be
MN(moderately near) of degree=0.91 and MD(medium) of degree=0.09 which means that
the ball is quite near the opponent’s goal. In other words, the situation can be translated into
English as “a home robot can take possession of the ball near the opponent’s goal”. A
rational agent given this situation will decide to assume the offensive task, since the chance
of scoring is high, which is the actual output of the main task identifier fuzzy logic
controller.
Likewise, to illustrate the performance of the ball handler fuzzy logic arbiter, let’s say for
example in Table 5, it has the following inputs: Xball=170, Yball=73, Sshoot=6, and Spass=3. When
these values are fuzzified: Xball will be NR(near) of degree=0.08 and FR(far) of degree=0.92
which means that the ball is slightly beyond the midcourt towards the opponent’s goal; Yball
will be EL(extremely low) of degree=0.77 and NL(near low) of degree=0.23 which means
that the ball is quite near on the abscissa of the field; Sshoot will be CR(clear) of degree=0.50
and VC(very clear) of degree=0.50 which means that the shooting lane is half clear; Spass will
be BK(blocked) of degree=0.25 and CR(clear) of degree 0.75 which means that the passing
lane is partially blocked. In other words, the situation can be translated into English as “the
ball handler is on the lower part of the opponent’s side, it’s not okay to shoot, and the
passing lane is partially blocked.” A rational agent given this situation will decide to pass
the ball, since the chance of scoring is low, which is the actual output of the ball handler
fuzzy logic arbiter.
Figs. 48, 49, & 50 show how cooperative behaviors between autonomous mobile robots can
produce positive results during experimentations on the actual robot-soccer system. In
Figure 48 two- friendly robots display their passing abilities. Robot 2 goes to the ball and
passes it to its teammate allowing the latter to shoot. Table 12 gives the performance of two
cooperating robots in passing and scoring. Figure 49 shows a robot implementing the
aforementioned shoot algorithm. In Figure 50 illustrates how the goalie robot blocks every
attempt of the ball to enter the goal. This performance is tabulated in Table 13 which shows
an overall success of 66.66%.

Fig. 48. A cooperative behavior through passing.

Robot Soccer202

 Ta
bl

e
15

. B
al

l H
an

dl
er

 A
rb

ite
r F

uz
zy

 L
og

ic
 S

ys
te

m
 P

er
fo

rm
an

ce
 (S

H
T-

 S
ho

ot
, D

R
IB

- D
ri

bb
le

).

I N
 P

 U
 T

 S

A
N

D

A
N

TE
C

ED
EN

TS

O
U

TP
U

T

Ball’s X-
coord

Fuzzy Set 1

Degree

Fuzzy Set 2

Degree

Ball’s Y-
coord

Fuzzy Set 1

Degree

Fuzzy Set 2

Degree

SShoot

Fuzzy Set 1

Degree

Fuzzy Set 2

Degree

Spass

Fuzzy Set 1

Degree

Fuzzy Set 2

Degree

PRIORITY

ACTION

17
0

N
R

0.
08

FR

0.

92

73

EL

0.
77

N

L
0.

23

6
C

R
0.

50

V
C

0.

50

3
BK

0.

25

C
R

0.
75

48

.0
6

PA
SS

15

V
N

0.

77
 M

N

0.
23

99

N

H

0.
85

EH

0.

15

3
BK

0.

25

C
R

0.
75

3

BK

0.
25

C

R
0.

75

55
.7

6
PA

S
S

67

M
N

0.

96

N
R

0.
04

10

8
N

H

0.
15

EH

0.

85

5
C

R
0.

75

V
C

0.

25

7
C

R
0.

25

V
C

0.

75

79
.9

5
SH

T

33

V
N

0.

49
 M

N

0.
51

85

N

L
0.

86

N
H

0.

1 4
5

C
R

0.
75

V

C

0.
25

6

C
R

0.
50

V

C

0.
50

79

.7
8

SH
T

21
7

FR

0.
07

V

F
0.

93

85

N
L

0.
86

N

H

0.
14

2

BK

0.
50

C

R
0.

50

1
BK

0.

75

C
R

0.
25

22

.3
0

D
R

IB

21
7

FR

0.
07

V

F
0.

93

70

EL

1.
00

-

0.
00

7

C
R

0.
25

V

C

0.
75

7

C
R

0.
25

V

C

0.
75

43

.2
6

PA
SS

43

V

N

0.
34

 M
N

0.

66

84

N
L

0.
93

N

H

0.
07

2

BK

0.
50

C

R
0.

50

7
C

R
0.

25

V
C

0.

75

80
.9

6
SH

T
43

V

N

0.
34

 M
N

0.

66

84

N
L

0.
93

N

H

0.
07

2

BK

0.
50

C

R
0.

50

4
C

R
1.

00

-
0.

00

75
.0

0
SH

T
43

V

N

0.
34

 M
N

0.

66

84

N
L

0.
93

N

H

0.
07

6

C
R

0.
50

V

C

0.
50

4

C
R

1.
00

-

0.
00

75

.0
0

SH
T

43

V
N

0.

34
 M

N

0.
66

84

N

L
0.

93

N
H

0.

07

7
C

R
0.

25

V
C

0.

75

3
BK

0.

25

C
R

0.
75

63

.2
2

PA
SS

13

6
N

R
0.

60

FR

0.
40

96

N

L
0.

07

N
H

0.

93

7
C

R
0.

25

V
C

0.

75

3
BK

0.

25

C
R

0.
75

50

.4
9

PA
SS

11

5
N

R
0.

92

FR

0.
08

10

8
N

H

0.
15

EH

0.

85

7
C

R
0.

25

V
C

0.

75

5
C

R
0.

75

V
C

0.

25

64
.1

7
PA

SS

11
5

N
R

0.
92

FR

0.

08

10
8

N
H

0.

15

EH

0.
85

7

C
R

0.
25

V

C

0.
75

8

V
C

1.

00

-
0.

00

72
.4

4
SH

T

Results Rate
Success 4 66.66%
Failure 2 33.33%
Total 6 attempts

Table 13. The goalkeeper’s performance with 6 trials conducted in real time. A “success” is a
successful interception of the ball; “failure” is a failed attempt in blocking the ball.

Experimental results revealed that faster and swifter performance was achieved when more
globally available information was given to individual robots. For example, a robot knows
beforehand the presence or absence of obstacles leading to its destination and takes alternate
path with the minimum cost. In addition, improved coordination between robots was
realized resulting from the clear and specific instructions coming from the central controller.
The performance of the fuzzy logic systems in general was satisfactory. While the
improvement of their performance will depend more on fine-tuning of fuzzy set
membership functions and accurate generation of the rule-base, the effects resulting from
the unsatisfactory adjustments of these parameters was not seen as drastic that would in
effect garble the overall performance of the robotic system. As Tables 4 and 5 show, a huge
variation in the values of more than one input parameter did not have any effect on the
outcome of the main task identifier’s or ball handler’s arbiter’s action. This is a manifestation
of the system’s robustness.

Table 14. Main Task Identifier Fuzzy Logic System Performance (OFF-Offense, DEF-
Defense).

I N P U T S AND ANTECEDENTS OUTPUT

ND FS1 Deg FS2 Deg O FS1 Deg FS2 Deg D FS1 Deg FS2 Deg SV G.S.
-11 LEW 0.1 LES 0.9 60 VG 0.67 GD 0.33 15 MN 0.91 MD 0.09 8.18 OFF
15 LAS 0.5 LAW 0.5 10 GD 0.33 BD 0.67 75 VN 0.82 MN 0.18 4.02 DEF
4 SE 0.6 LAS 0.4 200 VG 0.78 GD 0.22 10 MF 0.36 VF 0.64 6.57 OFF

-18 LEW 0.8 LES 0.2 112 VG 1.00 - 0.00 0 MD 0.96 MF 0.04 9.04 OFF
-2 LES 0.2 SE 0.8 57 GD 0.98 BD 0.02 46 MN 0.96 MD 0.04 5.52 DEF
1 SE 0.9 LAS 0.1 178 VG 0.11 GD 0.89 40 MF 0.76 VF 0.24 5.79 DEF

-11 LEW 0.1 LES 0.9 30 VG 0.96 GD 0.04 2 VN 0.45 MN 0.55 8.58 OFF
9 SE 0.1 LAS 0.9 108 GD 0.22 BD 0.78 80 MN 0.04 MD 0.96 3.40 DEF

-20 LEW 1 - 0 2 VG 0.78 GD 0.22 10 VN 0.96 MN 0.04 8.34 OFF
-3 LES 0.3 SE 0.7 51 VG 0.29 GD 0.71 32 VN 0.07 MN 0.93 6.68 OFF

FIRA Mirosot Robot Soccer System Using Fuzzy Logic Algorithms 203

 Ta
bl

e
15

. B
al

l H
an

dl
er

 A
rb

ite
r F

uz
zy

 L
og

ic
 S

ys
te

m
 P

er
fo

rm
an

ce
 (S

H
T-

 S
ho

ot
, D

R
IB

- D
ri

bb
le

).

I N
 P

 U
 T

 S

A
N

D

A
N

TE
C

ED
EN

TS

O
U

TP
U

T

Ball’s X-
coord

Fuzzy Set 1

Degree

Fuzzy Set 2

Degree

Ball’s Y-
coord

Fuzzy Set 1

Degree

Fuzzy Set 2

Degree

SShoot

Fuzzy Set 1

Degree

Fuzzy Set 2

Degree

Spass

Fuzzy Set 1

Degree

Fuzzy Set 2

Degree

PRIORITY

ACTION

17
0

N
R

0.
08

FR

0.

92

73

EL

0.
77

N

L
0.

23

6
C

R
0.

50

V
C

0.

50

3
BK

0.

25

C
R

0.
75

48

.0
6

PA
SS

15

V
N

0.

77
 M

N

0.
23

99

N

H

0.
85

EH

0.

15

3
BK

0.

25

C
R

0.
75

3

BK

0.
25

C

R
0.

75

55
.7

6
PA

S
S

67

M
N

0.

96

N
R

0.
04

10

8
N

H

0.
15

EH

0.

85

5
C

R
0.

75

V
C

0.

25

7
C

R
0.

25

V
C

0.

75

79
.9

5
SH

T

33

V
N

0.

49
 M

N

0.
51

85

N

L
0.

86

N
H

0.

1 4
5

C
R

0.
75

V

C

0.
25

6

C
R

0.
50

V

C

0.
50

79

.7
8

SH
T

21
7

FR

0.
07

V

F
0.

93

85

N
L

0.
86

N

H

0.
14

2

BK

0.
50

C

R
0.

50

1
BK

0.

75

C
R

0.
25

22

.3
0

D
R

IB

21
7

FR

0.
07

V

F
0.

93

70

EL

1.
00

-

0.
00

7

C
R

0.
25

V

C

0.
75

7

C
R

0.
25

V

C

0.
75

43

.2
6

PA
SS

43

V

N

0.
34

 M
N

0.

66

84

N
L

0.
93

N

H

0.
07

2

BK

0.
50

C

R
0.

50

7
C

R
0.

25

V
C

0.

75

80
.9

6
SH

T
43

V

N

0.
34

 M
N

0.

66

84

N
L

0.
93

N

H

0.
07

2

BK

0.
50

C

R
0.

50

4
C

R
1.

00

-
0.

00

75
.0

0
SH

T
43

V

N

0.
34

 M
N

0.

66

84

N
L

0.
93

N

H

0.
07

6

C
R

0.
50

V

C

0.
50

4

C
R

1.
00

-

0.
00

75

.0
0

SH
T

43

V
N

0.

34
 M

N

0.
66

84

N

L
0.

93

N
H

0.

07

7
C

R
0.

25

V
C

0.

75

3
BK

0.

25

C
R

0.
75

63

.2
2

PA
SS

13

6
N

R
0.

60

FR

0.
40

96

N

L
0.

07

N
H

0.

93

7
C

R
0.

25

V
C

0.

75

3
BK

0.

25

C
R

0.
75

50

.4
9

PA
SS

11

5
N

R
0.

92

FR

0.
08

10

8
N

H

0.
15

EH

0.

85

7
C

R
0.

25

V
C

0.

75

5
C

R
0.

75

V
C

0.

25

64
.1

7
PA

SS

11
5

N
R

0.
92

FR

0.

08

10
8

N
H

0.

15

EH

0.
85

7

C
R

0.
25

V

C

0.
75

8

V
C

1.

00

-
0.

00

72
.4

4
SH

T

Results Rate
Success 4 66.66%
Failure 2 33.33%
Total 6 attempts

Table 13. The goalkeeper’s performance with 6 trials conducted in real time. A “success” is a
successful interception of the ball; “failure” is a failed attempt in blocking the ball.

Experimental results revealed that faster and swifter performance was achieved when more
globally available information was given to individual robots. For example, a robot knows
beforehand the presence or absence of obstacles leading to its destination and takes alternate
path with the minimum cost. In addition, improved coordination between robots was
realized resulting from the clear and specific instructions coming from the central controller.
The performance of the fuzzy logic systems in general was satisfactory. While the
improvement of their performance will depend more on fine-tuning of fuzzy set
membership functions and accurate generation of the rule-base, the effects resulting from
the unsatisfactory adjustments of these parameters was not seen as drastic that would in
effect garble the overall performance of the robotic system. As Tables 4 and 5 show, a huge
variation in the values of more than one input parameter did not have any effect on the
outcome of the main task identifier’s or ball handler’s arbiter’s action. This is a manifestation
of the system’s robustness.

Table 14. Main Task Identifier Fuzzy Logic System Performance (OFF-Offense, DEF-
Defense).

I N P U T S AND ANTECEDENTS OUTPUT

ND FS1 Deg FS2 Deg O FS1 Deg FS2 Deg D FS1 Deg FS2 Deg SV G.S.
-11 LEW 0.1 LES 0.9 60 VG 0.67 GD 0.33 15 MN 0.91 MD 0.09 8.18 OFF
15 LAS 0.5 LAW 0.5 10 GD 0.33 BD 0.67 75 VN 0.82 MN 0.18 4.02 DEF
4 SE 0.6 LAS 0.4 200 VG 0.78 GD 0.22 10 MF 0.36 VF 0.64 6.57 OFF

-18 LEW 0.8 LES 0.2 112 VG 1.00 - 0.00 0 MD 0.96 MF 0.04 9.04 OFF
-2 LES 0.2 SE 0.8 57 GD 0.98 BD 0.02 46 MN 0.96 MD 0.04 5.52 DEF
1 SE 0.9 LAS 0.1 178 VG 0.11 GD 0.89 40 MF 0.76 VF 0.24 5.79 DEF

-11 LEW 0.1 LES 0.9 30 VG 0.96 GD 0.04 2 VN 0.45 MN 0.55 8.58 OFF
9 SE 0.1 LAS 0.9 108 GD 0.22 BD 0.78 80 MN 0.04 MD 0.96 3.40 DEF

-20 LEW 1 - 0 2 VG 0.78 GD 0.22 10 VN 0.96 MN 0.04 8.34 OFF
-3 LES 0.3 SE 0.7 51 VG 0.29 GD 0.71 32 VN 0.07 MN 0.93 6.68 OFF

Robot Soccer204

[13] K.-H. Han, K.-H. Lee, C.-K. Moon, H.-B. Lee, and J.-H. Kim, “Robot Soccer System of
SOTY 5 for Middle League Mirosot”, 2002 FIRA Robot Congress, Seoul, Korea.

[14] H.-S. Shim, M.-J. Jung, H.-S. Kim, I.-H. Choi, and J.-H. Kim, “Development of Vision-
Based Soccer Robots for Multi-Agent Cooperative Systems”, 1997 Micro-Robot
World Cup Soccer Tournament Proceedings, Taejon, Korea.

[15] K.M. Passino and S. Yurkovich, “FuzzyControl”, Addison-Wesley Longman, Inc., 1998.
[16] Y.U. Cao, “Cooperative Mobile Robotics: Antecedents and Directions”, Autonomous

Robots, Special Issues on Robot Colonies, R.C. and G.A. Bekey Eds., Vol. No. 4,
March 1997.

[17] E.P. Dadios, E.A. Maravillas, and N. Reyes, “Color-Based Fuzzy Vision System for the
FIRA Robot Soccer Game”, 2002 FIRA Robot Congress, Seoul, Korea.

[18] S. Marwaha and D. Srinivasan, Advances in Multi-Agent Learning Systems: A Survey,
Proceedings CIRAS 2001, NUS, Singapore, pp. 188-189.

[19] K. Sugawara, I. Yoshihara, M. Sano, K. Abe, and T. Watanabe, Cooperative Behavior of
Simple multi-Robot in a Clockface Arranged Foraging Field, Proceedings CIRAS
2001, NUS, Singapore, pp. 166-169.

[20] S. Premvuti, Aviation Knowledge Based Multiple Mobile Robot Systems: Consideration of
Analogy between Air Traffic Control Systems and Multiple Mobile Robot Systems,
Intelligent Autonomous Systems, Y. Kakazu et. al. Eds., IOS Press, 1998, pp.38-44..

[21] J.H. Johnson and M.J. Booth, Robot football: emergent behavior in nonlinear discrete
systems, 1997 Micro-robot World Cup Soccer Tournament Proceedings, S3-5.

[22] Randy Sargent and Bill Bailey, Fast Vision Tracking and Coordinated Control for Soccer-
Playing Robots, 1997 Micro-robot World Cup Soccer Tournament Proceedings, S2-2.

[23] R.C. Gonzales and .E. Woods, Digital Image Processing (Addison-Wesley Publishing
Company, Inc., 1993).

[24]Sun-Gi Hong, et. Al., “Designing Soccer-Playing Robot Team (F.B.I.) Based on the
Centralized Approach”, 1997 Micro Robot World Cup Soccer Tournament
Proceedings, S4-4.

[25]Giridhar Rajaram, et. Al., “STRIKER – A vision based robot that learns reactive
behaviors for scoring goals”, 1997 Micro Robot World Cup Soccer Tournament
Proceedings, S4-6.

[26] K. Kawamura, S. M. Gordon and P. Ratanaswasd, “Robotic Body-Mind Integration:
Next Grand Challenge in Robotics”, Industrial Robotics: Theory, Modelling and
Control, pro literatur Verlag, © 2007 Advanced Robotic Systems International,
www.ars-journal.com, pp.1-42.

6. Conclusions

The advancement of industrial robots from mere Simple-Reflex-Agents to intelligent,
learning, and autonomous agents has been accelerated by the integration of body, sensor,
and AI-based software. This is also true to non-industrial robots [26]. This development will
pave the way for the full automation and exclusion of human interventions in the robot
soccer arena. This chapter presented some of the next great experiments in robot soccer, i.e.
the development of more robust and intelligent robot soccer strategies (human-like
behaviors) and an environment free of human entities, for scoring and refereeing, while the
game is being played. All of these can be successfully done using AI-based paradigms, e.g.
fuzzy logic algorithms.

7. References

[1] Dadios, E.P., et. al., “Neural Networks, Fuzzy Logic and Knowledge Base Hybrid
Control System for Indoor AMR”, ISARA 2000 Proceedings, pp. 9-15.

[2] Dadios, E.P., et. al., “Fuzzy Logic Controller for Micro-robot Soccer Game,” Proceedings
of the 27th IEEE Industrial Electronics Society Annual Conference, Denver,
Colorado, USA.

[3] Jamshidi, M., et.al., “Applications of Fuzzy Logic: Towards High Machine Intelligence
Quotient Systems”, Prentice Hall PTR, Upper Saddle River, New Jersey, USA, 1997.

[4] Leinecker, R.C., “Visual C++ 6 Bible”, IDG Books World Wide, Inc., Foster City, CA, USA,
1998.

[5] Dadios, E.P. and Maravillas, O.A.,”Fuzzy Logic Controller for Micro-robot Soccer
Game”, Proceedings: 27th IEEE Industrial Electronics Society Annual Conference,
Denver, Colorado, USA.

[6] Thornton, J., et. Al.,”Shape Recognition and Enhanced Control Systems for Robot
Soccer”, Proceedings: 2002 FIRA Robot World Congress, Seoul, Korea, pp. 670-674.

[7] Kim, J.H., et.al.,”Nonlinear Field Based Path Planning and Petri-Nets Based Role
Selection Mechanism w/ Q-learning for the Soccer Robot System”, Proceedings:
ISARA 2000 (International Symposium on Autonomous Robots and Agents), 26
May 2000, NUS,Singapore, pp. 86-100.

[8] Ong Chin Siong, et. al.,”Java-Based Implementation of Robot Soccer”, Proceedings:
ISARA 2000 (International Symposium on Autonomous Robots and Agents), 26
May 2000, NUS, Singapore, pp. 21-27.

[9] T. Simeon, S. Leroy, and J.-P. Laumond, “Path Coordination for Multiple Mobile Robots:
A Resolution-Complete Algorithm”, IEEE Transactions on Robotics and
Automation, Vol. 18, No. 1, February 2002, pp. 42-48.

[10] K. Inoue, J. Ota, T. Hirano, D. Kurabayashi, and T. Arai, “Iterative Transportation by
Cooperative Mobile Robots in Unknown Environment”, Intelligent Autonomous
Systems Y. Kkazu et. al. Eds., IOS Press, 1998, pp. 30-37.

[11] E. Pagello, A. D’Angelo, F. Montesello, C. Ferrari, “Emergent Cooperative Behavior for
Multi-robot Systems”, Intelligent Autonomous Systems Y. Kkazu et. al. Eds., IOS
Press, 1998, pp. 45-52.

[12] L. Vlacic, A. Engwirda, M. Hitchings, and Z. O’Sullivan, “ Intelligent Autonomous
Systems”, Y. Kkazu et. al. Eds., IOS Press, 1998, pp. 53-60.

FIRA Mirosot Robot Soccer System Using Fuzzy Logic Algorithms 205

[13] K.-H. Han, K.-H. Lee, C.-K. Moon, H.-B. Lee, and J.-H. Kim, “Robot Soccer System of
SOTY 5 for Middle League Mirosot”, 2002 FIRA Robot Congress, Seoul, Korea.

[14] H.-S. Shim, M.-J. Jung, H.-S. Kim, I.-H. Choi, and J.-H. Kim, “Development of Vision-
Based Soccer Robots for Multi-Agent Cooperative Systems”, 1997 Micro-Robot
World Cup Soccer Tournament Proceedings, Taejon, Korea.

[15] K.M. Passino and S. Yurkovich, “FuzzyControl”, Addison-Wesley Longman, Inc., 1998.
[16] Y.U. Cao, “Cooperative Mobile Robotics: Antecedents and Directions”, Autonomous

Robots, Special Issues on Robot Colonies, R.C. and G.A. Bekey Eds., Vol. No. 4,
March 1997.

[17] E.P. Dadios, E.A. Maravillas, and N. Reyes, “Color-Based Fuzzy Vision System for the
FIRA Robot Soccer Game”, 2002 FIRA Robot Congress, Seoul, Korea.

[18] S. Marwaha and D. Srinivasan, Advances in Multi-Agent Learning Systems: A Survey,
Proceedings CIRAS 2001, NUS, Singapore, pp. 188-189.

[19] K. Sugawara, I. Yoshihara, M. Sano, K. Abe, and T. Watanabe, Cooperative Behavior of
Simple multi-Robot in a Clockface Arranged Foraging Field, Proceedings CIRAS
2001, NUS, Singapore, pp. 166-169.

[20] S. Premvuti, Aviation Knowledge Based Multiple Mobile Robot Systems: Consideration of
Analogy between Air Traffic Control Systems and Multiple Mobile Robot Systems,
Intelligent Autonomous Systems, Y. Kakazu et. al. Eds., IOS Press, 1998, pp.38-44..

[21] J.H. Johnson and M.J. Booth, Robot football: emergent behavior in nonlinear discrete
systems, 1997 Micro-robot World Cup Soccer Tournament Proceedings, S3-5.

[22] Randy Sargent and Bill Bailey, Fast Vision Tracking and Coordinated Control for Soccer-
Playing Robots, 1997 Micro-robot World Cup Soccer Tournament Proceedings, S2-2.

[23] R.C. Gonzales and .E. Woods, Digital Image Processing (Addison-Wesley Publishing
Company, Inc., 1993).

[24]Sun-Gi Hong, et. Al., “Designing Soccer-Playing Robot Team (F.B.I.) Based on the
Centralized Approach”, 1997 Micro Robot World Cup Soccer Tournament
Proceedings, S4-4.

[25]Giridhar Rajaram, et. Al., “STRIKER – A vision based robot that learns reactive
behaviors for scoring goals”, 1997 Micro Robot World Cup Soccer Tournament
Proceedings, S4-6.

[26] K. Kawamura, S. M. Gordon and P. Ratanaswasd, “Robotic Body-Mind Integration:
Next Grand Challenge in Robotics”, Industrial Robotics: Theory, Modelling and
Control, pro literatur Verlag, © 2007 Advanced Robotic Systems International,
www.ars-journal.com, pp.1-42.

6. Conclusions

The advancement of industrial robots from mere Simple-Reflex-Agents to intelligent,
learning, and autonomous agents has been accelerated by the integration of body, sensor,
and AI-based software. This is also true to non-industrial robots [26]. This development will
pave the way for the full automation and exclusion of human interventions in the robot
soccer arena. This chapter presented some of the next great experiments in robot soccer, i.e.
the development of more robust and intelligent robot soccer strategies (human-like
behaviors) and an environment free of human entities, for scoring and refereeing, while the
game is being played. All of these can be successfully done using AI-based paradigms, e.g.
fuzzy logic algorithms.

7. References

[1] Dadios, E.P., et. al., “Neural Networks, Fuzzy Logic and Knowledge Base Hybrid
Control System for Indoor AMR”, ISARA 2000 Proceedings, pp. 9-15.

[2] Dadios, E.P., et. al., “Fuzzy Logic Controller for Micro-robot Soccer Game,” Proceedings
of the 27th IEEE Industrial Electronics Society Annual Conference, Denver,
Colorado, USA.

[3] Jamshidi, M., et.al., “Applications of Fuzzy Logic: Towards High Machine Intelligence
Quotient Systems”, Prentice Hall PTR, Upper Saddle River, New Jersey, USA, 1997.

[4] Leinecker, R.C., “Visual C++ 6 Bible”, IDG Books World Wide, Inc., Foster City, CA, USA,
1998.

[5] Dadios, E.P. and Maravillas, O.A.,”Fuzzy Logic Controller for Micro-robot Soccer
Game”, Proceedings: 27th IEEE Industrial Electronics Society Annual Conference,
Denver, Colorado, USA.

[6] Thornton, J., et. Al.,”Shape Recognition and Enhanced Control Systems for Robot
Soccer”, Proceedings: 2002 FIRA Robot World Congress, Seoul, Korea, pp. 670-674.

[7] Kim, J.H., et.al.,”Nonlinear Field Based Path Planning and Petri-Nets Based Role
Selection Mechanism w/ Q-learning for the Soccer Robot System”, Proceedings:
ISARA 2000 (International Symposium on Autonomous Robots and Agents), 26
May 2000, NUS,Singapore, pp. 86-100.

[8] Ong Chin Siong, et. al.,”Java-Based Implementation of Robot Soccer”, Proceedings:
ISARA 2000 (International Symposium on Autonomous Robots and Agents), 26
May 2000, NUS, Singapore, pp. 21-27.

[9] T. Simeon, S. Leroy, and J.-P. Laumond, “Path Coordination for Multiple Mobile Robots:
A Resolution-Complete Algorithm”, IEEE Transactions on Robotics and
Automation, Vol. 18, No. 1, February 2002, pp. 42-48.

[10] K. Inoue, J. Ota, T. Hirano, D. Kurabayashi, and T. Arai, “Iterative Transportation by
Cooperative Mobile Robots in Unknown Environment”, Intelligent Autonomous
Systems Y. Kkazu et. al. Eds., IOS Press, 1998, pp. 30-37.

[11] E. Pagello, A. D’Angelo, F. Montesello, C. Ferrari, “Emergent Cooperative Behavior for
Multi-robot Systems”, Intelligent Autonomous Systems Y. Kkazu et. al. Eds., IOS
Press, 1998, pp. 45-52.

[12] L. Vlacic, A. Engwirda, M. Hitchings, and Z. O’Sullivan, “ Intelligent Autonomous
Systems”, Y. Kkazu et. al. Eds., IOS Press, 1998, pp. 53-60.

Robot Soccer206

Artificial Immune Systems, A New Computational Technique for Robot Soccer Strategies 207

Artificial Immune Systems, A New Computational Technique for Robot
Soccer Strategies

Camilo Eduardo Prieto S., Luis Fernando Nino V. and Gerardo Quintana

X

Artificial Immune Systems, A New
Computational Technique for Robot

Soccer Strategies

Camilo Eduardo Prieto S., Luis Fernando Nino V. and Gerardo Quintana
Universidad Nacional de Colombia- National University of Colombia

Intelligent Systems Research Laboratory
Colombia

1. Introduction

Over last decades a computational intelligence technique has take more action field in
engineering, this method based on biological systems provides new solutions to tackle a
wide range of engineering problems. This technique is the Artificial Immune Systems (AISs)
(DeCastro&VonZuben,2000), which utilizes metaphors from the immune systems in order
to solve problems. From different studies and investigations, multiples techniques had
surged such as negative selection, immune networks, clonal selection and others. Precisely a
new technique thrives inside on AIS, its name: Danger Theory. In this chapter we used some
methods for develop robot soccer game strategies.
Robot soccer presents a dynamic environment where it is possible to implement and test
diverse and new computational designs. In robot soccer, specifically, SIMUROSOT from
FIRA (website,2006), there are two leagues: middle and large leagues. In actual work, first
one was used.
In this chapter, robot soccer strategies based on natural immune response are presented.
Due to the adaptability of natural immune system with unknown pathogen, the algorithms
presented carry on this feature in order to play a robot soccer game. As well as their
biological inspiration, strategies based on natural immune response are exposed in several
situations unknown that offer the Robot Soccer Game.

2. Background

Many fields of science have problems with systems and process identification become on
inconvenient what need to be controlled. Most cases a complex process of control is used,
but the best control in these cases is an adaptive control; for this reason new techniques are
necessary to engage several dynamical environments, such as Robot Soccer. The researches
trends towards biological inspiration because of its adaptability, some of these are: Neural
networks, genetics algorithms, swarm and, recently, immune systems. Some characteristics
of immune systems are learning, distributed process and memory; these features are ideals

9

Robot Soccer208

Fig. 2. ASM structure used in (Hwan at al, 1997)

In (Yu-Hwan,2005) fuzzy logic is utilized to control speed and trajectory of each robot. It also
implements a "genetic regulatory network" which uses a concept of the bioinformatics field
based on how genes are involved in controlling intracellular and intercellular processes. In this
way play roles are assigned dynamically. Its biological inspiration for the robot soccer
environment showed good results. In Figure 3 shows the system architecture implemented.
Like the previous work, the comparison is restricted to the computational model used.

Fig. 3. System architecture used in (Yu-Hwan,2005)

In project FIBRA (Armagno at al, 2006) the ant colony technique is used in ordet to identify
opponent’s trajectories. Although good results are presented admits it has the disadvantage
of requiring much processing time (about 4000 iterations). For decision making by using
fuzzy logic like previous computational technique also has problems with the time needed
for decision making, in addition, the large number of variables. In the evaluation process the
following measures were used: percentage of time what the ball is played on his own or
opponent's field, distributions of players on the field, number of goals, efficiency and
effectiveness of attack to the opponent. At the beginning of that project was thought to an
extent similar to the percentage of time the ball is played on each field, but based on human
showed that football is not a very relevant, because even if a team has the ball in their

for Robot Soccer since they can provide a cognitive behaviour emergent where several
agents form a team looking for same objective.

2.1 Some works related
There are several works on Robot Soccer; most of them are focused to generate highly
competitive teams providing in this way more reactive teams than deliberative teams. Some
works related with this chapter are described as follows. A work what develops its strategy
with Artificial Immune Systems (AIS) is showed in (Guan-Chun et al 2006). Basically the
strategy enables one robot in order to select one behaviour between pass, kick, shoot, follow
and protect. For strategies evaluation, the middle league from FIRA is used; the player robot
takes a decision by using an artificial neural network implementing on this way an action to
execute. In (Guan-Chun et al 2006) an antigen is represented by environmental information,
besides each robot had 6 antibodies (see figure 1) that they correspond to actions or
behaviours mentioned before. In order to calculate Antigen-Antibody affinity a fuzzy logic
system is used. This combination AIS-Fuzzy logic presents good results and it offers a
interesting tactic for robot soccer games.

Fig. 1. Immune network used in (Guan-Chun et al 2006)

Neuronal networks, in special, a Multilayer Perceptron –MLP- is used in (Hwan at al,1997)
to make learning process; however a Action Selection Mechanism (ASM) is in charged of
make an action according to play role (see figure 2). The play roles used in that work are
goalkeeper, back –defense- and forward. As well as on this work, research is focused into
adaptation in dynamical systems.

Artificial Immune Systems, A New Computational Technique for Robot Soccer Strategies 209

Fig. 2. ASM structure used in (Hwan at al, 1997)

In (Yu-Hwan,2005) fuzzy logic is utilized to control speed and trajectory of each robot. It also
implements a "genetic regulatory network" which uses a concept of the bioinformatics field
based on how genes are involved in controlling intracellular and intercellular processes. In this
way play roles are assigned dynamically. Its biological inspiration for the robot soccer
environment showed good results. In Figure 3 shows the system architecture implemented.
Like the previous work, the comparison is restricted to the computational model used.

Fig. 3. System architecture used in (Yu-Hwan,2005)

In project FIBRA (Armagno at al, 2006) the ant colony technique is used in ordet to identify
opponent’s trajectories. Although good results are presented admits it has the disadvantage
of requiring much processing time (about 4000 iterations). For decision making by using
fuzzy logic like previous computational technique also has problems with the time needed
for decision making, in addition, the large number of variables. In the evaluation process the
following measures were used: percentage of time what the ball is played on his own or
opponent's field, distributions of players on the field, number of goals, efficiency and
effectiveness of attack to the opponent. At the beginning of that project was thought to an
extent similar to the percentage of time the ball is played on each field, but based on human
showed that football is not a very relevant, because even if a team has the ball in their

for Robot Soccer since they can provide a cognitive behaviour emergent where several
agents form a team looking for same objective.

2.1 Some works related
There are several works on Robot Soccer; most of them are focused to generate highly
competitive teams providing in this way more reactive teams than deliberative teams. Some
works related with this chapter are described as follows. A work what develops its strategy
with Artificial Immune Systems (AIS) is showed in (Guan-Chun et al 2006). Basically the
strategy enables one robot in order to select one behaviour between pass, kick, shoot, follow
and protect. For strategies evaluation, the middle league from FIRA is used; the player robot
takes a decision by using an artificial neural network implementing on this way an action to
execute. In (Guan-Chun et al 2006) an antigen is represented by environmental information,
besides each robot had 6 antibodies (see figure 1) that they correspond to actions or
behaviours mentioned before. In order to calculate Antigen-Antibody affinity a fuzzy logic
system is used. This combination AIS-Fuzzy logic presents good results and it offers a
interesting tactic for robot soccer games.

Fig. 1. Immune network used in (Guan-Chun et al 2006)

Neuronal networks, in special, a Multilayer Perceptron –MLP- is used in (Hwan at al,1997)
to make learning process; however a Action Selection Mechanism (ASM) is in charged of
make an action according to play role (see figure 2). The play roles used in that work are
goalkeeper, back –defense- and forward. As well as on this work, research is focused into
adaptation in dynamical systems.

Robot Soccer210

3.2 Natural Immune System
As mentioned above, NIS has the ability to distinguish foreign molecules or elements that
can damage the body, this is known as the distinction between self and non-self. In normal
situations the NIS may mistakenly identify itself as a non-cell itself and execute an attack,
this is called auto immunity.
Although in NIS there are a variety of cells, some lymphocytes (type of white blood cell) are
essential to mount an immune response, some lymphocytes featured are B and T;
lymphocytes B complete their maturation in the bone marrow, while T cells migrate to the
thymus. On the other hand, also exits dendritic cells and macrophages, first ones are found
mainly in the skin, mucous membranes, lungs and spleen. Macrophages are specialized cells
on to phagocyte (swallowing) large particles (e.g. bacteria) to decompose and then present
them to lymphocytes. There is another type of cells with granules containing potent
chemicals that kill other cells to be marked for elimination; these are known as natural killer
cells (NKC). The figure below presents a classification of immune cells.

Fig. 4. Immune system cells.

Any substance or agent capableto produce an immune response are called antigens. An
antigen may be a virus, bacterium or fungus, for example. When an antigen is presented,
different cells can serve as antigen presenting cells (APC), these include B cells, T cells,
macrophages and dendritic cells. APC role is to process a suspect foreign particles, broken
down into peptides and after presente them on their surface to T cells in order to recognize
antigen. Molecules that marks a cell as own are coded by a group of genes that is contained
in a specific section of a chromosome, called Major Histocompatibility Complex or MHC.
The MHC plays an important role in antigen identification, in particular for immune
defense. Other specials molecules for immune defense are the antibodies, which belong to
the family of molecules called inmunoglobinas and they are produced by B cells. Antibodies
are composed of polypeptide chains which form a region V which is the area of coupling
with the antibody (see Figure 5).

dominance by one more time, this does not mean it is the best, because what counts in a
championship is winning, that is, the highest number of goals scored and fewest goals
received.

In work presented in (Farris et al, 1997), unlike other techniques what they develop low-
level behavior such as pass and intercepted the ball and others, here high-level coordination
is evolutioned using genetic programming; besides homogeneous and heterogeneous team
are developed. Although it is possible to “evolve a successful team“ this requires a lot of
time in order to obtain reasonable results. Furthermore, although the evidence was obtained
partial success (although the details were omitted here). For the evolution of team’s
strategies a mixed team is used because of the large number of iterations and mutation to
take place, instead a pseudo-heterogeneous is implemented.

In (Thomas, 2005) the strategies are based on fuzzy logic with trajectory evolution. A model
of 3 inputs - 2 outputs is developed, where the inputs are two angles and a distance, and the
two outputs correspond to two wheel speeds in order to control the robot. The convergence
of the algorithm of evolution is slow. Another controller 5 inputs (3 previous +2 current for
each wheel) - 2 outputs is implemented. This last driver introduced improvements in
behavior, but the computing time increases greatly due to the increased number of
dimensions. Unlike the present chapter, control strategies are aimed at navigation and
trajectory of the robot, more is not playing strategy as such for this reason is not comparable
with this chapter work.

3. Immunology: Natural and Artificial

3.1 Fundamentals
The natural immune system is a complex network of specialized cells and organs that has
evolved to protect the body against attacks from "outside invaders, defending infections
caused by agents such as bacteria, viruses, parasites” and others (Woods, 1991). The ability
of recognition is almost unlimited and it can remember past infections. In this way, when a
pathogen attacks again the response is so efficient since it was recognized previously, which
is known as secondary response.
Natural Immune System (NIS), specifically vertebrate immune systems has been taken as
biological inspiration for Artificial Immune System (AIS). Different features of NIS are
highly appealing from point of view of engineering, these are as follows:

 Uniqueness
 Pattern recognition
 Autonomy
 Diversity
 Multilayered
 Anomaly detection
 Distributivity
 Noise tolerance
 Robustness
 Learning
 Memory
 Self-organization

Artificial Immune Systems, A New Computational Technique for Robot Soccer Strategies 211

3.2 Natural Immune System
As mentioned above, NIS has the ability to distinguish foreign molecules or elements that
can damage the body, this is known as the distinction between self and non-self. In normal
situations the NIS may mistakenly identify itself as a non-cell itself and execute an attack,
this is called auto immunity.
Although in NIS there are a variety of cells, some lymphocytes (type of white blood cell) are
essential to mount an immune response, some lymphocytes featured are B and T;
lymphocytes B complete their maturation in the bone marrow, while T cells migrate to the
thymus. On the other hand, also exits dendritic cells and macrophages, first ones are found
mainly in the skin, mucous membranes, lungs and spleen. Macrophages are specialized cells
on to phagocyte (swallowing) large particles (e.g. bacteria) to decompose and then present
them to lymphocytes. There is another type of cells with granules containing potent
chemicals that kill other cells to be marked for elimination; these are known as natural killer
cells (NKC). The figure below presents a classification of immune cells.

Fig. 4. Immune system cells.

Any substance or agent capableto produce an immune response are called antigens. An
antigen may be a virus, bacterium or fungus, for example. When an antigen is presented,
different cells can serve as antigen presenting cells (APC), these include B cells, T cells,
macrophages and dendritic cells. APC role is to process a suspect foreign particles, broken
down into peptides and after presente them on their surface to T cells in order to recognize
antigen. Molecules that marks a cell as own are coded by a group of genes that is contained
in a specific section of a chromosome, called Major Histocompatibility Complex or MHC.
The MHC plays an important role in antigen identification, in particular for immune
defense. Other specials molecules for immune defense are the antibodies, which belong to
the family of molecules called inmunoglobinas and they are produced by B cells. Antibodies
are composed of polypeptide chains which form a region V which is the area of coupling
with the antibody (see Figure 5).

dominance by one more time, this does not mean it is the best, because what counts in a
championship is winning, that is, the highest number of goals scored and fewest goals
received.

In work presented in (Farris et al, 1997), unlike other techniques what they develop low-
level behavior such as pass and intercepted the ball and others, here high-level coordination
is evolutioned using genetic programming; besides homogeneous and heterogeneous team
are developed. Although it is possible to “evolve a successful team“ this requires a lot of
time in order to obtain reasonable results. Furthermore, although the evidence was obtained
partial success (although the details were omitted here). For the evolution of team’s
strategies a mixed team is used because of the large number of iterations and mutation to
take place, instead a pseudo-heterogeneous is implemented.

In (Thomas, 2005) the strategies are based on fuzzy logic with trajectory evolution. A model
of 3 inputs - 2 outputs is developed, where the inputs are two angles and a distance, and the
two outputs correspond to two wheel speeds in order to control the robot. The convergence
of the algorithm of evolution is slow. Another controller 5 inputs (3 previous +2 current for
each wheel) - 2 outputs is implemented. This last driver introduced improvements in
behavior, but the computing time increases greatly due to the increased number of
dimensions. Unlike the present chapter, control strategies are aimed at navigation and
trajectory of the robot, more is not playing strategy as such for this reason is not comparable
with this chapter work.

3. Immunology: Natural and Artificial

3.1 Fundamentals
The natural immune system is a complex network of specialized cells and organs that has
evolved to protect the body against attacks from "outside invaders, defending infections
caused by agents such as bacteria, viruses, parasites” and others (Woods, 1991). The ability
of recognition is almost unlimited and it can remember past infections. In this way, when a
pathogen attacks again the response is so efficient since it was recognized previously, which
is known as secondary response.
Natural Immune System (NIS), specifically vertebrate immune systems has been taken as
biological inspiration for Artificial Immune System (AIS). Different features of NIS are
highly appealing from point of view of engineering, these are as follows:

 Uniqueness
 Pattern recognition
 Autonomy
 Diversity
 Multilayered
 Anomaly detection
 Distributivity
 Noise tolerance
 Robustness
 Learning
 Memory
 Self-organization

Robot Soccer212

3.3 Artificial Immune Systems
Artificial immune systems (AIS) are adaptive systems inspired by immunological theories
and observed immune functions, principles and models that are applied to solve problems
(DeCastro&Timmis, 2002). Although this area of research is relatively recent, highlights
several algorithms and models (website, 2009), some of them are:
 Negative Selection Algorithm: it is inspired mainly by the mechanism in the thymus that

produces a set of T cells what are able to bind only to antigens (non-equity), items on
the basis only of their own.

 Clonal Selection Algorithm: it is based on affinity maturation of B cells basically, this
algorithm extracts two fundamental characteristics: proliferation of B cells proportional
to the affinity with antigen (higher affinity, greater is number of clones produced) and
the mutation undergoes the antibody (lower affinity, greater is mutation).

 Immune Networks: these models are based on the fact that any cell receptor can be
recognized by a receptor repertoire, recognizing each other, ie, B cells are stimulated by
not only antigens but also by other B cells, and this feedback mechanism leads to a
memory.

3.3.1 Humoral Response Algorithm (HRA)
Here, an algorithm inspired by Humoral Immunity is developed in order to implement
behavior of some robot soccer players. This algorithm uses some features of Humoral
response described previously. The artificial immune response of HRA is considered in two
stages: Stage or phase of activation and effector phase. In the next figure , these phases
(natural immune response) are presented.

Fig. 6. Activation and effector phases.

(a) Activation Phase: At this stage the process of antigen identification is made, whose
biological inspiration can be summarized as follows: Once reaching an antigen, an antigen
presenting cell –APC- engulfs and processes it, once the molecular material is processed, it is

Fig. 5. Antibody structure.

The adaptive immune response is when the immune system can recognizes and selectively
eliminates foreign molecules. This type of response may occur in two forms: Cellular and
Humoral immunity. For development of actual chapter only the last one is taken into
account. For details on the cellular immune response consult (Woods, 1991). Humoral
immunity consists of the following phases: Macrophage swallows an antigen and becomes
an APC, this APC divides the antigen in peptides, peptides and MHC join together to form
an internally MHC-peptide molecule which one is presented on the APC surface. This
stimulates to Helper T cells which recognizes the antigen through its TCR (T-Cell Receptor).
Once recognition by the Helper T-cell is made, T-Cell emits two kinds of signals: CD40L and
cytokines, for the purposes of this study only takes into account the last ones, since
cytokines cause cell B proliferation and differentiation as clonal plasma cells and memory
cells. Plasma cells secrete antibodies which are attached to the antigen in order to the natural
killer cells (NKC) can be identify and eliminate them.

Fig. 6. Humoral Immune response process.

Artificial Immune Systems, A New Computational Technique for Robot Soccer Strategies 213

3.3 Artificial Immune Systems
Artificial immune systems (AIS) are adaptive systems inspired by immunological theories
and observed immune functions, principles and models that are applied to solve problems
(DeCastro&Timmis, 2002). Although this area of research is relatively recent, highlights
several algorithms and models (website, 2009), some of them are:
 Negative Selection Algorithm: it is inspired mainly by the mechanism in the thymus that

produces a set of T cells what are able to bind only to antigens (non-equity), items on
the basis only of their own.

 Clonal Selection Algorithm: it is based on affinity maturation of B cells basically, this
algorithm extracts two fundamental characteristics: proliferation of B cells proportional
to the affinity with antigen (higher affinity, greater is number of clones produced) and
the mutation undergoes the antibody (lower affinity, greater is mutation).

 Immune Networks: these models are based on the fact that any cell receptor can be
recognized by a receptor repertoire, recognizing each other, ie, B cells are stimulated by
not only antigens but also by other B cells, and this feedback mechanism leads to a
memory.

3.3.1 Humoral Response Algorithm (HRA)
Here, an algorithm inspired by Humoral Immunity is developed in order to implement
behavior of some robot soccer players. This algorithm uses some features of Humoral
response described previously. The artificial immune response of HRA is considered in two
stages: Stage or phase of activation and effector phase. In the next figure , these phases
(natural immune response) are presented.

Fig. 6. Activation and effector phases.

(a) Activation Phase: At this stage the process of antigen identification is made, whose
biological inspiration can be summarized as follows: Once reaching an antigen, an antigen
presenting cell –APC- engulfs and processes it, once the molecular material is processed, it is

Fig. 5. Antibody structure.

The adaptive immune response is when the immune system can recognizes and selectively
eliminates foreign molecules. This type of response may occur in two forms: Cellular and
Humoral immunity. For development of actual chapter only the last one is taken into
account. For details on the cellular immune response consult (Woods, 1991). Humoral
immunity consists of the following phases: Macrophage swallows an antigen and becomes
an APC, this APC divides the antigen in peptides, peptides and MHC join together to form
an internally MHC-peptide molecule which one is presented on the APC surface. This
stimulates to Helper T cells which recognizes the antigen through its TCR (T-Cell Receptor).
Once recognition by the Helper T-cell is made, T-Cell emits two kinds of signals: CD40L and
cytokines, for the purposes of this study only takes into account the last ones, since
cytokines cause cell B proliferation and differentiation as clonal plasma cells and memory
cells. Plasma cells secrete antibodies which are attached to the antigen in order to the natural
killer cells (NKC) can be identify and eliminate them.

Fig. 6. Humoral Immune response process.

Robot Soccer214

3.4 Danger Theory
In 1994, Polly Matzinger proposed a theory that tries to explain why, in some cases there is
no distinction between self and strange, for example, why does not the immune system
reacts to foreign bacteria in food?. Matzinger proposes to change the classical theory of self/
non-self by dangerous/harmless on a new thoery called the Danger Theory. The central
concept of this theory is what the immune system reacts to danger, the danger is measured
by damage to cells as indicated by stress signals that are sent when the cells die so unnatural
way (Aickelin&Cayzer,2002). In detail, when a cell dies in unnatural conditions it sends a
alarm or danger signal that establishes a zone of danger around it (see Figure 7). In this
context, B cells are responsible to produce antibodies that detect these antigens. If this
detection occurs within danger zone, antibodies are stimulated and thus are activated.
However, if detection is outside the danger zone, then the antibodies are not stimulated.
Even if there is an affinity between antigen-antibody by outside the danger zone will not
develop a cellular activation.

Fig. 7. Danger zone.

According to the two-signal model proposed by (Brester and Cohn,1970), antigen
recognition is accomplished through two signals: signal recognition (signal one) and signal
of co-stimulation (signal two), the last one really means dangerous (Aickelin&Cayzer,2002).
Under the Bretscher-Cohn model, Danger Theory operates with the laws of lymphocytes,
which are (Matzinger,2001):
1) A lymphocyte requires two signals to be activated, Signal One (signal recognition)

comes from the junction of TCR (T cell receptor) and MHC-peptide. Signal Two
comes from an APC.

2) A lymphocyte only accepts Signal Two from APC.
3) The activation phase delays a certain time and after activated, the lymphocytes not

need Signal Two.

presented on antigen surface joined to a molecule of the largest histocompatibility complex
for subsequent recognition by a Helper T-lymphocyte which sends limphokynes to activate
the B-cells. This stage is modeled as follow:

PRE-HRAALGORITHM

1- Begin
2- For each antigen
3- divide in peptides
4- show MCH/peptide
5- T-Helper sends limphokynes
6- End For
7- End

Each time that an antigen arrives, breaks down elements that make up this antigen, for this
chapter the opponent's strategy represents an antigen; peptides represent the coordinates’
opponents players with respect to the ball. In order to process information of the opponent,
information from the local team represents MCH and form MCH / peptide (biological point
of view). According to this information the opponent's strategy is identify. Although in the
biological process there is a mutation from T Helper cells, the model proposed in this work
was not taken into account since it represents a high computational cost.
(b) Effector phase: At this stage the process of antigen elimination is carries out. The biological
process modeled is showed as follows.

HRA ALGORITHM
1. Begin
2. While receives limphokyne Do
3. If Ab exists in memory Then
4. Use Ab
5. Else
6. Generate Abs
7. For each Ab Do
8. Calculate affinity
9. Choose Abs with best affinity
10. If exist bests Abs Then
11. Choose the best
12. Else
13. Mutation of Antigen Image
14. End If
15. End For
16. End If
17. End While
18. End

Once the limphokines are received from earlier stage, the algorithm verifies if an antibody
(Ab) exists into memory then it is used, otherwise generates Abs, calculates his affinity with
antigen for each one and chooses the best Ab. In some cases the affinities are not the best,
and then a mutation of antigen image is necessary.

Artificial Immune Systems, A New Computational Technique for Robot Soccer Strategies 215

3.4 Danger Theory
In 1994, Polly Matzinger proposed a theory that tries to explain why, in some cases there is
no distinction between self and strange, for example, why does not the immune system
reacts to foreign bacteria in food?. Matzinger proposes to change the classical theory of self/
non-self by dangerous/harmless on a new thoery called the Danger Theory. The central
concept of this theory is what the immune system reacts to danger, the danger is measured
by damage to cells as indicated by stress signals that are sent when the cells die so unnatural
way (Aickelin&Cayzer,2002). In detail, when a cell dies in unnatural conditions it sends a
alarm or danger signal that establishes a zone of danger around it (see Figure 7). In this
context, B cells are responsible to produce antibodies that detect these antigens. If this
detection occurs within danger zone, antibodies are stimulated and thus are activated.
However, if detection is outside the danger zone, then the antibodies are not stimulated.
Even if there is an affinity between antigen-antibody by outside the danger zone will not
develop a cellular activation.

Fig. 7. Danger zone.

According to the two-signal model proposed by (Brester and Cohn,1970), antigen
recognition is accomplished through two signals: signal recognition (signal one) and signal
of co-stimulation (signal two), the last one really means dangerous (Aickelin&Cayzer,2002).
Under the Bretscher-Cohn model, Danger Theory operates with the laws of lymphocytes,
which are (Matzinger,2001):
1) A lymphocyte requires two signals to be activated, Signal One (signal recognition)

comes from the junction of TCR (T cell receptor) and MHC-peptide. Signal Two
comes from an APC.

2) A lymphocyte only accepts Signal Two from APC.
3) The activation phase delays a certain time and after activated, the lymphocytes not

need Signal Two.

presented on antigen surface joined to a molecule of the largest histocompatibility complex
for subsequent recognition by a Helper T-lymphocyte which sends limphokynes to activate
the B-cells. This stage is modeled as follow:

PRE-HRAALGORITHM

1- Begin
2- For each antigen
3- divide in peptides
4- show MCH/peptide
5- T-Helper sends limphokynes
6- End For
7- End

Each time that an antigen arrives, breaks down elements that make up this antigen, for this
chapter the opponent's strategy represents an antigen; peptides represent the coordinates’
opponents players with respect to the ball. In order to process information of the opponent,
information from the local team represents MCH and form MCH / peptide (biological point
of view). According to this information the opponent's strategy is identify. Although in the
biological process there is a mutation from T Helper cells, the model proposed in this work
was not taken into account since it represents a high computational cost.
(b) Effector phase: At this stage the process of antigen elimination is carries out. The biological
process modeled is showed as follows.

HRA ALGORITHM
1. Begin
2. While receives limphokyne Do
3. If Ab exists in memory Then
4. Use Ab
5. Else
6. Generate Abs
7. For each Ab Do
8. Calculate affinity
9. Choose Abs with best affinity
10. If exist bests Abs Then
11. Choose the best
12. Else
13. Mutation of Antigen Image
14. End If
15. End For
16. End If
17. End While
18. End

Once the limphokines are received from earlier stage, the algorithm verifies if an antibody
(Ab) exists into memory then it is used, otherwise generates Abs, calculates his affinity with
antigen for each one and chooses the best Ab. In some cases the affinities are not the best,
and then a mutation of antigen image is necessary.

Robot Soccer216

4.1 Goalkeeper Strategy
In this study, APC cell will be a B cell, the lymphocyte to be activated will be a NKC (natural
killer cells), antigen is the strategy of the opponent's attack and signals One and Two will be
which indicate to the goalkeeper that its bow is on danger. This analogy between elements
of soccer robots and immunology is detailed in Table 1.

Danger Theory Elements Robot Soccer

APC Goalkeeper ID-Strategy
Tissue 1/3 Home Side
Antigen Opponent and Ball at home side
Signal One Ball at home side
Signal Two Opponent with ball close to penalty area
Danger Zone (Fixed) Penalty area
Lymphocyte (NKC) Clear Strategy-AIKIDO

Table 1. Analogy between danger theory an robot soccer.

Goalkeeper identifies if there are opponent plays that can become dangerous and end up in
goal, all of these by taking into account the signals of the model. When in the course of
game, the ball is on final third side of the stadium itself (see Figure 8), will trigger an alert,
this is sign one, since ball position can become goal. That is why active surveillance
opponent's moves in order to detect if there is danger. The goalkeeper is so attentive to
receive signal Two or co-stimulation, which indicates whether the situation is dangerous or
not, that signal will be present when opponent has the ball and is in proximity to penalty
area.

Fig. 8. Danger zone on game field.

As human soccer, goalkeeper gets alerted when an opponent player with the ball is coming.
Usually, goalkeeper is located close to the vertical post nearest where is dangerous situation.
This work takes such human reaction in order to do monitoring process. In robot soccer case
a fixed danger zone is used, which corresponds to the penalty area. When goalkeeper
receives the two signals lymphocyte NKC is activated, which is clearance strategy,

3.4.1 Danger Theory Algorithm
In order to make an abstraction of model proposed by Matzinger, it is necessary to identify
certain characteristics to be implemented on this model, which one has been called DTAL
(Danger Theory Algorithm). Here are the features modeled:
 Danger Zone
 Signal One
 Siganl Two
 Antigen
 Lymphocyte
 APC

Following the characteristics from model proposed by Matzinger an algorithm is generated.
The proposed algorithm is presented below.

Algorithm DTAL
1 - Start
2 - for each antigen
3 - detect alert (Signal One)
4 - monitor antigen
5 - if you receive signal then Two
6 - danger zone set
7 - activate lymphocyte NKC
8 - end if
9 - end for
10 - end

The flexibility of this algorithm is to define a danger zone that could be placed where is
needed, since there are systems which require what certain area or subsystem always is at
same place in order to be monitored for abnormalities; in these cases line 6 of algorithm can
be located at 1.5 to establish the danger zone. This flexibility makes the algorithm can be
applied in different environments (Prieto et al, 2008).

4. Robot Soccer Strategies Inspired on Immunology

Taking the concepts of immunology treated previously strategies for robot soccer are
developed, both from a classical viewpoint and from the viewpoint of danger theory.
In many cases, the strategy used by a robot soccer team is treated globally. However, this
may not be appropriate since the goalkeeper carries out other functions and can be viewed
as a special player. Therefore, goalkeeper strategy can be separated from the rest of team,
but still must be coordinated or linked to the rest of team to achieve objective: win the game.
Therefore, in this chapter we define the strategies of the players as well:
1) Goalkeeper Strategy: We propose the use danger theory to develop the goalkeeper

strategy.
2) Strategy Team: For the average league soccer robots (SIMUROSOT), players, excluding

the goalkeeper, is four. With these players can deploy multiple roles football game. In
this case, we propose the use of the humoral response theory to develop team strategy.

Artificial Immune Systems, A New Computational Technique for Robot Soccer Strategies 217

4.1 Goalkeeper Strategy
In this study, APC cell will be a B cell, the lymphocyte to be activated will be a NKC (natural
killer cells), antigen is the strategy of the opponent's attack and signals One and Two will be
which indicate to the goalkeeper that its bow is on danger. This analogy between elements
of soccer robots and immunology is detailed in Table 1.

Danger Theory Elements Robot Soccer

APC Goalkeeper ID-Strategy
Tissue 1/3 Home Side
Antigen Opponent and Ball at home side
Signal One Ball at home side
Signal Two Opponent with ball close to penalty area
Danger Zone (Fixed) Penalty area
Lymphocyte (NKC) Clear Strategy-AIKIDO

Table 1. Analogy between danger theory an robot soccer.

Goalkeeper identifies if there are opponent plays that can become dangerous and end up in
goal, all of these by taking into account the signals of the model. When in the course of
game, the ball is on final third side of the stadium itself (see Figure 8), will trigger an alert,
this is sign one, since ball position can become goal. That is why active surveillance
opponent's moves in order to detect if there is danger. The goalkeeper is so attentive to
receive signal Two or co-stimulation, which indicates whether the situation is dangerous or
not, that signal will be present when opponent has the ball and is in proximity to penalty
area.

Fig. 8. Danger zone on game field.

As human soccer, goalkeeper gets alerted when an opponent player with the ball is coming.
Usually, goalkeeper is located close to the vertical post nearest where is dangerous situation.
This work takes such human reaction in order to do monitoring process. In robot soccer case
a fixed danger zone is used, which corresponds to the penalty area. When goalkeeper
receives the two signals lymphocyte NKC is activated, which is clearance strategy,

3.4.1 Danger Theory Algorithm
In order to make an abstraction of model proposed by Matzinger, it is necessary to identify
certain characteristics to be implemented on this model, which one has been called DTAL
(Danger Theory Algorithm). Here are the features modeled:
 Danger Zone
 Signal One
 Siganl Two
 Antigen
 Lymphocyte
 APC

Following the characteristics from model proposed by Matzinger an algorithm is generated.
The proposed algorithm is presented below.

Algorithm DTAL
1 - Start
2 - for each antigen
3 - detect alert (Signal One)
4 - monitor antigen
5 - if you receive signal then Two
6 - danger zone set
7 - activate lymphocyte NKC
8 - end if
9 - end for
10 - end

The flexibility of this algorithm is to define a danger zone that could be placed where is
needed, since there are systems which require what certain area or subsystem always is at
same place in order to be monitored for abnormalities; in these cases line 6 of algorithm can
be located at 1.5 to establish the danger zone. This flexibility makes the algorithm can be
applied in different environments (Prieto et al, 2008).

4. Robot Soccer Strategies Inspired on Immunology

Taking the concepts of immunology treated previously strategies for robot soccer are
developed, both from a classical viewpoint and from the viewpoint of danger theory.
In many cases, the strategy used by a robot soccer team is treated globally. However, this
may not be appropriate since the goalkeeper carries out other functions and can be viewed
as a special player. Therefore, goalkeeper strategy can be separated from the rest of team,
but still must be coordinated or linked to the rest of team to achieve objective: win the game.
Therefore, in this chapter we define the strategies of the players as well:
1) Goalkeeper Strategy: We propose the use danger theory to develop the goalkeeper

strategy.
2) Strategy Team: For the average league soccer robots (SIMUROSOT), players, excluding

the goalkeeper, is four. With these players can deploy multiple roles football game. In
this case, we propose the use of the humoral response theory to develop team strategy.

Robot Soccer218

Activation stage is responsible for make acknowlegde. To perform this process is necessary
take this information and process it with the Major Histocompatibility Complex-MCH-
(biologically speaking). From Robot soccer point of view, MCH can be represented by XY
positions from local team (10 data). Using all the information (antigen and MCH) is
necessary to find the distance between each local player and each opponent player with
respect to ball, thus finding opponents who are an active participation on game and what
players can participate in current move, in other words, we know the opponent's strategy by
the players directly involved in action game, getting an image of the antigen. This process is
analogous to the decomposition of such a peptide antigen in the biological.

5. Experimentation and Results

Due to Robot Soccer environment the experiments are based on matches of 5 minutes each,
depending on the category SIMUROSOT. To test the proposed strategies, it is necessary to
match the team in which strategies were implemented (local) with other teams, that is, other
gaming strategies. One difficulty in the robot soccer environment –FIRA- lies in the
unavailability of reference test strategies or benchmark for evaluation. However, different
strategies developed in the work of (Sotomonte, 2005) and (Kogan and Parra,2006) were
used in experimentation. That is, used 4 strategies:
 H01-heterogeneous system model 1, M04-homogeneous system with knowledge of

rules and collision detection. Both were designed by (Sotomonte, 2005).
 Rakiduam developed by Kogan and Parra in 2006. Participated in the Argentine

Championship Robot Soccer (website,2008), earning fifth place among 10 participants.
 Strategy which has by default the simulator league official SIMUROSOT.
In addition, a random attack strategy is used.

5.1 Results
In order to do all experiments only game time where the ball is in action game was taken.
For this reason, the number of matches is not bigger in comparison with others
investigations, but inside Robot Soccer context is enough in order to prove the
computational intelligence.

5.1.1 DTAL Algorithm
To determinate effectiveness of this strategy, 15 matches were carried out. Time used on
these tests was 15 minutes nets –no dead times were taken into account-. In order to
evaluate the strategies developed two primordial features were used: Goal Options and
Goal Annotations. The first ones are which Signal Two was present, it means, antigen was
recognized as dangerous.

disarming the opponent's goal play. As in human and robot soccer, clearance does not
guarantee full disarmament of opposing team's attack, in many cases it needs the
intervention of other elements to make the response effective. The clearance strategy used
by goalkeeper is taken from aikido art, a strategy proposed by (Fredman&Mon,2004). This
technique uses the force that is blowing to deflect it. The strategy of goalkeeper is uses angle
and speed that comes with the ball and deflected its course, away from the arc as far as
possible.

4.2 Team Strategy
Since the dynamics of soccer game is necessary that resident system; in this context, local
team will be capable adapting to game schema of opponent in order to win soccer match.
For team strategy development, information provided by simulator is used and putted into
a vector of 22 elements, which result from to combine positions (x, y) of all players (home
and visit) and ball.

LX0t LY0t LX1t LY1t … LX4t LY4t OX0t OX0t OX1t OX1t … OX4t OX4t BXt BYt

Where LXit and LYit represent local player i coordinates at t time instant. For the team
strategy, an antigen represents opponent's strategy, noting that the concept of strategy used
for the team is defined as formation of the opponent with regard to both ball and field game
into a window of time. To determine a strategy is necessary to use a sequence of movements
of the opponent into a period of time. Because of need to sample the opponent's strategy, it
is essential to have a history of opponent’s movements (see Table 2). For this reason, when
opponent player location is needed does not take the current position but for that player's
position corresponds to predicting the next move according to that history (see equations 1
and 2).

OX0t OY0t OX1t OY1t … OX4t OY4t

OX0t-1 OY0 t-1 OX1 t-1 OY1 t-1 … OX4 t-1 OY4t-1

 
   

OX0t-4 OY0 t-4 OX1 t-4 OY1 t-4 … OX4 t-k OY4t-4

Table 2. History opponent's moves.

()∑
=

−−−+ −+=
3

0
1)(1 4

1
k

ktkttt OXOXOXOX (1)

()∑
=

−−−+ −+=
3

0
1)(1 4

1
k

ktkttt OYOYOYOY (2)

On this way, an antigen can be represented as follows:

OX0 OY0 OX1 OY1 … OX4 OY4 BX BY

 Positions XY of opponent players Ball Position XY

Artificial Immune Systems, A New Computational Technique for Robot Soccer Strategies 219

Activation stage is responsible for make acknowlegde. To perform this process is necessary
take this information and process it with the Major Histocompatibility Complex-MCH-
(biologically speaking). From Robot soccer point of view, MCH can be represented by XY
positions from local team (10 data). Using all the information (antigen and MCH) is
necessary to find the distance between each local player and each opponent player with
respect to ball, thus finding opponents who are an active participation on game and what
players can participate in current move, in other words, we know the opponent's strategy by
the players directly involved in action game, getting an image of the antigen. This process is
analogous to the decomposition of such a peptide antigen in the biological.

5. Experimentation and Results

Due to Robot Soccer environment the experiments are based on matches of 5 minutes each,
depending on the category SIMUROSOT. To test the proposed strategies, it is necessary to
match the team in which strategies were implemented (local) with other teams, that is, other
gaming strategies. One difficulty in the robot soccer environment –FIRA- lies in the
unavailability of reference test strategies or benchmark for evaluation. However, different
strategies developed in the work of (Sotomonte, 2005) and (Kogan and Parra,2006) were
used in experimentation. That is, used 4 strategies:
 H01-heterogeneous system model 1, M04-homogeneous system with knowledge of

rules and collision detection. Both were designed by (Sotomonte, 2005).
 Rakiduam developed by Kogan and Parra in 2006. Participated in the Argentine

Championship Robot Soccer (website,2008), earning fifth place among 10 participants.
 Strategy which has by default the simulator league official SIMUROSOT.
In addition, a random attack strategy is used.

5.1 Results
In order to do all experiments only game time where the ball is in action game was taken.
For this reason, the number of matches is not bigger in comparison with others
investigations, but inside Robot Soccer context is enough in order to prove the
computational intelligence.

5.1.1 DTAL Algorithm
To determinate effectiveness of this strategy, 15 matches were carried out. Time used on
these tests was 15 minutes nets –no dead times were taken into account-. In order to
evaluate the strategies developed two primordial features were used: Goal Options and
Goal Annotations. The first ones are which Signal Two was present, it means, antigen was
recognized as dangerous.

disarming the opponent's goal play. As in human and robot soccer, clearance does not
guarantee full disarmament of opposing team's attack, in many cases it needs the
intervention of other elements to make the response effective. The clearance strategy used
by goalkeeper is taken from aikido art, a strategy proposed by (Fredman&Mon,2004). This
technique uses the force that is blowing to deflect it. The strategy of goalkeeper is uses angle
and speed that comes with the ball and deflected its course, away from the arc as far as
possible.

4.2 Team Strategy
Since the dynamics of soccer game is necessary that resident system; in this context, local
team will be capable adapting to game schema of opponent in order to win soccer match.
For team strategy development, information provided by simulator is used and putted into
a vector of 22 elements, which result from to combine positions (x, y) of all players (home
and visit) and ball.

LX0t LY0t LX1t LY1t … LX4t LY4t OX0t OX0t OX1t OX1t … OX4t OX4t BXt BYt

Where LXit and LYit represent local player i coordinates at t time instant. For the team
strategy, an antigen represents opponent's strategy, noting that the concept of strategy used
for the team is defined as formation of the opponent with regard to both ball and field game
into a window of time. To determine a strategy is necessary to use a sequence of movements
of the opponent into a period of time. Because of need to sample the opponent's strategy, it
is essential to have a history of opponent’s movements (see Table 2). For this reason, when
opponent player location is needed does not take the current position but for that player's
position corresponds to predicting the next move according to that history (see equations 1
and 2).

OX0t OY0t OX1t OY1t … OX4t OY4t

OX0t-1 OY0 t-1 OX1 t-1 OY1 t-1 … OX4 t-1 OY4t-1

 
   

OX0t-4 OY0 t-4 OX1 t-4 OY1 t-4 … OX4 t-k OY4t-4

Table 2. History opponent's moves.

()∑
=

−−−+ −+=
3

0
1)(1 4

1
k

ktkttt OXOXOXOX (1)

()∑
=

−−−+ −+=
3

0
1)(1 4

1
k

ktkttt OYOYOYOY (2)

On this way, an antigen can be represented as follows:

OX0 OY0 OX1 OY1 … OX4 OY4 BX BY

 Positions XY of opponent players Ball Position XY

Robot Soccer220

5.1.3 Analysis
In experiments for algorithm DTAL, despite the fact that goalkeeper played only against the
rest of the opposing team (1 vs. 5), a high rate of effectiveness tackling opposing moves that
may become a goal, was achieved. Although some aspects may improve the prediction of
the position of the ball, the algorithm has many qualities to be implemented in other
engineering fields. Those characteristics are the simplicity of implementation, speed of
response and security system applications.
When algorithm DTAL is combined with algorithm HRA to develop the equipment, the
team has characteristics of cooperation that was not formally designed, but its inspiration
immune system makes this system suitable for multi-agent dynamic environments. The
HRA algorithm can be implemented in other fields of action, preliminary interpretation of
the environment so that its effectiveness is reflected in the particular application.
Even though the team was able to face different game situations, the method of navigation
could be improved to make it much faster and generate movements that the opponent can
not respond optimally, and thus will find a game much more competitive. However, in
several previous works are presented various forms of navigation, but in the present study
opted for a simple and effective way of navigation, since the focus of research was the
application of artificial immunology concepts for a multi-agent system in highly dynamic
environment.

6. Future Research

As future work, it is worthwhile to deepen some aspects of this work, besides continuing
some work done. These aspects are:
 Because of work focused on a high level of abstraction, namely the implementation of

strategies in play, a task ahead is to strengthen the players' actions to be implemented
in a competition either domestically or internationally.

 There should be testing and improving, if necessary, the navigation system in order to
be faster, since in gaming systems this is a very important feature in a competition.

 Perform other hybrid models involving computer techniques bio-inspired such as
neural networks and genetic algorithms, in order to find a very competitive
internationally.

 Using other platforms to interact with official simulator from FIRA to run faster actions,
besides being able to implement different programming structures for the development
of strategies.

7. Conclusions

Algorithms based on immunology concepts are presented; these features are used into a
computational system in this case a robot soccer team in order to learn the game situations.
Through interaction with the rating system, a memory is built so that its response is fast
growing and adapts its behavior to different game situations regardless of the opponent.
It is important highlight that although the algorithms developed in this work, initially did
not schedule for explicit communication between players (ie, between the goalkeeper and
other players), thanks to the biological inspiration in immunology surges a collaborative
relationship between the players in order to give a response to actions of the opponent who

Table 3. Results for DTAL algorithm

It is important highline the fact that matches use 5 opposite player vs. goalkeeper, and so the
effectiveness obtained was 84.43% with a standard deviation of 6.10%.

5.1.2 HRA Algorithm
Difference between this test and before test is the combination of 2 algorithms is into this
algorithm. So, following its biological inspiration the HRA algorithm use memory in order
to adaptation will be successfully. Into the next figure a goal tendency is showed; this
represents its adaptation a different opponents.

Fig. 9.

Match Goal Option Goal
Annotation

Effectiveness
Goalkeaper (%)

1 26 2 92.30
2 52 6 88.46
3 26 0 100
4 44 6 86.36
5 42 4 90.47
6 46 8 82.61
7 56 11 80.36
8 58 10 82.76
9 58 12 79.31
10 43 9 79.07
11 36 7 80.56
12 44 10 77.27
13 60 10 83.33
14 62 12 80.65
15 47 8 82.98

Artificial Immune Systems, A New Computational Technique for Robot Soccer Strategies 221

5.1.3 Analysis
In experiments for algorithm DTAL, despite the fact that goalkeeper played only against the
rest of the opposing team (1 vs. 5), a high rate of effectiveness tackling opposing moves that
may become a goal, was achieved. Although some aspects may improve the prediction of
the position of the ball, the algorithm has many qualities to be implemented in other
engineering fields. Those characteristics are the simplicity of implementation, speed of
response and security system applications.
When algorithm DTAL is combined with algorithm HRA to develop the equipment, the
team has characteristics of cooperation that was not formally designed, but its inspiration
immune system makes this system suitable for multi-agent dynamic environments. The
HRA algorithm can be implemented in other fields of action, preliminary interpretation of
the environment so that its effectiveness is reflected in the particular application.
Even though the team was able to face different game situations, the method of navigation
could be improved to make it much faster and generate movements that the opponent can
not respond optimally, and thus will find a game much more competitive. However, in
several previous works are presented various forms of navigation, but in the present study
opted for a simple and effective way of navigation, since the focus of research was the
application of artificial immunology concepts for a multi-agent system in highly dynamic
environment.

6. Future Research

As future work, it is worthwhile to deepen some aspects of this work, besides continuing
some work done. These aspects are:
 Because of work focused on a high level of abstraction, namely the implementation of

strategies in play, a task ahead is to strengthen the players' actions to be implemented
in a competition either domestically or internationally.

 There should be testing and improving, if necessary, the navigation system in order to
be faster, since in gaming systems this is a very important feature in a competition.

 Perform other hybrid models involving computer techniques bio-inspired such as
neural networks and genetic algorithms, in order to find a very competitive
internationally.

 Using other platforms to interact with official simulator from FIRA to run faster actions,
besides being able to implement different programming structures for the development
of strategies.

7. Conclusions

Algorithms based on immunology concepts are presented; these features are used into a
computational system in this case a robot soccer team in order to learn the game situations.
Through interaction with the rating system, a memory is built so that its response is fast
growing and adapts its behavior to different game situations regardless of the opponent.
It is important highlight that although the algorithms developed in this work, initially did
not schedule for explicit communication between players (ie, between the goalkeeper and
other players), thanks to the biological inspiration in immunology surges a collaborative
relationship between the players in order to give a response to actions of the opponent who

Table 3. Results for DTAL algorithm

It is important highline the fact that matches use 5 opposite player vs. goalkeeper, and so the
effectiveness obtained was 84.43% with a standard deviation of 6.10%.

5.1.2 HRA Algorithm
Difference between this test and before test is the combination of 2 algorithms is into this
algorithm. So, following its biological inspiration the HRA algorithm use memory in order
to adaptation will be successfully. Into the next figure a goal tendency is showed; this
represents its adaptation a different opponents.

Fig. 9.

Match Goal Option Goal
Annotation

Effectiveness
Goalkeaper (%)

1 26 2 92.30
2 52 6 88.46
3 26 0 100
4 44 6 86.36
5 42 4 90.47
6 46 8 82.61
7 56 11 80.36
8 58 10 82.76
9 58 12 79.31
10 43 9 79.07
11 36 7 80.56
12 44 10 77.27
13 60 10 83.33
14 62 12 80.65
15 47 8 82.98

Robot Soccer222

Prieto Camilo, Niño Fernando, Quintana Gerardo. A goalkeeper strategy in Robot Soccer
based on Danger Theory. Proceedings of 2008 IEEE Congress on Evolutionary
Computation. 2008.

De Castro Leandro, Timmis Jo. Artificial immune systems: a new computational intelligence
approach. Springer, 2002.

Galeano Juan, Veoza-Suan Angélica and Gonzalez Fabio. A comparative análisis of Artificial
Immune Network Models. GECCO 2005. Washington DC, USA.

Jong-Hwan Kim, Hyun-Sik Shim, Heung-Soo Kim, Myung-Jin Jung and Prahlad
Vadakkepat. Action Selection and strategies in robot soccer systems. Circuits and
Systems, 1997. Sacramento, CA, USA.

Vargas Patricia, De Castro Leandro and Von Zuben Fernando. Artificial immune systems as
complex adaptive systems. ICARIS, 2003.

Sathyanath Srividhya and Sahin Ferat. AISIMAN – An artificial immune system based
intelligent multi agent model and its application to a mine detection problem.
www.citeseer.ist.psu.edu/640818.html

Luh Guan-Chun, Wu Chun-Yin and Liu Wie-Wen. Artificial immune system based
cooperative strategies for robot soccer competition. International Forum on
Strategic technologic. Octubre 2006

Baxter, J.L., Garibaldi, J.M., Burke, E.K. and Norman, M. Statistical Analysis in MiroSot.
Proceedings of the FIRA Roboworld Congress, ISBN 981-05-4674-2, Singapore.
December 2005

Laurenzo Tomás and Facciolo Gabriele. Una herramienta de análisis de estrategias de fútbol
de robots Middle league Simurosot. Instituto de computación, Facultad de
Ingeniería, Universidad de la República. Montevideo, Uruguay. 2004.

Secker Andrew, Freitas Alex and Timmis Jon. A Danger Theory Inspired Approach to Web
Mining. Springer Berlin / Heidelberg. ISBN 978-3-540-40766-9. 2003.

G. Sen Gupta and C.H. Messom. Strategy for Collaboration in Robot Soccer. IEEE
International workshop on electronic design. 2002

Aickelin Uwe and Cayzer Steve. The danger theory and its application to artificial immune
systems. Proceedings of the 1st International Conference on Artificial Immune
Systems (ICARIS), pages 141--148, University of Kent at Canterbury, September
2002.

Lin Hong. A real-time dynamic danger theory model for anomaly detection in file systems.
MSc Thesis, Department of computer science, University of york. 2005

Armagno Gustavo, Benavides Facundo and Rostagnol Claudia. Proyecto Fibra. Instituto de
computación, Facultad de Ingeniería, Universidad de la República. Montevideo,
Uruguay. 2006.

Aickelin Uwe, Bentley P, Kim Jungwon, Cayzer Steve and McLeod Julie. Danger Theory: the
link between AIS and IDS. Proceedings ICARIS-2003, 2nd International Conference
on Artificial Immune Systems, pp 147-155.

Anjum Iqbal. Danger theory metaphor in artificial immune system for system call data. PhD
Thesis, Faculty of Computer Science and Information Systems, Universiti Teknologi
Malaysia. 2006.

Hart Emma. Immunology as a metaphor for computational information processing: fact or
fiction?. PhD Thesis, Artificial Intelligence Applications Institute, Division of
informatics, University of Edinburgh. 2002.

has not been previously scheduled. This implies that intelligent behavior emerges making
results expected from these strategies developed meet the expectations raised initially.

8. References

De Castro Leandro, Von Zuben Fernando. Artificial Immune Systems: A Survey Of
Applications. Thechnical Report, February 2000.

Lee Dong-Wook, Sim Kwee-Bo. Artificial Immune Network-Based Cooperative Control In
Collective Autonomous Mobile Robots. IEEE Intenational Workshop On Robot. 1997.

De Castro Leandro. Immune Cognition, Micro-Evolution, And A Personal Account On Immune
Engineering. Graduation And Research Institute. Catholic University Of Santos,
Brazil. 2004

Kim Jong-Hwan, Shim Hyun-Sik, Jung Myung-Jin, Kim Heung-Soo And Vadakkepat
Prahlad. Cooperative Multiagent Robotic Systems: From De Robot Soccer Perspective.
1998.

Sotomonte Wilson. Estrategias De Sistemas Inteligentes (Simple Y Multiple). Caso De Estudio:
Fútbol De Robots. Universidad Nacional De Colombia. 2005.

Alonso Oscar, Niño Fernando, Velez Marcos. A Robust Immune Based Approach To The Iterated
Prisoner’s Dilemma. ICARIS 2004.

Romero Diego Andres, Simulación De Un Agente Móvil Autónomo Basado En Sistemas Inmunes
Artificiales. Universidad Nacional De Colombia.2005.

Cortes Rivera Daniel. Un Sistema Inmune Artificial Para Resolver El Problema Del Job Shop
Scheduling. Cinvestav-IPN. 2004.

Tomoharu Nakashima, Masahiro Takatani, Naoki Namikawa, Hisao Ishibuchi, Manabu Nii.
Robust Evaluation Of Robocup Soccer Strategies By Using Match History. CEC 2006.

Gonzalez Fabio. A Study Of Artificial Immune Systems Applied To Anomaly Detection.
University Of Memphis. 2003.

Página oficial de Robocup Soccer. Www.Robocup.Org – visitada en Octubre de 2006
Página oficial de Federation Of International Robot-Soccer Association www.Fira.Net. 2006.
Farías Terrens, Damián Gustavo, Pérez Orozco, Adith Bismarck, González Guerrero,

Enrique. Cooperación En Sistemas Multiagente: Un Caso De Estudio ROBOCUP.
Pontificia Universidad Javeriana. 2002.

Cecchi Laura, Parra Gerardo, Vaucheret Claudio. Aspectos Cognitivos En El Desarrollo De Un
Equipo De Futbol De Robots. Universidad Nacional De Comahue. 2004.

Castro Leandro and Von Zuben. An evolutionary network for data clustering. IEEE
Brazilian Symppsium on Artificial Neural Networks. 2002.

Brooks R. How to build complete creatures rather than isolated cognitive simulators, in K.
VanLehn (ed.), Architectures for Intelligence, pp. 225-239, Lawrence Erlbaum
Assosiates, Hillsdale, NJ, 1991.

Brooks R. A Robust Layered Control System for a Mobile Robot. AI Memo 864, MIT AI Lab.
(1985).

 http://www.vaneduc.edu.ar/cafr/equipos_fixture.htm
Bretscher Peter and Cohn Melvin. A Theory of Self-Nonself Discrimination. Science 11

September 1970: Vol. 169. no. 3950, pp. 1042 – 1049.
Matzinger Polly. “The Danger model in its historical context,” Scandinavian Journal of

Immunology, 54, 2001.

Artificial Immune Systems, A New Computational Technique for Robot Soccer Strategies 223

Prieto Camilo, Niño Fernando, Quintana Gerardo. A goalkeeper strategy in Robot Soccer
based on Danger Theory. Proceedings of 2008 IEEE Congress on Evolutionary
Computation. 2008.

De Castro Leandro, Timmis Jo. Artificial immune systems: a new computational intelligence
approach. Springer, 2002.

Galeano Juan, Veoza-Suan Angélica and Gonzalez Fabio. A comparative análisis of Artificial
Immune Network Models. GECCO 2005. Washington DC, USA.

Jong-Hwan Kim, Hyun-Sik Shim, Heung-Soo Kim, Myung-Jin Jung and Prahlad
Vadakkepat. Action Selection and strategies in robot soccer systems. Circuits and
Systems, 1997. Sacramento, CA, USA.

Vargas Patricia, De Castro Leandro and Von Zuben Fernando. Artificial immune systems as
complex adaptive systems. ICARIS, 2003.

Sathyanath Srividhya and Sahin Ferat. AISIMAN – An artificial immune system based
intelligent multi agent model and its application to a mine detection problem.
www.citeseer.ist.psu.edu/640818.html

Luh Guan-Chun, Wu Chun-Yin and Liu Wie-Wen. Artificial immune system based
cooperative strategies for robot soccer competition. International Forum on
Strategic technologic. Octubre 2006

Baxter, J.L., Garibaldi, J.M., Burke, E.K. and Norman, M. Statistical Analysis in MiroSot.
Proceedings of the FIRA Roboworld Congress, ISBN 981-05-4674-2, Singapore.
December 2005

Laurenzo Tomás and Facciolo Gabriele. Una herramienta de análisis de estrategias de fútbol
de robots Middle league Simurosot. Instituto de computación, Facultad de
Ingeniería, Universidad de la República. Montevideo, Uruguay. 2004.

Secker Andrew, Freitas Alex and Timmis Jon. A Danger Theory Inspired Approach to Web
Mining. Springer Berlin / Heidelberg. ISBN 978-3-540-40766-9. 2003.

G. Sen Gupta and C.H. Messom. Strategy for Collaboration in Robot Soccer. IEEE
International workshop on electronic design. 2002

Aickelin Uwe and Cayzer Steve. The danger theory and its application to artificial immune
systems. Proceedings of the 1st International Conference on Artificial Immune
Systems (ICARIS), pages 141--148, University of Kent at Canterbury, September
2002.

Lin Hong. A real-time dynamic danger theory model for anomaly detection in file systems.
MSc Thesis, Department of computer science, University of york. 2005

Armagno Gustavo, Benavides Facundo and Rostagnol Claudia. Proyecto Fibra. Instituto de
computación, Facultad de Ingeniería, Universidad de la República. Montevideo,
Uruguay. 2006.

Aickelin Uwe, Bentley P, Kim Jungwon, Cayzer Steve and McLeod Julie. Danger Theory: the
link between AIS and IDS. Proceedings ICARIS-2003, 2nd International Conference
on Artificial Immune Systems, pp 147-155.

Anjum Iqbal. Danger theory metaphor in artificial immune system for system call data. PhD
Thesis, Faculty of Computer Science and Information Systems, Universiti Teknologi
Malaysia. 2006.

Hart Emma. Immunology as a metaphor for computational information processing: fact or
fiction?. PhD Thesis, Artificial Intelligence Applications Institute, Division of
informatics, University of Edinburgh. 2002.

has not been previously scheduled. This implies that intelligent behavior emerges making
results expected from these strategies developed meet the expectations raised initially.

8. References

De Castro Leandro, Von Zuben Fernando. Artificial Immune Systems: A Survey Of
Applications. Thechnical Report, February 2000.

Lee Dong-Wook, Sim Kwee-Bo. Artificial Immune Network-Based Cooperative Control In
Collective Autonomous Mobile Robots. IEEE Intenational Workshop On Robot. 1997.

De Castro Leandro. Immune Cognition, Micro-Evolution, And A Personal Account On Immune
Engineering. Graduation And Research Institute. Catholic University Of Santos,
Brazil. 2004

Kim Jong-Hwan, Shim Hyun-Sik, Jung Myung-Jin, Kim Heung-Soo And Vadakkepat
Prahlad. Cooperative Multiagent Robotic Systems: From De Robot Soccer Perspective.
1998.

Sotomonte Wilson. Estrategias De Sistemas Inteligentes (Simple Y Multiple). Caso De Estudio:
Fútbol De Robots. Universidad Nacional De Colombia. 2005.

Alonso Oscar, Niño Fernando, Velez Marcos. A Robust Immune Based Approach To The Iterated
Prisoner’s Dilemma. ICARIS 2004.

Romero Diego Andres, Simulación De Un Agente Móvil Autónomo Basado En Sistemas Inmunes
Artificiales. Universidad Nacional De Colombia.2005.

Cortes Rivera Daniel. Un Sistema Inmune Artificial Para Resolver El Problema Del Job Shop
Scheduling. Cinvestav-IPN. 2004.

Tomoharu Nakashima, Masahiro Takatani, Naoki Namikawa, Hisao Ishibuchi, Manabu Nii.
Robust Evaluation Of Robocup Soccer Strategies By Using Match History. CEC 2006.

Gonzalez Fabio. A Study Of Artificial Immune Systems Applied To Anomaly Detection.
University Of Memphis. 2003.

Página oficial de Robocup Soccer. Www.Robocup.Org – visitada en Octubre de 2006
Página oficial de Federation Of International Robot-Soccer Association www.Fira.Net. 2006.
Farías Terrens, Damián Gustavo, Pérez Orozco, Adith Bismarck, González Guerrero,

Enrique. Cooperación En Sistemas Multiagente: Un Caso De Estudio ROBOCUP.
Pontificia Universidad Javeriana. 2002.

Cecchi Laura, Parra Gerardo, Vaucheret Claudio. Aspectos Cognitivos En El Desarrollo De Un
Equipo De Futbol De Robots. Universidad Nacional De Comahue. 2004.

Castro Leandro and Von Zuben. An evolutionary network for data clustering. IEEE
Brazilian Symppsium on Artificial Neural Networks. 2002.

Brooks R. How to build complete creatures rather than isolated cognitive simulators, in K.
VanLehn (ed.), Architectures for Intelligence, pp. 225-239, Lawrence Erlbaum
Assosiates, Hillsdale, NJ, 1991.

Brooks R. A Robust Layered Control System for a Mobile Robot. AI Memo 864, MIT AI Lab.
(1985).

 http://www.vaneduc.edu.ar/cafr/equipos_fixture.htm
Bretscher Peter and Cohn Melvin. A Theory of Self-Nonself Discrimination. Science 11

September 1970: Vol. 169. no. 3950, pp. 1042 – 1049.
Matzinger Polly. “The Danger model in its historical context,” Scandinavian Journal of

Immunology, 54, 2001.

Robot Soccer224

Huang Yu-Huan. Study and Design of a two-stage control strategy for robot soccer
competiton. MSc thesis, National Cheng Kung University, Taiwan. 2005

Cortés Daniel. Un sistema immune artificial para resolver el problema del Jb Shop
Scheduling. Tesis de Maestría, Departamento de ingeniería eléctrica, Cinvestav,
México. 2004.

Lai Chien-Hsin. Study of fuzzy control strategy for five-on-five robot soccer competition.
MSc Thesis , National Cheng Kung University, Taiwan. 2005.

Stone Peter and Veloso Manuela. Multiagents systems: A survey from a machine learning
perspective. Carnegie Mellon University. 2000

Yang TW, Chan-Tan YW, Lee HA, C Teoh EL, Jiang H and Sng HL. Dynamic Model and
shooting algorithm on Simurosot. Second International conference on autonomous
robots and agents, New Zeland. 2004.

Kogan Pablo, Yañez Jael, Campagnon Costanza, Cecchi Laura, Parra Gerardo, Vaucheret
Claudio and Del Castillo Rodolfo. Aspectos de diseño e implementación del equipo
de fútbol con robots RAKIDUAM. Grupo de investigación en Robótica inteligente,
Universidad del Comahue, Argentina. 2006.

Kogan Pablo, Parra Gerardo. Diseño e implementación de un sistema Multiagente: un
equipo de fútbol con robots. Tesis de licenciatura en ciencias de la computación.
Universidad Nacional de Comahue, Argentina. 2006

Freedman Hernán and Mon Gonzalo. How Spiritual machine works. Buenos Aires,
Argentina. 2004

Thomas Peter. Evolutionary learning of control and strategies in robot soccer. PhD thesis,
Central Queensland University. 2003.

Lydia Woods Schindler. Understanding the immune system. US Department of health and
human service. October 1991.

The Online Home of Artificial Immune Systems.
http://www.artificial-immune-systems.org/. 2009

Farris Jonathan, Jackson Gary and Hendler James. Co-evolving soccer softbot team
coordination with genetic programming. Proceedings on the first international
workshop on robocup. Japan. 1997.

Cómo se juega al fútbol.
 www.supercampeonato.com/futbol/como_se_juega_al_fútbol.php. 2008
Campeonato Argentino Fútbol Robots.
 http://www.vaneduc.edu.ar/cafr/equipos_fixture.htm 2008
Adaptive immunity. http://textbookofbacteriology.net/adaptive.html. 2008

The Role Assignment in Robot Soccer 225

The Role Assignment in Robot Soccer

Ji Yuandong, Zuo Hongtao, Wang Lei and Yao Jin

X

The Role Assignment in Robot Soccer

Ji Yuandong, Zuo Hongtao, Wang Lei and Yao Jin
Sichuan University

China

1. Introduction

Multi-agent system is an emerging cross-disciplinary, involving robotics, artificial
intelligence, mechatronics, intelligent control and etc. To improve the collaboration
capabilities in unpredictable environment is an important part of the development of
robotics.
Robot soccer system is a typical and challenging multi-robot system. It is an emerging field
of artificial intelligence research, combining the real-time vision system, robot control,
wireless communications, multi-robot control, and many other areas of technology. Robot
soccer provides an ideal platform for robot collaboration research in dynamic and
unpredictable environment. Assigning the appropriate role for each robot in robot soccer
under the fast-changing environment is a basis issue of the real time decision-making
system and the key to victory.
Role assignment in robot soccer has a direct impact on the efficiency of the entire system,
and influences the ability of each robot to finish their task. At present, role assignment in
robot soccer is mainly based on behavior, fuzzy consistent relation, robot learning, and
evolutionary algorithm, etc. Behavior-based approach is simple, but only has a local optimal
solution and is poor of robot collaboration. Fuzzy consistent relation increases the flexibility
of the team, but it is difficult to build the model. Machine learning and genetic algorithm
adapt to the complex dynamic environment but need training process.
This chapter presents two new algorithms based on analytic hierarchy process and market
mechanism.
Analytic Hierarchy Process (AHP), a method of decision theory in operational research, is
used for the role assignment. Based on mathematics and psychology, Analytic Hierarchy
Process was developed by Thomas L. Saaty in the 1970s and has been extensively studied
and refined since then. The AHP provides a comprehensive and rational framework for
structuring a decision problem, for representing and quantifying its elements, for relating
those elements to overall goals, and for evaluating alternative solutions. It is used around
the world in a wide variety of decision situations, in fields such as government, business,
industry, healthcare, and education.
AHP can rank choices in the order of their effectiveness in meeting conflicting objectives.
Logic errors can be avoided when policy makers facing complex structure and many
programs. In this chapter, in order to select a suitable robot for a certain role, the hierarchy is
built, the pairwise comparison matrices are constructed with the help of experts, the weight

10

Robot Soccer226

Develop the hierarchy by breaking the problem down into its components. The three major
levels of the hierarchy are the goal, objectives, and alternatives.

2. Construct the pairwise comparison matrices.
Begin with the second layer, use pairwise comparison and 1-9 scale to construct the
comparison matrices. A comparison is the numerical representation of a relationship
between two elements that share a common parent. Do until the last layer.

3. Calculate the weight vector and measure the consistency.
For each pairwise comparison matrix calculate the largest eigenvalue and the corresponding
eigenvector. Calculate the CI (consistency index) and CR (consistency ratio) to text the
consistency of the matrices. If CR < 0.1, the test passed, and the normalized eigenvectors can
be seen as the weight vectors. If adopted, the pairwise comparison matrices would be
restructured.

4. Calculate the combination weight vector and measure the consistency.
Calculate the combination weight vector and test the consistency. If the test passed, the
decision can be made according the outcome expressed by the combination weight vectors.
Otherwise, restructure the pairwise comparison matrices whose CR are larger. AHP tells us
that the plan with the largest combination weight is the most suitable for the goal.

3.2 Role Assignment
We define four roles in this chapter: attacker, winger, assistant and defender, except the
goalkeeper (fixed to be robot 0).
Different stadium situations mean different role assignment strategies. The position of the
ball is used to describe the stadium situation, such as attack, defence and etc. And it will
influence the values of pairwise comparison matrices. The stadium is divided into 7 regions
(shown in Figure 1). Roles of robots need to be assigned in every region which is shown in
Figure 1.
Now we take selecting the attacker when the ball is in region 4 for example to show how to
assign the roles using AHP.

Fig. 1. Region division

3.2.1 Build the Hierarchy
There are three levels of the hierarchy: goal, objectives, and alternatives.

vector and the combination weight vector are calculated, and their consistencies are
measured according AHP.
Market mechanism which is introduced into traditional behavior-based allocation is also
used for role assignment. Firstly the task in the method is divided into two parts,
combinatorial task and single task. The former is allocated to the specified robot group by
using auction method while the latter is allocated to the single robot. Then the Bipartite
Graph's weight and maximum match are adopted to solve the role collisions brought by
dynamic assigning.

2. Behavior-based Role Assignment

The most fundamental and simplest role assignment method is fixing the role of each robot.
Fixed role method is designating a role for each robot, when designing the decision-making
system. And the role of each robot will not change in a strategy. Since the role of each robot
is fixed before the game beginning, the movement of each robot is coherent. But this fixed
role method has an obvious shortcoming: the robot could not always do the most suitable
task, and it can not change its task according the fast-changing environment. This may cause
the wastage of resources and the weak control ability of the decision-making system.
Every robot has a weight of each task, and the role of the robot is assigned by the weights in
behaviour-based method. According to the different weights which are different for
different task, different robot, and different status of the game, the decision-making system
could choose the best finisher for each task.
Behavior-based role assignment algorithm is generally divided into three steps:

Step1: For a task j, calculate the weight of each robot according some algorithm which
is designed in the decision-making system.

Step2: Find out the robot which has the greatest weight.
Step3: Assigned the task j to the robot which has the greatest weight, and do not assign
another task to this robot in the follow-up distribution.
Step4: Go to step1 until every task finds a robot to achieve.

The method is characterized by the simpleness of the calculation process, and it is real-time
and fault-tolerance. But this method sometimes leads to inconsistent of one robot’s role.
That is the role of a robot may change fast. Behavior-based approach is simple, but it only
has a local optimal solution and is poor of robot collaboration.

3. Role Assignment Based on Analytic Hierarchy Process

3.1 The Algorithm of AHP
Analytic Hierarchy Process (AHP) is one of Multi Criteria decision making method, and it
allows some small inconsistency in judgment because human is not always consistent. The
ratio scales are derived from the principal Eigen vectors and the consistency index is
derived from the principal Eigen value. AHP has been widely used in economic planning
and management, energy policy, military command, transportation, education, etc. The
algorithm of AHP is as follows (more details are presented in Thomas L. Saaty‘s book: The
Analytic Hierarchy Process):
1. Build the hierarchy.

The Role Assignment in Robot Soccer 227

Develop the hierarchy by breaking the problem down into its components. The three major
levels of the hierarchy are the goal, objectives, and alternatives.

2. Construct the pairwise comparison matrices.
Begin with the second layer, use pairwise comparison and 1-9 scale to construct the
comparison matrices. A comparison is the numerical representation of a relationship
between two elements that share a common parent. Do until the last layer.

3. Calculate the weight vector and measure the consistency.
For each pairwise comparison matrix calculate the largest eigenvalue and the corresponding
eigenvector. Calculate the CI (consistency index) and CR (consistency ratio) to text the
consistency of the matrices. If CR < 0.1, the test passed, and the normalized eigenvectors can
be seen as the weight vectors. If adopted, the pairwise comparison matrices would be
restructured.

4. Calculate the combination weight vector and measure the consistency.
Calculate the combination weight vector and test the consistency. If the test passed, the
decision can be made according the outcome expressed by the combination weight vectors.
Otherwise, restructure the pairwise comparison matrices whose CR are larger. AHP tells us
that the plan with the largest combination weight is the most suitable for the goal.

3.2 Role Assignment
We define four roles in this chapter: attacker, winger, assistant and defender, except the
goalkeeper (fixed to be robot 0).
Different stadium situations mean different role assignment strategies. The position of the
ball is used to describe the stadium situation, such as attack, defence and etc. And it will
influence the values of pairwise comparison matrices. The stadium is divided into 7 regions
(shown in Figure 1). Roles of robots need to be assigned in every region which is shown in
Figure 1.
Now we take selecting the attacker when the ball is in region 4 for example to show how to
assign the roles using AHP.

Fig. 1. Region division

3.2.1 Build the Hierarchy
There are three levels of the hierarchy: goal, objectives, and alternatives.

vector and the combination weight vector are calculated, and their consistencies are
measured according AHP.
Market mechanism which is introduced into traditional behavior-based allocation is also
used for role assignment. Firstly the task in the method is divided into two parts,
combinatorial task and single task. The former is allocated to the specified robot group by
using auction method while the latter is allocated to the single robot. Then the Bipartite
Graph's weight and maximum match are adopted to solve the role collisions brought by
dynamic assigning.

2. Behavior-based Role Assignment

The most fundamental and simplest role assignment method is fixing the role of each robot.
Fixed role method is designating a role for each robot, when designing the decision-making
system. And the role of each robot will not change in a strategy. Since the role of each robot
is fixed before the game beginning, the movement of each robot is coherent. But this fixed
role method has an obvious shortcoming: the robot could not always do the most suitable
task, and it can not change its task according the fast-changing environment. This may cause
the wastage of resources and the weak control ability of the decision-making system.
Every robot has a weight of each task, and the role of the robot is assigned by the weights in
behaviour-based method. According to the different weights which are different for
different task, different robot, and different status of the game, the decision-making system
could choose the best finisher for each task.
Behavior-based role assignment algorithm is generally divided into three steps:

Step1: For a task j, calculate the weight of each robot according some algorithm which
is designed in the decision-making system.

Step2: Find out the robot which has the greatest weight.
Step3: Assigned the task j to the robot which has the greatest weight, and do not assign
another task to this robot in the follow-up distribution.
Step4: Go to step1 until every task finds a robot to achieve.

The method is characterized by the simpleness of the calculation process, and it is real-time
and fault-tolerance. But this method sometimes leads to inconsistent of one robot’s role.
That is the role of a robot may change fast. Behavior-based approach is simple, but it only
has a local optimal solution and is poor of robot collaboration.

3. Role Assignment Based on Analytic Hierarchy Process

3.1 The Algorithm of AHP
Analytic Hierarchy Process (AHP) is one of Multi Criteria decision making method, and it
allows some small inconsistency in judgment because human is not always consistent. The
ratio scales are derived from the principal Eigen vectors and the consistency index is
derived from the principal Eigen value. AHP has been widely used in economic planning
and management, energy policy, military command, transportation, education, etc. The
algorithm of AHP is as follows (more details are presented in Thomas L. Saaty‘s book: The
Analytic Hierarchy Process):
1. Build the hierarchy.

Robot Soccer228

Intensity of
Importance Definition Explanation

1 Equal Importance Two activities contribute equally to the
objective

2 Weak or slight

3 Moderate importance Experience and judgement slightly
favour one activity over another

4 Moderate plus

5 Strong importance Experience and judgement strongly
favour one activity over another

6 Strong plus

7 Very strong or
demonstrated importance

An activity is favoured very strongly
over another; its dominance
demonstrated in practice

8 Very, very strong

9 Extreme importance
The evidence favouring one activity
over another is of the highest possible
order of affirmation

Reciprocals
of above

If activity i has one of the
above non-zero numbers
assigned to it when
compared with activity j,
then j has the reciprocal
value when compared with i

A reasonable assumption

1.1–1.9 If the activities are very
close

May be difficult to assign the best value
but when compared with other
contrasting activities the size of the
small numbers would not be too
noticeable, yet they can still indicate the
relative importance of the activities.

Table 1. The fundamental scale of absolute numbers(1-9 scales)

We first construct the pairwise comparison matrix of the second layer use the 1-9 scale. This
work must be done by the experts, the opinion of each expert should be considered. We
invited several experts in robot soccer to attend our work and the result is shown in Table 2.
For example, B is moderate importance compared with A judged by the experts, so the
value of matrix element a21 is 3 and the value of a12 is 1/3.
So the pairwise comparison matrix of the second layer is as follows:

1
1 5

3
() 3 1 73 3

1 1
1

5 7

A a ij 

 
 
 
 
 
 

(1)

Fig. 2. Hierarchy diagram

1. Goal
The goal of role assignment is finding a suitable robot for a certain role. Selecting the
attacker when the ball is in region 4 is for example in this section. So the goal is defined to be
finding the attacker, shown in Figure 2.

2. Objectives
The factors which influence the assignment are as follows:

A: the distance between the ball and the robot.
B: the pose of the robot (here, we use the angle between the ball motion direction and

the robot motion direction to describe it).
C: obstacles (we define the obstacle as this: robots in a particular fan region in the robot

motion direction, and the bound is also an obstacle).
D: the position of the ball.
We do not take the position of the ball as an element of the objectives (shown in Figure

2). Because the role assignment and the importance of the factors are different when the ball
is in different regions, so the pairwise comparison matrices may not be the same in each
region. Now we only consider the situation when the ball is in region 4.

3. Complete the hierarchy
The goal and the objectives are described upper. And the alternatives are the four robots.
The hierarchy with the goal, objectives, and the alternatives is shown in Figure 2.

3.2.2 Construct the Pairwise Comparison Matrices
When comparing the impact of two different factors for an upper layer factor, which relative
measure scale is good? We use the 1-9 scale for the following reasons:

1. Conducting qualitative comparison, people usually have 5 clear hierarchies which
can be easily expressed by 1-9 scale.

2. Psychologists believe, too many paired comparison factors will exceed peoples’
judge ability. Using 1-9 scale to describe the difference is appropriate.

3. Saaty have experiment total 27 kinds of comparison scale such as 1-3, 1-5, 1-9, 1-27,
etc[9]. The result showed that not only in the simple measures 1-9 scale is the best, but also
as good as the complicated scales.

Currently, most people use 1-9 scale (shown in Table 1.) in their applications of AHP.

The Role Assignment in Robot Soccer 229

Intensity of
Importance Definition Explanation

1 Equal Importance Two activities contribute equally to the
objective

2 Weak or slight

3 Moderate importance Experience and judgement slightly
favour one activity over another

4 Moderate plus

5 Strong importance Experience and judgement strongly
favour one activity over another

6 Strong plus

7 Very strong or
demonstrated importance

An activity is favoured very strongly
over another; its dominance
demonstrated in practice

8 Very, very strong

9 Extreme importance
The evidence favouring one activity
over another is of the highest possible
order of affirmation

Reciprocals
of above

If activity i has one of the
above non-zero numbers
assigned to it when
compared with activity j,
then j has the reciprocal
value when compared with i

A reasonable assumption

1.1–1.9 If the activities are very
close

May be difficult to assign the best value
but when compared with other
contrasting activities the size of the
small numbers would not be too
noticeable, yet they can still indicate the
relative importance of the activities.

Table 1. The fundamental scale of absolute numbers(1-9 scales)

We first construct the pairwise comparison matrix of the second layer use the 1-9 scale. This
work must be done by the experts, the opinion of each expert should be considered. We
invited several experts in robot soccer to attend our work and the result is shown in Table 2.
For example, B is moderate importance compared with A judged by the experts, so the
value of matrix element a21 is 3 and the value of a12 is 1/3.
So the pairwise comparison matrix of the second layer is as follows:

1
1 5

3
() 3 1 73 3

1 1
1

5 7

A a ij 

 
 
 
 
 
 

(1)

Fig. 2. Hierarchy diagram

1. Goal
The goal of role assignment is finding a suitable robot for a certain role. Selecting the
attacker when the ball is in region 4 is for example in this section. So the goal is defined to be
finding the attacker, shown in Figure 2.

2. Objectives
The factors which influence the assignment are as follows:

A: the distance between the ball and the robot.
B: the pose of the robot (here, we use the angle between the ball motion direction and

the robot motion direction to describe it).
C: obstacles (we define the obstacle as this: robots in a particular fan region in the robot

motion direction, and the bound is also an obstacle).
D: the position of the ball.
We do not take the position of the ball as an element of the objectives (shown in Figure

2). Because the role assignment and the importance of the factors are different when the ball
is in different regions, so the pairwise comparison matrices may not be the same in each
region. Now we only consider the situation when the ball is in region 4.

3. Complete the hierarchy
The goal and the objectives are described upper. And the alternatives are the four robots.
The hierarchy with the goal, objectives, and the alternatives is shown in Figure 2.

3.2.2 Construct the Pairwise Comparison Matrices
When comparing the impact of two different factors for an upper layer factor, which relative
measure scale is good? We use the 1-9 scale for the following reasons:

1. Conducting qualitative comparison, people usually have 5 clear hierarchies which
can be easily expressed by 1-9 scale.

2. Psychologists believe, too many paired comparison factors will exceed peoples’
judge ability. Using 1-9 scale to describe the difference is appropriate.

3. Saaty have experiment total 27 kinds of comparison scale such as 1-3, 1-5, 1-9, 1-27,
etc[9]. The result showed that not only in the simple measures 1-9 scale is the best, but also
as good as the complicated scales.

Currently, most people use 1-9 scale (shown in Table 1.) in their applications of AHP.

Robot Soccer230

(1) (1) (1)
1

(2) (3) (4)
(2) (2) (2)

1
(1) (3) (4)3()3 (3) (3) (3)

1
(1) (2) (4)
(4) (4) (4)

1
(1) (2) (3)

C C C

C C C
C C C

C C C
B bij C C C

C C C
C C C

C C C

 

 
 
 
 
 
 
 
 
  
 

(4)

3.2.3 Calculate the Weight Vectors and Measure the Consistency
First we calculate the largest eiginvalue max

A of matrix A and the normalized corresponding

eigenvector  A .

max 3.0649 A  (5)

0.2790
0.6491
0.0719

A
 
   
 
 

(6)

Then CI (Consistency index) and CR (Consistency ratio) are calculated to test the
consistency. And the RI (Random consistency index) is shown in Table 4.

Table 4. Random consistency

Consistency index of matrix A:

0.0325
1

A nCI
n
 

 


(7)

Consistency ratio of matrix A:

0.0325 0.0560 0.1
0.58

A
A CICR

RI
   

(8)

Because CRA < 0.1, according the theory of AHP the consistency test is passed, and  A can
be seen as the weight vector of the second layer.
Then we continue to calculate the third layer. B

k (k = 1, 2, 3) which is the largest eigenvalue
of matrix and the normalized corresponding eigenvector B

k (k = 1, 2, 3) are calculated.

Consistency index of matrix Bk:

4
4 1

B
B k
kCI  



(9)

n 1 2 3 4 5 6 7 8 9 10 11
RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51

Factors A B C

A 1
1 5

3
3 1 7
1 1

1
5 7

 
 
 
 
 
 

B

C
Table 2. Pairwise comparison of the second layer

When constructing the pairwise comparison matrices of the third layer, we need to compare
the importance of the same factor among the four robots. But the values of the factors are
not 1-9, this chapter establish a transformation using the idea of fuzzy mathematics to
transform the factor value into 1-9 scale. The transformation method is shown in Table 3.

Grade A
(distance)

C
(difference of angles)

D
(the number of the

obstacles)
1 >=90 >=100 >=6
2 80~90 90~100
3 70~80 75~90 4~5
4 60~70 50~75
5 50~60 40~50 2~3
6 40~50 30~40
7 30~40 20~30 1
8 20~30 10~20
9 <=20 0~10 0

Table 3. Measure transformation.

We use A(k), B(k), C(k) to express the grades of robot k according the factor A, B and C.
Then we get the pairwise comparison matrices: B1, B2 and B3 as follows:

(1) (1) (1)
1

(2) (3) (4)
(2) (2) (2)

1
(1) (3) (4)1()1 (3) (3) (3)

1
(1) (2) (4)
(4) (4) (4)

1
(1) (2) (3)

A A A

A A A
A A A

A A A
B bij A A A

A A A
A A A

A A A

 

 
 
 
 
 
 
 
 
  
 

(2)

(1) (1) (1)
1

(2) (3) (4)
(2) (2) (2)

1
(1) (3) (4)2()2 (3) (3) (3)

1
(1) (2) (4)
(4) (4) (4)

1
(1) (2) (3)

B B B

B B B
B B B

B B B
B bij B B B

B B B
B B B

B B B

 

 
 
 
 
 
 
 
 
  
 

(3)

The Role Assignment in Robot Soccer 231

(1) (1) (1)
1

(2) (3) (4)
(2) (2) (2)

1
(1) (3) (4)3()3 (3) (3) (3)

1
(1) (2) (4)
(4) (4) (4)

1
(1) (2) (3)

C C C

C C C
C C C

C C C
B bij C C C

C C C
C C C

C C C

 

 
 
 
 
 
 
 
 
  
 

(4)

3.2.3 Calculate the Weight Vectors and Measure the Consistency
First we calculate the largest eiginvalue max

A of matrix A and the normalized corresponding

eigenvector  A .

max 3.0649 A  (5)

0.2790
0.6491
0.0719

A
 
   
 
 

(6)

Then CI (Consistency index) and CR (Consistency ratio) are calculated to test the
consistency. And the RI (Random consistency index) is shown in Table 4.

Table 4. Random consistency

Consistency index of matrix A:

0.0325
1

A nCI
n
 

 


(7)

Consistency ratio of matrix A:

0.0325 0.0560 0.1
0.58

A
A CICR

RI
   

(8)

Because CRA < 0.1, according the theory of AHP the consistency test is passed, and  A can
be seen as the weight vector of the second layer.
Then we continue to calculate the third layer. B

k (k = 1, 2, 3) which is the largest eigenvalue
of matrix and the normalized corresponding eigenvector B

k (k = 1, 2, 3) are calculated.

Consistency index of matrix Bk:

4
4 1

B
B k
kCI  



(9)

n 1 2 3 4 5 6 7 8 9 10 11
RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51

Factors A B C

A 1
1 5

3
3 1 7
1 1

1
5 7

 
 
 
 
 
 

B

C
Table 2. Pairwise comparison of the second layer

When constructing the pairwise comparison matrices of the third layer, we need to compare
the importance of the same factor among the four robots. But the values of the factors are
not 1-9, this chapter establish a transformation using the idea of fuzzy mathematics to
transform the factor value into 1-9 scale. The transformation method is shown in Table 3.

Grade A
(distance)

C
(difference of angles)

D
(the number of the

obstacles)
1 >=90 >=100 >=6
2 80~90 90~100
3 70~80 75~90 4~5
4 60~70 50~75
5 50~60 40~50 2~3
6 40~50 30~40
7 30~40 20~30 1
8 20~30 10~20
9 <=20 0~10 0

Table 3. Measure transformation.

We use A(k), B(k), C(k) to express the grades of robot k according the factor A, B and C.
Then we get the pairwise comparison matrices: B1, B2 and B3 as follows:

(1) (1) (1)
1

(2) (3) (4)
(2) (2) (2)

1
(1) (3) (4)1()1 (3) (3) (3)

1
(1) (2) (4)
(4) (4) (4)

1
(1) (2) (3)

A A A

A A A
A A A

A A A
B bij A A A

A A A
A A A

A A A

 

 
 
 
 
 
 
 
 
  
 

(2)

(1) (1) (1)
1

(2) (3) (4)
(2) (2) (2)

1
(1) (3) (4)2()2 (3) (3) (3)

1
(1) (2) (4)
(4) (4) (4)

1
(1) (2) (3)

B B B

B B B
B B B

B B B
B bij B B B

B B B
B B B

B B B

 

 
 
 
 
 
 
 
 
  
 

(3)

Robot Soccer232

show that if we do not restructure the pairwise comparison matrices, the final results of the
role assignment are also good judging by the experts.

Fig. 3. Goal difference of Behavior-based role assignment and AHP-based role assignment

AHP can rank choices in the order of their effectiveness in meeting conflicting objectives.
Logic errors can be avoided when policy makers facing complex structure and many
programs. The success of the algorithm depends on the comparison matrices which are
decided by the experts. Senior experts are the keys to this algorithm.

4. The Role Assignment Based on Market Mechanism

This section focuses on the role assignment based on market mechanism. Firstly define the
tasks and dynamic task allocation in robot soccer using the concept of set theory. Then the
basic idea and elements of the market mechanism, the solution process of the algorithm are
presented. The problem of role conflict is solved using the maximum matching algorithm of
bipartite graph. Experiments on the SimuroSot (5vs5) game platform show that the method
is effective and convenient.

4.1 Robot Soccer Task and Task Allocation Dynamically

Fig. 4. Attack cooperate

Consistency ratio of matrix Bk:

0.90

B B
B k k
k

CI CICR
RI

 

(10)

The results of the experiments show that almost every CR can pass the test, and if there is
some CR > 0.1, it will not bring very bad influence to the final role assignment. We did some
experiments which we intentionally make some CR > 0.1. And the final results of the role
assignment are also good judging by the experts, if we do not restructure the pairwise
comparison matrices.

3.2.4 Calculate the Combination Weight Vector and Complete the Role Assignment
After the eigenvectors  B

k (k=1, 2, 3) are calculated, we use them to calculate the
combination weight vector W. The formulas are as follows:

1 2 3(, ,)B B B    (11)

()A TW    (12)

The theory of AHP tells us that the k-th plan which the corresponding W(k) is the largest is
the most suitable for the goal. So robot k is the most suitable to be the attacker.
Using the AHP we find out the most suitable robot for being the attacker. The same method
can be used to find out the most suitable robots for being the winger, assistant, and
defender. If a robot is the most suitable for two more roles, for example attacker and
assistant, we will choose it to be the attacker, in accordance with the principle of good
offensive.
Above, we use AHP to solve the role assignment. The hierarchy is built, the pairwise
comparison matrices are constructed with the help of experts, the weight vector and the
combination weight vector are calculated, and their consistencies are measured according
AHP. We followed the algorithm of AHP to assign roles when the ball is in region 4. The
role assignment when the ball is in the other regions (shown in Figure 1) can be completed
using the same algorithm.

3.3 Experiment
The simulation is done on Robot Soccer V1.5a (it can be downloaded on
http://www.fira.net/soccer/simurosot/R_Soccer_v15a_030204.exe). In order to examine
the role assignment method based on AHP, this chapter designs two strategies to compete
with the own strategy of the platform for 50 matches. One use the role assignment method
based on AHP, and the other use the role assignment method based on behavior. Figure 3
shows the goal difference when the two strategies compete with the platform’s own strategy
separately. The average goal difference of the strategy using behaviour-based role
assignment algorithm is 1.28, and the average goal difference of the strategy using
AHP-based role assignment algorithm is 3.06.
The results of experiments on SimuroSot 5vs5 show that the method is feasible and effective.
Though there is probable that the consistency test may not be passed. Our experiments

The Role Assignment in Robot Soccer 233

show that if we do not restructure the pairwise comparison matrices, the final results of the
role assignment are also good judging by the experts.

Fig. 3. Goal difference of Behavior-based role assignment and AHP-based role assignment

AHP can rank choices in the order of their effectiveness in meeting conflicting objectives.
Logic errors can be avoided when policy makers facing complex structure and many
programs. The success of the algorithm depends on the comparison matrices which are
decided by the experts. Senior experts are the keys to this algorithm.

4. The Role Assignment Based on Market Mechanism

This section focuses on the role assignment based on market mechanism. Firstly define the
tasks and dynamic task allocation in robot soccer using the concept of set theory. Then the
basic idea and elements of the market mechanism, the solution process of the algorithm are
presented. The problem of role conflict is solved using the maximum matching algorithm of
bipartite graph. Experiments on the SimuroSot (5vs5) game platform show that the method
is effective and convenient.

4.1 Robot Soccer Task and Task Allocation Dynamically

Fig. 4. Attack cooperate

Consistency ratio of matrix Bk:

0.90

B B
B k k
k

CI CICR
RI

 

(10)

The results of the experiments show that almost every CR can pass the test, and if there is
some CR > 0.1, it will not bring very bad influence to the final role assignment. We did some
experiments which we intentionally make some CR > 0.1. And the final results of the role
assignment are also good judging by the experts, if we do not restructure the pairwise
comparison matrices.

3.2.4 Calculate the Combination Weight Vector and Complete the Role Assignment
After the eigenvectors  B

k (k=1, 2, 3) are calculated, we use them to calculate the
combination weight vector W. The formulas are as follows:

1 2 3(, ,)B B B    (11)

()A TW    (12)

The theory of AHP tells us that the k-th plan which the corresponding W(k) is the largest is
the most suitable for the goal. So robot k is the most suitable to be the attacker.
Using the AHP we find out the most suitable robot for being the attacker. The same method
can be used to find out the most suitable robots for being the winger, assistant, and
defender. If a robot is the most suitable for two more roles, for example attacker and
assistant, we will choose it to be the attacker, in accordance with the principle of good
offensive.
Above, we use AHP to solve the role assignment. The hierarchy is built, the pairwise
comparison matrices are constructed with the help of experts, the weight vector and the
combination weight vector are calculated, and their consistencies are measured according
AHP. We followed the algorithm of AHP to assign roles when the ball is in region 4. The
role assignment when the ball is in the other regions (shown in Figure 1) can be completed
using the same algorithm.

3.3 Experiment
The simulation is done on Robot Soccer V1.5a (it can be downloaded on
http://www.fira.net/soccer/simurosot/R_Soccer_v15a_030204.exe). In order to examine
the role assignment method based on AHP, this chapter designs two strategies to compete
with the own strategy of the platform for 50 matches. One use the role assignment method
based on AHP, and the other use the role assignment method based on behavior. Figure 3
shows the goal difference when the two strategies compete with the platform’s own strategy
separately. The average goal difference of the strategy using behaviour-based role
assignment algorithm is 1.28, and the average goal difference of the strategy using
AHP-based role assignment algorithm is 3.06.
The results of experiments on SimuroSot 5vs5 show that the method is feasible and effective.
Though there is probable that the consistency test may not be passed. Our experiments

Robot Soccer234

3. Income
The income of one robot after it finishing its task can be defined as followed:

 (,) (,) cos (,)income r t reward r t t r ti i ik k k  (15)

4.2.2 Auction and Combinational Task Auction
Market mechanism is based on auction theory. Generally, there are four types of auction:
English auction, Dutch auction, sealed first-price auction, sealed-bid second-price auction.
All the above auctions have the same important steps: auction announcement, bidding,
contract. First the auction announcement will inform the entire bidder that what is going to
be auctioned and the bidder will bid it and only one bidder will get the contact. Then the
auction comes to the end.
Now the combination task auction in this chapter has the following assumption:

1. Auction is done by cooperative task.
2. Robots could be united as one union to bid one combinational task, and one robot could
be in different unions.
3. Auction is done as sealed first-price auction. The bidder which gives the highest price
will be the winner in the auction.

One robot union should bid according to the above rules and distribute the tasks to the
robot in the union. It is allowed that the robots make a bargain with the others.

4.3 The Algorithm of Role Assignment

4.3.1 Initial Task Allocation
At the start of one match, the system should allocate the initial task to each robot. The task is
divided into two layers: the first layer consists of cooperative tasks and the second layer
consists of single tasks. Firstly cooperative tasks are allocated to robot unions by auction and
single tasks are allocated to individual robots by behavior-based. The specific description of
steps is as follow:

Step1: Generate the task set T, and divide it into several cooperative tasks M1, M2 ,..., Mk
and assign constraint to each cooperative task.

Step2: According to the number of robots (mark with x) in the cooperative task, choose x
robots in the entire robots R, which has x

nC unions, calculate the income for each union and
delete the unions which are not suitable to the constraints.

Step3: For cooperative task Mi, back to step 1 if there is not suitable bidder, else select the
union which gives the highest price.

Step4: The union allocate the task to each robot by behavior-base method, and if there is
not any task-conflict and go to step6.

Step5: Solve task-conflict.
Step6: Output the result.

4.3.2 Task Re-allocation
To avoid that the roles of robots change too frequently, the system needs to adjust each
robot’s task to get a consistent result. The following are the differences from initial task
allocation:

Now assume a set of R consists of n robots { |1 }iR r i n   and a set of T consists of n
tasks { |1 }kT t k n   .
According to the situation of the game, this role assignment method will abstract several
tasks from the formation of the team such as shooting, guarding and so on. Then using some
algorithm to get a reflection f from the robots set to the tasks set (f : R→T). In some statuses,
it requires several robots to finish the task cooperatively.
In Figure 4 (The white is opponent, attack from left to right), it is obviously that the effect of
only one robot shooting the gate is not good, and a better way is as follow: robot 1 move
along the dotted line, pass the ball to robot 3, and robot 3 shoot the gate.
This chapter use the following definition: cooperative task M (M T) is the task which
requires several robots cooperatively to finish it, atom task S (S T) is the task which
requires only one robot to finish it. And all the cooperative tasks (1 2, , iM M M) and atom
tasks (1 2, , jS S S) should satisfy the following condition: ,i j i jM S  
and 1 2 1 2i jM M M S S S T     . In this chapter, atom task is treated as cooperative
task since it could be treated as special cooperative task which require only one robot.

4.2 The Basics of Role Assignment Based on Market Mechanism

4.2.1. The Cost of Task, Reward and Income
1. Cost of the task
The cost of a robot achieving a task in robot soccer is the time. In this chapter, use cost(ri, tk)
to mark the cost of robot ri achieving task tk. In robot soccer games, the cost will increase
with the distance from the current position of the robot to the expected position, as well as
the rotation angle and the difficulty of current status transforming to expected status. So the
cost can be defined as follow:

 cos (,) (, ,)i kt r t f d v (13)

d is the distance from the current position of the robot to the expected position,θ is the

rotation angle, v is the difference between current velocity and the expected velocity.

2. Reward
Each robot will get reward if it finished its task. Robot ri will get reward after it finishing
task tk : reward(ri , tk). For offensive one, it will get more rewards if it runs toward the middle
of the enemy’s gate while the defensive one will get more rewards if it intercepts the ball
run toward its gate. When one robot is at mid-ground, it will get rewards from attacking
and defending. The reward(ri , tk) is defined as follows:

   , ,reward r t g Attack Defendi k  (14)

Attack indicates the ability of attacking after a robot finished its task and defend indicates the
defending one. In a real match, they can be represented by the position of robot and the
velocity of the ball and so on.

The Role Assignment in Robot Soccer 235

3. Income
The income of one robot after it finishing its task can be defined as followed:

 (,) (,) cos (,)income r t reward r t t r ti i ik k k  (15)

4.2.2 Auction and Combinational Task Auction
Market mechanism is based on auction theory. Generally, there are four types of auction:
English auction, Dutch auction, sealed first-price auction, sealed-bid second-price auction.
All the above auctions have the same important steps: auction announcement, bidding,
contract. First the auction announcement will inform the entire bidder that what is going to
be auctioned and the bidder will bid it and only one bidder will get the contact. Then the
auction comes to the end.
Now the combination task auction in this chapter has the following assumption:

1. Auction is done by cooperative task.
2. Robots could be united as one union to bid one combinational task, and one robot could
be in different unions.
3. Auction is done as sealed first-price auction. The bidder which gives the highest price
will be the winner in the auction.

One robot union should bid according to the above rules and distribute the tasks to the
robot in the union. It is allowed that the robots make a bargain with the others.

4.3 The Algorithm of Role Assignment

4.3.1 Initial Task Allocation
At the start of one match, the system should allocate the initial task to each robot. The task is
divided into two layers: the first layer consists of cooperative tasks and the second layer
consists of single tasks. Firstly cooperative tasks are allocated to robot unions by auction and
single tasks are allocated to individual robots by behavior-based. The specific description of
steps is as follow:

Step1: Generate the task set T, and divide it into several cooperative tasks M1, M2 ,..., Mk
and assign constraint to each cooperative task.

Step2: According to the number of robots (mark with x) in the cooperative task, choose x
robots in the entire robots R, which has x

nC unions, calculate the income for each union and
delete the unions which are not suitable to the constraints.

Step3: For cooperative task Mi, back to step 1 if there is not suitable bidder, else select the
union which gives the highest price.

Step4: The union allocate the task to each robot by behavior-base method, and if there is
not any task-conflict and go to step6.

Step5: Solve task-conflict.
Step6: Output the result.

4.3.2 Task Re-allocation
To avoid that the roles of robots change too frequently, the system needs to adjust each
robot’s task to get a consistent result. The following are the differences from initial task
allocation:

Now assume a set of R consists of n robots { |1 }iR r i n   and a set of T consists of n
tasks { |1 }kT t k n   .
According to the situation of the game, this role assignment method will abstract several
tasks from the formation of the team such as shooting, guarding and so on. Then using some
algorithm to get a reflection f from the robots set to the tasks set (f : R→T). In some statuses,
it requires several robots to finish the task cooperatively.
In Figure 4 (The white is opponent, attack from left to right), it is obviously that the effect of
only one robot shooting the gate is not good, and a better way is as follow: robot 1 move
along the dotted line, pass the ball to robot 3, and robot 3 shoot the gate.
This chapter use the following definition: cooperative task M (M T) is the task which
requires several robots cooperatively to finish it, atom task S (S T) is the task which
requires only one robot to finish it. And all the cooperative tasks (1 2, , iM M M) and atom
tasks (1 2, , jS S S) should satisfy the following condition: ,i j i jM S  
and 1 2 1 2i jM M M S S S T     . In this chapter, atom task is treated as cooperative
task since it could be treated as special cooperative task which require only one robot.

4.2 The Basics of Role Assignment Based on Market Mechanism

4.2.1. The Cost of Task, Reward and Income
1. Cost of the task
The cost of a robot achieving a task in robot soccer is the time. In this chapter, use cost(ri, tk)
to mark the cost of robot ri achieving task tk. In robot soccer games, the cost will increase
with the distance from the current position of the robot to the expected position, as well as
the rotation angle and the difficulty of current status transforming to expected status. So the
cost can be defined as follow:

 cos (,) (, ,)i kt r t f d v (13)

d is the distance from the current position of the robot to the expected position,θ is the

rotation angle, v is the difference between current velocity and the expected velocity.

2. Reward
Each robot will get reward if it finished its task. Robot ri will get reward after it finishing
task tk : reward(ri , tk). For offensive one, it will get more rewards if it runs toward the middle
of the enemy’s gate while the defensive one will get more rewards if it intercepts the ball
run toward its gate. When one robot is at mid-ground, it will get rewards from attacking
and defending. The reward(ri , tk) is defined as follows:

   , ,reward r t g Attack Defendi k  (14)

Attack indicates the ability of attacking after a robot finished its task and defend indicates the
defending one. In a real match, they can be represented by the position of robot and the
velocity of the ball and so on.

Robot Soccer236

Step2:
M is the solution if M has satisfied the point in subset X, and this algorithm comes to the end.
Otherwise, select one non- saturated point x X and generate set { },S x T   .

Step3:
Calculate the adjacent point set ()N S :

() { |() ()}N S r t S rt E     (18)

In ()lG E , if ()N S T , go to step 4. Otherwise calculate follows:

 
,

min () () ()i j i jri S
tj Y T

l r l t w rt

 

   

(19)

'

()
() ()

(),

l r r S
l r l r r T

l r else

  
   



，
，

(20)

Then calculate '

lE , use '
lE to substitute lE , and use 'l to substitute l.

Step4:
In ()lG E , select one point t in ()N S T . If t is M- saturated and it satisfies tz M ,
let { }S z S  , { }T t T  , and go to step3. If not, let ()M E P substitute M, then go to
step2.

4.4 Experiment and Analysis
50 matches using the strategy which contains the role assignment method based on market
mechanism against the own strategy of the platform is shown in Figure 6.The results
indicates that this algorithm improve the goal rate and increases the efficiency. The average
goal difference of the strategy using Market-based role assignment algorithm is 2.84.
Dividing the tasks into cooperative tasks and atom tasks, using the auction theory to
allocation in cooperative task layer, improve the cooperation between robots. This model
can obviously increase the rate of successful and efficient of shooting.

1. The addressing of allocation
The task-allocation is executed forcedly by the decision-system at the start of the match, but
each robot has to calculate the income from current task periodically. Robot requests
task-allocation if the income is lower than its initial value. And the decision-making system
will start task-allocation when receiving enough requests.

2. Whether receive new task or not
After one robot receiving a new task, firstly it will compare the status of the old one with the
income of new one. It will not receive the new task if the old one is not done and the income
of the old one is larger.

4.3.3 Removal of Role-conflict
Since one robot maybe belongs to different robot unions when bidding the cooperative
tasks, it may get several tasks after allocation while some robots have no tasks, which is
defined as task-conflict. In Figure 5, circles represent task, squares represent robots which
having been allocated task, triangles represent robots which did not allocated yet and the
line is the reflection of robot to task. If all the robots in the set X and tasks in the set T are
complementary subsets of bipartite graph (,)G V E , and 1 2{ , , , }nX r r r  ,

1 2{ , , , }nY t t t  (n is the number of robots), V X Y  . In Figure 5, income(ri, tj) (1 ,i i n )
represents the weight of edges (,)i jw r t . So the method to solve the task-conflict is the way to
find the max-match of the sum of weight in this non-complete bipartite graph. The steps are
as follows:

Fig. 5. Role Conflict

Step 1:
In graph G, give a real number ()l r to each saturated point r X , called as flag of r, and l is
as follows:

 () max ()
t Y

l r w rt




(16)

For any t Y , there is () 0l t  .
Get the flag ()l r ’s subset lE :

{ | () () ()}lE rt rt E l r l t w rt     (17)
And get M which is a match of ()lG E .

The Role Assignment in Robot Soccer 237

Step2:
M is the solution if M has satisfied the point in subset X, and this algorithm comes to the end.
Otherwise, select one non- saturated point x X and generate set { },S x T   .

Step3:
Calculate the adjacent point set ()N S :

() { |() ()}N S r t S rt E     (18)

In ()lG E , if ()N S T , go to step 4. Otherwise calculate follows:

 
,

min () () ()i j i jri S
tj Y T

l r l t w rt

 

   

(19)

'

()
() ()

(),

l r r S
l r l r r T

l r else

  
   



，
，

(20)

Then calculate '

lE , use '
lE to substitute lE , and use 'l to substitute l.

Step4:
In ()lG E , select one point t in ()N S T . If t is M- saturated and it satisfies tz M ,
let { }S z S  , { }T t T  , and go to step3. If not, let ()M E P substitute M, then go to
step2.

4.4 Experiment and Analysis
50 matches using the strategy which contains the role assignment method based on market
mechanism against the own strategy of the platform is shown in Figure 6.The results
indicates that this algorithm improve the goal rate and increases the efficiency. The average
goal difference of the strategy using Market-based role assignment algorithm is 2.84.
Dividing the tasks into cooperative tasks and atom tasks, using the auction theory to
allocation in cooperative task layer, improve the cooperation between robots. This model
can obviously increase the rate of successful and efficient of shooting.

1. The addressing of allocation
The task-allocation is executed forcedly by the decision-system at the start of the match, but
each robot has to calculate the income from current task periodically. Robot requests
task-allocation if the income is lower than its initial value. And the decision-making system
will start task-allocation when receiving enough requests.

2. Whether receive new task or not
After one robot receiving a new task, firstly it will compare the status of the old one with the
income of new one. It will not receive the new task if the old one is not done and the income
of the old one is larger.

4.3.3 Removal of Role-conflict
Since one robot maybe belongs to different robot unions when bidding the cooperative
tasks, it may get several tasks after allocation while some robots have no tasks, which is
defined as task-conflict. In Figure 5, circles represent task, squares represent robots which
having been allocated task, triangles represent robots which did not allocated yet and the
line is the reflection of robot to task. If all the robots in the set X and tasks in the set T are
complementary subsets of bipartite graph (,)G V E , and 1 2{ , , , }nX r r r  ,

1 2{ , , , }nY t t t  (n is the number of robots), V X Y  . In Figure 5, income(ri, tj) (1 ,i i n )
represents the weight of edges (,)i jw r t . So the method to solve the task-conflict is the way to
find the max-match of the sum of weight in this non-complete bipartite graph. The steps are
as follows:

Fig. 5. Role Conflict

Step 1:
In graph G, give a real number ()l r to each saturated point r X , called as flag of r, and l is
as follows:

 () max ()
t Y

l r w rt




(16)

For any t Y , there is () 0l t  .
Get the flag ()l r ’s subset lE :

{ | () () ()}lE rt rt E l r l t w rt     (17)
And get M which is a match of ()lG E .

Robot Soccer238

6. References

Cheng Xianyi, Yang Changyu(2007). Research Status and Development of Robotsoccer’s
Learning Mechanism. Journal of Jiangnan University(Natural Science Edition), Vol.6
No.6 Dec.2007:643-647.1671-7147

Daniel Playne(2008). Knowledge-Based Role Allocation in Robot Soccer. 2008 10th Intl.
Conf.on Control,Automation,Robotics and Vision. Hanoi, Vietnam, Dec.2008: 1616-1619

Du Xinquan, Cheng Jiaxing(2008). Study on Soccer Robot Strategy Based on Annealing
Evolution Algorithm. Computer Technology and Development. Vol.18 No.2. Feb.
2008:101-103.1005-3751

Emest Forman, Dsc. Mary Ann Selly(2002). Decision by Objectives, 2002:43-126, World
Scientific Publishing Company, 9810241437, Hackensack., NJ, USA

Fu Haidong, Lei Dajiang(2006). Robot soccer role assignment system based on fuzzy
consistent relation, Computer Applications. Vol.26 No.2.Feb.2006:502-504, 1001 -9081

Gerkey B P, Matarjc M j(2002). Sold!: auction methods for multirobot coordinnation.
Processdings of the IEEE Transactions on Robotics and Automation. vol.18 No.5. May
2002:758-768.1042-296x

Gerkey B P, Maja J.M(2003). Multi-Robot task Allocation:Analyzing the Complexity and
Optimality of Key Architectures. Processdings of the IEEE International Conference on
Robotices and Automation(ICRA2003)2003:3863-3868,1050-4729
Taiwan.China, Org.2003, IEEE

Hong Bingrong. The Final Objective of the Robot Soccer and it’s Realization Course.
J.Huazhong Univ. Of Sci.&Tech.(Nature Science Edition). Vol.32 Sup.Oct.2004:
20-23.1671-4512

Ji Yuandong, Yao Jin(2008). Role Assignment in Robot Soccer Based on Analytic Hierarchy
Process. Journal of Harbin Institute of Technology(New Series). Vol.15
Sup.2,Jul.2008.137-140

Kao-Shing Hwang, Shun-Wen Tan, Chien-Cheng Chen(2004). Cooperative Strategy Based on
Adaptive Q-Learning for Robot Soccer Systems. IEEE Transactions on Fuzzy System,
Vol.12 No.4, Aug 2004:569-576.1063-6706

Kardi Teknomo, PhD. Analytic Hierarchy Process(AHP) Tutorial, http://people. revoledu.
com /kardi/tutorial/ahp/, visited on 10/3/2008.

Li Ping, Yang Yiming(2008). Progress of Task Allocation in Multi-robot System. Computer
Engineering and Applications, Vol.44 No.17.2008:201-205.1002-8331

Liu Lin, Ji Xiucai, Zheng Zhiqiang(2006), Multi-robot Task Allocation Based on Market and
Capability Classification. Robot. Vol.28 No.3 2006:337-343.1002-0446

Liu Shulin, Wang Shouyang, Li Jianqiang(1998). Decision Theoretic Approaches toBidding
and Auctions. Studies in Interntonal Technology and Economy. Vol.1 No.2.May.
1998:20-33.1671-3435

Liu L, Wang L, Zheng Z Q, A learing market based layered multi-robot architecture.
Proceeding of the IEEE International Conference on Robotics and Automation. Piscataway,
USA, IEEE, 2004:3417-3422

Liu Wei, Zhang Cheng, MaChenwei, Han Guangsheng(2004). Decision-making and Role
Allocatiing System for Robot Soccer. Journal of Harbin Institution of Technology .
Vol.36 No.7 July 2004:966-968. ,0367-6234.

Fig. 6. Goal difference of Behavior-based role assignment and Market-based role assignment

Fig. 7. Goal difference of AHP-based role assignment and Market-based role assignment

5. Conclusions and Future Research

Figure 7 shows the goal differences using the strategies which contain AHP-based role
assignment and Market-based role assignment. The success of the AHP-based method
depends on the comparison matrices which are decided by the experts. And the modelling
of the Market-based method also needs the experience of the experts. Senior experts are the
keys to these two algorithms. One of the future researches is using self-learning to improve
these algorithms.
Robot soccer is a dynamic, uncertain, and difficult predicting system. Multi-robot role
assignment has become a hot spot in the current research. Much work has been done in role
assignment, many new algorithms and theories are introduced into this area. But the study
of robot role assignment is still in its early stage, there is still a long way to go.

The Role Assignment in Robot Soccer 239

6. References

Cheng Xianyi, Yang Changyu(2007). Research Status and Development of Robotsoccer’s
Learning Mechanism. Journal of Jiangnan University(Natural Science Edition), Vol.6
No.6 Dec.2007:643-647.1671-7147

Daniel Playne(2008). Knowledge-Based Role Allocation in Robot Soccer. 2008 10th Intl.
Conf.on Control,Automation,Robotics and Vision. Hanoi, Vietnam, Dec.2008: 1616-1619

Du Xinquan, Cheng Jiaxing(2008). Study on Soccer Robot Strategy Based on Annealing
Evolution Algorithm. Computer Technology and Development. Vol.18 No.2. Feb.
2008:101-103.1005-3751

Emest Forman, Dsc. Mary Ann Selly(2002). Decision by Objectives, 2002:43-126, World
Scientific Publishing Company, 9810241437, Hackensack., NJ, USA

Fu Haidong, Lei Dajiang(2006). Robot soccer role assignment system based on fuzzy
consistent relation, Computer Applications. Vol.26 No.2.Feb.2006:502-504, 1001 -9081

Gerkey B P, Matarjc M j(2002). Sold!: auction methods for multirobot coordinnation.
Processdings of the IEEE Transactions on Robotics and Automation. vol.18 No.5. May
2002:758-768.1042-296x

Gerkey B P, Maja J.M(2003). Multi-Robot task Allocation:Analyzing the Complexity and
Optimality of Key Architectures. Processdings of the IEEE International Conference on
Robotices and Automation(ICRA2003)2003:3863-3868,1050-4729
Taiwan.China, Org.2003, IEEE

Hong Bingrong. The Final Objective of the Robot Soccer and it’s Realization Course.
J.Huazhong Univ. Of Sci.&Tech.(Nature Science Edition). Vol.32 Sup.Oct.2004:
20-23.1671-4512

Ji Yuandong, Yao Jin(2008). Role Assignment in Robot Soccer Based on Analytic Hierarchy
Process. Journal of Harbin Institute of Technology(New Series). Vol.15
Sup.2,Jul.2008.137-140

Kao-Shing Hwang, Shun-Wen Tan, Chien-Cheng Chen(2004). Cooperative Strategy Based on
Adaptive Q-Learning for Robot Soccer Systems. IEEE Transactions on Fuzzy System,
Vol.12 No.4, Aug 2004:569-576.1063-6706

Kardi Teknomo, PhD. Analytic Hierarchy Process(AHP) Tutorial, http://people. revoledu.
com /kardi/tutorial/ahp/, visited on 10/3/2008.

Li Ping, Yang Yiming(2008). Progress of Task Allocation in Multi-robot System. Computer
Engineering and Applications, Vol.44 No.17.2008:201-205.1002-8331

Liu Lin, Ji Xiucai, Zheng Zhiqiang(2006), Multi-robot Task Allocation Based on Market and
Capability Classification. Robot. Vol.28 No.3 2006:337-343.1002-0446

Liu Shulin, Wang Shouyang, Li Jianqiang(1998). Decision Theoretic Approaches toBidding
and Auctions. Studies in Interntonal Technology and Economy. Vol.1 No.2.May.
1998:20-33.1671-3435

Liu L, Wang L, Zheng Z Q, A learing market based layered multi-robot architecture.
Proceeding of the IEEE International Conference on Robotics and Automation. Piscataway,
USA, IEEE, 2004:3417-3422

Liu Wei, Zhang Cheng, MaChenwei, Han Guangsheng(2004). Decision-making and Role
Allocatiing System for Robot Soccer. Journal of Harbin Institution of Technology .
Vol.36 No.7 July 2004:966-968. ,0367-6234.

Fig. 6. Goal difference of Behavior-based role assignment and Market-based role assignment

Fig. 7. Goal difference of AHP-based role assignment and Market-based role assignment

5. Conclusions and Future Research

Figure 7 shows the goal differences using the strategies which contain AHP-based role
assignment and Market-based role assignment. The success of the AHP-based method
depends on the comparison matrices which are decided by the experts. And the modelling
of the Market-based method also needs the experience of the experts. Senior experts are the
keys to these two algorithms. One of the future researches is using self-learning to improve
these algorithms.
Robot soccer is a dynamic, uncertain, and difficult predicting system. Multi-robot role
assignment has become a hot spot in the current research. Much work has been done in role
assignment, many new algorithms and theories are introduced into this area. But the study
of robot role assignment is still in its early stage, there is still a long way to go.

Robot Soccer240

Robert Zlot, Anthony Stentz(2006). Market-based Multi robot Coordination for Complex
Tasks. International Journal of Robotics Research, Vol.25 No.1 Jan.2006:73-101.
0278-3649

Thomas L.Saaty(2008). Decision making with the analytic hierarchy process, International
Journal of Services Sciences. Vol.1 No.1,Jan 2008:83-98,1753-1454

T.L.Saaty(1980). The Analytic Hierarchy Process ,McGraw Hill Intermational, 1980
Wang Jinge, Wang Qiang, YaoJin(2005). Cooperation strategy for robot soccer based on

defuzzification, Journal of Harbin Institution of Technology, Vol.137 No.7, July 2005:
943-946,0367-6234.

Wang Xiangzhong, Yu Shouyi, Long Yonghong(2004). Dynamic role assignment stategy in
robo soccer competition, Jourmal of Harbin Institute of Technology, Vol.136 No.17, July
2004:943-945, 0367-6234

Wu Lijuan, Zhai Yuren, XuXinhe(2000). A Role Assignment Method of Multi- Intrlligence
Agent Cooperation Based on Robot Soccer Match, Basic Automation, Vol.7 No.1 Feb
2000:4-6,1005-3662

Wu Zihua, Zhang Yili, Tang Changjie(1999). Discrete Mathemaatics, Chen Zhaolin, 217-221,
SiChuan University Press, 7-5614-0175-2. Chengdu. China

Xue Fangzheng, Cao Yang, Xu Xinhe(2004), NEU Robot-Soccer Decision-making System
Design. Programmable controller& Factory Automation(PLC&FA), Vol.39 No.11 Nov.
2004:107-110,1606-5123

Yang Linquan, Lv Weixian(2005). A Role Assignment Method for Robot Soccer Based on
Combinatorial Optimization, China Robot Competition, 31-33, Chang zhou .China,
July 2005

Yang Lunbiao, Gao Yngyi(2006). Fuzzy Mathematics:Principles and Applicatons(fourth edition),
South China University of Technology Press,9787562304401,Guangzhou. China

Zhang Jie, Li Xiujuan, Zhang Xiaodong(2008). Application of Robot Soccer Role Assignment
Based on Q Learning in Multi Agent Cooperation. CD Tecnnology, No.8
2008:45-47.1004-0447

Zhang Yu, Liu Shuhua(2008). Survey of multi-robot task allocation.CAAI Transactions on
Intelligent Systems, Vol.3 No.2 Apr.2008:115-120.1673-4785

Zhong Biliang, Chen Chengzhi, Yang Yimin(2001). Study of Role Switching and assignment
for Robot Soccer Based on Petri-net, Computer Engineering and Applications, Vol.37
No.20 Oct 2001:14-15,1002-8331

Zuo Hongtao, Lu Jinbo, Yao Jin(2009). Task Allocation Based on Market in Robot Soccer.
Journal of Harbin Institute of Technology, Vol.41 Sup.2,July 2009:249-453. 0367-6234

Multi-Robot Systems: Modeling, Specification, and Model Checking 241

Multi-Robot Systems: Modeling, Specification, and Model Checking

Ammar Mohammed, Ulrich Furbach and Frieder Stolzenburg

0

Multi-Robot Systems: Modeling,
Specification, and Model Checking

Ammar Mohammed and Ulrich Furbach
University of Koblenz-Landau, Department of Computer Science

Germany

Frieder Stolzenburg
Harz University of Applied Sciences, Department of Automation and Computer Sciences

Germany

1. Introduction

Specifying behaviors of physical multi-agent systems (MAS) – also called multi-robot systems
– is a demanding task, especially when they are applied in safety critical applications. For this,
formal methods based on mathematical models of the system under design are helpful. They
allow us not only to formally specify the system at different levels of abstraction, but also
to analyze the consistency of the specified systems before implementing them. The formal
specification aims at both, a precise and unambiguous description of the behavior of MAS,
and a formal verification whether a given specification is satisfied. For example, it should be
possible to show that unsafe regions of the state space cannot be reached, or that a particular
property is satisfied.
Generally, the behavior of an agent in MAS can be driven by external events and internal
states. Therefore, an efficient way to model such systems is to use state transition diagrams,
which are well established in software engineering. A state transition diagram describes the
dynamic behaviour of an agent in terms of how the agent acts in certain scenarios of the

defend

simple plyer

line up

attack

line up
line up

kick off

game over

team lost ball

team got ball

game over

simple player

Fig. 1. A description of a simple agent in robotic soccer as a transition system.

11

Robot Soccer242

environment. It aims at defining the behavior rules for the agents of the system. For example,
Fig. 1 shows the behavior of an abstract simple agent/player in robotic soccer modeled as
a state transition diagram. The agent may either defend or attack, depending on which team
is controlling the ball. All changes of such global behaviors happen in response to one or
more external events. Generally, state transition diagrams have been applied successfully
for MAS, particularly in the RoboCup, a simulation of (human) soccer with real or virtual
robots (cf. Arai & Stolzenburg, 2002; da Silva et al., 2004), in particular for the teams RoboLog
Koblenz (two-dimensional simulation league) and Harzer Rollers (standard four-legged league)
(Murray et al., 2002; Ruh & Stolzenburg, 2008).
In realistic physical environments, it is necessary to consider continuous actions in addition
to discrete changes of the behaviors. Take for example, the movement of a soccer agent to
kick off or to go to the ball, the process of putting out the fire by a fire brigade agent in a
rescue scenario, or any other behaviors that depend on any timed physical law. Hybrid au-
tomata (Henzinger, 1996) offer an elegant method to model such types of behaviors. Basically,
hybrid automata extend regular state transition diagrams with methods that deal with those
continuous actions. The state transition diagrams are used to model the discrete changes of
the agents’ behavior, while differential equations are used to model the continuous changes.
The semantics of hybrid automata make them accessible to a formal validation of systems, es-
pecially for those systems which are situated in safety critical environments. Model checking
can be used to prove desirable features or the absence of unwanted properties in the specified
systems (Clarke et al., 1999). Specifying and verifying behaviors of MAS by means of hybrid
automata is challenging for many reasons. One of those is a state space problem: Essentially,
MAS are specified as concurrent automata that have to be composed in parallel. The result
of this composition captures all possible behaviors that may occur among the agents, which
can be checked by hybrid automata verification tools (Behrmann et al., 2004; Frehse, 2005;
Henzinger et al., 1995b). Obviously, this composition process may lead to a state explosion.
Another problem is that hybrid automata describe not only the internal behaviors of agents,
but also the external interaction among agents. This definitely adds complexity, which de-
mands for structured and systematic methods for the specification of MAS. We propose to
combine hybrid automata with software engineering methods to overcome these problems.
In this chapter, we provide a framework based on hybrid automata, which allows us to conve-
niently specify and verify physical MAS situated in a continuous dynamic environment. We
will address the state space complexity raised from composition of agents, by composing the
automata dynamically during the verification phase. This can relieve the problem in such a
way that only the exact reached parts of the state space are activated, instead of activating all
the entire state space at once.
Furthermore, in order to cope with complex multi-agent structures, we combine hybrid au-
tomata with hierarchical UML statecharts, which allows MAS specification with different lev-
els of abstraction. We also give a formal semantics for this combination, and show how to
analyze the dynamic behaviors of MAS. In principle, a straightforward way to analyze a hi-
erarchical machines is to flatten them and to apply verification techniques to the resulting
ordinary finite state machines. We show how this flattening can be avoided.

2. Hybrid Finite State Machines

Originally, hybrid automata (Henzinger, 1996) have been proposed as formal models for de-
scribing hybrid systems. They have been built as a generalization of timed automata (Alur &
Dill, 1994), which have been used successfully as a standard framework to specify real-time

systems. In addition to their mathematical models to formally specify and verify systems,
the underlying mathematical models of hybrid automata can be represented graphically as a
finite state machine (FSM). There are several approaches to apply this framework to MAS (see
e.g. Egerstedt, 2000; Furbach et al., 2008; Mohammed & Furbach, 2008a).
In order to specify MAS by means of hybrid automata, the team of agents is described as
concurrent automata, which in turn are combined via parallel composition into a global au-
tomaton, in order to coordinate their behaviors for reaching a common goal. It is well known
that the major problem in applying model checking to analyze concurrent systems is the po-
tential combinatorial explosion of the state space arising from parallel composition. Typically
the state space of the parallel composition of an agent with K1 states and another agent with
K2 states leads to a state space of K1 × K2 states. Accordingly, the parallel composition of N
agents, each with a state space of K states, leads to a state pace of KN states. Even for small
systems this may easily run out of control. Additionally, the state explosion problem is even
more serious in verifying continuous dynamic systems. As such systems must satisfy certain
timing and continuous constraints on their behaviors, a model checker must keep track not
only of the part of the state space explored, but also of timing and continuous evolution in-
formation associated with each state, which is both time and space consuming. Traditionally,
global state-space representations are constructed without regard to whether the states are
reachable or not. In this section we will give a framework where the state space is built on the
fly during the execution of the concurrent MAS. This can relieve the complexity in a sense that
only the active parts of the state space will be taken into consideration during the run, instead
of producing the composition prior to the verification phase.
In this section we will define the syntax and the semantics of our framework. Additionally,
we will show how the composition of automata can be formally constructed. Finally, we will
use constraint logic programming to implement the proposed framework. All this will be
exemplified by a simple rescue scenario.

2.1 Rescue Scenario: Example
In the RoboCup rescue simulation league (Tadokoro et al., 2000), a large scale disaster is sim-
ulated. The simulator models part of a city after an earthquake. Buildings may be collapsed,
or are on fire, and roads are partially or completely blocked. A team of heterogeneous agents
consisting of police forces, ambulance teams, a fire brigade, and their respective headquarters
is deployed. The agents have two main tasks, namely finding and rescuing the civilians and
extinguishing fires. An auxiliary task is the clearing of blocked roads, such that agents can
move smoothly. As their abilities enable each type of agent to solve only one kind of task (e.g.
fire brigades cannot clear roads or rescue civilians), the need for coordination and synchro-
nization among agents is obvious in order to accomplish the rescue tasks.
Now, consider the following simple scenario. If a fire breaks out somewhere, a fire brigade
agent is ordered by its headquarters to extinguish the fire. The fire brigade agent moves to the
fire and begins to put it out. If the agent runs out of water, it has to refill its tank at a supply
station and return to the fire to fulfill its task. Once the fire is extinguished, the fire brigade
agent is idle again.
An additional task of the agent is to report any injured civilians it discovers. In addition
to the fire brigade agent, the model should include a fire station, fire, and civilians in the
environment. A part of this scenario, specified as hybrid automata, is depicted in Fig. 2. The
complete description and specification of the scenario will be shown in Sec. 3 (cf. Fig 4).

Multi-Robot Systems: Modeling, Specification, and Model Checking 243

environment. It aims at defining the behavior rules for the agents of the system. For example,
Fig. 1 shows the behavior of an abstract simple agent/player in robotic soccer modeled as
a state transition diagram. The agent may either defend or attack, depending on which team
is controlling the ball. All changes of such global behaviors happen in response to one or
more external events. Generally, state transition diagrams have been applied successfully
for MAS, particularly in the RoboCup, a simulation of (human) soccer with real or virtual
robots (cf. Arai & Stolzenburg, 2002; da Silva et al., 2004), in particular for the teams RoboLog
Koblenz (two-dimensional simulation league) and Harzer Rollers (standard four-legged league)
(Murray et al., 2002; Ruh & Stolzenburg, 2008).
In realistic physical environments, it is necessary to consider continuous actions in addition
to discrete changes of the behaviors. Take for example, the movement of a soccer agent to
kick off or to go to the ball, the process of putting out the fire by a fire brigade agent in a
rescue scenario, or any other behaviors that depend on any timed physical law. Hybrid au-
tomata (Henzinger, 1996) offer an elegant method to model such types of behaviors. Basically,
hybrid automata extend regular state transition diagrams with methods that deal with those
continuous actions. The state transition diagrams are used to model the discrete changes of
the agents’ behavior, while differential equations are used to model the continuous changes.
The semantics of hybrid automata make them accessible to a formal validation of systems, es-
pecially for those systems which are situated in safety critical environments. Model checking
can be used to prove desirable features or the absence of unwanted properties in the specified
systems (Clarke et al., 1999). Specifying and verifying behaviors of MAS by means of hybrid
automata is challenging for many reasons. One of those is a state space problem: Essentially,
MAS are specified as concurrent automata that have to be composed in parallel. The result
of this composition captures all possible behaviors that may occur among the agents, which
can be checked by hybrid automata verification tools (Behrmann et al., 2004; Frehse, 2005;
Henzinger et al., 1995b). Obviously, this composition process may lead to a state explosion.
Another problem is that hybrid automata describe not only the internal behaviors of agents,
but also the external interaction among agents. This definitely adds complexity, which de-
mands for structured and systematic methods for the specification of MAS. We propose to
combine hybrid automata with software engineering methods to overcome these problems.
In this chapter, we provide a framework based on hybrid automata, which allows us to conve-
niently specify and verify physical MAS situated in a continuous dynamic environment. We
will address the state space complexity raised from composition of agents, by composing the
automata dynamically during the verification phase. This can relieve the problem in such a
way that only the exact reached parts of the state space are activated, instead of activating all
the entire state space at once.
Furthermore, in order to cope with complex multi-agent structures, we combine hybrid au-
tomata with hierarchical UML statecharts, which allows MAS specification with different lev-
els of abstraction. We also give a formal semantics for this combination, and show how to
analyze the dynamic behaviors of MAS. In principle, a straightforward way to analyze a hi-
erarchical machines is to flatten them and to apply verification techniques to the resulting
ordinary finite state machines. We show how this flattening can be avoided.

2. Hybrid Finite State Machines

Originally, hybrid automata (Henzinger, 1996) have been proposed as formal models for de-
scribing hybrid systems. They have been built as a generalization of timed automata (Alur &
Dill, 1994), which have been used successfully as a standard framework to specify real-time

systems. In addition to their mathematical models to formally specify and verify systems,
the underlying mathematical models of hybrid automata can be represented graphically as a
finite state machine (FSM). There are several approaches to apply this framework to MAS (see
e.g. Egerstedt, 2000; Furbach et al., 2008; Mohammed & Furbach, 2008a).
In order to specify MAS by means of hybrid automata, the team of agents is described as
concurrent automata, which in turn are combined via parallel composition into a global au-
tomaton, in order to coordinate their behaviors for reaching a common goal. It is well known
that the major problem in applying model checking to analyze concurrent systems is the po-
tential combinatorial explosion of the state space arising from parallel composition. Typically
the state space of the parallel composition of an agent with K1 states and another agent with
K2 states leads to a state space of K1 × K2 states. Accordingly, the parallel composition of N
agents, each with a state space of K states, leads to a state pace of KN states. Even for small
systems this may easily run out of control. Additionally, the state explosion problem is even
more serious in verifying continuous dynamic systems. As such systems must satisfy certain
timing and continuous constraints on their behaviors, a model checker must keep track not
only of the part of the state space explored, but also of timing and continuous evolution in-
formation associated with each state, which is both time and space consuming. Traditionally,
global state-space representations are constructed without regard to whether the states are
reachable or not. In this section we will give a framework where the state space is built on the
fly during the execution of the concurrent MAS. This can relieve the complexity in a sense that
only the active parts of the state space will be taken into consideration during the run, instead
of producing the composition prior to the verification phase.
In this section we will define the syntax and the semantics of our framework. Additionally,
we will show how the composition of automata can be formally constructed. Finally, we will
use constraint logic programming to implement the proposed framework. All this will be
exemplified by a simple rescue scenario.

2.1 Rescue Scenario: Example
In the RoboCup rescue simulation league (Tadokoro et al., 2000), a large scale disaster is sim-
ulated. The simulator models part of a city after an earthquake. Buildings may be collapsed,
or are on fire, and roads are partially or completely blocked. A team of heterogeneous agents
consisting of police forces, ambulance teams, a fire brigade, and their respective headquarters
is deployed. The agents have two main tasks, namely finding and rescuing the civilians and
extinguishing fires. An auxiliary task is the clearing of blocked roads, such that agents can
move smoothly. As their abilities enable each type of agent to solve only one kind of task (e.g.
fire brigades cannot clear roads or rescue civilians), the need for coordination and synchro-
nization among agents is obvious in order to accomplish the rescue tasks.
Now, consider the following simple scenario. If a fire breaks out somewhere, a fire brigade
agent is ordered by its headquarters to extinguish the fire. The fire brigade agent moves to the
fire and begins to put it out. If the agent runs out of water, it has to refill its tank at a supply
station and return to the fire to fulfill its task. Once the fire is extinguished, the fire brigade
agent is idle again.
An additional task of the agent is to report any injured civilians it discovers. In addition
to the fire brigade agent, the model should include a fire station, fire, and civilians in the
environment. A part of this scenario, specified as hybrid automata, is depicted in Fig. 2. The
complete description and specification of the scenario will be shown in Sec. 3 (cf. Fig 4).

Robot Soccer244

Fire

idle move2firemove2supply

refill

extinguish

Civilians

burn

no fire

f: ˙boom = 1

boom = 3/neededw′ = 120
i: boom ≤ 3

burning

f: ˙boom = 0
i: neededw > 0

neededw = 0

f: ˙boom = 0
i: true

put outboom = 0

FirebrigadeMain

w = 0/w′ = 10

help
injured

w = 10

f: ẇ = −1
i: w ≥ 0

i: true

civ > 0/
civ′ = civ − 1

i: m2ftime ≥ 0
f: ˙m2ftime = −1f: ˙m2stime = −1

i: m2stime ≥ 0

∧civ = 0
∧neededw = 0

wLevel = wlMax

i: wLevel ≤ wlMax
f: ˙wLevel = rFill

i: wLevel ≥ 0
f: ˙wLevel = −rExt

˙neededw = −rExt
wLevel = 0/m2stime′ = tSupply m2ftime = 0

m2stime = 0

reported
emergency

true /m2ftime′ = 3

wLevel = wlMax ∧ neededw = 0

neededw = 0 ∧ wLevel > 0

wLevel = wlMax ∧ neededw > 0 /
m2ftime′ = tSupply

Fig. 2. A part of the RoboCup rescue scenario specified as hybrid automata.

As depicted in Fig. 2, the behavior of the agent FirebrigadeMain consists of five states corre-
sponding to movements (move2fire, move2supply), extinguishing (extinguish), refilling the tank
(refill), and an idle state (idle). It can report the discovered civilians when it is in its idle state.
Details of this figure will be explained in details during this chapter.
It should be obvious that even in this simple case with very few components, it is difficult to
see if the agent behaves correctly. Important questions like:

- Does the fire brigade agent try to extinguish without water?

- Will every discovered civilian (and only those) be reported eventually?

depend on the interaction of all components and cannot be answered without an analysis of
the whole system.

2.2 Syntax
Since we intend to specify a multi-agent system with hybrid automata, the intuitive meaning
of an agent is a hybrid automaton, which is represented graphically as a finite state machine,
augmented with mathematical formalisms on both transitions and control states. Formally
speaking, a hybrid automaton (agent with continuous actions) is defined as follows:

Definition 2.1 (basic components). A hybrid automaton is a tuple
H = (Q, X, Inv, Flow, E, Jump, Reset, Event, σ0) where:

• Q is a finite set of locations which defines the possible behaviors of the agent.
For example, in Fig. 2, the FirebrigadeMain agent has the locations move2fire, move2supply,
extinguish, refill, and idle as possible behaviors. On the other hand, the Fire has no fire,
burning and put out as its locations. It should be mentioned that we use the concept
location instead of state, because an agent possesses different states inside each location,
which are raised as a reason of continuous evolution. This will be described later in
more details.

• X = {x1, x2, ..., xn} is a finite set of n real-valued variables, including the variable t that denotes
the time.
These variables will be used to model the continuous dynamics of the automaton with
respect to t. For example, the variable wLevel represents the amount of water of the fire
brigade, and it can be used to model the rate of change to refill or flow the water with
respect to the time inside the tank. On the other hand, the variable m2ftime represents
the distance to the fire, and its rate of change with respect to the time models the speed
of the fire brigade agent.

• Inv is a mapping which assigns an invariant condition to each location q ∈ Q. The invariant
condition Inv(q) is a predicate over the variables in X.
The control of a hybrid automaton will remain at a location q ∈ Q, as long as Inv(q)
holds. In the graphical representation, the invariant is tagged with the symbol i:. For
instance the invariant wlevel≤ wlMax inside the location refill of FirebrigadeMain shows
that the fire brigade fills the water as long as the water level does not reach the maxi-
mum level represented by the wlMax. Conventionally, writing Inv(q)[v] means that the
invariant condition inside the location q holds, whenever the valuations of variables
inside q are v.

• Flow is a mapping, which assigns a flow condition to each control location q ∈ Q. The flow
condition Flow(q) is a predicate over X that defines how the variables in X evolve over the time
t at location q.
In the graphical representation, it is tagged with the symbol f:. A flow of a variable
x is denoted as ẋ. In our example, the dotted variable ˙wLevel describes the change of
the water level in the location refill. The flow inside locations may be empty and hence
omitted, if nothing changes continuously in the respective location.

• E ⊆ Q × Q is the discrete transition relation over the control locations.

• Jump is a mapping which assigns a jump condition (guard) to each transition e ∈ E. The jump
condition jump(e) is a predicate over X that must hold to fire e.
Omitting a jump condition on a transition means that the jump condition is always
true and it can be taken at any point of time. In the rescue example Fig. 2, the jump
condition between the locations extinguish and move2supply is given as wLevel=0, which
means that the transition between these locations can be taken whenever wLevel reaches
to 0. Conventionally, writing Jump(e)[v] means that the jump condition on a transition
e holds, when the valuations of variables on the transition are v.

• Reset is a mapping, which assigns values to variable to each transition e ∈ E. Reset(e) is a
predicate over X that defines how the variables are reset.
In the graphical representation, resetting a variable x ∈ X is denoted as x′. For example,
when the transition between location refill and move2fire holds, the action m2ftime′ =
tSupply is executed, which means that the variable m2ftime is reset to the value tSupply.

Multi-Robot Systems: Modeling, Specification, and Model Checking 245

Fire

idle move2firemove2supply

refill

extinguish

Civilians

burn

no fire

f: ˙boom = 1

boom = 3/neededw′ = 120
i: boom ≤ 3

burning

f: ˙boom = 0
i: neededw > 0

neededw = 0

f: ˙boom = 0
i: true

put outboom = 0

FirebrigadeMain

w = 0/w′ = 10

help
injured

w = 10

f: ẇ = −1
i: w ≥ 0

i: true

civ > 0/
civ′ = civ − 1

i: m2ftime ≥ 0
f: ˙m2ftime = −1f: ˙m2stime = −1

i: m2stime ≥ 0

∧civ = 0
∧neededw = 0

wLevel = wlMax

i: wLevel ≤ wlMax
f: ˙wLevel = rFill

i: wLevel ≥ 0
f: ˙wLevel = −rExt

˙neededw = −rExt
wLevel = 0/m2stime′ = tSupply m2ftime = 0

m2stime = 0

reported
emergency

true /m2ftime′ = 3

wLevel = wlMax ∧ neededw = 0

neededw = 0 ∧ wLevel > 0

wLevel = wlMax ∧ neededw > 0 /
m2ftime′ = tSupply

Fig. 2. A part of the RoboCup rescue scenario specified as hybrid automata.

As depicted in Fig. 2, the behavior of the agent FirebrigadeMain consists of five states corre-
sponding to movements (move2fire, move2supply), extinguishing (extinguish), refilling the tank
(refill), and an idle state (idle). It can report the discovered civilians when it is in its idle state.
Details of this figure will be explained in details during this chapter.
It should be obvious that even in this simple case with very few components, it is difficult to
see if the agent behaves correctly. Important questions like:

- Does the fire brigade agent try to extinguish without water?

- Will every discovered civilian (and only those) be reported eventually?

depend on the interaction of all components and cannot be answered without an analysis of
the whole system.

2.2 Syntax
Since we intend to specify a multi-agent system with hybrid automata, the intuitive meaning
of an agent is a hybrid automaton, which is represented graphically as a finite state machine,
augmented with mathematical formalisms on both transitions and control states. Formally
speaking, a hybrid automaton (agent with continuous actions) is defined as follows:

Definition 2.1 (basic components). A hybrid automaton is a tuple
H = (Q, X, Inv, Flow, E, Jump, Reset, Event, σ0) where:

• Q is a finite set of locations which defines the possible behaviors of the agent.
For example, in Fig. 2, the FirebrigadeMain agent has the locations move2fire, move2supply,
extinguish, refill, and idle as possible behaviors. On the other hand, the Fire has no fire,
burning and put out as its locations. It should be mentioned that we use the concept
location instead of state, because an agent possesses different states inside each location,
which are raised as a reason of continuous evolution. This will be described later in
more details.

• X = {x1, x2, ..., xn} is a finite set of n real-valued variables, including the variable t that denotes
the time.
These variables will be used to model the continuous dynamics of the automaton with
respect to t. For example, the variable wLevel represents the amount of water of the fire
brigade, and it can be used to model the rate of change to refill or flow the water with
respect to the time inside the tank. On the other hand, the variable m2ftime represents
the distance to the fire, and its rate of change with respect to the time models the speed
of the fire brigade agent.

• Inv is a mapping which assigns an invariant condition to each location q ∈ Q. The invariant
condition Inv(q) is a predicate over the variables in X.
The control of a hybrid automaton will remain at a location q ∈ Q, as long as Inv(q)
holds. In the graphical representation, the invariant is tagged with the symbol i:. For
instance the invariant wlevel≤ wlMax inside the location refill of FirebrigadeMain shows
that the fire brigade fills the water as long as the water level does not reach the maxi-
mum level represented by the wlMax. Conventionally, writing Inv(q)[v] means that the
invariant condition inside the location q holds, whenever the valuations of variables
inside q are v.

• Flow is a mapping, which assigns a flow condition to each control location q ∈ Q. The flow
condition Flow(q) is a predicate over X that defines how the variables in X evolve over the time
t at location q.
In the graphical representation, it is tagged with the symbol f:. A flow of a variable
x is denoted as ẋ. In our example, the dotted variable ˙wLevel describes the change of
the water level in the location refill. The flow inside locations may be empty and hence
omitted, if nothing changes continuously in the respective location.

• E ⊆ Q × Q is the discrete transition relation over the control locations.

• Jump is a mapping which assigns a jump condition (guard) to each transition e ∈ E. The jump
condition jump(e) is a predicate over X that must hold to fire e.
Omitting a jump condition on a transition means that the jump condition is always
true and it can be taken at any point of time. In the rescue example Fig. 2, the jump
condition between the locations extinguish and move2supply is given as wLevel=0, which
means that the transition between these locations can be taken whenever wLevel reaches
to 0. Conventionally, writing Jump(e)[v] means that the jump condition on a transition
e holds, when the valuations of variables on the transition are v.

• Reset is a mapping, which assigns values to variable to each transition e ∈ E. Reset(e) is a
predicate over X that defines how the variables are reset.
In the graphical representation, resetting a variable x ∈ X is denoted as x′. For example,
when the transition between location refill and move2fire holds, the action m2ftime′ =
tSupply is executed, which means that the variable m2ftime is reset to the value tSupply.

Robot Soccer246

Resetting variables are omitted on transition, if the values of the variables do not change
before the control goes from a location to another.

• Event is a mapping which assigns an event to each transition e ∈ E from a set of events EventH.
For instance, the transition between the locations idle and move2fire in FirebrigadeMain
has emergency as its event. As we will see later, EventH is used to synchronize the
automaton H with any other automata that share the same common events. It should be
noted that in the graphical diagrams, an event Event(e) ∈ EventH is implicitly omitted,
if it is not shared among any automata.

• σ0 is the initial state of the automaton. It defines the initial location together with the initial
values of the variables X.
For example, the initial state of the agent FirebrigadeMain is the location idle with initial
valuations wLevel = wlMax, neededw = 0, and civ = 0 to its variables wLevel, neededw,
and civ respectively.

Before describing the semantics of a hybrid automaton, it should be mentioned that the hybrid
automata are classified according to the type of continuous flow:

• If ẋ = c (constant), then the hybrid automaton is called linear hybrid automaton. A
special case of linear hybrid automata are timed automata (Alur & Dill, 1994), where
c = 1).

• If c1 ≤ ẋ ≤ c2, then the hybrid automaton is called rectangular hybrid automaton.

• If ẋ = c1x + c2, then the hybrid automaton is called non-linear hybrid automaton.

2.3 Semantics
Intuitively, a hybrid automaton can be in exactly one of its control locations at each stage of
it computation. However, knowing the present control location is not enough to determine
which of the outgoing transitions can be taken next, if any. A snapshot of the current state
of the computation should also remember the present valuation of the continuous variables.
Therefore, to formalize the semantics of a hybrid automaton, we first have to define the con-
cept of a state.

Definition 2.2 (State). At any instant of time, a state of a hybrid automaton is given by σi =
〈qi, vi, t〉, where qi ∈ Q is a control location, vi is the valuation of its real variables, and t is the
current time. A state σi = 〈qi, vi, t〉 is admissible if Inv(qi)[vi] holds (i.e., the valuations of the vari-
ables satisfies the invariant at location qi.

A state transition system of a hybrid automaton H starts with the initial state σ0 = 〈q0, v0, 0〉,
where the q0 and v0 are the initial location and valuations of the variables respectively. For
example, the initial state of the Civilians (see Fig. 2) can be specified as 〈injured, 10, 0〉.
Informally speaking, the semantics of a hybrid automaton is defined in terms of a labeled tran-
sition system between states. Generally, transitions between states are categorized into two
kinds of transitions: continuous transitions, capturing the continuous evolution of states, and
discrete transitions, capturing the changes of location. More formally, we can define hybrid
automaton semantics as follows.

Definition 2.3 (Operational Semantic). A transition rule between two admissible states σ1 =
〈q1, v1, t1〉 and σ2 = 〈q2, v2, t2〉 is

discrete iff e = (q1, q2) ∈ E, t1 = t2 and Jump(e)[v1] and Inv(q2)[v2] hold. In this case an event
a ∈ Event occurs. Conventionally, we write this as σ1

a→ σ2.

continuous(time delay) iff q1 = q2, and t2 > t1 is the duration of time passed at location q1, during
which the invariant predicate Inv(q1)[v1] and Inv(q1)[v2] holds.

In the previous definition, it should be noted that v2 results from resetting variables on a
transition in case of the discrete transition rule, while it results from the continuous evolution
of the variables in case of the continuous transition rule. Intuitively, an execution of a hybrid
automaton corresponds to a sequence of transitions from a state to another. Therefore we
define the valid run as follows.

Definition 2.4 (Run: micro level). A run of a hybrid automaton ∑ = σ0σ1σ2, . . . , is a finite or
infinite sequence of admissible states, where the transition from a state σi to a state σi+1 is related by
either a discrete or a continuous transition and σ0 is the initial state.

It should be noted that the continuous change in the run may generate an infinite number of
reachable states. It follows that state-space exploration techniques require a symbolic repre-
sentation way in order to represent the set of states in an appropriate way. A good way is
to use mathematical intervals. This interval captures all possible states. We call this interval
region, which is defined as follows:

Definition 2.5 (Region). given a run ∑, a sub-sequence of states Γ = (σi+1 · · · σi+m) ⊆ ∑ is called
a region, if for all states σi+j with 1 ≤ j ≤ m, it holds qi+j = q and if there exist a state σi and a state
σi+m+1 with respective locations q1 and q2, then it must hold q1 �= q and q2 �= q. Conventionally, a
region Γ is written as Γ = 〈q, V, T〉, where ti+1 ≤ T ≤ ti+m is the interval of continuous time, and V
is the set of intervals Vk of the interval defined by the values of xk ∈ X in the time interval T. A region
Γ is called admissible if each state σ ∈ Γ is admissible.

The previous definition reveals that a region captures the possible states that can be reached
using continuous transitions in each location q ∈ Q. Therefore, T represents the continuous
reached time. Additionally, a region captures the continuous values for each variable xi ∈
X. These continuous values can be represented as an interval Vi of real values. Therefore,
V = {V1, V1, ..., Vn} represents a set of intervals of the variables in X. Now, the run of hybrid
automata can be rephrased in terms of reached regions, where the change from one region to
another is fired using a discrete step.

Definition 2.6 (Run: macro level). A run of hybrid automaton H is ∑H = Γ0Γ1, ..., a sequence of
(possibly infinite) admissible regions, where a transition from a region Γi to a region Γi+1 is enabled
(written as Γi

a→ Γi+1), if there is σi
a→ σi+1, where σi ∈ Γi , σi+1 ∈ Γi+1 and a ∈ Event is the

generated event before the control goes to the region Γi+1. Γ0 is the initial region obtained from a start
state σ0 by means of continuous transitions.

The operational semantics is the basis for verification of a hybrid automaton. In particular,
model checking of a hybrid automaton is defined in terms of the reachability analysis of its
underlying transition system. The most useful question to ask about hybrid automata is the
reachability of a given state. Thus, we define the reachability of states as follows.

Definition 2.7 (Reachability). A region Γi is called reachable in ∑H, if Γi ⊆ ∑H. Consequently, a
state σj is called reachable, if there is a reached region Γi such that σj ∈ Γi

Multi-Robot Systems: Modeling, Specification, and Model Checking 247

Resetting variables are omitted on transition, if the values of the variables do not change
before the control goes from a location to another.

• Event is a mapping which assigns an event to each transition e ∈ E from a set of events EventH.
For instance, the transition between the locations idle and move2fire in FirebrigadeMain
has emergency as its event. As we will see later, EventH is used to synchronize the
automaton H with any other automata that share the same common events. It should be
noted that in the graphical diagrams, an event Event(e) ∈ EventH is implicitly omitted,
if it is not shared among any automata.

• σ0 is the initial state of the automaton. It defines the initial location together with the initial
values of the variables X.
For example, the initial state of the agent FirebrigadeMain is the location idle with initial
valuations wLevel = wlMax, neededw = 0, and civ = 0 to its variables wLevel, neededw,
and civ respectively.

Before describing the semantics of a hybrid automaton, it should be mentioned that the hybrid
automata are classified according to the type of continuous flow:

• If ẋ = c (constant), then the hybrid automaton is called linear hybrid automaton. A
special case of linear hybrid automata are timed automata (Alur & Dill, 1994), where
c = 1).

• If c1 ≤ ẋ ≤ c2, then the hybrid automaton is called rectangular hybrid automaton.

• If ẋ = c1x + c2, then the hybrid automaton is called non-linear hybrid automaton.

2.3 Semantics
Intuitively, a hybrid automaton can be in exactly one of its control locations at each stage of
it computation. However, knowing the present control location is not enough to determine
which of the outgoing transitions can be taken next, if any. A snapshot of the current state
of the computation should also remember the present valuation of the continuous variables.
Therefore, to formalize the semantics of a hybrid automaton, we first have to define the con-
cept of a state.

Definition 2.2 (State). At any instant of time, a state of a hybrid automaton is given by σi =
〈qi, vi, t〉, where qi ∈ Q is a control location, vi is the valuation of its real variables, and t is the
current time. A state σi = 〈qi, vi, t〉 is admissible if Inv(qi)[vi] holds (i.e., the valuations of the vari-
ables satisfies the invariant at location qi.

A state transition system of a hybrid automaton H starts with the initial state σ0 = 〈q0, v0, 0〉,
where the q0 and v0 are the initial location and valuations of the variables respectively. For
example, the initial state of the Civilians (see Fig. 2) can be specified as 〈injured, 10, 0〉.
Informally speaking, the semantics of a hybrid automaton is defined in terms of a labeled tran-
sition system between states. Generally, transitions between states are categorized into two
kinds of transitions: continuous transitions, capturing the continuous evolution of states, and
discrete transitions, capturing the changes of location. More formally, we can define hybrid
automaton semantics as follows.

Definition 2.3 (Operational Semantic). A transition rule between two admissible states σ1 =
〈q1, v1, t1〉 and σ2 = 〈q2, v2, t2〉 is

discrete iff e = (q1, q2) ∈ E, t1 = t2 and Jump(e)[v1] and Inv(q2)[v2] hold. In this case an event
a ∈ Event occurs. Conventionally, we write this as σ1

a→ σ2.

continuous(time delay) iff q1 = q2, and t2 > t1 is the duration of time passed at location q1, during
which the invariant predicate Inv(q1)[v1] and Inv(q1)[v2] holds.

In the previous definition, it should be noted that v2 results from resetting variables on a
transition in case of the discrete transition rule, while it results from the continuous evolution
of the variables in case of the continuous transition rule. Intuitively, an execution of a hybrid
automaton corresponds to a sequence of transitions from a state to another. Therefore we
define the valid run as follows.

Definition 2.4 (Run: micro level). A run of a hybrid automaton ∑ = σ0σ1σ2, . . . , is a finite or
infinite sequence of admissible states, where the transition from a state σi to a state σi+1 is related by
either a discrete or a continuous transition and σ0 is the initial state.

It should be noted that the continuous change in the run may generate an infinite number of
reachable states. It follows that state-space exploration techniques require a symbolic repre-
sentation way in order to represent the set of states in an appropriate way. A good way is
to use mathematical intervals. This interval captures all possible states. We call this interval
region, which is defined as follows:

Definition 2.5 (Region). given a run ∑, a sub-sequence of states Γ = (σi+1 · · · σi+m) ⊆ ∑ is called
a region, if for all states σi+j with 1 ≤ j ≤ m, it holds qi+j = q and if there exist a state σi and a state
σi+m+1 with respective locations q1 and q2, then it must hold q1 �= q and q2 �= q. Conventionally, a
region Γ is written as Γ = 〈q, V, T〉, where ti+1 ≤ T ≤ ti+m is the interval of continuous time, and V
is the set of intervals Vk of the interval defined by the values of xk ∈ X in the time interval T. A region
Γ is called admissible if each state σ ∈ Γ is admissible.

The previous definition reveals that a region captures the possible states that can be reached
using continuous transitions in each location q ∈ Q. Therefore, T represents the continuous
reached time. Additionally, a region captures the continuous values for each variable xi ∈
X. These continuous values can be represented as an interval Vi of real values. Therefore,
V = {V1, V1, ..., Vn} represents a set of intervals of the variables in X. Now, the run of hybrid
automata can be rephrased in terms of reached regions, where the change from one region to
another is fired using a discrete step.

Definition 2.6 (Run: macro level). A run of hybrid automaton H is ∑H = Γ0Γ1, ..., a sequence of
(possibly infinite) admissible regions, where a transition from a region Γi to a region Γi+1 is enabled
(written as Γi

a→ Γi+1), if there is σi
a→ σi+1, where σi ∈ Γi , σi+1 ∈ Γi+1 and a ∈ Event is the

generated event before the control goes to the region Γi+1. Γ0 is the initial region obtained from a start
state σ0 by means of continuous transitions.

The operational semantics is the basis for verification of a hybrid automaton. In particular,
model checking of a hybrid automaton is defined in terms of the reachability analysis of its
underlying transition system. The most useful question to ask about hybrid automata is the
reachability of a given state. Thus, we define the reachability of states as follows.

Definition 2.7 (Reachability). A region Γi is called reachable in ∑H, if Γi ⊆ ∑H. Consequently, a
state σj is called reachable, if there is a reached region Γi such that σj ∈ Γi

Robot Soccer248

The classical method to compute the reachable states consists of performing a state space ex-
ploration of a system, starting from a set containing only the initial state and spreading the
reachability information along control locations and transitions until fixed regions are ob-
tained. Stabilization of a region is detected by testing, whether the current region is included
in the union of the reached regions obtained in previous steps. It is worth mentioning that
checking reachability for hybrid automata is generally undecidable. However, under various
constraints, reachability is decidable for certain classes of hybrid automata including timed
and initialized rectangular automata (Henzinger et al., 1998). A rectangular automaton is ini-
tialized if each continuous variable is reset every time a discrete transition is taken.

2.4 State Machine Composition
For the specification of complex systems, we extend hybrid automata by parallel composition.
Basically, the parallel composition of hybrid automata can be used for specifying larger sys-
tems (multi-agent systems), where a hybrid automaton is given for each part of the system,
and communication between the different parts may occur via shared variables and synchro-
nization labels. Technically, the parallel composition of hybrid automata is obtained from the
different parts using a product construction of the participating automata. The transitions
from the different automata are interleaved, unless they share the same synchronization label.
In this case, they are synchronized on transitions. As a result of the parallel composition a
new automaton called composed automaton, is created, which captures the behavior of the
entire system. In turn, the composed automata are given to a model checker that checks the
reachability of a certain state.
It is of advantage to do this during the verification process, instead of constructing the parallel
composition before involving in the verification phase. Intuitively, the composition of hybrid
automata H1 and H2 can be defined in terms of synchronized or interleaved regions of the
regions produced from run of both H1 and H2. As a result from the composition procedure,
compound regions are constructed, which consists of a conjunction of a region Γ1 = 〈q1, V1, T〉
from H1 and another region Γ2 = 〈q2, V2, T〉 from H2. Therefore, each compound region takes
the form Λ = 〈(q1, V1), (q2, V2), T〉 (shortly written as Λ = 〈Γ1, Γ2, T〉), which represents the
reached region at both control locations q1 and q2 the during a time interval T. Now the run
of composed automata can be defined as the sequence ∑H1◦H2

= Λ0, Λ1, ... of compound re-
gions, where a transition between compound regions Λ1 = 〈Γ1, γ1, T1〉 and Λ2 = 〈Γ2, γ2, T2〉
(written as Λ1

a→ Λ2) is enabled, if one of the following holds:

• a ∈ EventH1 ∩ EventH2 is a joint event, Γ1
a→ Γ2, and γ1

a→ γ2. In this case , we say that
the region Γ1 is synchronized with the region γ1.

• a ∈ EventH1 \ EventH2 (respectively a ∈ EventH2 \ EventH1), Γ1
a→ Γ2 and γ1 → γ2,

such that both γ1 and γ2 have the same control location (i.e., they relate to each other
using a continuous transition).

The previous procedures give the possibility to construct the composition dynamically during
the run/verification phase. Obviously, as it has been said, computing the composition in such
a way is advantageous. This is because only the active parts of the state space will be taken
into consideration during the run instead of producing the composition procedure prior to the
verification phase. This can relieve the state space problem raised from modeling multi-agent
systems.
In the following, we show how the previous procedure can be performed with the help of
constraint logic programming.

2.5 Constraint-Based Modeling
In Mohammed & Furbach (2009) we showed how to encode the syntax and semantics of
hybrid automata, described previously, as a constraint logic program (CLP) (Jaffar & Lassez,
1987). A primary version of this model was given by Mohammed & Furbach (2008b). There
are diverse motivations beyond choosing CLP as a modeling prototype to implement the
framework. Firstly, hybrid automata can be described as a constraint system, where the
constraints represent the possible flows, invariants, and transitions. Secondly, constraints can
be used to characterize certain parts of the state space (e.g., the initial states or a set of unsafe
states). Further, there are close similarities in operational semantics between CLP and hybrid
automata. Ideally, state transition systems can be represented as a logic program, where
the set of reachable states can be computed. Moreover, constraints enable us to represent
infinite states symbolically as a finite interval. For instance, the infinite states can be handled
efficiently as an interval constraint that bounds the set of infinite reachable state as a finite
interval (i.e., 0 ≤ X ≤ 250). Hence, a constraint solver can be used to reason about the
reachability of a particular state inside this interval. A further motivation to choose CLP is
its enrichment with many efficient constraint solvers of various domains. For example, CLP
contains a constraint solver over real interval constraints, which can be used to represent the
continuous flows as constraint relations to the time, as well as to reason about a particular
valuation. On the other hand CLP contains a constraint solver over symbolic domains, which
are appropriate to represent the synchronization events (communication messages) among
agents. Last but not least, by employing CLP the automata composition can be constructed on
the fly (during models checking). This can be done by investigating the constraints appeared
during running models. In turn, the previous can relieve the state space problem raised from
specifying MAS.

Our implementation prototype was built using ECLiPSe Prolog (Apt & Wallace, 2007). The
prototype follows the definitions of both the formal syntax and semantics of hybrid automata,
which are defined in the previous section. To start implementing a hybrid state machine,
we primarily begin with modeling the locations and their constraints (e.g. flows, invariants),
which are modeled as the predicate automaton as follows:

%%% automaton(+Location,?Vars,+Vars0,+T0,?Time)
%%% models invariant and flow inside location
automaton(Location,Vars,Vars0,T0,Time):-

Flow(Vars),
Inv(Vars),Time $>=T0.

Here, automaton is the name of the automaton itself, and Location represents the actual name
of the current locations of the automaton. Vars is a list of real variables participating in the
automaton, whereas Vars0 is a list of the corresponding initial values. Inv(Vars) is the list of
invariant constraint on Vars inside the location. The constraint predicate Flow(vars) models
the continuous flows of the variables Vars with respect to time T0 and Time, given initial
values Vars0 of the variables Vars at the start of the flow. T0 is the initial time at the start of the
continuous flow. As it has been described in Subsection 2.2, a hybrid automaton is classified
according to the constraints on the continuous flow. Therefore, Flow(Vars) is represented in
terms of constraints as Vars = Var0 + c · (Time − T0) in case of a linear hybrid automaton,
as Var0 + c · (Time − T0) ≤ Vars ≤ Var0 + c · (Time − T0) in case of a rectangular hybrid
automaton, and as Vars = Var0− c2/c1 + c2/c1 · exp(c1 · (Time − T0)) in case of a non-linear
hybrid automaton. Here, (Time − T0) models the delay inside the location. It should be noted

Multi-Robot Systems: Modeling, Specification, and Model Checking 249

The classical method to compute the reachable states consists of performing a state space ex-
ploration of a system, starting from a set containing only the initial state and spreading the
reachability information along control locations and transitions until fixed regions are ob-
tained. Stabilization of a region is detected by testing, whether the current region is included
in the union of the reached regions obtained in previous steps. It is worth mentioning that
checking reachability for hybrid automata is generally undecidable. However, under various
constraints, reachability is decidable for certain classes of hybrid automata including timed
and initialized rectangular automata (Henzinger et al., 1998). A rectangular automaton is ini-
tialized if each continuous variable is reset every time a discrete transition is taken.

2.4 State Machine Composition
For the specification of complex systems, we extend hybrid automata by parallel composition.
Basically, the parallel composition of hybrid automata can be used for specifying larger sys-
tems (multi-agent systems), where a hybrid automaton is given for each part of the system,
and communication between the different parts may occur via shared variables and synchro-
nization labels. Technically, the parallel composition of hybrid automata is obtained from the
different parts using a product construction of the participating automata. The transitions
from the different automata are interleaved, unless they share the same synchronization label.
In this case, they are synchronized on transitions. As a result of the parallel composition a
new automaton called composed automaton, is created, which captures the behavior of the
entire system. In turn, the composed automata are given to a model checker that checks the
reachability of a certain state.
It is of advantage to do this during the verification process, instead of constructing the parallel
composition before involving in the verification phase. Intuitively, the composition of hybrid
automata H1 and H2 can be defined in terms of synchronized or interleaved regions of the
regions produced from run of both H1 and H2. As a result from the composition procedure,
compound regions are constructed, which consists of a conjunction of a region Γ1 = 〈q1, V1, T〉
from H1 and another region Γ2 = 〈q2, V2, T〉 from H2. Therefore, each compound region takes
the form Λ = 〈(q1, V1), (q2, V2), T〉 (shortly written as Λ = 〈Γ1, Γ2, T〉), which represents the
reached region at both control locations q1 and q2 the during a time interval T. Now the run
of composed automata can be defined as the sequence ∑H1◦H2

= Λ0, Λ1, ... of compound re-
gions, where a transition between compound regions Λ1 = 〈Γ1, γ1, T1〉 and Λ2 = 〈Γ2, γ2, T2〉
(written as Λ1

a→ Λ2) is enabled, if one of the following holds:

• a ∈ EventH1 ∩ EventH2 is a joint event, Γ1
a→ Γ2, and γ1

a→ γ2. In this case , we say that
the region Γ1 is synchronized with the region γ1.

• a ∈ EventH1 \ EventH2 (respectively a ∈ EventH2 \ EventH1), Γ1
a→ Γ2 and γ1 → γ2,

such that both γ1 and γ2 have the same control location (i.e., they relate to each other
using a continuous transition).

The previous procedures give the possibility to construct the composition dynamically during
the run/verification phase. Obviously, as it has been said, computing the composition in such
a way is advantageous. This is because only the active parts of the state space will be taken
into consideration during the run instead of producing the composition procedure prior to the
verification phase. This can relieve the state space problem raised from modeling multi-agent
systems.
In the following, we show how the previous procedure can be performed with the help of
constraint logic programming.

2.5 Constraint-Based Modeling
In Mohammed & Furbach (2009) we showed how to encode the syntax and semantics of
hybrid automata, described previously, as a constraint logic program (CLP) (Jaffar & Lassez,
1987). A primary version of this model was given by Mohammed & Furbach (2008b). There
are diverse motivations beyond choosing CLP as a modeling prototype to implement the
framework. Firstly, hybrid automata can be described as a constraint system, where the
constraints represent the possible flows, invariants, and transitions. Secondly, constraints can
be used to characterize certain parts of the state space (e.g., the initial states or a set of unsafe
states). Further, there are close similarities in operational semantics between CLP and hybrid
automata. Ideally, state transition systems can be represented as a logic program, where
the set of reachable states can be computed. Moreover, constraints enable us to represent
infinite states symbolically as a finite interval. For instance, the infinite states can be handled
efficiently as an interval constraint that bounds the set of infinite reachable state as a finite
interval (i.e., 0 ≤ X ≤ 250). Hence, a constraint solver can be used to reason about the
reachability of a particular state inside this interval. A further motivation to choose CLP is
its enrichment with many efficient constraint solvers of various domains. For example, CLP
contains a constraint solver over real interval constraints, which can be used to represent the
continuous flows as constraint relations to the time, as well as to reason about a particular
valuation. On the other hand CLP contains a constraint solver over symbolic domains, which
are appropriate to represent the synchronization events (communication messages) among
agents. Last but not least, by employing CLP the automata composition can be constructed on
the fly (during models checking). This can be done by investigating the constraints appeared
during running models. In turn, the previous can relieve the state space problem raised from
specifying MAS.

Our implementation prototype was built using ECLiPSe Prolog (Apt & Wallace, 2007). The
prototype follows the definitions of both the formal syntax and semantics of hybrid automata,
which are defined in the previous section. To start implementing a hybrid state machine,
we primarily begin with modeling the locations and their constraints (e.g. flows, invariants),
which are modeled as the predicate automaton as follows:

%%% automaton(+Location,?Vars,+Vars0,+T0,?Time)
%%% models invariant and flow inside location
automaton(Location,Vars,Vars0,T0,Time):-

Flow(Vars),
Inv(Vars),Time $>=T0.

Here, automaton is the name of the automaton itself, and Location represents the actual name
of the current locations of the automaton. Vars is a list of real variables participating in the
automaton, whereas Vars0 is a list of the corresponding initial values. Inv(Vars) is the list of
invariant constraint on Vars inside the location. The constraint predicate Flow(vars) models
the continuous flows of the variables Vars with respect to time T0 and Time, given initial
values Vars0 of the variables Vars at the start of the flow. T0 is the initial time at the start of the
continuous flow. As it has been described in Subsection 2.2, a hybrid automaton is classified
according to the constraints on the continuous flow. Therefore, Flow(Vars) is represented in
terms of constraints as Vars = Var0 + c · (Time − T0) in case of a linear hybrid automaton,
as Var0 + c · (Time − T0) ≤ Vars ≤ Var0 + c · (Time − T0) in case of a rectangular hybrid
automaton, and as Vars = Var0− c2/c1 + c2/c1 · exp(c1 · (Time − T0)) in case of a non-linear
hybrid automaton. Here, (Time − T0) models the delay inside the location. It should be noted

Robot Soccer250

that after executing the predicate automaton, Vars and Time holds the reached valuations of the
variables together with the reached time respectively. The following is an example showing
the concrete implementation of the location injured in the automaton Civilians Fig. 2. The $
symbol in front of the (in)equalities is the constraint relation for interval arithmetic constraints
(library ic in ECLiPSe Prolog).

civilians(injured,[W],[W0],T0,Time):-
W $= W0-(Time-T0),
W $>=0, Time $>=T0.

According to operational semantics defined in Def. 2.3, a hybrid automaton has two kinds
of transitions: continuous transitions, capturing the continuous evolution of variables, and
discrete transitions, capturing the changes of location. For this purpose, we encode transition
systems into the predicate evolve, which alternates the automaton between a discrete and a
continuous transition. The automaton evolves with either discrete or continuous transitions
according to the constraints appearing during the run.

%%% evolve(+Automaton,+State,-Nextstate,+T0,+Time,?Event)
evolve(Automaton,(L1,Var1),(L2,Var2),T0,Time,Event) :-

continuous(Automaton,(L1,Var1),(L1,Var2),T0,Time,Event);
discrete(Automaton,(L1,Var1),(L2,Var2),T0,Time,Event).

When a discrete transition occurs, it gives rise to updating the initial variables from Var1 into
Var2, where Var1 and Var2 are the initial variables of locations L1 and L2 respectively. Oth-
erwise, a delay transition is taken using the predicate continuous. It is worth noting that there
are infinite states due to the continuous progress. However, this can be handled efficiently
as an interval constraint that bounds the set of infinite reachable state as a finite interval (i.e.,
0 ≤ X ≤ 250).
In addition to the variables, each automaton is augmented with a set events called
EventAutomaton. An example of this set of events of the automaton FirebrigadeMain is denoted
as {reported, emergency}. For this reason, each transition is augmented with the variable Event,
which is used to define the parallel composition from the automata individuals sharing the
same event. The variable Event ranges over symbolic domains and guarantees that whenever
an automaton generates an event, the corresponding synchronized automata have to be taken
into consideration simultaneously. It should be mentioned that the declaration of automata
events must be provided in the modeling example. For instance, the declaration of the possi-
ble events domain of Fig. 2. is coded as follows :

:- local domain(events(emergency,reported,hlep,burn)).

This means that the domains of events are declared symbolically to capture the set of all possi-
ble events applicable to the underlying modeled system. The appropriate solver of a symbolic
domain deals with any defined constraints in terms of the declared domains. Now after defin-
ing the domains of events, a variable of type events can be declared as follow:

Event &:: events, Event &= domain_value.

The variable Event is declared with domain values defined by events, and is initialized with
a specific value from its domain. The & symbol is a constraint relation for symbolic domains
(library sd in ECLiPSe Prolog).
The following is the general implementation of the predicate discrete, which defines transitions
between locations.

%%% driver(+State1,+State2,...,+Staten,+T0,-Regions,+PastRegion).
%%% perform composition and reachability
driver((L1,Var01),(L2,Var02),...,(Ln,Var0n),T0,[Reg|NxtReg],PastReg) :-

automaton1(L1,Var1,Var01,T0,Time),
automaton2(L2,Var2,Var02,T0,Time),
... ,
automatonn(Ln,Varn,Var0n,T0,Time),

evolve(automaton1,(L1,Var01),(NxtL1,Nvar01),T0,Time,T,Event),
evolve(automaton2,(L2,Var02),(NxtL2,Nvar02),T0,Time,T,Event),
... ,
evolve(automatonn,(Ln,Var0n),(NxtLn,Nvar0n),T0,Time,T,Event),

\+ member((L1,L2,..,Ln,Var1,Var2,..,Varn,_,Event), PastReg),
Reg = (L1,L2,..,Ln,Var1,Var2,..,Varn,Time,Event),
NpastReg =[Reg|PastReg],

driver((NxtL1,Nvar01),(NxtL2,Nvar02),...,(NxtLn,Nvar0n),T,NxtReg,NpastReg).

Fig. 3. A state machine to drive the execution of automata.

%%% discrete(+Automaton,+State1,-State2,+IntTime,-Time,-Event)
discrete(Automaton,(Loc1,Var1),(Loc2,Var2),T0,Time,Event):-

automaton,(Loc1,Var1,Var,T0,Time),
jump(Var), reset(Var2),
Event &::events,Event &=domain_value.

In the previous predicate, domain_value must be a member in EventAutomaton. Here, when the
discrete predicate is fired, the automaton generates an event by constraining the variable Event
to the suitable value from its domain.
The following is an instance showing the concrete implementation of the discrete predicate
between locations no fire and burning in automaton fire.

discrete(fire,(no_fire,[B0,N0]),(burning,[BB0,NN0]),T0,Time,Event):-
fire(no_fire,[B0,N0],[BB0,NN0],T0,Time),
BB0 $=3, NN0 $=120,
Event &::events, Event &=burn.

Once the locations and transition rules have been modeled, a state machine needs to be im-
plemented in order to execute the model. For this purpose, a driver program is implemented
as shown in Fig. 3.
The driver is a state machine that is responsible to generate and control the behaviors of the
concurrent hybrid automata, as well as to provide the reachable regions symbolically. The
driver takes the starting state for each participating automaton (i.e. a control location as input
argument as well as the list of initial valuations of the variables). In addition, it takes the
starting time T0 as begin of the execution, followed by the list of reached regions, which is
needed for the purpose of the verification. It should be noted that during the course of the
execution of the driver, there is a symbolic domain variable Event shared among automata,
which is used by the appropriate solver to ensure that only one event is generated at a time.
Precisely when an automaton generates an event, due to a discrete transition of one of the
predicates evolve of the concurrent automata, the symbolic domain solver will exclude all the

Multi-Robot Systems: Modeling, Specification, and Model Checking 251

that after executing the predicate automaton, Vars and Time holds the reached valuations of the
variables together with the reached time respectively. The following is an example showing
the concrete implementation of the location injured in the automaton Civilians Fig. 2. The $
symbol in front of the (in)equalities is the constraint relation for interval arithmetic constraints
(library ic in ECLiPSe Prolog).

civilians(injured,[W],[W0],T0,Time):-
W $= W0-(Time-T0),
W $>=0, Time $>=T0.

According to operational semantics defined in Def. 2.3, a hybrid automaton has two kinds
of transitions: continuous transitions, capturing the continuous evolution of variables, and
discrete transitions, capturing the changes of location. For this purpose, we encode transition
systems into the predicate evolve, which alternates the automaton between a discrete and a
continuous transition. The automaton evolves with either discrete or continuous transitions
according to the constraints appearing during the run.

%%% evolve(+Automaton,+State,-Nextstate,+T0,+Time,?Event)
evolve(Automaton,(L1,Var1),(L2,Var2),T0,Time,Event) :-

continuous(Automaton,(L1,Var1),(L1,Var2),T0,Time,Event);
discrete(Automaton,(L1,Var1),(L2,Var2),T0,Time,Event).

When a discrete transition occurs, it gives rise to updating the initial variables from Var1 into
Var2, where Var1 and Var2 are the initial variables of locations L1 and L2 respectively. Oth-
erwise, a delay transition is taken using the predicate continuous. It is worth noting that there
are infinite states due to the continuous progress. However, this can be handled efficiently
as an interval constraint that bounds the set of infinite reachable state as a finite interval (i.e.,
0 ≤ X ≤ 250).
In addition to the variables, each automaton is augmented with a set events called
EventAutomaton. An example of this set of events of the automaton FirebrigadeMain is denoted
as {reported, emergency}. For this reason, each transition is augmented with the variable Event,
which is used to define the parallel composition from the automata individuals sharing the
same event. The variable Event ranges over symbolic domains and guarantees that whenever
an automaton generates an event, the corresponding synchronized automata have to be taken
into consideration simultaneously. It should be mentioned that the declaration of automata
events must be provided in the modeling example. For instance, the declaration of the possi-
ble events domain of Fig. 2. is coded as follows :

:- local domain(events(emergency,reported,hlep,burn)).

This means that the domains of events are declared symbolically to capture the set of all possi-
ble events applicable to the underlying modeled system. The appropriate solver of a symbolic
domain deals with any defined constraints in terms of the declared domains. Now after defin-
ing the domains of events, a variable of type events can be declared as follow:

Event &:: events, Event &= domain_value.

The variable Event is declared with domain values defined by events, and is initialized with
a specific value from its domain. The & symbol is a constraint relation for symbolic domains
(library sd in ECLiPSe Prolog).
The following is the general implementation of the predicate discrete, which defines transitions
between locations.

%%% driver(+State1,+State2,...,+Staten,+T0,-Regions,+PastRegion).
%%% perform composition and reachability
driver((L1,Var01),(L2,Var02),...,(Ln,Var0n),T0,[Reg|NxtReg],PastReg) :-

automaton1(L1,Var1,Var01,T0,Time),
automaton2(L2,Var2,Var02,T0,Time),
... ,
automatonn(Ln,Varn,Var0n,T0,Time),

evolve(automaton1,(L1,Var01),(NxtL1,Nvar01),T0,Time,T,Event),
evolve(automaton2,(L2,Var02),(NxtL2,Nvar02),T0,Time,T,Event),
... ,
evolve(automatonn,(Ln,Var0n),(NxtLn,Nvar0n),T0,Time,T,Event),

\+ member((L1,L2,..,Ln,Var1,Var2,..,Varn,_,Event), PastReg),
Reg = (L1,L2,..,Ln,Var1,Var2,..,Varn,Time,Event),
NpastReg =[Reg|PastReg],

driver((NxtL1,Nvar01),(NxtL2,Nvar02),...,(NxtLn,Nvar0n),T,NxtReg,NpastReg).

Fig. 3. A state machine to drive the execution of automata.

%%% discrete(+Automaton,+State1,-State2,+IntTime,-Time,-Event)
discrete(Automaton,(Loc1,Var1),(Loc2,Var2),T0,Time,Event):-

automaton,(Loc1,Var1,Var,T0,Time),
jump(Var), reset(Var2),
Event &::events,Event &=domain_value.

In the previous predicate, domain_value must be a member in EventAutomaton. Here, when the
discrete predicate is fired, the automaton generates an event by constraining the variable Event
to the suitable value from its domain.
The following is an instance showing the concrete implementation of the discrete predicate
between locations no fire and burning in automaton fire.

discrete(fire,(no_fire,[B0,N0]),(burning,[BB0,NN0]),T0,Time,Event):-
fire(no_fire,[B0,N0],[BB0,NN0],T0,Time),
BB0 $=3, NN0 $=120,
Event &::events, Event &=burn.

Once the locations and transition rules have been modeled, a state machine needs to be im-
plemented in order to execute the model. For this purpose, a driver program is implemented
as shown in Fig. 3.
The driver is a state machine that is responsible to generate and control the behaviors of the
concurrent hybrid automata, as well as to provide the reachable regions symbolically. The
driver takes the starting state for each participating automaton (i.e. a control location as input
argument as well as the list of initial valuations of the variables). In addition, it takes the
starting time T0 as begin of the execution, followed by the list of reached regions, which is
needed for the purpose of the verification. It should be noted that during the course of the
execution of the driver, there is a symbolic domain variable Event shared among automata,
which is used by the appropriate solver to ensure that only one event is generated at a time.
Precisely when an automaton generates an event, due to a discrete transition of one of the
predicates evolve of the concurrent automata, the symbolic domain solver will exclude all the

Robot Soccer252

domain of values of the other automata that are not coincident with the generated event. This
means that only one event is generated at a time. If more than one automaton generates
different events at the same point of time, then the symbolic domain solver will handle only
one of them at a time, but the other events will be handled using backtracking.
Since each automaton generates an event by a discrete step at the end of its continuous evolu-
tion, then the precedence of events that appear during the run is important to both composi-
tion and the verification process. For this reason, an obvious way to deal with this precedence
is to use constraints on the time of the generated events. To accomplish this, we constraint
the execution of each automaton with a shared variable Time. The constraint solver, in turn,
binds this variable with the minimum execution time among the automata. It follows that this
variable Time eventually holds the minimum time needed to generated an event. The previ-
ous computation partitions the state space into regions, where the transition from one region
to another depends on the minimum time needed to generate an event. Consequently, this
shows how the automata composition can be implicitly constructed efficiently on the fly (i.e.
during the computation).
It has been said that we are not only concerned with running and composing the automata,
but also with the their verification. For this purpose, the driver is augmented with the list of
reached compound regions. At each step of the execution of the driver execution, a compound
region, of the form 〈locations, Variables, Time, Event〉 is added to the list of reached regions.
This region symbolically represents the set of reached states and times to each control location
as mathematical constrains. Additionally, each region contains the generated event before the
control goes to another region using a discrete step. Technically, the driver computes the set
of reached regions until fixed regions are obtained. This is computed by checking, in each
iteration of driver, if the reached region is not contained in the list of the previously reached
regions. For this purpose, the last argument of the driver holds for the list of these regions.
Due to the undecidability of hybrid automata (Henzinger et al., 1998), the termination of the
driver to reach to a fixed regions is not guaranteed generally. To overcome the non termination
problem, we augment the predicate driver with a depth limit, by which the driver is enforced
to stop upon reaching a given depth.
Reachable regions should contain only those variables, which are important for the verifi-
cation of a given property. Therefore, the last argument list of the predicate driver can be
expanded or shrunk as needed to contain the significant variables.
As soon as the driver has been built, the complete model should be invoked for the purpose
of execution and hence verification. For this reason, the predicate runmodel is implemented to
invoke the driver with the initial states of the hybrid automata. An example showing how to
query the driver on the running scenario (see Fig. 2) takes the form:

runmodel(Reached) :-
driver((idle,[wlMax,0,0]),(injured,[10]),(no_fire,0),0,Reached,[]).

2.5.1 Verification as Reachability Analysis
Now we have an executable constraint-based specification, which can be used to verify prop-
erties of a multi-agent system. In particular, one can check properties on states using reach-
ability analysis. For this we have two basic steps. Firstly, we compute the state space of the
automaton under consideration by using the predicate driver. Secondly, we search for states

that satisfy or contradict given properties. This is done with the help of standard Prolog pred-
icates like member/2 and append/3. Thus it is possible to implement our entire framework by
some very simple Prolog rules.
In terms of CLP, a state is reached iff the constraint solver succeeds in finding a satisfiable solu-
tion for the constraints representing the intended state. In other words, assuming that Reached
represents the set of all reachable states computed by the CLP model from an initial state, then
the reachability analysis can be generally specified, using CLP, by checking whether Reached
|= Ψ holds, where Ψ is the constraint predicate that describes a property of interest. In prac-
tice, many problems to be analyzed can be formulated as a reachability problem. For example,
a safety requirement can be checked as a reachability problem, where Ψ is the constraint pred-
icate that describes forbidden states, and then the satisfiability of Ψ wrt. Reached is checked.
An example would be to check that the state where the fire can be put out is reached. The
following very simple CLP query gives us the answer yes:

?- runmodel(L),
member((_firebrigade,_civilian,Fire,_var1,_var2,_var3,_time,_event),Reached),
Fire $=put_out.

Other properties concerning the reachability of certain states can be verified similarly. Addi-
tionally, constraint solvers can be used to reason about the reachability of interesting proper-
ties within a region, like properties of the variables that model the continuous dynamics of a
model. For example, we can reason about the water level of the firebrigade after putting out
the fire.
Mohammed & Furbach (2009) provide various verification rules based on reachability anal-
ysis. For example, finding the time delay between events is possible within the framework.
This is because both the events and time are recorded at reached regions. Another example
is to find a condition on a certain variable, which is necessary to to reach a particular state.
We also did some experiments on a set of benchmarks taken from the domain of hybrid au-
tomata. The experiments have been compared with HyTech (Henzinger et al., 1995a). HyTech
was chosen as a reference tool, because it is one of the most well-known tools for the verifica-
tion of hybrid automata, and it tackles verification similarly based on reachability analysis. In
HyTech, however, the automata working in parallel are composed before they are involved in
the verification phase.
The experimental results revealed that our framework has a slight advantage wrt. In terms of
the run-time of checking the properties of the benchmarks. With respect to the expressiveness,
our approach is more powerful, because HyTech can not deal directly with non-linear hybrid
automata. The continuous dynamics of non-linear hybrid automata have to be approximated
in a linear form, before applying the model checking. Additionally, HyTech cannot verify
simple properties that depend on the occurrence of events – i.e. checking the reachability of
the event help –, despite of the fact that events are used to synchronize the automata. HyTech
is able to verify time properties of events; however, this can be checked only after augment-
ing the original automata with an extra automaton. Its functionality is to observe the model
without changing its behavior and to record the time of occurring events. In contrast to our
framework, verifying this type of properties can be checked without any extra automaton,
since the events and time are recorded in the reached regions. For further details about the
experimental results, the reader is referred to Mohammed & Furbach (2009).

Multi-Robot Systems: Modeling, Specification, and Model Checking 253

domain of values of the other automata that are not coincident with the generated event. This
means that only one event is generated at a time. If more than one automaton generates
different events at the same point of time, then the symbolic domain solver will handle only
one of them at a time, but the other events will be handled using backtracking.
Since each automaton generates an event by a discrete step at the end of its continuous evolu-
tion, then the precedence of events that appear during the run is important to both composi-
tion and the verification process. For this reason, an obvious way to deal with this precedence
is to use constraints on the time of the generated events. To accomplish this, we constraint
the execution of each automaton with a shared variable Time. The constraint solver, in turn,
binds this variable with the minimum execution time among the automata. It follows that this
variable Time eventually holds the minimum time needed to generated an event. The previ-
ous computation partitions the state space into regions, where the transition from one region
to another depends on the minimum time needed to generate an event. Consequently, this
shows how the automata composition can be implicitly constructed efficiently on the fly (i.e.
during the computation).
It has been said that we are not only concerned with running and composing the automata,
but also with the their verification. For this purpose, the driver is augmented with the list of
reached compound regions. At each step of the execution of the driver execution, a compound
region, of the form 〈locations, Variables, Time, Event〉 is added to the list of reached regions.
This region symbolically represents the set of reached states and times to each control location
as mathematical constrains. Additionally, each region contains the generated event before the
control goes to another region using a discrete step. Technically, the driver computes the set
of reached regions until fixed regions are obtained. This is computed by checking, in each
iteration of driver, if the reached region is not contained in the list of the previously reached
regions. For this purpose, the last argument of the driver holds for the list of these regions.
Due to the undecidability of hybrid automata (Henzinger et al., 1998), the termination of the
driver to reach to a fixed regions is not guaranteed generally. To overcome the non termination
problem, we augment the predicate driver with a depth limit, by which the driver is enforced
to stop upon reaching a given depth.
Reachable regions should contain only those variables, which are important for the verifi-
cation of a given property. Therefore, the last argument list of the predicate driver can be
expanded or shrunk as needed to contain the significant variables.
As soon as the driver has been built, the complete model should be invoked for the purpose
of execution and hence verification. For this reason, the predicate runmodel is implemented to
invoke the driver with the initial states of the hybrid automata. An example showing how to
query the driver on the running scenario (see Fig. 2) takes the form:

runmodel(Reached) :-
driver((idle,[wlMax,0,0]),(injured,[10]),(no_fire,0),0,Reached,[]).

2.5.1 Verification as Reachability Analysis
Now we have an executable constraint-based specification, which can be used to verify prop-
erties of a multi-agent system. In particular, one can check properties on states using reach-
ability analysis. For this we have two basic steps. Firstly, we compute the state space of the
automaton under consideration by using the predicate driver. Secondly, we search for states

that satisfy or contradict given properties. This is done with the help of standard Prolog pred-
icates like member/2 and append/3. Thus it is possible to implement our entire framework by
some very simple Prolog rules.
In terms of CLP, a state is reached iff the constraint solver succeeds in finding a satisfiable solu-
tion for the constraints representing the intended state. In other words, assuming that Reached
represents the set of all reachable states computed by the CLP model from an initial state, then
the reachability analysis can be generally specified, using CLP, by checking whether Reached
|= Ψ holds, where Ψ is the constraint predicate that describes a property of interest. In prac-
tice, many problems to be analyzed can be formulated as a reachability problem. For example,
a safety requirement can be checked as a reachability problem, where Ψ is the constraint pred-
icate that describes forbidden states, and then the satisfiability of Ψ wrt. Reached is checked.
An example would be to check that the state where the fire can be put out is reached. The
following very simple CLP query gives us the answer yes:

?- runmodel(L),
member((_firebrigade,_civilian,Fire,_var1,_var2,_var3,_time,_event),Reached),
Fire $=put_out.

Other properties concerning the reachability of certain states can be verified similarly. Addi-
tionally, constraint solvers can be used to reason about the reachability of interesting proper-
ties within a region, like properties of the variables that model the continuous dynamics of a
model. For example, we can reason about the water level of the firebrigade after putting out
the fire.
Mohammed & Furbach (2009) provide various verification rules based on reachability anal-
ysis. For example, finding the time delay between events is possible within the framework.
This is because both the events and time are recorded at reached regions. Another example
is to find a condition on a certain variable, which is necessary to to reach a particular state.
We also did some experiments on a set of benchmarks taken from the domain of hybrid au-
tomata. The experiments have been compared with HyTech (Henzinger et al., 1995a). HyTech
was chosen as a reference tool, because it is one of the most well-known tools for the verifica-
tion of hybrid automata, and it tackles verification similarly based on reachability analysis. In
HyTech, however, the automata working in parallel are composed before they are involved in
the verification phase.
The experimental results revealed that our framework has a slight advantage wrt. In terms of
the run-time of checking the properties of the benchmarks. With respect to the expressiveness,
our approach is more powerful, because HyTech can not deal directly with non-linear hybrid
automata. The continuous dynamics of non-linear hybrid automata have to be approximated
in a linear form, before applying the model checking. Additionally, HyTech cannot verify
simple properties that depend on the occurrence of events – i.e. checking the reachability of
the event help –, despite of the fact that events are used to synchronize the automata. HyTech
is able to verify time properties of events; however, this can be checked only after augment-
ing the original automata with an extra automaton. Its functionality is to observe the model
without changing its behavior and to record the time of occurring events. In contrast to our
framework, verifying this type of properties can be checked without any extra automaton,
since the events and time are recorded in the reached regions. For further details about the
experimental results, the reader is referred to Mohammed & Furbach (2009).

Robot Soccer254

3. Hybrid Statecharts

So far, we have used hybrid Finite State Machines (FSMs) to specify and verify a group of
agents. Unfortunately, classical FSMs lack support for modularity, which is very important
when modeling complex systems that contain similar subsystems. All states are equally visi-
ble and are considered to be at the same level of abstraction, which makes modeling cluttered
and unreadable. In practice, to describe complex systems using FSMs, several extensions are
useful. Statecharts have been introduced by Harel (1987) to overcome the limitations of tra-
ditional FSM. The most important extension is hierarchy, or what is called hierarchical (nested)
FSM. Such a hierarchy has descriptive advantages over ordinary FSM in a sense that hierar-
chy of states offers a convenient structuring mechanism that allows us to specify systems with
different levels of view. For their expressiveness, statecharts have become part of the Unified
modeling language (UML) (UML, 2009).
The main purpose of statecharts has been the description of complex reactive systems. How-
ever, in order to cope with those reactive systems that exhibit continuous timed behaviors, it
seems to be advantageous to extend statecharts with continuous actions inside states. This
extension allows complex/multi-agent systems to be modeled with different levels of abstrac-
tion and provides a formal way to analyze the dynamical behavior of the modeled systems.
There are two possibilities of combination, namely combining statecharts with differential
equations or extending hybrid automata with hierarchy. Therefore, both terms hierarchical
hybrid automata (HHA) and hybrid statecharts can be used interchangeably.
Basically, the straightforward way to analyze hierarchical machines is to flatten them and
apply model checking tools on the resulting ordinary FSM. For example, Möller et al.
(2003) have presented hierarchical specification of timed automata. In order to verify a
hierarchical model, it has to be transformed first to flat timed automata, which in turn can
be used as input for the model checker tool UPPAAL (Behrmann et al., 2004). Similarly,
Ruh (2007) has presented a translator tool that automatically converts hybrid hierarchical
statecharts, defined as an ASCII-formatted specification, into an input format for a model
checker of simple hybrid automata (Henzinger et al., 1995a). In this section, we show, how hi-
erarchical hybrid automata can be analyzed without getting involved in the flattening process.

Let us come back to the illustrative RoboCup rescue scenario given in Sec. 2.1. Suppose that
the specification of the fire brigade agent consists of the main control structure (Firebrigade-
Main) and a rescue sub-system (FirebrigadeRSS) which are supposed to run in parallel. The
latter just records the detected civilians. In addition to the fire brigade, the model should in-
clude a fire station, whose responsibility to inform and assign a fire brigade to a fire as soon as
a fire alarm received. Now let us describe the scenario in a hierarchical way. At the top level
is the rescue scenario, which in turn comprises at the lower level Fire, Civilians, Firestation,
and Firebrigade. The latter can be described in a further lower level, which is FirebrigadeMain,
and FirebrigadeRSS. The specification of this hierarchical structure is shown in Fig. 4. In the
following, the hierarchical specification will be described in a formal flavor.

3.1 Formal Hierarchy
As illustrated by Fig. 4, for hierarchical hybrid automata (HHA), locations are generalized
into a set Q of locations, which is partitioned into three disjoint sets: Qsimple, Qcomp, and Qconc
— called simple, composite and concurrent locations. There is one designated start state, which
is the topmost location in the hierarchy. In essence, the locations of plain hybrid automata
correspond to simple location in the hybrid FSM. Composite and concurrent locations belong

FirebrigadeAgent

listen help

Fire

Civilians

Firestation

Firebrigade

idle move2firemove2supply

refill

extinguish

burn

no fire

f: ˙boom = 1

boom = 3/neededw′ = 120
i: boom ≤ 3

burning

f: ˙boom = 0
i: neededw > 0

neededw = 0

f: ˙boom = 0
i: true

put outboom = 0

Rescuescenario

w = 0/w′ = 10

help
injured

w = 10

f: ẇ = −1
i: w ≥ 0

FirebrigadeMain
FirebrigadeAgent

FirebrigadeRSS

idle assignFB

i: true i: false

burn

emergency
reported

i: true

civ > 0/
civ′ = civ − 1

i: m2ftime ≥ 0
f: ˙m2ftime = −1f: ˙m2stime = −1

i: m2stime ≥ 0

∧civ = 0
∧neededw = 0

wLevel = wlMax

i: wLevel ≤ wlMax
f: ˙wLevel = rFill

wLevel = wlMax ∧ neededw > 0 /
m2ftime′ = tSupply

i: wLevel ≥ 0
f: ˙wLevel = −rExt

˙neededw = −rExt
wLevel = 0/m2stime′ = tSupply m2ftime = 0

m2stime = 0

reported
emergency

true /m2ftime′ = 3

wLevel = wlMax ∧ neededw = 0

neededw = 0 ∧ wLevel > 0

i: true true /civ′ = civ + 1

Fig. 4. A hierarchical hybrid state machine for a RoboCup rescue scenario.

to the definition of statecharts (Harel, 1987) and have become part of UML (UML, 2009). They
are useful for expressing the overall system on several levels of abstraction and multi-agent
aspects, respectively. Events are treated as global variables in this context. Based on this, we
will now introduce the concepts of HHA more formally (Furbach et al., 2008).

Definition 3.1 (Hierarchy components). The basic components of HHA are the following disjoint
sets:

Multi-Robot Systems: Modeling, Specification, and Model Checking 255

3. Hybrid Statecharts

So far, we have used hybrid Finite State Machines (FSMs) to specify and verify a group of
agents. Unfortunately, classical FSMs lack support for modularity, which is very important
when modeling complex systems that contain similar subsystems. All states are equally visi-
ble and are considered to be at the same level of abstraction, which makes modeling cluttered
and unreadable. In practice, to describe complex systems using FSMs, several extensions are
useful. Statecharts have been introduced by Harel (1987) to overcome the limitations of tra-
ditional FSM. The most important extension is hierarchy, or what is called hierarchical (nested)
FSM. Such a hierarchy has descriptive advantages over ordinary FSM in a sense that hierar-
chy of states offers a convenient structuring mechanism that allows us to specify systems with
different levels of view. For their expressiveness, statecharts have become part of the Unified
modeling language (UML) (UML, 2009).
The main purpose of statecharts has been the description of complex reactive systems. How-
ever, in order to cope with those reactive systems that exhibit continuous timed behaviors, it
seems to be advantageous to extend statecharts with continuous actions inside states. This
extension allows complex/multi-agent systems to be modeled with different levels of abstrac-
tion and provides a formal way to analyze the dynamical behavior of the modeled systems.
There are two possibilities of combination, namely combining statecharts with differential
equations or extending hybrid automata with hierarchy. Therefore, both terms hierarchical
hybrid automata (HHA) and hybrid statecharts can be used interchangeably.
Basically, the straightforward way to analyze hierarchical machines is to flatten them and
apply model checking tools on the resulting ordinary FSM. For example, Möller et al.
(2003) have presented hierarchical specification of timed automata. In order to verify a
hierarchical model, it has to be transformed first to flat timed automata, which in turn can
be used as input for the model checker tool UPPAAL (Behrmann et al., 2004). Similarly,
Ruh (2007) has presented a translator tool that automatically converts hybrid hierarchical
statecharts, defined as an ASCII-formatted specification, into an input format for a model
checker of simple hybrid automata (Henzinger et al., 1995a). In this section, we show, how hi-
erarchical hybrid automata can be analyzed without getting involved in the flattening process.

Let us come back to the illustrative RoboCup rescue scenario given in Sec. 2.1. Suppose that
the specification of the fire brigade agent consists of the main control structure (Firebrigade-
Main) and a rescue sub-system (FirebrigadeRSS) which are supposed to run in parallel. The
latter just records the detected civilians. In addition to the fire brigade, the model should in-
clude a fire station, whose responsibility to inform and assign a fire brigade to a fire as soon as
a fire alarm received. Now let us describe the scenario in a hierarchical way. At the top level
is the rescue scenario, which in turn comprises at the lower level Fire, Civilians, Firestation,
and Firebrigade. The latter can be described in a further lower level, which is FirebrigadeMain,
and FirebrigadeRSS. The specification of this hierarchical structure is shown in Fig. 4. In the
following, the hierarchical specification will be described in a formal flavor.

3.1 Formal Hierarchy
As illustrated by Fig. 4, for hierarchical hybrid automata (HHA), locations are generalized
into a set Q of locations, which is partitioned into three disjoint sets: Qsimple, Qcomp, and Qconc
— called simple, composite and concurrent locations. There is one designated start state, which
is the topmost location in the hierarchy. In essence, the locations of plain hybrid automata
correspond to simple location in the hybrid FSM. Composite and concurrent locations belong

FirebrigadeAgent

listen help

Fire

Civilians

Firestation

Firebrigade

idle move2firemove2supply

refill

extinguish

burn

no fire

f: ˙boom = 1

boom = 3/neededw′ = 120
i: boom ≤ 3

burning

f: ˙boom = 0
i: neededw > 0

neededw = 0

f: ˙boom = 0
i: true

put outboom = 0

Rescuescenario

w = 0/w′ = 10

help
injured

w = 10

f: ẇ = −1
i: w ≥ 0

FirebrigadeMain
FirebrigadeAgent

FirebrigadeRSS

idle assignFB

i: true i: false

burn

emergency
reported

i: true

civ > 0/
civ′ = civ − 1

i: m2ftime ≥ 0
f: ˙m2ftime = −1f: ˙m2stime = −1

i: m2stime ≥ 0

∧civ = 0
∧neededw = 0

wLevel = wlMax

i: wLevel ≤ wlMax
f: ˙wLevel = rFill

wLevel = wlMax ∧ neededw > 0 /
m2ftime′ = tSupply

i: wLevel ≥ 0
f: ˙wLevel = −rExt

˙neededw = −rExt
wLevel = 0/m2stime′ = tSupply m2ftime = 0

m2stime = 0

reported
emergency

true /m2ftime′ = 3

wLevel = wlMax ∧ neededw = 0

neededw = 0 ∧ wLevel > 0

i: true true /civ′ = civ + 1

Fig. 4. A hierarchical hybrid state machine for a RoboCup rescue scenario.

to the definition of statecharts (Harel, 1987) and have become part of UML (UML, 2009). They
are useful for expressing the overall system on several levels of abstraction and multi-agent
aspects, respectively. Events are treated as global variables in this context. Based on this, we
will now introduce the concepts of HHA more formally (Furbach et al., 2008).

Definition 3.1 (Hierarchy components). The basic components of HHA are the following disjoint
sets:

Robot Soccer256

Q : a finite set of locations, which is partitioned into three disjoint sets: Qsimple, Qcomp, and Qconc
— called simple, composite and concurrent locations, containing one designated start state
q0 ∈ Qcomp ∪ Qconc.

In the rescue example (Fig. 4), idle, extinguish or listen are simple locations, and FirebrigadeAgent
is a concurrent location and FirebrigadeMain and FirebrigadeRSS are composite locations, which
are separated by a dashed line. m2ftime and wLevel are examples for real valued variables.

Definition 3.2 (Location hierarchy). Each location q is associated with zero, one or more initial loca-
tions α(q): a simple location has zero, a composite location exactly one, and a concurrent location more
than one initial location. Moreover, each location q ∈ Q \ {q0} is associated to exactly one superior
state β(q). Therefore, it must hold β(q) ∈ Qconc ∪ Qcomp. A concurrent state must not directly con-
tain other concurrent ones and all transitions (q1, q2) must keep to the hierarchy, i. e. β(q1) = β(q2).

For the example in Fig. 4, according to the previous Def. 3.2, it holds e.g.:

α(Civilian) =injured. α(Firebrigade) = FirebrigadeAgent.
α(FirebrigadeAgent)={ FirebrigadeMain,FirebrigadeRSS}. α(Fire) = no_fire.
α(Rescuescenario)={Fire,Civilian,Firestation,Firebrigade} α(Firestantion) = idle.
β(burning) = Fire. β(Fire) = Rescuescenario.

The function β from the previous definition naturally induces a location tree with q0 as root.
This is shown for the running example in Fig. 5. While processing, each composite location
of the state machine contains only one active location. These locations also form a tree, called
configuration. A configuration of the given state machine, is indicated by the thick lines in
Fig. 5. Let us now define the notion configuration more formally.
As shown in Def. 2.3, a hybrid automaton may change in two ways: discretely, from location q1
to another location q2, when the transition e ∈ E between the two locations is enabled (i.e., the
jump condition holds) and continuously within a control location q ∈ Q, by means of a finite
(positive) time delay t. The semantics of our automata can now be defined by alternating
sequences of discrete and continuous steps between configurations.

Definition 3.3 (Semantics). The state machine starts with the initial configuration, i.e. the com-
pleted topmost initial state s0 of the overall state machine. In addition, an initial condition must be
given as a predicate with free variables from X. The current situation of the whole system can be char-
acterized by a triple (c, v, t) where c is a configuration, v a valuation (i. e. a mapping v : X → IRn),
and t the current time. The initial situation is a situation (c, v, t) where c is the initial configuration,
v satisfies the initial condition, and t = 0. The following steps are possible in the situation (c, v, t):

discrete step: a discrete/micro-step from one configuration c of a state machine to a configuration
(c′, v′, t) by means of a transition (q, q′) ∈ E with some jump condition in the current situation
(written c → c′) is possible iff:

1. c contains a node labeled with q;

2. the jump condition of the given transition holds in the current situation (c, v, t);

3. c′ is identical with c except that q together with its sub tree in c is replaced by the comple-
tion of q′;

4. the variables in X are set by executing specific assignments.

complete(T,Rest,State,[State:Var|Complete]) :-
init(T,State,[Var|Rest],Init,_),
maplist(complete(T,[Var|Rest]),Init,Complete).

discrete(T,Rest1,Rest2,[State1:Var1|_],[State2:Var2|Conf]) :-
trans(T,State1,[Var1|Rest1],State2,[Var2|Rest2]),
complete(T,Rest2,State2,[State2:Var2|Conf]).

discrete(T,Rest1,Rest2,[Top:Var1|Sub],[Top:Var2|Tree]) :-
Sub \= [],
maplist(discrete(T,[Var1|Rest1],[Var2|Rest2]),Sub,Tree).

continuous(T1,T2,Rest1,Rest2,[State:Var1|Sub],[State:Var2|Tree]) :-
flow(T1,T2,State,[Var1|Rest1],[Var2|Rest2]),
maplist(continuous(T1,T2,[Var1|Rest1],[Var2|Rest2]),Sub,Tree).

Fig. 6. Code for the abstract state machine for HHA in CLP. The Rest variables host nested
lists of the variables declared in the states superior to the current state. The built-in predicate
maplist is a macro for applying a predicate call (first argument of maplist) to a list of
arguments (second and third argument) one by one.

continuous step: a continuous step/flow within the actual configuration to the situation (c, v′, t′) re-
quires the computation of all x ∈ X that are valid in c at the time t′ according to the conjunction
of all state conditions (i.e. flow conditions plus invariants) of the active locations q ∈ c, where it
must hold t′ > t.

FirebrigadeMain FirebrigadeRSS

FirebrigadeAgent

extinguishmove2fireidle listenrefillmove2supply

Fig. 5. Location hierarchy and configuration tree (thick lines).

Definition 3.4 (Configuration and Completion). A configuration c is a rooted tree of locations
where the root node is the topmost initial location q0 of the overall state machine. Whenever a location
q is an immediate predecessor of q′ in c, it must hold β(q′) = q. A configuration is completed by
applying the following procedure recursively as long as possible to leaf nodes: if there is a leaf node in c
labeled with a location q, then introduce all α(q) as immediate successors of q.

3.2 Hierarchy Implementation with CLP
In Sec. 2.5, a CLP implementation of concurrent hybrid automata was given which imple-
ments hybrid finite state machine. Now we will show how to implement an abstract state ma-
chine for HHA, treating hierarchies and concurrency more explicitly (Mohammed & Stolzen-
burg, 2008; 2009). This leads to a lean implementation of hybrid automata, where efficient
CLP solvers are employed for performing complex analyses.
Fig. 6 shows parts of the abstract state machine in Prolog, namely the code for completion
and for performing discrete and continuous steps according to Def. 3.3 and 3.4. Discrete steps
take zero time; continuous steps remain within the same configuration, but the variable values
may differ. The flow conditions of active locations (in the configuration) must be applied, as

Multi-Robot Systems: Modeling, Specification, and Model Checking 257

Q : a finite set of locations, which is partitioned into three disjoint sets: Qsimple, Qcomp, and Qconc
— called simple, composite and concurrent locations, containing one designated start state
q0 ∈ Qcomp ∪ Qconc.

In the rescue example (Fig. 4), idle, extinguish or listen are simple locations, and FirebrigadeAgent
is a concurrent location and FirebrigadeMain and FirebrigadeRSS are composite locations, which
are separated by a dashed line. m2ftime and wLevel are examples for real valued variables.

Definition 3.2 (Location hierarchy). Each location q is associated with zero, one or more initial loca-
tions α(q): a simple location has zero, a composite location exactly one, and a concurrent location more
than one initial location. Moreover, each location q ∈ Q \ {q0} is associated to exactly one superior
state β(q). Therefore, it must hold β(q) ∈ Qconc ∪ Qcomp. A concurrent state must not directly con-
tain other concurrent ones and all transitions (q1, q2) must keep to the hierarchy, i. e. β(q1) = β(q2).

For the example in Fig. 4, according to the previous Def. 3.2, it holds e.g.:

α(Civilian) =injured. α(Firebrigade) = FirebrigadeAgent.
α(FirebrigadeAgent)={ FirebrigadeMain,FirebrigadeRSS}. α(Fire) = no_fire.
α(Rescuescenario)={Fire,Civilian,Firestation,Firebrigade} α(Firestantion) = idle.
β(burning) = Fire. β(Fire) = Rescuescenario.

The function β from the previous definition naturally induces a location tree with q0 as root.
This is shown for the running example in Fig. 5. While processing, each composite location
of the state machine contains only one active location. These locations also form a tree, called
configuration. A configuration of the given state machine, is indicated by the thick lines in
Fig. 5. Let us now define the notion configuration more formally.
As shown in Def. 2.3, a hybrid automaton may change in two ways: discretely, from location q1
to another location q2, when the transition e ∈ E between the two locations is enabled (i.e., the
jump condition holds) and continuously within a control location q ∈ Q, by means of a finite
(positive) time delay t. The semantics of our automata can now be defined by alternating
sequences of discrete and continuous steps between configurations.

Definition 3.3 (Semantics). The state machine starts with the initial configuration, i.e. the com-
pleted topmost initial state s0 of the overall state machine. In addition, an initial condition must be
given as a predicate with free variables from X. The current situation of the whole system can be char-
acterized by a triple (c, v, t) where c is a configuration, v a valuation (i. e. a mapping v : X → IRn),
and t the current time. The initial situation is a situation (c, v, t) where c is the initial configuration,
v satisfies the initial condition, and t = 0. The following steps are possible in the situation (c, v, t):

discrete step: a discrete/micro-step from one configuration c of a state machine to a configuration
(c′, v′, t) by means of a transition (q, q′) ∈ E with some jump condition in the current situation
(written c → c′) is possible iff:

1. c contains a node labeled with q;

2. the jump condition of the given transition holds in the current situation (c, v, t);

3. c′ is identical with c except that q together with its sub tree in c is replaced by the comple-
tion of q′;

4. the variables in X are set by executing specific assignments.

complete(T,Rest,State,[State:Var|Complete]) :-
init(T,State,[Var|Rest],Init,_),
maplist(complete(T,[Var|Rest]),Init,Complete).

discrete(T,Rest1,Rest2,[State1:Var1|_],[State2:Var2|Conf]) :-
trans(T,State1,[Var1|Rest1],State2,[Var2|Rest2]),
complete(T,Rest2,State2,[State2:Var2|Conf]).

discrete(T,Rest1,Rest2,[Top:Var1|Sub],[Top:Var2|Tree]) :-
Sub \= [],
maplist(discrete(T,[Var1|Rest1],[Var2|Rest2]),Sub,Tree).

continuous(T1,T2,Rest1,Rest2,[State:Var1|Sub],[State:Var2|Tree]) :-
flow(T1,T2,State,[Var1|Rest1],[Var2|Rest2]),
maplist(continuous(T1,T2,[Var1|Rest1],[Var2|Rest2]),Sub,Tree).

Fig. 6. Code for the abstract state machine for HHA in CLP. The Rest variables host nested
lists of the variables declared in the states superior to the current state. The built-in predicate
maplist is a macro for applying a predicate call (first argument of maplist) to a list of
arguments (second and third argument) one by one.

continuous step: a continuous step/flow within the actual configuration to the situation (c, v′, t′) re-
quires the computation of all x ∈ X that are valid in c at the time t′ according to the conjunction
of all state conditions (i.e. flow conditions plus invariants) of the active locations q ∈ c, where it
must hold t′ > t.

FirebrigadeMain FirebrigadeRSS

FirebrigadeAgent

extinguishmove2fireidle listenrefillmove2supply

Fig. 5. Location hierarchy and configuration tree (thick lines).

Definition 3.4 (Configuration and Completion). A configuration c is a rooted tree of locations
where the root node is the topmost initial location q0 of the overall state machine. Whenever a location
q is an immediate predecessor of q′ in c, it must hold β(q′) = q. A configuration is completed by
applying the following procedure recursively as long as possible to leaf nodes: if there is a leaf node in c
labeled with a location q, then introduce all α(q) as immediate successors of q.

3.2 Hierarchy Implementation with CLP
In Sec. 2.5, a CLP implementation of concurrent hybrid automata was given which imple-
ments hybrid finite state machine. Now we will show how to implement an abstract state ma-
chine for HHA, treating hierarchies and concurrency more explicitly (Mohammed & Stolzen-
burg, 2008; 2009). This leads to a lean implementation of hybrid automata, where efficient
CLP solvers are employed for performing complex analyses.
Fig. 6 shows parts of the abstract state machine in Prolog, namely the code for completion
and for performing discrete and continuous steps according to Def. 3.3 and 3.4. Discrete steps
take zero time; continuous steps remain within the same configuration, but the variable values
may differ. The flow conditions of active locations (in the configuration) must be applied, as

Robot Soccer258

time passes by. In this context, configurations are encoded in Prolog lists, where the head of
a list corresponds to the root of the respective configuration tree. In addition, each location
is conjoined by a colon (:) with its list of local variables. Thus, according to Def. 3.4, the
completed start configuration will be represented as shown below.
The use of lists is straightforward and allows us to implement the abstract state machine for
HHA (see Fig. 6) within only a dozen lines of CLP/Prolog code. By this technique, explicit
composition of automata is avoided. For each location, its initial states have to be declared
together with their continuous flow conditions. For all discrete transitions, the jump condi-
tions have to be stated. Local variables are expressed by nested lists of variables valid in the
respective state. Since the abstract state machine is of constant size and the abstract machine
computes complex configurations only on demand, there is a one-to-one correspondence be-
tween the elements of the HHA and its CLP/Prolog implementation. Thus, the program size
is linear to the size of the HHA.
In the concrete implementation of the rescue example, the overall start location q0 is indicated
by the predicate start, while init defines the initial states for each state (α values according
to Def. 3.2). The flow and the jump conditions have to be expressed by means of the predicates
flow and trans. The reader can easily see from Fig. 7 that the size of the CLP program is only
directly proportional to the size of the given HHA, because there is a one-to-one correspon-
dence between the graphical specification and its encoding in Prolog, whereas computing the
composition of concurrent automata explicitly leads to an exponential increase. Furthermore,
since the overall system behavior is given by the abstract state machine (Fig. 6), this approach
is completely declarative and concise.
Similarly, in the CLP model of hybrid FSM, reachability analysis is performed by computing
the state space of HHA under consideration starting from the initial configuration. For details
as well as experiments on benchmarks, the reader is referred to (Mohammed & Stolzenburg,
2009).

4. A Tool: Automatic Design and Verification

In the previous sections, we have shown a framework to specify and verify multi-agent sys-
tem by means of hybrid automata. Traditionally, in order to verify a certain model with any
hybrid automata model-checking tool, one has to specify such model textually with a suitable
description language of a model checker. In our framework, one has to specify a multi-agent
system in a constraint logic approach. However, in order to textually specify a certain scenario,
generally two alternatives can be used: either designing a scenario prior to put it conveniently
in a textual specification format to a model checker, or starting to specify the scenario directly
with the suitable description languages, which is definitely a tedious and undesirable work,
particularly when specifying safety critical systems. From this we may conclude, that it is
favorable to graphically specify and automatically verify a certain scenario. For this, a combi-
nation of the graphical notations from software engineering with the formal methods realm is
necessary.
Generally, the graphical notation is becoming more and more accepted, as it is expected
that designers will be more familiar with graphical notation. Therefore, several researchers
have approached specifying the behaviors of multi-agent systems using graphical notations,
namely UML statechart. For instance, Murray (2004) presents the statechart editor StatEdit
that is used to graphically specify behaviors multi-agent systems with a layered structured.
He has used StatEdit to design agents for the RoboCup simulation league. However, neither
model checking, nor timed notation are allowed in the tool. In order to combine the formal

%%% rescue scenario
start(rescuescenario).
init(T,rescuescenario,[[Event]],

[fire,civilians,firestation,firebrigade],_) :-
Event = none.

flow(T1,T2,rescuescenario,[[Event]],[[Event]]).

%%% fire
init(T,fire,[[Boom,Neededw]|_],[no_fire],rescuescenario) :-

Boom $= 0.
flow(T1,T2,fire,_,_).

init(T,no_fire,[[]|_],[],fire).
flow(T1,T2,no_fire,[[],[Boom1,Neededw]|_],[[],[Boom2,Neededw]|_]) :-

Boom2 $=< 3,
Boom2 $>= Boom+(T2-T1).

trans(T,no_fire,[[],[Boom,Neededw],[Event1]],burning,[[],
[Boom,Neededw],[Event2]]) :-
Event2 = burn,
Neededw $= 120.

Fig. 7. A part of the HHA implementation of the rescue example.

verification with graphical models, there already exist a number of tools proposed for valida-
tion of UML statecharts by translating models into the input language of existing model check-
ers. For example, Lilius & Porres (1999) have presented the tool vUML for model checking
systems, which have been modeled by UML statecharts. They have used SPIN model checker
(Holzmann, 1997) as the underlying verification engine in their tool. On the other hand, in
order to graphically specify real time software using UML models, several researchers have
extended the standard UML with time notation (Graf et al., 2006). For this purpose, several
tools have been developed in order verify the timed UML models by mapping them to input
languages of timed automata, which in turn are verified using existing timed automata model
checkers. For example, (Del Bianco et al., 2002) have used Kronos (Yovine, 1997) as a model
checker to verify their system, whereas (Knappi et al., 2002) have used UPPAAL (Behrmann
et al., 2004) as a model checker for the purpose .
Stemming from the previous discussion, we find that it seems advantageous to implement
a tool (see Fig.8) that combines both design and verification in the same framework, instead
of generating an intermediate specification, which in turn is given to a model checkers. To
our knowledge, there is no tool that supports the integration of graphical notations and for-
mal verification of hybrid automata with two different views of multi-agent systems, namely
the concurrent and the hierarchical view. For this aim, the tool HieroMate (Mohammed &
Schwarz, 2009) has been presented, which aims to simplify the process of specification and
verification of MAS by combining the advantages of both graphical notations of software en-
gineering together with formal methods. In the tool, the specification of MAS together with
their requirements are graphically specified, then the process of verification is achieved auto-
matically.

Multi-Robot Systems: Modeling, Specification, and Model Checking 259

time passes by. In this context, configurations are encoded in Prolog lists, where the head of
a list corresponds to the root of the respective configuration tree. In addition, each location
is conjoined by a colon (:) with its list of local variables. Thus, according to Def. 3.4, the
completed start configuration will be represented as shown below.
The use of lists is straightforward and allows us to implement the abstract state machine for
HHA (see Fig. 6) within only a dozen lines of CLP/Prolog code. By this technique, explicit
composition of automata is avoided. For each location, its initial states have to be declared
together with their continuous flow conditions. For all discrete transitions, the jump condi-
tions have to be stated. Local variables are expressed by nested lists of variables valid in the
respective state. Since the abstract state machine is of constant size and the abstract machine
computes complex configurations only on demand, there is a one-to-one correspondence be-
tween the elements of the HHA and its CLP/Prolog implementation. Thus, the program size
is linear to the size of the HHA.
In the concrete implementation of the rescue example, the overall start location q0 is indicated
by the predicate start, while init defines the initial states for each state (α values according
to Def. 3.2). The flow and the jump conditions have to be expressed by means of the predicates
flow and trans. The reader can easily see from Fig. 7 that the size of the CLP program is only
directly proportional to the size of the given HHA, because there is a one-to-one correspon-
dence between the graphical specification and its encoding in Prolog, whereas computing the
composition of concurrent automata explicitly leads to an exponential increase. Furthermore,
since the overall system behavior is given by the abstract state machine (Fig. 6), this approach
is completely declarative and concise.
Similarly, in the CLP model of hybrid FSM, reachability analysis is performed by computing
the state space of HHA under consideration starting from the initial configuration. For details
as well as experiments on benchmarks, the reader is referred to (Mohammed & Stolzenburg,
2009).

4. A Tool: Automatic Design and Verification

In the previous sections, we have shown a framework to specify and verify multi-agent sys-
tem by means of hybrid automata. Traditionally, in order to verify a certain model with any
hybrid automata model-checking tool, one has to specify such model textually with a suitable
description language of a model checker. In our framework, one has to specify a multi-agent
system in a constraint logic approach. However, in order to textually specify a certain scenario,
generally two alternatives can be used: either designing a scenario prior to put it conveniently
in a textual specification format to a model checker, or starting to specify the scenario directly
with the suitable description languages, which is definitely a tedious and undesirable work,
particularly when specifying safety critical systems. From this we may conclude, that it is
favorable to graphically specify and automatically verify a certain scenario. For this, a combi-
nation of the graphical notations from software engineering with the formal methods realm is
necessary.
Generally, the graphical notation is becoming more and more accepted, as it is expected
that designers will be more familiar with graphical notation. Therefore, several researchers
have approached specifying the behaviors of multi-agent systems using graphical notations,
namely UML statechart. For instance, Murray (2004) presents the statechart editor StatEdit
that is used to graphically specify behaviors multi-agent systems with a layered structured.
He has used StatEdit to design agents for the RoboCup simulation league. However, neither
model checking, nor timed notation are allowed in the tool. In order to combine the formal

%%% rescue scenario
start(rescuescenario).
init(T,rescuescenario,[[Event]],

[fire,civilians,firestation,firebrigade],_) :-
Event = none.

flow(T1,T2,rescuescenario,[[Event]],[[Event]]).

%%% fire
init(T,fire,[[Boom,Neededw]|_],[no_fire],rescuescenario) :-

Boom $= 0.
flow(T1,T2,fire,_,_).

init(T,no_fire,[[]|_],[],fire).
flow(T1,T2,no_fire,[[],[Boom1,Neededw]|_],[[],[Boom2,Neededw]|_]) :-

Boom2 $=< 3,
Boom2 $>= Boom+(T2-T1).

trans(T,no_fire,[[],[Boom,Neededw],[Event1]],burning,[[],
[Boom,Neededw],[Event2]]) :-
Event2 = burn,
Neededw $= 120.

Fig. 7. A part of the HHA implementation of the rescue example.

verification with graphical models, there already exist a number of tools proposed for valida-
tion of UML statecharts by translating models into the input language of existing model check-
ers. For example, Lilius & Porres (1999) have presented the tool vUML for model checking
systems, which have been modeled by UML statecharts. They have used SPIN model checker
(Holzmann, 1997) as the underlying verification engine in their tool. On the other hand, in
order to graphically specify real time software using UML models, several researchers have
extended the standard UML with time notation (Graf et al., 2006). For this purpose, several
tools have been developed in order verify the timed UML models by mapping them to input
languages of timed automata, which in turn are verified using existing timed automata model
checkers. For example, (Del Bianco et al., 2002) have used Kronos (Yovine, 1997) as a model
checker to verify their system, whereas (Knappi et al., 2002) have used UPPAAL (Behrmann
et al., 2004) as a model checker for the purpose .
Stemming from the previous discussion, we find that it seems advantageous to implement
a tool (see Fig.8) that combines both design and verification in the same framework, instead
of generating an intermediate specification, which in turn is given to a model checkers. To
our knowledge, there is no tool that supports the integration of graphical notations and for-
mal verification of hybrid automata with two different views of multi-agent systems, namely
the concurrent and the hierarchical view. For this aim, the tool HieroMate (Mohammed &
Schwarz, 2009) has been presented, which aims to simplify the process of specification and
verification of MAS by combining the advantages of both graphical notations of software en-
gineering together with formal methods. In the tool, the specification of MAS together with
their requirements are graphically specified, then the process of verification is achieved auto-
matically.

Robot Soccer260

Fig. 8. A tool for modeling and verification based on CLP.

A designer interacts with HieroMate using context sensitive menus that allows only meaning-
ful actions. For example, the user is able to add a location to an automaton by right clicking
onto the automaton and selecting Add location from a context menu. After a model has been
built, the specification should be given for formal verification. Actually, a user can either spec-
ify queries manually using CLP Prolog, use the tool to generate simple queries automatically,
or combine both methods.

4.1 Examples with Model checking
As we already mentioned, the formal semantics of our framework gives the possibility to ap-
ply formal methods in order to prove certain properties of specified systems, e.g. by model
checking. However, in the context of hybrid automata the term model checking usually refers to
reachability testing, i.e. the question whether some (unwanted) state is reachable from the ini-
tial configuration of the specified system. For this purpose, some exemplary model checking
tasks for the rescue scenario can be investigated.
For the behavior specification shown in Fig. 4 we conducted several experiments with Hiero-
Mate. The tool performs reachability tests on the state space of the model. This is done by
first computing all reachable states from the initial state/configuration, and then checking the
resulting set for the needed properties. In the following, we present some exemplary model
checking tasks for the rescue scenario.

Is it possible to extinguish the fire? When the state of the automaton modeling the fire
changes from no fire to burning, the variable neededw stores the amount of water needed for
putting out the fire (neededw = 120 in the beginning). When the fire is put out, i.e. neededw = 0,
the automaton enters the state put out. Thus the fire can be extinguished, iff there is a reach-
able configuration cout where fire is in the state put out. It is easy to see from the specification,
that this is indeed the case, as neededw is only decreased after the initial setting, and so the
transition from burning to put out is eventually forced.

Does the agent try to extinguish with an empty water tank? To answer this question, we
should check the reachability of certain intervals in the continuous valuation of the automaton.
The fact that the fire brigade agent tries to put out the fire without water corresponds to the
simple state extinguish being active while wLevel < 0. Note that we must not test for wLevel ≤
0, as the state extinguish is only left when the water level is zero, so including a check for
equality leads to false results.

Won’t the fire brigade move to the fire if it is not burning? This is a kind of questions that
needs to check the reachability of composed locations in the same time. This can be checked
by investigating that no location where firebrigade is in location move2fire and fire is in location
nofire, or putout is reachable

Does the agent report all discovered civilians? We can check properties about the history of
a certain state and the reachable states from a given state, this allows more complex questions
like this question. Actually, this question contains two properties to be checked:

(a) all discovered civilians are reported eventually, and

(b) the agent does not report more civilians than it found.

The property (a) corresponds to the fact that from every reachable state there is a state reach-
able where all discovered civilians have been reported. This again means that the number of
transitions labeled with help equals the number of transitions labeled with reported. Property
(b) holds if in the history of each reachable state the number of transitions labeled with help is
always greater or equal to the number of transitions that are labeled with reported.
All properties described above could be successfully proven using our framework.

5. Related Works

Hybrid automata have not only been used in the context of robot soccer, but also in many other
applications of multi-agent and multi-robot systems. Therefore, we will give a brief overview
on related works on modeling, specification, and model checking such systems with focus on
approaches that employ CLP.
Using hybrid automata (Henzinger, 1996) is a well accepted method to model and analyze
(mobile) multi-agent systems (Alur et al., 1999; 1996). Hierarchical hybrid automata (HHA)
can be used for building up and describing multi-layer control architectures based on physical
motion dynamics of moving agents (Borges de Sousa et al., 2007; Furbach et al., 2008). In many
applications they form a link between multi-robot systems and theories of hybrid systems as
in Zelinski et al. (2003). CLP as a programming paradigm has already been applied to mod-
eling hybrid systems including solving differential equations (Hickey & Wittenberg, 2004b).
Several authors propose the explicit composition of different concurrent automata by hand
leading to one single automaton, before a CLP implementation is applied. This is a tedious
work, especially when the number of automata increases. The latter case is exemplified in
Urbina (1996) and Jaffar et al. (2004), where approaches to model and analyze hybrid systems
using CLP(R) (Jaffar et al., 1992) are introduced.
In Banda & Gallagher (2008), it is shown how reachability analysis for linear hybrid automata
can be done by means of CLP, again by computing compositions of (simple) hybrid automata.
Events are handled as constraints, which avoids some of the effort for computing composition,
which leads to an exponential increase in the number of clauses in general. In our approach,
however, we compute configurations of the overall system only if required.

Multi-Robot Systems: Modeling, Specification, and Model Checking 261

Fig. 8. A tool for modeling and verification based on CLP.

A designer interacts with HieroMate using context sensitive menus that allows only meaning-
ful actions. For example, the user is able to add a location to an automaton by right clicking
onto the automaton and selecting Add location from a context menu. After a model has been
built, the specification should be given for formal verification. Actually, a user can either spec-
ify queries manually using CLP Prolog, use the tool to generate simple queries automatically,
or combine both methods.

4.1 Examples with Model checking
As we already mentioned, the formal semantics of our framework gives the possibility to ap-
ply formal methods in order to prove certain properties of specified systems, e.g. by model
checking. However, in the context of hybrid automata the term model checking usually refers to
reachability testing, i.e. the question whether some (unwanted) state is reachable from the ini-
tial configuration of the specified system. For this purpose, some exemplary model checking
tasks for the rescue scenario can be investigated.
For the behavior specification shown in Fig. 4 we conducted several experiments with Hiero-
Mate. The tool performs reachability tests on the state space of the model. This is done by
first computing all reachable states from the initial state/configuration, and then checking the
resulting set for the needed properties. In the following, we present some exemplary model
checking tasks for the rescue scenario.

Is it possible to extinguish the fire? When the state of the automaton modeling the fire
changes from no fire to burning, the variable neededw stores the amount of water needed for
putting out the fire (neededw = 120 in the beginning). When the fire is put out, i.e. neededw = 0,
the automaton enters the state put out. Thus the fire can be extinguished, iff there is a reach-
able configuration cout where fire is in the state put out. It is easy to see from the specification,
that this is indeed the case, as neededw is only decreased after the initial setting, and so the
transition from burning to put out is eventually forced.

Does the agent try to extinguish with an empty water tank? To answer this question, we
should check the reachability of certain intervals in the continuous valuation of the automaton.
The fact that the fire brigade agent tries to put out the fire without water corresponds to the
simple state extinguish being active while wLevel < 0. Note that we must not test for wLevel ≤
0, as the state extinguish is only left when the water level is zero, so including a check for
equality leads to false results.

Won’t the fire brigade move to the fire if it is not burning? This is a kind of questions that
needs to check the reachability of composed locations in the same time. This can be checked
by investigating that no location where firebrigade is in location move2fire and fire is in location
nofire, or putout is reachable

Does the agent report all discovered civilians? We can check properties about the history of
a certain state and the reachable states from a given state, this allows more complex questions
like this question. Actually, this question contains two properties to be checked:

(a) all discovered civilians are reported eventually, and

(b) the agent does not report more civilians than it found.

The property (a) corresponds to the fact that from every reachable state there is a state reach-
able where all discovered civilians have been reported. This again means that the number of
transitions labeled with help equals the number of transitions labeled with reported. Property
(b) holds if in the history of each reachable state the number of transitions labeled with help is
always greater or equal to the number of transitions that are labeled with reported.
All properties described above could be successfully proven using our framework.

5. Related Works

Hybrid automata have not only been used in the context of robot soccer, but also in many other
applications of multi-agent and multi-robot systems. Therefore, we will give a brief overview
on related works on modeling, specification, and model checking such systems with focus on
approaches that employ CLP.
Using hybrid automata (Henzinger, 1996) is a well accepted method to model and analyze
(mobile) multi-agent systems (Alur et al., 1999; 1996). Hierarchical hybrid automata (HHA)
can be used for building up and describing multi-layer control architectures based on physical
motion dynamics of moving agents (Borges de Sousa et al., 2007; Furbach et al., 2008). In many
applications they form a link between multi-robot systems and theories of hybrid systems as
in Zelinski et al. (2003). CLP as a programming paradigm has already been applied to mod-
eling hybrid systems including solving differential equations (Hickey & Wittenberg, 2004b).
Several authors propose the explicit composition of different concurrent automata by hand
leading to one single automaton, before a CLP implementation is applied. This is a tedious
work, especially when the number of automata increases. The latter case is exemplified in
Urbina (1996) and Jaffar et al. (2004), where approaches to model and analyze hybrid systems
using CLP(R) (Jaffar et al., 1992) are introduced.
In Banda & Gallagher (2008), it is shown how reachability analysis for linear hybrid automata
can be done by means of CLP, again by computing compositions of (simple) hybrid automata.
Events are handled as constraints, which avoids some of the effort for computing composition,
which leads to an exponential increase in the number of clauses in general. In our approach,
however, we compute configurations of the overall system only if required.

Robot Soccer262

In contrast to our approach, some authors approached modeling the behavior of hybrid sys-
tems as an automaton using CLP, but they do not handle a hybrid system consisting of differ-
ent interacting hybrid automata. For example, Hickey & Wittenberg (2004a) present a hybrid
system modeled as an automaton using CLP(F) (Hickey & Wittenberg, 2004b), but neither
handling concurrency nor hierarchies. Other authors employ CLP for implementing hybrid
automata (Ciarlini & Frühwirth, 2000; Delzanno & Podelski, 1999; Gupta & Pontelli, 1997), but
restrict attention to a simple class of hybrid systems (e.g. timed systems). They do not con-
struct the overall behavior prior to modeling, but model each automaton separately. However,
the run of the model takes all possible paths into consideration, resulting from the product of
each component, which leads to unnecessary computation.
Another interesting approach on model checking hybrid systems is presented in Gulwani &
Tiwari (2008). There, an analysis technique is proposed that is able to derive verification condi-
tions, i.e. constraints that hold in reachable states. These conditions are universally quantified
and transformed into purely existentially quantified conditions, which is more suitable for
constraint solving. For this, an implementation in Lisp is available employing a satisfiability
modulo theories (SMT) solver, whereas the Prolog implementation presented in this chapter,
allows to express discrete transitions explicitly and allows the use of several constraint solvers.
Another approach for verification of hybrid systems is presented in Fränzle & Herde (2007).
In particular, the authors apply so-called bounded model checking (BMC) (Biere et al., 1999)
to linear hybrid automata, by encoding them into predicative formulae suitable for BMC.
For this reason, they developed a tool called HySAT that combines a SAT solver with linear
programming, where the Boolean variables are used for encoding the discrete components,
while real variables represent the continuous component. The linear programming routine
is used to solve large conjunctive systems of linear inequalities over reals, whereas the SAT
solver is used to handle disjunctions. Similar to this approach, our approach presented in this
chapter has the essence of BMC. However, instead of checking the satisfiability of formulae to
some given finite depth k, we find the set of reachable states and verify various properties on
this set. In Biere et al. (1999), neither concurrency nor hierarchy of hybrid automata is taken
into consideration.
Differently to this chapter, Jha et al. (2007) introduce symbolic reachability analysis of lazy lin-
ear hybrid automata. They provide a verification technique based on bounded model check-
ing and k-induction for reachability analysis. In their technique, SAT-based decision proce-
dures are used to perform a symbolic analysis instead of an enumerative analysis. However,
they did not show how the interacting concurrent components can be handled in their ap-
proach.

6. Conclusion

In this chapter, we have shown a framework to formally specify and verify physical multi-
agent systems by means of hybrid automata, especially for those agents that are defined
through their capability to continuously react to a physical environment, while respecting
some time constraints. The framework provided two different views of behaviors’ specifica-
tions, namely, the concurrent and the hierarchical view. In the concurrent view, it has been
demonstrated how to avoid the composition of the agents before getting involved into the
verification phase,which, in turn can relieve the state explosion problem that may raise as the
result of specifying multi-agent systems. On the other hand, in the hierarchical view, we show
how multi-agent systems can be hierarchically specified and formally verified without flatten-
ing the hierarchy, as it is commonly done. We have shown the implementations of both views

by means of constraint logic programming, which forms the specification and the verification
engine of the framework. In addition, we have presented a tool that graphically specifies both
views, in order to combine the powerful of software engineering into our framework. A case
study taken from RoboCup rescue simulation has been depicted to show applicability of our
approach.

7. References

Alur, R. & Dill, D. (1994). A Theory of Timed Automata, Theoretical Computer Science
126(2): 183–235.

Alur, R., Esposito, J. M., Kim, M., Kumar, V. & Lee, I. (1999). Formal modeling and analysis of
hybrid systems: A case study in multi-robot coordination, World Congress on Formal
Methods, pp. 212–232.
URL: citeseer.ist.psu.edu/article/alur99formal.html

Alur, R., Henzinger, T. A. & Ho, P.-H. (1996). Automatic symbolic verification of embedded
systems., IEEE Transactions on Software Engineering 22(3): 181–201.

Apt, K. R. & Wallace, M. (2007). Constraint Logic Programming Using Eclipse, Cambridge Uni-
versity Press, Cambridge, UK.

Arai, T. & Stolzenburg, F. (2002). Multiagent systems specification by uml statecharts aiming
at intelligent manufacturing, AAMAS ’02: Proceedings of the first international joint
conference on Autonomous agents and multiagent systems, ACM, New York, NY, USA,
pp. 11–18.

Banda, G. & Gallagher, J. P. (2008). Analysis of linear hybrid systems in CLP, in M. Hanus (ed.),
Pre-Proceedings of LOPSTR 2008 – 18th International Symposium on Logic-Based Program
Synthesis and Transformation, Technical University of Valencia, Spain, pp. 58–72.

Behrmann, G., David, A. & Larsen, K. G. (2004). A tutorial on Uppaal, in M. Bernardo &
F. Corradini (eds), Proceedings of 4th International School on Formal Methods for the De-
sign of Computer, Communication, and Software Systems – Formal Methods for the Design
of Real-Time Systems (SFM-RT), LNCS 3185, Springer, Berlin, Heidelberg, New York,
pp. 200–236.

Biere, A., Cimatti, A., Clarke, E. M. & Zhu, Y. (1999). Symbolic model checking without BDDs,
Proceedings of 5th International Conference on Tools and Algorithms for Construction and
Analysis of Systems (TACAS), LNCS 1579, Springer, Berlin, Heidelberg, New York,
pp. 193–207.

Borges de Sousa, J., Johansson, K. H., Silva, J. & Speranzon, A. (2007). A verified hierarchical
control architecture for coordinated multi-vehicle operations, International Journal of
Adaptive Control and Signal Processing 21(2-3): 159–188. Special issue on autonomous
adaptive control of vehicles.

Ciarlini, A. & Frühwirth, T. (2000). Automatic derivation of meaningful experiments for hy-
brid systems, Proceeding of ACM SIGSIM Conf. on Artificial Intelligence, Simulation, and
Planning (AIS’00) .

Clarke, E., Grumberg, O. & Peled, D. (1999). Model checking, Springer.
da Silva, V., Choren, R. & de Lucena, C. (2004). A UML Based Approach for Modeling and

Implementing Multi-Agent Systems, Proceedings of the Third International Joint Confer-
ence on Autonomous Agents and Multiagent Systems-Volume 2, IEEE Computer Society
Washington, DC, USA, pp. 914–921.

Del Bianco, V., Lavazza, L. & Mauri, M. (2002). Model checking uml specifications of real time
software, p. 203.

Multi-Robot Systems: Modeling, Specification, and Model Checking 263

In contrast to our approach, some authors approached modeling the behavior of hybrid sys-
tems as an automaton using CLP, but they do not handle a hybrid system consisting of differ-
ent interacting hybrid automata. For example, Hickey & Wittenberg (2004a) present a hybrid
system modeled as an automaton using CLP(F) (Hickey & Wittenberg, 2004b), but neither
handling concurrency nor hierarchies. Other authors employ CLP for implementing hybrid
automata (Ciarlini & Frühwirth, 2000; Delzanno & Podelski, 1999; Gupta & Pontelli, 1997), but
restrict attention to a simple class of hybrid systems (e.g. timed systems). They do not con-
struct the overall behavior prior to modeling, but model each automaton separately. However,
the run of the model takes all possible paths into consideration, resulting from the product of
each component, which leads to unnecessary computation.
Another interesting approach on model checking hybrid systems is presented in Gulwani &
Tiwari (2008). There, an analysis technique is proposed that is able to derive verification condi-
tions, i.e. constraints that hold in reachable states. These conditions are universally quantified
and transformed into purely existentially quantified conditions, which is more suitable for
constraint solving. For this, an implementation in Lisp is available employing a satisfiability
modulo theories (SMT) solver, whereas the Prolog implementation presented in this chapter,
allows to express discrete transitions explicitly and allows the use of several constraint solvers.
Another approach for verification of hybrid systems is presented in Fränzle & Herde (2007).
In particular, the authors apply so-called bounded model checking (BMC) (Biere et al., 1999)
to linear hybrid automata, by encoding them into predicative formulae suitable for BMC.
For this reason, they developed a tool called HySAT that combines a SAT solver with linear
programming, where the Boolean variables are used for encoding the discrete components,
while real variables represent the continuous component. The linear programming routine
is used to solve large conjunctive systems of linear inequalities over reals, whereas the SAT
solver is used to handle disjunctions. Similar to this approach, our approach presented in this
chapter has the essence of BMC. However, instead of checking the satisfiability of formulae to
some given finite depth k, we find the set of reachable states and verify various properties on
this set. In Biere et al. (1999), neither concurrency nor hierarchy of hybrid automata is taken
into consideration.
Differently to this chapter, Jha et al. (2007) introduce symbolic reachability analysis of lazy lin-
ear hybrid automata. They provide a verification technique based on bounded model check-
ing and k-induction for reachability analysis. In their technique, SAT-based decision proce-
dures are used to perform a symbolic analysis instead of an enumerative analysis. However,
they did not show how the interacting concurrent components can be handled in their ap-
proach.

6. Conclusion

In this chapter, we have shown a framework to formally specify and verify physical multi-
agent systems by means of hybrid automata, especially for those agents that are defined
through their capability to continuously react to a physical environment, while respecting
some time constraints. The framework provided two different views of behaviors’ specifica-
tions, namely, the concurrent and the hierarchical view. In the concurrent view, it has been
demonstrated how to avoid the composition of the agents before getting involved into the
verification phase,which, in turn can relieve the state explosion problem that may raise as the
result of specifying multi-agent systems. On the other hand, in the hierarchical view, we show
how multi-agent systems can be hierarchically specified and formally verified without flatten-
ing the hierarchy, as it is commonly done. We have shown the implementations of both views

by means of constraint logic programming, which forms the specification and the verification
engine of the framework. In addition, we have presented a tool that graphically specifies both
views, in order to combine the powerful of software engineering into our framework. A case
study taken from RoboCup rescue simulation has been depicted to show applicability of our
approach.

7. References

Alur, R. & Dill, D. (1994). A Theory of Timed Automata, Theoretical Computer Science
126(2): 183–235.

Alur, R., Esposito, J. M., Kim, M., Kumar, V. & Lee, I. (1999). Formal modeling and analysis of
hybrid systems: A case study in multi-robot coordination, World Congress on Formal
Methods, pp. 212–232.
URL: citeseer.ist.psu.edu/article/alur99formal.html

Alur, R., Henzinger, T. A. & Ho, P.-H. (1996). Automatic symbolic verification of embedded
systems., IEEE Transactions on Software Engineering 22(3): 181–201.

Apt, K. R. & Wallace, M. (2007). Constraint Logic Programming Using Eclipse, Cambridge Uni-
versity Press, Cambridge, UK.

Arai, T. & Stolzenburg, F. (2002). Multiagent systems specification by uml statecharts aiming
at intelligent manufacturing, AAMAS ’02: Proceedings of the first international joint
conference on Autonomous agents and multiagent systems, ACM, New York, NY, USA,
pp. 11–18.

Banda, G. & Gallagher, J. P. (2008). Analysis of linear hybrid systems in CLP, in M. Hanus (ed.),
Pre-Proceedings of LOPSTR 2008 – 18th International Symposium on Logic-Based Program
Synthesis and Transformation, Technical University of Valencia, Spain, pp. 58–72.

Behrmann, G., David, A. & Larsen, K. G. (2004). A tutorial on Uppaal, in M. Bernardo &
F. Corradini (eds), Proceedings of 4th International School on Formal Methods for the De-
sign of Computer, Communication, and Software Systems – Formal Methods for the Design
of Real-Time Systems (SFM-RT), LNCS 3185, Springer, Berlin, Heidelberg, New York,
pp. 200–236.

Biere, A., Cimatti, A., Clarke, E. M. & Zhu, Y. (1999). Symbolic model checking without BDDs,
Proceedings of 5th International Conference on Tools and Algorithms for Construction and
Analysis of Systems (TACAS), LNCS 1579, Springer, Berlin, Heidelberg, New York,
pp. 193–207.

Borges de Sousa, J., Johansson, K. H., Silva, J. & Speranzon, A. (2007). A verified hierarchical
control architecture for coordinated multi-vehicle operations, International Journal of
Adaptive Control and Signal Processing 21(2-3): 159–188. Special issue on autonomous
adaptive control of vehicles.

Ciarlini, A. & Frühwirth, T. (2000). Automatic derivation of meaningful experiments for hy-
brid systems, Proceeding of ACM SIGSIM Conf. on Artificial Intelligence, Simulation, and
Planning (AIS’00) .

Clarke, E., Grumberg, O. & Peled, D. (1999). Model checking, Springer.
da Silva, V., Choren, R. & de Lucena, C. (2004). A UML Based Approach for Modeling and

Implementing Multi-Agent Systems, Proceedings of the Third International Joint Confer-
ence on Autonomous Agents and Multiagent Systems-Volume 2, IEEE Computer Society
Washington, DC, USA, pp. 914–921.

Del Bianco, V., Lavazza, L. & Mauri, M. (2002). Model checking uml specifications of real time
software, p. 203.

Robot Soccer264

Delzanno, G. & Podelski, A. (1999). Model checking in CLP, Proceedings of 5th International
Conference on Tools and Algorithms for Construction and Analysis of Systems (TACAS),
LNCS 1579, Springer, Berlin, Heidelberg, New York, pp. 223–239.

Egerstedt, M. (2000). Behavior Based Robotics Using Hybrid Automata, Proceedings of the Third
International Workshop on Hybrid Systems: Computation and Control, Springer, pp. 103–
116.

Fränzle, M. & Herde, C. (2007). HySAT: An efficient proof engine for bounded model checking
of hybrid systems, Formal Methods in System Design 30(3): 179–198.

Frehse, G. (2005). PHAVer: Algorithmic verification of hybrid systems past HyTech, in
M. Morari & L. Thiele (eds), Hybrid Systems: Computation and Control, 8th International
Workshop, Proceedings, LNCS 3414, Springer, Berlin, Heidelberg, New York, pp. 258–
273.

Furbach, U., Murray, J., Schmidsberger, F. & Stolzenburg, F. (2008). Hybrid multiagent systems
with timed synchronization – specification and model checking, in M. Dastani, A. El
Fallah Seghrouchni, A. Ricci & M. Winikoff (eds), Post-Proceedings of 5th International
Workshop on Programming Multi-Agent Systems at 6th International Joint Conference on
Autonomous Agents & Multi-Agent Systems, LNAI 4908, Springer, pp. 205–220.

Graf, S., Ober, I. & Ober, I. (2006). A real-time profile for UML, International Journal on Software
Tools for Technology Transfer (STTT) 8(2): 113–127.

Gulwani, S. & Tiwari, A. (2008). Constraint-based approach for analysis of hybrid systems,
in J.-F. Raskin & P. S. Thiagarajan (eds), Proceedings of 20th International Conference
on Computer Aided Verification (CAV 2008), LNCS 5123, Springer, Berlin, Heidelberg,
New York, Princeton, NJ, pp. 190–203.

Gupta, G. & Pontelli, E. (1997). A constraint-based approach for specification and verification
of real-time systems, Proceedings of IEEE Real-time Symposium pp. 230–239.

Harel, D. (1987). Statecharts: A visual formalism for complex systems, Science of Computer
Programming 8: 231–274.

Henzinger, T. (1996). The theory of hybrid automata, Proceedings of the 11th Annual Sympo-
sium on Logic in Computer Science, IEEE Computer Society Press, New Brunswick, NJ,
pp. 278–292.

Henzinger, T. A., Ho, P.-H. & Wong-Toi, H. (1995a). HyTech: The Next Generation, IEEE
Real-Time Systems Symposium, pp. 56–65.

Henzinger, T., Ho, P.-H. & Wong-Toi, H. (1995b). A user guide to HyTech, Proceedings of Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), LNCS 1019, Springer, Berlin, Heidelberg, New York, pp. 41–71.

Henzinger, T., Kopke, P., Puri, A. & Varaiya, P. (1998). What’s Decidable about Hybrid Au-
tomata?, Journal of Computer and System Sciences 57(1): 94–124.

Hickey, T. J. & Wittenberg, D. K. (2004a). Rigorous modeling of hybrid systems using inter-
val arithmetic constraints, in R. Alur & G. J. Pappas (eds), Proceedings of 7th Interna-
tional Workshop on Hybrid Systems: Computation and Control (HSCC 2004), LNCS 2993,
Springer, Berlin Heidelberg, New York, Philadelphia, PA, USA, pp. 402–416.

Hickey, T. J. & Wittenberg, D. K. (2004b). Using analytic CLP to model and analyze hybrid sys-
tems, in V. Barr & Z. Markov (eds), Proceedings of the 17th International Florida Artificial
Intelligence Research Society Conference, AAAI Press.

Holzmann, G. (1997). The model checker SPIN, IEEE Transactions on software engineering
23(5): 279–295.

Jaffar, J. & Lassez, J. (1987). Constraint logic programming, Proceedings of the 14th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, ACM New York,
NY, USA, pp. 111–119.

Jaffar, J., Michaylov, S., Stuckey, P. & Yap, R. (1992). The CLP(R) language and system, ACM
Transactions on Programming Languages and Systems 14(3): 339–395.

Jaffar, J., Santosa, A. & Voicu, R. (2004). A clp proof method for timed automata, Real-Time
Systems Symposium, IEEE International 0: 175–186.

Jha, S., Brady, B. A. & Seshia, S. A. (2007). Symbolic reachability analysis of lazy linear hybrid
automata, in J.-F. Raskin & P. S. Thiagarajan (eds), Proceedings of 5th International Con-
ference on Formal Modeling and Analysis of Timed Systems (FORMATS 2007), LNCS 4763,
Springer, Berlin, Heidelberg, New York, Salzburg, Austria, pp. 241–256.

Knappi, A., Merzi, S. & Rauh, C. (2002). Model Checking Timed UML State Machines and
Collaborations, Proceedings of the 7th International Symposium on Formal Techniques in
Real-Time and Fault-Tolerant Systems: Co-sponsored by IFIP WG 2.2, Springer, p. 395.

Lilius, J. & Porres, I. (1999). Formalising UML state machines for model checking, The Unified
Modeling Language: UML’99: Beyond the Standard: Second International Workshop, Fort
Collins, Springer, p. 430.

Mohammed, A. & Furbach, U. (2008a). Modeling multi-agent logistic process system using
hybrid automata, Modelling, Simulation, Verification and Validation of Enterprise Infor-
mation Systems, Proceedings of the 6th International Workshop on Modelling, Simulation,
Verification and Validation of Enterprise Information Systems, MSVVEIS-2008, INSTICC
PRESS, pp. 141–149.

Mohammed, A. & Furbach, U. (2008b). Using CLP to model hybrid systems, Proceedings of
Annual ERCIM Workshop on Constraint Solving Programming (CSCLP2008).
URL: http://pst.istc.cnr.it/CSCLP08/program

Mohammed, A. & Furbach, U. (2009). Multi-agent systems: Modeling and verification using
hybrid automata, Proceedings of the 7th International Workshop on Programming Multi-
Agent Systems (ProMAS 2009), May 10-15, 2009, Budapest, Hungary. Extended version
available as Technical Report 8/2009, Department of Computer Sceince,University of
Koblenz-landau.

Mohammed, A. & Schwarz, C. (2009). HieroMate: A graphical tool for specification and verifi-
cation of hierarchical hybrid automata, in B. Mertsching, M. Hund & Z. Aziz (eds), KI
2009: Advances in Artificial Intelligence, Proceedings of 32nd Annual German Conference
on Artificial Intelligence, LNAI 5803, Springer, Berlin, Heidelberg, New York, Pader-
born, pp. 695–702.

Mohammed, A. & Stolzenburg, F. (2008). Implementing hierarchical hybrid automata using
constraint logic programming, in S. Schwarz (ed.), Proceedings of 22nd Workshop on
(Constraint) Logic Programming, University Halle Wittenberg, Institute of Computer
Science, Dresden, pp. 60–71. Technical Report 2008/08.

Mohammed, A. & Stolzenburg, F. (2009). Using constraint logic programming for modeling
and verifying hierarchical hybrid automata, Technical Report 6/2009, Department of
Computer Science, Universität Koblenz–Landau.

Möller, O., David, A. & Yi, W. (2003). Verification of uml statechart with real-time extensions,
Fundamental Approaches to Software Engineering (FASE’2002), LNCS 2306, Springer-
Verlag, pp. 218–232.

Multi-Robot Systems: Modeling, Specification, and Model Checking 265

Delzanno, G. & Podelski, A. (1999). Model checking in CLP, Proceedings of 5th International
Conference on Tools and Algorithms for Construction and Analysis of Systems (TACAS),
LNCS 1579, Springer, Berlin, Heidelberg, New York, pp. 223–239.

Egerstedt, M. (2000). Behavior Based Robotics Using Hybrid Automata, Proceedings of the Third
International Workshop on Hybrid Systems: Computation and Control, Springer, pp. 103–
116.

Fränzle, M. & Herde, C. (2007). HySAT: An efficient proof engine for bounded model checking
of hybrid systems, Formal Methods in System Design 30(3): 179–198.

Frehse, G. (2005). PHAVer: Algorithmic verification of hybrid systems past HyTech, in
M. Morari & L. Thiele (eds), Hybrid Systems: Computation and Control, 8th International
Workshop, Proceedings, LNCS 3414, Springer, Berlin, Heidelberg, New York, pp. 258–
273.

Furbach, U., Murray, J., Schmidsberger, F. & Stolzenburg, F. (2008). Hybrid multiagent systems
with timed synchronization – specification and model checking, in M. Dastani, A. El
Fallah Seghrouchni, A. Ricci & M. Winikoff (eds), Post-Proceedings of 5th International
Workshop on Programming Multi-Agent Systems at 6th International Joint Conference on
Autonomous Agents & Multi-Agent Systems, LNAI 4908, Springer, pp. 205–220.

Graf, S., Ober, I. & Ober, I. (2006). A real-time profile for UML, International Journal on Software
Tools for Technology Transfer (STTT) 8(2): 113–127.

Gulwani, S. & Tiwari, A. (2008). Constraint-based approach for analysis of hybrid systems,
in J.-F. Raskin & P. S. Thiagarajan (eds), Proceedings of 20th International Conference
on Computer Aided Verification (CAV 2008), LNCS 5123, Springer, Berlin, Heidelberg,
New York, Princeton, NJ, pp. 190–203.

Gupta, G. & Pontelli, E. (1997). A constraint-based approach for specification and verification
of real-time systems, Proceedings of IEEE Real-time Symposium pp. 230–239.

Harel, D. (1987). Statecharts: A visual formalism for complex systems, Science of Computer
Programming 8: 231–274.

Henzinger, T. (1996). The theory of hybrid automata, Proceedings of the 11th Annual Sympo-
sium on Logic in Computer Science, IEEE Computer Society Press, New Brunswick, NJ,
pp. 278–292.

Henzinger, T. A., Ho, P.-H. & Wong-Toi, H. (1995a). HyTech: The Next Generation, IEEE
Real-Time Systems Symposium, pp. 56–65.

Henzinger, T., Ho, P.-H. & Wong-Toi, H. (1995b). A user guide to HyTech, Proceedings of Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), LNCS 1019, Springer, Berlin, Heidelberg, New York, pp. 41–71.

Henzinger, T., Kopke, P., Puri, A. & Varaiya, P. (1998). What’s Decidable about Hybrid Au-
tomata?, Journal of Computer and System Sciences 57(1): 94–124.

Hickey, T. J. & Wittenberg, D. K. (2004a). Rigorous modeling of hybrid systems using inter-
val arithmetic constraints, in R. Alur & G. J. Pappas (eds), Proceedings of 7th Interna-
tional Workshop on Hybrid Systems: Computation and Control (HSCC 2004), LNCS 2993,
Springer, Berlin Heidelberg, New York, Philadelphia, PA, USA, pp. 402–416.

Hickey, T. J. & Wittenberg, D. K. (2004b). Using analytic CLP to model and analyze hybrid sys-
tems, in V. Barr & Z. Markov (eds), Proceedings of the 17th International Florida Artificial
Intelligence Research Society Conference, AAAI Press.

Holzmann, G. (1997). The model checker SPIN, IEEE Transactions on software engineering
23(5): 279–295.

Jaffar, J. & Lassez, J. (1987). Constraint logic programming, Proceedings of the 14th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, ACM New York,
NY, USA, pp. 111–119.

Jaffar, J., Michaylov, S., Stuckey, P. & Yap, R. (1992). The CLP(R) language and system, ACM
Transactions on Programming Languages and Systems 14(3): 339–395.

Jaffar, J., Santosa, A. & Voicu, R. (2004). A clp proof method for timed automata, Real-Time
Systems Symposium, IEEE International 0: 175–186.

Jha, S., Brady, B. A. & Seshia, S. A. (2007). Symbolic reachability analysis of lazy linear hybrid
automata, in J.-F. Raskin & P. S. Thiagarajan (eds), Proceedings of 5th International Con-
ference on Formal Modeling and Analysis of Timed Systems (FORMATS 2007), LNCS 4763,
Springer, Berlin, Heidelberg, New York, Salzburg, Austria, pp. 241–256.

Knappi, A., Merzi, S. & Rauh, C. (2002). Model Checking Timed UML State Machines and
Collaborations, Proceedings of the 7th International Symposium on Formal Techniques in
Real-Time and Fault-Tolerant Systems: Co-sponsored by IFIP WG 2.2, Springer, p. 395.

Lilius, J. & Porres, I. (1999). Formalising UML state machines for model checking, The Unified
Modeling Language: UML’99: Beyond the Standard: Second International Workshop, Fort
Collins, Springer, p. 430.

Mohammed, A. & Furbach, U. (2008a). Modeling multi-agent logistic process system using
hybrid automata, Modelling, Simulation, Verification and Validation of Enterprise Infor-
mation Systems, Proceedings of the 6th International Workshop on Modelling, Simulation,
Verification and Validation of Enterprise Information Systems, MSVVEIS-2008, INSTICC
PRESS, pp. 141–149.

Mohammed, A. & Furbach, U. (2008b). Using CLP to model hybrid systems, Proceedings of
Annual ERCIM Workshop on Constraint Solving Programming (CSCLP2008).
URL: http://pst.istc.cnr.it/CSCLP08/program

Mohammed, A. & Furbach, U. (2009). Multi-agent systems: Modeling and verification using
hybrid automata, Proceedings of the 7th International Workshop on Programming Multi-
Agent Systems (ProMAS 2009), May 10-15, 2009, Budapest, Hungary. Extended version
available as Technical Report 8/2009, Department of Computer Sceince,University of
Koblenz-landau.

Mohammed, A. & Schwarz, C. (2009). HieroMate: A graphical tool for specification and verifi-
cation of hierarchical hybrid automata, in B. Mertsching, M. Hund & Z. Aziz (eds), KI
2009: Advances in Artificial Intelligence, Proceedings of 32nd Annual German Conference
on Artificial Intelligence, LNAI 5803, Springer, Berlin, Heidelberg, New York, Pader-
born, pp. 695–702.

Mohammed, A. & Stolzenburg, F. (2008). Implementing hierarchical hybrid automata using
constraint logic programming, in S. Schwarz (ed.), Proceedings of 22nd Workshop on
(Constraint) Logic Programming, University Halle Wittenberg, Institute of Computer
Science, Dresden, pp. 60–71. Technical Report 2008/08.

Mohammed, A. & Stolzenburg, F. (2009). Using constraint logic programming for modeling
and verifying hierarchical hybrid automata, Technical Report 6/2009, Department of
Computer Science, Universität Koblenz–Landau.

Möller, O., David, A. & Yi, W. (2003). Verification of uml statechart with real-time extensions,
Fundamental Approaches to Software Engineering (FASE’2002), LNCS 2306, Springer-
Verlag, pp. 218–232.

Robot Soccer266

Murray, J. (2004). Specifying agents with UML statecharts and StatEdit, in A. Bonarini,
B. Browning, D. Polani & K. Yoshida (eds), RoboCup 2003: Robot Soccer World Cup VII,
Vol. 3020 of Lecture Notes in Artificial Intelligence, Springer, pp. 145–156.

Murray, J., Obst, O. & Stolzenburg, F. (2002). RoboLog Koblenz 2001, in A. Birk, S. Coradeschi
& S. Tadokoro (eds), RoboCup 2001: Robot Soccer World Cup V, LNAI 2377, Springer,
Berlin, Heidelberg, New York, pp. 526–530. Team description.
URL: http://link.springer-ny.com/link/service/series/0558/bibs/2377/23770526.htm

Ruh, F. (2007). A translator for cooperative strategies of mobile agents for four-legged robots, Master
thesis, Hochschule Harz, Wernigerode.

Ruh, F. & Stolzenburg, F. (2008). Translating cooperative strategies for robot behavior, in G. J.
Nalepa & J. Baumeister (eds), Proceedings of 4th Workshop on Knowledge Engineering
and Software Engineering at 31st German Conference on Artificial Intelligence, Kaiser-
slautern, pp. 85–96. CEUR Workshop Proceedings 425.
URL: http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-
425/paper9.pdf

Tadokoro, S. et al. (2000). The RoboCup-Rescue project: A robotic approach to the disaster
mitigation problem, Proceedings of IEEE International Conference on Robotics and Au-
tomation (ICRA 2000), pp. 4089–4104.

UML (2009). OMG Unified Modeling Language (OMG UML): Infrastructure; Superstructure.
Urbina, L. (1996). Analysis of hybrid systems in CLP(R), Proceedings of 2nd International Confer-

ence on Principles and Practice of Constraint Programming (CP’96), LNAI 1118, pp. 451–
467.

Yovine, S. (1997). Kronos: A verification tool for real-time systems, International Journal on
Software Tools for Technology Transfer (STTT) 1(1): 123–133.

Zelinski, S., Koo, T. J. & Sastry, S. (2003). Hybrid system design for formations of autonomous
vehicles, Proceedings of 42nd IEEE Conference on Decision and Control, Vol. 1, pp. 1–6.

RFuzzy: an easy and expressive tool for modelling the cognitive layer in RoboCupSoccer 267

RFuzzy: an easy and expressive tool for modelling the cognitive layer in
RoboCupSoccer

Susana Muñoz Hernández

0

RFuzzy: an easy and expressive tool for modelling
the cognitive layer in RoboCupSoccer

Susana Muñoz Hernández
Technical University of Madrid

Spain

1. Introduction

The idea of robot playing soccer has been developed since early 90s Chen et al. (2003). Soc-
cer environment is a dynamically changing environment which requires individual skill as
well as team skill and therefore is an interesting research field on Artificial Intelligence and
robotics. Prolog is a programming language that represent logic reasoning. Is is a perfect tool
to represent human reasoning, so it seems to be a good choice for implementing the cognitive
layer of soccer players that is a simulation of human behaviour related to this game. For exam-
ple, applying the rule “if the goal keeper is not at the goal then kick to ball”. But many of the
most important decisions that are made by soccer players deal with non-crisp issues. They are
related to fuzziness (e.g. “if other player of my team is FAR from me then don’t pass him/her
the ball”), uncertainty (e.g. “if I CAN get the goal then kick the ball”), or incompleteness (e.g.
“if I cannot see the position of a player, by default I’m not going to pass him the ball”).
In this work we are going to provide a programming framework to Robot Soccer programmers
to model robot control in an expressive but simple way. We propose the possibility of using
fuzzy concepts for this modelization and we are going to provide some conclusions about this
tool based on a bench of practical experiments that we have done and that we describe here.
In the rest of this section we introduce RoboCupSoccer field (section 1.1) and we discuss some
previous fuzzy approaches in logic programming (sections 1.2 and 1.3. In section 2 we de-
scribe our framework, RFuzzy enumerating the features that characterize its expressivity for
modelling problems in general. From the following section we focus on the Robot Soccer
use of our tool. Section 3 describes the environment for our experimentation (the general ar-
quitecture at section 3.1 and the particular Prolog code arquitecture at section 3.2). We have
described in detail our experiments in section 4. We provide information about the decision
making analysis that we have done (section 4.1.1) and the action execution analysis (section
4.1.2). We finally conclude at section 5.

1.1 RoboCupSoccer
RoboCup is an international annual event promoting research on Artificial Intelligence,
robotics, and related field. The original motivation of RoboCup is RoboCupSoccer. As the
nature of soccer game, autonomous robots participating in RoboCupSoccer should have indi-
vidual ability such as moving and kicking the ball, cooperative ability such as coordinating
with team mates, and of course, the ability to deal with dynamic environment.

12

Robot Soccer268

RFuzzy
program program

CLP(R)
program
ISO PrologRFuzzy

package
preprocessing

CLP(R)
package
preprocessing

Fig. 1. RFuzzy architecture.

Prolog CLIP Lab (n.d.). The Ciao Prolog System offers a complete Prolog system support-
ing ISO-Prolog. Its modular design allows restriction and extension of the language both
syntactically and semantically. The Ciao Prolog Development System provides many li-
braries including a constraint logic programming system and interfaces to some program-
ming languages. In Ciao Prolog terminology, a library is implemented as either a module
or a package. Fuzzy Prolog described in Guadarrama, S.Muñoz & C.Vaucheret (2004) and
Extending Prolog with Incomplete Fuzzy Information (2005);
Default values to handel Incomplete Fuzzy Information (2006) is implemented as the package
“fuzzy.pl”, a syntactic extension of the CLP() system in the Ciao Prolog System.

2. RFuzzy tool expressiveness

Besides the advantages of Fuzzy Prolog, it truth value representatio based on constraints is too
general that it is complex to interpret for regular users. That was the reason for implementing
a simpler variant that we called RFuzzy. In RFuzzy the truth value is represented by a simple
real number.
RFuzzy is implemented as a Ciao Prolog CLIP Lab (n.d.) package because Ciao Prolog offers
the possibility of dealing with a higher order compilation through the implementation of Ciao
packages.
The compilation process of a RFuzzy program has two pre-compilation steps: (1) the RFuzzy
program is translated into CLP() constraints by means of the RFuzzy package and (2) the
program with constraints is translated into ISO Prolog by using the CLP() package. Fig. 1
shows the whole process.
As the motivation of RFuzzy was providing a tool for practical application, it was loaded
with many nice features that represent an adventage with respect to previous fuzzy tools to
model real problems. In this section we enumerate and describe some of the most interesting
characteristics of RFuzzy expressiveness through its syntax (to show its simplicity that is the
other advantage of RFuzzy). For the examples we are going to use intuitive concepts related
to soccer vocabulary although many of ther are not use for the simulator because it use just
simple variables of position and speed but they are more ilustrative in the interest of concepts
understanding.

2.1 Types definition
Prolog does not have types. The problem of not having types is that it is impossible to return
constructive answers but using constraints. RFuzzy does not use constrains because they are
not friendly to return constructive results and that is the reason for having types instead.
In RFuzzy types are defined according to (1) syntax.

:- set prop pred/ar = type pred 1/1 , type pred n/1 . (1)

where set prop is a reserved word, pred is the name of the typed predicate, ar is its arity and
type pred 1, type pred n (n 2,3, . . . , ar) are predicates used to define types for each argument
of pred. They must have arity 1. The definition is constraining the values of the n th argument

RoboCupSoccer consists of several leagues, providing test beds for various research scale:
Simulation League, Small Size Robot League (F-180), Middle Size Robot League (f-2000), Four-
Legged Robot League, Humanoid League, E-League and RoboCup Commentator Exhibition.
The first E-League was held at RoboCup 2004.This league is a simplified version of Small Size
Robot League, where vision processing and communications are factored out, thus provided
by the league. Each team in this league consists of four small sized autonomous robots, one
of whom can be a goalkeeper. The match lasts for two equal periods of 10 minutes.
We employ RoboCupSoccer Simulation League for the sake of simplicity because we are just
focused on the robot control layer.

1.2 Fuzzy Approaches in Logic Programming
Introducing Fuzzy Logic into Logic Programming has provided the development of several
fuzzy systems over Prolog. These systems replace its inference mechanism, SLD-resolution,
with a fuzzy variant that is able to handle partial truth. Most of these systems implement the
fuzzy resolution introduced by Lee in Lee (1972), as the Prolog-Elf system Ishizuka & Kanai
(1985), the FRIL Prolog system Baldwin et al. (1995) and the F-Prolog language Li & Liu (1990).
However, there is no common method for fuzzifying Prolog, as noted in Shen et al. (1989).
Some of these Fuzzy Prolog systems only consider fuzziness on predicates whereas other
systems consider fuzzy facts or fuzzy rules. There is no agreement about which fuzzy logic
should be used. Most of them use min-max logic (for modelling the conjunction and disjunc-
tion operations) but other systems just use Łukasiewicz logic Klawonn & Kruse (1994).
There is also an extension of constraint logic programming Bistarelli et al. (2001), which can
model logics based on semiring structures. This framework can model min-max fuzzy logic,
which is the only logic with semiring structure. Another theoretical model for fuzzy logic
programming without negation has been proposed by Vojtáš in Vojtas (2001), which deals
with many-valued implications.

1.3 Fuzzy Prolog
One of the most promising fuzzy tools for Prolog was the “Fuzzy Prolog” system
Vaucheret et al. (2002); Guadarrama, Munoz-Hernandez & Vaucheret (2004). The most impor-
tant advantages against the other approaches are:

1. A truth value is represented as a finite union of sub-intervals on 0,1 . An interval is a
particular case of union of one element, and a unique truth value (a real number) is a
particular case of having an interval with only one element.

2. A truth value is propagated through the rules by means of an aggregation operator. The
definition of this aggregation operator is general and it subsumes conjunctive opera-
tors (triangular norms Klement et al. (n.d.) like min, prod, etc.), disjunctive operators
Trillas et al. (1995) (triangular co-norms, like max, sum, etc.), average operators (aver-
ages as arithmetic average, quasi-linear average, etc) and hybrid operators (combina-
tions of the above operators) Pradera et al. (2002)).

3. Crisp and fuzzy reasoning are consistently combined Munoz-Hernandez et al. (2002).

Fuzzy Prolog adds fuzziness to a Prolog compiler using CLP() instead of implement-
ing a new fuzzy resolution method, as other former fuzzy Prologs do. It represents in-
tervals as constraints over real numbers and aggregation operators as operations with these
constraints, so it uses Prolog built-in inference mechanism to handle the concept of par-
tial truth. From the implementation point of view, Fuzzy Prolog is implemented over Ciao

RFuzzy: an easy and expressive tool for modelling the cognitive layer in RoboCupSoccer 269

RFuzzy
program program

CLP(R)
program
ISO PrologRFuzzy

package
preprocessing

CLP(R)
package
preprocessing

Fig. 1. RFuzzy architecture.

Prolog CLIP Lab (n.d.). The Ciao Prolog System offers a complete Prolog system support-
ing ISO-Prolog. Its modular design allows restriction and extension of the language both
syntactically and semantically. The Ciao Prolog Development System provides many li-
braries including a constraint logic programming system and interfaces to some program-
ming languages. In Ciao Prolog terminology, a library is implemented as either a module
or a package. Fuzzy Prolog described in Guadarrama, S.Muñoz & C.Vaucheret (2004) and
Extending Prolog with Incomplete Fuzzy Information (2005);
Default values to handel Incomplete Fuzzy Information (2006) is implemented as the package
“fuzzy.pl”, a syntactic extension of the CLP() system in the Ciao Prolog System.

2. RFuzzy tool expressiveness

Besides the advantages of Fuzzy Prolog, it truth value representatio based on constraints is too
general that it is complex to interpret for regular users. That was the reason for implementing
a simpler variant that we called RFuzzy. In RFuzzy the truth value is represented by a simple
real number.
RFuzzy is implemented as a Ciao Prolog CLIP Lab (n.d.) package because Ciao Prolog offers
the possibility of dealing with a higher order compilation through the implementation of Ciao
packages.
The compilation process of a RFuzzy program has two pre-compilation steps: (1) the RFuzzy
program is translated into CLP() constraints by means of the RFuzzy package and (2) the
program with constraints is translated into ISO Prolog by using the CLP() package. Fig. 1
shows the whole process.
As the motivation of RFuzzy was providing a tool for practical application, it was loaded
with many nice features that represent an adventage with respect to previous fuzzy tools to
model real problems. In this section we enumerate and describe some of the most interesting
characteristics of RFuzzy expressiveness through its syntax (to show its simplicity that is the
other advantage of RFuzzy). For the examples we are going to use intuitive concepts related
to soccer vocabulary although many of ther are not use for the simulator because it use just
simple variables of position and speed but they are more ilustrative in the interest of concepts
understanding.

2.1 Types definition
Prolog does not have types. The problem of not having types is that it is impossible to return
constructive answers but using constraints. RFuzzy does not use constrains because they are
not friendly to return constructive results and that is the reason for having types instead.
In RFuzzy types are defined according to (1) syntax.

:- set prop pred/ar = type pred 1/1 , type pred n/1 . (1)

where set prop is a reserved word, pred is the name of the typed predicate, ar is its arity and
type pred 1, type pred n (n 2,3, . . . , ar) are predicates used to define types for each argument
of pred. They must have arity 1. The definition is constraining the values of the n th argument

RoboCupSoccer consists of several leagues, providing test beds for various research scale:
Simulation League, Small Size Robot League (F-180), Middle Size Robot League (f-2000), Four-
Legged Robot League, Humanoid League, E-League and RoboCup Commentator Exhibition.
The first E-League was held at RoboCup 2004.This league is a simplified version of Small Size
Robot League, where vision processing and communications are factored out, thus provided
by the league. Each team in this league consists of four small sized autonomous robots, one
of whom can be a goalkeeper. The match lasts for two equal periods of 10 minutes.
We employ RoboCupSoccer Simulation League for the sake of simplicity because we are just
focused on the robot control layer.

1.2 Fuzzy Approaches in Logic Programming
Introducing Fuzzy Logic into Logic Programming has provided the development of several
fuzzy systems over Prolog. These systems replace its inference mechanism, SLD-resolution,
with a fuzzy variant that is able to handle partial truth. Most of these systems implement the
fuzzy resolution introduced by Lee in Lee (1972), as the Prolog-Elf system Ishizuka & Kanai
(1985), the FRIL Prolog system Baldwin et al. (1995) and the F-Prolog language Li & Liu (1990).
However, there is no common method for fuzzifying Prolog, as noted in Shen et al. (1989).
Some of these Fuzzy Prolog systems only consider fuzziness on predicates whereas other
systems consider fuzzy facts or fuzzy rules. There is no agreement about which fuzzy logic
should be used. Most of them use min-max logic (for modelling the conjunction and disjunc-
tion operations) but other systems just use Łukasiewicz logic Klawonn & Kruse (1994).
There is also an extension of constraint logic programming Bistarelli et al. (2001), which can
model logics based on semiring structures. This framework can model min-max fuzzy logic,
which is the only logic with semiring structure. Another theoretical model for fuzzy logic
programming without negation has been proposed by Vojtáš in Vojtas (2001), which deals
with many-valued implications.

1.3 Fuzzy Prolog
One of the most promising fuzzy tools for Prolog was the “Fuzzy Prolog” system
Vaucheret et al. (2002); Guadarrama, Munoz-Hernandez & Vaucheret (2004). The most impor-
tant advantages against the other approaches are:

1. A truth value is represented as a finite union of sub-intervals on 0,1 . An interval is a
particular case of union of one element, and a unique truth value (a real number) is a
particular case of having an interval with only one element.

2. A truth value is propagated through the rules by means of an aggregation operator. The
definition of this aggregation operator is general and it subsumes conjunctive opera-
tors (triangular norms Klement et al. (n.d.) like min, prod, etc.), disjunctive operators
Trillas et al. (1995) (triangular co-norms, like max, sum, etc.), average operators (aver-
ages as arithmetic average, quasi-linear average, etc) and hybrid operators (combina-
tions of the above operators) Pradera et al. (2002)).

3. Crisp and fuzzy reasoning are consistently combined Munoz-Hernandez et al. (2002).

Fuzzy Prolog adds fuzziness to a Prolog compiler using CLP() instead of implement-
ing a new fuzzy resolution method, as other former fuzzy Prologs do. It represents in-
tervals as constraints over real numbers and aggregation operators as operations with these
constraints, so it uses Prolog built-in inference mechanism to handle the concept of par-
tial truth. From the implementation point of view, Fuzzy Prolog is implemented over Ciao

Robot Soccer270

The RFuzzy syntax for the predicate far/1 (represented in Fig.2) is:

teenager : # 0.5,0 , 10,1 .

2.4 Rule definition with truth values and credibility
A tool which only allows the user to define truth values through functions and facts lacks on
allowing him to combine those truth values for representing more complex situations. A rule
is the tool to combine the truth values of facts, functions, and other rules.
Rules allow the user to combine truth values in the correct way (by means of aggregation
operators, like minimum, maximum, product, etc.). The aggregation operator combines the truth
values of the subgoals of the body of the rule to obtain the truth value of the head of the rule.
Appart from this, rules are assigned a credibility value to obtain the final truth value for the
head of the clause. Credibility is used to express how much we trust a rule. It is used another
opperator to aggregate the truth value obtained (from the aggregation of the subgoals of the
body) with the rule’s credibility.
RFuzzy offers a simple syntax for representing these rules, defined in (5). There are two ag-
gregation operators, op2 for combining the truth values of the subgoals of the rule body and
op1 for combining the previous result with the rule’s credibility. The user can choose for any
of them an aggregation operator from the list of the available ones1 or define his/her own
aggregation operator.

pred arg1 , argn cred (op1, value1) : op2 (4)

pred1 args pred 1 , predm args pred m .

The following example uses the operator prod for aggregating truth values of the subgoals
of the body and min to aggregate the result with the credibility of the rule (which is 0.8).
“cred (op1, value1)” can only appear 0 or 1 times.

good player J cred min,0.8 : prod swi f t J , agile J , has experience J .

2.5 General and Conditioned Default Truth Values
Unfortunately, information provided by the user is not complete in general. So there are many
cases in which we have no information about the truth value for a fuzzy predicate of an indi-
vidual or a set of them. This happend many times in Robot soccer (not in the simulator but
in games with real robots) when the camara does not detect correctly any player of the ball
position. Nevertheless, it is interesting not to stop a complex query evaluation just because we
have no information about one or more subgoals if we can use a reasonable approximation. A
solution to this problem is using default truth values for these cases. The RFuzzy extension to
define a default truth value for a predicate when applied to individuals for which the user has
not defined an explicit truth value is named general default truth value. The syntax for defining
a general default truth value is shown in (5).
Conditioned default truth value is used when the default truth value only applies to a subset of
the domain. This subset is defined by a membership predicate which is true only when an
individual belongs to the subset. The membership predicate (membership predicate/ar) and the

1Aggregation operators available are: min for minimum, max for maximum, prod for the product, luka
for the Łukasiewicz operator, dprod for the inverse product, dluka for the inverse Łukasiewicz operator
and complement.

1

0.5 5
0

0

far

10 20 distance
Fig. 2. Far truth value continuous representation

of pred to the values of the type type pred n. This definition of types ensures that the values
assigned to the arguments of pred are correctly typed.
The example below shows that the arguments of predicates is striker/1 and is faster than/2 have
to be of type player/1. The domain of type player is enumerated.

: set prop is striker/1 player/1.

: set prop is f aster than/2 player/1, player/1.

player robot1 . player robot2 . player robot3 .

player robot4 . player robot5 .

2.2 Simple truth value assignment
It is possible to assign a truth value to an individual using fuzzy facts. Their syntax, that we
can see in (2), is different than regular Prolog facts syntax.

pred args value truth val. (2)

Arguments, args, should be ground and the truth value, truth val, must be a real number
between 0 and 1. The example below defines that the player robot3 is a fast player with a truth
value 0.9.

f ast player robot3 value 0.9.

2.3 Continuous function to represent truth values
Facts definition (see subsection 2.2) is worth for a finite (and relative small) number of indi-
viduals. Nevertheless, it is very common to represent fuzzy truth using continuous functions.
Fig. 2 shows an example in which the continuous function assigns the truth value of being far
to a distance.
Functions used to define the truth value of some group of individuals are usually continuous
and linear over intervals. To define those functions there is no necessity to write down the
value assigned to each element in their domains. We have to take into account that the domain
can be infinite.
RFuzzy provides the syntax for defining functions by stretches. This syntax is shown in (3).
External brackets represent the Prolog list symbols and internal brackets represent cardinality
in the formula notation. Predicate pred has arity 1, val1, ..., valN should be ground terms
representing numbers of the domain (they are possible values of the argument of pred) and
truth val1, ..., truth valN should be the truth values associated to these numbers. The truth
value of the rest of the elements is obtained by interpolation.

pred :# val1, truth val1 , val2, truth val2 , valn, truth valn . (3)

RFuzzy: an easy and expressive tool for modelling the cognitive layer in RoboCupSoccer 271

The RFuzzy syntax for the predicate far/1 (represented in Fig.2) is:

teenager : # 0.5,0 , 10,1 .

2.4 Rule definition with truth values and credibility
A tool which only allows the user to define truth values through functions and facts lacks on
allowing him to combine those truth values for representing more complex situations. A rule
is the tool to combine the truth values of facts, functions, and other rules.
Rules allow the user to combine truth values in the correct way (by means of aggregation
operators, like minimum, maximum, product, etc.). The aggregation operator combines the truth
values of the subgoals of the body of the rule to obtain the truth value of the head of the rule.
Appart from this, rules are assigned a credibility value to obtain the final truth value for the
head of the clause. Credibility is used to express how much we trust a rule. It is used another
opperator to aggregate the truth value obtained (from the aggregation of the subgoals of the
body) with the rule’s credibility.
RFuzzy offers a simple syntax for representing these rules, defined in (5). There are two ag-
gregation operators, op2 for combining the truth values of the subgoals of the rule body and
op1 for combining the previous result with the rule’s credibility. The user can choose for any
of them an aggregation operator from the list of the available ones1 or define his/her own
aggregation operator.

pred arg1 , argn cred (op1,value1) : op2 (4)

pred1 args pred 1 , predm args pred m .

The following example uses the operator prod for aggregating truth values of the subgoals
of the body and min to aggregate the result with the credibility of the rule (which is 0.8).
“cred (op1,value1)” can only appear 0 or 1 times.

good player J cred min,0.8 : prod swi f t J , agile J , has experience J .

2.5 General and Conditioned Default Truth Values
Unfortunately, information provided by the user is not complete in general. So there are many
cases in which we have no information about the truth value for a fuzzy predicate of an indi-
vidual or a set of them. This happend many times in Robot soccer (not in the simulator but
in games with real robots) when the camara does not detect correctly any player of the ball
position. Nevertheless, it is interesting not to stop a complex query evaluation just because we
have no information about one or more subgoals if we can use a reasonable approximation. A
solution to this problem is using default truth values for these cases. The RFuzzy extension to
define a default truth value for a predicate when applied to individuals for which the user has
not defined an explicit truth value is named general default truth value. The syntax for defining
a general default truth value is shown in (5).
Conditioned default truth value is used when the default truth value only applies to a subset of
the domain. This subset is defined by a membership predicate which is true only when an
individual belongs to the subset. The membership predicate (membership predicate/ar) and the

1Aggregation operators available are: min for minimum, max for maximum, prod for the product, luka
for the Łukasiewicz operator, dprod for the inverse product, dluka for the inverse Łukasiewicz operator
and complement.

1

0.5 5
0

0

far

10 20 distance
Fig. 2. Far truth value continuous representation

of pred to the values of the type type pred n. This definition of types ensures that the values
assigned to the arguments of pred are correctly typed.
The example below shows that the arguments of predicates is striker/1 and is faster than/2 have
to be of type player/1. The domain of type player is enumerated.

: set prop is striker/1 player/1.

: set prop is f aster than/2 player/1, player/1.

player robot1 . player robot2 . player robot3 .

player robot4 . player robot5 .

2.2 Simple truth value assignment
It is possible to assign a truth value to an individual using fuzzy facts. Their syntax, that we
can see in (2), is different than regular Prolog facts syntax.

pred args value truth val. (2)

Arguments, args, should be ground and the truth value, truth val, must be a real number
between 0 and 1. The example below defines that the player robot3 is a fast player with a truth
value 0.9.

f ast player robot3 value 0.9.

2.3 Continuous function to represent truth values
Facts definition (see subsection 2.2) is worth for a finite (and relative small) number of indi-
viduals. Nevertheless, it is very common to represent fuzzy truth using continuous functions.
Fig. 2 shows an example in which the continuous function assigns the truth value of being far
to a distance.
Functions used to define the truth value of some group of individuals are usually continuous
and linear over intervals. To define those functions there is no necessity to write down the
value assigned to each element in their domains. We have to take into account that the domain
can be infinite.
RFuzzy provides the syntax for defining functions by stretches. This syntax is shown in (3).
External brackets represent the Prolog list symbols and internal brackets represent cardinality
in the formula notation. Predicate pred has arity 1, val1, ..., valN should be ground terms
representing numbers of the domain (they are possible values of the argument of pred) and
truth val1, ..., truth valN should be the truth values associated to these numbers. The truth
value of the rest of the elements is obtained by interpolation.

pred :# val1, truth val1 , val2, truth val2 , valn, truth valn . (3)

Robot Soccer272

Fig. 3. Generic System Architecture

3.1.1 Low Level Communication Layer
As the name suggests, this is the lowest layer of our architecture. This layer includes all hard-
wares and softwares provided by the league. The robots, infrared transmitter, video cam-
era, communication network, and vision systems belong to this layer. Different leagues in
RoboCupSoccer are represented by different Low Level Communication Layer. E-League has
the robots, Doraemon vision package, and communication server as part of this layer, whereas
Simulation League has only The RoboCup Soccer Simulator as part of this layer.

3.1.2 Logical Communication Layer
This layer acts as the interface between low level communication layer and the upper layers.
It is intended to hide physical structure of the environment from the upper layer. As long as
the interface of the services offered by this layer remain unchanged, then the rest of the upper
layer can also remain unchanged Garcı́a et al. (2004). Basic services that should be offered for
E-league are :

Reading the packets generated by video server.

Establishing communication with the communication server.

Continuous sensing for the referee decision.

We have used the Simuro environment FIRA (n.d.). SimuroSot consists of a server which has
the soccer game environments (playground, robots, score board, etc.) and two client programs
with the game strategies. A 3D color graphic screen displays the match. Teams can make their
own strategies and compete with each other without hardware.

3.1.3 Sensorial/Effectorial Layer
This layer serves as a bridging layer between the logical communication layer and the cogni-
tive layer. It translates visual information into the representation needed by cognitive layer,
and also translates output from cognitive layer into basic action to be performed by the robots.
In our implementation for Simulation League which use Prolog programs as cognitive layer

predicate to which it is applied (pred/ar) need to have the same arity (ar). The syntax is shown
in (6).

:- default(pred/ar, truth value) . (5)

:- default(pred/ar, truth value) = membership predicate/ar. (6)

pred/ar is in both cases the predicate to which we are defining default values. As expected,
when defining the three cases (explicit, conditioned and default truth value) only one will be
given back when doing a query. The precedence when looking for the truth value goes from
the most concrete to the least one.
The code from the example below joint with the code from examples in subsections 2.1 and
2.2 assigns to the predicate fast player a truth value of 0.8 for robot2 (default truth value), 0.6
when it is robot1 (conditioned default truth value for the goal keeper) and 0.9 when it is robot3
(explicit truth value).

: de f ault f ast player/1,0.6 goal keeper/1.

: de f ault f ast player/1,0.8 .

goal keeper robot1 .

2.6 Constructive Answers
A very interesting characteristic for a fuzzy tool is being able to provide constructive answers
for queries. The regular (easy) questions ask for the truth value of an element. For example,
how fast is robot3? (See left hand side example below)

? f ast player robot3,V . ? f ast player X,V ,V 0.7.

V 0.9?; V 0.9, X robot3?;

no V 0.8, X robot2?;

V 0.8, X robot4?;

V 0.8, X robot5?;

no

But the really interesting queries are the ones that ask for values that satisfy constraints over
the truth value. For example, which players are very fast? (See right hand side example
above). RFuzzy provides this constructive functionality.

3. Environment

In this work we have prepared a complete framework with all the interfaces necessary for
someone interested in defining strategies for robot control. In this section we are going to
describe all the components of the environment that we have used for our experiments and
we provide them for their free use.

3.1 Architecture and Implementation Details
Based on agent system architecture proposed by Garcı́a et al. (2004), in Hernndez & Wiguna
(2007) we proposed a generic system architecture for RoboCup offering flexibility on choice of
programming language and minimal modification to switch between leagues. This architec-
ture is shown in figure 3. Prolog is proposed for cognitive layer, and in Hernndez & Wiguna
(2007) we use Fuzzy Prolog Guadarrama, Munoz-Hernandez & Vaucheret (2004) for imple-
menting the cognitive layer and we use the Atan library and a RoboCupSoccer Simulator.

RFuzzy: an easy and expressive tool for modelling the cognitive layer in RoboCupSoccer 273

Fig. 3. Generic System Architecture

3.1.1 Low Level Communication Layer
As the name suggests, this is the lowest layer of our architecture. This layer includes all hard-
wares and softwares provided by the league. The robots, infrared transmitter, video cam-
era, communication network, and vision systems belong to this layer. Different leagues in
RoboCupSoccer are represented by different Low Level Communication Layer. E-League has
the robots, Doraemon vision package, and communication server as part of this layer, whereas
Simulation League has only The RoboCup Soccer Simulator as part of this layer.

3.1.2 Logical Communication Layer
This layer acts as the interface between low level communication layer and the upper layers.
It is intended to hide physical structure of the environment from the upper layer. As long as
the interface of the services offered by this layer remain unchanged, then the rest of the upper
layer can also remain unchanged Garcı́a et al. (2004). Basic services that should be offered for
E-league are :

Reading the packets generated by video server.

Establishing communication with the communication server.

Continuous sensing for the referee decision.

We have used the Simuro environment FIRA (n.d.). SimuroSot consists of a server which has
the soccer game environments (playground, robots, score board, etc.) and two client programs
with the game strategies. A 3D color graphic screen displays the match. Teams can make their
own strategies and compete with each other without hardware.

3.1.3 Sensorial/Effectorial Layer
This layer serves as a bridging layer between the logical communication layer and the cogni-
tive layer. It translates visual information into the representation needed by cognitive layer,
and also translates output from cognitive layer into basic action to be performed by the robots.
In our implementation for Simulation League which use Prolog programs as cognitive layer

predicate to which it is applied (pred/ar) need to have the same arity (ar). The syntax is shown
in (6).

:- default(pred/ar, truth value) . (5)

:- default(pred/ar, truth value) = membership predicate/ar. (6)

pred/ar is in both cases the predicate to which we are defining default values. As expected,
when defining the three cases (explicit, conditioned and default truth value) only one will be
given back when doing a query. The precedence when looking for the truth value goes from
the most concrete to the least one.
The code from the example below joint with the code from examples in subsections 2.1 and
2.2 assigns to the predicate fast player a truth value of 0.8 for robot2 (default truth value), 0.6
when it is robot1 (conditioned default truth value for the goal keeper) and 0.9 when it is robot3
(explicit truth value).

: de f ault f ast player/1,0.6 goal keeper/1.

: de f ault f ast player/1,0.8 .

goal keeper robot1 .

2.6 Constructive Answers
A very interesting characteristic for a fuzzy tool is being able to provide constructive answers
for queries. The regular (easy) questions ask for the truth value of an element. For example,
how fast is robot3? (See left hand side example below)

? f ast player robot3,V . ? f ast player X,V ,V 0.7.

V 0.9?; V 0.9, X robot3?;

no V 0.8, X robot2?;

V 0.8, X robot4?;

V 0.8, X robot5?;

no

But the really interesting queries are the ones that ask for values that satisfy constraints over
the truth value. For example, which players are very fast? (See right hand side example
above). RFuzzy provides this constructive functionality.

3. Environment

In this work we have prepared a complete framework with all the interfaces necessary for
someone interested in defining strategies for robot control. In this section we are going to
describe all the components of the environment that we have used for our experiments and
we provide them for their free use.

3.1 Architecture and Implementation Details
Based on agent system architecture proposed by Garcı́a et al. (2004), in Hernndez & Wiguna
(2007) we proposed a generic system architecture for RoboCup offering flexibility on choice of
programming language and minimal modification to switch between leagues. This architec-
ture is shown in figure 3. Prolog is proposed for cognitive layer, and in Hernndez & Wiguna
(2007) we use Fuzzy Prolog Guadarrama, Munoz-Hernandez & Vaucheret (2004) for imple-
menting the cognitive layer and we use the Atan library and a RoboCupSoccer Simulator.

Robot Soccer274

Fig. 5. Prolog code Architecture

3.2.1 Main Modules
The module yellow move isolated X Y.pl starts the comunication in between the inter-
face and the team strategy. After stablishing the connection goes into a loop for deciding
(with the help of module strategy X Y.pl) an action for each robot. These actions should
be transmited to the simulator server as a list of speeds of the set of robots. During the
loop a trace of the game is generated also.

The module strategy X Y.pl provide the strategy information to the above module to
take a decision about the robots action.

3.2.2 Auxiliary Modules
In the module stage management.pl the value of the stage variable (that contains the
data of the environment as for example the position of the players and the ball.

All predicates related with loading stored data from the stage variable and creating new
variables for the strategy are in the module environment.pl. For example getting the
ball position or calculating its speed from its two last positions.

The module crisp conditions strategy.pl contains the predicates that evaluate the con-
ditions of the environment in each cycle and, acording to them, determine (using crisp
rules) the action to develope by each robot.

The module fuzzy conditions strategy.pl contains the predicates that evaluate the con-
ditions of the environment in each cycle and, acording to them, determine (using fuzzy
rules) the action to develope by each robot.

The set of high level actions (e.g. shoot, pass, etc.) that the robots can developed are
implemente in the module actions.pl.

Fig. 4. Environment Architecture

and Java library as logical communication layer, this means translating visual information
into prolog predicates and interpreting prolog query result. We use the Rakiduam UNCOMA
(2006) interface with the dll files (“tcpb.dll” and “tcpy.dll”) that are necessary in between the
simulator and the Prolog compiler.

3.1.4 Cognitive Layer
Cognitive layer is where the strategy is implemented. It is the highest level layer. Our work
is focused in this layer where we employ The Ciao Prolog System Hermenegildo et al. (1999),
and in particulas the RFuzzy Prolog library, to reason over the provided information. Our
approach is providing the capability of handling fuzzy, uncertain and incomplete information
at the cognitive layer. This information is very close to the human reasoning, so this frame-
work is improving the human-like control of this layer. A strategy can be easily implemented
on this layer without having to put effort on low level technical details more related to the
machine than to the human mind.
In this contribution we have changed (with respect to Hernndez & Wiguna (2007)) the fuzzy
library and the RoboCupSoccer simulator to obtain more precise results related the use of
fuzzy and crisp rules in the control of the robots. The fuzzy library that we use here is RFuzzy
(that is decribed in detail in section 2), and for the simulation we use Rakiduam UNCOMA
(2006). We can see in figure 4 the environment architecture.

3.2 Prolog Code Arquitecture
For this comparative study we have implemented two main modules and a set of auxiliary
modules. We have also used a couple of communication modules from UNCOMA (2006).
The complete modules arquitecture is represented in figure 5 whose internal running is de-
scribed below.

RFuzzy: an easy and expressive tool for modelling the cognitive layer in RoboCupSoccer 275

Fig. 5. Prolog code Architecture

3.2.1 Main Modules
The module yellow move isolated X Y.pl starts the comunication in between the inter-
face and the team strategy. After stablishing the connection goes into a loop for deciding
(with the help of module strategy X Y.pl) an action for each robot. These actions should
be transmited to the simulator server as a list of speeds of the set of robots. During the
loop a trace of the game is generated also.

The module strategy X Y.pl provide the strategy information to the above module to
take a decision about the robots action.

3.2.2 Auxiliary Modules
In the module stage management.pl the value of the stage variable (that contains the
data of the environment as for example the position of the players and the ball.

All predicates related with loading stored data from the stage variable and creating new
variables for the strategy are in the module environment.pl. For example getting the
ball position or calculating its speed from its two last positions.

The module crisp conditions strategy.pl contains the predicates that evaluate the con-
ditions of the environment in each cycle and, acording to them, determine (using crisp
rules) the action to develope by each robot.

The module fuzzy conditions strategy.pl contains the predicates that evaluate the con-
ditions of the environment in each cycle and, acording to them, determine (using fuzzy
rules) the action to develope by each robot.

The set of high level actions (e.g. shoot, pass, etc.) that the robots can developed are
implemente in the module actions.pl.

Fig. 4. Environment Architecture

and Java library as logical communication layer, this means translating visual information
into prolog predicates and interpreting prolog query result. We use the Rakiduam UNCOMA
(2006) interface with the dll files (“tcpb.dll” and “tcpy.dll”) that are necessary in between the
simulator and the Prolog compiler.

3.1.4 Cognitive Layer
Cognitive layer is where the strategy is implemented. It is the highest level layer. Our work
is focused in this layer where we employ The Ciao Prolog System Hermenegildo et al. (1999),
and in particulas the RFuzzy Prolog library, to reason over the provided information. Our
approach is providing the capability of handling fuzzy, uncertain and incomplete information
at the cognitive layer. This information is very close to the human reasoning, so this frame-
work is improving the human-like control of this layer. A strategy can be easily implemented
on this layer without having to put effort on low level technical details more related to the
machine than to the human mind.
In this contribution we have changed (with respect to Hernndez & Wiguna (2007)) the fuzzy
library and the RoboCupSoccer simulator to obtain more precise results related the use of
fuzzy and crisp rules in the control of the robots. The fuzzy library that we use here is RFuzzy
(that is decribed in detail in section 2), and for the simulation we use Rakiduam UNCOMA
(2006). We can see in figure 4 the environment architecture.

3.2 Prolog Code Arquitecture
For this comparative study we have implemented two main modules and a set of auxiliary
modules. We have also used a couple of communication modules from UNCOMA (2006).
The complete modules arquitecture is represented in figure 5 whose internal running is de-
scribed below.

Robot Soccer276

4.1 Simple Movements
For a set of simple movements we have study the behavior of the players in two aspects:
decision making and action execution. We compare the control of a player implemented using
crisp rules and the control of a player implemented using fuzzy rules for both aspects:

Decision Making: Which one is the best action to chose. The crisp and the fuzzy vari-
ants will take different decisions sometimes. This is analyzed in the comparative study.
When the decision is the same, the execution of the action will be the same because this
experiments just use basic actions that are not taking into account the environment con-
ditions. The code for this part is in the module conditions X strategy.pl where X can be
crisp or fuzzy.

Action Execution: How the action is executed. We have chosen some actions that de-
pend on some factors as speed or direction of the ball. The execution of the action is
examined but not the previous decision that have taken us to do it. The code for defin-
ing the execution of the basic actions (executed after the decision making process of the
first experiments) and the actions that are programmed using crisp and fuzzy logic (for
their comparison) is in module actions.pl.

The tests are clasified attending to the action that is expected to do the robot (shoot, clear or
pass). We have used for the bench of tests that we have made the same structure for an action
X:

1. Action X: description of the players that participate and showing (through an image)
the initial position of the robots.

2. Analysis of the crisp logic in Action X

3. Analysis of the fuzzy logic in Action C

4. Crisp and Fuzzy logic comparison

4.1.1 Decision Making Analysis
The action that is made for a robot is chosen attending to a set of variables. These variables
describe the environment of the game. The variables used for decision making using crip logic
are different from the set of variables that are used for decision making through fuzzy logic.
In figure 7 there are some of these variables that are used by module conditions X strategy.pl
to decide which action to perform by the robot.
Close to the definition of values for the variables is the distribution of areas in which we have
divided the game field. It is represented in figure 8.
We are going to provide a brief description of these variables to understand their relevance in
the comparative study:

Relative position is the position of the ball in the field attending to the position of
the players with respect the bal. It is the same in fuzzy and crisp logic. There are five
possible values (ofensive left side area, ofensive right side area, ofensive centre, ofensive
closure, defensive area).

Crisp ball position is the area from 8 where the ball is. It has twelve possible values.

Crisp goal direction is the angle (in grades and always positive) that if defined in be-
tween the trayectory of the ball and the segment that joins the ball with the centre of the
opposite goal area. This variable provides information about the direction of the ball
with respect to the opposite goal area. The possibles values are in the following ranges:
[0o..45o] or [135o ..180o] if it is in the direction of the goal area, and [45o..135o] if it is not.

Fig. 6. Robots positions

The set of medium level actions (e.g. moving the robot to a concrete position) that the
robots can developed are implemente in the module primitives.pl.

The set of medium level actions (e.g. moving the robot to a concrete position) that the
robots can developed are implemente in the module navegation.pl.

The module logger.pl provide the trace of the the game

3.2.3 Communication Modules
The module sim video server tcp.pl abstracts the strategy programming of the com-
munication of the video server. It receives the ambient data from the video server and
it transforms them into logic rules in Prolog.

The module sim command server.pl abstract the logic programming to the communi-
cation with the interface. It maintains the communication with the command server
and decodify the Prolog logic rules for being understandable by the command server.

4. Comparative Study

For testing the use of different logics we have define the structure of the comparative study.
We have design and implement all modules (described in section 3.2) that are necessary to
model the basic strategy of a math, the decission making, the actions execution and the test
cases.
Figure 6 identifies the name of the position of each robot to reference them in the rest of the
paper.
In this section we are going to describe some test cases. Some of them are simple moves and
others are strategies in matches.

RFuzzy: an easy and expressive tool for modelling the cognitive layer in RoboCupSoccer 277

4.1 Simple Movements
For a set of simple movements we have study the behavior of the players in two aspects:
decision making and action execution. We compare the control of a player implemented using
crisp rules and the control of a player implemented using fuzzy rules for both aspects:

Decision Making: Which one is the best action to chose. The crisp and the fuzzy vari-
ants will take different decisions sometimes. This is analyzed in the comparative study.
When the decision is the same, the execution of the action will be the same because this
experiments just use basic actions that are not taking into account the environment con-
ditions. The code for this part is in the module conditions X strategy.pl where X can be
crisp or fuzzy.

Action Execution: How the action is executed. We have chosen some actions that de-
pend on some factors as speed or direction of the ball. The execution of the action is
examined but not the previous decision that have taken us to do it. The code for defin-
ing the execution of the basic actions (executed after the decision making process of the
first experiments) and the actions that are programmed using crisp and fuzzy logic (for
their comparison) is in module actions.pl.

The tests are clasified attending to the action that is expected to do the robot (shoot, clear or
pass). We have used for the bench of tests that we have made the same structure for an action
X:

1. Action X: description of the players that participate and showing (through an image)
the initial position of the robots.

2. Analysis of the crisp logic in Action X

3. Analysis of the fuzzy logic in Action C

4. Crisp and Fuzzy logic comparison

4.1.1 Decision Making Analysis
The action that is made for a robot is chosen attending to a set of variables. These variables
describe the environment of the game. The variables used for decision making using crip logic
are different from the set of variables that are used for decision making through fuzzy logic.
In figure 7 there are some of these variables that are used by module conditions X strategy.pl
to decide which action to perform by the robot.
Close to the definition of values for the variables is the distribution of areas in which we have
divided the game field. It is represented in figure 8.
We are going to provide a brief description of these variables to understand their relevance in
the comparative study:

Relative position is the position of the ball in the field attending to the position of
the players with respect the bal. It is the same in fuzzy and crisp logic. There are five
possible values (ofensive left side area, ofensive right side area, ofensive centre, ofensive
closure, defensive area).

Crisp ball position is the area from 8 where the ball is. It has twelve possible values.

Crisp goal direction is the angle (in grades and always positive) that if defined in be-
tween the trayectory of the ball and the segment that joins the ball with the centre of the
opposite goal area. This variable provides information about the direction of the ball
with respect to the opposite goal area. The possibles values are in the following ranges:
[0o..45o] or [135o ..180o] if it is in the direction of the goal area, and [45o..135o] if it is not.

Fig. 6. Robots positions

The set of medium level actions (e.g. moving the robot to a concrete position) that the
robots can developed are implemente in the module primitives.pl.

The set of medium level actions (e.g. moving the robot to a concrete position) that the
robots can developed are implemente in the module navegation.pl.

The module logger.pl provide the trace of the the game

3.2.3 Communication Modules
The module sim video server tcp.pl abstracts the strategy programming of the com-
munication of the video server. It receives the ambient data from the video server and
it transforms them into logic rules in Prolog.

The module sim command server.pl abstract the logic programming to the communi-
cation with the interface. It maintains the communication with the command server
and decodify the Prolog logic rules for being understandable by the command server.

4. Comparative Study

For testing the use of different logics we have define the structure of the comparative study.
We have design and implement all modules (described in section 3.2) that are necessary to
model the basic strategy of a math, the decission making, the actions execution and the test
cases.
Figure 6 identifies the name of the position of each robot to reference them in the rest of the
paper.
In this section we are going to describe some test cases. Some of them are simple moves and
others are strategies in matches.

Robot Soccer278

Fig. 8. Areas of the field

where it is said that it is going to be calculated the truth value for the action of shooting for
a striker. The truth value will be a value in the range [0..1](0 means that it is a bad action for
the player in its situation and 1 means that it is the perfect action for the player). Intermediate
values have intermediate meanings. In this case the truth value of a set of concepts will be
calculated first (if the relative position of the player is good for shooting, if the position of the
ball is good for shooting, if the direcction of the ball is good for shooting and if the speed of
the ball is godd for shooting) and them the truth value for shooting, V, will be calculated as the
aggregation (using product operation in this case) of all the truth values previously calculated
(V1, V2, V3, V4 and V5).
In figure 9 we can see the fuzzy functions that represent the concepts that are involved in the
definition of the rule that we have defined above. They represent the truth value for each
value of the environment.
In the case of fuzzy rules, all rules will be executed and the best action for the player situation
(the one with higher truth value) will be executed. The option by default of keeping the base
position has a default value of 0.2.
In a particular case, we can have all players and the ball in a particular position (as in figure 10)
and then try to find out the best action to perform by a particular robot. For our experiments
we use crisp and fuzzy batery of rules and we compare the results.
For the rest of the study we will analyse always a robot of the left team of the screen, so the
yellow team.
We have studied different starting positions of the game that lead the robots to do the actions
of shooting, passing and clearing. The results of the comparison in between the crisp and the
fuzzy control for these tests are detailed in section 5.

Fig. 7. Decision making variables

Crisp ball speed is the speed of the ball that is calculated as the distance that the ball is
able to cover during a server cycle in the simulator. The possible values are: slow (less
than 0.5), regular (into 0.5 and 1) and fast (greater than 1).

Fuzzy ball position X is the distance from the ball to the back line of the own field. The
values are in the range [0..86].

Fuzzy ball position Yis the distance from the ball to the left line of the own field. The
values are in the range [0..70].

Fuzzy ball direction is the same concept that the crisp goal direction. The values belong
the range [0o..180o]

Fuzzy ball speed is the same concept that crisp ball speed but the domain is continue
(speed R).

For the comparison of the decision making we have considered a set of crisp rules and a set of
fuzzy rules to determine the best action for the robots in each situation. The rules are different
for each robot depending on its position (goal keeper, striker, midfielder, etc.) Let’s see a
couple of examples of rules.
Crisp rules (implemented in Prolog) are of the form:

shoot striker o f ensive area opposite area ball

where it is said that the striker should shoot if it is in the ofensive area and the ball is in the
opposite area.
The list of crisp rules should be ordered according to priority because in each situation it is
executed the first one that is satisfied. If any of them is satisfied, then the robot should mantain
the base position that is calculated as the average point into the position of the ball and the
own goal place. But to observed better the cases in which the player is not deciding to do any
action we have change this base position to the same position. So, the robot that is not making
any action is going to maintain its position.
Fuzzy rules (implemented in RFuzzy) are of the form:
shoot striker V prod relative position good shoot V1 ,ball position X good shoot V2 ,
ball position Y good shoot V3 ,ball direction good shoot V4 ,ball speed good shoot V5

RFuzzy: an easy and expressive tool for modelling the cognitive layer in RoboCupSoccer 279

Fig. 8. Areas of the field

where it is said that it is going to be calculated the truth value for the action of shooting for
a striker. The truth value will be a value in the range [0..1](0 means that it is a bad action for
the player in its situation and 1 means that it is the perfect action for the player). Intermediate
values have intermediate meanings. In this case the truth value of a set of concepts will be
calculated first (if the relative position of the player is good for shooting, if the position of the
ball is good for shooting, if the direcction of the ball is good for shooting and if the speed of
the ball is godd for shooting) and them the truth value for shooting, V, will be calculated as the
aggregation (using product operation in this case) of all the truth values previously calculated
(V1, V2, V3, V4 and V5).
In figure 9 we can see the fuzzy functions that represent the concepts that are involved in the
definition of the rule that we have defined above. They represent the truth value for each
value of the environment.
In the case of fuzzy rules, all rules will be executed and the best action for the player situation
(the one with higher truth value) will be executed. The option by default of keeping the base
position has a default value of 0.2.
In a particular case, we can have all players and the ball in a particular position (as in figure 10)
and then try to find out the best action to perform by a particular robot. For our experiments
we use crisp and fuzzy batery of rules and we compare the results.
For the rest of the study we will analyse always a robot of the left team of the screen, so the
yellow team.
We have studied different starting positions of the game that lead the robots to do the actions
of shooting, passing and clearing. The results of the comparison in between the crisp and the
fuzzy control for these tests are detailed in section 5.

Fig. 7. Decision making variables

Crisp ball speed is the speed of the ball that is calculated as the distance that the ball is
able to cover during a server cycle in the simulator. The possible values are: slow (less
than 0.5), regular (into 0.5 and 1) and fast (greater than 1).

Fuzzy ball position X is the distance from the ball to the back line of the own field. The
values are in the range [0..86].

Fuzzy ball position Yis the distance from the ball to the left line of the own field. The
values are in the range [0..70].

Fuzzy ball direction is the same concept that the crisp goal direction. The values belong
the range [0o..180o]

Fuzzy ball speed is the same concept that crisp ball speed but the domain is continue
(speed R).

For the comparison of the decision making we have considered a set of crisp rules and a set of
fuzzy rules to determine the best action for the robots in each situation. The rules are different
for each robot depending on its position (goal keeper, striker, midfielder, etc.) Let’s see a
couple of examples of rules.
Crisp rules (implemented in Prolog) are of the form:

shoot striker o f ensive area opposite area ball

where it is said that the striker should shoot if it is in the ofensive area and the ball is in the
opposite area.
The list of crisp rules should be ordered according to priority because in each situation it is
executed the first one that is satisfied. If any of them is satisfied, then the robot should mantain
the base position that is calculated as the average point into the position of the ball and the
own goal place. But to observed better the cases in which the player is not deciding to do any
action we have change this base position to the same position. So, the robot that is not making
any action is going to maintain its position.
Fuzzy rules (implemented in RFuzzy) are of the form:
shoot striker V prod relative position good shoot V1 ,ball position X good shoot V2 ,
ball position Y good shoot V3 ,ball direction good shoot V4 ,ball speed good shoot V5

Robot Soccer280

Fig. 11. Shoot action variables

Fig. 12. Pass action variables

Crisp centre forward position is the distance from the striker that is passing the ball
and the opposite passing point. It is calculated as the difference (always positive) of the
striker X coordinate and the X coordinate of the opposite passing point (that is aproxi-
mately in the penalty point).

Fuzzy centre forward position is the same concept that the crisp centre forward posi-
tion but the values are in the range [0..75].

We have just study the most representative starting situations that lead the robot to shoot and
pass. In section 5 are discussed the results of the comparison in between the crisp and the
fuzzy control for these actions.

4.2 Matches
Besides studying single movements we have uses proof tests for complete matches. We have
program in a different way each team. The crisp team uses crisp logic for decision making
and also crips logic for action execution. The fuzzy team uses fuzzy logic for decision making
and also crips logic for action execution. We will use also the Lingo team and the Rakiduam
team. In the tests the yellow team is team 1 and the blue team is team 2.
For each scenario the test is a 30 seconds match where it is compared the number of gols of
each team and the percentage of time that each team control the ball.
We have evaluated the mathes: crisp team vs Lingo team, crisp team vs Lingo team, crisp
logic vs Rakiduam07, fuzzy logic vs Rakiduam07, and crisp team vs fuzzy team.

5. Conclusions

RFuzzy has many advantages related its expressivity and some advanced characteristics of
RFuzzy are missing in other similar tools as FLOPERMoreno (2006); Morcillo & Moreno (2008).
RFuzzy has been designed with a simple syntax to facilitate programmers from other fields (as

Fig. 9. Fuzzy functions to represent concepts related shooting

Fig. 10. Starting positions for shooting

4.1.2 Action Execution Analysis
In the analysis of the action execution we have studied starting situations in which the robot
has already decided to make a particular action. Then we have observed the result when it do
it using crisp and fuzzy execution rules.
The variables that we have used for shooting are listed in figure 11. Ball distance is the same
in the crisp and in the fuzzy logic. The variables that we have used for passing are shown in
figure 12.
The speed and direction variables are the same that the ones used in section 4.1.1 for decision
making analysis. The rest of variables are defined as follow:

Ball distance is the distance in between the robot that is shooting and the ball (distance
R).

RFuzzy: an easy and expressive tool for modelling the cognitive layer in RoboCupSoccer 281

Fig. 11. Shoot action variables

Fig. 12. Pass action variables

Crisp centre forward position is the distance from the striker that is passing the ball
and the opposite passing point. It is calculated as the difference (always positive) of the
striker X coordinate and the X coordinate of the opposite passing point (that is aproxi-
mately in the penalty point).

Fuzzy centre forward position is the same concept that the crisp centre forward posi-
tion but the values are in the range [0..75].

We have just study the most representative starting situations that lead the robot to shoot and
pass. In section 5 are discussed the results of the comparison in between the crisp and the
fuzzy control for these actions.

4.2 Matches
Besides studying single movements we have uses proof tests for complete matches. We have
program in a different way each team. The crisp team uses crisp logic for decision making
and also crips logic for action execution. The fuzzy team uses fuzzy logic for decision making
and also crips logic for action execution. We will use also the Lingo team and the Rakiduam
team. In the tests the yellow team is team 1 and the blue team is team 2.
For each scenario the test is a 30 seconds match where it is compared the number of gols of
each team and the percentage of time that each team control the ball.
We have evaluated the mathes: crisp team vs Lingo team, crisp team vs Lingo team, crisp
logic vs Rakiduam07, fuzzy logic vs Rakiduam07, and crisp team vs fuzzy team.

5. Conclusions

RFuzzy has many advantages related its expressivity and some advanced characteristics of
RFuzzy are missing in other similar tools as FLOPERMoreno (2006); Morcillo & Moreno (2008).
RFuzzy has been designed with a simple syntax to facilitate programmers from other fields (as

Fig. 9. Fuzzy functions to represent concepts related shooting

Fig. 10. Starting positions for shooting

4.1.2 Action Execution Analysis
In the analysis of the action execution we have studied starting situations in which the robot
has already decided to make a particular action. Then we have observed the result when it do
it using crisp and fuzzy execution rules.
The variables that we have used for shooting are listed in figure 11. Ball distance is the same
in the crisp and in the fuzzy logic. The variables that we have used for passing are shown in
figure 12.
The speed and direction variables are the same that the ones used in section 4.1.1 for decision
making analysis. The rest of variables are defined as follow:

Ball distance is the distance in between the robot that is shooting and the ball (distance
R).

Robot Soccer282

The tests comparing complete match strategies show that fuzzy control is much better
in taking decisions. Due to the importance of speed in this kind of game, an ofensive
strategy can obtain better results even if it fails frecuently in the decisions.

Despite the results are good for our experiments in Robot Soccer, they are much better for
scenarios in which it is more important to take the right decision that to decide fast. Do not
fail in the decision is important in some parts of the Robot Soccer strategy but not in all of it
because in much parts the speed is the decisive parameter.

6. References

Baldwin, J. F., Martin, T. P. & Pilsworth, B. W. (1995). Fril: Fuzzy and Evidential Reasoning in
Artificial Intelligence, John Wiley & Sons.

Bistarelli, S., Montanari, U. & Rossi, F. (2001). Semiring-based constraint Logic Programming:
syntax and semantics, ACM TOPLAS, Vol. 23, pp. 1–29.

Chen, M., K.Dorer & E.Foroughi (2003). Users Manual RoboCup Soccer Server.
CLIP Lab (n.d.). The ciao prolog development system www site.

URL: http://www.clip.dia.fi.upm.es/Software/Ciao/
Default values to handel Incomplete Fuzzy Information (2006). Vol. 14 of IEEE Computational Intel-

ligence Society Electronic Letter, ISSN 0-7803-9489-5, IEEE.
Extending Prolog with Incomplete Fuzzy Information (2005). Proceedings of the 15th International

Workshop on Logic Programming Environments.
FIRA (n.d.). Simurosot environment for soccer game.

URL: http://www.fira.net/soccer/simurosot/overview.html
Garcı́a, A., G.I.Simari & T.Delladio (2004). Designing an Agent System for Controlling a

Robotic Soccer Team. Argentine Conference on Computer Science (CACIC 2004).
URL: http://www.cs.umd.edu/ gisimari/publications/cacic2004GarciaSimariDelladio.pdf

Guadarrama, S., Munoz-Hernandez, S. & Vaucheret, C. (2004). Fuzzy Prolog: A new approach
using soft constraints propagation, Fuzzy Sets and Systems 144(1): 127–150. ISSN 0165-
0114.

Guadarrama, S., S.Muñoz & C.Vaucheret (2004). Fuzzy prolog: A new approach using soft
constraints propagation, Fuzzy Sets and Systems 144(1): 127–150.

Hermenegildo, M., Bueno, F., Cabeza, D., Garcı́a de la Banda, M., López, P. & Puebla, G.
(1999). The CIAO Multi-Dialect Compiler and System: An Experimentation Work-
bench for Future (C)LP Systems, Parallelism and Implementation of Logic and Constraint
Logic Programming, Nova Science, Commack, NY, USA.

Hernndez, S. M. & Wiguna, W. S. (2007). Fuzzy cognitive layer in robocupsoccer, Proceedings
of the 12th International Fuzzy Systems Association World Congress (IFSA 2007). Founda-
tions of Fuzzy Logic and Soft Computing, Springer, Cancn, Mxico, pp. 635–645.

Ishizuka, M. & Kanai, N. (1985). Prolog-ELF incorporating fuzzy Logic, International Joint
Conference on Artificial Intelligence, pp. 701–703.

Klawonn, F. & Kruse, R. (1994). A Łukasiewicz logic based Prolog, Mathware & Soft Computing
1(1): 5–29.
URL: citeseer.nj.nec.com/227289.html

Klement, E., Mesiar, R. & Pap, E. (n.d.). Triangular norms, Kluwer Academic Publishers.
Lee, R. C. T. (1972). Fuzzy Logic and the resolution principle, Journal of the Association for

Computing Machinery 19(1): 119–129.
Li, D. & Liu, D. (1990). A Fuzzy Prolog Database System, John Wiley & Sons, New York.

in this case from Robot Soccer programming) to model their problems in a simple way. This
is the reason why RFuzzy is much more convenient that Fuzzy Prolog (that use constrains that
are much more difficult to handle and understand that real numbers that are used in RFuzzy).
Extensions added to Prolog by RFuzzy are: types (subsection 2.1), default truth values condi-
tioned or general (subsection 2.5), assignment of truth values to individuals by means of facts
(subsection 2.2), functions (subsection 2.3) or rules with credibility (subsection 2.4).
One of the most important consequences of these extensions is the constructivity of the an-
swers with the possibility of constraining the truth value in the queries as we describe in
section 2.6.
There are countless applications and research lines which can benefit from the advantages
of using the fuzzy representations offered by RFuzzy. Some examples are: Search Engines,
Knowledge Extraction (from databases, ontologies, etc.), Semantic Web, Business Rules, Cod-
ing Rules, etc.
In particular in this work we have studied the possibilites of this tool for modelling the robot
control in Robot Soccer.
It is well known that logic programming is a perfect environment for dealing with the cog-
nitive layer at RoboCupSoccer league as it is in general to implement cognitive and control
issues in robotics.
Our goal is to provide a programming framework to Robot Soccer programmers to model
robot control in an expressive but simple way.
After some preliminary groundwork Hernndez & Wiguna (2007) we have developed a bet-
ter engine for rules execution (RFuzzy instead of the discrete constraint variant used in
Hernndez & Wiguna (2007), called dfuzzy) and we have designed and provided a set of uni-
tary test to compare the behaviour of a crisp and a fuzzy strategy for simple movements and
for complete matches. Our goal is to provide this framework and some practical results (based
in our experimentation) for its use in the strategy programming at Robot Soccer.
After evaluating some study tests we can provide the following conclusions:

Using fuzzy logic we can model some concepts that are impossible to represent in an
adequate way using crisp logic or other representation (i.e. fast, slow, close, far, etc.)
Due to this the rules to define robot control are much more expressive and alike to
human reasoning.

RFuzzy lets us define continue functions over real numbers using syntactic sugar. Other
tools requires to provide values for all elements of the domain. This is impossible for
an infinite domain (that is the general case). So, a simple syntax is available.

Using fuzzy logic we can distinguish the level of satisfaction of a rule. In crisp logic,
rules can be satified or not. In RFuzzy we can obtain different truth vales of satisfaction
for the set of rules that can be applied in a particular situation. So the robot can choose
at any time the best rule (the one with highest truth value) that is suppose to provide it
the best decision about which action to make.

The tests comparing single movements show similar efectivenes in fuzzy logic and crisp
logic. When both take the same decision, fuzzy logic is faster because it has not to wait
till any limit to asign a truth value while crisp logic depend on when the ball across
limit areas.

Atending to decision making, fuzzy control is much better and the disadvantage comes
from the speed. In this case it does not affect the experiments because it depends on the
cycle and it comes determined by the simulator.

RFuzzy: an easy and expressive tool for modelling the cognitive layer in RoboCupSoccer 283

The tests comparing complete match strategies show that fuzzy control is much better
in taking decisions. Due to the importance of speed in this kind of game, an ofensive
strategy can obtain better results even if it fails frecuently in the decisions.

Despite the results are good for our experiments in Robot Soccer, they are much better for
scenarios in which it is more important to take the right decision that to decide fast. Do not
fail in the decision is important in some parts of the Robot Soccer strategy but not in all of it
because in much parts the speed is the decisive parameter.

6. References

Baldwin, J. F., Martin, T. P. & Pilsworth, B. W. (1995). Fril: Fuzzy and Evidential Reasoning in
Artificial Intelligence, John Wiley & Sons.

Bistarelli, S., Montanari, U. & Rossi, F. (2001). Semiring-based constraint Logic Programming:
syntax and semantics, ACM TOPLAS, Vol. 23, pp. 1–29.

Chen, M., K.Dorer & E.Foroughi (2003). Users Manual RoboCup Soccer Server.
CLIP Lab (n.d.). The ciao prolog development system www site.

URL: http://www.clip.dia.fi.upm.es/Software/Ciao/
Default values to handel Incomplete Fuzzy Information (2006). Vol. 14 of IEEE Computational Intel-

ligence Society Electronic Letter, ISSN 0-7803-9489-5, IEEE.
Extending Prolog with Incomplete Fuzzy Information (2005). Proceedings of the 15th International

Workshop on Logic Programming Environments.
FIRA (n.d.). Simurosot environment for soccer game.

URL: http://www.fira.net/soccer/simurosot/overview.html
Garcı́a, A., G.I.Simari & T.Delladio (2004). Designing an Agent System for Controlling a

Robotic Soccer Team. Argentine Conference on Computer Science (CACIC 2004).
URL: http://www.cs.umd.edu/ gisimari/publications/cacic2004GarciaSimariDelladio.pdf

Guadarrama, S., Munoz-Hernandez, S. & Vaucheret, C. (2004). Fuzzy Prolog: A new approach
using soft constraints propagation, Fuzzy Sets and Systems 144(1): 127–150. ISSN 0165-
0114.

Guadarrama, S., S.Muñoz & C.Vaucheret (2004). Fuzzy prolog: A new approach using soft
constraints propagation, Fuzzy Sets and Systems 144(1): 127–150.

Hermenegildo, M., Bueno, F., Cabeza, D., Garcı́a de la Banda, M., López, P. & Puebla, G.
(1999). The CIAO Multi-Dialect Compiler and System: An Experimentation Work-
bench for Future (C)LP Systems, Parallelism and Implementation of Logic and Constraint
Logic Programming, Nova Science, Commack, NY, USA.

Hernndez, S. M. & Wiguna, W. S. (2007). Fuzzy cognitive layer in robocupsoccer, Proceedings
of the 12th International Fuzzy Systems Association World Congress (IFSA 2007). Founda-
tions of Fuzzy Logic and Soft Computing, Springer, Cancn, Mxico, pp. 635–645.

Ishizuka, M. & Kanai, N. (1985). Prolog-ELF incorporating fuzzy Logic, International Joint
Conference on Artificial Intelligence, pp. 701–703.

Klawonn, F. & Kruse, R. (1994). A Łukasiewicz logic based Prolog, Mathware & Soft Computing
1(1): 5–29.
URL: citeseer.nj.nec.com/227289.html

Klement, E., Mesiar, R. & Pap, E. (n.d.). Triangular norms, Kluwer Academic Publishers.
Lee, R. C. T. (1972). Fuzzy Logic and the resolution principle, Journal of the Association for

Computing Machinery 19(1): 119–129.
Li, D. & Liu, D. (1990). A Fuzzy Prolog Database System, John Wiley & Sons, New York.

in this case from Robot Soccer programming) to model their problems in a simple way. This
is the reason why RFuzzy is much more convenient that Fuzzy Prolog (that use constrains that
are much more difficult to handle and understand that real numbers that are used in RFuzzy).
Extensions added to Prolog by RFuzzy are: types (subsection 2.1), default truth values condi-
tioned or general (subsection 2.5), assignment of truth values to individuals by means of facts
(subsection 2.2), functions (subsection 2.3) or rules with credibility (subsection 2.4).
One of the most important consequences of these extensions is the constructivity of the an-
swers with the possibility of constraining the truth value in the queries as we describe in
section 2.6.
There are countless applications and research lines which can benefit from the advantages
of using the fuzzy representations offered by RFuzzy. Some examples are: Search Engines,
Knowledge Extraction (from databases, ontologies, etc.), Semantic Web, Business Rules, Cod-
ing Rules, etc.
In particular in this work we have studied the possibilites of this tool for modelling the robot
control in Robot Soccer.
It is well known that logic programming is a perfect environment for dealing with the cog-
nitive layer at RoboCupSoccer league as it is in general to implement cognitive and control
issues in robotics.
Our goal is to provide a programming framework to Robot Soccer programmers to model
robot control in an expressive but simple way.
After some preliminary groundwork Hernndez & Wiguna (2007) we have developed a bet-
ter engine for rules execution (RFuzzy instead of the discrete constraint variant used in
Hernndez & Wiguna (2007), called dfuzzy) and we have designed and provided a set of uni-
tary test to compare the behaviour of a crisp and a fuzzy strategy for simple movements and
for complete matches. Our goal is to provide this framework and some practical results (based
in our experimentation) for its use in the strategy programming at Robot Soccer.
After evaluating some study tests we can provide the following conclusions:

Using fuzzy logic we can model some concepts that are impossible to represent in an
adequate way using crisp logic or other representation (i.e. fast, slow, close, far, etc.)
Due to this the rules to define robot control are much more expressive and alike to
human reasoning.

RFuzzy lets us define continue functions over real numbers using syntactic sugar. Other
tools requires to provide values for all elements of the domain. This is impossible for
an infinite domain (that is the general case). So, a simple syntax is available.

Using fuzzy logic we can distinguish the level of satisfaction of a rule. In crisp logic,
rules can be satified or not. In RFuzzy we can obtain different truth vales of satisfaction
for the set of rules that can be applied in a particular situation. So the robot can choose
at any time the best rule (the one with highest truth value) that is suppose to provide it
the best decision about which action to make.

The tests comparing single movements show similar efectivenes in fuzzy logic and crisp
logic. When both take the same decision, fuzzy logic is faster because it has not to wait
till any limit to asign a truth value while crisp logic depend on when the ball across
limit areas.

Atending to decision making, fuzzy control is much better and the disadvantage comes
from the speed. In this case it does not affect the experiments because it depends on the
cycle and it comes determined by the simulator.

Robot Soccer284

Morcillo, P. & Moreno, G. (2008). Floper, a fuzzy logic programming environment for research,
Proceedings of the Spanish Conference on Programming and Computer Languages, PROLE
2008, Gijón, Spain.

Moreno, G. (2006). Building a fuzzy transformation system., SOFtware SEMinar 2006: Theory
and Practice of Computer Science, pp. 409–418.

Munoz-Hernandez, S., Vaucheret, C. & Guadarrama, S. (2002). Combining crisp and fuzzy
Logic in a prolog compiler, in J. J. Moreno-Navarro & J. Mariño (eds), Joint Conf. on
Declarative Programming: APPIA-GULP-PRODE 2002, Madrid, Spain, pp. 23–38.

Pradera, A., Trillas, E. & Calvo, T. (2002). A general class of triangular norm-based aggregation
operators: quasi-linear t-s operators, International Journal of Approximate Reasoning
30(1): 57–72.

Shen, Z., Ding, L. & Mukaidono, M. (1989). Fuzzy resolution principle, Proc. of 18th Interna-
tional Symposium on Multiple-valued Logic, Vol. 5.

Trillas, E., Cubillo, S. & Castro, J. L. (1995). Conjunction and disjunction on 0,1 , , Fuzzy
Sets and Systems 72: 155–165.

UNCOMA (2006). Diseño e implementación de un sistema multiagente: Un equipo de fútbol
con robots.
URL: http://code.google.com/p/rakiduam

Vaucheret, C., Guadarrama, S. & Munoz-Hernandez, S. (2002). Fuzzy prolog: A simple gen-
eral implementation using clp(r), in M. Baaz & A. Voronkov (eds), Logic for Program-
ming, Artificial Intelligence, and Reasoning, LPAR 2002, number 2514 in LNAI, Springer-
Verlag, Tbilisi, Georgia, pp. 450–463.

Vojtas, P. (2001). Fuzzy logic programming, Fuzzy Sets and Systems 124(1): 361–370.

Soccer at the Microscale: Small Robots with Big Impact 285

Soccer at the Microscale: Small Robots with Big Impact

S. L. Firebaugh, J. A. Piepmeier and C. D. McGray

X

Soccer at the Microscale:
Small Robots with Big Impact

S. L. Firebaugh1, J. A. Piepmeier1 and C. D. McGray2

1United States Naval Academy
2Semiconductor Electronics Division, National Institute of Standards and Technology

USA

1. Introduction

The robots in the RoboCup Nanogram demonstration events are the size of dust, and
compete on a millimeter-scale playing field under a microscope (Fig. 1). It seems unlikely
that the robots of the Nanogram events will meet the RoboCup goal of beating the human
World Cup champion team, so what is the point? The potential for these robots in
applications beyond soccer is vast, but so are the engineering challenges. The Nanogram
challenge provides an intermediate target for microroboticists, and the innovation that has
resulted has been astounding. Some day heart surgery may be as simple as swallowing a pill
of microrobots only a few generations evolved from a microscale soccer team.

Fig. 1. The Magmite robot, developed by ETH Zurich, in relation to a fruit fly, as captured in
a scanning electron micrograph (Vollmers et al., 2008; Kratochvil et al., 2009; Frutiger et al.,
2008; Frutiger et al., 2009). The Magmite has participated in the RoboCup Nanogram events
since their inception. Figure used with permission from the authors.

13

Robot Soccer286

and nano-scale size regimes are different from those most relevant at larger scales. For
objects much below a millimeter in their characteristic dimensions, surface phenomena such
as friction, adhesion, heat transfer, and electrostatic attraction become significantly more
important, while inertia, weight, heat capacity, and other body phenomena become
comparatively less important (Madou, 1997). Furthermore, these surface phenomena can
change whenever two micro-scale parts come into contact as a result of triboelectric
charging and other factors. These phenomena can be difficult to measure, but must be
tracked and controlled to prevent failure modes such as altered transfer functions and
irreversible adhesion.

With surface forces dominating motion at these scales, adsorption of contaminants – even
water – can lead to devastating results. Proper environmental control can be critical,
especially for electrostatic devices (Liu, 2006). Devices and operating environments must be
kept meticulously clean, and humidity should be regulated. In contrast to larger robots,
once a microrobot is damaged it can rarely be fixed and must instead be discarded. These
devices must therefore be manufactured in quantity, at comparatively low cost. While the
very small size of these devices makes low-marginal-cost manufacturing practical, it also
makes it very difficult to identify damaged devices prior to critical failure. The ability to
identify a damaged device in time to replace it before it fails can be a crucial difference
between a winning team and a losing one.

Even the very smallest of batteries available today remain far too big to be mounted on a
microrobot. As a result, providing a source of power to these devices is a significant
problem. One promising approach is to provide a source of wireless power that well-
designed microrobots can receive from their environment. This wireless power can be
electrostatic (Donald et al., 2003), optical (Sul et al., 2006), magnetic (Vollmers et al., 2008),
vibrational (Yasuda et al., 1994), or alternative modes yet to be developed. When multiple
(competing) teams are involved, this ambient power must be provided in a way that will not
unintentionally (or intentionally!) interfere with the operation of opposing teams. On-board
power systems remain a challenging possibility, with thin-film batteries becoming
increasingly energetic (Patil et al., 2008) and nuclear power presenting a feasible and
exciting approach (Lal et al., 2005).

Control strategies familiar to robot coordination must be carefully reconsidered for
applicability to the new field of microrobotics. For example, the closed-loop feedback
approach to systems engineering is widely considered a necessity in micro-scale and smaller
robots, but the optical systems often employed for this feedback at the macro scale can be
inappropriate to micro-environments (Abbot et al., 2007). The depth and breadth of field
under the microscope can be limiting factors for vision systems; it is often not possible to
employ stereo cameras; and the pin-hole camera models widely used at macro-scales break
down under the microscope (Abbot et al., 2007). Other feedback mechanisms must be
similarly adapted. For example, in macro-scale actuators, servoing systems are often
implemented with optical feedback from diodes or lasers, but capacitive feedback may be
more effective at the micro- and nano-scale (Yamahata et al., 2008).

The field of microrobotics has been defined “to include the robotic manipulation of objects
with characteristic dimensions in the millimeter to micrometer range (micromanipulation)
as well as the design and fabrication of robotic agents in a smilar size range (microrobots)”
(Abbott et al., 2007). This distinguishes the robots being discussed in this chapter from
robots on the millimeter to centimeter scale that are sometimes called “microrobots,” but
would more accurately be termed “miniature robots” (Dario et al., 1992).

The fundamentals of traditional robotics – including kinematics, dynamics, motion
planning, computer vision, and control (Spong et al., 2006) -- apply soundly to the field of
microrobotics. However, the nature of the actuators that function best within the micro-
domain often dominates how these fundamental concepts are applied. Microrobots
competing in the Nanogram events have utilized electrostatic and magnetic actuation
methods. Thermal, vibratory, piezoelectric, and biological actuation have also been used for
microrobotics, and so these technologies are also reviewed. While microscale end effectors
or grippers have been made, Nanogram participants have only utilized passive designs to
aid in ball handling. To date, sensors and controllers are all off-board for the Nanogram
League, and the control strategies used with the various microrobots are discussed below.

1.1 Microrobot Applications
The classic example of robot applications is the set of line assembly tasks performed in the
manufacture of large durable goods, such as automobiles, where robots have been used
commercially for decades. Yet these days, robots are rapidly moving into other niche
markets such as surgery, security, and entertainment at a pace that has raised the eyebrows
of many industry leaders and technology visionaries. As robots become smaller, cheaper,
more versatile, and more reliable, some analysts have forecast the coming of a robotics
industry of large enough scope to mirror in the next thirty years the economic and societal
impact of the computer revolution thirty years ago (Gates, 2007). In response, Microsoft has
established a robotics product line, the EU is doubling its investment in robotics research,
and U.S. lawmakers have formed a new congressional caucus on robotics.

Some of the most exciting future applications of robotics will require systems that are many
orders of magnitude smaller than today’s commercial robots. These micro-robots would
have masses and characteristic dimensions that are best measured in nanograms and
micrometers, respectively. Their tiny size would allow them to penetrate small pores and
cavities and to explore microscopic environments, such as the vascular system of the human
body. As with today’s transistors, the material costs for such small robots are insignificant,
so building a million need not be much more expensive than building a dozen. This opens
up the possibility of disposable, massively parallel robotic systems for search and rescue in
disaster sites, exploration of planetary surfaces or military encampments, and other as yet
unimagined tasks.

1.2 Challenges of the Microscale
Realization of commercially viable microrobots to meet these application requirements will
require solutions to numerous engineering challenges. At the heart of these challenges lies
the fact that the physical forces that dominate locomotion and manipulation tasks in micro-

Soccer at the Microscale: Small Robots with Big Impact 287

and nano-scale size regimes are different from those most relevant at larger scales. For
objects much below a millimeter in their characteristic dimensions, surface phenomena such
as friction, adhesion, heat transfer, and electrostatic attraction become significantly more
important, while inertia, weight, heat capacity, and other body phenomena become
comparatively less important (Madou, 1997). Furthermore, these surface phenomena can
change whenever two micro-scale parts come into contact as a result of triboelectric
charging and other factors. These phenomena can be difficult to measure, but must be
tracked and controlled to prevent failure modes such as altered transfer functions and
irreversible adhesion.

With surface forces dominating motion at these scales, adsorption of contaminants – even
water – can lead to devastating results. Proper environmental control can be critical,
especially for electrostatic devices (Liu, 2006). Devices and operating environments must be
kept meticulously clean, and humidity should be regulated. In contrast to larger robots,
once a microrobot is damaged it can rarely be fixed and must instead be discarded. These
devices must therefore be manufactured in quantity, at comparatively low cost. While the
very small size of these devices makes low-marginal-cost manufacturing practical, it also
makes it very difficult to identify damaged devices prior to critical failure. The ability to
identify a damaged device in time to replace it before it fails can be a crucial difference
between a winning team and a losing one.

Even the very smallest of batteries available today remain far too big to be mounted on a
microrobot. As a result, providing a source of power to these devices is a significant
problem. One promising approach is to provide a source of wireless power that well-
designed microrobots can receive from their environment. This wireless power can be
electrostatic (Donald et al., 2003), optical (Sul et al., 2006), magnetic (Vollmers et al., 2008),
vibrational (Yasuda et al., 1994), or alternative modes yet to be developed. When multiple
(competing) teams are involved, this ambient power must be provided in a way that will not
unintentionally (or intentionally!) interfere with the operation of opposing teams. On-board
power systems remain a challenging possibility, with thin-film batteries becoming
increasingly energetic (Patil et al., 2008) and nuclear power presenting a feasible and
exciting approach (Lal et al., 2005).

Control strategies familiar to robot coordination must be carefully reconsidered for
applicability to the new field of microrobotics. For example, the closed-loop feedback
approach to systems engineering is widely considered a necessity in micro-scale and smaller
robots, but the optical systems often employed for this feedback at the macro scale can be
inappropriate to micro-environments (Abbot et al., 2007). The depth and breadth of field
under the microscope can be limiting factors for vision systems; it is often not possible to
employ stereo cameras; and the pin-hole camera models widely used at macro-scales break
down under the microscope (Abbot et al., 2007). Other feedback mechanisms must be
similarly adapted. For example, in macro-scale actuators, servoing systems are often
implemented with optical feedback from diodes or lasers, but capacitive feedback may be
more effective at the micro- and nano-scale (Yamahata et al., 2008).

The field of microrobotics has been defined “to include the robotic manipulation of objects
with characteristic dimensions in the millimeter to micrometer range (micromanipulation)
as well as the design and fabrication of robotic agents in a smilar size range (microrobots)”
(Abbott et al., 2007). This distinguishes the robots being discussed in this chapter from
robots on the millimeter to centimeter scale that are sometimes called “microrobots,” but
would more accurately be termed “miniature robots” (Dario et al., 1992).

The fundamentals of traditional robotics – including kinematics, dynamics, motion
planning, computer vision, and control (Spong et al., 2006) -- apply soundly to the field of
microrobotics. However, the nature of the actuators that function best within the micro-
domain often dominates how these fundamental concepts are applied. Microrobots
competing in the Nanogram events have utilized electrostatic and magnetic actuation
methods. Thermal, vibratory, piezoelectric, and biological actuation have also been used for
microrobotics, and so these technologies are also reviewed. While microscale end effectors
or grippers have been made, Nanogram participants have only utilized passive designs to
aid in ball handling. To date, sensors and controllers are all off-board for the Nanogram
League, and the control strategies used with the various microrobots are discussed below.

1.1 Microrobot Applications
The classic example of robot applications is the set of line assembly tasks performed in the
manufacture of large durable goods, such as automobiles, where robots have been used
commercially for decades. Yet these days, robots are rapidly moving into other niche
markets such as surgery, security, and entertainment at a pace that has raised the eyebrows
of many industry leaders and technology visionaries. As robots become smaller, cheaper,
more versatile, and more reliable, some analysts have forecast the coming of a robotics
industry of large enough scope to mirror in the next thirty years the economic and societal
impact of the computer revolution thirty years ago (Gates, 2007). In response, Microsoft has
established a robotics product line, the EU is doubling its investment in robotics research,
and U.S. lawmakers have formed a new congressional caucus on robotics.

Some of the most exciting future applications of robotics will require systems that are many
orders of magnitude smaller than today’s commercial robots. These micro-robots would
have masses and characteristic dimensions that are best measured in nanograms and
micrometers, respectively. Their tiny size would allow them to penetrate small pores and
cavities and to explore microscopic environments, such as the vascular system of the human
body. As with today’s transistors, the material costs for such small robots are insignificant,
so building a million need not be much more expensive than building a dozen. This opens
up the possibility of disposable, massively parallel robotic systems for search and rescue in
disaster sites, exploration of planetary surfaces or military encampments, and other as yet
unimagined tasks.

1.2 Challenges of the Microscale
Realization of commercially viable microrobots to meet these application requirements will
require solutions to numerous engineering challenges. At the heart of these challenges lies
the fact that the physical forces that dominate locomotion and manipulation tasks in micro-

Robot Soccer288

(Tang et al., 1990), rotary side-drive micro-motors (Fan et al., 1988), and scratch drive
actuators (Akiyama et al., 1993). Several teams have used robots that rely on electrostatic
actuation in RoboCup Nanogram events, including the United States Naval Academy,
Simon Fraser University, and Carnegie Mellon University, whose robots from the 2007
competition in Atlanta are shown in Fig. 2 below.

Fig. 2. Electrostatic actuators from the 2007 RoboCup Nanogram event. Left: The microrobot
from the U.S. Naval Academy team (Firebaugh and Piepmeier, 2009), based on work by
Donald et al. (Donald et al., 2006). Center: A polymer micromachined electrostatic
microrobot from Simon Fraser University. Photo courtesy of Dan Sameoto. Right: CMOS-
MEMS electrostatic microrobots from Carnegie Mellon University. Photo courtesy of
Fernando Alfaro, Chiung Lo and Professor Gary Fedder.

2.1 Electrostatic Actuation
The forces generated by electrostatic actuators can be predicted using simple capacitive
circuit models. The energy stored in a capacitor of capacitance C at voltage V is given by:

21
2cU CV (1)

Therefore, the force generated in a given direction, r, is therefore given by:

2

2
V CF

r
  

    
 (2)

Knowing the geometry of an electrostatic actuator allows us to approximate its capacitance,
either analytically or using finite element methods. For example, in the simplest case of a
parallel plate capacitor, the capacitance is wL/g , where L is the length of the overlapping
area of the two plates, w is the width of the overlap, g is the gap between the plates, and ε is
the permittivity of the material in the gap. If the plates are misaligned so that L would be
increased by shifting the top plate along the x axis, then the x-component of the electrostatic
force on the top plate would be Fx = wV2/2g . Similarly, the force of attraction between the
two plates is Fz = wLV2/2g2.

The force of attraction between the capacitor plates is a non-linear function of the plate
separation. This leads to the useful phenomenon of snap-down voltages (Nathanson et al.,

Communication poses particular difficulties in micro-soccer competitions, where individual
robots may be smaller than the wavelength of the radio signals typically used to
communicate with their larger brethren. If an ambient power source is used, communication
signals can be embedded in the power waveform, to be mechanically decoded by the micro-
robots’ physical structure (Donald et al., 2006; Donald et al., 2008). New communication
methods must be devised, and standards must be established to divide the available
bandwidth between competing teams of multiple microrobots.

1.3 RoboCup Nanogram Events
Microrobotic soccer competitions have been used to drive innovation in micro-
electromechanical systems (MEMS) and microrobotic technologies and to provide
educational opportunities. Games were held annually from 2007 through 2009 in association
with the RoboCup Federation. Teams competed in each of three events:

• The Two-Millimeter Dash
• The Slalom Drill
• The Ball Handling Drill

In the two-millimeter dash, microrobots must demonstrate maximum speed and the ability
to start and stop on command. The microrobots are placed onto a field of play that contains
two open goals that are 500 micrometers deep, with two millimeters of space between
opposite goal lines. A microrobot is placed inside one of the goals so that the entire body of
the microrobot is behind the goal line. Upon a signal from the event timing system, the
microrobot must sprint to the opposite goal line, stop inside the goal, and signal completion
to the timing system.

The slalom drill proceeds in the same fashion as the two-millimeter dash, except that the
area between the goal lines is obstructed by obstacles formed from thick-film photoresist.
The microrobots must be maneuverable enough to navigate a path between the obstacles
into the opposite goal.

To compete in the ball handling drill, microrobots must be capable of controlled planar
pushing manipulation of small disks whose diameter is only 100 micrometers. The
microrobot begins inside one of the goals as in the case of the other two events, and the
space between the goals is obstructed as in the slalom drill. Tiny “micro-soccer balls,” which
consist of a 100 μm diameter disk of silicon, are placed amongst the obstacles. Upon a signal
from the event timing system, the microrobot moves out onto the playing field to push the
micro-soccer balls into the opposing goal.

2. Electrostatic Microrobots

In the field of micro-electromechanical systems (MEMS), electrostatic transducers have long
been a favored class of actuator (Kovacs, 1998). Forces are generated between insulated
bodies having opposite net charge, resulting in motion. Electrostatic actuators can be
comparatively easy to build using established microfabrication techniques, and they can
generate considerable forces on micro-scale components due to large surface area to volume
ratios. Classic electrostatic actuators from the field of MEMS include comb drive actuators

Soccer at the Microscale: Small Robots with Big Impact 289

(Tang et al., 1990), rotary side-drive micro-motors (Fan et al., 1988), and scratch drive
actuators (Akiyama et al., 1993). Several teams have used robots that rely on electrostatic
actuation in RoboCup Nanogram events, including the United States Naval Academy,
Simon Fraser University, and Carnegie Mellon University, whose robots from the 2007
competition in Atlanta are shown in Fig. 2 below.

Fig. 2. Electrostatic actuators from the 2007 RoboCup Nanogram event. Left: The microrobot
from the U.S. Naval Academy team (Firebaugh and Piepmeier, 2009), based on work by
Donald et al. (Donald et al., 2006). Center: A polymer micromachined electrostatic
microrobot from Simon Fraser University. Photo courtesy of Dan Sameoto. Right: CMOS-
MEMS electrostatic microrobots from Carnegie Mellon University. Photo courtesy of
Fernando Alfaro, Chiung Lo and Professor Gary Fedder.

2.1 Electrostatic Actuation
The forces generated by electrostatic actuators can be predicted using simple capacitive
circuit models. The energy stored in a capacitor of capacitance C at voltage V is given by:

21
2cU CV (1)

Therefore, the force generated in a given direction, r, is therefore given by:

2

2
V CF

r
  

    
 (2)

Knowing the geometry of an electrostatic actuator allows us to approximate its capacitance,
either analytically or using finite element methods. For example, in the simplest case of a
parallel plate capacitor, the capacitance is wL/g , where L is the length of the overlapping
area of the two plates, w is the width of the overlap, g is the gap between the plates, and ε is
the permittivity of the material in the gap. If the plates are misaligned so that L would be
increased by shifting the top plate along the x axis, then the x-component of the electrostatic
force on the top plate would be Fx = wV2/2g . Similarly, the force of attraction between the
two plates is Fz = wLV2/2g2.

The force of attraction between the capacitor plates is a non-linear function of the plate
separation. This leads to the useful phenomenon of snap-down voltages (Nathanson et al.,

Communication poses particular difficulties in micro-soccer competitions, where individual
robots may be smaller than the wavelength of the radio signals typically used to
communicate with their larger brethren. If an ambient power source is used, communication
signals can be embedded in the power waveform, to be mechanically decoded by the micro-
robots’ physical structure (Donald et al., 2006; Donald et al., 2008). New communication
methods must be devised, and standards must be established to divide the available
bandwidth between competing teams of multiple microrobots.

1.3 RoboCup Nanogram Events
Microrobotic soccer competitions have been used to drive innovation in micro-
electromechanical systems (MEMS) and microrobotic technologies and to provide
educational opportunities. Games were held annually from 2007 through 2009 in association
with the RoboCup Federation. Teams competed in each of three events:

• The Two-Millimeter Dash
• The Slalom Drill
• The Ball Handling Drill

In the two-millimeter dash, microrobots must demonstrate maximum speed and the ability
to start and stop on command. The microrobots are placed onto a field of play that contains
two open goals that are 500 micrometers deep, with two millimeters of space between
opposite goal lines. A microrobot is placed inside one of the goals so that the entire body of
the microrobot is behind the goal line. Upon a signal from the event timing system, the
microrobot must sprint to the opposite goal line, stop inside the goal, and signal completion
to the timing system.

The slalom drill proceeds in the same fashion as the two-millimeter dash, except that the
area between the goal lines is obstructed by obstacles formed from thick-film photoresist.
The microrobots must be maneuverable enough to navigate a path between the obstacles
into the opposite goal.

To compete in the ball handling drill, microrobots must be capable of controlled planar
pushing manipulation of small disks whose diameter is only 100 micrometers. The
microrobot begins inside one of the goals as in the case of the other two events, and the
space between the goals is obstructed as in the slalom drill. Tiny “micro-soccer balls,” which
consist of a 100 μm diameter disk of silicon, are placed amongst the obstacles. Upon a signal
from the event timing system, the microrobot moves out onto the playing field to push the
micro-soccer balls into the opposing goal.

2. Electrostatic Microrobots

In the field of micro-electromechanical systems (MEMS), electrostatic transducers have long
been a favored class of actuator (Kovacs, 1998). Forces are generated between insulated
bodies having opposite net charge, resulting in motion. Electrostatic actuators can be
comparatively easy to build using established microfabrication techniques, and they can
generate considerable forces on micro-scale components due to large surface area to volume
ratios. Classic electrostatic actuators from the field of MEMS include comb drive actuators

Robot Soccer290

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1
normalized gap (g/g0)

no
rm

al
iz

ed
 v

ol
ta

ge
 (V

/V
m

ax
)

Fig. 3. Graph of capacitor plate separation versus applied voltage. To the right of the
maximum, the system is statically stable. To the left, the system is unstable, and will
collapse, extending the spring until the plates come into contact or encounter a hard stop.
After Nathanson (Nathanson et al., 1978).

For microrobotic applications, one of the more common electrostatic actuators is the scratch
drive. A scratch drive actuator (Akiyama et al., 1993) is composed of a thin polysilicon plate
with a support at the front end. The plate is typically in the range of 60 μm to 80 μm on a
side, and 1 μm to 2 μm thick. The support height is typically in the 1 μm to 2 μm range. The
operation of the scratch drive is shown in Fig. 4. When a voltage is applied between the
polysilicon plate and the substrate beneath it, the plate is drawn down into flat contact with
the dielectric layer. Since the front of the plate is supported by the bushing, strain energy is
stored in the plate, and the edge of the bushing is pushed forward. When the voltage is
removed, the strain is released, and the scratch drive plate snaps back to its original shape,
slightly in front of where it began. When a periodic pulse is applied, this cycle is
continuously repeated, and the scratch drive moves forward in a step-wise manner,
achieving maximum speeds on the order of millimeters per second.

Steering can be accomplished by exploiting snap-down and release voltages of cantilever
beams mounted on the scratch drive body. Fig. 2 (left) shows one such steering cantilever
with a two-micron-diameter stylus at the tip. If the periodic drive pulse of the scratch drive
actuator nests within the hysteresis band of these cantilevers, the cantilevers’ position
(raised or lowered) can be controlled independently from the operation of the actuator
(Donald et al., 2006).

1978). Imagine that the top plate were suspended over the bottom plate by a linear spring of
constant K. For a given extension, z, the energy stored in the spring is:

2

2zKUS  (3)

The energy stored in the capacitor, Uc, is:

 zg
LwVUC 


0

2

2


 (4)

where g0 is the plate separation at zero spring extension. Minimizing the energy of the
system, the relationship between the plate separation and the applied voltage can be
calculated as follows:

 
Lw

ggLwKg
V


 

 02
 (5)

This function defines the curve shown in Fig. 3. To the right of the maximum voltage, the
system is statically stable. To the left, the system is unstable and will collapse, extending the
spring until the plates come into contact or encounter a hard stop. Solving for V and
maximizing with respect to g produces the voltage and gap at which this snap-down event
occurs (Nathanson et al., 1978):

3
2
27
8

0

3
0

g
g

Lw
Kg

V

SD

SD




 (6)

If the plates are prevented from electrical contact by, for example, a layer of insulation, they
will remain snapped down until the voltage is reduced below the release voltage. The
release voltage for a given gap can be determined from the left-hand side of the graph in
Fig. 3. Each hysteresis band between a snap-down voltage and a release voltage can be used
as a mechanical memory bit for electrostatic microrobotic systems (Donald et al., 2006),
allowing the robots to be configured as simple state machines without any on-board
transistors.

Soccer at the Microscale: Small Robots with Big Impact 291

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1
normalized gap (g/g0)

no
rm

al
iz

ed
 v

ol
ta

ge
 (V

/V
m

ax
)

Fig. 3. Graph of capacitor plate separation versus applied voltage. To the right of the
maximum, the system is statically stable. To the left, the system is unstable, and will
collapse, extending the spring until the plates come into contact or encounter a hard stop.
After Nathanson (Nathanson et al., 1978).

For microrobotic applications, one of the more common electrostatic actuators is the scratch
drive. A scratch drive actuator (Akiyama et al., 1993) is composed of a thin polysilicon plate
with a support at the front end. The plate is typically in the range of 60 μm to 80 μm on a
side, and 1 μm to 2 μm thick. The support height is typically in the 1 μm to 2 μm range. The
operation of the scratch drive is shown in Fig. 4. When a voltage is applied between the
polysilicon plate and the substrate beneath it, the plate is drawn down into flat contact with
the dielectric layer. Since the front of the plate is supported by the bushing, strain energy is
stored in the plate, and the edge of the bushing is pushed forward. When the voltage is
removed, the strain is released, and the scratch drive plate snaps back to its original shape,
slightly in front of where it began. When a periodic pulse is applied, this cycle is
continuously repeated, and the scratch drive moves forward in a step-wise manner,
achieving maximum speeds on the order of millimeters per second.

Steering can be accomplished by exploiting snap-down and release voltages of cantilever
beams mounted on the scratch drive body. Fig. 2 (left) shows one such steering cantilever
with a two-micron-diameter stylus at the tip. If the periodic drive pulse of the scratch drive
actuator nests within the hysteresis band of these cantilevers, the cantilevers’ position
(raised or lowered) can be controlled independently from the operation of the actuator
(Donald et al., 2006).

1978). Imagine that the top plate were suspended over the bottom plate by a linear spring of
constant K. For a given extension, z, the energy stored in the spring is:

2

2zKUS  (3)

The energy stored in the capacitor, Uc, is:

 zg
LwVUC 


0

2

2


 (4)

where g0 is the plate separation at zero spring extension. Minimizing the energy of the
system, the relationship between the plate separation and the applied voltage can be
calculated as follows:

 
Lw

ggLwKg
V


 

 02
 (5)

This function defines the curve shown in Fig. 3. To the right of the maximum voltage, the
system is statically stable. To the left, the system is unstable and will collapse, extending the
spring until the plates come into contact or encounter a hard stop. Solving for V and
maximizing with respect to g produces the voltage and gap at which this snap-down event
occurs (Nathanson et al., 1978):

3
2
27
8

0

3
0

g
g

Lw
Kg

V

SD

SD




 (6)

If the plates are prevented from electrical contact by, for example, a layer of insulation, they
will remain snapped down until the voltage is reduced below the release voltage. The
release voltage for a given gap can be determined from the left-hand side of the graph in
Fig. 3. Each hysteresis band between a snap-down voltage and a release voltage can be used
as a mechanical memory bit for electrostatic microrobotic systems (Donald et al., 2006),
allowing the robots to be configured as simple state machines without any on-board
transistors.

Robot Soccer292

provided by a digital microscope camera, and trajectory adjustments are made by changing
the relative percentages of the interleaved control primitives.

The microrobotic devices may by modeled as nonholonomic mobile robots similar to a
Dubins vehicle (Dubin, 1957) limited to forward motion and left turns. The state of the robot
q is given by:

x
q y



 
   
  

 (7)

where (x,y) is the location of the robot, and  is the orientation of the device. The kinematics
of the device are given by:

cos
sin

v
q v






 
   
  

 (8)

where v is a positive velocity with an expected constant value that is related to the stepping
frequency in the forward motion wave form shown in Figure 7. The angular velocity w is
also a fixed value, and {0,1} is the state of the steering arm (0= up, 1=down). It should be
noted that w may be positive or negative depending on the construction of the arm. Without
loss of generality, we will assume the value is positive for the remainder of this discussion.
The robot is globally controllable, but not small time locally controllable (STLC).

As discussed in (G. Lionis and K.J. Kyriakopoulos, 2007) the radius of curvature can be
varied by alternating the relative percentage of the two voltage waveforms that moves the
robot either forward or in a turn within a short time period. The device kinematics of the
ideal system can be decomposed using control vectors that characterize all of the possible
motions of the scratch drive actuators. For scratch drive actuators, these vectors are given by
the following

1 2

1 1 2 2

2

cos cos
sin , sin
0

v v
g v g v

 
 



   
       
      

 (9)

A key departure here from the work (G. Lionis and K.J. Kyriakopoulos, 2007) is the absence
of the ability to achieve a -wor –v. The work in (G. Lionis and K.J. Kyriakopoulos, 2007)
considered a larger microrobot with piezo-actuated legs similar to that discussed in (Martel,
2005). That system had the ability to go forwards and backwards as well as turn both left
and right with fixed radius turns. Despite these differences, the large portions of the
discussion of (G. Lionis and K.J. Kyriakopoulos, 2007) are still applicable. Of note is the
analysis concerning a pulse width modulated (PWM) control strategy. The approach is to
alternate between two of the permissible vectors. Fig. 5 shows the two waveforms that
would be sent to the scratch drive actuator in order to switch between forward motion and
turning motion.

Fig. 4. A schematic of the operation of a scratch drive actuator (Akiyama et al., 1993). The
length of the curved region of the plate, ℓ, and the step size, Δx, are determined by the
voltage.

2.2 Electrostatic Microrobot Fabrication
Fabrication of thin-film electrostatic actuators like the scratch drive is performed through
photolithographic techniques that were originally developed for the integrated circuit
industry. Each device is composed of multiple layers, each of which is defined by a
lithographic mask. Typically, a material such as silicon, glass, or metal is deposited by
chemical or physical vapor deposition and is then coated with a film of photoresist. The
photoresist is exposed through a lithographic mask and developed to remove the unwanted
portion of the film. The pattern defined by the remaining film is transferred into the material
layer through an etching process, and then the residual photoresist is removed. As this
process is repeated, the device is built up layer by layer. The equipment required for these
processes is available at microfabrication laboratories in many universities. In addition,
many standard thin-film microfabrication processes are available commercially as multi-
project wafer services, where each wafer is divided between many researchers, producing
significant cost decreases (Markus et al., 1995; Sniegowski et al., 1996; Tea et al., 1997).
Participants in these processes receive a set of die containing devices built from their own
supplied designs. The die can then be post-processed for additional customization if desired
(Donald et al., 2006; Huikai et al., 2002).

2.3 Electrostatic Microrobot Control
The work by Donald (Donald et al., 2006) uses the pre-image motion planning strategy
developed by Lozano-Perez, Mason, and Taylor (Lozano-Perez, et al., 1984). The planner
starts with the goal position and computes backwards the sequence of single velocity
motion primitives that leads to the initial position of each robot. This method assumes
perfect robot motion. Since robots rarely live up to this assumption, a closed-loop error
correction method is employed. The trajectory is recalculated at periodic intervals, making
on-the-fly adjustments for observed error. In the case of (Donald et al., 2006) the feedback is

Soccer at the Microscale: Small Robots with Big Impact 293

provided by a digital microscope camera, and trajectory adjustments are made by changing
the relative percentages of the interleaved control primitives.

The microrobotic devices may by modeled as nonholonomic mobile robots similar to a
Dubins vehicle (Dubin, 1957) limited to forward motion and left turns. The state of the robot
q is given by:

x
q y



 
   
  

 (7)

where (x,y) is the location of the robot, and  is the orientation of the device. The kinematics
of the device are given by:

cos
sin

v
q v






 
   
  

 (8)

where v is a positive velocity with an expected constant value that is related to the stepping
frequency in the forward motion wave form shown in Figure 7. The angular velocity w is
also a fixed value, and {0,1} is the state of the steering arm (0= up, 1=down). It should be
noted that w may be positive or negative depending on the construction of the arm. Without
loss of generality, we will assume the value is positive for the remainder of this discussion.
The robot is globally controllable, but not small time locally controllable (STLC).

As discussed in (G. Lionis and K.J. Kyriakopoulos, 2007) the radius of curvature can be
varied by alternating the relative percentage of the two voltage waveforms that moves the
robot either forward or in a turn within a short time period. The device kinematics of the
ideal system can be decomposed using control vectors that characterize all of the possible
motions of the scratch drive actuators. For scratch drive actuators, these vectors are given by
the following

1 2

1 1 2 2

2

cos cos
sin , sin
0

v v
g v g v

 
 



   
       
      

 (9)

A key departure here from the work (G. Lionis and K.J. Kyriakopoulos, 2007) is the absence
of the ability to achieve a -wor –v. The work in (G. Lionis and K.J. Kyriakopoulos, 2007)
considered a larger microrobot with piezo-actuated legs similar to that discussed in (Martel,
2005). That system had the ability to go forwards and backwards as well as turn both left
and right with fixed radius turns. Despite these differences, the large portions of the
discussion of (G. Lionis and K.J. Kyriakopoulos, 2007) are still applicable. Of note is the
analysis concerning a pulse width modulated (PWM) control strategy. The approach is to
alternate between two of the permissible vectors. Fig. 5 shows the two waveforms that
would be sent to the scratch drive actuator in order to switch between forward motion and
turning motion.

Fig. 4. A schematic of the operation of a scratch drive actuator (Akiyama et al., 1993). The
length of the curved region of the plate, ℓ, and the step size, Δx, are determined by the
voltage.

2.2 Electrostatic Microrobot Fabrication
Fabrication of thin-film electrostatic actuators like the scratch drive is performed through
photolithographic techniques that were originally developed for the integrated circuit
industry. Each device is composed of multiple layers, each of which is defined by a
lithographic mask. Typically, a material such as silicon, glass, or metal is deposited by
chemical or physical vapor deposition and is then coated with a film of photoresist. The
photoresist is exposed through a lithographic mask and developed to remove the unwanted
portion of the film. The pattern defined by the remaining film is transferred into the material
layer through an etching process, and then the residual photoresist is removed. As this
process is repeated, the device is built up layer by layer. The equipment required for these
processes is available at microfabrication laboratories in many universities. In addition,
many standard thin-film microfabrication processes are available commercially as multi-
project wafer services, where each wafer is divided between many researchers, producing
significant cost decreases (Markus et al., 1995; Sniegowski et al., 1996; Tea et al., 1997).
Participants in these processes receive a set of die containing devices built from their own
supplied designs. The die can then be post-processed for additional customization if desired
(Donald et al., 2006; Huikai et al., 2002).

2.3 Electrostatic Microrobot Control
The work by Donald (Donald et al., 2006) uses the pre-image motion planning strategy
developed by Lozano-Perez, Mason, and Taylor (Lozano-Perez, et al., 1984). The planner
starts with the goal position and computes backwards the sequence of single velocity
motion primitives that leads to the initial position of each robot. This method assumes
perfect robot motion. Since robots rarely live up to this assumption, a closed-loop error
correction method is employed. The trajectory is recalculated at periodic intervals, making
on-the-fly adjustments for observed error. In the case of (Donald et al., 2006) the feedback is

Robot Soccer294

practicalities of waveform generation dictate that T is small, but does not necessarily
approach zero. In (Donald et al., 2006) the length of T was set at 0.25 ms. In (Piepmeier,
2010) it was shown that the following model gives a better approximation of the motion of
the device for larger control periods, T. The following vector field provides a closer
approximation of the motion produced by a PWM-controlled scratch drive device.

1 2

1 2
12

1 2

cos
1 1

sin
1 1

1
1 1

a

v v a
a a

v v ag
a a

a
a a





 

       
        
 

 
   

 (13)

3. Magnetic Microrobots

Two groups participating in the RoboCup Nanogram events, one from Carnegie Mellon
University, and the other from ETH Zurich University, have demonstrated magnetic
microrobots. These systems have shown less sensitivity to environmental variation than
microrobots based on scratch drive actuators. The two magnetic microrobotic systems
operate on different principles, as described below.

The Carnegie Mellon microrobot, developed by Steven Floyd, Chytra Pawashe, and Metin
Sitti, is simply a laser machined slug of neodymium-iron-boron, a hard magnetic material,
which is manipulated through externally applied magnetic fields (Floyd et al., 2008
Pawashe, 2008; Pawashe, 2009, a; Pawashe, 2009, b). This robot is similar to the microrobots
developed by a number of groups for biomedical applications (Gauthier & Piat, 2004; Yesin
et al., 2006; Tamaz et al., 2008; Yamazaki et al., 2004). Robot technologies such as this, where
the robot itself is a simple shape that is translated through externally applied magnetic fields
without internally moving parts, will be termed “ferromagnetic-core-based robots.” Most of
these microrobot technologies are targeted towards operation in a three-dimensional fluid
environment, such as the human body. The distinction for the Carnegie Mellon microrobot
is that the control system has been tailored to allow the robot to operate on a surface.

The ETH Zurich microrobot (Vollmers et al., 2008; Kratochvil et al., 2009; Frutiger et al.,
2008, a; Frutiger et al., 2008, b; Frutiger et al., 2009) utilizes an alternating magnetic field to
excite mechanical resonances within the structure, allowing the robot to move through a
stick-slip method. Bidirectional motion is facilitated by a z-axis clamping force. Robots of
this type will be termed “resonant magnetic robots.” Before describing these technologies in
more detail, however, it is useful to review the physics of magnetics.

Fig. 5. Pulse width modulated (PWM) control scheme that alternates between forward
motion for time T and turning motion with time aT.

To create a PWM control scheme, a switching function is defined

   
    

1 0
, , 0 1

1 , , 1

t T
t a T T t a T

t a T a T t a T




  


   
    

 (10)

Physically, the switching is achieved by lowering and raising the steering arm. The control
input is defined as  

2 1 0
a
g gC q , and is constructed by selecting a, T, g1, and g2 such that

    1 2, , 1 , ,q t a T g t a T g    (11)

Note that T defines the time for the motion primitive g1 and a controls the length of time for
the second motion primitive gj relative to gi.

It was shown in (G. Lionis and K.J. Kyriakopoulos, 2007) that as T0, the microrobot with a
fixed turning radius will move as a unicycle; a device capable of arbitrary curvature. For
example, switching between g1 and g2 will result in

12

2

cos
sin

1

a

v
g v

a
a






 
 
 

  
 
 

 

 (12)

While these results hold in the ideal case, implementation issues for scratch drive actuators
violate two of the assumptions made in the analysis. First, the motion of the robots can be
inconsistent. Devices often exhibit mild turning characteristics even when they are
controlled by the straight motion wave function (Donald et al., 2006). Secondly, the

time (s)

t=0 t=T Forward Motion Turning Motion

 V
ol

ta
ge

 (V
)

Soccer at the Microscale: Small Robots with Big Impact 295

practicalities of waveform generation dictate that T is small, but does not necessarily
approach zero. In (Donald et al., 2006) the length of T was set at 0.25 ms. In (Piepmeier,
2010) it was shown that the following model gives a better approximation of the motion of
the device for larger control periods, T. The following vector field provides a closer
approximation of the motion produced by a PWM-controlled scratch drive device.

1 2

1 2
12

1 2

cos
1 1

sin
1 1

1
1 1

a

v v a
a a

v v ag
a a

a
a a





 

       
        
 

 
   

 (13)

3. Magnetic Microrobots

Two groups participating in the RoboCup Nanogram events, one from Carnegie Mellon
University, and the other from ETH Zurich University, have demonstrated magnetic
microrobots. These systems have shown less sensitivity to environmental variation than
microrobots based on scratch drive actuators. The two magnetic microrobotic systems
operate on different principles, as described below.

The Carnegie Mellon microrobot, developed by Steven Floyd, Chytra Pawashe, and Metin
Sitti, is simply a laser machined slug of neodymium-iron-boron, a hard magnetic material,
which is manipulated through externally applied magnetic fields (Floyd et al., 2008
Pawashe, 2008; Pawashe, 2009, a; Pawashe, 2009, b). This robot is similar to the microrobots
developed by a number of groups for biomedical applications (Gauthier & Piat, 2004; Yesin
et al., 2006; Tamaz et al., 2008; Yamazaki et al., 2004). Robot technologies such as this, where
the robot itself is a simple shape that is translated through externally applied magnetic fields
without internally moving parts, will be termed “ferromagnetic-core-based robots.” Most of
these microrobot technologies are targeted towards operation in a three-dimensional fluid
environment, such as the human body. The distinction for the Carnegie Mellon microrobot
is that the control system has been tailored to allow the robot to operate on a surface.

The ETH Zurich microrobot (Vollmers et al., 2008; Kratochvil et al., 2009; Frutiger et al.,
2008, a; Frutiger et al., 2008, b; Frutiger et al., 2009) utilizes an alternating magnetic field to
excite mechanical resonances within the structure, allowing the robot to move through a
stick-slip method. Bidirectional motion is facilitated by a z-axis clamping force. Robots of
this type will be termed “resonant magnetic robots.” Before describing these technologies in
more detail, however, it is useful to review the physics of magnetics.

Fig. 5. Pulse width modulated (PWM) control scheme that alternates between forward
motion for time T and turning motion with time aT.

To create a PWM control scheme, a switching function is defined

   
    

1 0
, , 0 1

1 , , 1

t T
t a T T t a T

t a T a T t a T




  


   
    

 (10)

Physically, the switching is achieved by lowering and raising the steering arm. The control
input is defined as  

2 1 0
a
g gC q , and is constructed by selecting a, T, g1, and g2 such that

    1 2, , 1 , ,q t a T g t a T g    (11)

Note that T defines the time for the motion primitive g1 and a controls the length of time for
the second motion primitive gj relative to gi.

It was shown in (G. Lionis and K.J. Kyriakopoulos, 2007) that as T0, the microrobot with a
fixed turning radius will move as a unicycle; a device capable of arbitrary curvature. For
example, switching between g1 and g2 will result in

12

2

cos
sin

1

a

v
g v

a
a






 
 
 

  
 
 

 

 (12)

While these results hold in the ideal case, implementation issues for scratch drive actuators
violate two of the assumptions made in the analysis. First, the motion of the robots can be
inconsistent. Devices often exhibit mild turning characteristics even when they are
controlled by the straight motion wave function (Donald et al., 2006). Secondly, the

time (s)

t=0 t=T Forward Motion Turning Motion

 V
ol

ta
ge

 (V
)

Robot Soccer296

   0 0 0 rB H M H H H        
     

 (15)

where 0 is the magnetic permeability of space, r is the relative permeability of the
magnetic material,  is the susceptibility, and M the internal magnetization. The relative
permeability is large for ferromagnetic materials such as iron and nickel, and these are the
materials most commonly used in magnetic microactuators.

There are two classes of ferromagnets: hard magnets, which retain some of their magnetic
polarization even after an applied external magnetic field is removed, and soft magnets,
which exhibit internal magnetization only in the presence of an external magnetic field. In
general, higher magnetization levels are available in hard magnetic materials. Shape
anisotropy, more so than the orientation to the induction field, determines the direction of
polarization in the material. A rod-shaped piece of material, for example, will usually have
an internal field pointing in the longitudinal direction, and a thin plate will usually exhibit
magnetization in the plane of the plate, even when the induction field is oriented in another
direction. This is a particular consideration for soft-magnetic materials-- hard magnetic
materials can be magnetized before being cut into the desired shape, allowing the designer
control over the orientation of the magnetization relative to the shape.

In the presence of an external magnetic field, both hard and soft magnets will rotate until
their internal magnetization is parallel to the local external magnetic field lines. A net force
for translational motion, however, is only exerted in the case of non-uniform magnetic field.
The equations for torque and force are given by (Yesin et al., 2006):

T VM B 
  

 F V M B 
  


(16)

where V is the volume of the slug of ferromagnetic material. The force will draw the slug in
the direction of increasing field intensity, or towards the magnet.

The challenge for magnetic actuation is not getting the robot to move, but rather getting it to
move in a controllable fashion. Combining the distance dependencies of the magnetization
and of the gradient of the magnetic field, the force for a soft magnet is inversely
proportional to the fifth power of the distance between the robot and the electromagnet coil
(Yesin et al., 2006). For a hard magnet, it depends only on the inverse of the cube. Once the
robot begins to move, it quickly accelerates towards the electromagnet, and without careful
control it will snap to the electromagnet. This problem is addressed in part by sizing and
placing the electromagnets so that their interior volume is much greater than the volume in
which the robot is meant to operate. This reduces the variation in the field strength over the
playing field area and allows the opposing electromagnet to counter one electromagnet’s
force at a reasonable current level. The non-linearity is also addressed by using oscillatory
motion or multiple coils operating simultaneously to build a linear field, such as the
Helmholtz or Maxwell coil configurations, which are common in the magnetic resonance
imaging (MRI) industry (Yesin et al., 2006).

Fig. 6. Electromagnetic cage used by Floyd et al. for microrobot actuation (Floyd, 2008;
Pawashe, 2008; Pawashe, 2009, a; Pawashe, 2009, b). Figure used with permission from the
authors.

3.1 Magnetic Force Generation
For both of these technologies, the playing field area is encased inside of a cage of
independent electromagnet coils, as is illustrated in Fig. 6 for the Carnegie Mellon
microrobot. The Biot-Savart law determines the relationship between the current, I, through
a coil, C, consisting of N turns, and the magnetic field density vector, B , at a distant position
(Hayt & Buck, 2006):

0
24

R
C

I dL aB
R





 

 
 . (14)

where 0 is the permeability of free space, dL is an infinitesimal line segment along the
direction of integration, aR is the unit vector pointing from dL to the point of interest, and R
is the distance from the line segment to the point of interest. Of course, in a case where
multiple independent coils are used, the net magnetic field at the microrobot location must
be found by adding the contributions from each coil at the location of the microrobot. The
important thing to note about this equation is that the field intensity is inversely proportional to
the square of the distance between the coil and the robot. This is an important consideration for
the control of the robot, as the resulting force is highly non-linear with position.

It’s important to distinguish between magnetic field intensity vector, H (units: A/m), and
the magnetic field density vector, B (units: T or Wb/m2), which is the induced total
magnetic field within a given material (Liu, 2006). The relationship between the two
quantities is given by:

Soccer at the Microscale: Small Robots with Big Impact 297

   0 0 0 rB H M H H H        
     

 (15)

where 0 is the magnetic permeability of space, r is the relative permeability of the
magnetic material,  is the susceptibility, and M the internal magnetization. The relative
permeability is large for ferromagnetic materials such as iron and nickel, and these are the
materials most commonly used in magnetic microactuators.

There are two classes of ferromagnets: hard magnets, which retain some of their magnetic
polarization even after an applied external magnetic field is removed, and soft magnets,
which exhibit internal magnetization only in the presence of an external magnetic field. In
general, higher magnetization levels are available in hard magnetic materials. Shape
anisotropy, more so than the orientation to the induction field, determines the direction of
polarization in the material. A rod-shaped piece of material, for example, will usually have
an internal field pointing in the longitudinal direction, and a thin plate will usually exhibit
magnetization in the plane of the plate, even when the induction field is oriented in another
direction. This is a particular consideration for soft-magnetic materials-- hard magnetic
materials can be magnetized before being cut into the desired shape, allowing the designer
control over the orientation of the magnetization relative to the shape.

In the presence of an external magnetic field, both hard and soft magnets will rotate until
their internal magnetization is parallel to the local external magnetic field lines. A net force
for translational motion, however, is only exerted in the case of non-uniform magnetic field.
The equations for torque and force are given by (Yesin et al., 2006):

T VM B 
  

 F V M B 
  


(16)

where V is the volume of the slug of ferromagnetic material. The force will draw the slug in
the direction of increasing field intensity, or towards the magnet.

The challenge for magnetic actuation is not getting the robot to move, but rather getting it to
move in a controllable fashion. Combining the distance dependencies of the magnetization
and of the gradient of the magnetic field, the force for a soft magnet is inversely
proportional to the fifth power of the distance between the robot and the electromagnet coil
(Yesin et al., 2006). For a hard magnet, it depends only on the inverse of the cube. Once the
robot begins to move, it quickly accelerates towards the electromagnet, and without careful
control it will snap to the electromagnet. This problem is addressed in part by sizing and
placing the electromagnets so that their interior volume is much greater than the volume in
which the robot is meant to operate. This reduces the variation in the field strength over the
playing field area and allows the opposing electromagnet to counter one electromagnet’s
force at a reasonable current level. The non-linearity is also addressed by using oscillatory
motion or multiple coils operating simultaneously to build a linear field, such as the
Helmholtz or Maxwell coil configurations, which are common in the magnetic resonance
imaging (MRI) industry (Yesin et al., 2006).

Fig. 6. Electromagnetic cage used by Floyd et al. for microrobot actuation (Floyd, 2008;
Pawashe, 2008; Pawashe, 2009, a; Pawashe, 2009, b). Figure used with permission from the
authors.

3.1 Magnetic Force Generation
For both of these technologies, the playing field area is encased inside of a cage of
independent electromagnet coils, as is illustrated in Fig. 6 for the Carnegie Mellon
microrobot. The Biot-Savart law determines the relationship between the current, I, through
a coil, C, consisting of N turns, and the magnetic field density vector, B , at a distant position
(Hayt & Buck, 2006):

0
24

R
C

I dL aB
R





 

 
 . (14)

where 0 is the permeability of free space, dL is an infinitesimal line segment along the
direction of integration, aR is the unit vector pointing from dL to the point of interest, and R
is the distance from the line segment to the point of interest. Of course, in a case where
multiple independent coils are used, the net magnetic field at the microrobot location must
be found by adding the contributions from each coil at the location of the microrobot. The
important thing to note about this equation is that the field intensity is inversely proportional to
the square of the distance between the coil and the robot. This is an important consideration for
the control of the robot, as the resulting force is highly non-linear with position.

It’s important to distinguish between magnetic field intensity vector, H (units: A/m), and
the magnetic field density vector, B (units: T or Wb/m2), which is the induced total
magnetic field within a given material (Liu, 2006). The relationship between the two
quantities is given by:

Robot Soccer298

could be used for microsurgery in the human eye as well as cardiovascular applications
(Yesin et al., 2006).

ETH Zurich has also developed “nanohelices” or tiny spiral structures (about 60 m in
length) that have a soft magnetic head which allows them to be manipulated by a magnetic
field (Kratochvil et al., 2008). With these structures they have demonstrated controlled
conversion between rotary and linear motion, which finds application both as a biomimetic
swimming microrobot actuator (like a bacteria flagellum) and as an instrumentation tool for
rotating structures within a scanning electron microscope. Similar work at a larger size-scale
(about 1 mm in length) using a spiral of tungsten wire has been demonstrated by Yamazaki
et al. (Yamazaki et al., 2004). Biomimetic, bacteria-flagella-type motion has also been
demonstrated by Dreyfus et al. (Dreyfus et al., 2005), who formed their actuator from a
string of magnetic beads held together by DNA and attached to a red blood cell.

3.3 Resonant Magnetic Robots
The resonant magnetic robots, or “Magmites” developed by the group at ETH Zurich
(Vollmers et al., 2008; Kratochvil et al., 2009; Frutiger et al., 2008; Frutiger et al., 2009) consist
of a base frame that contains a spring and two ferromagnetic masses. One mass is attached
to the frame and the other to the spring. The entire robot covers an area of 300 m x 300 m
and is about 150 m thick. In a spatially uniform magnetic field, the two adjacent pieces of
ferromagnetic material magnetize and experience interaction forces but no net force. When
the field is oscillated at the appropriate frequency, it excites the mechanical resonance of the
structure, swinging the mass attached to the spring (the hammer) within the plane of the
frame. By applying a clamping field at the right moment in the cycle, the momentum of this
hammer action is transformed into translational motion. The direction of motion depends on
the phase difference between the magnetic excitation field and the clamping field. Clamping
is accomplished electrostatically using the playing field electrode array. Unidirectional
motion is even possible in the absence of the clamping field due to the non-uniformity of the
friction forces during the resonator cycle.

Magmites are fabricated through a surface micromachining process that utilizes copper or
gold for the frame and spring structure and electroplated nickel for the soft magnetic
masses, as is illustrated in Fig. 8. Dimples on the bottom of the frame are used to reduce the
contact area with the substrate. Magmites have been shown to operate in an environment of
up to 60% relative humidity. They use fields as low as 2 mT operating in the frequency
range of 1 kHz to 5 kHz. In the 2009 competition in Graz, Austria, they set the record for the
2 mm dash with a time of 0.326 s (a speed of 6.1 m/s, faster speeds were demonstrated
informally). Multirobot control is demonstrated by using robots engineered for different
resonance frequencies (Kratochvil et al., 2009).

3.2 Ferromagnetic-Core-Based Microrobots
Floyd et al. use a hard magnet as their robotic element (Floyd et al., 2008; Pawashe, 2008;
Pawashe, 2009, a; Pawashe, 2009, b). The robot is cut from a magnetized sheet of NdFeB
using laser machining. The robot, shown in motion in Fig. 7, is chevron-shaped, 100 m
thick, and approximately 250 m by 130 m in the xy-plane. It has a mass of 25.6 g and a
magnetization of 500 kA/m, and it operates within a cubic workspace approximately 2 cm
on a side with gradient fields as strong as 149 mT/m. They use short duration, periodic
fluctuations in the magnetic field to control robot motion.

The robot body is controlled using five independent electromagnetic coils. Four of these are
in the plane of the robot’s playing field and the fifth is below the playing field. Two
actuation techniques can be employed, and both of them take advantage of stick-slip motion
of the robotic mass induced by pulsed magnetic fields.

Fig. 7. The Carnegie Mellon Mag-Bot in motion, by Floyd and Pawashe at Carnegie Mellon
University. The robot is approximately 300 m x 300 m x 100 m(Floyd, 2008; Pawashe,
2008; Pawashe, 2009, a; Pawashe, 2009, b). Figure used with permission from the authors.

The first technique, In-Plane Pulsing (IPP), first uses the fifth coil to clamp the robot to the
playing field and then orients the robot using the other four coils. Then, with the clamping
coil still in effect, translation is effected by applying a saw tooth magnetic field waveform
with the four in plane coils. The second technique, Out-of-Plane Pulsing (OPP), reverses the
role of the clamping coil and the four in-plane coils. The coil beneath the work surface is
pulsed to create a saw tooth magnetic field, and the in-plane coils are held constant with
similar stick-slip translational motion as a result. Experimental results show that robot
velocities increase with increased pulsing frequencies for both IPP and OPP methods;
however IPP produces more consistent results fitting an exponential attack curve. OPP
produces higher velocities, on the order of 2.8 mm/s, where the maximum velocity for IPP
was only 700 μm/s. The authors suggest OPP for coarser motion and IPP for finer control.

While this robot is tailored to surface motion, several groups have pursued similar strategies
for microrobots tailored to biomedical applications. The group of S. Martel at Ecole
Polytechnique de Montreal has adapted a clinical magnetic resonance imaging (MRI)
platform for control of a ferromagnetic bead within a fluid environment, and have
demonstrated their work in vivo in swine (Mathieu et al., 2006; Martel, 2007; Tamaz et al.,
2008). Yesin et al. at ETH Zurich have developed a nickel, football-shaped microrobot that

Soccer at the Microscale: Small Robots with Big Impact 299

could be used for microsurgery in the human eye as well as cardiovascular applications
(Yesin et al., 2006).

ETH Zurich has also developed “nanohelices” or tiny spiral structures (about 60 m in
length) that have a soft magnetic head which allows them to be manipulated by a magnetic
field (Kratochvil et al., 2008). With these structures they have demonstrated controlled
conversion between rotary and linear motion, which finds application both as a biomimetic
swimming microrobot actuator (like a bacteria flagellum) and as an instrumentation tool for
rotating structures within a scanning electron microscope. Similar work at a larger size-scale
(about 1 mm in length) using a spiral of tungsten wire has been demonstrated by Yamazaki
et al. (Yamazaki et al., 2004). Biomimetic, bacteria-flagella-type motion has also been
demonstrated by Dreyfus et al. (Dreyfus et al., 2005), who formed their actuator from a
string of magnetic beads held together by DNA and attached to a red blood cell.

3.3 Resonant Magnetic Robots
The resonant magnetic robots, or “Magmites” developed by the group at ETH Zurich
(Vollmers et al., 2008; Kratochvil et al., 2009; Frutiger et al., 2008; Frutiger et al., 2009) consist
of a base frame that contains a spring and two ferromagnetic masses. One mass is attached
to the frame and the other to the spring. The entire robot covers an area of 300 m x 300 m
and is about 150 m thick. In a spatially uniform magnetic field, the two adjacent pieces of
ferromagnetic material magnetize and experience interaction forces but no net force. When
the field is oscillated at the appropriate frequency, it excites the mechanical resonance of the
structure, swinging the mass attached to the spring (the hammer) within the plane of the
frame. By applying a clamping field at the right moment in the cycle, the momentum of this
hammer action is transformed into translational motion. The direction of motion depends on
the phase difference between the magnetic excitation field and the clamping field. Clamping
is accomplished electrostatically using the playing field electrode array. Unidirectional
motion is even possible in the absence of the clamping field due to the non-uniformity of the
friction forces during the resonator cycle.

Magmites are fabricated through a surface micromachining process that utilizes copper or
gold for the frame and spring structure and electroplated nickel for the soft magnetic
masses, as is illustrated in Fig. 8. Dimples on the bottom of the frame are used to reduce the
contact area with the substrate. Magmites have been shown to operate in an environment of
up to 60% relative humidity. They use fields as low as 2 mT operating in the frequency
range of 1 kHz to 5 kHz. In the 2009 competition in Graz, Austria, they set the record for the
2 mm dash with a time of 0.326 s (a speed of 6.1 m/s, faster speeds were demonstrated
informally). Multirobot control is demonstrated by using robots engineered for different
resonance frequencies (Kratochvil et al., 2009).

3.2 Ferromagnetic-Core-Based Microrobots
Floyd et al. use a hard magnet as their robotic element (Floyd et al., 2008; Pawashe, 2008;
Pawashe, 2009, a; Pawashe, 2009, b). The robot is cut from a magnetized sheet of NdFeB
using laser machining. The robot, shown in motion in Fig. 7, is chevron-shaped, 100 m
thick, and approximately 250 m by 130 m in the xy-plane. It has a mass of 25.6 g and a
magnetization of 500 kA/m, and it operates within a cubic workspace approximately 2 cm
on a side with gradient fields as strong as 149 mT/m. They use short duration, periodic
fluctuations in the magnetic field to control robot motion.

The robot body is controlled using five independent electromagnetic coils. Four of these are
in the plane of the robot’s playing field and the fifth is below the playing field. Two
actuation techniques can be employed, and both of them take advantage of stick-slip motion
of the robotic mass induced by pulsed magnetic fields.

Fig. 7. The Carnegie Mellon Mag-Bot in motion, by Floyd and Pawashe at Carnegie Mellon
University. The robot is approximately 300 m x 300 m x 100 m(Floyd, 2008; Pawashe,
2008; Pawashe, 2009, a; Pawashe, 2009, b). Figure used with permission from the authors.

The first technique, In-Plane Pulsing (IPP), first uses the fifth coil to clamp the robot to the
playing field and then orients the robot using the other four coils. Then, with the clamping
coil still in effect, translation is effected by applying a saw tooth magnetic field waveform
with the four in plane coils. The second technique, Out-of-Plane Pulsing (OPP), reverses the
role of the clamping coil and the four in-plane coils. The coil beneath the work surface is
pulsed to create a saw tooth magnetic field, and the in-plane coils are held constant with
similar stick-slip translational motion as a result. Experimental results show that robot
velocities increase with increased pulsing frequencies for both IPP and OPP methods;
however IPP produces more consistent results fitting an exponential attack curve. OPP
produces higher velocities, on the order of 2.8 mm/s, where the maximum velocity for IPP
was only 700 μm/s. The authors suggest OPP for coarser motion and IPP for finer control.

While this robot is tailored to surface motion, several groups have pursued similar strategies
for microrobots tailored to biomedical applications. The group of S. Martel at Ecole
Polytechnique de Montreal has adapted a clinical magnetic resonance imaging (MRI)
platform for control of a ferromagnetic bead within a fluid environment, and have
demonstrated their work in vivo in swine (Mathieu et al., 2006; Martel, 2007; Tamaz et al.,
2008). Yesin et al. at ETH Zurich have developed a nickel, football-shaped microrobot that

Robot Soccer300

fabrication methods will expand to incorporate more magnetic material variety if there is
sufficient need. Furthermore, given the prevalence of magnetic resonance imaging (MRI)
systems in medicine, magnetic microrobots are an enticing candidate for medical
applications.

4. Other Microrobot Actuation Methods

While only electrostatic and magnetic actuators have been used by teams competing in the
Nanogram events, there are a variety of other actuation methods that have been used for
microrobotics. In particular, thermally actuated microrobotics has been demonstrated by
several groups (Ohmichi et al., 1997; Ebefors et al., 2000; Kladitis et al., 2000; Baglio et al.,
2002; Sul et al., 2006; Brown et al., 2007). Several groups have also investigated robots
powered by external vibrations (Yasuda et al., 1994; Yasuda et al., 1995; Saitou et al., 2000),
and piezoelectric actuators (Smits, 1989; Wood et al., 2003; Nguyen and Martel, 2006;
Edqvist, 2009). Some of these systems are not microrobot systems in the sense of a
microscale independent actor, but rather micro- or nano-positioning systems where the
actuators are fixed to a substrate and are used to manipulate micro-sized components, like a
microscale conveyer belt. In the fluid domain, a few groups have even been working with
bacteria flagella-based propulsion (Behkam and Sitti, 2007; Martel et al., 2008) and
semiconductor diode propulsion (Chang et al., 2007). These technologies are not as easily
adapted to a surface walking application, but are briefly reviewed as they relate to the larger
nanorobotic goals of minimally invasive surgery, microassembly, and micropositioning.

4.1 Thermal Actuation
Thermal actuation is prevalent in microsystems, and so, while there has as yet been no
thermally actuated competitor in the Nanogram events, the future appearance of a robot of
this type seems likely. These robots rely on thermal expansion for motion. There are two
large classes of thermally actuated robots: “inchworm” drives and “impulse” or “impact”
drives. In an inchworm drive cyclic deformation results in forward motion in a manner that
is relatively independent of the time scale of the deformation. In such devices the speed
should simply be linearly dependent on the excitation frequency. In contrast, for an
“impulse” drive momentum generation is essential to the forward motion, making the
actuation method dependent on the time scale of the excitation. In other words, the
inchworm drive is a sort of shuffle step, while the impulse drive requires an initial sharp
kick. (It’s the Charleston of actuation mechanisms.)

4.1.1 The physics of thermal actuation
Thermal actuators are based on thermal expansion. Most materials expand when heated,
including most of the materials common in micromachining. Thermal actuators can be
divided into three broad classes: thermal bimorphs, single material structures, and
multiphase devices. The final category, which includes ink jet heads where the expansion of
a gas bubble is used to force a fixed volume of ink out of a small cavity, has not been applied
to microrobotics.

Fig. 8. a) The fabrication procedure for first-generation magmites uses surface micromachining
with electroplated gold and nickel layers; b) A strip of released Magmites still attached to a
tether for handling; c) a scanning electron micrograph of a Magmite; d) the Magmite on an
American penny, reprinted from (Frutiger, 2009). Figures by Frutiger, Vollmers and Kratochvil
and used with permission by the authors.

3.4 Magnetic Microrobot Challenges
Fabrication limitations pose a significant challenge for this class of microrobots. Traditional
silicon micromachining incorporates few materials which are ferromagnetic. Only Nickel is
available in a commercial microfabrication process, and, with a relative permeability of only
600, it is far less ferromagnetic than materials such as permalloy used in common
macroscale magnetic systems. Custom electroplating can be used to integrate a handful of
other materials, but the best magnetic materials are still not available through these methods
(Cugat et al., 2003). Techniques such as laser cutting allow for greater material breadth, but
it is difficult to then integrate the magnetic material with other microstructures.

Multirobot cooperation also presents a challenge, particularly for ferromagnetic-core-based
robots, as there is no way to selectively address a particular robot with the magnetic field,
alone. However, Pawashe et al. (Pawashe et al., 2009) have used an underlying electrode
array that uses localized electrostatic clamping to differentiate between robots. For resonant
microrobots, individual robots can be targeted by their resonant frequencies.

Even with these challenges, magnetic microrobots have outperformed the scratch drive
actuator-based robots thus far in the Nanogram soccer competitions. It seems likely that

Soccer at the Microscale: Small Robots with Big Impact 301

fabrication methods will expand to incorporate more magnetic material variety if there is
sufficient need. Furthermore, given the prevalence of magnetic resonance imaging (MRI)
systems in medicine, magnetic microrobots are an enticing candidate for medical
applications.

4. Other Microrobot Actuation Methods

While only electrostatic and magnetic actuators have been used by teams competing in the
Nanogram events, there are a variety of other actuation methods that have been used for
microrobotics. In particular, thermally actuated microrobotics has been demonstrated by
several groups (Ohmichi et al., 1997; Ebefors et al., 2000; Kladitis et al., 2000; Baglio et al.,
2002; Sul et al., 2006; Brown et al., 2007). Several groups have also investigated robots
powered by external vibrations (Yasuda et al., 1994; Yasuda et al., 1995; Saitou et al., 2000),
and piezoelectric actuators (Smits, 1989; Wood et al., 2003; Nguyen and Martel, 2006;
Edqvist, 2009). Some of these systems are not microrobot systems in the sense of a
microscale independent actor, but rather micro- or nano-positioning systems where the
actuators are fixed to a substrate and are used to manipulate micro-sized components, like a
microscale conveyer belt. In the fluid domain, a few groups have even been working with
bacteria flagella-based propulsion (Behkam and Sitti, 2007; Martel et al., 2008) and
semiconductor diode propulsion (Chang et al., 2007). These technologies are not as easily
adapted to a surface walking application, but are briefly reviewed as they relate to the larger
nanorobotic goals of minimally invasive surgery, microassembly, and micropositioning.

4.1 Thermal Actuation
Thermal actuation is prevalent in microsystems, and so, while there has as yet been no
thermally actuated competitor in the Nanogram events, the future appearance of a robot of
this type seems likely. These robots rely on thermal expansion for motion. There are two
large classes of thermally actuated robots: “inchworm” drives and “impulse” or “impact”
drives. In an inchworm drive cyclic deformation results in forward motion in a manner that
is relatively independent of the time scale of the deformation. In such devices the speed
should simply be linearly dependent on the excitation frequency. In contrast, for an
“impulse” drive momentum generation is essential to the forward motion, making the
actuation method dependent on the time scale of the excitation. In other words, the
inchworm drive is a sort of shuffle step, while the impulse drive requires an initial sharp
kick. (It’s the Charleston of actuation mechanisms.)

4.1.1 The physics of thermal actuation
Thermal actuators are based on thermal expansion. Most materials expand when heated,
including most of the materials common in micromachining. Thermal actuators can be
divided into three broad classes: thermal bimorphs, single material structures, and
multiphase devices. The final category, which includes ink jet heads where the expansion of
a gas bubble is used to force a fixed volume of ink out of a small cavity, has not been applied
to microrobotics.

Fig. 8. a) The fabrication procedure for first-generation magmites uses surface micromachining
with electroplated gold and nickel layers; b) A strip of released Magmites still attached to a
tether for handling; c) a scanning electron micrograph of a Magmite; d) the Magmite on an
American penny, reprinted from (Frutiger, 2009). Figures by Frutiger, Vollmers and Kratochvil
and used with permission by the authors.

3.4 Magnetic Microrobot Challenges
Fabrication limitations pose a significant challenge for this class of microrobots. Traditional
silicon micromachining incorporates few materials which are ferromagnetic. Only Nickel is
available in a commercial microfabrication process, and, with a relative permeability of only
600, it is far less ferromagnetic than materials such as permalloy used in common
macroscale magnetic systems. Custom electroplating can be used to integrate a handful of
other materials, but the best magnetic materials are still not available through these methods
(Cugat et al., 2003). Techniques such as laser cutting allow for greater material breadth, but
it is difficult to then integrate the magnetic material with other microstructures.

Multirobot cooperation also presents a challenge, particularly for ferromagnetic-core-based
robots, as there is no way to selectively address a particular robot with the magnetic field,
alone. However, Pawashe et al. (Pawashe et al., 2009) have used an underlying electrode
array that uses localized electrostatic clamping to differentiate between robots. For resonant
microrobots, individual robots can be targeted by their resonant frequencies.

Even with these challenges, magnetic microrobots have outperformed the scratch drive
actuator-based robots thus far in the Nanogram soccer competitions. It seems likely that

Robot Soccer302

the UNC microrobot, only one leg is heated, but, in the relaxation phase, the heat has spread
throughout the device and dissipates in a more uniform fashion, causing the device to move
away from the leg that was heated (Sul et al., 2006). Thus the device can be steered by
focusing the laser on the appropriate leg.

A similar micro-impact drive mechanism was described by Ohmichi et al. on the millimeter
scale (Ohmichi et al., 1997). These robots were fabricated from aluminum alloy by precision
cutting techniques. Like the UNC microrobot, these structures relied on a fast initial stage
where the motion is generated, followed by a slow relaxation period. The Ohmichi robot
consisted of a main body that is separated from a weight block by a narrow neck. A laser
was directed onto the neck causing rapid thermal expansion which pushed the weight away
from the body, resulting in an impulsive force that exceeded the static friction force. The
heat then dissipated throughout the structure causing a slower relaxation to the original
shape that does not counteract the initial motion. With repeated optical pulsing (up to 5
kHz) the team achieved speeds of up to 31 mm/s. The robot was approximately 1.7 mm x
0.6 mm x 0.4 mm.

One challenge for these types of robots is the requirement for optical access and fine control
of the optical system. A further challenge for these systems is that the complexity of the
control system would significantly increase for multirobot cooperation. Finally, these
systems have relied on special low-friction surfaces.

Friction forces are exploited by Brown et al. at Dalhousie University (Brown et al., 2007).
Their “frictional crawler” consists of 3 “feet” linked by two actuators. The locomotion
mechanism uses a shuffle step that takes advantage of the differences in contact area that
result from coupling one or two feet to achieve net translational motion. The team used
bent-beam actuators, of the type illustrated in Fig. 9 (right). Electrical connection to the
actuators was accomplished through rails on the substrate. The structures were fabricated
using a silicon-on-insulator process by the Micragem process1 (CMC Microsystems, 2009)
that results in a single-crystal-silicon actuators. The overall device dimensions were 1400 m
X 525 m X 10 m. The actuators required 2.75 V for operation. At this voltage, each drew
about 69 mA. The device traveled at 0.7 mm/s at its maximum frequency of 300 Hz (the
limit for the thermal actuators) and was observed to develop a horizontal force greater than
130 N. Significantly, it operated reliably even when carrying a load over 100 times its own
weight of 1 N. Good contact between the device and the rails was essential to operation,
and the team used a thin film of electrically conductive grease on the rails to maintain that
contact in the face of device imperfections. The rails, of course, limit the range and turning
capability of this robot, but the overall locomotion method is quite interesting.

1 Certain commercial equipment, instruments, or materials are identified in this review to
adequately specify the experimental procedure. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and Technology,
nor does it imply that the materials or equipment identified are necessarily the best available
for the purpose.

Thermal bimorphs consist of layered structures containing materials with different thermal
expansion properties. When heated, the structures will bend away from the side of the
structure containing the material with the higher expansion coefficient. Because of
fabrication limitations, thermal bimorphs are mostly used for out-of-plane motion. In
contrast, single-material thermal actuators are more commonly used for in-plane motion,
although they can be used for both in-plane and out-of-plane motion. Single-material
actuators sometimes rely on localized heating to create motion. This is certainly the case for
laser-heated structures, but also can occur in Joule-heated devices if the device geometry
confines the heating to a small area by creating an area that is thermally confined. An
example of this is shown on the left of Fig. 9.

Hot
armCool

arm

+-

Direction of
motion

Electrodes
+-

Direction of
motion

Electrodes

Hot
armCool

arm

+- +-

Direction of
motion

Electrodes
+- +-

Direction of
motion

Electrodes

Fig. 9. Illustration of two common types of single-material thermal actuators. On the left, the
geometry of the structure results in differential heating causing the thin arm to expand and
bend the structure towards the thick arm. In a bent beam actuator like on the right, the
beams are oriented so that thermal expansion leads to forward motion of the shuttle
structure in the middle.

Another common type of thermal actuator is a “bent-beam” actuator, illustrated on the right
of Fig. 9. In these chevron-shaped structures, current is passed through the beam causing
heating. Because of the bend in the center of the beam, expansion leads to translational
motion in-plane in the direction of the chevron’s base.

While much of the interest in thermally actuated robotic systems has been directed at
miniature robots (Kladitis and Bright, 2000, Ebefors et al., 2000), a number of groups have
demonstrated impulse-drive microrobots that are actuated through local heating by lasers—
an idea that was introduced by (Baglio et al., 2002). Sul et al. at UNC Chapel Hill have
illustrated an elegant tripod shaped robot that is actuated by local heating (Sul et al., 2006).
The three legs of the robot are metal-film bimorphs. At equilibrium the legs arch down to
the substrate because of residual stress from the fabrication process. When heated, the legs
further deflect due to differential thermal expansion coefficients in the two materials. The
rapid heating of one leg leads to a stepwise transition on a low-friction surface. There are
two phases to the motion, the contraction phase, in which there is rapid motion of the device
which breaks the adhesive contact and overcomes sliding friction for the contacts, and the
relaxation phase where the device returns to its original shape. In the contraction phase for

Soccer at the Microscale: Small Robots with Big Impact 303

the UNC microrobot, only one leg is heated, but, in the relaxation phase, the heat has spread
throughout the device and dissipates in a more uniform fashion, causing the device to move
away from the leg that was heated (Sul et al., 2006). Thus the device can be steered by
focusing the laser on the appropriate leg.

A similar micro-impact drive mechanism was described by Ohmichi et al. on the millimeter
scale (Ohmichi et al., 1997). These robots were fabricated from aluminum alloy by precision
cutting techniques. Like the UNC microrobot, these structures relied on a fast initial stage
where the motion is generated, followed by a slow relaxation period. The Ohmichi robot
consisted of a main body that is separated from a weight block by a narrow neck. A laser
was directed onto the neck causing rapid thermal expansion which pushed the weight away
from the body, resulting in an impulsive force that exceeded the static friction force. The
heat then dissipated throughout the structure causing a slower relaxation to the original
shape that does not counteract the initial motion. With repeated optical pulsing (up to 5
kHz) the team achieved speeds of up to 31 mm/s. The robot was approximately 1.7 mm x
0.6 mm x 0.4 mm.

One challenge for these types of robots is the requirement for optical access and fine control
of the optical system. A further challenge for these systems is that the complexity of the
control system would significantly increase for multirobot cooperation. Finally, these
systems have relied on special low-friction surfaces.

Friction forces are exploited by Brown et al. at Dalhousie University (Brown et al., 2007).
Their “frictional crawler” consists of 3 “feet” linked by two actuators. The locomotion
mechanism uses a shuffle step that takes advantage of the differences in contact area that
result from coupling one or two feet to achieve net translational motion. The team used
bent-beam actuators, of the type illustrated in Fig. 9 (right). Electrical connection to the
actuators was accomplished through rails on the substrate. The structures were fabricated
using a silicon-on-insulator process by the Micragem process1 (CMC Microsystems, 2009)
that results in a single-crystal-silicon actuators. The overall device dimensions were 1400 m
X 525 m X 10 m. The actuators required 2.75 V for operation. At this voltage, each drew
about 69 mA. The device traveled at 0.7 mm/s at its maximum frequency of 300 Hz (the
limit for the thermal actuators) and was observed to develop a horizontal force greater than
130 N. Significantly, it operated reliably even when carrying a load over 100 times its own
weight of 1 N. Good contact between the device and the rails was essential to operation,
and the team used a thin film of electrically conductive grease on the rails to maintain that
contact in the face of device imperfections. The rails, of course, limit the range and turning
capability of this robot, but the overall locomotion method is quite interesting.

1 Certain commercial equipment, instruments, or materials are identified in this review to
adequately specify the experimental procedure. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and Technology,
nor does it imply that the materials or equipment identified are necessarily the best available
for the purpose.

Thermal bimorphs consist of layered structures containing materials with different thermal
expansion properties. When heated, the structures will bend away from the side of the
structure containing the material with the higher expansion coefficient. Because of
fabrication limitations, thermal bimorphs are mostly used for out-of-plane motion. In
contrast, single-material thermal actuators are more commonly used for in-plane motion,
although they can be used for both in-plane and out-of-plane motion. Single-material
actuators sometimes rely on localized heating to create motion. This is certainly the case for
laser-heated structures, but also can occur in Joule-heated devices if the device geometry
confines the heating to a small area by creating an area that is thermally confined. An
example of this is shown on the left of Fig. 9.

Hot
armCool

arm

+-

Direction of
motion

Electrodes
+-

Direction of
motion

Electrodes

Hot
armCool

arm

+- +-

Direction of
motion

Electrodes
+- +-

Direction of
motion

Electrodes

Fig. 9. Illustration of two common types of single-material thermal actuators. On the left, the
geometry of the structure results in differential heating causing the thin arm to expand and
bend the structure towards the thick arm. In a bent beam actuator like on the right, the
beams are oriented so that thermal expansion leads to forward motion of the shuttle
structure in the middle.

Another common type of thermal actuator is a “bent-beam” actuator, illustrated on the right
of Fig. 9. In these chevron-shaped structures, current is passed through the beam causing
heating. Because of the bend in the center of the beam, expansion leads to translational
motion in-plane in the direction of the chevron’s base.

While much of the interest in thermally actuated robotic systems has been directed at
miniature robots (Kladitis and Bright, 2000, Ebefors et al., 2000), a number of groups have
demonstrated impulse-drive microrobots that are actuated through local heating by lasers—
an idea that was introduced by (Baglio et al., 2002). Sul et al. at UNC Chapel Hill have
illustrated an elegant tripod shaped robot that is actuated by local heating (Sul et al., 2006).
The three legs of the robot are metal-film bimorphs. At equilibrium the legs arch down to
the substrate because of residual stress from the fabrication process. When heated, the legs
further deflect due to differential thermal expansion coefficients in the two materials. The
rapid heating of one leg leads to a stepwise transition on a low-friction surface. There are
two phases to the motion, the contraction phase, in which there is rapid motion of the device
which breaks the adhesive contact and overcomes sliding friction for the contacts, and the
relaxation phase where the device returns to its original shape. In the contraction phase for

Robot Soccer304

development of piezoelectric MEMS. Techniques that are commonly used for preparing
bulk piezoelectric materials are not suited for microfabrication, and the piezoelectric
coupling coefficients for thin-film materials are often significantly lower than their bulk
counterparts (Liu, 2006). However, recent advances in deposition techniques for PZT (lead
zirconate titanate) (Wang, 2003) and PVDF (polyvinylidenfluoride, a piezoelectric polymer)
(Manohara et al., 1999) have increased the prevalence of this transduction mechanism.

4.4 Biological and Other Actuation Methods
The work of several groups in which ferromagnetic core based robots were used to form
flagella-like propulsion structures was reviewed in the magnetic actuation section
(Kratochvil et al., 2008; Yamazaki et al., 2004; Dreyfus et al, 2005). Other groups, however,
work directly with biological structures for micron-scale aqueous propulsion. Martel et al.
have worked with “Magnetotactic Bacteria (MTB),” which is bacteria that contains
magnetosomes—membrane-based nanoparticles of a magnetic iron that respond to
magnetic fields (Martel et al., 2008). They have attached these flagellated bacteria to
microbeads and demonstrated controlled motion using a magnetic resonance imaging (MRI)
system. Behkam and Sitti use chemicals instead of magnetic fields to control their bacterial
flagella actuators, which use Serratia marcescens bacteria attached to polystyrene beads
(Behkam & Sitti, 2007). Other mechanisms for micro- and nano-scale actuation in fluids have
been described in the literature that are beyond the scope of this work. Many are reviewed
by Chang et al., who also describe a novel diode-based actuation method for motion in
fluids (Chang et al., 2007). These systems rely on a fluid environment and are not suitable
for the surface crawling application of microsoccer. However, these systems may some day
find a use in medical applications.

5. Multirobot Cooperation

Recent work by Bretl (Bretl, 2007), Donald et al. (Donald et al., 2008), and Kratochovil et al.
(Kratochvil et al., 2009) has also investigated control of multiple scratch drive actuators
moving on the same substrate. In the case of (Donald et al., 2008) the authors take advantage of
a group of individual scratch drive actuators with slightly different properties (arm lengths,
etc.) that respond to various motion primitives (waveforms generated by altering the period
and amplitude) differently. The preimage planning mentioned earlier takes this into account.

Bretl’s work (Bretl, 2007) explores the possible control of multiple identical robots that are
exposed to the same voltage control sequence. He shows how two robots with unicycle
dynamics and a bounded turning radius can be controlled to an arbitrary point from
arbitrary positions.

 Multi-robot control for magnetic devices has also been demonstrated by Floyd et al. (Floyd
et al., 2008), by utilizing electrostatic clamping of the playing field in addition to the pulsed
magnetic field actuation. In subsequent work by Pawashe (Paswashe, 2009), the playing
field is composed of an array of independent interdigitated electrodes. In other words, the
playing field is composed of m×n subfields similar to those used for actuation of scratch
drive actuators. For purpose of demonstration, a two by two array was created. By applying
a voltage field to an individual field, any robotic device on that subfield is held static by

4.2 Vibration Actuation
Vibration was used for microrobot locomotion by Yasuda et al., who have built a millimeter-
scale walking robot (Yasuda et al., 1994; Yasuda et al., 1995). Their robot had six legs: four of
which supported the body and transmitted the vibration energy to the robot, and two of which
were free to “kick” the base to direct its motion. The kicking legs were cantilevered mass-
spring units designed for particular resonant frequencies. One of the kicking legs caused right
turns and the other left turns. The resonant frequency for the kicking legs was well below that
of the four support legs. By changing the spectra of the vibration field, one, both, or neither of
the legs can be activated allowing for turning, straight motion, and a full stop. The microrobot
measured 1.5 mm by 0.7 mm. It was fabricated by surface micromachining with a sacrificial
layer of phosphosilicate glass (PSG) and structural layers of polysilicon and polyimide (used to
create hinges). Following fabrication, the final structure was created by folding using micro
probes. The kicking legs were tailored to resonance frequencies in the 100 Hz to 1000 Hz range,
and motion of up to 7 mm/s was observed.

Saitou et al. use microcantilever impactors designed for specific mechanical resonance
frequencies in their micropositioning system (Saitou, 2000). The actuators are anchored to the
substrate, and they control a shuttle intended for fine positioning of a generic microcomponent.
The actuators are suspended masses that resonate in the plane of the substrate. As they
resonate they impact against the side of the shuttle structure moving it forward or backward
depending on the relative orientation of the actuator and the shuttle. Two actuators with
one resonance frequency are positioned to cause forward motion, and another two actuators
with a distinct resonance frequency are positioned to cause reverse motion. When the entire
system is exposed to a vibration field, the frequency of that vibration determines the
direction of motion of the shuttle. The system was fabricated using the PolyMUMPS
process, which is a multi-user, polysilicon-based, surface micromachining process
(MEMSCAP, 2009). The resonance frequencies used for the structure are in the range of 1
kHz to 10 kHz, and result in motion at the speed of 2 mm/s to 5 mm/s.

While robots with this vibration actuator scheme have not yet been used in the Nanogram
events, the vibration actuation mechanism offers many of the same advantages as the
Magmite resonant magnetic actuation method. The use of resonance allows for multirobot
cooperation by allowing individual robots to be targeted with a global energy field through
frequency control.

4.3 Piezoelectric Actuation
The presence of an electric field induces stress in piezoelectric materials. This property has
been exploited to create a variety of electrically powered actuators. A few groups have used
piezoelectric actuators for millimeter-to-centimeter scale robots, including flying insect-
modeled miniature robots (Wood et al., 2003) and vibratory walking miniature robots
(Nguyen and Martel, 2006, Edqvist et al., 2009). While these existing systems are a one to
two orders of magnitude larger than microrobots, the scaling limits of the piezoelectric
actuation methodhave not yet been fully explored.

Piezoelectricity was first identified in quartz crystals and is widely applied in sonar systems
and in quartz crystal oscillators. Material processing presents a significant challenge to the

Soccer at the Microscale: Small Robots with Big Impact 305

development of piezoelectric MEMS. Techniques that are commonly used for preparing
bulk piezoelectric materials are not suited for microfabrication, and the piezoelectric
coupling coefficients for thin-film materials are often significantly lower than their bulk
counterparts (Liu, 2006). However, recent advances in deposition techniques for PZT (lead
zirconate titanate) (Wang, 2003) and PVDF (polyvinylidenfluoride, a piezoelectric polymer)
(Manohara et al., 1999) have increased the prevalence of this transduction mechanism.

4.4 Biological and Other Actuation Methods
The work of several groups in which ferromagnetic core based robots were used to form
flagella-like propulsion structures was reviewed in the magnetic actuation section
(Kratochvil et al., 2008; Yamazaki et al., 2004; Dreyfus et al, 2005). Other groups, however,
work directly with biological structures for micron-scale aqueous propulsion. Martel et al.
have worked with “Magnetotactic Bacteria (MTB),” which is bacteria that contains
magnetosomes—membrane-based nanoparticles of a magnetic iron that respond to
magnetic fields (Martel et al., 2008). They have attached these flagellated bacteria to
microbeads and demonstrated controlled motion using a magnetic resonance imaging (MRI)
system. Behkam and Sitti use chemicals instead of magnetic fields to control their bacterial
flagella actuators, which use Serratia marcescens bacteria attached to polystyrene beads
(Behkam & Sitti, 2007). Other mechanisms for micro- and nano-scale actuation in fluids have
been described in the literature that are beyond the scope of this work. Many are reviewed
by Chang et al., who also describe a novel diode-based actuation method for motion in
fluids (Chang et al., 2007). These systems rely on a fluid environment and are not suitable
for the surface crawling application of microsoccer. However, these systems may some day
find a use in medical applications.

5. Multirobot Cooperation

Recent work by Bretl (Bretl, 2007), Donald et al. (Donald et al., 2008), and Kratochovil et al.
(Kratochvil et al., 2009) has also investigated control of multiple scratch drive actuators
moving on the same substrate. In the case of (Donald et al., 2008) the authors take advantage of
a group of individual scratch drive actuators with slightly different properties (arm lengths,
etc.) that respond to various motion primitives (waveforms generated by altering the period
and amplitude) differently. The preimage planning mentioned earlier takes this into account.

Bretl’s work (Bretl, 2007) explores the possible control of multiple identical robots that are
exposed to the same voltage control sequence. He shows how two robots with unicycle
dynamics and a bounded turning radius can be controlled to an arbitrary point from
arbitrary positions.

 Multi-robot control for magnetic devices has also been demonstrated by Floyd et al. (Floyd
et al., 2008), by utilizing electrostatic clamping of the playing field in addition to the pulsed
magnetic field actuation. In subsequent work by Pawashe (Paswashe, 2009), the playing
field is composed of an array of independent interdigitated electrodes. In other words, the
playing field is composed of m×n subfields similar to those used for actuation of scratch
drive actuators. For purpose of demonstration, a two by two array was created. By applying
a voltage field to an individual field, any robotic device on that subfield is held static by

4.2 Vibration Actuation
Vibration was used for microrobot locomotion by Yasuda et al., who have built a millimeter-
scale walking robot (Yasuda et al., 1994; Yasuda et al., 1995). Their robot had six legs: four of
which supported the body and transmitted the vibration energy to the robot, and two of which
were free to “kick” the base to direct its motion. The kicking legs were cantilevered mass-
spring units designed for particular resonant frequencies. One of the kicking legs caused right
turns and the other left turns. The resonant frequency for the kicking legs was well below that
of the four support legs. By changing the spectra of the vibration field, one, both, or neither of
the legs can be activated allowing for turning, straight motion, and a full stop. The microrobot
measured 1.5 mm by 0.7 mm. It was fabricated by surface micromachining with a sacrificial
layer of phosphosilicate glass (PSG) and structural layers of polysilicon and polyimide (used to
create hinges). Following fabrication, the final structure was created by folding using micro
probes. The kicking legs were tailored to resonance frequencies in the 100 Hz to 1000 Hz range,
and motion of up to 7 mm/s was observed.

Saitou et al. use microcantilever impactors designed for specific mechanical resonance
frequencies in their micropositioning system (Saitou, 2000). The actuators are anchored to the
substrate, and they control a shuttle intended for fine positioning of a generic microcomponent.
The actuators are suspended masses that resonate in the plane of the substrate. As they
resonate they impact against the side of the shuttle structure moving it forward or backward
depending on the relative orientation of the actuator and the shuttle. Two actuators with
one resonance frequency are positioned to cause forward motion, and another two actuators
with a distinct resonance frequency are positioned to cause reverse motion. When the entire
system is exposed to a vibration field, the frequency of that vibration determines the
direction of motion of the shuttle. The system was fabricated using the PolyMUMPS
process, which is a multi-user, polysilicon-based, surface micromachining process
(MEMSCAP, 2009). The resonance frequencies used for the structure are in the range of 1
kHz to 10 kHz, and result in motion at the speed of 2 mm/s to 5 mm/s.

While robots with this vibration actuator scheme have not yet been used in the Nanogram
events, the vibration actuation mechanism offers many of the same advantages as the
Magmite resonant magnetic actuation method. The use of resonance allows for multirobot
cooperation by allowing individual robots to be targeted with a global energy field through
frequency control.

4.3 Piezoelectric Actuation
The presence of an electric field induces stress in piezoelectric materials. This property has
been exploited to create a variety of electrically powered actuators. A few groups have used
piezoelectric actuators for millimeter-to-centimeter scale robots, including flying insect-
modeled miniature robots (Wood et al., 2003) and vibratory walking miniature robots
(Nguyen and Martel, 2006, Edqvist et al., 2009). While these existing systems are a one to
two orders of magnitude larger than microrobots, the scaling limits of the piezoelectric
actuation methodhave not yet been fully explored.

Piezoelectricity was first identified in quartz crystals and is widely applied in sonar systems
and in quartz crystal oscillators. Material processing presents a significant challenge to the

Robot Soccer306

Chang, S. T. ; Paunov, V. N. ; Petsey, D. N. & Velev, O. D. (2007). Remotely powered self-
propelling particles and micropumps based on miniature diodes. Nature Materials,
Vol. 6, March 2007, pp. 235-240.

Cugat, O. ; Delamare, J. & Reyne, G. (2003). Magnetic micro-actuators and systems
(MAGMAS). IEEE Transactions on Magnetics, Vol. 39, No. 5, pp. 3607-3612.

Dario, P. ; Velleggi, R. ; Carrozza, M. C. ; Montesi, M. C. & Cocco, M. (1992). Microactuators
for microrobots : a critical survey. Journal of Micromechanics and Microengineering,
Vol. 2, pp. 141-157.

Donald, B. ; Levey, C. ; McGray, C. ; Rus, D. & Sinclair, M. (2003). Power delivery and
locomotion of untethered microactuators. Journal of Microelectromechanical Systems,
Vol. 12, No. 6, pp. 947-959.

Donald, B. ; Levey, C. ; McGray, C. ; Paprotny, I. & Rus D. (2006). An untethered,
electrostatic, globally controllable MEMS micro-robot. Journal of
Microelectromechanical Systems, Vol. 15, No. 1, pp. 1-15.

Donald, B. ; Levey, C. & Paprotny, I. (2008). Planar microassembly by parallel actuation of MEMS
microrobots, Journal of Microelectromechanical Systems, Vol. 17, No. 4, pp. 789-808.

Dreyfus, R. ; Baudry, J. ; Roper, M. L. ; Fermigier, M. ; Stone, H. A. ; and Bibette, J. (2005).
Microscopic artificial swimmers. Nature, Vol. 437, pp. 862-865.

Dubin, L. E. (1957). On curves of minimal length with a constraint on average curvature and
with prescribed initial an dterminal positions and tangents. American Journal of
Mathematics, Vol. 79, No. 3, pp. 497-516.

Ebefors, T. ; Mattsson, J. U. ; Kalvesten, E. & Stemme, G. (2000). A robust micro conveyer
realized by arrayed polyimide joint actuators, Journal of Micromechanics and
Microengineering, Vol. 10, pp. 337-349.

Edqvist, E. ; Snis, N. ; Casanova Mohr, R. ; Scholz, O. ; Corradi, P. ; Gao, J. ; Dieguez, A. ;
Wyrsch, N. & Johannson, S. (2009). Evaluation of building technology for mass
producible millimeter-sized robots using flexible printed circuit boards. Journal of
Microelectromechanics and Microengineering, Vol. 19, 075011.

Fan, L. ; Tai, Y. & Muller, R. (1988). Integrated movable micromechanical structures for sensors
and actuators. IEEE Transactions on Electron Devices, Vol. 35, No. 6, pp. 724-730.

Firebaugh, S. L. & Piepmeier, J. A. (2008). The RoboCup Nanogram League : an opportunity
for problem-based undergraduate education in microsystems. IEEE Transactions on
Education, Vol. 51, No. 3, pp. 394-399.

Floyd, S. ; Pawashe, C. & Sitti, M. (2008). An untethered magnetically actuated micro-robot
capable of motion on arbitrary surfaces. Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 419-424, Pasadena, CA, May 19-23, 2008.

a Frutiger, D. R. ; Vollmers, K. ; Kratochvil, B. E. & Nelson, B. J. (2008). Small, fast and under
control : wireless resonant magnetic micro-agents. Proceedings of the International
Symposium on Experimental Robotics, July 2008.

b Frutiger, D. R. ; Kratochvil, B. E. ; Vollmers, K. & Nelson, B. J. (2008). Magmites – wireless
resonant magnetic microrobots. Proceedings of the IEEE International Conference
on Robotics and Automation, pp. 1770-1771, Pasadena, CA, May 19-23, 2008.

Frutiger, D. R. ; Vollmers, K. ; Kratochvil, B. E. & Nelson, B. J. (2009). Small, fast and under
control: wireless resonant magnetic micro-agents. International Journal of Robotics
Research, November, 2009.

Gates, B. (2007). A robot in every home. Scientific American, Jan., pp. 58-65.

electrostatic clamping. In this manner, a particular device can be held still while other
devices are controlled by the pulsing magnetic fields.

Kratochvil et al. (Kratochvil et al., 2009) demonstrated multirobot movement by building
two different microrobot devices that are sensitive to different resonant frequencies. By
varying the frequency of the oscillating magnetic field, either one or both of the devices will
move. Their work is illustrated in Fig. 10.

Fig. 10. Multiple robots driving on the same substrate (Kratochvil et al., 2009). The vertical
line is a physical barrier to help prevent robot collisions and expedite experiments. In a and
c, one robot is moving while the other is stationary. In b, the two robots are moving in
different patterns. Figures are by Frutiger, Vollmers and Kratochvil and are used with
permission by the authors.

6. Conclusion

After only three years, the RoboCup Nanogram events have produced a variety of creative
microrobot systems. Competitors so far only used magnetic and electrostatic actuation, but
other actuation technologies may emerge. Thermal, vibratory, and piezoelectric actuation all
offer potential performance advantages. As a step down the road to a revolution in minimally
invasive surgery and micromanufacturing, these small robots might indeed have a big impact.

7. References

Abbott, J ; Nagy, Z. ; Beyeler, F & Nelson, B. (2007). Robotics in the small. IEEE Robotics and
Automation Magazine, Vol. 14, No. 2, pp. 92-103.

Akiyama, T. & Shono, K. (1993). Controlled stepwise motion in polysilicon microstructures.
Journal of Microelectromechanical Systems, Vol. 2, pp. 106-110.

Baglio, S. ; Castorina, S. ; Fortuna, L. & Savalli, N. (2002). Novel microactuators based on
photo-thermo-mechanical actuation strategy. Proceedings of IEEE Sensors 2002,
Orlando, Florida, pp. 192-197.

Behkam, B. & Sitti, M. (2007). Bacterial flagella-based propulsion and on/off motion control
of microscale objects. Applied Physics Letters, Vol. 90, 023902.

Bretl, T. (2007). Control of many objects using few instructions. Proceedings of Robotics :
Science and Systems, Atlanta, Georgia, July 2007.

Brown, M. ; Hubbard, T. & Kujath, M.. (2007). Development of a long-range untethered frictional
microcrawler. Journal of Micromechanics and Microengineering, Vol. 17, pp. 1025-1033.

CMC Microsystems, http://www.cmc.ca/index.htm, site accessed Aug. 17, 2009.

Soccer at the Microscale: Small Robots with Big Impact 307

Chang, S. T. ; Paunov, V. N. ; Petsey, D. N. & Velev, O. D. (2007). Remotely powered self-
propelling particles and micropumps based on miniature diodes. Nature Materials,
Vol. 6, March 2007, pp. 235-240.

Cugat, O. ; Delamare, J. & Reyne, G. (2003). Magnetic micro-actuators and systems
(MAGMAS). IEEE Transactions on Magnetics, Vol. 39, No. 5, pp. 3607-3612.

Dario, P. ; Velleggi, R. ; Carrozza, M. C. ; Montesi, M. C. & Cocco, M. (1992). Microactuators
for microrobots : a critical survey. Journal of Micromechanics and Microengineering,
Vol. 2, pp. 141-157.

Donald, B. ; Levey, C. ; McGray, C. ; Rus, D. & Sinclair, M. (2003). Power delivery and
locomotion of untethered microactuators. Journal of Microelectromechanical Systems,
Vol. 12, No. 6, pp. 947-959.

Donald, B. ; Levey, C. ; McGray, C. ; Paprotny, I. & Rus D. (2006). An untethered,
electrostatic, globally controllable MEMS micro-robot. Journal of
Microelectromechanical Systems, Vol. 15, No. 1, pp. 1-15.

Donald, B. ; Levey, C. & Paprotny, I. (2008). Planar microassembly by parallel actuation of MEMS
microrobots, Journal of Microelectromechanical Systems, Vol. 17, No. 4, pp. 789-808.

Dreyfus, R. ; Baudry, J. ; Roper, M. L. ; Fermigier, M. ; Stone, H. A. ; and Bibette, J. (2005).
Microscopic artificial swimmers. Nature, Vol. 437, pp. 862-865.

Dubin, L. E. (1957). On curves of minimal length with a constraint on average curvature and
with prescribed initial an dterminal positions and tangents. American Journal of
Mathematics, Vol. 79, No. 3, pp. 497-516.

Ebefors, T. ; Mattsson, J. U. ; Kalvesten, E. & Stemme, G. (2000). A robust micro conveyer
realized by arrayed polyimide joint actuators, Journal of Micromechanics and
Microengineering, Vol. 10, pp. 337-349.

Edqvist, E. ; Snis, N. ; Casanova Mohr, R. ; Scholz, O. ; Corradi, P. ; Gao, J. ; Dieguez, A. ;
Wyrsch, N. & Johannson, S. (2009). Evaluation of building technology for mass
producible millimeter-sized robots using flexible printed circuit boards. Journal of
Microelectromechanics and Microengineering, Vol. 19, 075011.

Fan, L. ; Tai, Y. & Muller, R. (1988). Integrated movable micromechanical structures for sensors
and actuators. IEEE Transactions on Electron Devices, Vol. 35, No. 6, pp. 724-730.

Firebaugh, S. L. & Piepmeier, J. A. (2008). The RoboCup Nanogram League : an opportunity
for problem-based undergraduate education in microsystems. IEEE Transactions on
Education, Vol. 51, No. 3, pp. 394-399.

Floyd, S. ; Pawashe, C. & Sitti, M. (2008). An untethered magnetically actuated micro-robot
capable of motion on arbitrary surfaces. Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 419-424, Pasadena, CA, May 19-23, 2008.

a Frutiger, D. R. ; Vollmers, K. ; Kratochvil, B. E. & Nelson, B. J. (2008). Small, fast and under
control : wireless resonant magnetic micro-agents. Proceedings of the International
Symposium on Experimental Robotics, July 2008.

b Frutiger, D. R. ; Kratochvil, B. E. ; Vollmers, K. & Nelson, B. J. (2008). Magmites – wireless
resonant magnetic microrobots. Proceedings of the IEEE International Conference
on Robotics and Automation, pp. 1770-1771, Pasadena, CA, May 19-23, 2008.

Frutiger, D. R. ; Vollmers, K. ; Kratochvil, B. E. & Nelson, B. J. (2009). Small, fast and under
control: wireless resonant magnetic micro-agents. International Journal of Robotics
Research, November, 2009.

Gates, B. (2007). A robot in every home. Scientific American, Jan., pp. 58-65.

electrostatic clamping. In this manner, a particular device can be held still while other
devices are controlled by the pulsing magnetic fields.

Kratochvil et al. (Kratochvil et al., 2009) demonstrated multirobot movement by building
two different microrobot devices that are sensitive to different resonant frequencies. By
varying the frequency of the oscillating magnetic field, either one or both of the devices will
move. Their work is illustrated in Fig. 10.

Fig. 10. Multiple robots driving on the same substrate (Kratochvil et al., 2009). The vertical
line is a physical barrier to help prevent robot collisions and expedite experiments. In a and
c, one robot is moving while the other is stationary. In b, the two robots are moving in
different patterns. Figures are by Frutiger, Vollmers and Kratochvil and are used with
permission by the authors.

6. Conclusion

After only three years, the RoboCup Nanogram events have produced a variety of creative
microrobot systems. Competitors so far only used magnetic and electrostatic actuation, but
other actuation technologies may emerge. Thermal, vibratory, and piezoelectric actuation all
offer potential performance advantages. As a step down the road to a revolution in minimally
invasive surgery and micromanufacturing, these small robots might indeed have a big impact.

7. References

Abbott, J ; Nagy, Z. ; Beyeler, F & Nelson, B. (2007). Robotics in the small. IEEE Robotics and
Automation Magazine, Vol. 14, No. 2, pp. 92-103.

Akiyama, T. & Shono, K. (1993). Controlled stepwise motion in polysilicon microstructures.
Journal of Microelectromechanical Systems, Vol. 2, pp. 106-110.

Baglio, S. ; Castorina, S. ; Fortuna, L. & Savalli, N. (2002). Novel microactuators based on
photo-thermo-mechanical actuation strategy. Proceedings of IEEE Sensors 2002,
Orlando, Florida, pp. 192-197.

Behkam, B. & Sitti, M. (2007). Bacterial flagella-based propulsion and on/off motion control
of microscale objects. Applied Physics Letters, Vol. 90, 023902.

Bretl, T. (2007). Control of many objects using few instructions. Proceedings of Robotics :
Science and Systems, Atlanta, Georgia, July 2007.

Brown, M. ; Hubbard, T. & Kujath, M.. (2007). Development of a long-range untethered frictional
microcrawler. Journal of Micromechanics and Microengineering, Vol. 17, pp. 1025-1033.

CMC Microsystems, http://www.cmc.ca/index.htm, site accessed Aug. 17, 2009.

Robot Soccer308

Martel, S. ; Felfoul, O. & Mohammadi, M. (2008). Flagellated bacterial nanorobots for
medical interventions in the human body. Proceedings of the 2nd Biennial IEEE/RAS-
EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 264-269,
Scottsdale, Arizona, Oct. 19-22.

Mathieu, J.-B. ; Beaudoin, G. & Martel, S. (2006). Method of propulsion of a ferromagnetic
core in the cardiovascular system through magnetic gradients generated by an MRI
system. IEEE Transactions on Biomedical Engineering, Vol. 53, pp. 292-299.

MEMSCAP, Inc., http://www.memscap.com/index.php, site accessed Aug. 17, 2009.
Nathanson, H. ; Newell, W., Wickstrom, R. & Davis, J. (1978). The resonant gate transistor.

IEEE Transactions on Electron Devices, Vol. 14, pp. 117-133.
Nguyen, A. T. & Martel, S. (2006). Miniaturization of a piezo-actuation system embedded in

an instrumented autonomous robot. Proceedings of the 4th International IEEE-
NEWCAS Conference, pp. 261-264, Gatineau, Quebec.

Ohmichi, O. ; Yamagata, Y. & Higuchi, T. (2002). Micro-impact drive mechanisms using
optically excited thermal expansion. Journal of Microelectromechanical Systems, Vol. 6,
No. 3, pp. 200-207.

Patil, A. ; Patil, V. ; Shin, D. W. ; Choi, J. ; Paik, D. & Yoon, S. (2008). Issues and challenges
facing rechargeable thin film lithium batteries. Materials Research Bulletin, Vol. 43,
pp. 1913-1942,

Pawashe, C. ; Floyd, S. & Sitti, M. (2008). Dynamic modelling of stick slip motion in an
untethered magnetic micro-robot. Proceedings of Robotics : Science and Systems
IV, Zurich, Switzerland, June 2008.

aPawashe, C. ; Floyd, S. & Sitti, M. (2009). Modeling and experimental characterization of an
untethered magnetic micro-robot. The International Journal of Robotics Research, Vol.
28, pp. 1077-1094.

bPawashe, C. ; Floyd, S. & Sitti, M. (2009). Multiple magnetic microrobot control using
electrostatic clamping. Applied Physics Letters, Vol. 94, 164108.

Petersen, K. (1978). Dynamic micromechanics on silicon : techniques and devices. IEEE
Transactions on Electron Devices, Vol. 25, No. 10, pp. 1241-1250.

Piepmeier, J. A. & Firebaugh, S. L. (2008). Vision-based control of a scratch drive microrobot.
Proceedings of the Southeastern Symposium on System Theory, pp. 352-355, New
Orleans, Louisiana.

Piepmeier, J. A. & Firebaugh, S. L. (2010). PWM control accuracy for scratch drive actuators,
submitted to the IEEE International Conference on Robotics and Automation,
Anchorage, Alaska, May 2010.

Ross, R. (2007). Robotic fly takes off. Technology Review, http://www.technology
review.com/Infotech/19068/, created July 19, 2007, accessed Aug. 12, 2009.

Saitou, K. ; Wang, D.-A. & Wou, S. J. (2000). Externally resonated linear microvibromotor for
microassembly. Journal of Microelectromechanical Systems, Vol. 9, No. XX, pp. 336-346.

Sievers, T . & Fatikow, S. (2005). Visual servoing of a mobile microrobot inside a scanning
electron microscope. Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 1350-1354, Edmonton, Alberta, March 2008.

Sitti, M. (2007). Microscale and nanoscale robotics systems. IEEE Robotics & Automation
Magazine, Vol. 14, No. 1, pp. 53-60.

Gauthier, M. & Piat, E. (2004). An electromagnetic micromanipulation system for single cell
manipulation. Journal of Micromechatronics, Vol. 2, No. 2, pp. 87-119.

Hayt, Jr., W. H. & Buck, J. A. (2006). Engineering Electromagnetics, 7th Ed. McGraw-Hill
Higher Education, ISBN 0-07-252495-2, New York, NY.

Hermes, H. (1974). On local and global controllability. SIAM J. Contr., vol. 12, pp. 252–261.
Huikai, X. ; Erdmann, L. ; Zhu, X. ; Gabriel, K. & Fedder, G. (2002). Post-CMOS processing

for high-aspect-ratio integrated silicon microstructures. Journal of
Microelectromechanical Systems, Vol. 11, No. 2, pp. 93-101.

Kladitis, P. E. & Bright, V. M. (2000). Prototype microrobots for micro-positioning and
micro-unmanned vehicles. Sensors and Actuators, Vol. 80, pp. 132-137.

Kovacs, G. (1998). Micromachined Transducers Sourcebook, pp. 277-289, WCB McGraw-Hill,
ISBN 0-07-290722-3, Boston.

Kratochvil, B. E. ; Dong, L. ; Zhang, L. ; Abbott, J. J. and Nelson, B. J. (2008). Nanohelices as
motion converters. Proceedings of the 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Nice, France, Sept. 22-26, 2008.

Kratochvil, B. E. ; Frutiger, D. ; Vollmers, K. & Nelson, B. J. (2009). Visual servoing and
characterization of resonant magnetic actuators for decoupled locomotion of
multiple untethered mobile microrobots, Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 1010-1015, Kobe, Japan, May 12-17, 2009.

Lal, A. ; Duggirala, R. & Li, H. (2005). Pervasive power : a radioisotope-powered
piezoelectric generator. IEEE Pervasive Computing, Vol. 4, No. 1, pp. 53-61.

Lionis, G & Kyriakopoulos, K. J. (2007). PWM control for a micro-robot moving on a discrete
curvature trajectory set. Proceedings of the 2007 IEEE International Conference on
Robotics and Automation, pp. 2324-2329, Rome, Italy, April 10-14, 2007.

Liu, C. (2006). Foundations of MEMS, Pearson Education, Inc., ISBN 0-13-147286-0, Upper
Saddle River, New Jersey.

Lozano-Perez, T. ; Mason, M. T. & Taylor, R. H. (1984). Automatic synthesis of fine-motion
strategies for robots. International Journal of Robotics Research, Vol. 3, No. 1, pp. 3-24.

Madou, M. (1997). Fundamentals of Microfabrication, CRC Press, ISBN 0-8493-0826-7, Boca
Raton, FL.

Manohara M. ; Morikawa, E.; Choi, J. & Sprunger, P.T. (1999). Transfer by direct photo
etching of poly(vinylidene fluoride) using x-rays. Journal of Microelectromechanical
Systems, Vol. 8, pp. 417-422.

Markus, K. ; Koester, D. ; Cowen, A. ; Mahadevan, R. ; Dhuler, V. ; Roberson, D. & Smith, L.
(1995). MEMS infrastructure : the multi-user MEMS processes (MUMPS).
Proceedings of the SPIE, Vol. 2639, pp. 54-63.

aMartel, S. (2005). Special surface for power delivery to wireless micro-electro-mechanical
systems. Journal of Micromechanics and Microengineering, Vol. 15, pp. S251-S258.

bMartel, S. (2005). Fundamental principles and issues of high-speed piezoactuated three-
legged motion for miniature robots designed for nanometer-scale operations. The
International Journal of Robotics Research, Vol. 24, No. 7, pp. 575-588.

Martel, S. (2007). Magnetic resonance propulsion, control and tracking at 24 Hz of an
untethered device in the carotid artery of a living animal : an important step in the
development of medical micro- and nanorobots. Proceedings of the 295h Annual
International Conference of the IEEE EMBS Cite Internationale, pp. 1475-1478, Lyon
France, August 23-26, 2007.

Soccer at the Microscale: Small Robots with Big Impact 309

Martel, S. ; Felfoul, O. & Mohammadi, M. (2008). Flagellated bacterial nanorobots for
medical interventions in the human body. Proceedings of the 2nd Biennial IEEE/RAS-
EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 264-269,
Scottsdale, Arizona, Oct. 19-22.

Mathieu, J.-B. ; Beaudoin, G. & Martel, S. (2006). Method of propulsion of a ferromagnetic
core in the cardiovascular system through magnetic gradients generated by an MRI
system. IEEE Transactions on Biomedical Engineering, Vol. 53, pp. 292-299.

MEMSCAP, Inc., http://www.memscap.com/index.php, site accessed Aug. 17, 2009.
Nathanson, H. ; Newell, W., Wickstrom, R. & Davis, J. (1978). The resonant gate transistor.

IEEE Transactions on Electron Devices, Vol. 14, pp. 117-133.
Nguyen, A. T. & Martel, S. (2006). Miniaturization of a piezo-actuation system embedded in

an instrumented autonomous robot. Proceedings of the 4th International IEEE-
NEWCAS Conference, pp. 261-264, Gatineau, Quebec.

Ohmichi, O. ; Yamagata, Y. & Higuchi, T. (2002). Micro-impact drive mechanisms using
optically excited thermal expansion. Journal of Microelectromechanical Systems, Vol. 6,
No. 3, pp. 200-207.

Patil, A. ; Patil, V. ; Shin, D. W. ; Choi, J. ; Paik, D. & Yoon, S. (2008). Issues and challenges
facing rechargeable thin film lithium batteries. Materials Research Bulletin, Vol. 43,
pp. 1913-1942,

Pawashe, C. ; Floyd, S. & Sitti, M. (2008). Dynamic modelling of stick slip motion in an
untethered magnetic micro-robot. Proceedings of Robotics : Science and Systems
IV, Zurich, Switzerland, June 2008.

aPawashe, C. ; Floyd, S. & Sitti, M. (2009). Modeling and experimental characterization of an
untethered magnetic micro-robot. The International Journal of Robotics Research, Vol.
28, pp. 1077-1094.

bPawashe, C. ; Floyd, S. & Sitti, M. (2009). Multiple magnetic microrobot control using
electrostatic clamping. Applied Physics Letters, Vol. 94, 164108.

Petersen, K. (1978). Dynamic micromechanics on silicon : techniques and devices. IEEE
Transactions on Electron Devices, Vol. 25, No. 10, pp. 1241-1250.

Piepmeier, J. A. & Firebaugh, S. L. (2008). Vision-based control of a scratch drive microrobot.
Proceedings of the Southeastern Symposium on System Theory, pp. 352-355, New
Orleans, Louisiana.

Piepmeier, J. A. & Firebaugh, S. L. (2010). PWM control accuracy for scratch drive actuators,
submitted to the IEEE International Conference on Robotics and Automation,
Anchorage, Alaska, May 2010.

Ross, R. (2007). Robotic fly takes off. Technology Review, http://www.technology
review.com/Infotech/19068/, created July 19, 2007, accessed Aug. 12, 2009.

Saitou, K. ; Wang, D.-A. & Wou, S. J. (2000). Externally resonated linear microvibromotor for
microassembly. Journal of Microelectromechanical Systems, Vol. 9, No. XX, pp. 336-346.

Sievers, T . & Fatikow, S. (2005). Visual servoing of a mobile microrobot inside a scanning
electron microscope. Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 1350-1354, Edmonton, Alberta, March 2008.

Sitti, M. (2007). Microscale and nanoscale robotics systems. IEEE Robotics & Automation
Magazine, Vol. 14, No. 1, pp. 53-60.

Gauthier, M. & Piat, E. (2004). An electromagnetic micromanipulation system for single cell
manipulation. Journal of Micromechatronics, Vol. 2, No. 2, pp. 87-119.

Hayt, Jr., W. H. & Buck, J. A. (2006). Engineering Electromagnetics, 7th Ed. McGraw-Hill
Higher Education, ISBN 0-07-252495-2, New York, NY.

Hermes, H. (1974). On local and global controllability. SIAM J. Contr., vol. 12, pp. 252–261.
Huikai, X. ; Erdmann, L. ; Zhu, X. ; Gabriel, K. & Fedder, G. (2002). Post-CMOS processing

for high-aspect-ratio integrated silicon microstructures. Journal of
Microelectromechanical Systems, Vol. 11, No. 2, pp. 93-101.

Kladitis, P. E. & Bright, V. M. (2000). Prototype microrobots for micro-positioning and
micro-unmanned vehicles. Sensors and Actuators, Vol. 80, pp. 132-137.

Kovacs, G. (1998). Micromachined Transducers Sourcebook, pp. 277-289, WCB McGraw-Hill,
ISBN 0-07-290722-3, Boston.

Kratochvil, B. E. ; Dong, L. ; Zhang, L. ; Abbott, J. J. and Nelson, B. J. (2008). Nanohelices as
motion converters. Proceedings of the 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Nice, France, Sept. 22-26, 2008.

Kratochvil, B. E. ; Frutiger, D. ; Vollmers, K. & Nelson, B. J. (2009). Visual servoing and
characterization of resonant magnetic actuators for decoupled locomotion of
multiple untethered mobile microrobots, Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 1010-1015, Kobe, Japan, May 12-17, 2009.

Lal, A. ; Duggirala, R. & Li, H. (2005). Pervasive power : a radioisotope-powered
piezoelectric generator. IEEE Pervasive Computing, Vol. 4, No. 1, pp. 53-61.

Lionis, G & Kyriakopoulos, K. J. (2007). PWM control for a micro-robot moving on a discrete
curvature trajectory set. Proceedings of the 2007 IEEE International Conference on
Robotics and Automation, pp. 2324-2329, Rome, Italy, April 10-14, 2007.

Liu, C. (2006). Foundations of MEMS, Pearson Education, Inc., ISBN 0-13-147286-0, Upper
Saddle River, New Jersey.

Lozano-Perez, T. ; Mason, M. T. & Taylor, R. H. (1984). Automatic synthesis of fine-motion
strategies for robots. International Journal of Robotics Research, Vol. 3, No. 1, pp. 3-24.

Madou, M. (1997). Fundamentals of Microfabrication, CRC Press, ISBN 0-8493-0826-7, Boca
Raton, FL.

Manohara M. ; Morikawa, E.; Choi, J. & Sprunger, P.T. (1999). Transfer by direct photo
etching of poly(vinylidene fluoride) using x-rays. Journal of Microelectromechanical
Systems, Vol. 8, pp. 417-422.

Markus, K. ; Koester, D. ; Cowen, A. ; Mahadevan, R. ; Dhuler, V. ; Roberson, D. & Smith, L.
(1995). MEMS infrastructure : the multi-user MEMS processes (MUMPS).
Proceedings of the SPIE, Vol. 2639, pp. 54-63.

aMartel, S. (2005). Special surface for power delivery to wireless micro-electro-mechanical
systems. Journal of Micromechanics and Microengineering, Vol. 15, pp. S251-S258.

bMartel, S. (2005). Fundamental principles and issues of high-speed piezoactuated three-
legged motion for miniature robots designed for nanometer-scale operations. The
International Journal of Robotics Research, Vol. 24, No. 7, pp. 575-588.

Martel, S. (2007). Magnetic resonance propulsion, control and tracking at 24 Hz of an
untethered device in the carotid artery of a living animal : an important step in the
development of medical micro- and nanorobots. Proceedings of the 295h Annual
International Conference of the IEEE EMBS Cite Internationale, pp. 1475-1478, Lyon
France, August 23-26, 2007.

Robot Soccer310

Smits, J. G. (1989). Is micromechanics becoming a new subject for academic courses or the
design of a piezoelectric on silicon microrobot, Proceedings of the 8th
University/Government/Industry Microelectronics Symposium, pp. 141-145,
Westborough, MA. 1989.

Sniegowski, J. & Garcia, E. (1996). Surface-micromachined gear trains driven by an on-chip
electrostatic microengine. IEEE Electron Device Letters, Vol. 17, No. 7, pp. 366-368.

Spong, M. ; Hutchinson, S. & Vidyasagar, M. (2006) Robot Modeling and Control. John Wiley
& Sons, Inc. Hoboken, NJ.

Sul, O. ; Falvo, M. ; Taylor, R. ; Washburn, S. & Superfine, R. (2006). Thermally-actuated
untethered impact-driven locomotive microdevices. Applied Physics Letters, Vol. 89,
203512.

Tamaz, S. ; Gourdeau, R. ; Chanu, A. ; Mathieu, J.-B. & Martel, S. (2008). Real-time MRI-
based control of a ferromagnetic core for endovascular navigation. IEEE
Transactions on Biomedical Engineering, Vol. 55, No. 7, pp. 1854-1863.

Tea, N. ; Milanovic, V. ; Zincke, C. ; Suehle, J. ; Gaitan, M. ; Zaghloul, M. & Geist, J. (1997).
Hybrid postprocessing etching for CMOS-compatible MEMS. Journal of
Microelectromechanical Systems, Vol. 6, No. 4, pp. 363-372.

Tang, W. ; Nguyen, T. ; Judy, M. & Howe, R. (1990). Electrostatic-comb drive of lateral
polysilicon resonators. Sensors and Actuators A, Vol. 21, No. 1-3, pp. 328-331.

Vollmers, K. ; Frutiger, D. ; Kratochvil, B. & Nelson, B. (2008). Wireless resonant magnetic
microactuator for untethered mobile microrobots. Applied Physics Letters, Vol. 92,
144103.

Wang, L.-P. (2003). Design, fabrication and measurement of high-sensitivity piezoelectric
microelectromechanical systems accelerometers. Journal of Microelectromechanical
Systems, Vol. 12, pp. 433-439.

Wood, R. J. ; Avadhanula, S. ; Menon, M. & Fearing, R. S. (2003). Microrobotics using
composite materials : the micromechanical flying insect thorax. Proceedings of the
2003 IEEE International Conference on Robotics and Automation, pp. 1842-1849, Taipei,
Taiwan, Sept. 14-19, 2003.

Yamahata, C. ; Collard, D. ; Domenget, A. ; Hosogi, M. ; Kumemura, M. ; Hashiguchi, G. &
Fujita, H. (2008). Silicon nanotweezers with subnanometer resolution for the
micromanipulation of biomolecules. Journal of Microelectromechanical Systems, Vol.
17, No. 3, pp. 623-631.

Yamazaki, A. ; Sendoh, M. ; Ishiyama, K. ; Aria, K. I. ; Kato, R. ; Nakano, M. & Fukunaga, H.
(2004). Wireless micro swimming machine with magnetic thin film. Journal of
Magnetism and Magnetic Materials, Vol. 272-276, pp. e1741-e1742.

Yasuda, T ; Shimoyama, I. & Miura, H. (1994). Microrobot actuated by a vibration energy
field. Sensors and Actuators A, Vol. 43, pp. 366-370.

Yasuda, T ; Shimoyama, I. & Miura, H. (1995). Microrobot locomotion in a mechanical
vibration field. Advanced Robotics, Vol. 9, pp. 165-176.

Yesin, K. B.; Vollmers, K. & Nelson, B. J. (2006). Modeling and control of untethered
biomicrorobots in a fluidic environment using electromagnetic fields. International
Journal of Robot Research, Vol. 25, pp. 527-534.

Automated camera calibration for robot soccer 311

Automated camera calibration for robot soccer

Donald G Bailey and Gourab Sen Gupta

X

Automated camera calibration for robot soccer

Donald G Bailey and Gourab Sen Gupta
School of Engineering and Advanced Technology, Massey University

Palmerston North, New Zealand

1. Introduction

Robot soccer has become popular over the last decade not only as a platform for education
and entertainment but as a test bed for adaptive control of dynamic systems in a multi-agent
collaborative environment (Messom, 1998). It is a powerful vehicle for exploration and
dissemination of scientific knowledge in a fun and exciting manner. The robot soccer
environment encompasses several technologies—embedded micro-controller based
hardware, wireless radio-frequency data transmission, dynamics and kinematics of motion,
motion control algorithms, real-time image capture and processing and multi-agent
collaboration.
The vision system is an integral component of modern autonomous mobile robots. With
robot soccer, the physical size of the robots in the micro-robot and small robot leagues limits
the power and space available, precluding the use of local cameras on the robots themselves.
This is overcome by using a global vision system, with one (or more for larger size fields)
cameras mounted over the playing field. The camera or cameras are connected to a vision
processor that determines the location and orientation of each robot and the location of the
ball relative to the playing field. This data is then passed to the strategy controller, which
determines how the team should respond to the current game situation, plans the
trajectories or paths of the robots under its control, and transmits the appropriate low-level
motor control commands to the robots, which enable them to execute the plan.
To manage complexity in collaborative robot systems, a hierarchical state transition based
supervisory control (STBS) system can be used (Sen Gupta et al., 2002; Sen Gupta et al.,
2004). However, the performance of such a system, or indeed any alternative higher-level
control system, deteriorates substantially if the objects are not located accurately because the
generic control functions to position and orient the robots are then no longer reliable.
The high speed and manoeuvrability of the robots make the game very dynamic. Accurate
control of high-speed micro-robots is essential for success within robot soccer. This makes
accurate, real-time detection of the position and orientation of objects of particular
importance as these greatly affect path-planning, prediction of moving targets and obstacle
avoidance. Each robot is identified in the global image by a “jacket” which consists of a
pattern of coloured patches. The location of these coloured patches within the image is used
to estimate the position and orientation of the robot within the playing area. The cameras
must therefore be calibrated to provide an accurate mapping between image coordinates
and world coordinates in terms of positions on the playing field (Bailey & Sen Gupta, 2004).

14

Robot Soccer312

               
               

2

2

Right Left

Right Left

Bottom Top

Bottom Top

C C L H hx C
C C H

R R W H hy R
R R H

 (1)

The first term sets the centre of the field as the origin, the second scales from pixel units to
physical units, and the third term accounts for parallax distortion resulting from the height
of the robot (assuming that the camera is positioned over the centre of the field).
While this calibration is simple to perform, it will only be accurate for an ideal camera
positioned precisely in the centre of the field and aligned perpendicularly to the playing
field. Each deviation from ideal will introduce distortions in the image and calibration
errors.

2.1 Lens distortion
The most prevalent form of lens distortion is barrel distortion. It results from the lens having
a slightly higher magnification in the centre of the image than at the periphery. Barrel
distortion is particularly noticeable with wide-angle lenses such as those used with robot
soccer. While there are several different physical models of the lens distortion based on the
known characteristics of the lens (Basu & Licardie, 1995; Pers & Kovacic, 2002), the most
commonly used model is a generic radial Taylor series relating the ideal, undistorted
coordinates (xu,yu) to the distorted coordinates in the image (xd,yd):

     
     

    

    

        

        

2 4 2 2 2
1 2 1 2 3

2 4 2 2 2
1 2 1 2 3

1 ... 2 2 1 ...

1 ... 2 2 1 ...

d u u u u u u u u

d u u u u u u u u

x x r r r x x y r

y y r r x y r y r
 (2)

Both sets of coordinates have the centre of distortion as the origin, and  2 2 2
u u ur x y . The set

of parameters  and  characterise a particular lens. Note that the centre of distortion is
not necessarily the centre of the image (Willson & Shafer, 1994). For most lenses, two radial
and two tangential terms are sufficient (Li & Lavest, 1996), and most calibration methods
limit themselves to estimating these terms. A simple, one parameter, radial distortion model
is usually sufficient to account for most of the distortion (Li & Lavest, 1996):

   2(1)d u ur r r (3)

This forward transform is most commonly used because in modelling the imaging process,
the image progresses from undistorted coordinates to distorted image coordinates.
Sometimes, however, the reverse transform is used. This swaps the roles of the two sets of
coordinates. Since the model is an arbitrary Taylor series expansion, either approach is valid
(although the coefficients will be different for the forward and reverse transforms). The first
order reverse transform is given by

   2(1)u d dr r r (4)

The portable nature of robot soccer platforms means that every time the system is set up,
there are differences in the camera position and angle relative to the field. Each team has
their own camera, and both cannot be mounted exactly over the centre of the playing area. It
is also difficult to arrange the camera position so that it is perfectly perpendicular to the
playing surface. Consequently, each camera is looking down on the playing area at a slight
angle, which introduces a mild perspective distortion into the image. The size of the playing
area, combined with constraints on how high the camera may be mounted, require that a
wide angle lens be used. This can introduce significant barrel distortion within the image
obtained. Both of these effects are readily apparent in Fig. 1. The limited height of the
camera combined with the height of the robots means that each detected robot position is
also subject to parallax error. These factors must all be considered, and compensated for, to
obtain accurate estimates of the location and orientation of each robot.

Fig. 1. Example field, clearly showing lens distortion and mild perspective distortion.

2. Effects of distortion

At the minimum, any calibration must determine the location of the playing field within the
image. The simplest calibration (for single camera fields) is to assume that the camera is
aligned with the field and that there is no distortion. The column positions of the goal
mouths, CLeft and CRight, and the row positions of the field edges at, or near, the centreline,
RTop and RBottom, need to be located within the image. Then, given the known length, L, and
width, W, of the field, the estimated height of the camera, H, and the known height of the
robots, h, an object positioned at row R and column C within the image may be determined
relative to the centre of the field as

Automated camera calibration for robot soccer 313

               
               

2

2

Right Left

Right Left

Bottom Top

Bottom Top

C C L H hx C
C C H

R R W H hy R
R R H

 (1)

The first term sets the centre of the field as the origin, the second scales from pixel units to
physical units, and the third term accounts for parallax distortion resulting from the height
of the robot (assuming that the camera is positioned over the centre of the field).
While this calibration is simple to perform, it will only be accurate for an ideal camera
positioned precisely in the centre of the field and aligned perpendicularly to the playing
field. Each deviation from ideal will introduce distortions in the image and calibration
errors.

2.1 Lens distortion
The most prevalent form of lens distortion is barrel distortion. It results from the lens having
a slightly higher magnification in the centre of the image than at the periphery. Barrel
distortion is particularly noticeable with wide-angle lenses such as those used with robot
soccer. While there are several different physical models of the lens distortion based on the
known characteristics of the lens (Basu & Licardie, 1995; Pers & Kovacic, 2002), the most
commonly used model is a generic radial Taylor series relating the ideal, undistorted
coordinates (xu,yu) to the distorted coordinates in the image (xd,yd):

     
     

    

    

        

        

2 4 2 2 2
1 2 1 2 3

2 4 2 2 2
1 2 1 2 3

1 ... 2 2 1 ...

1 ... 2 2 1 ...

d u u u u u u u u

d u u u u u u u u

x x r r r x x y r

y y r r x y r y r
 (2)

Both sets of coordinates have the centre of distortion as the origin, and  2 2 2
u u ur x y . The set

of parameters  and  characterise a particular lens. Note that the centre of distortion is
not necessarily the centre of the image (Willson & Shafer, 1994). For most lenses, two radial
and two tangential terms are sufficient (Li & Lavest, 1996), and most calibration methods
limit themselves to estimating these terms. A simple, one parameter, radial distortion model
is usually sufficient to account for most of the distortion (Li & Lavest, 1996):

   2(1)d u ur r r (3)

This forward transform is most commonly used because in modelling the imaging process,
the image progresses from undistorted coordinates to distorted image coordinates.
Sometimes, however, the reverse transform is used. This swaps the roles of the two sets of
coordinates. Since the model is an arbitrary Taylor series expansion, either approach is valid
(although the coefficients will be different for the forward and reverse transforms). The first
order reverse transform is given by

   2(1)u d dr r r (4)

The portable nature of robot soccer platforms means that every time the system is set up,
there are differences in the camera position and angle relative to the field. Each team has
their own camera, and both cannot be mounted exactly over the centre of the playing area. It
is also difficult to arrange the camera position so that it is perfectly perpendicular to the
playing surface. Consequently, each camera is looking down on the playing area at a slight
angle, which introduces a mild perspective distortion into the image. The size of the playing
area, combined with constraints on how high the camera may be mounted, require that a
wide angle lens be used. This can introduce significant barrel distortion within the image
obtained. Both of these effects are readily apparent in Fig. 1. The limited height of the
camera combined with the height of the robots means that each detected robot position is
also subject to parallax error. These factors must all be considered, and compensated for, to
obtain accurate estimates of the location and orientation of each robot.

Fig. 1. Example field, clearly showing lens distortion and mild perspective distortion.

2. Effects of distortion

At the minimum, any calibration must determine the location of the playing field within the
image. The simplest calibration (for single camera fields) is to assume that the camera is
aligned with the field and that there is no distortion. The column positions of the goal
mouths, CLeft and CRight, and the row positions of the field edges at, or near, the centreline,
RTop and RBottom, need to be located within the image. Then, given the known length, L, and
width, W, of the field, the estimated height of the camera, H, and the known height of the
robots, h, an object positioned at row R and column C within the image may be determined
relative to the centre of the field as

Robot Soccer314

    

 

  

   

 

2
2 2

2 2
2

2

cos()

2 cos()

u
u

u u u
u

u u
u

dMM M r
dr

dMr r r
dr

dMrr
dr

 (7)

so

      
 2

2

tan() tan()
2

d u

u
u

M
dMM r
dr

 (8)

When the forward map of eq. (3) is used, eq. (8) becomes

    



  



2

2

1tan() tan()
1 3

u
d u

u

r
r

 (9)

Since the magnification changes faster with increasing radius, the angle error ( d u) will
also be larger further from the centre of distortion, and increase more rapidly in the
periphery.

2.2 Perspective distortion
Perspective distortion results when the line of sight of the camera is not perpendicular to the
plane of the playing area. This will occur when the camera is not directly over the centre of
the playing area, and it must be tilted to fit the complete playing area within the field of
view. A perspective transformation is given by

 


 
 


 

1 2 3

7 8 9

4 5 6

7 8 9

u u
d

u u

u u
d

u u

h x h y hx
h x h y h
h x h y hy
h x h y h

 (10)

where (xu,yu) and (xd,yd) are the coordinates of an undistorted and distorted point
respectively. This is often represented in matrix form using a homogenous coordinate
system (Hartley & Zisserman, 2000):

     
          
          

1 2 3

4 5 6

7 8 9 1

d u

d u

kx h h h x
ky h h h y
k h h h

 or d uP HP (11)

The 3x3 transformation matrix, H, incorporates rotation, translation, scaling, skew, and
stretch as well as perspective distortion. Just considering perspective distortion and for
small tilt angles H simplifies to

Effect on position
If the simple calibration was based on distances from the centre of the image, the position
error would increase with radius according to the radially dependent magnification.
However, since the calibration of eq. (1) sets the positions at the edges and ends of the field,
the position error there will be minimal. The absolute position errors should also be zero
near the centre of the image, increase with radius to a local maximum between the centre
and edges of the playing area, and decrease to zero again on an ellipse through the table
edge and goal points. Outside this ellipse, the errors will increase rapidly with distance,
having the greatest effect in the corners of the playing field.

Effect on orientation
Determining the effect of radial distortion on the angle is more complicated. Consider a
point in the undistorted image using radial coordinates (,)ur . At this point, the lens
distortion results in a magnification

  d

u

rM
r

 (5)

Next, consider a test point offset from this by a small distance, r, at an angle, u , with a
magnification, M2. If the magnification is constant (M2=M) then everything is scaled equally,
and by similar triangles, the angle to the test point will remain the same. This implies that if
the test point is in the tangential direction ( u =90°), there will be no angle error.
Similarly, since the distortion is radial, if the test point is aligned ( u =0) the test point
will be stretched radially, but the angle will not change. These two considerations imply that
it is best to consider offsets in the tangential and radial direction. This geometry is shown in
Fig. 2.

Magnification
M2

Magnification
M

Test point

φ

θu

θd

r

(,)ru φ

Fig. 2. Geometry for calculating the change as a result of radial lens distortion. The
distortion and scales have been exaggerated to make the effects visible.

After distortion, the angle to the test point becomes

 

  
 
 

 


 

  




  

2

2

2

2 2

sin()tan()
cos()

sin()
cos() ()

u
d

u u u

u

u u

M r
M r r Mr

M r
M r M M r

 (6)

The test distance, r, is small, therefore

Automated camera calibration for robot soccer 315

    

 

  

   

 

2
2 2

2 2
2

2

cos()

2 cos()

u
u

u u u
u

u u
u

dMM M r
dr

dMr r r
dr

dMrr
dr

 (7)

so

      
 2

2

tan() tan()
2

d u

u
u

M
dMM r
dr

 (8)

When the forward map of eq. (3) is used, eq. (8) becomes

    



  



2

2

1tan() tan()
1 3

u
d u

u

r
r

 (9)

Since the magnification changes faster with increasing radius, the angle error ( d u) will
also be larger further from the centre of distortion, and increase more rapidly in the
periphery.

2.2 Perspective distortion
Perspective distortion results when the line of sight of the camera is not perpendicular to the
plane of the playing area. This will occur when the camera is not directly over the centre of
the playing area, and it must be tilted to fit the complete playing area within the field of
view. A perspective transformation is given by

 


 
 


 

1 2 3

7 8 9

4 5 6

7 8 9

u u
d

u u

u u
d

u u

h x h y hx
h x h y h
h x h y hy
h x h y h

 (10)

where (xu,yu) and (xd,yd) are the coordinates of an undistorted and distorted point
respectively. This is often represented in matrix form using a homogenous coordinate
system (Hartley & Zisserman, 2000):

     
          
          

1 2 3

4 5 6

7 8 9 1

d u

d u

kx h h h x
ky h h h y
k h h h

 or d uP HP (11)

The 3x3 transformation matrix, H, incorporates rotation, translation, scaling, skew, and
stretch as well as perspective distortion. Just considering perspective distortion and for
small tilt angles H simplifies to

Effect on position
If the simple calibration was based on distances from the centre of the image, the position
error would increase with radius according to the radially dependent magnification.
However, since the calibration of eq. (1) sets the positions at the edges and ends of the field,
the position error there will be minimal. The absolute position errors should also be zero
near the centre of the image, increase with radius to a local maximum between the centre
and edges of the playing area, and decrease to zero again on an ellipse through the table
edge and goal points. Outside this ellipse, the errors will increase rapidly with distance,
having the greatest effect in the corners of the playing field.

Effect on orientation
Determining the effect of radial distortion on the angle is more complicated. Consider a
point in the undistorted image using radial coordinates (,)ur . At this point, the lens
distortion results in a magnification

  d

u

rM
r

 (5)

Next, consider a test point offset from this by a small distance, r, at an angle, u , with a
magnification, M2. If the magnification is constant (M2=M) then everything is scaled equally,
and by similar triangles, the angle to the test point will remain the same. This implies that if
the test point is in the tangential direction ( u =90°), there will be no angle error.
Similarly, since the distortion is radial, if the test point is aligned ( u =0) the test point
will be stretched radially, but the angle will not change. These two considerations imply that
it is best to consider offsets in the tangential and radial direction. This geometry is shown in
Fig. 2.

Magnification
M2

Magnification
M

Test point

φ

θu

θd

r

(,)ru φ

Fig. 2. Geometry for calculating the change as a result of radial lens distortion. The
distortion and scales have been exaggerated to make the effects visible.

After distortion, the angle to the test point becomes

 

  
 
 

 


 

  




  

2

2

2

2 2

sin()tan()
cos()

sin()
cos() ()

u
d

u u u

u

u u

M r
M r r Mr

M r
M r M M r

 (6)

The test distance, r, is small, therefore

Robot Soccer316

Along the line of sight (yu=0) there is no distortion radially or tangentially. However, other
orientations become compressed as the magnification causes foreshortening, especially as it
approaches the vanishing line. At other positions, angles that satisfy

  tan u
u

u

y
x

 (17)

are not distorted. This is expected, since the perspective transformation will map straight
lines onto straight lines. Orientations perpendicular to the line of sight (u =90°) are not
distorted. Other orientations are compressed by the perspective foreshortening.
The mild perspective distortion encountered with the robot soccer system will introduce
mild distortion. However, angle errors will be largest on the side of the field where the
image appears compressed.

2.3 Parallax distortion
In the absence of any other information, the camera is assumed to be at a known height, H,
directly above the centre of the robot soccer playing area. This allows the change in scale
associated with the known heights of the robots to be taken into account. Since the robot
jackets are always a fixed height above the playing surface, parallax correction simply
involves scaling the detected position relative to the position of the camera. Errors in
estimating the camera position will only introduce position errors; they will not affect the
angle.

HH

h h

d dd’ d’v v

P

H+ΔH

Fig. 3. Parallax correction geometry. Left: the effect of lateral error; right: the effect of height
error. Note, the robot height, h, has been exaggerated for clarity.

Effect on position
Consider the geometry shown in Fig. 3. When the camera is offset laterally by P, an object at
location d in the playing area will appear at location v by projecting the height

  
  

 
()d P H dH Phv P
H h H h

 (18)

However, if it is assumed that the camera is not offset, the parallax correction will estimate
the object position as d’. The error is given by

 
 

  
 
 

1 0 0
0 1 0

1
perspective

x yp p
H (12)

The effect of this is to change the scale factor, k, in eq. (11), giving a position dependent
magnification. As a consequence, parallel lines converge, meeting somewhere on the
vanishing line given by

   1 0x u y up x p y (13)

Effect on position
Since the simple calibration sets four points on the edges of the playing area, these points
will have no error. In direction that the camera is tilted, k will be greater than 1, shrinking
the scene. The radial error will be positive, and the tangential errors will be towards the
direction line. In the opposite direction, the magnification is greater than 1. The radial error
will be negative, and the tangential errors will be away from the direction line. There will be
a line approximately across the middle of the playing area where

   1 1x u y up x p y (14)

which will have no error. The angle of the line, and the severity of the errors will depend on
the angle and extent of the camera tilt respectively.

Effect on orientation
Again the distortion will depend on the change of magnification with position. As the
content becomes more compressed (closer to the vanishing line) angle distortion will
increase, because the slope of the magnification becomes steeper and the angle errors will be
greater. Without loss of generality, consider the camera tilted in the x direction (py=0).
Consider a test point offset from (xu,yu) by distance r at an angle u . After distortion, the
offset becomes:








  

  


  
  

sin
1 (cos) 1

cos
1 (cos) 1

u u u

x u u x u

u u u

x u u x u

y r yy
p x r p x
x r xx
p x r p x

 (15)

Hence, the angle of the test point after distortion is given by

    
    
 

 

 


 

 




    
 
     

 


  

sin 1 1 (cos)
tan

cos 1 1 (cos)

sin 1 cos
cos

1 tan

u u x u u x u u
d

u u x u u x u u

u x u u x u

u

x u u u x

y r p x y p x ry
x x r p x x p x r

r p x y p r
r

p x y p

 (16)

Automated camera calibration for robot soccer 317

Along the line of sight (yu=0) there is no distortion radially or tangentially. However, other
orientations become compressed as the magnification causes foreshortening, especially as it
approaches the vanishing line. At other positions, angles that satisfy

  tan u
u

u

y
x

 (17)

are not distorted. This is expected, since the perspective transformation will map straight
lines onto straight lines. Orientations perpendicular to the line of sight (u =90°) are not
distorted. Other orientations are compressed by the perspective foreshortening.
The mild perspective distortion encountered with the robot soccer system will introduce
mild distortion. However, angle errors will be largest on the side of the field where the
image appears compressed.

2.3 Parallax distortion
In the absence of any other information, the camera is assumed to be at a known height, H,
directly above the centre of the robot soccer playing area. This allows the change in scale
associated with the known heights of the robots to be taken into account. Since the robot
jackets are always a fixed height above the playing surface, parallax correction simply
involves scaling the detected position relative to the position of the camera. Errors in
estimating the camera position will only introduce position errors; they will not affect the
angle.

HH

h h

d dd’ d’v v

P

H+ΔH

Fig. 3. Parallax correction geometry. Left: the effect of lateral error; right: the effect of height
error. Note, the robot height, h, has been exaggerated for clarity.

Effect on position
Consider the geometry shown in Fig. 3. When the camera is offset laterally by P, an object at
location d in the playing area will appear at location v by projecting the height

  
  

 
()d P H dH Phv P
H h H h

 (18)

However, if it is assumed that the camera is not offset, the parallax correction will estimate
the object position as d’. The error is given by

 
 

  
 
 

1 0 0
0 1 0

1
perspective

x yp p
H (12)

The effect of this is to change the scale factor, k, in eq. (11), giving a position dependent
magnification. As a consequence, parallel lines converge, meeting somewhere on the
vanishing line given by

   1 0x u y up x p y (13)

Effect on position
Since the simple calibration sets four points on the edges of the playing area, these points
will have no error. In direction that the camera is tilted, k will be greater than 1, shrinking
the scene. The radial error will be positive, and the tangential errors will be towards the
direction line. In the opposite direction, the magnification is greater than 1. The radial error
will be negative, and the tangential errors will be away from the direction line. There will be
a line approximately across the middle of the playing area where

   1 1x u y up x p y (14)

which will have no error. The angle of the line, and the severity of the errors will depend on
the angle and extent of the camera tilt respectively.

Effect on orientation
Again the distortion will depend on the change of magnification with position. As the
content becomes more compressed (closer to the vanishing line) angle distortion will
increase, because the slope of the magnification becomes steeper and the angle errors will be
greater. Without loss of generality, consider the camera tilted in the x direction (py=0).
Consider a test point offset from (xu,yu) by distance r at an angle u . After distortion, the
offset becomes:








  

  


  
  

sin
1 (cos) 1

cos
1 (cos) 1

u u u

x u u x u

u u u

x u u x u

y r yy
p x r p x
x r xx
p x r p x

 (15)

Hence, the angle of the test point after distortion is given by

    
    
 

 

 


 

 




    
 
     

 


  

sin 1 1 (cos)
tan

cos 1 1 (cos)

sin 1 cos
cos

1 tan

u u x u u x u u
d

u u x u u x u u

u x u u x u

u

x u u u x

y r p x y p x ry
x x r p x x p x r

r p x y p r
r

p x y p

 (16)

Robot Soccer318

estimate the position and orientation of the camera relative to a target, as well as estimating
the lens distortion parameters, and the intrinsic imaging parameters. Calibration requires a
dense set of calibration data points scattered throughout the image. These are usually
provided by a ‘target’ consisting of an array of spots, a grid, or a checkerboard pattern. From
the construction of the target, the relative positions of the target points are well known.
Within the captured image of the target, the known points are located and their
correspondence with the object established. A model of the imaging process is then adjusted
to make the target points match their measured image points.
The known location of the model enables target points to be measured in 3D world
coordinates. This coordinate system is used as the frame of reference. A rigid body
transformation (rotation and translation) is applied to the target points. This uses an
estimate of the camera pose (position and orientation in world coordinates) to transform the
points into a camera centred coordinate system. Then a projective transformation is
performed, based on the estimated lens focal length, giving 2D coordinates on the image
plane. Next, these are adjusted using the distortion model to account for distortions
introduced by the lens. Finally, the sensing element size and aspect ratio are used to
determine where the control points should appear in pixel coordinates. The coordinates
obtained from the model are compared with the coordinates measured from the image,
giving an error. The imaging parameters are then adjusted to minimise the error, resulting
in a full characterisation of the imaging model.
The camera and lens model is sufficiently non-linear to preclude a simple, direct calculation
of all of the parameters of the imaging model. Correcting imaging systems for distortion
therefore requires an iterative approach, for example using the Levenberg-Marquardt
method of minimising the mean squared error (Press et al., 1993). One complication of this
approach is that for convergence, the initial estimates of the model parameters must be
reasonably close to the final values. This is particularly so with the 3D rotation and
perspective transformation parameters.
Planar objects are simpler to construct accurately than full 3D objects. Unfortunately, only
knowing the location of points on a single plane is insufficient to determine a full imaging
model (Sturm & Maybank, 1999). Therefore, if a planar target is used, several images must
be taken of the target in a variety of poses to obtain full 3D information (Heikkila & Silven,
1996). Alternatively, a reduced model with one or two free parameters may be obtained
from a single image. For robot soccer, this is generally not too much of a problem since the
game is essentially planar.
A number of methods for performing the calibration for robot soccer are described in the
literature. Without providing a custom target, there are only a few data points available
from the robot soccer platform. The methods range from the minimum calibration described
in the previous section through to characterisation of full models of the imaging system.
The basic approach described in section 2 does not account for any distortions. A simple
approach was developed in (Weiss & Hildebrand, 2004) to account for the gross
characteristics of the distortion. The playing area was divided into four quadrants, based on
the centreline, and dividing the field in half longitudinally between the centres of the goals.
Each quadrant was corrected using bilinear interpolation. While this corrects the worst of
the position errors resulting from both lens and perspective distortion, it will only partially
correct orientation errors. The use of a bilinear transformation will also result in a small
jump in the orientation at the boundaries between adjacent quadrants.

      
()v H h Phd d d
H H

 (19)

The lateral error is scaled by the relative heights of the robot and camera. This ratio is
typically 40 or 50, so a 5 cm camera offset will result in a 1 mm error in position. Note that
the error applies to everywhere in the playing area, independent of the object location.
An error in estimating the height of the camera by ΔH will also result in an error in location
of objects. In this case, the projection of the object position will be

  


  
()d H Hv

H H h
 (20)

Again, given the assumptions in camera position, correcting this position for parallax will
result in an error in estimating the robot position of

       
  

()
()

v H h dh Hd d d
H H H h H

 (21)

Since changing the height of the camera changes the parallax correction scale factor, the
error will be proportional to the distance from the camera location. There will be no error
directly below the camera, and the greatest errors will be seen in the corners of the playing
area.

2.4 Effects on game play
When considering the effects of location and orientation errors on game play, two situations
need to be considered. The first is local effects, for example when a robot is close to the ball
and manoeuvring to shoot the ball. The second is when the robot is far from play, but must
be brought quickly into play.
In the first situation, when the objects are relatively close to one another, what is most
important is the relative location of the objects. Since both objects will be subject to similar
distortions, they will have similar position errors. However, the difference in position errors
will result in an error in estimating the angle between the objects (indeed this was how
angle errors were estimated earlier in this section). While orientation errors may be
considered of greater importance, these will correlate with the angle errors from estimating
the relative position, making orientation errors less important for close work.
In contrast with this, at a distance the orientation errors are of greater importance, because
shooting a ball or instructing the robot to move rapidly will result in moving in the wrong
direction when the angle error is large. For slow play, this is less significant, because errors
can be corrected over a series of successive images as the object is moving. However at high
speed (speeds of over two metres per second are frequently encountered in robot soccer),
estimating the angles at the start of a manoeuvre is more critical.
Consequently, good calibration is critical for successful game play.

3. Standard calibration techniques

In computer vision, the approach of Tsai (Tsai, 1987) or some derivation is commonly used
to calibrate the relationship between pixels and real-world coordinates. These approaches

Automated camera calibration for robot soccer 319

estimate the position and orientation of the camera relative to a target, as well as estimating
the lens distortion parameters, and the intrinsic imaging parameters. Calibration requires a
dense set of calibration data points scattered throughout the image. These are usually
provided by a ‘target’ consisting of an array of spots, a grid, or a checkerboard pattern. From
the construction of the target, the relative positions of the target points are well known.
Within the captured image of the target, the known points are located and their
correspondence with the object established. A model of the imaging process is then adjusted
to make the target points match their measured image points.
The known location of the model enables target points to be measured in 3D world
coordinates. This coordinate system is used as the frame of reference. A rigid body
transformation (rotation and translation) is applied to the target points. This uses an
estimate of the camera pose (position and orientation in world coordinates) to transform the
points into a camera centred coordinate system. Then a projective transformation is
performed, based on the estimated lens focal length, giving 2D coordinates on the image
plane. Next, these are adjusted using the distortion model to account for distortions
introduced by the lens. Finally, the sensing element size and aspect ratio are used to
determine where the control points should appear in pixel coordinates. The coordinates
obtained from the model are compared with the coordinates measured from the image,
giving an error. The imaging parameters are then adjusted to minimise the error, resulting
in a full characterisation of the imaging model.
The camera and lens model is sufficiently non-linear to preclude a simple, direct calculation
of all of the parameters of the imaging model. Correcting imaging systems for distortion
therefore requires an iterative approach, for example using the Levenberg-Marquardt
method of minimising the mean squared error (Press et al., 1993). One complication of this
approach is that for convergence, the initial estimates of the model parameters must be
reasonably close to the final values. This is particularly so with the 3D rotation and
perspective transformation parameters.
Planar objects are simpler to construct accurately than full 3D objects. Unfortunately, only
knowing the location of points on a single plane is insufficient to determine a full imaging
model (Sturm & Maybank, 1999). Therefore, if a planar target is used, several images must
be taken of the target in a variety of poses to obtain full 3D information (Heikkila & Silven,
1996). Alternatively, a reduced model with one or two free parameters may be obtained
from a single image. For robot soccer, this is generally not too much of a problem since the
game is essentially planar.
A number of methods for performing the calibration for robot soccer are described in the
literature. Without providing a custom target, there are only a few data points available
from the robot soccer platform. The methods range from the minimum calibration described
in the previous section through to characterisation of full models of the imaging system.
The basic approach described in section 2 does not account for any distortions. A simple
approach was developed in (Weiss & Hildebrand, 2004) to account for the gross
characteristics of the distortion. The playing area was divided into four quadrants, based on
the centreline, and dividing the field in half longitudinally between the centres of the goals.
Each quadrant was corrected using bilinear interpolation. While this corrects the worst of
the position errors resulting from both lens and perspective distortion, it will only partially
correct orientation errors. The use of a bilinear transformation will also result in a small
jump in the orientation at the boundaries between adjacent quadrants.

      
()v H h Phd d d
H H

 (19)

The lateral error is scaled by the relative heights of the robot and camera. This ratio is
typically 40 or 50, so a 5 cm camera offset will result in a 1 mm error in position. Note that
the error applies to everywhere in the playing area, independent of the object location.
An error in estimating the height of the camera by ΔH will also result in an error in location
of objects. In this case, the projection of the object position will be

  


  
()d H Hv

H H h
 (20)

Again, given the assumptions in camera position, correcting this position for parallax will
result in an error in estimating the robot position of

       
  

()
()

v H h dh Hd d d
H H H h H

 (21)

Since changing the height of the camera changes the parallax correction scale factor, the
error will be proportional to the distance from the camera location. There will be no error
directly below the camera, and the greatest errors will be seen in the corners of the playing
area.

2.4 Effects on game play
When considering the effects of location and orientation errors on game play, two situations
need to be considered. The first is local effects, for example when a robot is close to the ball
and manoeuvring to shoot the ball. The second is when the robot is far from play, but must
be brought quickly into play.
In the first situation, when the objects are relatively close to one another, what is most
important is the relative location of the objects. Since both objects will be subject to similar
distortions, they will have similar position errors. However, the difference in position errors
will result in an error in estimating the angle between the objects (indeed this was how
angle errors were estimated earlier in this section). While orientation errors may be
considered of greater importance, these will correlate with the angle errors from estimating
the relative position, making orientation errors less important for close work.
In contrast with this, at a distance the orientation errors are of greater importance, because
shooting a ball or instructing the robot to move rapidly will result in moving in the wrong
direction when the angle error is large. For slow play, this is less significant, because errors
can be corrected over a series of successive images as the object is moving. However at high
speed (speeds of over two metres per second are frequently encountered in robot soccer),
estimating the angles at the start of a manoeuvre is more critical.
Consequently, good calibration is critical for successful game play.

3. Standard calibration techniques

In computer vision, the approach of Tsai (Tsai, 1987) or some derivation is commonly used
to calibrate the relationship between pixels and real-world coordinates. These approaches

Robot Soccer320

4. Automatic calibration procedure

The calibration procedure is based on the principles first described in (Bailey, 2002). A three
stage solution is developed based on the ‘plumb-line’ principle. In the first stage, a parabola
is fitted to each of the lines on the edge of the field. Without distortion, these should be
straight lines, so the quadratic component provides data for estimating the lens distortion. A
single parameter radial distortion model is used, with a closed form solution given for
determining the lens distortion parameter. In the second stage, homogenous coordinates are
used to model the perspective transformation. This is based on transforming the lines on the
edge of the field to their known locations. The final stage uses the 3D information inherent
in the field to obtain an estimate of the camera location (Bailey & Sen Gupta, 2008).

4.1 Edge detection
The first step is to find the edge of the playing field. The approach taken will depend on the
form of the field. Our initial work was based on micro-robots, where the playing field is
bounded by a short wall. The white edges apparent in Fig. 1 actually represent the inside
edge of the wall around the playing area, as shown in Fig. 4. In this case, the edge of the
playing area corresponds to the edge between the white of the wall and the black of the
playing surface. While detecting the edge between the black and white sounds
straightforward, it is not always as simple as that. Specular reflections off the black regions
can severely reduce the contrast in some situations, as can be seen in Fig. 5, particularly in
the bottom right corner of the image.

To camera

Black top

White
wall

Black playing surface

Fig. 4. The edge of the playing area.

Two 3x3 directional Prewitt edge detection filters are used to detect both the top and bottom
edges of the walls on all four sides of the playing area. To obtain an accurate estimate of the
calibration parameters, it is necessary to detect the edges to sub-pixel accuracy. Consider
first the bottom edge of the wall along the side of the playing area in the top edge of the
image. Let the response of the filtered image be f[x,y]. Within the top 15% of the image, the
maximum filtered response is found in each column. Let the maximum in column x be
located on row ymax,x. A parabola is fitted to the filter responses above and below this
maximum (perpendicular to the edge), and the edge pixel determined to sub-pixel location
as (Bailey, 2003):

 

  
 

   
, ,

,
, , ,

[, 1] [, 1]
[]

4 [,] 2 [, 1] [, 1]
max x max x

max x
max x max x max x

f x y f x y
edge x y

f x y f x y f x y
 (22)

A direct approach of Tsai’s calibration is to have a chequered cloth (as the calibration
pattern) that is rolled out over the playing area (Baltes, 2000). The corners of the squares on
the cloth provide a 2D grid of target points for calibration. The cloth must cover as much as
possible of the field of view of the camera. A limitation of this approach is that the
calibration is with respect to the cloth, rather than the field. Unless the cloth is positioned
carefully with respect to the field, this can introduce other errors.
This limitation may be overcome by directly using landmarks on the playing field as the
target locations. This approach is probably the most commonly used and is exemplified in
(Ball et al., 2004) where a sequence of predefined landmarks is manually clicked on within
the image of the field. Tsai’s calibration method is then used to determine the imaging
model by matching the known locations with their image counterparts. Such approaches
based on manually selecting the target points within the image are subject to the accuracy
and judgement of the person locating the landmarks within the image. Target selection is
usually limited to the nearest pixel. While selecting more points will generally result in a
more accurate calibration by averaging the errors from the over-determined system, the
error minimisation cannot remove systematic errors. Manual landmark selection is also very
time-consuming.
The need to locate target points subjectively may be overcome by automating the calibration
procedure. Egorova (Egorova et al., 2005) uses the bounding box to find the largest object in
the image, and this is used to initialise the transform. A model of the field is transformed
using iterative global optimisation to make the image of the field match the transformed
model. While automatic, this procedure takes five to six seconds using a high end desktop
computer for the model parameters to converge.
A slightly different approach is taken by Klancar (Klancar et al., 2004). The distortion
correction is split into two stages: first the lens distortion is removed, and then the
perspective distortion parameters are estimated. This approach to lens distortion correction
is based on the observation that straight lines are invariant under a perspective (or
projective) transformation. Therefore, any deviation from straightness must be due to lens
distortion (Brown, 1971; Fryer et al., 1994; Park & Hong, 2001). This is the so-called ‘plumb-
line’ approach, so named because when it was first used by (Brown, 1971), the straight lines
were literally plumb-lines hung within the image. (Klancar et al., 2004) uses a Hough
transform to find the major edges of the field. Three points are found along each line: one on
the centre and one at each end. A hyperbolic sine radial distortion model is used (Pers &
Kovacic, 2002), with the focal length optimised to make the three target points for each line
as close to collinear as possible. One limitation of Klancar’s approach is the assumption that
the centre of the image corresponds with the centre of distortion. However, errors within the
location of the distortion centre results in tangential distortion terms (Stein, 1997) which are
not considered with the model. The second stage of Klancar’s algorithm is to use the
convergence of parallel lines (at the vanishing points) to estimate the perspective
transformation component.
None of the approaches explicitly determines the camera location. Since they are all based
on 2D targets, they can only gain limited information on the camera height, resulting in a
limited ability to correct for parallax distortion. The limitations of the existing techniques led
us to develop an automatic method that overcomes these problems by basing the calibration
on a 3D model.

Automated camera calibration for robot soccer 321

4. Automatic calibration procedure

The calibration procedure is based on the principles first described in (Bailey, 2002). A three
stage solution is developed based on the ‘plumb-line’ principle. In the first stage, a parabola
is fitted to each of the lines on the edge of the field. Without distortion, these should be
straight lines, so the quadratic component provides data for estimating the lens distortion. A
single parameter radial distortion model is used, with a closed form solution given for
determining the lens distortion parameter. In the second stage, homogenous coordinates are
used to model the perspective transformation. This is based on transforming the lines on the
edge of the field to their known locations. The final stage uses the 3D information inherent
in the field to obtain an estimate of the camera location (Bailey & Sen Gupta, 2008).

4.1 Edge detection
The first step is to find the edge of the playing field. The approach taken will depend on the
form of the field. Our initial work was based on micro-robots, where the playing field is
bounded by a short wall. The white edges apparent in Fig. 1 actually represent the inside
edge of the wall around the playing area, as shown in Fig. 4. In this case, the edge of the
playing area corresponds to the edge between the white of the wall and the black of the
playing surface. While detecting the edge between the black and white sounds
straightforward, it is not always as simple as that. Specular reflections off the black regions
can severely reduce the contrast in some situations, as can be seen in Fig. 5, particularly in
the bottom right corner of the image.

To camera

Black top

White
wall

Black playing surface

Fig. 4. The edge of the playing area.

Two 3x3 directional Prewitt edge detection filters are used to detect both the top and bottom
edges of the walls on all four sides of the playing area. To obtain an accurate estimate of the
calibration parameters, it is necessary to detect the edges to sub-pixel accuracy. Consider
first the bottom edge of the wall along the side of the playing area in the top edge of the
image. Let the response of the filtered image be f[x,y]. Within the top 15% of the image, the
maximum filtered response is found in each column. Let the maximum in column x be
located on row ymax,x. A parabola is fitted to the filter responses above and below this
maximum (perpendicular to the edge), and the edge pixel determined to sub-pixel location
as (Bailey, 2003):

 

  
 

   
, ,

,
, , ,

[, 1] [, 1]
[]

4 [,] 2 [, 1] [, 1]
max x max x

max x
max x max x max x

f x y f x y
edge x y

f x y f x y f x y
 (22)

A direct approach of Tsai’s calibration is to have a chequered cloth (as the calibration
pattern) that is rolled out over the playing area (Baltes, 2000). The corners of the squares on
the cloth provide a 2D grid of target points for calibration. The cloth must cover as much as
possible of the field of view of the camera. A limitation of this approach is that the
calibration is with respect to the cloth, rather than the field. Unless the cloth is positioned
carefully with respect to the field, this can introduce other errors.
This limitation may be overcome by directly using landmarks on the playing field as the
target locations. This approach is probably the most commonly used and is exemplified in
(Ball et al., 2004) where a sequence of predefined landmarks is manually clicked on within
the image of the field. Tsai’s calibration method is then used to determine the imaging
model by matching the known locations with their image counterparts. Such approaches
based on manually selecting the target points within the image are subject to the accuracy
and judgement of the person locating the landmarks within the image. Target selection is
usually limited to the nearest pixel. While selecting more points will generally result in a
more accurate calibration by averaging the errors from the over-determined system, the
error minimisation cannot remove systematic errors. Manual landmark selection is also very
time-consuming.
The need to locate target points subjectively may be overcome by automating the calibration
procedure. Egorova (Egorova et al., 2005) uses the bounding box to find the largest object in
the image, and this is used to initialise the transform. A model of the field is transformed
using iterative global optimisation to make the image of the field match the transformed
model. While automatic, this procedure takes five to six seconds using a high end desktop
computer for the model parameters to converge.
A slightly different approach is taken by Klancar (Klancar et al., 2004). The distortion
correction is split into two stages: first the lens distortion is removed, and then the
perspective distortion parameters are estimated. This approach to lens distortion correction
is based on the observation that straight lines are invariant under a perspective (or
projective) transformation. Therefore, any deviation from straightness must be due to lens
distortion (Brown, 1971; Fryer et al., 1994; Park & Hong, 2001). This is the so-called ‘plumb-
line’ approach, so named because when it was first used by (Brown, 1971), the straight lines
were literally plumb-lines hung within the image. (Klancar et al., 2004) uses a Hough
transform to find the major edges of the field. Three points are found along each line: one on
the centre and one at each end. A hyperbolic sine radial distortion model is used (Pers &
Kovacic, 2002), with the focal length optimised to make the three target points for each line
as close to collinear as possible. One limitation of Klancar’s approach is the assumption that
the centre of the image corresponds with the centre of distortion. However, errors within the
location of the distortion centre results in tangential distortion terms (Stein, 1997) which are
not considered with the model. The second stage of Klancar’s algorithm is to use the
convergence of parallel lines (at the vanishing points) to estimate the perspective
transformation component.
None of the approaches explicitly determines the camera location. Since they are all based
on 2D targets, they can only gain limited information on the camera height, resulting in a
limited ability to correct for parallax distortion. The limitations of the existing techniques led
us to develop an automatic method that overcomes these problems by basing the calibration
on a 3D model.

Robot Soccer322

the image. The robust fitting procedure automatically removes the pixels in the goal mouth
from the fit. The results of detecting the edges for the image in Fig. 1 are shown in Fig. 6.

Fig. 6. The detected walls from the image in Fig. 1.

4.2 Estimating the distortion centre
Before correcting for the lens distortion, it is necessary to estimate the centre of distortion.
With purely radial distortion, lines through the centre will remain straight. Therefore,
considering the parabola components, a line through the centre of distortion will have no
curvature (a=0). In general, the curvature of a line will increase the further it is from the
centre. It has been found that the curvature, a, is approximately proportional to the axis
intercept, c, when the origin is at the centre of curvature (Bailey, 2002).
The x centre, x0, maybe determined by considering the vertical lines within the image (the
left and right ends of the field) and the y centre, y0, from the horizontal lines (the top and
bottom sides of the field). Consider the horizontal centre first. With just two lines, one at
each end of the field, the centre of distortion is given by

 



2 1 1 2

0
2 1

a c a cx
a a

 (25)

With more than two lines available, this may be generalised by performing a least squares fit
between the intercept and the curvature:






   
   

2

0 1
i i i i i

i i i i

c a c a c
x

c a a c
 (26)

Fig. 5. As a result of lighting and specular reflection, the edge of the playing area may be
harder to detect.

A parabola is then fitted to all the detected edge points (x,edge[x]) along the length of the
edge. Let the parabola be   2()y x ax bx c . The parabola coefficients are determined by
minimising the squared error

     
22 []

x
E ax bx c edge x (23)

The error is minimised by taking partial derivatives of eq. (23) with respect to each of the
parameters a, b, and c, and solving for when these are equal to zero. This results in the
following set of simultaneous equations, which are then solved for the parabola coefficients.

    
         
        

   
   
   

4 3 2 2

3 2

2

[]
. []

1 []

x x x a x edge x
x x x b x edge x
x x c edge x

 (24)

The resulting parabola may be subject to errors from noisy or misdetected points. The
accuracy may be improved considerably using robust fitting techniques. After initially
estimating the parabola, any outliers are removed from the data set, and the parabola
refitted to the remaining points. Two iterations are used, removing points more than 1 pixel
from the parabola in the first iteration, and removing those more that 0.5 pixel from the
parabola in the second iteration.
A similar process is used with the local minimum of the Prewitt filter to detect the top edge
of the wall. The process is repeated for the other walls in the bottom, left and right edges of

Automated camera calibration for robot soccer 323

the image. The robust fitting procedure automatically removes the pixels in the goal mouth
from the fit. The results of detecting the edges for the image in Fig. 1 are shown in Fig. 6.

Fig. 6. The detected walls from the image in Fig. 1.

4.2 Estimating the distortion centre
Before correcting for the lens distortion, it is necessary to estimate the centre of distortion.
With purely radial distortion, lines through the centre will remain straight. Therefore,
considering the parabola components, a line through the centre of distortion will have no
curvature (a=0). In general, the curvature of a line will increase the further it is from the
centre. It has been found that the curvature, a, is approximately proportional to the axis
intercept, c, when the origin is at the centre of curvature (Bailey, 2002).
The x centre, x0, maybe determined by considering the vertical lines within the image (the
left and right ends of the field) and the y centre, y0, from the horizontal lines (the top and
bottom sides of the field). Consider the horizontal centre first. With just two lines, one at
each end of the field, the centre of distortion is given by

 



2 1 1 2

0
2 1

a c a cx
a a

 (25)

With more than two lines available, this may be generalised by performing a least squares fit
between the intercept and the curvature:






   
   

2

0 1
i i i i i

i i i i

c a c a c
x

c a a c
 (26)

Fig. 5. As a result of lighting and specular reflection, the edge of the playing area may be
harder to detect.

A parabola is then fitted to all the detected edge points (x,edge[x]) along the length of the
edge. Let the parabola be   2()y x ax bx c . The parabola coefficients are determined by
minimising the squared error

     
22 []

x
E ax bx c edge x (23)

The error is minimised by taking partial derivatives of eq. (23) with respect to each of the
parameters a, b, and c, and solving for when these are equal to zero. This results in the
following set of simultaneous equations, which are then solved for the parabola coefficients.

    
         
        

   
   
   

4 3 2 2

3 2

2

[]
. []

1 []

x x x a x edge x
x x x b x edge x
x x c edge x

 (24)

The resulting parabola may be subject to errors from noisy or misdetected points. The
accuracy may be improved considerably using robust fitting techniques. After initially
estimating the parabola, any outliers are removed from the data set, and the parabola
refitted to the remaining points. Two iterations are used, removing points more than 1 pixel
from the parabola in the first iteration, and removing those more that 0.5 pixel from the
parabola in the second iteration.
A similar process is used with the local minimum of the Prewitt filter to detect the top edge
of the wall. The process is repeated for the other walls in the bottom, left and right edges of

Robot Soccer324

4.4 Estimating the lens distortion parameter
Since the aim is to transform from distorted image coordinates to undistorted coordinates,
the reverse transform of eq. (4) is used in this work. Consider first a distorted horizontal
line. It is represented by the parabola   2

d d dy ax bx c . The goal is to select the distortion
parameter,  , that converts this to a straight line. Substituting this into eq. (4) gives

  
     

 





  

  

      

        

2 2

22 2 2

2 2 2 2

1

1

(1) (1 3) (3 3 1) ...

u d d d

d d d d d

d d

y y x y

ax bx c x ax bx c

c c b c x a c ac b x

 (32)

where the … represents higher order terms. Unfortunately, this is in terms of xd rather than
xu. If we consider points near the centre of the image (small x) then the higher order terms
are negligible so







 

 

 

2

2

2

(1)
(1)
(1)

u d d

d d

d

x x r
x y
x c

 (33)

or




 21

u
d

xx
c

 (34)

Substituting this into eq. (32) gives

 

 
 

   
    

 

2 2
2 2

22 2

(1 3) (3 3 1)(1) ...
1 1

u u u
b c a c ac by c c x x

c c
 (35)

Again, assuming points near the centre of the image, and neglecting the higher order terms,
eq. (35) will be a straight line if the coefficient of the quadratic term is set to zero. Solving
this for  gives

  


 2(3 3 1)
a

c ac b
 (36)

Each parabola (in both horizontal and vertical directions) will give separate estimates of  .
These are simply averaged to get a value of  that works reasonably well for all lines. (Note
that if there are any lines that pass close to the origin, a weighted average should be used
because the estimate of  from such lines is subject to numerical error (Bailey, 2002).)
Setting the quadratic term to zero, and ignoring the higher order terms, each parabola
becomes a line

 



  


 

2
2

2

(1 3) (1)
1u u

y u y

b cy x c c
c

m x d
 (37)

The same equations may be used to estimate the y position of the centre, y0.
Once the centre has been estimated, it is necessary to offset the parabolas to make this the
origin. This involves substituting

 
 

0

0

ˆ
ˆ
x x x
y y y

 (27)

into the equations for each parabola,   2y ax bx c to give

     

      

2
0 0 0

2 2
0 0 0 0

ˆ ˆ ˆ() ()
ˆ ˆ(2) ()

y a x x b x x c y
ax ax b x ax bx c y

 (28)

and similarly for   2x ay by c with the x and y reversed.
Shifting the origin changes the parabola coefficients. In particular, the intercept changes, as a
result of the curvature and slope of the parabolas. Therefore, this step is usually repeated
two or three times to progressively refine the centre of distortion. The centre relative to the
original image is then given by the sum of successive offsets.

4.3 Estimating the aspect ratio
For pure radial distortion, the slopes of the a vs c curve should be the same horizontally and
vertically. This is because the strength of the distortion depends only on the radius, and not
on the particular direction. When using an analogue camera and frame grabber, the pixel
clock of the frame grabber is not synchronised with the pixel clock of the sensor. Any
difference in these clock frequencies will result in aspect ratio distortion with the image
stretched or compressed horizontally by the ratio of the clock frequencies. This distortion is
not usually a problem with digital cameras, where the output pixels directly correspond to
sensing elements. However, aspect ratio distortion can also occur if the pixel pitch is
different horizontally and vertically.
To correct for aspect ratio distortion if necessary, the x axis can be scaled as ˆ /x x R . The
horizontal and vertical parabolas are affected by this transformation in different ways:

   

  

2

2 2ˆ ˆ
y ax bx c

aR x bRx c
 (29)

and

    2ˆ x a b cx y y
R R R R

 (30)

respectively. The scale factor, R, is chosen to make the slopes of a vs c to be the same
horizontally and vertically. Let sx be the slope of a vs c for the horizontal parabolas and sy be
the slope for the vertical parabolas. The scale factor is then given by

  x yR s s (31)

Automated camera calibration for robot soccer 325

4.4 Estimating the lens distortion parameter
Since the aim is to transform from distorted image coordinates to undistorted coordinates,
the reverse transform of eq. (4) is used in this work. Consider first a distorted horizontal
line. It is represented by the parabola   2

d d dy ax bx c . The goal is to select the distortion
parameter,  , that converts this to a straight line. Substituting this into eq. (4) gives

  
     

 





  

  

      

        

2 2

22 2 2

2 2 2 2

1

1

(1) (1 3) (3 3 1) ...

u d d d

d d d d d

d d

y y x y

ax bx c x ax bx c

c c b c x a c ac b x

 (32)

where the … represents higher order terms. Unfortunately, this is in terms of xd rather than
xu. If we consider points near the centre of the image (small x) then the higher order terms
are negligible so







 

 

 

2

2

2

(1)
(1)
(1)

u d d

d d

d

x x r
x y
x c

 (33)

or




 21

u
d

xx
c

 (34)

Substituting this into eq. (32) gives

 

 
 

   
    

 

2 2
2 2

22 2

(1 3) (3 3 1)(1) ...
1 1

u u u
b c a c ac by c c x x

c c
 (35)

Again, assuming points near the centre of the image, and neglecting the higher order terms,
eq. (35) will be a straight line if the coefficient of the quadratic term is set to zero. Solving
this for  gives

  


 2(3 3 1)
a

c ac b
 (36)

Each parabola (in both horizontal and vertical directions) will give separate estimates of  .
These are simply averaged to get a value of  that works reasonably well for all lines. (Note
that if there are any lines that pass close to the origin, a weighted average should be used
because the estimate of  from such lines is subject to numerical error (Bailey, 2002).)
Setting the quadratic term to zero, and ignoring the higher order terms, each parabola
becomes a line

 



  


 

2
2

2

(1 3) (1)
1u u

y u y

b cy x c c
c

m x d
 (37)

The same equations may be used to estimate the y position of the centre, y0.
Once the centre has been estimated, it is necessary to offset the parabolas to make this the
origin. This involves substituting

 
 

0

0

ˆ
ˆ
x x x
y y y

 (27)

into the equations for each parabola,   2y ax bx c to give

     

      

2
0 0 0

2 2
0 0 0 0

ˆ ˆ ˆ() ()
ˆ ˆ(2) ()

y a x x b x x c y
ax ax b x ax bx c y

 (28)

and similarly for   2x ay by c with the x and y reversed.
Shifting the origin changes the parabola coefficients. In particular, the intercept changes, as a
result of the curvature and slope of the parabolas. Therefore, this step is usually repeated
two or three times to progressively refine the centre of distortion. The centre relative to the
original image is then given by the sum of successive offsets.

4.3 Estimating the aspect ratio
For pure radial distortion, the slopes of the a vs c curve should be the same horizontally and
vertically. This is because the strength of the distortion depends only on the radius, and not
on the particular direction. When using an analogue camera and frame grabber, the pixel
clock of the frame grabber is not synchronised with the pixel clock of the sensor. Any
difference in these clock frequencies will result in aspect ratio distortion with the image
stretched or compressed horizontally by the ratio of the clock frequencies. This distortion is
not usually a problem with digital cameras, where the output pixels directly correspond to
sensing elements. However, aspect ratio distortion can also occur if the pixel pitch is
different horizontally and vertically.
To correct for aspect ratio distortion if necessary, the x axis can be scaled as ˆ /x x R . The
horizontal and vertical parabolas are affected by this transformation in different ways:

   

  

2

2 2ˆ ˆ
y ax bx c

aR x bRx c
 (29)

and

    2ˆ x a b cx y y
R R R R

 (30)

respectively. The scale factor, R, is chosen to make the slopes of a vs c to be the same
horizontally and vertically. Let sx be the slope of a vs c for the horizontal parabolas and sy be
the slope for the vertical parabolas. The scale factor is then given by

  x yR s s (31)

Robot Soccer326

  

     
1 2 3

4 5 6 7 8 9

0
0

y y

y y y y

m h h d h
Ym h Yh Yd h m h h d h

 (42)

Similarly, the vertical lines,  x xx m y d , need to be mapped to their known locations at the
ends of the field, at x=X.

   
      

4 5 6

1 2 3 7 8 9

0
0

x x

x x x x

h m h d h
Xh Xm h Xd h h m h d h

 (43)

For the robot soccer platform, each wall has two edges. The bottom edge of the wall maps to
the known position on the field. The bottom edge of each wall will therefore contribute two
equations. The top edge of the wall, however, is subject to parallax, so its absolution position
in the 2D reference is currently unknown. However, it should be still be horizontal or
vertical, as represented by the first constraint of eq. (42) or (43) respectively. These 12
constraints on the coefficients of H can be arranged in matrix form (showing only one set of
equations for each horizontal and vertical edge):

   
        
   
   
    



1

2

9

1 0 0 0 0 0 0
0 0 0 1
0 0 0 1 0 0 0

0 0 0 1

y y

y y y y

x x

x x x x

m d h
m Y Y d Y m d h

m d
X m X d X m d h

0 or ˆ 0DH (44)

Finding a nontrivial solution to this requires determining the null-space of the 12x9 matrix,
D. This can be found through singular value decomposition, and selecting the vector
corresponding to the smallest singular value (Press et al., 1993). The alternative is to solve
directly using least squares. First, the square error is defined as

  ˆ ˆ ˆ ˆ()T T TE DH DH DHH D (45)

Then the partial derivative is taken with respect to the coefficients of Ĥ :

 
 


ˆ 0ˆ

TE D DH
H

 (46)

DTD is now a square 9x9 matrix, and Ĥ has eight independent unknowns. The simplest
solution is to fix one of the coefficients, and solve for the rest. Since the camera is
approximately perpendicular to the playing area, h9 can safely be set to 1. The redundant
bottom line of DTD can be dropped, and the right hand column of DTD gets transferred to
the right hand side. The remaining 8x8 system may be solved for h1 to h8. Once solved, the
elements are rearranged back into a 3x3 matrix for H, and each of the lines is transformed to
give two sets of parallel lines for the horizontal and vertical edges.
The result of applying the distortion correction to the input image is shown in Fig. 7.

and similarly for the vertical lines. The change in slope of the line at the intercept reflects the
angle distortion and is of a similar form to eq. (9). Although the result of eq. (37) is based on
the assumption of points close to the origin, in practise, the results are valid even for quite
severe distortions (Bailey, 2002).

4.5 Estimating the perspective transformation
After correcting for lens distortion, the edges of the playing area are straight. However, as a
result of perspective distortion, opposite edges may not necessarily be parallel. The origin is
also at the centre of distortion, rather than in more convenient field-centric coordinates. This
change of coordinates may involve translation and rotation in addition to just a perspective
map. Therefore the full homogenous transformation of eq. (11) will be used. The forward
transformation matrix, H, will transform from undistorted to distorted coordinates. To
correct the distortion, the reverse transformation is required:

  1
u dP H P (38)

The transformation matrix, H, and its inverse H-1, have only 8 degrees of freedom since
scaling H by a constant will only change the scale factor k, but will leave the transformed
point unchanged. Each line has two parameters, so will therefore provide two constraints on
H. Therefore, four lines, one from each side of the playing field, are sufficient to determine
the perspective transformation.
The transformation of eq. (38) will transform points rather than lines. The line (from eq. (37))
may be represented using homogenous coordinates as

 
      
  

1 0
1

y y

x
m d y or  0LP (39)

where P is a point on the line. The perspective transform maps lines onto lines, therefore a
point on the distorted line (LdPd=0) will lie on the transformed line (LuPu=0) after correction.
Substituting into eq. (11) gives

 u dL L H (40)

The horizontal lines,  y yy m x d , need to be mapped to their known location on the sides of
the playing area, at y=Y. Substituting into eq. (40) gives three equations in the coefficients of
H:

  

   

  

1 2 3

4 5 6

7 8 9

0
1

y y

y y

y y

m h h d h
m h h d h

Y m h h d h
 (41)

Although there are 3 equations, there are only two independent equations. The first
equation constrains the transformed line to be horizontal. The last two, taken together,
specify the vertical position of the line. The two constraint equations are therefore

Automated camera calibration for robot soccer 327

  

     
1 2 3

4 5 6 7 8 9

0
0

y y

y y y y

m h h d h
Ym h Yh Yd h m h h d h

 (42)

Similarly, the vertical lines,  x xx m y d , need to be mapped to their known locations at the
ends of the field, at x=X.

   
      

4 5 6

1 2 3 7 8 9

0
0

x x

x x x x

h m h d h
Xh Xm h Xd h h m h d h

 (43)

For the robot soccer platform, each wall has two edges. The bottom edge of the wall maps to
the known position on the field. The bottom edge of each wall will therefore contribute two
equations. The top edge of the wall, however, is subject to parallax, so its absolution position
in the 2D reference is currently unknown. However, it should be still be horizontal or
vertical, as represented by the first constraint of eq. (42) or (43) respectively. These 12
constraints on the coefficients of H can be arranged in matrix form (showing only one set of
equations for each horizontal and vertical edge):

   
        
   
   
    



1

2

9

1 0 0 0 0 0 0
0 0 0 1
0 0 0 1 0 0 0

0 0 0 1

y y

y y y y

x x

x x x x

m d h
m Y Y d Y m d h

m d
X m X d X m d h

0 or ˆ 0DH (44)

Finding a nontrivial solution to this requires determining the null-space of the 12x9 matrix,
D. This can be found through singular value decomposition, and selecting the vector
corresponding to the smallest singular value (Press et al., 1993). The alternative is to solve
directly using least squares. First, the square error is defined as

  ˆ ˆ ˆ ˆ()T T TE DH DH DHH D (45)

Then the partial derivative is taken with respect to the coefficients of Ĥ :

 
 


ˆ 0ˆ

TE D DH
H

 (46)

DTD is now a square 9x9 matrix, and Ĥ has eight independent unknowns. The simplest
solution is to fix one of the coefficients, and solve for the rest. Since the camera is
approximately perpendicular to the playing area, h9 can safely be set to 1. The redundant
bottom line of DTD can be dropped, and the right hand column of DTD gets transferred to
the right hand side. The remaining 8x8 system may be solved for h1 to h8. Once solved, the
elements are rearranged back into a 3x3 matrix for H, and each of the lines is transformed to
give two sets of parallel lines for the horizontal and vertical edges.
The result of applying the distortion correction to the input image is shown in Fig. 7.

and similarly for the vertical lines. The change in slope of the line at the intercept reflects the
angle distortion and is of a similar form to eq. (9). Although the result of eq. (37) is based on
the assumption of points close to the origin, in practise, the results are valid even for quite
severe distortions (Bailey, 2002).

4.5 Estimating the perspective transformation
After correcting for lens distortion, the edges of the playing area are straight. However, as a
result of perspective distortion, opposite edges may not necessarily be parallel. The origin is
also at the centre of distortion, rather than in more convenient field-centric coordinates. This
change of coordinates may involve translation and rotation in addition to just a perspective
map. Therefore the full homogenous transformation of eq. (11) will be used. The forward
transformation matrix, H, will transform from undistorted to distorted coordinates. To
correct the distortion, the reverse transformation is required:

  1
u dP H P (38)

The transformation matrix, H, and its inverse H-1, have only 8 degrees of freedom since
scaling H by a constant will only change the scale factor k, but will leave the transformed
point unchanged. Each line has two parameters, so will therefore provide two constraints on
H. Therefore, four lines, one from each side of the playing field, are sufficient to determine
the perspective transformation.
The transformation of eq. (38) will transform points rather than lines. The line (from eq. (37))
may be represented using homogenous coordinates as

 
      
  

1 0
1

y y

x
m d y or  0LP (39)

where P is a point on the line. The perspective transform maps lines onto lines, therefore a
point on the distorted line (LdPd=0) will lie on the transformed line (LuPu=0) after correction.
Substituting into eq. (11) gives

 u dL L H (40)

The horizontal lines,  y yy m x d , need to be mapped to their known location on the sides of
the playing area, at y=Y. Substituting into eq. (40) gives three equations in the coefficients of
H:

  

   

  

1 2 3

4 5 6

7 8 9

0
1

y y

y y

y y

m h h d h
m h h d h

Y m h h d h
 (41)

Although there are 3 equations, there are only two independent equations. The first
equation constrains the transformed line to be horizontal. The last two, taken together,
specify the vertical position of the line. The two constraint equations are therefore

Robot Soccer328

The image from the camera can be considered as a projection of every object onto the
playing field. Having corrected for distortion, the bottom edges of the walls will appear in
their true locations, and the top edges of the walls are offset by parallax.
Let the width of the playing area be W and wall height be h. Also let the width of the
projected side wall faces be T1y and T2y. The height, H, and lateral offset of the camera from
the centre of the field, Cy, may be determined from similar triangles:

 
  1 12

W
y y y

H h
C T T

 (47)

Rearranging gives:

 




2
1

W
y

y

h C
T

H h
 (48)

and similarly for the other wall

 




2
2

W
y

y

h C
T

H h
 (49)

Equations (48) and (49) can be solved to give the camera location

 

    

2 1

2 1 2
y y

y
y y

T T WC
T T

 (50)

  
1 2y y

hWH h
T T

 (51)

Similar geometrical considerations may be applied along the length of the field to give

 

   
2 1

2 1 2
x x

x
x x

T T LC
T T

 (52)

  
1 2x x

hLH h
T T

 (53)

where L is the length of the playing field and T1x and T2x are the width of the projected end
walls.
Equations (50) to (53) give four independent equations for three unknowns. Measurement
limitations and noise usually result in equations (51) and (53) giving different estimates of
the camera height. In such situations, it is usual to determine the output values (Cx, Cy, and
H) that are most consistent with the input data (T1x, T2x, T1y, and T2y). For a given camera
location, the error between the corresponding input and measurement can be obtained from
eq. (48) as

 

 


2
1 1

W
y

y y

h C
E T

H h
 (54)

4.6 Estimating the camera position
The remaining step is to determine the camera position relative to the field. While in
principle, this can be obtained from the perspective transform matrix if the focal length and
sensor size are known, here they will be estimated directly from measurements on the field.
The basic principle is to back project the apparent positions of the top edges of the walls on
two sides. These will intersect at the camera location, giving both the height and lateral
position, as shown in Fig. 8.

Fig. 7. The image after correcting for distortion. The blue + corresponds to the centre of
distortion, and the red + corresponds to the detected camera position. The camera height is
indicated in the scale on the bottom (10 cm per division).

Wall Wall

0 Cy

T1yT2y

- /2W W/2

h

H

Camera position

Fig. 8. Geometry for estimating the camera position.

Automated camera calibration for robot soccer 329

The image from the camera can be considered as a projection of every object onto the
playing field. Having corrected for distortion, the bottom edges of the walls will appear in
their true locations, and the top edges of the walls are offset by parallax.
Let the width of the playing area be W and wall height be h. Also let the width of the
projected side wall faces be T1y and T2y. The height, H, and lateral offset of the camera from
the centre of the field, Cy, may be determined from similar triangles:

 
  1 12

W
y y y

H h
C T T

 (47)

Rearranging gives:

 




2
1

W
y

y

h C
T

H h
 (48)

and similarly for the other wall

 




2
2

W
y

y

h C
T

H h
 (49)

Equations (48) and (49) can be solved to give the camera location

 

    

2 1

2 1 2
y y

y
y y

T T WC
T T

 (50)

  
1 2y y

hWH h
T T

 (51)

Similar geometrical considerations may be applied along the length of the field to give

 

   
2 1

2 1 2
x x

x
x x

T T LC
T T

 (52)

  
1 2x x

hLH h
T T

 (53)

where L is the length of the playing field and T1x and T2x are the width of the projected end
walls.
Equations (50) to (53) give four independent equations for three unknowns. Measurement
limitations and noise usually result in equations (51) and (53) giving different estimates of
the camera height. In such situations, it is usual to determine the output values (Cx, Cy, and
H) that are most consistent with the input data (T1x, T2x, T1y, and T2y). For a given camera
location, the error between the corresponding input and measurement can be obtained from
eq. (48) as

 

 


2
1 1

W
y

y y

h C
E T

H h
 (54)

4.6 Estimating the camera position
The remaining step is to determine the camera position relative to the field. While in
principle, this can be obtained from the perspective transform matrix if the focal length and
sensor size are known, here they will be estimated directly from measurements on the field.
The basic principle is to back project the apparent positions of the top edges of the walls on
two sides. These will intersect at the camera location, giving both the height and lateral
position, as shown in Fig. 8.

Fig. 7. The image after correcting for distortion. The blue + corresponds to the centre of
distortion, and the red + corresponds to the detected camera position. The camera height is
indicated in the scale on the bottom (10 cm per division).

Wall Wall

0 Cy

T1yT2y

- /2W W/2

h

H

Camera position

Fig. 8. Geometry for estimating the camera position.

Robot Soccer330

    
   

 
  

  

2 21
2

2 1 2 1
1 2 1 2

, ,x y x x y y
y y x x

W L
C C T T T T

W T T L T T
 (63)

The detected position of the camera is overlaid on the undistorted image in Fig. 7.

5. Applying the corrections

While it is possible to apply the distortion correction to the image prior to detecting the
objects, in practise this is computationally inefficient. Only a relatively small number of
objects need to be detected, and the distortion is not so severe as to preclude reliable
detection directly within the distorted image. Therefore, the robots and ball positions are
detected within the distorted image, with the position (and orientation in the case of the
robot players) returned in distorted image coordinates. The procedure for correcting the
image coordinates follows the calibration procedure described in the previous section.

5.1 Correcting object position
First, the detected feature location (xf,yf) is offset relative to the centre of distortion from eq.
(27) and corrected for aspect ratio distortion if necessary:

    0 0(,) () ,d d f fx y x x R y y (64)

The lens distortion is then corrected by applying the radially dependent magnification from
eq. (4)

    2(,) 1 (,)u u d d dx y r x y (65)

This point is then transformed into field-centric coordinates and corrected for perspective
distortion by applying eq. (38)

 

   
      
      

1

1

p u

p u

kx x
ky y
k

H (66)

where H-1 is the inverse of the matrix obtained from solving eq. (46) in fitting the field edges.
The resulting point is normalised by dividing through the left hand side of eq. (66) by k.
Finally, the feature point is corrected for parallax error. From similar triangles

 




ˆ f x p x

f

x C x C
H h H

 (67)

where hf is the known height of the object and ˆ ˆ(,)f fx y is the corrected location of the object
feature point. Equation (67), and its equivalent in the y direction, may be rearranged to give
the corrected feature location:

      
 ˆ ˆ, , ,f f

f f p p x y

H h h
x y x y C C

H H
 (68)

and similarly for each of the other inputs. The camera location can then be chosen that
minimises the total squared error

    2 2 2 2 2
1 2 1 2y y x xE E E E E (55)

This can be found by taking partial derivatives of eq. (55) with respect to each of the camera
location variables and solving for the result to 0:

 

 
  

 

22
2 1

2

24
0y yy

y

h T Th CE
C H hH h

 (56)

or

  
 2 1

2 y
y y

hC
T T

H h
 (57)

Similarly

 
  

 

2

2 1
2 x

x x
x

E hC T T
C H h

 (58)

The partial derivative with respect to the camera height is a little more complex because H
appears in the denominator of each of the terms. The partial derivative of the errors across
the width of the field is

 

     
            
      

2 22 2 2
41 2

1 2 2 12

4
2

W
yy y y

y y y y y

h CE E E h W T T C T T
H H H H hH h

 (59)

This can be simplified by eliminating Cy through substituting eq. (57)

 

   
      

2 2

1 22
y

y y

E h hW W T T
H H hH h

 (60)

Finally, combining the partial derivatives along the length of the field with those across the
width of the field gives:

 

   
    

               

22 2 2 2

1 2 1 22 0y x
y y x x

EE E h hW hLW T T L T T
H H H H h H hH h

 (61)

Solving for H gives

 

   


 
  

2 2

1 2 1 2y y x x

W L h
H h

W T T L T T
 (62)

Finally, the result from eq. (62) can be substituted into equations (57) and (58) to give the
lateral position of the camera:

Automated camera calibration for robot soccer 331

    
   

 
  

  

2 21
2

2 1 2 1
1 2 1 2

, ,x y x x y y
y y x x

W L
C C T T T T

W T T L T T
 (63)

The detected position of the camera is overlaid on the undistorted image in Fig. 7.

5. Applying the corrections

While it is possible to apply the distortion correction to the image prior to detecting the
objects, in practise this is computationally inefficient. Only a relatively small number of
objects need to be detected, and the distortion is not so severe as to preclude reliable
detection directly within the distorted image. Therefore, the robots and ball positions are
detected within the distorted image, with the position (and orientation in the case of the
robot players) returned in distorted image coordinates. The procedure for correcting the
image coordinates follows the calibration procedure described in the previous section.

5.1 Correcting object position
First, the detected feature location (xf,yf) is offset relative to the centre of distortion from eq.
(27) and corrected for aspect ratio distortion if necessary:

    0 0(,) () ,d d f fx y x x R y y (64)

The lens distortion is then corrected by applying the radially dependent magnification from
eq. (4)

    2(,) 1 (,)u u d d dx y r x y (65)

This point is then transformed into field-centric coordinates and corrected for perspective
distortion by applying eq. (38)

 

   
      
      

1

1

p u

p u

kx x
ky y
k

H (66)

where H-1 is the inverse of the matrix obtained from solving eq. (46) in fitting the field edges.
The resulting point is normalised by dividing through the left hand side of eq. (66) by k.
Finally, the feature point is corrected for parallax error. From similar triangles

 




ˆ f x p x

f

x C x C
H h H

 (67)

where hf is the known height of the object and ˆ ˆ(,)f fx y is the corrected location of the object
feature point. Equation (67), and its equivalent in the y direction, may be rearranged to give
the corrected feature location:

      
 ˆ ˆ, , ,f f

f f p p x y

H h h
x y x y C C

H H
 (68)

and similarly for each of the other inputs. The camera location can then be chosen that
minimises the total squared error

    2 2 2 2 2
1 2 1 2y y x xE E E E E (55)

This can be found by taking partial derivatives of eq. (55) with respect to each of the camera
location variables and solving for the result to 0:

 

 
  

 

22
2 1

2

24
0y yy

y

h T Th CE
C H hH h

 (56)

or

  
 2 1

2 y
y y

hC
T T

H h
 (57)

Similarly

 
  

 

2

2 1
2 x

x x
x

E hC T T
C H h

 (58)

The partial derivative with respect to the camera height is a little more complex because H
appears in the denominator of each of the terms. The partial derivative of the errors across
the width of the field is

 

     
            
      

2 22 2 2
41 2

1 2 2 12

4
2

W
yy y y

y y y y y

h CE E E h W T T C T T
H H H H hH h

 (59)

This can be simplified by eliminating Cy through substituting eq. (57)

 

   
      

2 2

1 22
y

y y

E h hW W T T
H H hH h

 (60)

Finally, combining the partial derivatives along the length of the field with those across the
width of the field gives:

 

   
    

               

22 2 2 2

1 2 1 22 0y x
y y x x

EE E h hW hLW T T L T T
H H H H h H hH h

 (61)

Solving for H gives

 

   


 
  

2 2

1 2 1 2y y x x

W L h
H h

W T T L T T
 (62)

Finally, the result from eq. (62) can be substituted into equations (57) and (58) to give the
lateral position of the camera:

Robot Soccer332

Fig. 9. The 3-aside field with validation points marked.

The larger height errors are not completely unexpected, because the height is estimated by
back projecting the relatively small parallax resulting from a low wall. The wall only
occupied 3 pixels in the image of the small field and approximately 5 pixels in the larger
field. Measurement of this parallax requires sub-pixel accuracy to gain any meaningful
results. Any small errors in measuring the wall parallax are amplified to give a large error in
the estimate of the camera height. The lateral position is not affected by measurement errors
to the same extent, because it is based on the relative difference in parallax between the two
sides.
The cause of the large height error was examined in some detail in (Bailey & Sen Gupta,
2008). The under-estimate of the height was caused by the measured parallax of the walls
being larger than expected (although the error was still sub-pixel). Since the parallax
appears in the denominator of eq. (62), any over-estimate of the parallax will result in an
under-estimate of the height of the camera. Two factors contributed to this error. First, a
slight rounding of the profile at the top of the wall combined with specular reflection
resulted in the boundary between the white and black extending over the top of the wall,
increasing the apparent width. A second factor, which exacerbates this in Fig. 5, is that the
position of the lights gave a stronger specular component in the vicinity of the walls.
The other fields were less affected for the following reasons. Firstly, the lights were
positioned over the field rather than outside it. The different light angle means that these
fields were less prone to the specular reflection effects on the top corner of the wall.
Secondly, the other fields were in a better condition, having been repainted more recently,
and with less rounding of the top edge of the walls. Consequently, the wall parallax was
able to be measured more accurately and the resultant errors were less significant.

6.1 Future work
The next step is to extend the work presented to the larger 11-aside field. These fields have
two cameras, one over each half of the field. The calibration principles will be the same. The
biggest difference is that the centreline will form one of the edges of the calibration, and this
does not have a height associated with it. This will limit the accuracy of the parallax

The first term in eq. (68) is the scale factor that corrects for the height of the object, and the
second term compensates for the lateral position of the camera as in eq. (19).

5.2 Correcting object orientation
As outlined in section 2, the distortion will affect the detected orientation of objects within
the image. The simplest approach to correct the object orientation, θ, is to also transform a
test point (xt,yt) that is offset a small distance, r, from the object location in the direction
specified by the orientation:

        , , cos ,sint t f fx y x y r (69)

The offset should be of similar order to the offset used to measure the orientation in the
distorted image (for example half the width of the robot). The corrected orientation may
then be determined from the angle between the corrected test point and the corrected object
location:

  
 

    

1
ˆ ˆˆ tan
ˆ ˆ
t f

t f

y y
x x

 (70)

6. Results and discussion

As the image in Fig. 7 shows, the calibration method is effective at correcting distortion
around the edge of the field. However, to have confidence that the model is actually
correcting points anywhere in the playing area, it is necessary to check the transformation at
a number of points scattered throughout the image. The calibration procedure was tested on
three fields. The first was a small (150 cm x 130 cm) 3-aside micro-robot playing field,
captured using a 320x240 analogue camera (Bailey & Sen Gupta, 2004). The second two were
larger (220 cm x 180 cm) 5-aside fields, captured using a 656x492 digital Firewire camera
(Bailey & Sen Gupta, 2008).
On the small field, a set of 76 points was extracted from throughout the playing area using
the field lines and free kick markers as input, as indicated in Fig. 9. The RMS residual error
after correcting the validation points was 1.75 mm, which corresponds to about 30% of the
width of a pixel. The lateral position of the camera was in error by 1.2 cm, which results in a
negligible parallax error (from eq. (19)). The height of the camera was over-estimated by
approximately 9 cm. This will give a maximum parallax error in the corners of the playing
field (from eq. (21)) of approximately 1.1 mm, which is again a fraction of a pixel.
For the larger fields (shown in Fig. 1 and Fig. 5) both resulted in a significantly improved
image that appeared to be free from major distortions (see Fig. 7). In both cases, the lateral
position of the camera was also measured with good accuracy, with a total lateral error of
0.9 cm and 1.0 cm respectively for the two fields. Again, the consequent parallax error (from
eq. (19)) is negligible. The error in the height, however, was significantly larger, with an
under-estimate of 8.6 cm for the image in Fig. 1 and an under-estimate of 33 cm for the
image in Fig. 5. Even this large height error results in an error of less than 3 mm in the
corners of the field (from eq. (21)). This is still less than one pixel at the resolution of the
image, and the error is significantly smaller over the rest of the field.

Automated camera calibration for robot soccer 333

Fig. 9. The 3-aside field with validation points marked.

The larger height errors are not completely unexpected, because the height is estimated by
back projecting the relatively small parallax resulting from a low wall. The wall only
occupied 3 pixels in the image of the small field and approximately 5 pixels in the larger
field. Measurement of this parallax requires sub-pixel accuracy to gain any meaningful
results. Any small errors in measuring the wall parallax are amplified to give a large error in
the estimate of the camera height. The lateral position is not affected by measurement errors
to the same extent, because it is based on the relative difference in parallax between the two
sides.
The cause of the large height error was examined in some detail in (Bailey & Sen Gupta,
2008). The under-estimate of the height was caused by the measured parallax of the walls
being larger than expected (although the error was still sub-pixel). Since the parallax
appears in the denominator of eq. (62), any over-estimate of the parallax will result in an
under-estimate of the height of the camera. Two factors contributed to this error. First, a
slight rounding of the profile at the top of the wall combined with specular reflection
resulted in the boundary between the white and black extending over the top of the wall,
increasing the apparent width. A second factor, which exacerbates this in Fig. 5, is that the
position of the lights gave a stronger specular component in the vicinity of the walls.
The other fields were less affected for the following reasons. Firstly, the lights were
positioned over the field rather than outside it. The different light angle means that these
fields were less prone to the specular reflection effects on the top corner of the wall.
Secondly, the other fields were in a better condition, having been repainted more recently,
and with less rounding of the top edge of the walls. Consequently, the wall parallax was
able to be measured more accurately and the resultant errors were less significant.

6.1 Future work
The next step is to extend the work presented to the larger 11-aside field. These fields have
two cameras, one over each half of the field. The calibration principles will be the same. The
biggest difference is that the centreline will form one of the edges of the calibration, and this
does not have a height associated with it. This will limit the accuracy of the parallax

The first term in eq. (68) is the scale factor that corrects for the height of the object, and the
second term compensates for the lateral position of the camera as in eq. (19).

5.2 Correcting object orientation
As outlined in section 2, the distortion will affect the detected orientation of objects within
the image. The simplest approach to correct the object orientation, θ, is to also transform a
test point (xt,yt) that is offset a small distance, r, from the object location in the direction
specified by the orientation:

        , , cos ,sint t f fx y x y r (69)

The offset should be of similar order to the offset used to measure the orientation in the
distorted image (for example half the width of the robot). The corrected orientation may
then be determined from the angle between the corrected test point and the corrected object
location:

  
 

    

1
ˆ ˆˆ tan
ˆ ˆ
t f

t f

y y
x x

 (70)

6. Results and discussion

As the image in Fig. 7 shows, the calibration method is effective at correcting distortion
around the edge of the field. However, to have confidence that the model is actually
correcting points anywhere in the playing area, it is necessary to check the transformation at
a number of points scattered throughout the image. The calibration procedure was tested on
three fields. The first was a small (150 cm x 130 cm) 3-aside micro-robot playing field,
captured using a 320x240 analogue camera (Bailey & Sen Gupta, 2004). The second two were
larger (220 cm x 180 cm) 5-aside fields, captured using a 656x492 digital Firewire camera
(Bailey & Sen Gupta, 2008).
On the small field, a set of 76 points was extracted from throughout the playing area using
the field lines and free kick markers as input, as indicated in Fig. 9. The RMS residual error
after correcting the validation points was 1.75 mm, which corresponds to about 30% of the
width of a pixel. The lateral position of the camera was in error by 1.2 cm, which results in a
negligible parallax error (from eq. (19)). The height of the camera was over-estimated by
approximately 9 cm. This will give a maximum parallax error in the corners of the playing
field (from eq. (21)) of approximately 1.1 mm, which is again a fraction of a pixel.
For the larger fields (shown in Fig. 1 and Fig. 5) both resulted in a significantly improved
image that appeared to be free from major distortions (see Fig. 7). In both cases, the lateral
position of the camera was also measured with good accuracy, with a total lateral error of
0.9 cm and 1.0 cm respectively for the two fields. Again, the consequent parallax error (from
eq. (19)) is negligible. The error in the height, however, was significantly larger, with an
under-estimate of 8.6 cm for the image in Fig. 1 and an under-estimate of 33 cm for the
image in Fig. 5. Even this large height error results in an error of less than 3 mm in the
corners of the field (from eq. (21)). This is still less than one pixel at the resolution of the
image, and the error is significantly smaller over the rest of the field.

Robot Soccer334

is harder to measure accurately, because it is back-projecting the short height of the playing
field walls. On two fields, it was within 8 cm, but on a third field the height was under-
estimated by 33 cm. However, even with this large error, the parallax error introduced in
estimating the robot position less than one pixel anywhere on the playing field. Accurate
height estimation requires good lighting, devoid of specular reflections near the walls, and
for the walls to be in good condition.
The significant advantage of this calibration procedure over others described in the
literature is that it is fully automated, and requires no additional setup or user intervention.
While not quite fast enough to process every image, the procedure is sufficiently fast to
perform recalibration even during set play (for example while preparing for a free kick) or a
short timeout. It is also sufficiently accurate to support sub-pixel localisation and
orientation.

8. Acknowledgements

This research was performed within the Advanced Robotics and Intelligent Control Centre
(ARICC). The authors would like to acknowledge the financial support of ARICC and the
School of Electrical and Electronic Engineering at Singapore Polytechnic.

9. References

Bailey, D. & Sen Gupta, G. (2004). Error assessment of robot soccer imaging system,
Proceedings of Image and Vision Computing New Zealand (IVCNZ'04), pp 119-124,
Akaroa, New Zealand, 21-23 November, 2004.

Bailey, D. & Sen Gupta, G. (2008). Automatic estimation of camera position in robot soccer,
Proceedings of 2008 International Machine Vision and Image Processing Conference
(IMVIP2008), pp 91-96, Portrush, Northern Ireland, 3-5 September, 2008.

Bailey, D.G. (2002). A new approach to lens distortion correction, Proceedings of Image and
Vision Computing New Zealand 2002, pp 59-64, Auckland, New Zealand, 26-28
November, 2002.

Bailey, D.G. (2003). Sub-pixel estimation of local extrema, Proceedings of Image and Vision
Computing New Zealand 2003, pp 414-419, Palmerston North, New Zealand, 26-28
November, 2003.

Ball, D.M.; Wyeth, G.F. & Nuske, S. (2004). A global vision system for a robot soccer team,
Proceedings of 2004 Australasian Conference on Robotics and Automation, pp 1-7,
Canberra, 6-8 December, 2004.

Baltes, J. (2000). Practical camera and colour calibration for large rooms, Proceedings of
RoboCup-99: Robot Soccer World Cup III, pp 148-161, New York, USA, 2000.

Basu, A. & Licardie, A. (1995). Alternative models for fish-eye lenses. Pattern Recognition
Letters, vol. 16, no. 4, pp. 433-441.

Brown, D.C. (1971). Close range camera calibration. Photogrammetric Engineering, vol. 37, no.
8, pp. 855-866.

Egorova, A.; Simon, M.; Wiesel, F.; Gloye, A. & Rojas, R. (2005). Plug and play: fast
automatic geometry and color calibration for cameras tracking robots, Proceedings of
RoboCup 2004: Robot Soccer World Cup VIII, pp 394-401, Lisbon, Portugal, 2005.

correction data, although in principle the height of three walls should provide sufficient
data for estimating the camera location.
A further extension is to the Robocup league, which has no walls. Again two cameras are
required, one to capture each half of the field, as shown in Fig. 10. The image processing
algorithms will need to be modified for line detection rather than edge detection, and
another mechanism found to estimate the camera position. One approach currently being
experimented with is to place poles of known height in each corner and at each end of the
centre-line as can be seen in Fig. 10. The parabola based lens and perspective distortion
correction will be based on the edges of the field and centreline, and the markers on the
poles detected and back projected to locate the camera.

Fig. 10. Larger Robocup field without walls captured from two separate cameras. The poles
placed in each corner of the field allow calibration of camera position.

7. Conclusion

The new calibration method requires negligible time to execute. Apart from the command to
perform the calibration, it requires no user intervention, and is able to determine the model
parameters in a fraction of a second. The model parameters are then used to automatically
correct both the positions and orientations of the robots as determined from the distorted
images. It is demonstrated that just capturing data from around the field is sufficient for
correcting the whole playing area. The residual errors are significantly less than one pixel,
and are limited by the resolution of the captured images.
The lateral position of the camera was able to be estimated to within 1 cm accuracy. The
scaling effect of the parallax correction makes this error negligible. The height of the camera

Automated camera calibration for robot soccer 335

is harder to measure accurately, because it is back-projecting the short height of the playing
field walls. On two fields, it was within 8 cm, but on a third field the height was under-
estimated by 33 cm. However, even with this large error, the parallax error introduced in
estimating the robot position less than one pixel anywhere on the playing field. Accurate
height estimation requires good lighting, devoid of specular reflections near the walls, and
for the walls to be in good condition.
The significant advantage of this calibration procedure over others described in the
literature is that it is fully automated, and requires no additional setup or user intervention.
While not quite fast enough to process every image, the procedure is sufficiently fast to
perform recalibration even during set play (for example while preparing for a free kick) or a
short timeout. It is also sufficiently accurate to support sub-pixel localisation and
orientation.

8. Acknowledgements

This research was performed within the Advanced Robotics and Intelligent Control Centre
(ARICC). The authors would like to acknowledge the financial support of ARICC and the
School of Electrical and Electronic Engineering at Singapore Polytechnic.

9. References

Bailey, D. & Sen Gupta, G. (2004). Error assessment of robot soccer imaging system,
Proceedings of Image and Vision Computing New Zealand (IVCNZ'04), pp 119-124,
Akaroa, New Zealand, 21-23 November, 2004.

Bailey, D. & Sen Gupta, G. (2008). Automatic estimation of camera position in robot soccer,
Proceedings of 2008 International Machine Vision and Image Processing Conference
(IMVIP2008), pp 91-96, Portrush, Northern Ireland, 3-5 September, 2008.

Bailey, D.G. (2002). A new approach to lens distortion correction, Proceedings of Image and
Vision Computing New Zealand 2002, pp 59-64, Auckland, New Zealand, 26-28
November, 2002.

Bailey, D.G. (2003). Sub-pixel estimation of local extrema, Proceedings of Image and Vision
Computing New Zealand 2003, pp 414-419, Palmerston North, New Zealand, 26-28
November, 2003.

Ball, D.M.; Wyeth, G.F. & Nuske, S. (2004). A global vision system for a robot soccer team,
Proceedings of 2004 Australasian Conference on Robotics and Automation, pp 1-7,
Canberra, 6-8 December, 2004.

Baltes, J. (2000). Practical camera and colour calibration for large rooms, Proceedings of
RoboCup-99: Robot Soccer World Cup III, pp 148-161, New York, USA, 2000.

Basu, A. & Licardie, A. (1995). Alternative models for fish-eye lenses. Pattern Recognition
Letters, vol. 16, no. 4, pp. 433-441.

Brown, D.C. (1971). Close range camera calibration. Photogrammetric Engineering, vol. 37, no.
8, pp. 855-866.

Egorova, A.; Simon, M.; Wiesel, F.; Gloye, A. & Rojas, R. (2005). Plug and play: fast
automatic geometry and color calibration for cameras tracking robots, Proceedings of
RoboCup 2004: Robot Soccer World Cup VIII, pp 394-401, Lisbon, Portugal, 2005.

correction data, although in principle the height of three walls should provide sufficient
data for estimating the camera location.
A further extension is to the Robocup league, which has no walls. Again two cameras are
required, one to capture each half of the field, as shown in Fig. 10. The image processing
algorithms will need to be modified for line detection rather than edge detection, and
another mechanism found to estimate the camera position. One approach currently being
experimented with is to place poles of known height in each corner and at each end of the
centre-line as can be seen in Fig. 10. The parabola based lens and perspective distortion
correction will be based on the edges of the field and centreline, and the markers on the
poles detected and back projected to locate the camera.

Fig. 10. Larger Robocup field without walls captured from two separate cameras. The poles
placed in each corner of the field allow calibration of camera position.

7. Conclusion

The new calibration method requires negligible time to execute. Apart from the command to
perform the calibration, it requires no user intervention, and is able to determine the model
parameters in a fraction of a second. The model parameters are then used to automatically
correct both the positions and orientations of the robots as determined from the distorted
images. It is demonstrated that just capturing data from around the field is sufficient for
correcting the whole playing area. The residual errors are significantly less than one pixel,
and are limited by the resolution of the captured images.
The lateral position of the camera was able to be estimated to within 1 cm accuracy. The
scaling effect of the parallax correction makes this error negligible. The height of the camera

Robot Soccer336

Fryer, J.G.; Clarke, T.A. & Chen, J. (1994). Lens distortion for simple C-mount lenses.
International Archives of Photogrammetry and Remote Sensing, vol. 30, no. 5, pp. 97-101.

Hartley, R. & Zisserman, A. (2000). Multiple view geometry in computer vision. Cambridge
University Press.

Heikkila, J. & Silven, O. (1996). Calibration procedure for short focal length off-the-shelf
CCD cameras, Proceedings of International Conference on Pattern Recognition, pp 166-
170, Vienna, Austria, 25-29 October, 1996.

Klancar, G.; Kristan, M. & Karba, R. (2004). Wide-angle camera distortions and non-uniform
illumination in mobile robot tracking. Robotics and Autonomous Systems, vol. 46, no.
2, pp. 125-133.

Li, M. & Lavest, J.M. (1996). Some aspects of zoom lens camera calibration. IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 18, no. 11, pp. 1105-1110.

Messom, C.H. (1998). Robot soccer - sensing, planning, strategy and control, a distributed
real time intelligent system approach, Proceedings of Third International Symposium
on Artificial Life and Robotics (AROB), pp 422-426, Oita, Japan, 19-21 January, 1998.

Park, S.W. & Hong, K.S. (2001). Practical ways to calculate camera lens distortion for real-
time camera calibration. Pattern Recognition, vol. 34, no. 6, pp. 1199-1206.

Pers, J. & Kovacic, S. (2002). Nonparametric, model-based radial lens distortion correction
using tilted camera assumption, Proceedings of Computer Vision Winter Workshop
2002, pp 286-295, Bad Aussee, Austria, 4-7 February, 2002.

Press, W.H.; Flannery, B.P.; Teukolsky, S.A. & Vetterling, W.T. (1993). Numerical recipes in C:
the art of scientific computing. Cambridge University Press.

Sen Gupta, G.; Messom, C.H. & Sng, H.L. (2002). State transition based supervisory control
for robot soccer system, Proceedings of International Workshop on Electronic Design,
Test and Applications (DELTA), pp 338-342, Christchurch, New Zealand, 29-31
January, 2002.

Sen Gupta, G.; Messom, C.H. & Demidenko, S. (2004). State transition based (STB) role
assignment and behaviour programming in collaborative robotics, Proceedings of
The Second International Conference on Autonomous Robots and Agents (ICARA 2004),
pp 385-390, Palmerston North, New Zealand, 13-15 December, 2004.

Stein, G.P. (1997). Lens distortion calibration using point correspondences, Proceedings of
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 602-
608, San Juan, Puerto Rico, 17-19 June, 1997.

Sturm, P.F. & Maybank, S.J. (1999). On plane-based camera calibration: a general algorithm,
singularities, applications, Proceedings of IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp 432-437, Fort Collins, Colorado, USA,
23-25 June, 1999.

Tsai, R.Y. (1987). A versatile camera calibration technique for high-accuracy 3D machine
vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal of Robotics
and Automation, vol. 3, no. 4, pp. 323-344.

Weiss, N. & Hildebrand, L. (2004). An exemplary robot soccer vision system, Proceedings of
CLAWAR/EURON Workshop on Robots in Entertainment, Leisure and Hobby, pp,
Vienna Austria, 2-4 December, 2004.

Willson, R.G. & Shafer, S.A. (1994). What is the center of the image? Journal of the Optical
Society of America A, vol. 11, no. 11, pp. 2946-2955.

Optimal Offensive Player Positioning in the Simulated Robotic Soccer 337

Optimal Offensive Player Positioning in the Simulated Robotic Soccer

Vadim Kyrylov and Serguei Razykov

X

Optimal Offensive Player Positioning
in the Simulated Robotic Soccer

Vadim Kyrylov

Rogers State University
USA

Serguei Razykov
Simon Fraser University

Canada

1. Introduction

1.1 Background
This work deals with modeling rational player behavior in the simulated robotic soccer
game. Although we are using the setting for the RoboCup 2D simulated soccer, we want to
propose a method that is not based on the particular features of this implementation. This
will result in a more general method that could be equally applicable to 3D soccer and also
to the soccer video games other than RoboCup.
The ability by the soccer player making rational decisions about where to move on the field
without the ball is the critical factor of success both in a real-life and simulated game. With
the total of 22 soccer players in two teams, normally only one player on each side is
controlling the ball or trying to get the ball possession. The rest 20 players are doing
something else; indeed each must be deliberately moving to some place on the field. For an
average player, this is happening more than 90 per cent of the time. Thus, unlike other
behaviors dealing with rather rare events such as passing the ball, one should be expecting
about 90 per cent impact on the whole game from any improvement in player positioning.
Here we propose the algorithm for determining by the artificial player a reasonably good
position on the soccer field for himself when the ball is beyond his control. We limit the
consideration to the offensive positioning, i.e. when the ball is possessed by own team. In the
offensive situation, the major purpose of co-coordinated moving to some individual position
on the field by each player without the ball is creating opportunities for receiving passes and
eventually scoring the opponent goal. Therefore, player positioning is not a standalone task;
rather, it is part of a coordination mechanism and is closely related to decision making about
passing the ball and the communication between players.
In this study, however, we deliberately isolate positioning from the communication and ball
passing assuming that all these features are developed in a concert. In the early publication,
one of the co-authors proposed a solution to the ball passing problem with respect to
multiple optimality criteria, i.e. a Pareto-optimal solution (Kyrylov, 2008). For the purpose
of optimal offensive positioning, here we are using similar multi-criteria approach.

15

Robot Soccer338

become the World RoboCup winner in 2003. However, from the today standpoint, this
model could be further improved, as it was using heuristics rather than rigor multi-criteria
optimization.
One more group of the improvements to player positioning is a set of methods based on
learning algorithms (Andou, 1998; Nakashima, Udo, & Ishibuchi, 2003; Kalyanakrishnan,
Liu, & Stone, 2007). Like the coordination graph, some of these methods do not treat
positioning as a standalone player skill, which makes theoretical comparisons difficult.
More difficulties arise while trying to elicit meaningful decision making rules and especially
address the convergence issue of learned rules to optimal decision making algorithms based
on explicitly formulated decision criteria. Thus we are leaving methods based on learning
beyond the scope of this study.
The main objective of this work is to provide an improved solution for low-level decision
making about player positioning based on the known tactical principles of the real-life
soccer played by humans (Beim, 1977; Johnes & Tranter, 1999). Because the recent studies
addressed the lower control level rather superficially, it looks like our closest prototype is
still SPAR (Stone, Veloso, & Riley, 1999), the historically first method that was using both
control levels. On the lower level, this method maximizes the following utility function:

),,(),(),(),()(
1

11
GPdistwBPdistwTPdistwOPdistwPU GB

n

j
jTi

n

i
iOi  





 (1)

where
P – the desired position for the player in anticipation of a pass;
wOi, wTi, wB, wG – some non-negative weights;
n – the number of agents on each team;
Oi– the current position of each opponent, i = 1,…, n;
Tj – the current position of each teammate, j = 1,…, (n-1);
B – the current position of the teammate with ball;
G – the position of the opponent goal;
dist(A,C) – distance between positions A and C.

One advantage of this utility function is robustness; the two sums suppress the sensor noise.
As the authors put it, this method repulses the player without ball from other players and
encourages advancing to the opponent goal while seeking its best position. This statement
indeed is reflecting the soccer tactics to some extent.
There are also apparent shortcomings. From the tactical standpoint, the aggregated criterion
(1) does not encourage players to deliberately get open for receiving a pass; this can only
happen by chance. Also the contribution of the remotely located players is exaggerated;
increasing distance from the closest opponent by say 5 meters has same effect as increasing
distance by 5 meters for the opponent located on the other end of the field. From the
mathematical standpoint, the authors clearly indicate that this is a vector optimization
problem; indeed, each addendum in (1) could stand for a criterion. However, the reduction
to single-criteria optimization is questionable. Aggregating several criteria in a linear
combination is indeed theoretically acceptable if all criteria functions and constraints are
convex (Miettinen, 1998). However, the first two addendums in (1) are multi-modal
functions of P; hence they are non-convex. So this single-criterion optimization does not
guarantee that all potentially acceptable player positions will be considered. In other words,

1.2 The Two-Layer Player Positioning Model
During the last 10 years, RoboCup scholars have addressed the positioning problem in
different ways. Before overviewing them, first we propose a generic two-level model that
includes all existing methods for player positioning. Besides providing a common base for
the comparison of the existing methods, it helps to demonstrate the unique features of our
approach.
The first, upper level, determines so-called reference position for the player where he should
be moving to unless this player is involved in intercepting or kicking the ball. Player
coordination on this level is addressed only implicitly. The second, lower level, is responsible
for fine tuning this reference position by transforming it into the target one, i.e. the place on
the field where the player should be. Good methods thus facilitate coordination with
teammates. On both levels, either heuristic decision making rules are applied or some
optimality criteria are used. Such rules and criteria are normally reflecting the algorithm
designer’s vision of the soccer game. In many cases these rules are acquired from the real
soccer played by humans. This is different from the decision making rules derived by
learning algorithms; they do not always have direct counterparts in the body of knowledge
accumulated by humans about the soccer game.

1.3 Previous Work
The first ever comprehensive study of the player positioning problem in the simulated
soccer was presumably made in (Stone, Veloso, & Riley, 1999). In this method called strategic
positioning by attraction and repulsion (SPAR), the higher-level reference position can be
regarded as a fixed point in the field assigned to each player with respect to its role in the
team formation. For each player the lower control level is dealing with the target position
which is the point on the field where attraction and repulsion factors reach some balance.
This allowed the player to deviate from its default position within some area in order to
move to the target position calculated with respect to current situation. This method proved
to be a good start, as after it was implemented in CMUnited, this simulated soccer team
became the World RoboCup winner in 1998. Yet later on it was criticized for the limited
flexibility on the upper control level. More sophisticated method named Situation-Based
Strategic Positioning and first proposed in 1999 (Reis, Lau, & Oliveira, 2008) has addressed
these higher-level shortcomings; unsurprisingly, FCPortugal in which it was implemented,
has beaten CMUnited. This method was based on a set of logical rules that reflected the
subjective views of the algorithm designers on player positioning.
The development that followed, did not demonstrate much improvement on the lower
control level, though. The next very successful team, UvA Trilearn (De Boer & Kok, 2002)
that has outplayed FCPortugal in several competitions, implemented somewhat simpler
player positioning method. In our classification, the early version of this method dated 2001-
2002 is completely located on the higher control layer. Indeed, at any time, the reference
position was determined as a weighted sum of the player home position in the formation
and current location of the ball. So this position is changing over time and maintains relative
locations of the players in the formation thus implementing the team strategy. However, this
method does not take into account fine details such as the opportunity to receive a pass.
Presumably for this reason it was later improved using so-called coordination graphs (Kok,
Spaan, & Vlassis, 2003). This lower-level model combines decision making about passing the
ball and receiving the pass in an elegant way; implemented in UvA Trilearn, it helped to

Optimal Offensive Player Positioning in the Simulated Robotic Soccer 339

become the World RoboCup winner in 2003. However, from the today standpoint, this
model could be further improved, as it was using heuristics rather than rigor multi-criteria
optimization.
One more group of the improvements to player positioning is a set of methods based on
learning algorithms (Andou, 1998; Nakashima, Udo, & Ishibuchi, 2003; Kalyanakrishnan,
Liu, & Stone, 2007). Like the coordination graph, some of these methods do not treat
positioning as a standalone player skill, which makes theoretical comparisons difficult.
More difficulties arise while trying to elicit meaningful decision making rules and especially
address the convergence issue of learned rules to optimal decision making algorithms based
on explicitly formulated decision criteria. Thus we are leaving methods based on learning
beyond the scope of this study.
The main objective of this work is to provide an improved solution for low-level decision
making about player positioning based on the known tactical principles of the real-life
soccer played by humans (Beim, 1977; Johnes & Tranter, 1999). Because the recent studies
addressed the lower control level rather superficially, it looks like our closest prototype is
still SPAR (Stone, Veloso, & Riley, 1999), the historically first method that was using both
control levels. On the lower level, this method maximizes the following utility function:

),,(),(),(),()(
1

11
GPdistwBPdistwTPdistwOPdistwPU GB

n

j
jTi

n

i
iOi  





 (1)

where
P – the desired position for the player in anticipation of a pass;
wOi, wTi, wB, wG – some non-negative weights;
n – the number of agents on each team;
Oi– the current position of each opponent, i = 1,…, n;
Tj – the current position of each teammate, j = 1,…, (n-1);
B – the current position of the teammate with ball;
G – the position of the opponent goal;
dist(A,C) – distance between positions A and C.

One advantage of this utility function is robustness; the two sums suppress the sensor noise.
As the authors put it, this method repulses the player without ball from other players and
encourages advancing to the opponent goal while seeking its best position. This statement
indeed is reflecting the soccer tactics to some extent.
There are also apparent shortcomings. From the tactical standpoint, the aggregated criterion
(1) does not encourage players to deliberately get open for receiving a pass; this can only
happen by chance. Also the contribution of the remotely located players is exaggerated;
increasing distance from the closest opponent by say 5 meters has same effect as increasing
distance by 5 meters for the opponent located on the other end of the field. From the
mathematical standpoint, the authors clearly indicate that this is a vector optimization
problem; indeed, each addendum in (1) could stand for a criterion. However, the reduction
to single-criteria optimization is questionable. Aggregating several criteria in a linear
combination is indeed theoretically acceptable if all criteria functions and constraints are
convex (Miettinen, 1998). However, the first two addendums in (1) are multi-modal
functions of P; hence they are non-convex. So this single-criterion optimization does not
guarantee that all potentially acceptable player positions will be considered. In other words,

1.2 The Two-Layer Player Positioning Model
During the last 10 years, RoboCup scholars have addressed the positioning problem in
different ways. Before overviewing them, first we propose a generic two-level model that
includes all existing methods for player positioning. Besides providing a common base for
the comparison of the existing methods, it helps to demonstrate the unique features of our
approach.
The first, upper level, determines so-called reference position for the player where he should
be moving to unless this player is involved in intercepting or kicking the ball. Player
coordination on this level is addressed only implicitly. The second, lower level, is responsible
for fine tuning this reference position by transforming it into the target one, i.e. the place on
the field where the player should be. Good methods thus facilitate coordination with
teammates. On both levels, either heuristic decision making rules are applied or some
optimality criteria are used. Such rules and criteria are normally reflecting the algorithm
designer’s vision of the soccer game. In many cases these rules are acquired from the real
soccer played by humans. This is different from the decision making rules derived by
learning algorithms; they do not always have direct counterparts in the body of knowledge
accumulated by humans about the soccer game.

1.3 Previous Work
The first ever comprehensive study of the player positioning problem in the simulated
soccer was presumably made in (Stone, Veloso, & Riley, 1999). In this method called strategic
positioning by attraction and repulsion (SPAR), the higher-level reference position can be
regarded as a fixed point in the field assigned to each player with respect to its role in the
team formation. For each player the lower control level is dealing with the target position
which is the point on the field where attraction and repulsion factors reach some balance.
This allowed the player to deviate from its default position within some area in order to
move to the target position calculated with respect to current situation. This method proved
to be a good start, as after it was implemented in CMUnited, this simulated soccer team
became the World RoboCup winner in 1998. Yet later on it was criticized for the limited
flexibility on the upper control level. More sophisticated method named Situation-Based
Strategic Positioning and first proposed in 1999 (Reis, Lau, & Oliveira, 2008) has addressed
these higher-level shortcomings; unsurprisingly, FCPortugal in which it was implemented,
has beaten CMUnited. This method was based on a set of logical rules that reflected the
subjective views of the algorithm designers on player positioning.
The development that followed, did not demonstrate much improvement on the lower
control level, though. The next very successful team, UvA Trilearn (De Boer & Kok, 2002)
that has outplayed FCPortugal in several competitions, implemented somewhat simpler
player positioning method. In our classification, the early version of this method dated 2001-
2002 is completely located on the higher control layer. Indeed, at any time, the reference
position was determined as a weighted sum of the player home position in the formation
and current location of the ball. So this position is changing over time and maintains relative
locations of the players in the formation thus implementing the team strategy. However, this
method does not take into account fine details such as the opportunity to receive a pass.
Presumably for this reason it was later improved using so-called coordination graphs (Kok,
Spaan, & Vlassis, 2003). This lower-level model combines decision making about passing the
ball and receiving the pass in an elegant way; implemented in UvA Trilearn, it helped to

Robot Soccer340

Figure 1 illustrates case (a). The yellow player #7 (C) is about to receive the ball (B) passed
by his teammate #8 (A). The decision maker in question is player #9 (E). He must figure it
out where to better move to render himself for receiving the ball passed by player #7 if the
latter decides to do so.
In this case, an experienced human player without the ball can easily predict the situation
and estimate time remaining until the ball will be intercepted. So nothing abrupt will likely
occur while the ball is rolling freely. Thus a human player predicts the situation and plans
his actions accordingly by determining the target position and moving to it.
This gives the idea of the time horizon used by the player without ball #9 for predicting the
situation on the field. Based on this prediction, he determines the good position F and
concentrates on reaching it. No communication is really necessary, and it does not make
much sense substantially changing the originally optimized target position while the ball is
rolling. Only minor corrections to it may be necessary as the world model is updated.
Thus the prediction time horizon for the positioning problem is the time τ1 needed for the
ball to cover distance BD.

2.2 Planning Time Horizon
The planning time horizon is the time interval τ2 available for the player to execute the
intended action to go to some target position. This execution time is needed to determine the
spatial constraints for the aspired player movements. It does not make sense for the player
to go to the areas on the field that require time longer than τ2 for getting there.
During the execution time τ2 the player must concentrate on reaching good position F
expecting that the teammate would make a pass once he gets close control of the moving
ball. Assuming that the ball is passed without any delay, the estimated minimal available
time for reaching this position is the time needed for the ball to roll along the segment BD
and then to cover segment DF. This determines the planning time horizon in our model.

2.3 Predicting Player Movements
For determining the best location of the future ball interception point F it is critical to know
the anticipated positions of the opponent players and the teammates at time τ1. It is
reasonable to assume that during this time the behavior of all players is staying persistent.
While the ball is rolling freely along segment AD in Figure 1, its movement follows the laws
of physics and is predictable. All players (if they are rational) are acting in the ways that are
also rather easy to predict if their decision making model is known.
Therefore, for predicting player movements we are using the prediction horizon τ1 that is
equal to the time remaining until the ball will be intercepted by a teammate. (If the fastest to
the ball is the opponent player, the situation changes to defensive; this lies outside the scope
of this study.) With this approach, once the ball has been kicked, the player without the ball
estimates the interception point and time τ1. This is the minimal time remaining until the
ball could be likely kicked in the new direction substantially changing the situation. Because
the sensor information is imperfect, the time horizon and the target position are updated as
new information arrives. Still our experiments have shown that these updates are only
slightly changing the decision thus not affecting the persistent behavior. This can be
expected, as the player is watching the vicinity of the ball location more frequently.

some options that are making the Pareto set might be left out. This issue could be resolved by
using the Pareto optimality principle.
Dynamics is one more general difficulty with optimizing player position on low level.
Reaching an optimal position takes some time, and the player must be persistent in doing
so. In our experiments we have found that some random factors in the simulated soccer tend
to make the computation of the optimal target very unstable from cycle to cycle. A closely
related problem is choosing the right time horizon for predicting the situation. As for now,
we have found in the literature neither a solution to this problem nor even a discussion of it
with respect to player positioning. Thus we would speculate that the reluctance of RoboCup
scholars to systematically improve player positioning on the lower level could be explained
by these difficulties.

1.4 The Unique Contribution of This Study
The unique contribution of this work is in that we (1) investigate and resolve the time
horizon issue; (2) propose a new set of decision making criteria based on real-life soccer
tactics; and (3) implement a Pareto-optimal solution to the optimization problem with these
criteria.
Section 2 addresses the time horizon issue. Section 3 explains how feasible alternatives for
decision making cold be generated. Section 4 introduces five optimality criteria and the
algorithm for finding Pareto-optimal solution. Section 5 provides experimental results and
presents the conclusions.

2. Predicting the Situation for Player Positioning

Because the essence of player positioning is planning his actions for some future time
interval, identifying the time constraints for such planning is critically important. We see
two such constraints: the prediction time horizon τ1 and the planning time horizon τ2.

2.1 Prediction Time Horizon
A straightforward approach is just setting some fixed prediction time horizon τ1, say 1 to 3
seconds, and trying to extrapolate the movements of the players and the ball for this time
interval. The simplest way is just using linear extrapolations of player positions. However,
our experiments have shown that this method does not work well. The major problem is in
that, once the ball is kicked by some player in new direction, the rest players revise their
previous intentions and change their directions of movement. Neglecting these abrupt
changes if the next ball kick occurs before the prediction time expires would result in poor
decisions. On the other hand, forecasting new movements by the players when the ball gets
under close control by the teammate, although theoretically possible, is impractical because
of too high computational costs.
While trying to resolve this issue, it makes sense to see how human players are acting in this
situation (Beim, 1977; Johnes & Tranter, 1999).
Because we consider the offensive positioning, the ball must be under the control by some
teammate. This teammate may be in two different states: (a) chasing the freely rolling ball
while staying the fastest player to it and thus maintaining the ball possession or (b) keeping
the ball close to him while being able to pass it at any time.

Optimal Offensive Player Positioning in the Simulated Robotic Soccer 341

Figure 1 illustrates case (a). The yellow player #7 (C) is about to receive the ball (B) passed
by his teammate #8 (A). The decision maker in question is player #9 (E). He must figure it
out where to better move to render himself for receiving the ball passed by player #7 if the
latter decides to do so.
In this case, an experienced human player without the ball can easily predict the situation
and estimate time remaining until the ball will be intercepted. So nothing abrupt will likely
occur while the ball is rolling freely. Thus a human player predicts the situation and plans
his actions accordingly by determining the target position and moving to it.
This gives the idea of the time horizon used by the player without ball #9 for predicting the
situation on the field. Based on this prediction, he determines the good position F and
concentrates on reaching it. No communication is really necessary, and it does not make
much sense substantially changing the originally optimized target position while the ball is
rolling. Only minor corrections to it may be necessary as the world model is updated.
Thus the prediction time horizon for the positioning problem is the time τ1 needed for the
ball to cover distance BD.

2.2 Planning Time Horizon
The planning time horizon is the time interval τ2 available for the player to execute the
intended action to go to some target position. This execution time is needed to determine the
spatial constraints for the aspired player movements. It does not make sense for the player
to go to the areas on the field that require time longer than τ2 for getting there.
During the execution time τ2 the player must concentrate on reaching good position F
expecting that the teammate would make a pass once he gets close control of the moving
ball. Assuming that the ball is passed without any delay, the estimated minimal available
time for reaching this position is the time needed for the ball to roll along the segment BD
and then to cover segment DF. This determines the planning time horizon in our model.

2.3 Predicting Player Movements
For determining the best location of the future ball interception point F it is critical to know
the anticipated positions of the opponent players and the teammates at time τ1. It is
reasonable to assume that during this time the behavior of all players is staying persistent.
While the ball is rolling freely along segment AD in Figure 1, its movement follows the laws
of physics and is predictable. All players (if they are rational) are acting in the ways that are
also rather easy to predict if their decision making model is known.
Therefore, for predicting player movements we are using the prediction horizon τ1 that is
equal to the time remaining until the ball will be intercepted by a teammate. (If the fastest to
the ball is the opponent player, the situation changes to defensive; this lies outside the scope
of this study.) With this approach, once the ball has been kicked, the player without the ball
estimates the interception point and time τ1. This is the minimal time remaining until the
ball could be likely kicked in the new direction substantially changing the situation. Because
the sensor information is imperfect, the time horizon and the target position are updated as
new information arrives. Still our experiments have shown that these updates are only
slightly changing the decision thus not affecting the persistent behavior. This can be
expected, as the player is watching the vicinity of the ball location more frequently.

some options that are making the Pareto set might be left out. This issue could be resolved by
using the Pareto optimality principle.
Dynamics is one more general difficulty with optimizing player position on low level.
Reaching an optimal position takes some time, and the player must be persistent in doing
so. In our experiments we have found that some random factors in the simulated soccer tend
to make the computation of the optimal target very unstable from cycle to cycle. A closely
related problem is choosing the right time horizon for predicting the situation. As for now,
we have found in the literature neither a solution to this problem nor even a discussion of it
with respect to player positioning. Thus we would speculate that the reluctance of RoboCup
scholars to systematically improve player positioning on the lower level could be explained
by these difficulties.

1.4 The Unique Contribution of This Study
The unique contribution of this work is in that we (1) investigate and resolve the time
horizon issue; (2) propose a new set of decision making criteria based on real-life soccer
tactics; and (3) implement a Pareto-optimal solution to the optimization problem with these
criteria.
Section 2 addresses the time horizon issue. Section 3 explains how feasible alternatives for
decision making cold be generated. Section 4 introduces five optimality criteria and the
algorithm for finding Pareto-optimal solution. Section 5 provides experimental results and
presents the conclusions.

2. Predicting the Situation for Player Positioning

Because the essence of player positioning is planning his actions for some future time
interval, identifying the time constraints for such planning is critically important. We see
two such constraints: the prediction time horizon τ1 and the planning time horizon τ2.

2.1 Prediction Time Horizon
A straightforward approach is just setting some fixed prediction time horizon τ1, say 1 to 3
seconds, and trying to extrapolate the movements of the players and the ball for this time
interval. The simplest way is just using linear extrapolations of player positions. However,
our experiments have shown that this method does not work well. The major problem is in
that, once the ball is kicked by some player in new direction, the rest players revise their
previous intentions and change their directions of movement. Neglecting these abrupt
changes if the next ball kick occurs before the prediction time expires would result in poor
decisions. On the other hand, forecasting new movements by the players when the ball gets
under close control by the teammate, although theoretically possible, is impractical because
of too high computational costs.
While trying to resolve this issue, it makes sense to see how human players are acting in this
situation (Beim, 1977; Johnes & Tranter, 1999).
Because we consider the offensive positioning, the ball must be under the control by some
teammate. This teammate may be in two different states: (a) chasing the freely rolling ball
while staying the fastest player to it and thus maintaining the ball possession or (b) keeping
the ball close to him while being able to pass it at any time.

Robot Soccer342

The feasible options are drawn from a set of alternative positions in the vicinity of the
reference position. Because the decision space (xy-plane) is continuous, it contains infinite
number of such positions. With highly nonlinear and non-convex decision criteria, searching
such space systematically would be hardly possible. Therefore, we use a discrete
approximation, with the alternative positions forming on the xy-plane a grid about the
reference position. To reduce computations, we would like to keep the number of points in
this grid minimal. The grid step determines the total number of the alternatives to be
searched. The rule of thumb is setting the step equal to the radius of the player reach for
kicking the ball. Increasing it might result in lost opportunities. Using a smaller step makes
sense only if we have enough computational time to further fine tune the balance of
different optimality criteria (see more about it in the next section).
In Figure 2 the three areas determining the set of feasible options for the yellow player #9
are shown. The square with the reference position as its center, defines the responsibility area.
By staying in it, this player is maintaining the team formation. The circle around the player
approximates the reachable area, i.e. the set of points on the field that he can reach in time τ2
or less. The feasible area is intersection of these two areas, i.e. the set of all feasible positions
for this player.
Thus the player is only interested in those positions in his responsibility area that could be
reached in time τ2. This allows eliminating part of the grid that is lying beyond the player
reach. One more constraint that helps eliminating poor alternatives is the maximal distance
from the reference position. The alternatives lying outside the field or creating risk of offside
are also eliminated.
Figure 3 shows the example situation on the field with the predicted positions of all objects
at the moment when the ball is intercepted. The head of the black arrow is the anticipated
interception point. Figure 4 shows the alternative positions for the red player #8. The player
area of responsibility is filled with small gray points; the reference position being the center
of this area. The bigger blue points show the reachable positions of which this player must
choose the best.

4. Criteria for Decision Making and the Optimization Algorithm

 Each position in the feasible set has its own pros and cons that must be evaluated by the
intelligent player and the best option must be selected. Thus we arrive to a multi-criteria
optimization problem. To correctly formalize it, we need to specify the optimality criteria
and choose the algorithm for finding a balanced solution with respect to these criteria.

4.1 Optimality Criteria
The decision criteria for choosing the best option should be reflecting the soccer tactics; in
particular they should be measuring anticipated rewards and risks. We propose slightly
different criteria sets for attackers, midfielders, and defenders because their tactical roles
differ (Beim, 1977; Johnes & Tranter, 1999).

For the attackers the criteria set is, as follows.

1. All players must maintain the formation thus implementing the team strategy. So the
distance between the point in the feasible set and the reference position should be
minimized.

The model for predicting the situation comprises three components: the ball, the friendly
and the opponent player movements. The ball movement can be predicted with high
precision, as the underlying physics is simple; the typical model assumes straight movement
with the known speed decrement. The movements by teammates can be also predicted with
precision, as their control algorithms and perceived states of the world to some extent are
available to the player in question. The fastest teammate to the ball will be intercepting it by
moving with the maximal speed; so its position can be predicted even more precisely. The
rest teammates will be moving towards the best positions determined with yet another
precisely known algorithm which could be used for predicting their positions. However, in
our method we do not use such a sophisticated approach; in regards of each teammate
without the ball, we assume that it is just moving with a constant velocity. This velocity is
estimated by the decision making player using his own world model. Of the opponent
players, the fastest one will be presumably also chasing the ball by following the trajectory
that can be predicted fairly precisely. For the rest opponents possible options include
assuming same positioning algorithm as for the teammates or using the opponent model
estimated and communicated by the online coach.
In the case when the ball is kickable by the teammate (i.e. when it is either holding the ball,
or is closely dribbling, or prepares to pass), we would suggest that τ1 should be set to a small
constant value τmin which should be determined experimentally.

Fig. 1. Yellow player #8 (A) has just passed
the ball (B) to teammate #7 (C) who is going
to intercept it in D. Yellow teammate #9 (E)
must decide where to go. He must determine
the best point F where he would be able to
safely receive the ball passed by #7.

Fig. 2. The intersection of the responsibility
area and the reachable area for yellow
player #9 determines his feasible area.

3. Identifying the Feasible Options

Decision making is always a choice from a set of alternatives. In the discussed problem, the
player first generates a set of feasible options (i.e. positions on the soccer field) and evaluates
those using different criteria. Then the multi-criteria algorithm is applied to find the single
best option by balancing the anticipated risks and rewards.

Optimal Offensive Player Positioning in the Simulated Robotic Soccer 343

The feasible options are drawn from a set of alternative positions in the vicinity of the
reference position. Because the decision space (xy-plane) is continuous, it contains infinite
number of such positions. With highly nonlinear and non-convex decision criteria, searching
such space systematically would be hardly possible. Therefore, we use a discrete
approximation, with the alternative positions forming on the xy-plane a grid about the
reference position. To reduce computations, we would like to keep the number of points in
this grid minimal. The grid step determines the total number of the alternatives to be
searched. The rule of thumb is setting the step equal to the radius of the player reach for
kicking the ball. Increasing it might result in lost opportunities. Using a smaller step makes
sense only if we have enough computational time to further fine tune the balance of
different optimality criteria (see more about it in the next section).
In Figure 2 the three areas determining the set of feasible options for the yellow player #9
are shown. The square with the reference position as its center, defines the responsibility area.
By staying in it, this player is maintaining the team formation. The circle around the player
approximates the reachable area, i.e. the set of points on the field that he can reach in time τ2
or less. The feasible area is intersection of these two areas, i.e. the set of all feasible positions
for this player.
Thus the player is only interested in those positions in his responsibility area that could be
reached in time τ2. This allows eliminating part of the grid that is lying beyond the player
reach. One more constraint that helps eliminating poor alternatives is the maximal distance
from the reference position. The alternatives lying outside the field or creating risk of offside
are also eliminated.
Figure 3 shows the example situation on the field with the predicted positions of all objects
at the moment when the ball is intercepted. The head of the black arrow is the anticipated
interception point. Figure 4 shows the alternative positions for the red player #8. The player
area of responsibility is filled with small gray points; the reference position being the center
of this area. The bigger blue points show the reachable positions of which this player must
choose the best.

4. Criteria for Decision Making and the Optimization Algorithm

 Each position in the feasible set has its own pros and cons that must be evaluated by the
intelligent player and the best option must be selected. Thus we arrive to a multi-criteria
optimization problem. To correctly formalize it, we need to specify the optimality criteria
and choose the algorithm for finding a balanced solution with respect to these criteria.

4.1 Optimality Criteria
The decision criteria for choosing the best option should be reflecting the soccer tactics; in
particular they should be measuring anticipated rewards and risks. We propose slightly
different criteria sets for attackers, midfielders, and defenders because their tactical roles
differ (Beim, 1977; Johnes & Tranter, 1999).

For the attackers the criteria set is, as follows.

1. All players must maintain the formation thus implementing the team strategy. So the
distance between the point in the feasible set and the reference position should be
minimized.

The model for predicting the situation comprises three components: the ball, the friendly
and the opponent player movements. The ball movement can be predicted with high
precision, as the underlying physics is simple; the typical model assumes straight movement
with the known speed decrement. The movements by teammates can be also predicted with
precision, as their control algorithms and perceived states of the world to some extent are
available to the player in question. The fastest teammate to the ball will be intercepting it by
moving with the maximal speed; so its position can be predicted even more precisely. The
rest teammates will be moving towards the best positions determined with yet another
precisely known algorithm which could be used for predicting their positions. However, in
our method we do not use such a sophisticated approach; in regards of each teammate
without the ball, we assume that it is just moving with a constant velocity. This velocity is
estimated by the decision making player using his own world model. Of the opponent
players, the fastest one will be presumably also chasing the ball by following the trajectory
that can be predicted fairly precisely. For the rest opponents possible options include
assuming same positioning algorithm as for the teammates or using the opponent model
estimated and communicated by the online coach.
In the case when the ball is kickable by the teammate (i.e. when it is either holding the ball,
or is closely dribbling, or prepares to pass), we would suggest that τ1 should be set to a small
constant value τmin which should be determined experimentally.

Fig. 1. Yellow player #8 (A) has just passed
the ball (B) to teammate #7 (C) who is going
to intercept it in D. Yellow teammate #9 (E)
must decide where to go. He must determine
the best point F where he would be able to
safely receive the ball passed by #7.

Fig. 2. The intersection of the responsibility
area and the reachable area for yellow
player #9 determines his feasible area.

3. Identifying the Feasible Options

Decision making is always a choice from a set of alternatives. In the discussed problem, the
player first generates a set of feasible options (i.e. positions on the soccer field) and evaluates
those using different criteria. Then the multi-criteria algorithm is applied to find the single
best option by balancing the anticipated risks and rewards.

Robot Soccer344

optimality principle allows to eliminate wittingly inappropriate so-called dominated
alternatives (Miettinen, 1998). These are the points in the feasible set that could be
outperformed by at least some other point by at least one criterion. So only the non-
dominated alternatives making so-called Pareto set should be searched for the ‘best’ balance
of all criteria. Balancing requires additional information about the relative importance of
these criteria, or their weights. If the criteria functions and the feasible set are all convex,
then the optimal point could be found by minimizing the weighed sum of the criteria
(assuming that they all must be minimized) (Miettinen, 1998). However, on the xy-plane,
which is the soccer field, several local maxima for criteria 2, 3, and 4 exist; they all are
around the predicted locations of opponent players. Therefore, in our case there is no hope
for such a simple solution as using the weighed sum.
The way out has been proposed in our recent work (Kyrylov, 2008), where a method for
searching the balanced optimal point in the finite Pareto set was presented. This method is
based on the sequential elimination of the poorest alternatives using just one criterion at a
time. With N alternatives in the Pareto set, it requires N-1 steps. The criterion for the
elimination on each step is selected randomly with the probability proportional to the
weight of this criterion. Hence more important criteria are being applied more frequently.
The sole remaining option after N-1 steps is the result of this optimization. This method
works for any non-convex and even disconnected Pareto set. Its computational complexity
is O(N2).
In this application, we have further simplified the decision making procedure by assuming
that all criteria have equal importance. Thus instead of randomly selecting the criteria on
each step of elimination, our procedure is looping through the criteria in the deterministic
order.
If the total number of the alternatives is too small, this would result in only near-optimal
decision. Better balancing of the conflicting criteria is possible with increased N. So we
propose to estimate the available computational time in current simulation cycle and select
larger N if time permits. This optimization algorithm is scalable indeed. It is also robust,
because even with small N the decisions returned by it are still fairly good.
If this optimization ends in still rather poor option, the player elects just to move towards
the reference position; making decision to pass the ball or not is left up to the teammate,
anyway. This teammate may elect to dribble or to pass the ball to some other player whose
position on the field is better.
Although we proposed five optimality criteria, for the purpose of illustration we have
aggregated them all in just two: the Risk, which is combination of criteria 2 and 3, and Gain
which aggregates criteria 1, 4, and 5. The signs of the individual criteria in these aggregates
were chosen so that both Risk and -Gain must be minimized. As a result, it is easy to visually
explore the criteria space because it has only two dimensions.
Figures 5 and 6 illustrate the configuration of the Pareto set in the decision and criteria
space, respectively. Of the total of 21 points in the Pareto set, 20 are eliminated one by one in
the order shown on the labels near each point in Figure 6; the remaining point is the sought
solution. Note that the Pareto frontier is non-convex.
The optimal point is reachable and is located at less than the maximal distance of the
reference position. It is lying on the way towards the opponent goal and far away from the
predicted positions of the two threatening opponents, yellow #10 and #6. This point is open
for receiving the pass by red player #8 from the anticipated interception point where red #7

2. All attackers must be open for a direct pass. Thus the angle between the direction to the
ball interception point and the direction to the opponent located between the evaluated
position and the interception point must be maximized.
3. All players must maintain open space. This means that the distance from the evaluated
point to the closest opponent should be maximized.
4. The attackers must keep an open path to the opponent goal to create the scoring
opportunity. So the distance from the line connecting the evaluated point and the goal
center to the closest opponent (except the goalie) should be maximized. This criterion is only
used in the vicinity of the opponent goal.
5. The player must keep as close as possible to the opponent offside line to be able to
penetrate the defense. So, the player should minimize the x-coordinate distance between the
point in the feasible set and the offside line (yet not crossing this line).

Fig. 3. Red player #5 has passed the ball to
red #7. Arrows show the predicted positions
of objects when the ball will be intercepted.

Fig. 4. The area of responsibility for red
player #8 (gray dots) and the reachable
positions (dark dots).

Note that each criterion appears to have equal tactical importance; this observation will be
used while discussing the optimization procedure below.
Criteria for midfielders and defenders differ in that they do not contain criteria 4 and 5 that
encourage the opponent defense penetration. Instead, these players should be creating
opportunities for launching the attack. This is achieved by minimizing the opponent player
presence between the evaluated position and the direction to the opponent side of the field.

4.2 Optimization Algorithm
All proposed criteria are conflicting, as it is hardly possible to optimize all them
simultaneously; a reasonable balance must be sought instead. This situation is well known
in the literature on systems analysis and economics; a special paradigm called the Pareto

Optimal Offensive Player Positioning in the Simulated Robotic Soccer 345

optimality principle allows to eliminate wittingly inappropriate so-called dominated
alternatives (Miettinen, 1998). These are the points in the feasible set that could be
outperformed by at least some other point by at least one criterion. So only the non-
dominated alternatives making so-called Pareto set should be searched for the ‘best’ balance
of all criteria. Balancing requires additional information about the relative importance of
these criteria, or their weights. If the criteria functions and the feasible set are all convex,
then the optimal point could be found by minimizing the weighed sum of the criteria
(assuming that they all must be minimized) (Miettinen, 1998). However, on the xy-plane,
which is the soccer field, several local maxima for criteria 2, 3, and 4 exist; they all are
around the predicted locations of opponent players. Therefore, in our case there is no hope
for such a simple solution as using the weighed sum.
The way out has been proposed in our recent work (Kyrylov, 2008), where a method for
searching the balanced optimal point in the finite Pareto set was presented. This method is
based on the sequential elimination of the poorest alternatives using just one criterion at a
time. With N alternatives in the Pareto set, it requires N-1 steps. The criterion for the
elimination on each step is selected randomly with the probability proportional to the
weight of this criterion. Hence more important criteria are being applied more frequently.
The sole remaining option after N-1 steps is the result of this optimization. This method
works for any non-convex and even disconnected Pareto set. Its computational complexity
is O(N2).
In this application, we have further simplified the decision making procedure by assuming
that all criteria have equal importance. Thus instead of randomly selecting the criteria on
each step of elimination, our procedure is looping through the criteria in the deterministic
order.
If the total number of the alternatives is too small, this would result in only near-optimal
decision. Better balancing of the conflicting criteria is possible with increased N. So we
propose to estimate the available computational time in current simulation cycle and select
larger N if time permits. This optimization algorithm is scalable indeed. It is also robust,
because even with small N the decisions returned by it are still fairly good.
If this optimization ends in still rather poor option, the player elects just to move towards
the reference position; making decision to pass the ball or not is left up to the teammate,
anyway. This teammate may elect to dribble or to pass the ball to some other player whose
position on the field is better.
Although we proposed five optimality criteria, for the purpose of illustration we have
aggregated them all in just two: the Risk, which is combination of criteria 2 and 3, and Gain
which aggregates criteria 1, 4, and 5. The signs of the individual criteria in these aggregates
were chosen so that both Risk and -Gain must be minimized. As a result, it is easy to visually
explore the criteria space because it has only two dimensions.
Figures 5 and 6 illustrate the configuration of the Pareto set in the decision and criteria
space, respectively. Of the total of 21 points in the Pareto set, 20 are eliminated one by one in
the order shown on the labels near each point in Figure 6; the remaining point is the sought
solution. Note that the Pareto frontier is non-convex.
The optimal point is reachable and is located at less than the maximal distance of the
reference position. It is lying on the way towards the opponent goal and far away from the
predicted positions of the two threatening opponents, yellow #10 and #6. This point is open
for receiving the pass by red player #8 from the anticipated interception point where red #7

2. All attackers must be open for a direct pass. Thus the angle between the direction to the
ball interception point and the direction to the opponent located between the evaluated
position and the interception point must be maximized.
3. All players must maintain open space. This means that the distance from the evaluated
point to the closest opponent should be maximized.
4. The attackers must keep an open path to the opponent goal to create the scoring
opportunity. So the distance from the line connecting the evaluated point and the goal
center to the closest opponent (except the goalie) should be maximized. This criterion is only
used in the vicinity of the opponent goal.
5. The player must keep as close as possible to the opponent offside line to be able to
penetrate the defense. So, the player should minimize the x-coordinate distance between the
point in the feasible set and the offside line (yet not crossing this line).

Fig. 3. Red player #5 has passed the ball to
red #7. Arrows show the predicted positions
of objects when the ball will be intercepted.

Fig. 4. The area of responsibility for red
player #8 (gray dots) and the reachable
positions (dark dots).

Note that each criterion appears to have equal tactical importance; this observation will be
used while discussing the optimization procedure below.
Criteria for midfielders and defenders differ in that they do not contain criteria 4 and 5 that
encourage the opponent defense penetration. Instead, these players should be creating
opportunities for launching the attack. This is achieved by minimizing the opponent player
presence between the evaluated position and the direction to the opponent side of the field.

4.2 Optimization Algorithm
All proposed criteria are conflicting, as it is hardly possible to optimize all them
simultaneously; a reasonable balance must be sought instead. This situation is well known
in the literature on systems analysis and economics; a special paradigm called the Pareto

Robot Soccer346

goals are lying on x-coordinate axis, the coordinates of the reference position for i-th player
are calculated as follows:

xi = w*xhomei + (1-w)*xball + Δxi,
yi = w*xhomei + (1-w)*yball, (2)

where w is the weight (0<w<1), (xhomei, yhomei) and (xball, yball) are the fixed home and the
current ball positions respectively, Δxi is the fixed individual adjustment of x-coordinate
whose sign differs for the offensive and defensive situations and the player role in the team
formation. Our improving was in introducing the shift Δxi in this method.
Because players in the control team were moving to the reference positions without any fine
tuning, ball passing opportunities were occurring as a matter of chance. In the experimental
team, rather, players were creating these opportunities on purpose.
The team performance was measured by the game score difference. Figure 7 shows the
histogram based on 100 games each 10 minutes long.

Frequencies of score difference

0
2
4
6
8
10
12
14
16
18
20

0 1 2 3 4 5 6 7 8 9 10 11
Score difference

Fr
eq

ue
nc

y

Fig. 7. A histogram of the score difference in 100 games.

In this experiment only one game has ended in a tie; in all the rest 99 games the
experimental team won. The mean and the standard deviation of the score difference are
5.20 and 2.14, respectively. By approximating with Gaussian distribution, we get 0.9925
probability of not losing the game. The probability to have the score difference greater than
1 is 0.975 and greater than 2 is 0.933. This gives the idea of the potential contribution of the
low-level position optimization. With the smaller proportion of the time when the ball is
rolling freely, this contribution will decrease. So teams favoring ball passing would likely
benefit from our method more than teams that prefer dribbling.
The experimental results demonstrate that, by locally adjusting their positions using the
proposed method, players substantially contribute to the simulated soccer team
performance by scoring on the average about five extra goals than the opponent team that
does not have this feature. This confirms that optimized player positioning in the simulated
soccer is the critical factor of success.
Although this method has been developed for simulated soccer, we did not rely much on
the specifics of the simulation league. Nor have we built our method upon the specifics of
the two dimensions. Therefore, we believe that the main ideas presented in this work could

is about to arrive faster that his opponent yellow #11. This is indeed a well-balanced
solution to the positioning problem for red player #8. With non-aggregated five criteria we
can only expect even better decisions.

Fig. 5. The Pareto set for red player #8
(bigger dots) and the optimal solution.

Fig. 6. The criteria space. Numbers at the points
in the Pareto set show the elimination order. Note
that this set is not convex.

5. Experimental Results and Conclusion

We have conducted experiments with the purpose to estimate the sole contribution of the
proposed method for the lower-level optimized player positioning compared with only
strategic, higher-level positioning.
Measuring the player performance using existing RoboCup teams is difficult because new
features always require careful fine tuning with the existing ones. For this reason, we
decided to compare two very basic simulated soccer teams. The only difference was in that
the experimental team had player positioning on two levels and the control team just on one
level. Players in both teams had rather good direct ball passing and goal scoring skills and
no dribbling or holding the ball at all. Thus any player, once gaining the control of the ball,
was forced to immediately pass it to some teammate. In this setting, the ball was rolling
freely more than 95 per cent of the time, thus providing ideal conditions for evaluating the
proposed method.
To further isolate the effects of imperfect sensors, we decided to use Tao of Soccer, the
simplified soccer simulator with complete information about the world; it is available as the
open source project (Zhan, 2009). Using the RoboCup simulator would require prohibitively
long running time to sort out the effects of improved player positioning among many
ambiguous factors.
The higher-level player positioning was implemented similar to used in UvA Trilearn (De
Boer, & Kok, 2002); this method proved to be reasonably good indeed. Assuming that both

Optimal Offensive Player Positioning in the Simulated Robotic Soccer 347

goals are lying on x-coordinate axis, the coordinates of the reference position for i-th player
are calculated as follows:

xi = w*xhomei + (1-w)*xball + Δxi,
yi = w*xhomei + (1-w)*yball, (2)

where w is the weight (0<w<1), (xhomei, yhomei) and (xball, yball) are the fixed home and the
current ball positions respectively, Δxi is the fixed individual adjustment of x-coordinate
whose sign differs for the offensive and defensive situations and the player role in the team
formation. Our improving was in introducing the shift Δxi in this method.
Because players in the control team were moving to the reference positions without any fine
tuning, ball passing opportunities were occurring as a matter of chance. In the experimental
team, rather, players were creating these opportunities on purpose.
The team performance was measured by the game score difference. Figure 7 shows the
histogram based on 100 games each 10 minutes long.

Frequencies of score difference

0
2
4
6
8
10
12
14
16
18
20

0 1 2 3 4 5 6 7 8 9 10 11
Score difference

Fr
eq

ue
nc

y

Fig. 7. A histogram of the score difference in 100 games.

In this experiment only one game has ended in a tie; in all the rest 99 games the
experimental team won. The mean and the standard deviation of the score difference are
5.20 and 2.14, respectively. By approximating with Gaussian distribution, we get 0.9925
probability of not losing the game. The probability to have the score difference greater than
1 is 0.975 and greater than 2 is 0.933. This gives the idea of the potential contribution of the
low-level position optimization. With the smaller proportion of the time when the ball is
rolling freely, this contribution will decrease. So teams favoring ball passing would likely
benefit from our method more than teams that prefer dribbling.
The experimental results demonstrate that, by locally adjusting their positions using the
proposed method, players substantially contribute to the simulated soccer team
performance by scoring on the average about five extra goals than the opponent team that
does not have this feature. This confirms that optimized player positioning in the simulated
soccer is the critical factor of success.
Although this method has been developed for simulated soccer, we did not rely much on
the specifics of the simulation league. Nor have we built our method upon the specifics of
the two dimensions. Therefore, we believe that the main ideas presented in this work could

is about to arrive faster that his opponent yellow #11. This is indeed a well-balanced
solution to the positioning problem for red player #8. With non-aggregated five criteria we
can only expect even better decisions.

Fig. 5. The Pareto set for red player #8
(bigger dots) and the optimal solution.

Fig. 6. The criteria space. Numbers at the points
in the Pareto set show the elimination order. Note
that this set is not convex.

5. Experimental Results and Conclusion

We have conducted experiments with the purpose to estimate the sole contribution of the
proposed method for the lower-level optimized player positioning compared with only
strategic, higher-level positioning.
Measuring the player performance using existing RoboCup teams is difficult because new
features always require careful fine tuning with the existing ones. For this reason, we
decided to compare two very basic simulated soccer teams. The only difference was in that
the experimental team had player positioning on two levels and the control team just on one
level. Players in both teams had rather good direct ball passing and goal scoring skills and
no dribbling or holding the ball at all. Thus any player, once gaining the control of the ball,
was forced to immediately pass it to some teammate. In this setting, the ball was rolling
freely more than 95 per cent of the time, thus providing ideal conditions for evaluating the
proposed method.
To further isolate the effects of imperfect sensors, we decided to use Tao of Soccer, the
simplified soccer simulator with complete information about the world; it is available as the
open source project (Zhan, 2009). Using the RoboCup simulator would require prohibitively
long running time to sort out the effects of improved player positioning among many
ambiguous factors.
The higher-level player positioning was implemented similar to used in UvA Trilearn (De
Boer, & Kok, 2002); this method proved to be reasonably good indeed. Assuming that both

Robot Soccer348

be reused with minor modifications in the 3D simulated soccer and in other RoboCup
leagues. These ideas could be also reused by video games developers. Besides soccer, our
general approach is applicable to different sports games.

6. References

Andou, T. (1998). Refinement of Soccer Agents' Positions Using Reinforcement Learning. In:
RoboCup 1997: Robot Soccer World Cup I, H. Kitano (Ed.), 373-388, Springer-Verlag,
ISBN 3540644733, Berlin Heidelberg New York

Beim, G. (1977). Principles of Modern Soccer. Houghton Mifflin Harcourt, ISBN 0395244153,
Boston, MA:.

De Boer, R. & Kok, J. (2002). The Incremental Development of a Synthetic Multi-Agent System:
The UvA Trilearn 2001 Robotic Soccer Simulation Team. Master’s Thesis. University of
Amsterdam, Amsterdam

Fisher, R.A. (1990). Statistical Methods, Experimental Design, and Scientific Inference, Oxford
University Press, ISBN 0198522290, Oxford, NY

Johnes, H. & Tranter, T. (1999). The Challenge of Soccer Strategies: Defensive and Attacking
Tactics, Reedswain, ISBN 189094632X, Spring City, PA

Kalyanakrishnan, S.; Liu, Ya. & Stone, P. (2007). Half Field Offense in RoboCup Soccer: A
Multiagent Reinforcement Learning Case Study. In RoboCup-2006 Robot Soccer
World Cup X, G. Lakemeyer, E. Sklar, D. Sorrenti, T. Takahashi (Eds.), 72-85,
Springer-Verlag, ISBN 3540740236, Berlin Heidelberg New York

Kok, J.; Spaan, M. & Vlassis, N. (2003) Multi-Robot Decision Making Using Coordination
Graphs, Proceedings of the 11th International Conference on Advanced Robotics (ICAR),
pp. 1124–1129, Coimbra, Portugal, June 2003.

Kyrylov V. (2008). A Robust and Scalable Pareto Optimal Ball Passing Algorithm for the
Robotic Soccer. In Soccer Robotics, P. Lima Ed.), 153-166, Advanced Robotics
Institute, ISBN 9783902613219, Vienna

Miettinen, K. (1998). Nonlinear Multiobjective Optimization, Kluwer Acaemic Publishers, ISBN
0792382781, Berlin

Nakashima, T.; Udo, M. & Ishibuchi, H. (2003). Acquiring the positioning skill in a soccer
game using a fuzzy Q-learning, Proceedings of IEEE International Symposium on
Computational Intelligence in Robotics and Automation, 16-20 July 2003, v.3, 1488- 1491

Reis, L. P.; Lau, N. & Oliveira, E. C. (2008). Situation Based Strategic Positioning for
Coordinating a Team of Homogeneous Agents. In: Balancing Reactivity and Social
Deliberation in Multi-Agent Systems: From RoboCup to Real-World Applications, M.
Hannenbauer, J. Wendler, E. Pagello (Eds.), 175-197, Springer-Verlag, ISBN
3540423273, Berlin Heidelberg New York

Stone, P.; Veloso, M. & Riley, P. (1999). The CMUnited-98 Champion Simulator Team. In:
RoboCup 1998: Robot Soccer World Cup II, Springer-Verlag, M. Asada and H. Kitano
(Eds.), 61-76, Springer-Verlag, ISBN 3540663207, Berlin Heidelberg New York

Zhan, Yu. (2006). Tao of Soccer: An open source project,
 https://sourceforge.net/projects/soccer/

	Preface
	The Real-time and Embedded Soccer Robot Control System
	Ce Li, Takahiro Watanabe, Zhenyu Wu, Hang Li and Yijie Huangfu
	CAMBADA soccer team: from robot architecture to multiagent coordination
	António J. R. Neves, José Luís Azevedo, Bernardo Cunha, Nuno Lau, João Silva, Frederico Santos, Gustavo Corrente, Daniel A. Martins, Nuno Figueiredo, Artur Pereira, Luís Almeida, Luís Seabra Lopes, Armando J. Pinho, João Rodrigues and Paulo Pedreiras
	Small-size Humanoid Soccer Robot Design for FIRA HuroSot
	Ching-Chang Wong, Chi-Tai Cheng, Kai-Hsiang Huang, Yu-Ting Yang, Yueh-Yang Hu and Hsiang-Min Chan
	Humanoid soccer player design
	Francisco Martín, Carlos Agüero, José María Cañas and Eduardo Perdices
	Robot soccer educational courses
	Hrvoje Turić, Vladimir Pleština, Vladan Papić and Ante Krolo
	Distributed Architecture for Dynamic Role Behaviour in Humanoid Soccer Robots
	Carlos Antonio Acosta Calderon, Mohan Elaha Rajesh, and Zhou Changjiu
	Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer
	Jeff Riley
	FIRA Mirosot Robot Soccer System Using Fuzzy Logic Algorithms
	Elmer A. Maravillas, PhD and Elmer P. Dadios, PhD
	Artificial Immune Systems, A New Computational Technique for Robot Soccer Strategies
	Camilo Eduardo Prieto S., Luis Fernando Nino V. and Gerardo Quintana
	The Role Assignment in Robot Soccer
	Ji Yuandong, Zuo Hongtao, Wang Lei and Yao Jin
	Multi-Robot Systems: Modeling, Specification, and Model Checking
	Ammar Mohammed, Ulrich Furbach and Frieder Stolzenburg
	RFuzzy: an easy and expressive tool for modelling the cognitive layer in RoboCupSoccer
	Susana Muñoz Hernández
	Soccer at the Microscale: Small Robots with Big Impact
	S. L. Firebaugh, J. A. Piepmeier and C. D. McGray
	Automated camera calibration for robot soccer
	Donald G Bailey and Gourab Sen Gupta
	Optimal Offensive Player Positioning in the Simulated Robotic Soccer
	Vadim Kyrylov and Serguei Razykov

