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Preface 
 
Soccer Robotics is nowadays a vibrant field where a huge number of people carry 
out many of their research and education activities in Robotics worldwide. The 
reason for such an excitement is rooted on the diversity of scientific and technical 
challenges raised by the problem of developing a team of cooperating robots work-
ing together to defeat an opponent team, in a very dynamic and uncertain envi-
ronment.  
Two major competitions - RoboCup and MiroSot  - have evolved in recent years 
towards becoming major scientific events where Artificial Intelligence and Robot-
ics researchers meet annually to compare their latest results, as well as to show 
them to general audiences and to stimulate young kids to learn Robotics by design-
ing, developing and testing their own robots. Most of the papers in this book are 
authored by researchers participating regularly in such events, which include real 
and simulated robot competitions posing different challenges – typically, real ro-
bots challenges concern mobility, (cooperative) perception and localization, while 
simulated robots are the perfect environment for testing teamwork, learning and 
coordination strategies. 
If I were asked to use a single word to define the most relevant scientific challenge 
brought up by Soccer Robotics, my preference would go to integration. Current 
and past research in Robotics tends to privilege particular subsystems of a (team 
of) robot(s), such as perception, navigation, or coordination, to name but a few. 
Though the results of such research endeavors are certainly relevant, they miss a 
comprehensive view of the overall system, whose goal is to optimize the whole, in-
stead of each of its composing parts. As a consequence, and not surprisingly, some 
of the papers in this book propose development environments, architectures, mid-
dleware and realistic simulators, to handle the integration of robot teams, whose 
application is not limited to robot soccer. 
Nevertheless, many papers in the book concern advanced research on (multi-)robot 
subsystems, naturally motivated by the challenges posed by robot soccer, but cer-
tainly applicable to other domains: reasoning, multi-criteria decision-making, be-
havior and team coordination, cooperative perception, localization, mobility sys-
tems (namely omni-directional wheeled motion, as well as quadruped and biped 
locomotion, all strongly developed within RoboCup), and even a couple of papers 
on a topic apparently solved before Soccer Robotics – color segmentation – but for 
which several new algorithms were introduced since the mid-nineties by research-
ers on the field, to solve dynamic  illumination and fast color segmentation prob-
lems, among others. 



VI        

The number of new research opportunities fostered by Soccer Robotics keeps 
growing everyday. Two of the papers in the book deal with non-soccer applica-
tions of great relevance. RoboCup@Home is a competition recently introduced in 
RoboCup, “with the aim to foster the development of applications in the domains 
of service and assistance robotics, ambient intelligence and human-robot interac-
tion”. And another paper proposes a new sports robotic competition - Water Polo – 
whose goal is to extend the research-advances-through-competitions concept to 
Underwater Robots. 
This book is certainly a small sample of the research activity on Soccer Robotics go-
ing on around the globe as you read it, but it surely covers a good deal of what has 
been done in the field recently, and as such it works as a valuable source for re-
searchers interested in the involved subjects, whether they are currently “soccer 
roboticists” or not. 
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Communication and Collaboration in 
Heterogeneous Teams of Soccer Robots 

 
Philipp A. Baer and Roland Reichle 

University of Kassel 
Germany 

 
1. Introduction 
 

The RoboCup tournaments foster research in the area of autonomous robotics and 
cooperative behaviour. Recently, modifications to the rules were adopted promoting further 
developments towards a typical human playing ground. Some simplifications such as 
constant lighting were dropped and further modifications will follow in the next years. 
Regarding team cooperation and coordination, the most important change in 2007 is the 
enlargement of the playing field. The maximum number of players in a team has been 
increased to 6; for the long time goal the number of players will approach 11. 
For research groups it may be difficult to keep up with the enlargement of team sizes, for 
newcomers it even constitutes a virtually infeasible financial effort. This is why so-called 
mixed teams gain a lot of popularity. Here, two or more research groups pool their 
resources together to provide a joint, more powerful team (Nardi et al., 1999; Castelpietra et 
al., 2000). This implies that different hardware and software systems have to communicate 
and collaborate. A number of problems have to be faced which arise from the heterogeneity 
of the systems involved. Among other things, the interpretation of different representations, 
the fusion of information to a consistent world view, and the realization of team-play 
strategies on the different platforms are predominant questions. 
In order to cope with these challenges, we have adopted a model-driven software 
development approach. Below we introduce our development environment for 
communication infrastructures. Afterwards, we summarize our research activities towards a 
model-driven development approach for modelling cooperative behaviour in teams of 
autonomous soccer robots. A detailed example describes the creation of a software 
infrastructure for a mixed-team of soccer robots. It illustrates the benefits of our 
development environment and highlights our contribution. We conclude with a 
presentation of our vision for further developments. 

 
2. Problem Description 
 

When RoboCup was announced in 1995, it was a research challenge to build autonomous 
mobile robots (AMRs) that were able to find the ball and the goals, to avoid collisions with 
other players, to estimate their position on the field, and to score goals. Nowadays, a large 
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number of approaches are available for solving these problems. The research focus therefore 
shifted towards creating teams of robots that cooperatively play soccer.  
To realize a team-play, robots must be able to exchange information with their team-mates, 
interpret the exchanged data, and fuse the information to a consistent world view, as 
already outlined in the introduction. This is the basis for coming to an agreement about the 
current situation on the field and coordinating the cooperative behaviour of the team. 
Nowadays, almost every team in the RoboCup middle-size league implements some kind of 
team-play, which in most cases is tailored to the capabilities and the needs of the underlying 
robotic software framework. Due to the lack of standard software and because of the variety 
of different software frameworks, heterogeneity issues play a decisive role when forming a 
mixed-team. 
 

 
Fig. 1. Carpe Noctem fighting against another team 
 
During the RoboCup World Championships 2006 in Bremen, Germany, the teams Carpe 
Noctem from Kassel University – shown in Fig. 1 – and the Ulm Sparrows from Ulm 
University formed a mixed-team. The Ulm Sparrows use Miro (Utz et al., 2002), a 
middleware framework that is implemented in C++ and heavily relies on CORBA. Greater 
parts of the Carpe Noctem software framework are realized in C# using the Mono 
(http://www.mono-project.org/) framework. To set up team cooperation a suitable 
communication infrastructure had to be established first. The Ulm Sparrows relied on an IP 
multicast-based group communication scheme over which the SharedBelief (Utz et al., 2004; 
Isik et al., 2007) data structure was exchanged. In order to talk to the other team, Carpe 
Noctem thus needed to provide a corresponding implementation along with suitable data 
conversion techniques. The implementation as such was a quite time consuming task. 
For real interoperability it is not sufficient to only communicate data, they also have to be 
interpreted with regard to their semantics and representations. Teams have to either agree 
on a standard representation which includes common measurement units and coordinate 
systems or provide appropriate data conversion routines. However, recent discussions in 
the RoboCup community show that it is quite difficult to reach an agreement on a standard 
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representation, as almost any team provides a self-defined representation scheme. 
Fortunately, the measurements units and the coordinate systems used by the Ulm Sparrows 
and Carpe Noctem were quite similar. 
To be able to agree on the current situation on the field and to realize dynamic role 
assignment, Carpe Noctem provided a cooperative world model named SharedWorld. It 
fused the exchanged information to a consistent world view and provided realizations of 
different team-play strategies which were used as a basis for the role assignment. 
SharedWorld was also capable of calculating the ball position by taking into account the 
trustworthiness and impreciseness of observations, gathered from the different robots. For 
the Ulm Sparrows a module with nearly the same functionality was created because 
decisions had to be taken consistently among all players. A re-implementation of 
SharedWorld was necessary because of the incompatible software frameworks of the two 
teams. 
This example makes it quite obvious that the realization of cooperative behaviour in 
heterogeneous teams of robots is a challenging and time consuming task. This problem has 
even more effect in groups consisting of more than two teams. Therefore, methods and 
development support is needed to ease the realization of communication and collaboration 
in heterogeneous teams of soccer robots.  

 
3. Our Contribution 
 

The previous section showed that the realization of team-play strategies in heterogeneous 
teams of soccer robots is a quite time consuming task. In order to reduce the development 
effort we present SPICA, a development framework for communication and collaboration 
infrastructures in teams of AMRs. SPICA assists in integrating software systems realized in 
different programming languages and developed for different platforms in heterogeneous 
distributed environments. It further provides patterns for data and sensor fusion and 
facilitates the development of cooperative behaviour in groups of AMRs.  
To be able to cope with heterogeneity issues, we have adopted a model-driven development 
approach for SPICA. It supports the specification of communication and collaboration 
infrastructures of AMRs at an abstract and platform-independent level. Models are then 
automatically transformed to platform-specific source code which can easily be integrated 
into existing software frameworks. The modelling support is based on the SPICA modelling 
language which consists of several domain-specific sublanguages tailored to the different 
aspects of communication and collaboration infrastructures. The total of all sublanguages 
form the SPICA modelling language, also referred to as the Abstract Architecture Specification 
(AAS) language. 
With the Message Description Language (MDL) a developer may specify the structure of 
network messages in an efficient and platform-independent manner, similar to ASN.1. 
Communication among AMRs is mostly event-based, so we decided to apply concepts of 
message-oriented middleware (MOM) architectures as they turned out to be most appropriate. 
The Data flow Description Language (DFDL) supports the specification of communication 
infrastructures in terms of modules and the data flow between them. Module stubs are 
created from the specifications which are basically adapters to the underlying 
communication infrastructure. The DFDL also facilitates the specification of the data 
management behaviour. For this purpose, it provides so-called Data Management Containers 
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(DMCs) which are data structures used for managing incoming and outgoing data. DMCs 
further build the foundation of the general purpose Data-Analysis Description Language 
(DADL). It provides modelling support for filters that operate directly on the contents of the 
DMCs. DADL comprises a Matlab-like syntax allowing calculations on the exchanged data 
to be specified in a platform-independent manner. Examples are the calculation of a robot’s 
role or the agreed ball position. In addition, the DADL also provides some predefined filter 
patterns to fuse the exchanged data to a consistent world view. The integration of other 
services such as data encryption or authentication is possible as well. Apart from these 
sublanguages we employ the concept of ontologies. They allow us to establish a common 
understanding of the involved semantic concepts and different representations and 
therefore help to realize automatic conversion of data representations. 
With the help of the tools provided by the SPICA development environment, the resulting 
platform-independent models (PIMs) of the communication and collaboration infrastructure 
can be transformed into platform-specific implementations in C#, C++, and Java. Our 
template-based approach allows for easy integration of further programming languages. 
The model-driven development approach proved to significantly reduce the development 
effort for the realization of communication and collaboration infrastructures for 
heterogeneous teams of AMRs. A suitable communication and collaboration infrastructure 
has to be developed only once by specifying the desired functionality in a platform-
independent manner. The corresponding platform-specific implementations are generated 
automatically and can be integrated into new or existing software frameworks very easily. 
In addition, the SPICA development framework also completely relieves the developers 
from the burden of dealing with encoding and decoding issues, heterogeneous data 
representations, and synchronization issues. In this aspect, the SPICA-based 
implementations are comparable to Remote Procedure Call-based (RPC) solutions. The main 
difference here is that generated implementations are tailored to the characteristics of event-
driven AMR group communication. Using SPICA, the developers furthermore do not have 
to deal with the time-consuming implementation of data fusion and analysis schemes for 
each of the involved platforms. 
In the following, we will introduce the SPICA development environment in more detail 
along with its modelling language and associated capabilities. Afterwards, an elaborate 
example will outline the steps required to specify a communication and collaboration 
infrastructure between two different groups of AMRs. 

 
4. The Spica Approach 
 

The concept of the SPICA development environment was first published in 2007 (Baer et al., 
2007). The first generation of SPICA was capable of generating message structures, the 
second generation added support for modelling data flow. The third generation we outline 
here, brings major language cleanups, enhancements, and new features such as dynamic 
module binding, semantic annotation, and automatic data conversion. 
Dynamic module binding relies on a service discovery engine embedded into the generated 
implementation. The creation of channels is based on the availability of resources. It is also 
possible to create static channels which do not require the service discovery engine. 
Automatic data conversion relies on the semantic annotation of the specified data structures. 
Here, a common understanding of the semantics of data structures and the relations 
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between them may be established using an ontology specification. Our framework also 
foresees the integration of ontologies provided by third parties.  
For several reasons we decided to develop a textual domain-specific modelling language 
instead of using existing general purpose ones. First of all, the development of a novel 
domain-specific language (DSL) enables us to provide a very compact modelling notation, 
reduced to the needs and tailored to the semantics of our modelling domain. The SPICA 
sublanguages cover these areas where more specific modelling support is required. They are 
designed in such a way that they combine to the overall SPICA modelling language in a 
consistent fashion. This is not only advantageous for the model transformation process but 
also for the developer, who does not have to deal with different semantics of different 
description languages. A textual notation is furthermore sufficient for most modelling tasks. 
If designed with simplicity in mind, it is often even more convenient to use than graphical 
notations and it may allow for rapid prototyping. 
 

Parse AAS

Process AIR

Generate Code

MDL DFDL DADL

Co
de Code

Language and/or
platform dependent

PS
M AIR

AASTra Intermediate
Representation

PI
M AAS

Abstract Architecture
Specification

AASTra
AASTranslator

Model
Transformation

Code
Templates

 
Fig. 2. Internal workflow of the SPICA development environment 
 
DSLs, of course, require us to create tools that interpret and transform models into concrete 
implementations. The corresponding tool developed for SPICA is the AAS Transformator 
(AASTra), covering the whole process from interpreting a model down to generating 
concrete source code. It follows a three-layered approach as shown in Fig. 2, representing 
the reduction of abstraction from the topmost down to the lowest level of modelling. The 
SPICA modelling language resides on the topmost layer named AAS; it represents the PIM 
in the context of Model-driven Development (MDD). On the second layer, an in-memory 
intermediate representation of the AAS models is generated which is referred to as the 
AASTra Intermediate Representation (AIR). Processing is carried out in two steps: First, the 
model is parsed and references are resolved. Afterwards, the model is processed and 
transformed into a representation more suitable for the final code transformation. Here, the 
consistency of the model is checked and the required non-trivial transformations are 
performed. Language compilers follow a very similar approach when transforming a 
language specification to assembler or executable binaries.  
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The actual code transformation is performed on the third layer. Here, a template engine 
keeps the transformation process very flexible and customizable. Templates can access to 
the AIR directly. Reoccurring patterns are encapsulated in smaller sub-templates. To reduce 
redundancy in the code, frequently used functionality is relocated to libraries. 
We will now introduce the SPICA modelling language along with all its sublanguages, 
starting with a description of common language features. 

 
4.1 Common Model Semantics 
 
4.1.1 Blocks 
Related statements are grouped together in logical blocks. Each such block has a type and a 
name. The body of the block is enclosed in curly braces. The example below outlines the 
general structure. 
 
<type> <name> [<inheritance spec>] [<annotations>] { 
 <body> 
} 

 
The type of such a block is given by one of the predefined keywords header, message, 
container, coord, or module. The first four keywords are belonging to MDL while the 
remaining one is part of DFDL. A type is followed by a name, an inheritance specification, 
and additional annotations. The optional inheritance specification is available in the MDL 
only. Annotations are lists of key-value pairs enclosed in square brackets; values may be 
omitted. They parameterize the respective elements and thus influence the code generation 
process. Annotations are supported in every sublanguage but are optional as well. 

 
4.1.2 Semantic Model 
In a heterogeneous distributed environment, where a-priori unknown systems have to 
communicate and interpret the exchanged data, it is essential to establish a common 
understanding of their semantics and representations. Therefore, the SPICA AAS language 
supports semantic annotation of data structures. The semantic model provides two types of 
classes: concepts and representations. A concept defines the conceptual appearance of an 
element while a representation defines its concrete representation. A base ontology defines 
fundamental concepts like ball or player, but also coordinate systems and representations 
such as physical units. It thus builds the foundation for an automatic conversion of 
representations, a conversion from mm to m, for instance. Due to the availability of 
coordinate system specifications defined with regard to a reference system also non-trivial 
operations like converting the representation from one coordinate system to another can be 
provided automatically. For even more complex tasks we also allow the definition of custom 
conversion methods in a way similar to (Strang et al., 2003). 
Semantic descriptions provided by third-parties may be used as well. The base ontology and 
third-party additions are managed by a simple, distributed storage system which supports 
retrieval or insertion of ontology classes in a lightweight manner. 
Two semantic annotations are created for all blocks in a SPICA model automatically if not 
specified explicitly: concept specifies the ontology class name while rep specifies the 
representation of the element. To reference a block type, its concept, or representation, the 
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reftype, refconcept, and refrep annotations are provided. The type reference replaces 
the other two. References to coordinate system are modelled using the refcoord 
annotation.  
Ontology classes such as concepts or representations are referenced using URNs. Unique 
URNs are assigned to elements implicitly, providing a reference name to their concept and 
representation. In order to allow for a compact specification the developer can use 
abbreviations to URN in terms of prefixes. The default prefix # references the SPICA URN 
namespace urn:spica. 

 
4.1.3 Variants 
Block variant identifiers have been introduced because several blocks with the same name 
may be defined. Variant identifiers are arbitrary strings representing the target AMR 
platform. They are appended to the block name, wrapped into angle brackets. If there is 
more than one target platform, it is possible to specify multiple variant identifiers delimited 
by colons. 
The existence of variant identifiers changes the automatic generation of concept and 
representation URNs for blocks. The following concept and representation URNs are 
created by default if no variant names are given: 
 
urn:spica:<type>:concept:<name> 
urn:spica:<type>:rep:<name> 
 
If a variant name is provided, the URNs read as follows: 
 
urn:spica:<variant name>:<type>:concept:<name> 
urn:spica:<variant name>:<type>:rep:<name> 

 
4.2 Message Specification 
As already outlined above, the concept of message-oriented communication is well suited 
for AMRs. This has several reasons: The network infrastructure of mobile autonomous 
system resembles the characteristics of mobile ad-hoc networks, so communication links are 
likely to exist only for a limited period of time. This is why a message-oriented and 
connection-less communication scheme has clear advantages over a connection-oriented 
one. Another reason stems from the communication behaviour of AMRs. As environmental 
monitoring and sensing are known to be mostly event-driven, message-oriented 
communication here directly reflects their characteristics. Messages may further get lost 
during transmission where a dependency to previous messages may average the usefulness 
of information.   
Based on these observations we created the MDL as a sublanguage of the SPICA modelling 
language. It is used to specify messages and containers for the SPICA communication 
infrastructure. The modelling concept is closely related to structure definitions in 
programming languages such as C, but offers more advanced features like single 
inheritance, dynamic arrays, and strings. It provides a set of commonly used primitive 
types. Complex types are containers in the SPICA context, which are made up of primitive 
types or other containers again. A customizable serialization and de-serialization interface 
allows arbitrary message encodings to be used. Support for automatic conversion of 
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message values is supported by augmenting the model with references to semantic concepts 
and representations.  
The objectives of ASN.1 and MDL are quite similar. However, ASN.1 lacks support for some 
fundamental techniques required by SPICA: It does not provide, for example, the 
mandatory concept of semantic annotations. In contrast, a custom modelling language like 
MDL may be designed in such a way that all required functionality is covered in a lean 
fashion. The specification support of MDL is sufficient for SPICA and we can easily extend it 
to our specific requirements.  
We will now describe the modelling entities of MDL in more detail, covering the definition 
of message headers and containers. Messages, as they represent a specialization and 
aggregation of these concepts respectively, are introduced afterwards. 

 
4.2.1 Headers 
A header specification represents a special form of container used only for structuring the 
fields of the message header. These fields are used to control the way a message is handled 
and processed. There is only one mandatory field in SPICA: A special field holds the type 
identifier of the message as messages are strongly typed. A unique identifier is generated 
automatically using a suitable hash function. Other, mostly optional control fields in the 
header include the endian flag or the message identifier. Message headers may have 
different variants and be derived from each other. Headers may not be instantiated. Every 
message must be derived from exactly one header. From this point of view, a header 
represents an abstract class in the context of object-oriented programming.  
The example below depicts the layout of a header specification using a minimal header with 
only one field identifying the type. A reference to the corresponding concept is required 
here to establish the meaning of the field. 
 
header MessageBase { 

uint16 type [refconcept=#message:concept:type]; 
} 

 
As outlined above, default context and representation URNs are assigned automatically. For 
this example they read urn:spica:header:concept:MessageBase and 
urn:spica:header:rep:MessageBase respectively. 

 
4.2.2 Containers 
Container specifications create composite types consisting of zero or more primitive or 
composite types. Containers may be derived through single inheritance from other 
containers. Compared to ordinary structures in C, instances of containers have the 
additional capability of being able to serialize and de-serialize themselves. Besides, they are 
not bound to the SPICA communication infrastructure only, but can be used as general 
purpose data structures as well. 
A container is similar to a header but differs in one point: headers are only used as 
supertypes for messages while containers may only be used as a part of the message body. 
The example below shows a simple container. It defines the field double d referencing a 
semantic concept as well as a representation. A unique type identifier based on the 
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representation URN is assigned to each container implicitly. The example further defines the 
container as being a variant of type cn. 
 
container Distance<cn> { 

double d [refconcept=#coord:distance, refrep=#rep:units:mm]; 
} 

 
The concept URN reads urn:spica:cn:container:concept:MessageBase; its 
representation counterpart urn:spica:cn:container:rep:MessageBase. Considering 
the referenced concept and the representation, the value of d is a distance measured in mm.  

 
4.2.3 Messages 
One header and zero or more containers make up a message. The specification of a message 
differs from that of headers or containers in two ways. First, the topmost message in the 
inheritance hierarchy must be derived from exactly one header definition, providing all the 
required header fields. A container contains an implicitly defined type identifier which, 
however, is not represented as a field. A header is thus not required for a container. The 
second point in which a message differs from a container is that no primitive types may be 
added to the payload of a message; only containers are allowed. The example below outlines 
the definition of a message. 
 
message DistanceMessage : MessageBase { 
  Distance<cn> dist; 
} 

 
4.2.4 Coordinate Systems 
In the area of AMRs, many containers are most likely to be used to store the position of 
some objects or observations in terms of their coordinates. In order to facilitate a correct 
interpretation of the fields of the corresponding container, the MDL also includes 
specification means to define coordinate systems. We include this modelling support into 
the MDL as it can be seen as additional semantic description of the containers – a container 
can reference a certain coordinate system. The specification of coordinate systems with 
regard to reference systems retains the freedom of choosing your own coordinate system 
and allow for automatic conversion between different ones.  
In our modelling approach we currently support three basic types of coordinate systems – 
Cartesian2D, Cartesian3D, and Polar2D – and two different views – ego and allo. 
Egocentric coordinates resemble the egocentric view of the robot, whereas allocentric 
coordinates resemble the view of an external observer of the field. For the different types of 
coordinate systems we have some predefined concepts like an x-coordinate 
(#coord:xcoord) or a distance (#coord:distance) indicating the distance of the object 
from the pole of an polar coordinate systems. For a correct interpretation of container fields 
they have to refer to such a predefined concept. 
In order to define a new coordinate system, the new origin, the axes (or a zero-ray for polar 
systems), and the view have to be specified. Some example specifications are shown in 
section 5. 
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4.3 Data flow Specification 
One intention of the SPICA modelling language is to describe the communication behaviour 
in groups of AMRs in an abstract and platform-independent fashion. AMRs are basically 
hardware agents that are asked to accomplish a job or mission, similar to software agents. 
Just as software agents, AMRs can be regarded as modules which are mostly independent 
from each other. They further initiate mutual communication to exchange information and 
to collaborate. This is why the Data flow Definition Language (DFDL) follows an inherently 
modularized approach. Each AMR may be made up of several modules that communicate 
with each other or other AMRs. Such a scenario can easily be modelled given a modular 
software architecture where modules are connected via network links. There is, in fact, no 
difference between local and remote modules. For local communication, however, more 
suitable communication schemes might be chosen whereas communication between robots 
should be based on proven network communication schemes.  
SPICA now introduces specification means for modelling data exchange between modules 
in an abstract manner. Modules are the main modelling entity here. For each module the 
requested as well as the offered message types have to be specified. At least one of the two 
options must be present; the module otherwise exhibits no functionality. For each 
communication direction – i.e. incoming and outgoing –DMCs are responsible for the 
management of messages and containers. They are used by the communication engine and 
by filters for passing data. Finally, the message transmission schemes have to be specified. 
They represent specific communication techniques tailored to the communication behaviour 
of AMRs. The block layout below outlines the basic structure of a module specification. 
 
module Communication { 
 offer { ... } 
 request { ... } 
 export { ... } 
} 

 
The offer, request, and export blocks will be introduced below in more detail. We will first 
start with the offer and request blocks that describe the basic communication structure of a 
module. The DMCs and transmission schemes are outlined thereafter. This section closes 
with the presentation of the description of filters incorporating the DADL sublanguage. 

 
4.3.1 Message offers and requests 
Let us now have a look at the specification of the most important parts of the module model. 
Offering and requesting messages is a fundamental functionality of MOM-based 
communication systems. In the DFDL model, offer blocks provide the information about 
offered, i.e. outgoing messages whereas request blocks deal with the reception of messages. 
Every message that is provided by a module has to be listed in an offer block using the 
message directive. Along with the name of the message the specification of a transmission 
scheme is mandatory as it determines in which way the given message is handled. Apart 
from that, DMCs are required as input buffers and as temporary data storage for filters. The 
example below outlines the structure of an offer block. 
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offer { 
 message DistanceMessage scheme ...; 
 dmc ...; 
} 

 
It has to be noted here that arbitrarily many message and dmc statements may be listed. 
The scheme keyword defines the transmission scheme to be applied here. A request block is 
specified in exactly the same way except that it is not mandatory to specify a transmission 
scheme. 
The relations between messages and DMCs are not explicitly modelled in the above 
example. It is, however, established automatically during model transformation. The next 
subsection will show how this can be accomplished. 

 
4.3.2 Data Management Containers 
Data Management Containers (DMCs) have been mentioned earlier already. They resemble 
data management structures for messages or containers in SPICA. They also perform basic 
synchronization tasks. The most important characteristic of the DMCs is the fact that each 
DMC is responsible for a specific semantic concept and a respective realization. This is 
where the relations between messages and DMCs are identified automatically. 
In request blocks the identification of relations even goes one step beyond: For each 
incoming message not only the message type but also the types of the enclosed containers 
are checked. If the semantic type of a message container conforms to the referenced semantic 
type of a DMC, it is added to this DMC automatically. The representation of the container is 
further adapted to the DMC’s representation if required. This way, further processing on the 
incoming data is possible in a very efficient manner. Irrelevant information is further 
discarded without manual intervention. 
DMCs are implemented as linear lists with characteristics specific to the application domain: 
message passing. Queues and ringbuffers are more elaborate instances of linear lists and 
well-known examples of data structures in this context. All DMCs exhibit a consistent 
interface through which elements can be added, accessed, or retrieved. The semantic of 
these operations depends on the actual parameterisation, though. The retrieval operation, 
for example, may change the number of elements in the DMC, i.e. remove the element in 
question, or leave it alone.  
The following DMCs with the stated characteristics are available in SPICA so far. More may 
be added if required. The size (size) and the management scheme (scheme) of a DMC may 
be changed using the appropriate annotations. 
list: A list implements the semantics of an ordered list using a fixed-size buffer space. If the 

buffer is full, no new elements may be added. Elements have to be removed explicitly. 
The management scheme defaults to FIFO. 

queue: A queue implements the semantics of an ordered list using a fixed-size buffer space. 
If the buffer is full, no new elements may be added. Elements are removed on retrieval 
except when using indexers. The management scheme defaults to FIFO. 

ringbuffer: A ringbuffer implements the semantics of an ordered, circular list using a fixed-
size buffer space as if it were connected end-to-end. If the buffer is full, the oldest 
element is overwritten if a new one is added. The management scheme defaults to LIFO. 

The generic annotations refconcept, refrep, and reftype as introduced earlier are 
supported by every DMC. They are required to specify the element type. 
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Arrays of DMCs are supported as well. The array semantic is, however, not quite as 
expected: A DMC array is managed in such a way that each array element is uniquely 
assigned to one specific system that attends the communication. Every array thus has the 
same number of elements in the array, each of which corresponds to the same system. The 
DMC of the local system is also contained in the DMC array and can be retrieved using a 
dedicated operation on the DMC.  
In order to complete the dmc statement in the example above, we will present a possible 
parameterization below. We will assume that a ringbuffer with only one element is used 
which accepts elements of the type DistanceMessage: 
 
dmc ringbuffer dist [type=DistanceMessage, size=1]; 

 
DMCs have been defined only in the context of the model so far. It is very likely that more 
than one DMC is used and only a subset of these need to be accessible from userspace. The 
DFDL provides the export block for this purpose. DMCs that have to be visible from 
userspace only have to be added to the export block. The example below illustrates this. 
 
export { dist; } 

 
4.3.3 Transmission Schemes 
Transmission schemes fulfil another very important task especially for offering messages. 
Data transmission in groups of AMRs is assumed to be very dynamic. Locations of modules 
local to a system are normally not subject to change but the location of modules on remote 
systems: Robots may join or leave a group spontaneously; other types of systems may 
appear and disappear in the same way. 
This is why SPICA introduces the concept of transmission schemes for establishing 
communication links. In contrast to ordinary socket-based communication establishment, 
these schemes exhibit a special behaviour which is tailored to the dynamic communication 
behaviour of AMRs. For local modules, a static scheme that does not change its endpoints is 
sufficient as it can do without the overhead for dynamic binding. For ad-hoc communication 
with remote systems, however, heartbeat techniques are tried and tested. This is especially 
true for unreliable environments. Three schemes are outlined below which implement the 
requested characteristics of static and dynamic binding. It has to be noted here that only 
messages may be sent. Containers have to be wrapped in messages for this purpose. 
static: The static transmission scheme is a one-to-one communication scheme which 

supports local communication characteristics. Basically, two modules are bound together 
statically. The location of communication partner must not be subject to change. It is not 
possible to change the communication endpoints during runtime. The module 
annotation is used by the sender to reference a destination module. 

announce: The announce transmission scheme is a one-to-many communication scheme. 
The sender announces the availability of a data source to which one or more interested 
receivers can listen to. This scheme implements the heartbeat technique: The sender 
provides an alive-signal which contains the respective endpoints of the data source. This 
information is used by interested receivers to listen to the data source. The heartbeat 
annotation is used by the sender to specify the interval for the alive-signal. 
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request: The request transmission scheme is a one-to-many communication scheme. It is 
similar to announce but implements a variant of a publish-subscribe protocol. The 
sender again announces the availability of a data source but without immediately 
starting the transmission: It is triggered once at least one receiver is available. Receivers 
have to emit subscription heartbeats that inform the sender of the availability of an 
interested party. It depends on the endpoints provided by the receivers and on the 
number of receivers where and how the sender directs the data to. The heartbeat 
annotation is used to specify the interval for the alive signal for the sender as well as the 
receiver. 

There are some annotations that are available for every transmission scheme. They basically 
resemble event processing capabilities: Transmission schemes must be either able to send 
messages periodically or after some events occurred. These annotations may be used both at 
the same time. The interval annotation is used to specify if a transmission should be 
triggered periodically. With the on annotation, the transmission scheme reacts on the events 
given in the annotation value. 
In order to complete the scheme statement in the example above, we will present a possible 
parameterization below. We will assume that the announce scheme is used which sends 
messages with 30 Hz: 
 
message DistanceMessage scheme announce [interval=33ms]; 

 
4.3.4 Filters 
In the previous sections we introduced the MDL and the DFDL which allow us to realize 
communication infrastructures for heterogeneous groups of AMRs. The modules defined in 
DFDL exchange messages, adjust the representation of received data if required, and store 
the information into appropriate DMCs automatically. However, in order to also facilitate 
the development of a collaboration infrastructure in terms of a cooperative world model, we 
have to go beyond this: it must be possible to interpret the exchanged data and perform 
arbitrary calculations on them. For this purpose, we introduce the Data-Analysis Description 
Language (DADL). The design of the language and its modelling elements is based on the 
following observations. 
The realization of a cooperative world model first requires data to be collected from the 
different robots in the group, which must then be combined to a consistent world view. 
Here, the impreciseness of the observations – which is mainly due to the physical limitations 
of the sensors used – has to be taken into account. For this purpose approaches for 
probabilistic state estimation are commonly applied, such as e.g. Bayesian Filtering (Aström, 
1965; Fox et al., 1999; Thrun et al., 2000) and derivates like Kalman-Filtering (Kalman, 1960) 
or Particle Filters (Handshin & Mayne, 1969; Akashi & Kumamoto, 1977). In order to deal 
with uncertainty a number of different approaches are available: Dempster-Shafer theory 
(Dempster, 1968; Shafer, 1967), Bayesian Inference (Pearl & Kaufmann, 1988), and Fuzzy sets 
(Zadeh, 1978), to mention only some. In most cases, however, the implementation of these 
approaches is non-trivial and time-consuming. Therefore, we tried to identify frequently 
used patterns for which appropriate predefined filters are included in the DADL. 
Especially in the area of Computer Vision but also in robotics, Matlab 
(http://www.mathworks.com/) is widely used for rapid prototyping. Matlab is a numerical 
computing environment and programming language, designed to efficiently deal with 
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matrices and operations on them. When dealing with arrays or lists it provides a very 
compact syntax and elaborate indexing methods. Therefore, we decided to adopt a Matlab-
like syntax for specifying the algorithms needed to perform calculations on the exchanged 
data. 
The main modelling element in DADL is a filter block because all calculations on exchanged 
data are considered as a form of filtering operation in SPICA. The basic structure of a filter 
block depends on whether a predefined filter pattern or a custom filter is required. We will 
first discuss the predefined filter patterns. Afterwards the custom filters are introduced. 
The structure of a predefined filter patterns is given below. 
 
filter <name> { 
 <spec for the result DMCs> 
 predefined <filter type> <annotations> { 
  <additional input specs> 
 } 
} 

 
A filter specification starts with a list of DMCs that store the results of the calculations. They 
are defined in exactly the same way as the DMCs for offer or request blocks in a module. 
They are furthermore globally accessible, can be referenced throughout the module and in 
other filters. So, it is possible to specify whole filter chains. 
The actual specification for predefined patterns only includes the filter type and associated 
annotations. The annotations contain basic parameters for the filter and specify when the 
filter is triggered, similar to the annotations of the transmission schemes described above. 
The input for the predefined filter is specified in its body. It has to be noted here that it 
depends on the type of predefined filter which DMCs have to be provided for input and 
output. However, the SPICA framework is able to investigate the container for fields that 
correspond with the expected concepts and to associate them to the inputs and outputs of 
the filter. 
Currently three predefined patterns are available to be used for data-fusion: Kalman-Filter 
(KF) (Kalman, 1960), Multi-Hypothesis-Kalman-Filter (MHKF) (Reid, 1979), and Simple-Multi-
Hypothesis-Estimation (SMHE). 
A KF is an approach for probabilistic state estimation that can be used to fuse data that 
represent observations on the field in terms of their Cartesian coordinates. It can also be 
utilized for object tracking and velocity estimation. However, it should be guaranteed that 
all the data to be fused correspond to the same object, i.e. the KF is not able to deal with false 
positives. The KF pattern can be parameterized in several ways. For example, it can be 
configured to realize a linear or a non-linear KF. In addition, it can be specified if the 
velocity of the observed objects should be taken into account and estimated and if the 
filtering should be iterative or non-iterative. 
MHKF is an extension of the KF that is able to deal with false positives, i.e. not all 
observations must belong to the same object. For this purpose, the observations are forming 
a set of hypothesis for the object state and for each hypothesis a separate KF is applied. The 
pattern can be configured in the same way as the KF pattern. 
SMHE is a simplification of the MHKF used in the Carpe Noctem software framework. It 
focuses on the multi-hypotheses tracking and avoids the complexity of MHKF through 
applying some heuristics. The pattern can be parameterized for an iterative or a non-
iterative filtering.  
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We also intend to provide some predefined patterns to estimate situations based on the 
evidence for hypotheses. Here, Bayesian Inference and Dempster-Shafer theory will be 
applied. However, work on this is in a very preliminary state and therefore detailed 
descriptions are omitted here.  
Custom filters are specified in a filter block as shown below: 
 
filter <name> { 
 <spec for the result DMCs> 
 call <annotations> { 
  <filter body> 
 } 
} 

 
As with the predefined filters, the block for a custom filter starts with the specification of the 
result DMCs. In contrast to predefined filters, no special rules have to be followed here; the 
most appropriate DMCs can be chosen to store the results of the calculations. Annotations 
are used here as well to specify the way a filter is triggered. The filter body is a collection of 
statements in the Matlab-like DADL syntax, supporting arbitrary calculations on the DMCs.  
From the Matlab programming language we have adopted – among other things – the 
following concepts: 

 implicit typing 
 control statements like for-loops, while-loops and if-conditions 
 basic arithmetic and logical operations 
 definition of matrices and vectors 
 matrix operations  
 array and matrix indexing methods 
 a basic set of functions like min, max, cos, sin, tan, atan, atan2, sqrt, that 

accept also matrices as input values, perform the calculations per element, and may 
return matrices as well. 

In addition to these concepts, MDL containers and DMCs are seamlessly integrated into the 
DADL language. DMCs can be indexed just like arrays in Matlab. We also allow calling 
methods on DMCs as, for example, to create or delete an element. The containers are 
accessed in the same way as structures in Matlab or in other common programming 
languages. Due to space limitations, we do not present the whole specification support 
provided by the DADL for the definition of custom filters here. In section 5, however, two 
custom filters are presented.  

 
5. Evaluation and Results 
 

In this section, we demonstrate the applicability of our approach. We show how the SPICA 
development environment was used to realize communication and collaboration in a mixed-
team of soccer robots involving two heterogeneous platforms. For this purpose, we return to 
the scenario that was already outlined in section 2: A mixed-team formed by the Ulm 
Sparrows ( referred to as US) – and Carpe Noctem  (referred to as CN).  
In our example, SPICA is used to establish a communication infrastructure bridging the gap 
between the two software frameworks. Afterwards, we show how SPICA facilitates the 
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development of a cooperative world model which is used to agree on a common ball 
position within the team and to realize a basic role assignment of the robots.  
The cooperative world model can be realized either in a centralized or decentralized way. In 
a centralized scenario, the robots would share information with only one leading robot 
acting as hub or data sink. In the decentralized approach, AMR exchange information 
directly with all their team-mates in a peer-to-peer fashion. There is no designated data sink 
to which all data is sent to, but all systems process the provided information on their own. 
Each robot can so decide which piece of information is important and should be further 
processed.  
We decided to go for the decentralized approach, as during the last RoboCup tournaments it 
has shown to be better suited and less error-prone. This is mostly because robot systems are 
likely to crash once or several times during a match due to hardware or software failures. 
Therefore, a team with one leading robot that coordinates the cooperative behaviour should 
be avoided. Besides, according to our experiences the network infrastructure at RoboCup 
tournaments is quite unreliable, bandwidth is scarce and the network is sometimes not 
available at all. For these reasons, we base our communication infrastructure on IP 
multicast, as it facilitates our decentralized approach and, as a connection less 
communication scheme, it is also not affected by an unreliable network with regard to 
blocking issues.  
 

 
Fig. 3. System architecture of the mixed team “Ulm Sparrows and Carpe Noctem” 
 
Fig. 3 provides a basic overview of the system architecture. Each of the robots of the Ulm 
Sparrows, depicted by a circle, and of Carpe Noctem, depicted by a triangle, runs an 
instance of the corresponding software framework which integrates two SPICA-generated 
modules, namely Communication and SharedWorld. The Communication module of 
the Ulm Sparrows is responsible for sending a SharedWorld message to the multicast 
group, containing the detected ball position and the robot’s position on the field. In contrast, 
the Communication module of Carpe Noctem provides a separate BallMessage for the 
ball position and a RobotPosMessage for the robot’s position on the field. Here, it is 
assumed that it fits more into the existing framework to send one combined message or two 
separated messages, respectively. The SharedWorld modules of the Ulm Sparrows and 
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Carpe Noctem have identical functionality: receiving the messages from all the team-mates, 
fusing the ball information to an agreed ball position and calculating a basic role 
assignment. Therefore, this module has to be specified only once and is generated for the 
two different target platforms: C++ for the Ulm Sparrows and C# for Carpe Noctem.  
In the following paragraphs, we show how this architecture can be specified and realized 
with the help of the SPICA development environment. First, we start with the definition of 
messages, containers and the coordinate systems used by these two teams.  
 

 
Listing 1. Definition of the containers 
 
Listing 1 shows the specification of the containers that have to be defined for our 
communication and collaboration infrastructure. The listing includes two variants of the 
BallPosition container, one for Carpe Noctem and one for the Ulm Sparrows. Both 
containers refer to the concept #concept:BallPosition, but different representations 
corresponding to different coordinate systems are used. Carpe Noctem represents the 
position of the ball in an egocentric Cartesian coordinate system 
(#cn:coord:Cartesian2D), whereas the Ulm Sparrows use an egocentric polar 
coordinate system (#us:coord:Polar). For both containers the covariance matrices, 
representing the uncertainty of the observations with regard to the corresponding 
coordinate systems, are defined. In addition, the BallPosition container of Carpe Noctem 
also includes a field indicating the probability of the observation to be correct. The 
AlloBallPosition container of Carpe Noctem has the same fields as the Carpe Noctem 
BallPosition container, however refers to an allocentric coordinate system 
(#coord:cn:AlloCartesian2D). Besides, the RobotPosition container definition is 
identical to Carpe Noctem and the Ulm Sparrows. It is noteworthy here that the semantic 
annotation of containers can be considered as just a way of commenting, but of course with 
some guidelines. 

container BallPosition<cn> [refconcept=#concept:BallPosition, 
refcoord=#cn:coord:Cartesian2D] { 

 double x [refconcept=#coord:xcoord, refrep=#rep:units:mm]; 
 double y [concept=#coord:ycoord, refrep=#rep:units:mm]; 
 double probability [refconcept=#refconcept:propability, 

refrep=#rep:units:pct01]; 
 cov(x, y) cov; 
} 
container AlloBallPosition<cn> : BallPosition<cn> 

[refcoord=#cn:coord:AlloCartesian2D]; 
container BallPosition<us> [refconcept=#concept:BallPosition, 

refcoord=#us:coord:Polar] { 
 double d [refconcept=#coord:distance, refrep=#rep:units:mm]; 
 double alpha [refconcept=#coord:angle, refrep=#rep:units:deg]; 
 cov(d, alpha) cov; 
} 
container RobotPosition<cn,us> [refconcept=#concept:RobotPosition, 

refcoord=#coord:Cartesian2D] { 
 double x [refconcept=#coord:xcoord, refrep=#rep:units:mm]; 
 double y [refconcept=#coord:ycoord, refrep=#rep:units:mm]; 
 double heading [refconcept=#coord:heading, refrep=#rep:units:deg]; 
 cov(x,y,heading) cov; 
} 
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Listing 2. Definition of the coordinate systems 
 
Listing 2 shows the specification of the coordinate systems used by Carpe Noctem and the 
Ulm Sparrows. As already mentioned above, the coordinate systems are described by 
providing values for predefined concepts like the view, the axis and the origin (pole) of the 
coordinate system with regard to the reference systems. 
 

 
Listing 3. Definition of the messages 
 
With the help of these specifications the framework is able to provide the appropriate 
transformations between the representations in different coordinate systems automatically. 
Here, the development environment also deals with automatic conversions between the 
measurement units as well as with automatic transformation of the covariance matrices. As 
now the specification of all needed containers and of the coordinate systems are available, 
the corresponding messages can be defined as shown in Listing 3. 
As depicted in the overview of the architecture, we have to define a SharedWorldMessage 
for the Ulm Sparrows that includes a BallPosition and a RobotPosition. The 
communication module of Carpe Noctem provides the same kind of information but in two 
separate messages: BallMessage and RobotPosMessage. 
 

message SharedWorldMessage<us> : MessageBase { 
 BallPosition<us> ballPos; 
 RobotPosition<us> robotPos; 
} 
message BallMessage<cn> : MessageBase { 
 BallPosition<cn> ballPos; 
} 
message RobotPosMessage<cn> : MessageBase { 
 RobotPosition<cn> robotPos; 
} 

coord Cartesian2D<cn> [refconcept=#coord:Cartesian2D] { 
 origin = (0.0, 0.0) [refconcept=#coord:origin, rep=#rep:units:mm]; 
 xAxis = (1.0, 0.0) [refconcept=#coord:xaxis, rep=#rep:none]; 
 yAxis = (0.0, 1.0) [refconcept=#coord:yaxis, rep=#rep:none]; 
 view = ego [refconcept=#coord:coordView, rep=#rep:coord:coordView]; 
} 
coord AlloCartesian2D<cn> [refconcept=#coord:Cartesian2D] { 
 origin = (0.0, 0.0) [refconcept=#coord:origin, rep=#rep:units:mm]; 
 xAxis = (1.0, 0.0) [refconcept=#coord:xaxis, rep=#rep:none]; 
 yAxis = (0.0, 1.0) [refconcept=#coord:yaxis, rep=#rep:none]; 
 view = allo [refconcept=#coord:coordView, rep=#rep:coord:coordView]; 
} 
coord Polar<us> [refconcept=#coord:Polar2D] { 
 pole = (0.0, 0.0) [refconcept=#coord:pole, rep=#rep:units:mm]; 
 zero_ray = (1.0, 0.0) [refconcept=#coord:zero_ray, rep=#rep:none]; 
 view = ego [refconcept=#coord:coordView, rep=#rep:coord:coordView]; 
} 
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Listing 4. Definition of the Communication modules 
 
Now we can start with the definition of the modules of our architecture. The specifications 
of the Communication modules for the two teams are shown in Listing 4. The 
Communication module of the Ulm Sparrows offers a SharedWorldMessage using the 
announce scheme, when a new message is placed into the ringbuffer. In contrast, the 
Communication module of Carpe Noctem is defined to offer the two messages, 
BallMessage and RobotPosMessage, each of which is sent with 10Hz. In order to allow 
other parts of the software framework to access the message DMCs, they are included into 
the export block in both modules.  
 

 
Listing 5. Definition of the SharedWorld module 
 
As the SharedWorld module provides a more complex functionality – receiving messages, 
fusing the exchanged data and calculating a role assignment – we show the corresponding 

module SharedWorld<cn,us> { 
 request { 
  message SharedWorldMessage<us>; 
  message RobotPosMessage<cn>; 
  message BallMessage<cn>; 
  dmc ringbuffer[] balls [concept=#concept:BallPosition, 

rep=#cn:container:rep:BallPosition, size=10, ttl=5s]; 
  dmc ringbuffer[] robots [concept=#concept:RobotPosition, 

rep=#cn:container:rep:RobotPosition, size=10, ttl=5s]; 
 } 
 filter ego2Allo { ... } 
 filter calculateSharedBall { ... } 
 filter calculateRoleAssignment { ... } 
 export { ... } 
} 

module Communication<us> { 
 offer { 
  dmc ringbuffer sharedWorld [type=SharedWorldMessage<us>, size=1]; 
  message SharedWorldMessage<us> scheme announce 

[on=sharedWorld.new"]; 
 } 
 export { sharedWorld; } 
} 
module Communication<cn> { 
 offer { 
  dmc ringbuffer ballMessage [type=BallMessage<cn>, size=1]; 
  dmc ringbuffer robotPosMessage [type=RobotPosMessage<cn>, size=1]; 
  message BallMessage<cn> scheme announce [period=100ms]; 
  message RobotPosMessage<cn> scheme announce [period=100ms]; 
 } 
 export { 
  ballMessage; 
  robotPosMessage; 
 } 
} 
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specification in several steps. Listing 5 provides a general overview of the description and 
focuses on the request block for receiving messages. 
The module is defined to receive the messages SharedWorldMessage from Ulm Sparrows 
robots, and the RobotPosMessage and the BallMessage from Carpe Noctem robots. 
DMC arrays are specified to be filled with the BallPosition 
(#concept:BallPosition) and RobotPositions (#concept:RobotPosition) 
containers for each of the robots in the team. The corresponding information is 
automatically extracted from the messages named above. 
In order to realize the functionality of calculating the agreed ball position and a basic role 
assignment, we have to define filters that are able to process the data collected in the DMCs 
or more precisely DMC arrays. The BallPosition containers are represented with regard 
to an egocentric coordinate system, so we first have to transform the data into an allocentric 
representation. A common allocentric view is a prerequisite to fuse data about observations 
collected by a group of robots. This is the purpose of the filter ego2Allo. The 
corresponding specification is shown in Listing 6. 
 

 
Listing 6. A filter performing the transformation from egocentric to allocentric view 
 
First, the filter defines a ringbuffer array named alloBalls that stores the allocentric ball 
positions (#concept:BallPosition) in the representation AlloBallPosition 
(#cn:container:rep:AlloBallPosition) for each of the robots in the team. 
Afterwards, the body of the filter is defined. It is called every time a new ball position is 
available. The filter fetches the index of the corresponding ball DMC in the array which 
represents the number of the respective player in the team. Then variables are declared and 
initialized with the robot’s last position on the field. To this position the egocentric ball 
position rotated by the heading of the player on the field is added. Now a new container is 
added to the array and initialized with the coordinates of the allocentric ball position 
calculated above. At the end of the filter body, the field for the covariance matrix is 

filter ego2Allo { 
 dmc ringbuffer[] alloBalls [concept=#concept:BallPosition, 

rep=#cn:container:rep:AlloBallPosition, 
size=10]; 

 call [on=balls.new]{ 
  index = balls.changedIndex(); 
  heading = robots(index).last.heading; 
  alloX = robots(index).last.x; 
  alloY = robots(index).last.y; 
 
  alloX = alloX + cos(heading)*balls(index).last.x – 

sin(heading)*balls(index).last.y; 
  alloY = alloY + sin(heading)*balls(index).last.x + 

cos(heading)*balls(index).last.y; 
  alloBalls(index).new; 
  alloBalls(index).last.x = alloX; 
  alloBalls(index).last.y = alloY; 
 
  //Calculate and assign transformed covariance matrix 
  alloBalls(index).last.cov = ... ; 
 } 
} 
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assigned. Due to space limitation the corresponding transformation was left out. However, 
as just a rotation of the matrix is required, the transformation can be specified in basically 
the same way as the rotation of the egocentric ball coordinates.  
 

 
Listing 7. An MHKF for the agreed ball position 
 
All ball positions are now available in a common allocentric view, thus we can apply a 
Multi-Hypothesis-Kalman-Filtering (MHKF) to fuse the information and keep track of 
different hypothesis of the ball position on the field. In our case, the agreed position can be 
determined as the position hypothesis with the highest probability. Listing 7 illustrates how 
the corresponding MHKF can be included into the specification.  
 

 
Listing 8. A filter for calculating the role assignment 
 

filter calculateSharedBall { 
 dmc list sharedBall [concept=#concept:BallPosition, 

rep=#cn:container:rep:BallPosition];  
 predefined MHKF [period=100ms, iterative, linear, staticObject] { 
  input = alloBalls(:).last; 
 } 
} 

filter calculateRoleAssignment { 
 dmc ringbuffer[] roles [concept=#concept:Role, rep=#rep:string, 

size=1, init="None"];  
 call calculateRoleAssignment [period=100ms]{ 
  [maxProb, maxIndex] = max(sharedBall.probability); 
  teamBall = sharedBall(maxIndex); 
  ballDistances = sqrt((robots(:).last.x - teamBall.x).^2 + 

(robots(:).last.y - teamBall.x).^2); 
  [minBallDist, AttackerIndex] = min(ballDistances); 
  roles(AttackerIndex) = "Attacker"; 
 
  minXPos = 20000.0; 
  minIndex = -1; 
 
  for i = 1:teamsize() 
   if(roles(i) == "None" && robots(i).last.x < minXPos) 
    minXPos = robots(i).last.x; 
    minIndex = i; 
   end; 
  end; 
 
  roles(minIndex) = "Defender"; 
 
  for i = 1:teamsize() 
   if(roles(i) == "None") 
    roles(i) = "Supporter"; 
   end; 
  end; 
 } 
} 
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The filter calculateSharedBall uses a list named sharedBall to store the hypothesis 
for the ball positions returned by the MHKF. The probability of the hypothesis is 
automatically assigned to the corresponding field in the container which is determined by 
the associated concept #concept:probability. The MHKF is iteratively applied with 
10Hz. The options linear and staticObject indicate that a linear Kalman-Filter is used 
and that no velocity of the object should be estimated and the velocity is not considered 
when applying the motion model. Of course, the MHKF also has to know which data it has 
to work on. The input of the Kalman-Filter is given as the last observed allocentric ball 
positions of all the robots in the team. 
Listing 8 shows the specification of the filter calculateRoleAssignment. As for all 
filters, the definition starts with creating a DMC or DMC array to store the results of the 
filtering. Here a ringbuffer array named roles is defined to store the roles of all the robots 
(#concept:Role). Each array element is a ringbuffer that contains exactly one element of 
type string that is initialized with the string “None”. At the beginning of the filter body the 
index of the shared ball hypothesis with the highest probability is calculated using the max-
function. This index is used to store the corresponding shared ball hypothesis in teamBall. 
Afterwards, the distances of the robots to the team ball are calculated and the index of the 
player nearest to the ball is determined. The following line associates the role “Attacker” 
with it. Next, we determine the player which is nearest to the own base line – indicated by 
the minimal x-coordinate of the corresponding robot position – and has no role associated 
yet. This is achieved by using a for-loop and an appropriate if-condition. Afterwards, the 
resulting player gets the role “Defender”. All remaining players are associated with the role 
“Supporter”, which is also done using a for-loop. 
Now the specification of the SharedWorld module is nearly complete. Only the DMCs 
sharedBall and roles have to be exported, in order to make them available for access 
from other parts of the underlying software framework (not shown here). 
With the help of all theses specifications, the SPICA development environment is able to 
generate source code for the whole communication and collaboration infrastructure. For this 
purpose, the AASTra tool has to be told about the target platform the modules and data 
structures should be generated for, and the desired communication scheme (IP multicast) 
has to be configured. After the transformation, the resulting modules and classes can easily 
be integrated into the underlying communication frameworks. Only an instance of the 
generated module has to be created as a singleton and the DMCs can be accessed by the 
generated API.  
Listing 9 illustrates the corresponding source code fragments for integration into the Carpe 
Noctem framework in C#. First, a callback method GetSharedBallHypotheses is 
defined. It is called when the sharedBall DMC of the SharedWorld model has been 
changed. This is the case, every time the MHKF has finished an iteration. In this simple 
example, the method just writes all hypotheses to the console. Afterwards, an instance of the 
SharedWorld module is created and the callback is added as a delegate to the Changed-
event of the SharedBall property for the respective DMC. The following line shows how 
the role of the current robot can be accessed (MyBuffer returns the DMC of the current 
robot from the DMC array). The rest of the source code fragment creates an instance of the 
Communication module, creates a new BallMessage, initializes its fields, and adds it to 
the corresponding DMC. The transmision of the message is handled by the 
Communication module as specified above. 
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Listing 9. C# fragment showing the integration of SPICA-generated code 

 
6. Related Work 
 

Research on robot software architectures in the past mostly focused on middleware 
frameworks for autonomous robot development. Abstraction layers in this approach 
simplify access to robotic hardware and make it more convenient to use. By adding abstract 
interface definitions and APIs, modular programming is promoted. 
Our approach shifts the focus right to the development process, a conceptually even more 
abstract level. We address the way systems have to be developed and the question what has 
to be implemented. The goal is to make the development process and the implementation 
more platform-independent, enabling the developer to focus on the actual functionality 
rather than bothering with characteristics of the platform. Our development environment 
for robotic software neither has hard dependencies on hard- or software architectures nor on 
operating systems. We provide modelling facilities that are focused on the respective 
program domain such as multi-party interaction or distributed sensor fusion. By combining 
ideas from the model-driven development movement with lessons learned from the 
development of middleware frameworks, a powerful development tool chain is provided. 
As robotic systems are normally quite reactive and the system configuration is likely to be 
modified during the development process, one key requirement is the ability to incorporate 
new or existing components into the given software architecture. Furthermore, especially 
AMRs have to be able to use heterogeneous hardware devices, cope with physical 
variability in measurement, and bypass architectural mismatches. Several approaches have 

using Spica.Modules; 
using Spica.Messages; 
 
... 
 
protected void GetSharedBallHypotheses(Module m) { 
 SharedWorld sw = (SharedWorld)m; 
 
 Console.WriteLine("SharedBall Hypotheses: {0}", 
  sw.SharedBall.ToString()); 
} 
 
SharedWorld sw = SharedWorld.GetInstance(); 
 
sw.SharedBall.Changed += GetSharedBallHypotheses; 
 
Console.WriteLine("Own Role: {0}", sw.Roles.MyBuffer.Last); 
 
Communication c = Communication.GetInstance(); 
 
BallMessage bm = new BallMessage(); 
 
bm.BallPos.X = 1000.0; 
bm.BallPos.Y = 1000.0; 
bm.BallPos.Certainty = 1.0; 
 
c.BallMessage.Add(bm); 
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been proposed in the last years which try to provide suitable solutions or address similar 
problems in other related areas. A range of solution and projects is outlined below. 

 
6.1 Middleware Frameworks 
Several middleware frameworks utilize the concept of abstraction layers to ease the 
development of robotic software in a heterogeneous environment. 
MARIE (Mobile and Autonomous Robotics Integration Environment) (Côté et al., 2006) is a 
middleware framework for robots that targets the development and integration of software 
components. It provides the Mediator Interoperability Layer (MIL), a design pattern that 
offers a common interaction language for components in the system. MARIE itself is written 
in C++ for UNIX environments. CLARAty (Coupled Layer Architecture for Robotic 
Autonomy) (Volpe et al., 2001) is an object-oriented framework for robotic systems which 
focuses reusability and integration of algorithms and components. It basically reduces the 
software hierarchy to two layers, a decision and an execution layer; realizations of 
functional requirements can be integrated into the decision layer while the execution layer is 
not affected. Another object-oriented framework for robotic applications is MIRO 
(Middleware for Robots) (Utz et al., 2002). It provides abstraction from system-specific 
implementations and is based on the ACE/TAO (Schmidt et al., 1997) framework. A device 
layer features hardware abstraction and takes care of the operating system integration. A 
communication layer offers services required in distributed systems. A Service Layer finally 
provides abstractions for sensors and actuators by decoupling the device interfaces from the 
driver implementations. 
Similar to MIRO where skeletons for sensors and actors can be described using an Interface 
Definition Language (IDL), the Reconfigurable Context-Sensitive Middleware (RCSM) (Yau 
et al., 2002) uses a newly defined IDL to specify context requirements. It is a middleware 
framework supporting the development of context-aware applications focusing on 
spontaneous interactions. Application skeletons are generated from the IDL specifications 
which interact with the RCSM Object Request Broker (R-ORB), the context management 
processor in RCSM. 
The Pervasive Autonomic Context-aware Environments (PACE) (Henricksen et al., 2005) 
middleware provides tools for validating context models, generating stubs for different 
languages, and accessing context from different programming languages and platforms. It 
provides a context management system (CMS) with a distributed set of content management 
repositories. The queries to the CMS can be placed using RMI or automatically generated 
stubs, for example.  
In contrast to the approaches outlined above, SPICA is no middleware framework but a 
development environment aiming at platform-independent specifications and automatic 
code generation. Therefore, we address a conceptually different level. Besides, its flexible 
code generation system easily adapts to new target languages and we focus on a convenient 
modelling and on lean generated code.  
AMQP (Advanced Message Queuing Protocol) (http://www.amqp.org/) is an open 
standard messaging middleware. It was developed first off to meet the needs of investment 
banks, employing a network-friendly, binary protocol. Similar to the DMCs used in SPICA, 
AMQP provides queues to accomplish a store-and-forward semantic. Message routing and 
delivery is due to centralized message broker systems. 
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The implementation generated by SPICA exhibits MOM characteristics, as well. In contrast 
to AMQP, however, SPICA also supports decentralized peer-to-peer techniques. 

 
6.2 Development Environments 
A quite different approach is followed by the Microsoft Robotic Studio 
(http://msdn.microsoft.com/robotics/). It is a development environment for robotics that 
targets different robot platforms. It builds on the .NET framework and offers a runtime as 
well as a powerful simulation environment. Besides the programming languages available 
in .NET, a so-called Visual Programming Language may be used for development of robotic 
software. Therefore, it can be considered as a model-driven software development 
approach. CoSMIC (Component Synthesis using Model-Integrated Computing) (Gokhale et 
al., 2003; Balasubramanian et al., 2005) is another development environment which follows 
the paradigm of MDD. It is a collection of domain-specific modelling languages and 
generative tools for the development, configuration, deployment, and validation of 
distributed component-based real-time systems. 
Both approaches are similar to SPICA. The Microsoft robotics studio targets rapid 
development of robot control software but focuses more on prototyping than on efficient 
and domain-adapted solutions. CoSMIC is a complex, model-driven approach that follows 
very similar goals. In contrast, our approach aims to be lightweight and allows for rapid 
development and easy integration.  

 
6.3 Context Management Systems 
In the area of context-aware computing applications and middleware services use 
information about their execution environment to adapt their functional and non-functional 
behaviour for appropriate quality of service in every situation. For this purpose, context 
management systems are required which collect context information and make them 
accessible for adaptation reasoning. However, in a pervasive computing environment it is 
very likely that context information originate from heterogeneous sources. Therefore, many 
research activities addressing the development of context management systems also focus 
on heterogeneity issues. Examples are RCSM and PACE already mentioned above, but also 
the Context Toolkit (Salber et al., 1999), CoCo (Buchholz et al.) and CoBrA (Chen et al., 
2003). While RCSM and PACE aim at providing an infrastructure to integrate heterogeneous 
context providers, the Context Toolkit, CoCo, and CoBrA focus on the interpretation of 
context information from heterogeneous sources. In particular, CoCo and CoBrA are related 
to our approach as they claim the necessity of using ontologies to establish a common 
understanding of the semantics of context information and their representations. However, 
here it has to be distinguished between approaches using ontologies for runtime reasoning 
and for code generation purposes as in our case. Our approach also has many similarities to 
the Context Ontology Language (CoOl) already mentioned above, as they also deal with 
different representations and define operations to convert between them. However, in our 
approach the operations for conversion are not defined explicitly, but we aim at 
automatically deriving the conversion methods from the definition of coordinate systems 
and references to measurement units. 
In general, the development of a cooperative world model has many similarities to the 
development of context management systems. Here too, information about the current 
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environment, like the ball position, player position etc., has to be collected and calculations 
have to be performed on them. In the area of context aware computing this is referred to as 
context reasoning. There are also some approaches providing development support and 
patterns for context reasoning. An example is the work done by Chen et al. (Chen et al., 
2004). They propose the use of Context Fusion Networks (CFNs) to provide data fusion 
services with regard to the aggregation and interpretation of sensor data to context-aware 
applications.  

 
7. Conclusion and Future Work 
 

Because of the lack of standard software, which prompts every RoboCup team to develop its 
own software framework, heterogeneity issues play a decisive role. They cause several 
problems when establishing a mixed-team of soccer robots involving different hardware 
and software platforms. 
In order to cope with theses issues, we presented SPICA, a development environment for 
communication and collaboration infrastructures for heterogeneous teams of soccer robots. 
In SPICA, we have adopted a model-driven development approach which is naturally very 
appropriate to cope with heterogeneity. One of its basic paradigms is the platform-
independent specification of software allowing automatic generation of source code for 
different platforms. Accordingly, SPICA provides a modelling language and tools 
facilitating the specification of communication and collaboration infrastructures as well as 
the automatic transformation of the resulting models into source code. 
The SPICA modelling language consists of three domain-specific sublanguages, which are 
tailored to different aspects of the infrastructure. The MDL allows the specification of 
messages and containers along with their representations. The DFDL provides specification 
means for module stubs, the data flow between them, and for their data management 
capabilities. In order to allow a flexible filtering of data and to support the creation of a 
cooperative world model, the DADL was developed. It is a general purpose language for 
calculations on the exchanged data and also provides some predefined patterns for data 
fusion. As illustrated in a detailed example, the development effort for a team-play in 
heterogeneous teams of soccer robots can be reduced significantly with the help of SPICA. 
The generated source code can be integrated into the existing software framework very 
easily and with very little effort.  
However, as already mentioned above, the development of SPICA is still work in progress. 
In particular, this is true for the DADL and the corresponding transformation support. 
Appropriate support for code generation is available only for a subset of the predefined 
data-fusion patterns at the moment and only a basic set of predefined functions is integrated 
into the language. In the future, we will enhance the language and the corresponding code 
generation tools with regard to especially these issues. We also aim at integrating support 
for defining functions and calling functions from external libraries. Besides, as not only the 
programming of a complex communication infrastructure is a challenging task, but also its 
configuration, we try to include support for self-configuration of the generated 
infrastructures into the SPICA environment. 
However, we are quite confident that with the SPICA development framework one 
important step was made towards the realization of cooperative team organization. It is our 
vision that teams provide and publish descriptions of the messages and corresponding data 
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they would like to communicate. For new mixed teams only the tactics would have to be 
specified then; the appropriate communication and collaboration infrastructure is generated 
by the SPICA development framework automatically.  
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1. Introduction 
 

In this chapter, the focus is on an important issue of robots’ decision making process which is 
positioning. Positioning involves making the best decision for the agents who do not possess 
the ball regarding the team strategy and consequently finding the best target for them. 
Current section would express some evidences to prove the positioning criticality.  
Multi-agent frameworks usually restrict the agents’ communications; therefore understanding 
the game state and collaborators’ situation is based on the information provided by the world 
model. Regards to this information the agent must decide about game state and his action. 
In robot soccer competition, separate tasks need to be defined for the agent defending the goal 
(the goalie) and the agent intercepting the ball (the active agent). The other agents are strategic 
agents who need to do positioning, i.e. getting distributed in the field regarding the team 
strategy. The positions of these strategic players have impressive effects on decision making 
process of both teammate and opponent agents. In the following paragraphs we explain the 
effects of good positioning on teammates tasks. 

• The collaboration between goalie and goal defenders is of crucial importance for 
saving the goal.  A simple kind of this collaboration occurs when defenders’ 
positions cover some parts of the goal coordinates; this enables goalie to take care of 
a small part of the goal area rather than whole of it.  

 

• The importance of collaboration between active agent and strategic agents is 
important as well. To see that, we need some knowledge about active agent tasks and 
decision making process. Active agent can kick the ball by different velocities and (in 
some soccer frameworks) different kicking angles. Applying these options, different 
actions can be defined for active agent. For example, a kick with small velocity is a 
dribble action and a kick by higher velocity can be a pass action. Assume the active 
agent wants to pass the ball to a teammate. The teammate receiving the pass should 
be close enough to the active agent (to avoid world-model’s noise affects) and also far 
from opponent agents (to reduce the probability of losing the ball). If the active agent 
concerns just these factors, the positioning process can be defined as distributing the 
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agents in the way of increasing the number of eligible agents. Provided with more 
eligible agents, the active agent can perform its action with higher accuracy.  

To see the effect of good positioning on opponents decision making process, assume that the 
opponent’s active agent wants to select one of his teammates to pass the ball. By blocking, i.e. 
following and sticking to the other opponents, the opponent’s active agent can not find free 
teammate and its decision making process would be corrupted. Also through blocking, the 
probability of seizing the ball would be increased and the opponents’ attacks would be 
counteracted. As it is clear blocking should be defined as a part of positioning process. 
We come to conclusion that a perfect positioning methodology is an important issue for a 
team. As described above a good positioning of strategic agents improves the performance of 
goalie and active agent. Moreover a good positioning is vital for blocking opponents in a 
defensive situation. ‘Offside trap’ is another plan that can be applied through a good 
positioning method to keep the goal area safe.  
After describing the benefits of perfect positioning methodologies, we will see some obstacles 
of developing such methods; during the competition, regards to the ball position, strategic 
agents have to traverse long paths to reach suitable position and driving to the destination, 
needs agent’s stamina. Whereas robots (like humans) have restricted stamina, saving the 
stamina is vital and developing positioning methods in which agents spend minimum 
stamina is another challenge in positioning process. Another aspect for developing beneficial 
positioning process is determining effective parameters for positioning process. Some of these 
parameters could be the attraction vectors to the ball, teammates, opponents and 
aggressiveness vector to the opponent goal.   
Positioning decision making is based on the information received from agent’s environment. 
Analyzing this information enables agent to decide about its further position. After processing 
the information the agent does not need more interactions to exterior components. It means 
that the positioning process is independent of robot’s class (simulated in 2 or 3 dimensions, 
middle size, humanoid, etc.) and the protocol of gathering information. Here we illustrate the 
positioning methodologies implemented in Robocup soccer simulation framework; however 
they can be extended to other robot soccer frameworks. 
Different approaches are presented in Robocup soccer simulation framework. The common 
approach is Dynamic Positioning which is considered in this chapter. There are two popular 
dynamic positioning methods in Robocup soccer simulation framework. Each of them has 
some advantages and disadvantages. The first approach is Situation Base Strategic Positioning 
(SBSP) presented by FC Portugal soccer simulation team (Reis et al., 2001(a)), and the second 
is Dynamic Positioning based on Voronoi Cells (DPVC) which presented by UTUtd soccer 
simulation team (Dashti et al., 2006).  
The SBSP method defines target position for strategic agents; an agent’s target position is 
calculated regarding the agent’s role and the current formation of teammates. Also some 
home positions are assigned to agents such that each agent is allowed to move just in the 
specific area defined around its home position. These home positions are used for assigning 
roles to agents. The target position is calculated based on agents’ home positions. Formation is 
arrangement of agents in the game field and involves agents’ roles. Regarding the game 
situation different formations and respectively different home positions are defined. These 
home positions are one of the restrictions of the SBSP method.  DPVC solves this problem and 
introduces a methodology in which no home position and formation is defined.   
In section 2 we have an overview on present positioning methods in Robocup soccer 
framework. Centroidal Voronoi Diagrams would be discussed in sections 3. DPVC as a 
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dynamic positioning approach of positioning is presented in section 4. Section 5 contains the 
results of some experiments in which DPVC and SPSB are compared. 

 
 
2. Previous Works 
 
2.1 Strategic Positioning 
Generally at a certain moment, the positioning destination of an agent is called its strategic 
position. Strategic positioning method discusses about problems of choosing the strategic 
position and way of driving to there. There is always one player who is associated with the 
ball and obeys a different decision method based on the strategy; other agents should move 
toward their best position in the field. So positioning should be carefully implemented in the 
team strategy. The most popular strategic method for positioning in Robocup Soccer 
Simulation is SBSP (Situation Based Strategic Positioning) (Reis et al., 2001[a]) which is 
presented by FC Portugal team (Reis et al., 2001[b]). This method defines specific target 
positions for agents who do not possess the ball; these target positions are calculated with 
regard to the current formation of the team and roles of agents in this formation. For active 
situations, the agent position on the field is calculated using specific ball possession, ball 
recovery or playoff decision mechanisms. To calculate its strategic positioning, the agent 
analyses which is the game situation, tactic and formation in use and its positioning (and 
corresponding player type). Using the tactic, formation and positioning the agent calculates its 
base strategic position in the field in that formation. 
This position is then adjusted according to the ball position and velocity, situation (attack, 
defense, scoring opportunity, etc.) and player type strategic information. The agent then 
issues a command that moves it towards that strategic adjusted positioning. This behavior 
enables the team to move similarly to a real soccer team, keeping the ball well covered while 
the team remains distributed along the field. Fig. 1 (Comes from Reis et al., 2001(a)) illustrates 
the graphical schematic of strategic positioning which described in SBSP method. 

 
Fig. 1. Team strategy definition example 
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2.2 Dynamic Positioning 
The goal of dynamic positioning is to let the agents to switch their positioning inside a given 
tactic and formation whenever that action leads to an improvement of the team global utility. 
Each agent has an allocated position inside the current formation that changes dynamically 
with the competition specific situation. Due to the dynamic positioning Situation Based 
Strategic Positioning for Coordinating Homogeneous Agents and role exchange mechanism 
agents do not have fixed positioning inside the formation. 
For example, agent 2 can be at positioning 2 at a given time and at positioning 9 a few 
moments later.  
There are many different implementations of Dynamic Positioning including the approach of 
FCPORTUGAL which was based on SBSP but here we will discuss the newest approach of 
Dynamically Positioning presented by ZJUBase team in Robocup2005 (Hao et al., 2006). 
ZJUBase dynamic positioning method used NURB curves (Schneider 1996) to describe the 
strategic movement of players at a certain moment. In this method a parametric function on 
the balls position is defined to calculate the players’ position. Here an important motivation 
for employing the NURB curves is the ability to control smoothness and the convenience. For 
example, Some spots B i  arbitrarily placed as control points, and the curve drawn with a 
NURB function, as shown in Fig. 2-a. Then in Fig. 2-b, The point B7 moves which its motion 
makes changes on curvature. So in order to get the required curve we only need to place and 
adjust the control points. This feature enables us to build a graphical editor and get much 
easier to adopt the positioning strategy. The applied function can be expressed by equation 1. 
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Here it is the conventional notation for the i’th knot in the knots vector [Fig. 2] and k is the 
order of the curve. In this function these parameters are determinate. The three equations are 
based on a NURB curve. To learn more about the NURB curves, please refer to some related 
books or papers, such as (Schneider 1996).  
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Fig. 2. Defining a curve with control points (Comes from (Schneider 1996)) 

 
2.3 Positioning using machine learning 
For everyone with a background in artificial intelligence it is not a surprise to see that machine 
learning approaches are able to get good results in different complex aspects of robot soccer. 
Here we will describe a reinforcement learning approach which implemented by the 
BrainStormers team (Riedmiller et al., 2005) at 2D league of robocup2005 competition: 
The key idea behind this approach is to learn a central value function V (s) for all players that 
describe how is a desirable situation. In other words, V (s) is a mapping from a state s to a 
value in [−1, 1]. A value close to 1.0 indicate that this situation is close to success (goal), a 
value near -1.0 means that it is very probable to loose the ball in that situation.  
In this approach a situation consists of ball position and velocity plus the position of all 
attacking teammates and all defending opponents. The number of teammates and opponents 
that are used in the state representation for the value function has to be fixed beforehand.  
The learning is done in epochs. In the beginning, the value function is initialized randomly so 
the players pursue a random strategy. Now the players play according to that strategy until 
five successful trajectories have been collected. If a trajectory was unsuccessful (e.g. loss of the 
ball) it is also stored. An example set E consisting of situations and rewards is generated from 
these five successful plus maximal five unsuccessful trajectories. The terminal state S

n
 of a 

trajectory gets a reward of 1.0 (V(S
n

) = 1.0) if it is a successful terminal state and a reward of  -
1.0 (V(S

n
) = -1.0) otherwise. The reward of the other states in the trajectory depends on the 

distance from the terminal state. Let [S
1

, S
2

, S
3

,…, S
n

] be the states encountered on a 
trajectory. The equation 3 computes these states’ value. 
 

V(s i ) = decay )( in− *V(s n )  i=1,…,n-1 (3) 

 
The action set for a player without the ball is very simple and consists only of moving to 
different positions relative to the current player position.  
It is clear that such players’ arrangement yield to players arbitrary moving, to handle this 
condition Riedmiller et al. like SBSP used the concept of home position. 
A player without ball can choose an action from the following actions types (Actions that 
moves the player out of his home area is not allowed):  
 – go in one of eight directions from current position. 
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 – go to one of eight positions around the players’ home position. 
 – go to home position. 

 
3. Centroidal Voronoi Diagrams 
 

Since 1908 when Voronoi Tesselations were formally defined and studied by Russian 
Mathmatician Georgy Voronoi, these diagrams have found numerous applications in various 
fields of study including Physics, Biology, Chemistry, etc. To see a list of application ,see (de 
Berg et al., 2000) . 
One of the applications of Voronoi Tessellations can be in Robocup Positioning. 
Consider that you are given the positions of a set of agents and these agents are to cover the 
field in order to have some sort of control on whole the field. This control can be defined as a 
reasonable distance to the ball if the ball is put randomly on some point.  To handle this 
situation, it is useful to partition the field into areas of influence in a way that each agent is 
responsible to cover one area. The area assigned to each agents can be defined as the set of the 
points to whom the agent is the nearest agent. This leads to the formal definition of Voronoi 
Diagram:  
Defenition 1: 
Given a set of points {S1, S2,.., Sn} ,  the Voronoi cell Vi  corresponding to the point Si is defined 
as the set:   Vi = { X | |X − Si|  < |X − Zj | for  j = 1, . . . ,n,   j ≠ i }.  The points {Si}ni =1 are 
called generators or sites and the resulted tessleation is called Voronoi Tesselation or Voronoi 
Diagram. 
Modeling the agent’s positions as the Voronoi Sites has some advantages that would be 
discussed later.  First we review some easy facts about Voronoi Diagrams. You can find most 
of the proofs in (de Berg et al., 2000). 
Observation 1: 
Vi (Voronoi Cell corresponding to the i’th site) is the intersection of n-1 lines and hence, an 
open convex polygon region bounded by at most n-1 vertices called Voronoi Vertices and at 
most n-1 edges called Voronoi Edges.  
Observation 2: 
Since Voronoi Tesselation applies on whole the plane, some Voronoi Cells would be 
unbounded, however in most of the applications it is usefule to define a bounding box 
containig all sites and Voronoi Vertices. (Fig. 3) 
 

 
Fig. 3. a bounding box for the Voronoi Diagram 
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Observation 3: 
Ω(nlogn) is a lower bound for computing the Voronoi Diagrams. This can be shown by 
reducing the problem of sorting to the problem of computing Voronoi Diagrams. Also there 
are some algorithm achieving this bound, among them the most popular is Fortune Algorithm. 
Fortune Algorithm uses a sweep line method for computing Voronoi Diagram.  However for 
the problem of positioing in Robocup, since there are just a small number of sites, the time 
complexity is not a matter and a simpler algorithm can be more effective. 
Observation 1 provides a very simple method for computing the voronoi diagram in a 
bounded box.  For computing the cell of agent i, It is enough to start with the entire box and 
cut it n-1 times with bisectors of site i with n-1 other sites. (Fig. 4) 

 
Fig. 4. A simple Algorithm for Computing Voronoi Diagram 

 
3.1 Centroidal Voronoi Diagrams 
Centroidal Voronoi Diagram are an interesting type of Voronoi Diagrams having several 
applications in to problems in image compression, finite difference methods, distribution of 
resources, cellular biology, statistics, and even the territorial behavior of animals. For a 
detailed discusision of these applications See (Du et al., 1999). 
In this section we study Centroidal Voronoi Diagram as a rather ideal dynamic formation of 
agents in the field.  
The centroid of an object X in 2-dimensional space is the intersection of all lines that divide X 
into two parts of equal moment about the line. Informally, it is the "average" of all points of X. 
The x-coordinate of the centroid of an object can be calculated as the integral   ∫ x.f(x) dx / ∫ f(x) 
dx,  where f(x) is the vertical extent of the object at abscissa x. In this way it is rather easy to 
find the centroid of an object.  
The geometric centroid of a physical object coincides with its center of mass if the object has 
uniform density. So some times we refer the ‘centroid’ as the ‘center of mass’ or shortly 
‘center’. 
A centroidal Voronoi diagram is a Voronoi tessellation whose generating points (sites) are the 
centroids (centers of mass) of the corresponding Voronoi regions. Note that to define centroids 
for Voronoi Cells, all of them need to be bounded. As a result Centroidal Voronoi Diagrams 
are defined on bounded boxes. 
Fig. 5 shows two samples of Centroidal Voronoi Diagram (from Du et al., 1999).  
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As the core property of the centroid, we can say that the centroid of an area as a set of points 
minimizes the weighted sum of the Euclidean distances from the points to any point in the 
plane. (Abdi. 2007) 
As a result, the centroid of the Voronoi Cell is a good position that an agent can take. In this 
way it can have better control on its cell. For example, putting the ball in a random position in 
the cell, the expected value of the distance to ball is mimized in the centroid. So trying to 
achieve a Centroidal Voronoi Diagram can be a good idea for the positioing of agents. 

 

Fig. 5. Two samples of Centroidal Voronoi Diagrams (with 256 sites) 

3.2- Lloyds Method 
There exist both probabilistic and deterministic approaches for achieving Centroidal Voronoi 
Diagram. One of the determinstic methods is Lloyd’s Method. [See (Du et al., 1999) for 
probabilistic approaches]. This method was first presented by Stuart Lloyd in (Lloyd. 1982). 
There are some variations on Lloyd’s method; However generally it can be described as 
follow:  
0. Select an initial set of n points (Voronoi Sites). 
1. Construct the Voronoi Diagram associated with the points. 
2. Compute the mass centroids of the Voronoi regions found in step 1; these centroids are the 
 new set of sites. 
3. If this new set of sites meets some convergence criterion, terminate; otherwise, return to 

step 1. 
The tremination procedure in step 3 is very depnedant on the specific applicaton.  
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Fig. 6 show the behaviour of Lloyd’s methods1. As you can see, this method can be described 
as a set of relaxations rounds. After each round, the points are left in a slightly more even 
distribution: closely spaced points move further apart, and widely spaced points move closer 
together.  Although the final shape of the diagram is a function of initial formation of points, 
the result has always an even distribution.  
Note that defining a termination procedure is important since after each round the method 
convergence rate decreases2. (See Fig. 6) 
 

 
Fig. 6. Applying Lloyd’s method on a set of 256 points. You see rounds 1, 2, 5, 20, 50, 100.  The 

points are initially distributed normally in range [0..1] with mean=0.5 and variance=0.1  
 
                                                 
1 The code for generating these slides is available upon request. 
2 The 1-dimension version of the Lloyd’s method is proved to converge. The 2-dimension 
version is also conjectured to converge but no proof exists yet. 
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4. Dynamic Positioning based on Voronoi Cells (DPVC) 
 

As mentioned before Dynamic Positioning based on Voronoi Cells is a Positioning method 
which models the agents (team mates) as the Voronoi Sites and uses a variation of Lloyd’s 
method3 to slightly distribute them in the field. Such modeling has the advantages of a 
dynamic positioning; for example there is no need for defining home positions for agents. 
Also as we will see it is very easy to apply futures of the soccer world to this model.  
In DPVC, like the original version of Lloyd’s method, in each sense (relaxation round), agents 
construct their Voronoi Cells and the center of such cell.  Then, each agent should be replaced 
by the center of its cell, however since the agents movement is continuous they may not be 
able to get their center in one sense. So rather than ‘putting’ the agent into its center, we force 
the agent toward the center of its cell. Such force would be applied to the agent through a 
force vector called Voronoi Vector.   
Fig. 7 shows the movement of agents (following a set of senses) while applying Voronoi 
Vectors. Like the original version of Lloyd’s algorithm, applying Voronoi Vectors on agents 
causes them to repulse their team mates and cover the free spaces in the field. Also as you can 
compare Fig. 6 and Fig. 7, the convergence rate of this method is not worst than the original 
version of Lloyd’s method4.  
It is believed that this variation of Lloyd’s method, i.e. relaxing the diagram by approximating 
sites (agents) toward their cells’ centers, converges to a centroidal Voronoi Diagram.  Here we 
can define the convergence criterion to be a threshhold on the size of Voronoi Vector, i.e. we 
stop the algorithm if the size of Voronoi Vector of all agents gets smaller than a constant value 
ε.  
Fig. 8 show the convergence of agents in Robocup soccer simulation. 
 

 
Fig. 7. applying DPVC on the same set of points of Fig. 6. The points have continuous 

movement. You see rounds 1, 2, 5, 20, 50, 100.  The agents’ velocity is 0.01 per round 

                                                 
3 For the first time that DPVC was appeared in (Dashti. 2006) the authors were not aware of 
Lloyd’s Method. However because of the similarities between two methods, it is better to 
regard the backbone of DPVC as a variation of Lloyd’s method. 
4 Obviously the convergence rate of DPVC deeply depends on the (maximum) velocity of 
agents per round. 
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Fig. 8. Applying DPVC (without strategy) in Robocup Soccer Simulator Server 3D 

 
4.1. Applying Strategy 
Up to now what studied was a plain version of DPVC (Fig. 8) in which the Voronoi Vectors are 
just functions of the positions of team mate agents. We can easily apply other futures like 
opponents’ positions, agents’ batteries, team strategy, etc. to implement the team’s strategy: 
Opponents’ positions 
Considering game situation, it is wise to distribute some agents in the open spaces between 
opponents to make passes more successful. Adding opponents' positions to the Voronoi sites, 
the Voronoi Vectors would be constructed in the way of making agents move toward 
opponent team's openings. In this way agents would have a kind of repulsion to both 
opponents and teammates. (Fig. 9) 
 

 
Fig. 9. Applying Opponents positions in DPVC. Opponent sites are bolded and fixed during 

the relaxation rounds. You see rounds 1, 10, 30. The team mates get positions in the 
openings between opponents 
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Agents’ Stamina: 
The additively weighted Voronoi Diagram5 is a generalization of Voronoi Diagram in which a 
weight is assigned to each Voronoi site and while measuring distances to a site, the weight of 
the site is added to the usual Euclidian distance. Fig. 10 shows a sample of additively Voronoi 
Diagram.  As you can see the sites with smaller weights would have smaller cells. Also note 
that the boundaries between cells are segments of circles rather than straight lines. 
Since the agents with smaller cells would have smaller Voronoi Vector, we can model the 
agents’ stamina by the weight of Voronoi sites, in this way agents with lower battery would 
have smaller Voronoi Vectors and can save stamina in this way. 
 

 
Fig. 10. weighted Voronoi diagram for a set of 16 sites. The radius of disks shows the weight 

of the sites 
 

Concentration of agents 
The Voronoi Bounding box is mainly defined as the whole filed. However Considering the 
game situation, it is wise to shrink this box to concentrate agents in an appropriate area. For 
example as Fig. 11 shows restriction on the width of box causes agents concentrate in an 
extreme side of the field which can be interoperated as a more defensive (or offensive) 
formation6. Also it is easy to see how this restricting on the width of box can be applied to 
form an Offside trap.  
Note that if we use the same algorithm of section 3 for computing Voronoi Cells, the cells of 
all agents, even those that are out of the bounding box, would lie inside the box. So after 
several rounds all agents get into the box. 
 

                                                 
5 There exist some other types of weighted Voronoi diagram such as “multiplicatively 
weighted Voronoi diagram”, “additively weighted power Voronoi Diagram”. See (Okabe et 
al., 2000) for more details. 
6 Getting an offensive of defensive formations can be a matter of ball position or other factors 
set by game strategy. 
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Other factors 
It is desirable to apply all key factors of team strategy exclusively through Voronoi vectors (As 
we did about opponent’s position, agents’ batteries, Offside trap, and ball position). In this 
way the agent’s movement would be much more stable and extra movements would be 
reduced. However it is not that easy to apply more complicated strategies just by Voronoi 
Vectors (for example in the case of collaborating with goalie or blocking opponents).  
To handle these types of strategies, we need to define some extra force vectors called 
Attraction Vectors. These vectors are set by the team strategy considering the game situation 
and involve attractions to specific positions in the field.  In this case the final force vector 
would be applied to the agent as a combination of the Voronoi Vector and Attraction Vectors7.  

 

 
Fig. 11. Concentrating agents to one side of the field by restricting the Voronoi Bounding Box. 

You can see rounds 1, 10, 20, 40, 70, 100. In the beginning, there are 128 agents 
uniformly distributed in [0..1] × [0..1]. The bounding box is a [0..5] ×  [0..1] rectangle 
and the agents velocity is 0.01 

 
 

                                                 
7 Here we do not go deep to the concept of attraction Vectors since they are very much 
dependant on the specific team strategy 
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5. Experimental Results  
 
5.1- Statistical Experiments 
Performance of a team not only depends on its positioning method but also depends on other 
decision modules and efficiency in implementation of agents skills. Accordingly it is difficult 
to define an appropriate criterion to evaluate the positioning method. In order to survey the 
applied positioning, we compared two similar teams using different positioning methods in 
Robocup soccer simulation 3-D. One of these teams uses SBSP as positioning method and the 
other uses DPVC. Since there is usually little density of players near corners of the field, we 
improved DPVC by restricting the initial Voronoi Cells of agents to a hexagonal surrounded 
by the entire field rectangle.  
To compare these two positioning methods we prepared two experiments. In these 
experiments both teams play against Aria team the champion of Robocup 2004 3D 
competitions. In the first experiment the number of passable players around the ball when the 
ball is in possession of the testing team is measured.  
Passable player is a player who has the opportunity to get the ball if it is passed. So being a 
passable player is a matter of player’s distance from the ball. In our experiment a player is 
defined to be passable if its distance from ball is less than 20 meters. Figure 12 is a statistical 
diagram of passable players of the team. In Figure 12-a DPVC is used as the positioning 
method, whereas in Figure 12-b the positioning is based on SBSP.  
 

 
Fig. 12. The figure shows statistical distribution for average number of passable players of the 

team against Aria, using DPVC and SBSP methods for positioning. N is number of 
the team opportunities to pass the ball. Numbers in x-axis show number of passable 
players where numbers in y-axis show the times that these numbers occur. As it is 
shown while using DPVC in average there are five passable players whereas by 
using SBSP there are 3.6 passable players 

 

In the second experiment both the team using DPVC and the team using SBSP are ran against 
Aria 10 times. Table 1 reports results of these two series of tests. Records of this table show 
parameters defined to compare the influence of each method of positioning on success of the 
team.  
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 DPVC SBSP 

Average number of passable 
players  

4.09 3.36 

Ball in control of the team 58.31% 56.92% 

Ball in own half 18.80% 22.15% 

Ball in own penalty area 1.47% 1.26% 

Ball in opponent penalty area 23.02% 19.98% 
Table 1. Results when two similar teams using different positioning methods (DPVC and 

SBSP) play against Aria team 

 
5.2 Experiments at Robocup World Championship 
For the first time DPVC was implemented by UTUtd (Dashti et al., 2006) at Robocup world 
championship 2005 at Osaka. UTUtd after playing 21 matches with 13 wins 6 draws and 2 
losses reached the 5’Th place among 32 teams in the 3D simulation league. Next year at 
Robocup world championship in Bremen DPVC was implemented by Virtual Werder (Lattner 
et al., 2006). In this implementation of DPVC players had little attraction to ball and had a 
defensive Formation. Virtual Werder team could rank up to 8 between 32 teams after 5 wins, 
17 draws and only 1 loss. As it is seen below the number of losses in VW team is much lower 
than the second and third team. 
 

Rank Team Name Won Draw Lost 

1 FCPortugal3D 19 2 0 

2 WrightEagle 10 7 4 

3 ZJUBase 12 6 3 

8 VW3D 5 17 1 
Table 2. Results from Robocup world championship 2006 
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1. Introduction 
Robots are today a reality. Moreover, robots have moved from assembly lines to being 
around human beings. Mobile autonomous robots are now a common sight in Korean 
airports. Other notable examples are LEGO’s Mindstorms and Spybotics, who not only have 
a massive penetration in the toy market, but have penetrated the research and academic 
environment (Wallich, 2001). Robots are also being sold commercially as companions, or 
used as museum guides (Thrun et al., 1999), and even as the long awaited vacuum 
cleaner (Kahney, 2003). The expectation that robots would be around us inspired Isaac 
Asimov to write “I Robot” as part of a series of books and to develop the character Susan 
Calvin who enunciated the Three Laws of Robotics:  

1. A robot may not injure a human being, or, through inaction, allow a human to come 
to harm.  

2. A robot must obey orders given to him by human beings except where such orders 
would conflict with the First Law.  

3. A robot must protect its own existence as long as such protection does not conflict 
with the First or Second Law.  

To follow these rules, a robot would need to reason about actions and their potential effect. 
Reasoning is a fundamental capability of intelligent systems and much progress has been 
made (Marek & Truszczynski, 1993; Rich & Knight, 1990) (this is also illustrated by the 4 
chapters dedicated to uncertain knowledge and reasoning in (Russell & Norvig, 2002), at 
present the most widely accepted textbook in Artificial Intelligence and 57th most cited 
computer science publication ever). Most notably, for intelligent and robotic systems it is 
essential that such reasoning be capable of withdrawing some conclusion in the light of new 
evidence (including the negation of what used to be considered a fact). This is called non-
monotonic reasoning. 

This chapter will describe how a Sony AIBO performed on board non-monotonic inferences 
on two settings present on the RoboCup competition (Veloso et al., 1998). Robotic soccer is 
the most challenging endeavor from the perspective of multi-agent technology (Wooldridge, 
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2002). We argue that non-monotonic reasoning is useful in even the dynamic,1 inaccessible,2 
adversarial and non-deterministic3 environment of robotic soccer, where reactive systems 
have received much attention. We also present an example for the RoboCup@Home setting. 
We achieve this common sense behavior by an implementation of Plausible Logic (and some 
algorithm fine-tuning) in C++. 

We will commence the discussion by applying Plausible Logic inferences to make sense of 
the sightings in the configuration of the 2005/2006 4-legged league field of play. In 
particular, we show that we can analyze the objects reported by the vision module in a 
frame (or in a sequence of frames) and determine which were phantom sightings and which 
could actually be valid sightings. This assists localization as it dynamically selects proper 
inputs (landmarks). Localization means that the software in the robot must gather 
information from its sensors and arrive at a reasonable (and accurate) conclusion about its 
location and orientation. We argue that there is a role to be played by reasoning when 
localizing, with a loose analogy to when people use previous knowledge to explore an 
environment they have some information about. Our problem is different from a pure 
SLAM problem. Here, we assume some previous knowledge of the environment, so we can 
reason about and contrast our observations with our prior knowledge. 

There are many algorithms to deal with the error in odometry as well as errors in other 
inputs for localization (vision or laser sensors). These usually fall into three main categories 
(the family of Kalman Filters (KF), the family of Markov Models (MM) and the family of 
Monte Carlo (MCL) localizers). We do not advocate their elimination. In fact, we use the 
Monte Carlo Localization approach for localizing Sony AIBO robots in the 4-legged league 
of RoboCup. However, we introduce non-monotonic reasoning as a filter before the 
localization process takes observations as inputs. 

We believe our approach offers an alternative to the problem of data fusion. For data fusion, 
probabilistic models are favored over reasoning with logic models. For example, for 
combining information from several sources, their reliability is modeled using probabilities 
and “reasoning with uncertainty” is performed using general models that include 
applications to sensor fusion (Haemmi & Hartmann, 2006, and references therein). As 
sensors become more sophisticated, and as entire modules on board a robot collect 
information about the environment, reasoning is essential to integrate and comprehend such 
sources of information (some could come from observations by teammates). Non-monotonic 
reasoning would be most effective when the information is contradictory. In fact, 
contradictory information is actually the common case. At the sensor level, an odometry 
sensor will usually be in disagreement with the distance computed by using projective 
geometry and trigonometric equations from the images of a digital camera, and these will 
also exhibit differences with an infrared-range sensor. Information from teammates has a lag 
in time. 
                                                                 
1The environment is dynamic if it will evolve in the time gap between the sensors collecting 
information and the agent performing an action (Wooldridge, 2002). 
2Information about the entire environment may not be possible to collect (Wooldridge, 
2002). 
3An environment is non-deterministic if an action may not have the expected 
outcome (Wooldridge, 2002), like a skid because the surface is smoother than anticipated. 
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We propose to use non-monotonic reasoning to accept the inconsistent information and 
resolve it to obtain the most plausible interpretation of the state of a robot and its 
environment. Identifying this state is clearly a crucial initial step towards making a decision 
and then acting. We also want some assessment of the likelihood of that state for the 
decision making process. The influential works by Brooks (Brooks, 1991) have lessened the 
interest in using symbolic/logic approaches. We argue here that a computable non-
monotonic logic has a role to play. 

Our systems have been implemented and operated by the Mi-PAL team in RoboCup (2005, 
2006, and 2007). The current robotic platform is the Sony AIBO robot. 

2. Background on Plausible Logic 
Non-monotonic reasoning (Antoniou, 1997) is the capacity to make inferences from a 
database of beliefs and to correct those as new information arrives that make previous 
conclusions invalid. Although several non-monotonic formalisms have been 
proposed (Antoniou, 1997), Plausible Logic (PL) (Billington & Rock, 2001; Rock & Billington, 
2000) is currently the only one with an efficient non-looping algorithm (Billington, 2005). 
Another very important aspect of PL is that it distinguishes between formulas proved using 
only factual information and those using plausible information. PL allows formulas to be 
proved using a variety of algorithms, each providing a certain degree of trust in the 
conclusion. Because PL uses different algorithms, it can handle a closed world assumption 
(where not telling a fact implies the fact is false) as well as the open world assumption in 
which not being told a fact means that nothing is known about that fact. The β algorithm for 
PL uses the closed world assumption while the π algorithm uses the open world 
assumption. 
If only factual information is used, PL essentially becomes classical propositional logic. 
However, when determining the provability4 of a formula, the algorithms in PL can deliver 
three values (that is, it is a three-valued logic). The proving algorithms terminate assigning 
the value +1 to a formula that has been proved and -1 to a formula that has been disproved. 
It assigns the value 0 when the formula cannot be proved and attempting so would cause 
infinite recursive looping. 
In PL all information is represented by three kinds of rules and a priority relation between 
those rules. Strict rules, denoted by the strict arrow → and used to model facts that are 
certain. For a rule A→l we should understand that if all literals in A are proved then we can 
deduce l (this is simply ordinary implication). A situation like Humans are mammals will be 
encoded as human(x)→mammal(x). 
Plausible rules A ⇒ l use the plausible arrow ⇒ to represent a plausible situation. If we have 
no evidence against l, then A is sufficient evidence for concluding l. For example, we write 
Birds usually fly as bird(x) ⇒ fly(x). The intent is to record that when we find a bird we may 
conclude that it flies unless there is evidence that it may not fly (like knowing it is a 
penguin). 
Defeater rules A~>¬l mean that if A is not disproved, then it is too risky to conclude l. An 
example is Sick birds might not fly which is encoded as {sick(x),bird(x)} ~> ¬fly(x). Defeater 
                                                                 
4Provability here means determining if the formula can be verified/proved. 
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rules prevent conclusions that would otherwise be too risky. This could happen in a chain of 
conclusions from plausible rules. 
Finally, a priority relation > between rules R1>R2 indicates that R1 should be used instead of 
R2. In this chapter we actually demonstrate the expressive power of this aspect of the 
formalism. For example from 

 

{}  →  quail(Quin) Quin is a quail 

quail(x)  →  bird(x) Quails are birds 

R1: bird(x)  ⇒ fly(x) Birds usually fly 

 one would logically accept that Quin usually flies. From the knowledge base 
 

{}  →  quail(Quin) Quin is a quail 

quail(x)  →  bird(x) Quails are birds 

R2:quail(x)  ⇒  ¬fly(x) Quails usually do not fly 

 we would reach the correct conclusion that Quin usually does not fly. But what if both 
knowledge bases are correct, that is both rules R1 and R2 are valid. We see that R2 is more 
specific than R1 and so we add R1>R2 to a knowledge base representing the beliefs of a robot 
that knows both. Then PL allows the agent to reach the proper conclusion that Quin usually 
does not fly, while if it finds another bird that is not a quail, the agent would accept that it 
flies. 
Note that the Three Laws of Robotics are an example of how humans describe a model. 
They define a general rule, and the next rule is a refinement. Further rules down the list 
continue to polish the description. This style of development is not only natural, but allows 
incremental refinement. Indeed, the knowledge elicitation mechanism known as Ripple 
Down Rules (Compton & Jansen, 1990) extracts knowledge from human experts by refining a 
previous model by identifying the rule that needs to be expanded by detailing it more. The 
models presented here are each a progressive refinement of the previous one. 

3. Plausible Logic for Localization 
Non-monotonic reasoning has long been considered too complex for real-time 
environments. Visual robot localization in the 4-legged league places particularly stringent 
demands on the processor. Video camera systems typically operate at a rate of 30 frames per 
second, which allows only about 30 ms to perform full image recognition, feature extraction, 
and consistency verification. Moreover, poor lighting conditions can make color calibration 
extremely difficult. More often than not, vision systems make errors in object recognition (in 
particular, they may occasionally miss the landmarks for localization or report non-existent 
objects as visible). In this section we present our first application of PL. We use it to make 
sense of the sightings in a scene before they are used as landmarks for localization. 

3.1  The Problem 
The most well known family of techniques to interpret the input provided by a sensor with 
some noise is derived from the Kalman Filter after the 1960’s publication by R.E. Kalman 
describing a recursive solution to the discrete-data linear filtering problem. Since that time, 
due in large part to advances in digital computing, the Kalman Filter has been the subject of 
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extensive research and application, particularly in the area of autonomous or assisted 
navigation. 
In robot localization, alternative techniques have emerged. Most notably, grid-based 
Markov localization and Monte Carlo localization (Fox et al., 1999; Gutmann & Fox, 2002; 
Thrun et al., 2001). These techniques are based on a paradigm that still uses probability 
distributions. The manipulation of the probabilistic representation is slightly different across 
these schemes. While the Kalman filter (KF) uses some mathematically defined probabilistic 
model (usually multivariate Gaussian distributions), the Markov model (MM) represents a 
distribution as a histogram (one could say Kalman is using parametric statistics while 
Markov localization uses non-parametric statistics). On the other hand, Monte Carlo 
localization (MCL) represents the probability distribution by a population of weighted 
samples (also close to a non-parametric model of the distribution) but rather than 
representing the distribution by piece-wise values on a grid, Monte Carlo uses a population 
of cases. Fundamentally, the three approaches update the current belief using Bayes 
theorem to incorporate the knowledge from a sensor and to update the current belief. They 
use conditional probabilities to represent the prior knowledge and posterior knowledge of 
the state of the world. In an autonomous mobile agent, the belief is revised by an 
observation as well as by an action. While the non-parametric schemes seem better 
equipped to deal with some of the performance issues of Kalman filters, and resolve some 
data fusion issues, they still are not able to rule out inconsistencies. For example, a phantom 
object in a frame can create a bump in the distribution that will be removed after many new 
consistent observations. 
In particular, an example is a frame where the vision module reports two objects as visible, 
even though it is not possible for these objects to appear together in the same frame. In the 
case of Robotic soccer for the 4-legged league, this would be illustrated by the vision system 
seeing the opponent’s goal as well as their own goal within the same frame. The localization 
approaches need to estimate Prob(visible scene| pos→ ), where the visible scene is a 

description of all visible objects, and vector pos→  is the current belief. To avoid describing 
probabilities for all possible scenes, one approach is to regard some observations as 
independent and modify the current belief by the product of 

( _ _ |Prob See front goal pos→  and ( _ _ |Prob See back goal pos→  (for example when 

seeing both goals). The problem with this is that because pos,  has significant error regarding 
the orientation and pan of the head of the Sony AIBO, both of these probabilities are 
unlikely to be zero in any reasonable sensor model. This would result in creating a local 
mode in the probability distribution (in Markov and Monte-Carlo models) while creating a 
significant enlargement of the covariance matrix for the spatial Kalman filter. In fact, we 
know it is impossible to see both goals in the same frame, that is, we know 
Prob(See_front_goal ∧ See_back_goal | pos→ )=0, for all postures pos→ . However, we just 

indicated that representing Prob(See_front_goal ∧ See_back_goal | pos→ ) as a function of 

( _ _ |Prob See front goal pos→  and ( _ _ |Prob See back goal pos→  is rather complicated. 

So the alternative is to generate a database of cases for these situations where domain 
knowledge allows us to plug in suitable values. The problem with this approach is that 
these cases become not only a few, but a rather large number. It then becomes hard to 
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ensure that this database of facts is accurate (or complete, or consistent). Furthermore, we 
must ensure that we are using this database to rule out observations at the right time. 
Because of the modeling assumptions in localization algorithms, it is important that the 
observations from sensors be as reliable as possible (otherwise, the convergence is too slow 
or the artifacts to handle the kidnap problem introduce other high modes in the 
representation of the distribution). In RoboCup most teams participating in the competition 
perform rules of thumb that fall in the realm of classical logic (sensible sanity checks); that 
is, they will filter out observations from the vision system that indicate that opposite goals 
were seen in the same frame. These inconsistent5 inputs are simply, partially or not at all, 
used for localization. 
The situation becomes difficult to manage, as entangled with the localization code is a series 
of logical tests that check special cases. Some code filters the observations that are 
considered inconsistent. This consistency module rapidly becomes a large piece of software, 
hard to verify for correctness or completeness. Our first thesis is that such a filter of 
inconsistent observations is better handled by some logic. The second thesis is that such a 
logic should not only be capable of ruling out observations, but allow reasoning about them 
to provide informative inputs to the localization module. 
We have experimented with other alternatives (Billington et al., 2005) to model the field of 
RoboCup 2005/20066 for the 4-legged league. These usually result in a complex description 
of the potential inconsistent inputs. In particular, it is very likely that most imperative 
object-oriented or procedural (in the case of the Sony AIBO C++) implementations of this, 
will result in at least incomplete models, and more seriously, deliver inconsistent models as 
they are usually developed incrementally as deeper and deeper nesting of if-then-else 
statements. Our analysis reflects that also some logic approaches rapidly result in a large 
number of rules. We believe most competing teams in RoboCup do not have a complete set 
of rules for handling, for example when vision detects four landmarks in a frame two of 
which are phantoms (blobs from the audience or off-field objects which fit the landmark 
characteristics but appear to vision as landmarks because of calibration or very similar 
color). Most teams survive this because these cases of many phantoms in one frame are 
reasonably rare in the constrained environment of labs or competition venues. However, 
they do pose a very serious threat to the correctness of their overall play (moreover, such 
faults become extremely difficult to reproduce and detect). The point we are making is that 
even from the software engineering, software verification and validation point of view, we 
need a complete and correct logic theory of the consistency of the vision reports. 
Our example here analyzes the challenge of imperfect vision reports. That is, in a single 
frame, the analysis of an image may actually perceive two blobs of yellow color and one of 
blue that are rectangular enough for all of them to be considered as goals. Again, any 
software/logic that rules out two rectangular blobs of yellow, perhaps on the basis that one 
is larger than the other, or one is above the field of vision, or one is next to green, is 
performing some reasoning based on domain knowledge. What we are arguing here is that 
if all those ways of ruling out sightings of landmarks are not concentrated in a single place 
                                                                 
5We use here the word inconsistent for an observation that is in some way in contradiction to 
what we expect from our knowledge of the domain. Note that we will use inconsistent 
theory or incomplete theory in the usual sense used by logicians. 
6Previous versions of the field are very similar. 
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represented in logic, then the software is very likely to have such rules in several modules, 
resulting in high coupling of these, and more seriously, in incomplete and inconsistent 
modeling of the reasons why some sightings are ruled out before they are used for 
localization. As the robots move to more realistic environments more reasoning is needed. 

3.2  Modeling with Plausible Logic 
We introduce the modeling of consistent sightings incrementally. We start with a simple 
example but the point is not only to help the understanding of using non-monotonic logic, 
but to illustrate that in PL higher-level models are introduced incrementally as extensions of 
the previous model. This process allows us to model the most important (and most likely) 
scenarios upfront, while refining the models to handle the complexity of more specialized 
and sophisticated cases later. The execution of PL proofs on the AIBO is abstracted so that 
upgrading the model does not represent reprogramming the C++ code. The implementation 
of PL not only provides the algorithms for obtaining proofs, but provides a logic 
programming language DPL (Rock) for presenting facts, and describing a theory. 

3.2.1  Model 1 
We first need to represent the domain knowledge. Each 2005/2006 4-legged league soccer 
field has fundamentally 6 landmarks for localization. These are two goals (one yellow and 
the other blue) and four posts. Each post has two colors, and pink is always one of these. 
The two posts near the blue goal have blue as one of the colors while the two posts on the 
yellow side have yellow. This color-coding allows the identification of landmarks for a robot 
as Front Goal (FG), Back Goal (BG), Left Post  (LP), Right Post (RP), Right Back Post (RBP) 
and Left Back Post (LBP). We also take advantage of the fact that although in 2005 the field 
has been enlarged, there are still some scenes that can be ruled out. The horizontal angle of 
view is 56.9°, but to simultaneously see LP and RBP would require a view greater that 67.5°. 
First, the facts about the world are presented by type declarations in the logic programming 
language as follows. There are two goals.  
 
type GoalType = {FG, BG}. 
 

There are four posts.  
 
type PostType = {LP, RP, RBP, LBP}. 
 

A landmark is either a goal or a post, that is Landmark=GoalType∪PostType. In the 
programming language we have  
 
type Landmark = GoalType + PostType. 
  

The next step is to define the inputs as predicates. In general, any piece of information we 
can retrieve from sensors or messages from teammates can be modeled as an input. Each 
input is introduced in the logic model as an axiom and these inputs trigger (fire) the 
plausible assumptions that appear in the model description. It is cumbersome to write, for 
every axiom a, the two plausible rules a ⇒ p and ¬a ⇒ ¬p, where p is the plausible 
assumption to be fired by a. A macro of DPL simplifies this.  
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$=declareInput$(a$,p$)${$# 
 input{$+a}. {$+a} => $+p. {~$+a} => ~($+p). $}$# 
 

Now, we can write the plausible assumptions (this is what vision reports). First, See(x) will 
evaluate to true if and only if the vision module reports a sighting of landmark x.  
 
type See(x <- Landmark). 
 

This first model provides correct results only if the vision module reports exactly one 
landmark or none. Now, we are in a position to describe consistency rules. By default, when 
vision does not report a landmark, we do not forward anything to localization. This is an 
easy default case. This is R1:{} ⇒¬Cs(x) while in the programming language DPL we write  
 
R1: => ~Cs(x). 
 

However, if vision reports a landmark, we believe it; since for only one frame we have no 
other information to rule this out. PL writes this as R2: See(x)⇒Cs(x)     R2>R1. Note the 
relationship between rules. Now, the DPL equivalent is  
 
R2: See(x) => Cs(x).  R2 > R1. 
 

This works because we also provide a statement that any frame that has two or more 
landmarks should be ignored. This completes the programming of this simple model. 

3.2.2  The Path to Implementation 
Initially, the only implementation available of PL was in Haskell, and it was unclear that this 
implementation, even if translated to C++ would be fast enough to operate in the time slot 
for processing a vision frame (which is the usual time slot for doing all computation without 
losing frames, and thus possibly even losing sightings of critical objects like the ball). While 
originally (Billington et al., 2005, 2006) we enabled PL without running the inference engine 
on the Sony AIBO, it became clear that this had computability limitations. This chapter 
focuses only on the scenario where the inference engine is operating on board the Sony 
AIBO. In order for PL proofs to be developed on board we had to extend the logic 
programming language DPL by adding automatic production of C++ macros and automatic 
production of gluing code. Also, we developed a template method and an architecture that 
makes model loading a component-replacement process. The PL was made to run on-board 
the Sony AIBO using a C implementation of the inference engine. The C implementation 
also ran on MAC-OS and LINUX since it used standard C-language constructs. 
Extensions to DPL enable generation of C++ glue code. Namely, we took the decision we 
would read or evaluate sensor input only once. We would store the outcome of evaluating a 
plausible assumption in a C++ Boolean variable. For vision, for example, the C++ expression 
FG has value true iff the front goal is visible. This is an input axiom of the description that 
will be asserted either positively or negatively.  
 
$+declareInput$("FG"$,See(FG)$) 
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Similarly, we have five more declarations. These input axioms are the atoms the logic will 
talk about and can be given initial values by the sensors of the robot (or the modules that 
read those sensors).  
 
$+declareInput$("BG"$,See(BG)$)  $+declareInput$("RBP"$,See(RBP)$) 
$+declareInput$("LP"$,See(LP)$)  $+declareInput$("LBP"$,See(LBP)$) 
$+declareInput$("RP"$,See(RP)$) 
 

An outcome of this is gluing code that declares the necessary Boolean variables in the 
corresponding C++ module (creates statements of the form bool FG;). 
We proceed now to describe the special template method. The special template method 
consists of three phases. We already alluded to the first phase INIT_ALL_FALSE(). This is 
implemented as a macro that creates the necessary definitions of C++ Boolean variables for 
all input axioms. For example, we saw that the programming language enabled the 
declaration of an input.  
 
$+declareInput$("FG"$,See(FG)$) 
 

In the C++ code, there is a Boolean variable corresponding to this sensory input. In more 
elaborate models we will have additional inputs that indicate if one landmark is to the left of 
another landmark. These will also become Boolean C++ variables. Moreover, 
INIT_ALL_FALSE() not only defines those Boolean variables, but sets their values to false 
(C++ statements of the form FG=false;). This is just a default initialization. In temporal 
models that use information from a previous frame, the values of input axioms in one frame 
are copied to a corresponding frame-indexed set of C++ Boolean variables. 
The second phase evaluates all input predicates (i.e. collects all information from the 
sensors), and stores this in the C++ Boolean variables. Its implementation is a macro 
UPDATE_ALL() that queries the values of the input axioms for the current frame. Also, if 
there are predicates that refer to sensor values in previous time slots, they become updated. 
We will say more about this when we discuss a model that analyses sightings across 
consecutive frames. In the current example, the macro obtains the values of input axioms 
from the vision module. For example, a variable for the front goal previously initialized to 
false may now be set to true if vision has found a front goal in the current frame (the most 
recent vision report will be extracted and since it reports the front goal as visible the C++ 
executes FG=true;). It also provides a pointer to such an object so other attributes about 
the landmark can be evaluated, e.g. its perceived size or whether it is seen to the left or right 
of another landmark in that frame. 
The last phase of the template method is the invocation of the inference engine. 
PLACE_CS_ALL() will use the inference engine to evaluate the expressions for which we 
requested outputs. When we are filtering localization landmarks, if a landmark is found to 
be consistent (evaluates to true), the information on the landmark sighting will be 
forwarded to the localization module (or any other module that may benefit from it, such as 
the behaviour to kick when the front goal is visible). In particular PLACE_CS_ALL() will 
have as many if statements as landmarks, each with an expression that is a call to the 
inference engine. For any term in the model we want to ask its value, we can make a call to 
the inference engine (for example, is the sighting of the front goal consistent? ). The C 
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implementation returns one of the three values of PL. For those landmarks found consistent, 
the information on them is forwarded to localization. 
For the analysis of each frame, we have a module named Consistency. The C++ code of 
the template method Consistency::Run is executed every time a new frame arrives. In 
the filtering for localization example, the vision module is reporting about landmark 
sightings in each frame. The template method runs and verifies such reports.  
 
void  Consistency::Run() 
{INIT_ALL_FALSE(); UPDATE_ALL(); PLACE_CS_ALL();} 
 

The three macros in the template method have the responsibility of implementing the three 
phases. The three macros in the template method are defined in a file named 
ConsistencyMacros.h that provides the glue code to the Mi-Pal architecture for the 
soccer playing robots as well as glue code for a visual testing tool. The code in 
ConsistencyMacros.h is computer generated, and depends slightly on the model to be 
executed on the Sony AIBO. 
For the particular case of the Model 1 just presented, testing (evaluating) if the front goal is 
consistent is a call to the inference engine. If the front goal was not seen in this frame, then 
INIT_ALL_FALSE() would have set the variable to false and UPDATE_ALL() would not 
have changed FG’s value, so no landmark sighting is forwarded to localization. However, if 
the front goal was visible, UPDATE_ALL() would have set FG to true and the if statement 
in PLACE_CS_ALL() would fire (because the engine would have used the logic rules of the 
model to prove a consistent sighting), resulting in localization receiving the sighting 
information about the front goal. 

3.2.3  Higher Level Models 
Originally, we developed the simple Model 1 for validation of the entire concept of a non-
monotonic logic implemented on a Sony AIBO. We now introduce progressively more 
sophisticated models. We present a model that handles the consistency cases when vision 
reports 0, 1, or 2 landmarks in a frame. The type declarations regarding the landmarks are 
the same as before, but we need to describe the domain in a bit more detail. In particular, we 
use Opp(x,y) to mean x is opposite y. Also Opp(x,y) if and only if Opp(y,x). This appears in 
the programming language as  
 
type Opp(x <- Landmark, y <- Landmark - {x}).  default ~Opp(x, y). 
Opp(FG, BG).   Opp(RP,  LBP).   Opp(RBP, LP). 
Opp(BG, FG).   Opp(LBP, RP).    Opp(LP,  RBP). 
 

Also, we want to define relative positioning on the soccer field. The predicate LR(x,y) means 
landmark x is to the left of landmark y, and there are only 0 or 1 landmarks between them. 
The following are facts about left-to-right placements.  
 
type LR(x <- Landmark, y <- Landmark - {x}).  default ~LR(x, y). 
LR(LP, FG).  LR(RP, BG).   LR(FG, RBP).  LR(RBP, BG).    
LR(LP, RP).  LR(BG, LP).   LR(RP, RBP).  LR(RBP, LBP).   
LR(FG, RP).  LR(LBP, FG).  LR(BG, LBP).  LR(LBP, LP). 
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We are now in a position to use inputs from vision (using the same macro to declare them). 
Declarations for See(x) and axioms relating this predicate to the C++ expression FG are as 
before. What is new in this model is that we now use that vision reports if one landmark 
appears to the left of another. Plausible assumption SeeLtoR(x,y) means vision reports seeing 
landmark x to the left of landmark y.  
 
type SeeLtoR(x <- Landmark, y <- Landmark - {x}). 
  

Also for efficiency of the computation of proofs, we can use rules that simplify the setting. A 
macro for an axiom such as LP_FG that fires SeeLtoR(LP,FG) allows us to not consider cases 
where LP_FG is asserted but either of LP or FG is not. In the programming language we 
define a macro call $+declareSeeLtoR$(x$,y$) that declares an input axiom x_y, rules 
to fire SeeLtoR(x,y), and then specifies the (possible) cases to ignore.7  
 
$=declareSeeLtoR$(x$,y$)${$# 
 $+declareInput$("$+x_$+y"$,SeeLtoR($+x,$+y)$)  
  ignore {"$+x_$+y",~"$+x"}.  ignore {"$+x_$+y",~"$+y"}. $}$# 
 

Then, we only need to use this macro, for all possible pairs of landmarks, for example  
 
$+declareSeeLtoR$(LBP$,LP$). 
 

For the new model, the first two rules are the same as before. Namely, nothing is to be 
forwarded to another module unless it is seen. But now we add that if vision reports two 
landmarks we know to be opposites, then we believe neither (irrespective of whether vision 
reports one to the left of the other).  
 
R3: {See(x), See(y), Opp(x,y)} => ~Cs(x).  R3 > R2. 
 

If vision reports two objects out of left-to-right order, then we also believe neither.  
 
R4: {See(x), See(y), SeeLtoR(y,x), LR(x,y)} => ~Cs(x). 
R4: {See(x), See(y), SeeLtoR(y,x), LR(x,y)} => ~Cs(y).  R4 > R2. 
 

The complete rules for Model 2 are expressed in the programming language as follows:  
 
R1: => ~Cs(x).  R2: See(x) => Cs(x).  R2 > R1. 
R3: {See(x),See(y), Opp(x,y)} => ~Cs(x).  R3 > R2. 
R4: {See(x),See(y),SeeLtoR(y,x),LR(x,y)} => ~Cs(x). 
R4: {See(x),See(y),SeeLtoR(y,x),LR(x,y)} => ~Cs(y).  R4 > R2. 
 

Note the non-monotonic aspect of the model. In particular, the inference engine may reach 
the initial conclusion that nothing is to be forwarded to the localization module (by R1) but 
then conclude that there is a landmark sighting to be forwarded (because of R2). However, it 
may change that conclusion in light of R3. 

                                                                 
7While the ignore statements do not influence the plausible rules directly, they serve the 
purpose of declaring that the given combinations of inputs can be ignored.  
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If we want to add rules that use other aspects of the information from the sensors in the 
report from vision, we can also achieve this. We illustrate with rules to report a post over a 
goal, or the larger of two goals. We can now revise Model 2 to Model 2a to use information 
on objects size or type, for example. We may want to report a post over a goal even if 
perceived in the wrong left-to-right order.  
 
R1: => ~Cs(x).  R2: See(x) => Cs(x).  R2 > R1. 
R3: {See(x),See(y), Opp(x,y)} => ~Cs(x).  R3 > R2. 
R4a: {See(x),See(y),SeeLtoR(y,x),LR(x,y)} => Cs1(x,y).  R4a > R2. 
R5: {Cs1(x,y),Post(x),Goal(y)} => Cs(x). 
R5': {Cs1(x,y),Post(x),Goal(y)} => ~Cs(y). 
R6: {Cs1(x,y),Post(x),Post(y),BigSmall(x,y)} => Cs(x). 
R6': {Cs1(x,y),Post(x),Post(y),BigSmall(x,y)} => ~Cs(y). 
 

The predicate Cs1(x,y) means only one of x and y is consistent with the domain knowledge. 
We now have that when two objects on the scene are a post and a goal and we have 
concluded one is inconsistent, then we prefer the post (because it is harder to confuse an 
object identified with two colours). The last rule says that the larger of two inconsistent 
posts is to be forwarded as input for localization since it is harder to perceive a large 
phantom post. 
There is a case with 3 landmarks in a frame where Model 2 could be refined. To describe this 
new refined model we have to state some more facts about the environment. We use 
Adj(x,y,z) to say x is left of and next to y, and, y is left of and next to z.  
 
type Adj(x <- Landmark , y <- Landmark - {x},  
z <- Landmark - {x, y}).  default ~Adj(x, y, z). 
Adj(LP,FG,RP). Adj(FG,RP,RBP). Adj(RP,RBP,BG). 
Adj(RBP,BG,LBP). Adj(BG,LBP,LP). Adj(LBP,LP,FG). 
 

Let us consider the case when we see three objects x, y, and z, known to be adjacent from left 
to right, but we see x on the wrong side of both y and z. While we do not need to revise our 
opinion about x being inconsistent (by R4) the mutual consistency of y and z are grounds for 
overriding the conclusion by R4. This leads to an extension that we name Model 3.  
 
R5: {See(x),See(y),See(z),SeeLtoR(y,z),SeeLtoR(z,x),Adj(x,y,z)} => Cs(y). 
R5: {See(x),See(y),See(z),SeeLtoR(y,z),SeeLtoR(z,x),Adj(x,y,z)} => Cs(z). 
R5 > R4. 
 

Similarly, if z is the one out of order, then believe x and y.  
 
R5: {See(x),See(y),See(z),SeeLtoR(z,x),SeeLtoR(x,y),Adj(x,y,z)} => Cs(x). 
R5: {See(x),See(y),See(z),SeeLtoR(z,x),SeeLtoR(x,y),Adj(x,y,z)} => Cs(y). 
 

The rules that complete this model are as follows.  
 
R6: {See(x),See(y),See(z),SeeLtoR(x,z),SeeLtoR(z,y),LR(x,y),LR(y,z),  
     Opp(x,z)} => Cs(x). 
R6: {See(x),See(y),See(z),SeeLtoR(x,z),SeeLtoR(z,y),LR(x,y),LR(y,z),  
     Opp(x,z)} => Cs(y). 
R6 > R3.  R6 > R4. 
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We omit the last model that handles even 4 landmarks in the same frame. But we believe 
this progression of models and the illustration of their design suffices. 

3.3  A First Evaluation 
The implementation of these PL models has been evaluated in two directions. The 
effectiveness of the approach was demonstrated in an ERS-7 Sony AIBO in the lab and in the 
actual RoboCup competitions. We evaluated the results on the robot with a telnet 
connection that displays the ID of the objects reported by vision (see Figures 1 and 2). 
Figure 1 creates a scene where a non-moving Sony AIBO would have a vision module where 
the left post is correct, but the goal and right post are inverted. We can see in the figure the 
telnet connection that portrays the image captured in the robot as well as the text that 
reports which landmark sightings are being forwarded for localization. For Figure 1, 
Model 2 provides the correct result. Namely, we can forward to localization the left post, but 
neither the goal nor the right post should be forwarded to the localization module. 
We believe it is remarkable that the PL description for Model 2 (which only aims at writing 
rules for frames with zero, one or two landmark sightings) obtains correct conclusions for 
many settings in which three sightings or more occur. This again reflects the power of 
modeling with PL as opposed to modeling without it. The PL is analyzing the pairs within 
the triplet in sight. And while two of the pairs are consistent (those involving the left post), 
the pair involving the goal and the right post indicates both of these are inconsistent. 
 

 
Fig. 1.  The left post is correct, but the goal and right post are inverted 

Not all settings with 3 landmarks are correctly identified with Model 2. Figure 2 is a setting 
where Model 2 rules all landmark sightings as inconsistent. In this case, all objects are 
involved with another object to form a pair seen in the incorrect left to right order with 
respect to the domain knowledge. While Model 2 rules this setting as inconsistent Model 3 
correctly identifies that the left post and the goal constitute a pair seen in the expected order 
and thus it is likely that the right post is the phantom. 
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Fig. 2.  The left post and the goal are in correct order, but the right post is not 

The following figures show images at the RoboCup-2005 venue in Osaka where the 
consistency module filtered phantom objects for localization. Figure . 3 shows the processing 
by vision system on board the Sony AIBO. We have enlarged the captured image on board, 
then the blobs of color as the second largest and the objects reported by vision appear on 
three screens on the bottom right corner. The left most of these bottom images displays the 
sightings for goals.  
 

 
(a) The blue timer appears as a 
goal with the yellow goal. 

(b) Phantom goal caused by 
yellow pixels on the ball. 

(c) A window appears as a 
blue goal above the real goal. 

Fig. 3. Examples of competition situations where we see opposite goals in the same frame 

Figure . 3 (a) shows that the blue match score and timer appear as a goal on a frame with the 
yellow goal. While our vision system has an analysis for filtering objects above the field of 
vision, the fact that the Sony AIBO has a head with three degrees of freedom and has legs 
that during pursuit of the ball make positions and angles of vision that cannot always rule 
this case out. Figure . 3 (b) shows that phantom sightings occur even with the regular color-
coded objects in the field. The ball has enough yellow pixels to be confused with a yellow 
goal against a blue goal. Figure . 3 (c) shows another case where natural lighting and off the 
field objects result in phantom sightings. In this case, a window registered enough blue 
pixels to be reported as a blue goal on a frame that spots the yellow goal as well. 
With the aid of a GUI simulator (description to follow) and the telnet connection, the models 
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were evaluated for all possible configurations of phantom and real sightings that involve up 
to three landmarks, and even in some cases 4 or 5 landmarks. Some examples of the 
outcomes are shown in the Figure 4. We invite the reader to attempt to decide what the 
reliable sightings are before exploring the results produced by the models. 
The results are as follows. In Figure 4 (a) only BG and RBP are consistent. For Figure 4 (b), 
BG and RBP are the consistent objects while only RBP is consistent for Figure 4 (c). For these 
three previous cases, with Model 3 both Cs_LBP and ¬Cs_LBP are -1. For Figure 4 (b) both 
Cs_RP and ¬Cs_RP are -1. In Figure 4 (d) nothing is consistent while for Figure 4 (e) only 
RBP and RP are consistent. 
 

     
(a) RBP BG LBP RP (b) RP RBP BG LBP (c) RP RBP LBP (d) RBP BG FG LP (e) RBP BG FG RP 

Fig. 4. Interesting cases for the static models 

3.4  Using A Model of Time to Improve Localization 
Our previous model illustrated reasoning based only on the current reading from the 
sensors. It is natural that decisions on agents may be based not only on the information on 
the current state of the system, but also on data retrieved in the past. To illustrate how we 
can accomplish reasoning about the current and previous states of the environment we 
show a temporal expansion of the previous spatial DPL model. In a temporal model, the 
objects may have been visible in the previous frame or in the current frame. So we model 
this by considering that vision now reports sightings with respect to a time step or a frame 
(i.e. the predicate is now See(x,f)).  
 
type Frame = {PF, CF}. type See(x <- Landmark, f <- Frame). 
type SeeLtoR(x <- Landmark, y <- Landmark - {x}, f <- Frame). 
 

Sightings may be transient (did not last across consecutive frames) or persistent (the object is 
in both frames).  
 
type Tra(x <- Landmark).   R1: {} => ~See(x,f).   R2: {} => ~Tra(x).           
R3: {See(x, PF), ~See(x, CF)} => Tra(x). 
R3: {~See(x, PF), See(x, CF)} => Tra(x).  R3 > R2. 
type Per(x <- Landmark).   R4: {} => ~Per(x). 
R5: {See(x, PF), See(x, CF)} => Per(x).   R5 > R4. 
 

Nothing is consistent unless we get at least a transient or a persistent sighting.  
 
type Cs(x <- Landmark). R6: {} => ~Cs(x).  
R7: {Tra(x)} => Cs(x). R7 > R6. R8: {Per(x)} => Cs(x). R8 > R6. 
 

Seeing two opposite landmarks is grounds for inconsistency (even persistently or 
transiently).  
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R9: {Opp(x, y), Per(x), Per(y)} => ~Cs(x). R9 > R7. R9 > R8. 
R10: {Opp(x, y), Tra(x), Per(y)} => ~Cs(x).  
R11: {Opp(x, y), Tra(x), Tra(y)} => ~Cs(x). R10,R11 > R7. 
 

What does it mean for two objects to be in a transient left-to-right order?  This happens if 
vision sees the objects in the previous frame in that order but does not see them in the 
current frame in that order, or they are seen in the current frame in that order but they were 
not seen in the previous frame in that order.  
 
type TraLtoR(x <- Landmark, y <- Landmark - {x}). 
R14: {} => ~TraLtoR(x,y). 
R15: {SeeLtoR(x,PF,y,PF),~SeeLtoR(x,CF,y,CF)} => TraLtoR(x, y). 
R15: {~SeeLtoR(x,PF,y,PF),SeeLtoR(x,CF,y,CF)} => TraLtoR(x, y). 
R15 > R14. 
 

However, objects are persistently seen in a left-to-right order if the sighting of that 
relationship happened in the previous and current frame.  
 
type PerLtoR(x <- Landmark, y <- Landmark - {x}). 
R16: {} => ~PerLtoR(x,y). 
R17: {SeeLtoR(x,PF,y,PF), SeeLtoR(x,CF,y,CF)} => PerLtoR(x,y). 
R17 > R16. 
 

Finally, seeing landmarks out of order is grounds for inconsistency. But we only overwrite 
those rules that may have suggested consistency.  
 
R18: {LR(x, y), Per(x), Per(y), PerLtoR(y, x)} => ~Cs(x). 
R18: {LR(x, y), Per(x), Per(y), PerLtoR(y, x)} => ~Cs(y).  R18 > R8. 
R19: {LR(x, y), Tra(x), Per(y), TraLtoR(y, x)} => ~Cs(x). 
R19: {LR(x, y), Per(x), Tra(y), TraLtoR(y, x)} => ~Cs(y).  R19 > R7. 
R20: {LR(x, y), Tra(x), Tra(y), TraLtoR(y, x)} => ~Cs(x). 
R20: {LR(x, y), Tra(x), Tra(y), TraLtoR(y, x)} => ~Cs(y).  R20 > R7. 
 

3.5  Implementation of Temporal Models 
For the temporal model, the robot executes a variant of the template method (named 
Run()). Again, the template method is executed every time a prompt from the environment 
demands an action and we want to do some reasoning before the action. For the localization 
example, arrival of a frame and its analysis by the vision module are prompts for reasoning 
about the sightings before sending results to the localization module. However, this variant 
involves other macros.  
 
void  Consistency::Run() 
{INIT_ALL_FALSE(); UPDATE_ALL(); CHECK_NEW_LANDMARKS(); 
PLACE_CS_ALL(); COPY_ALL_BOOL(); } 
 

As explained earlier, the building blocks of Run() are procedures defined by computer 
generated glue code macros. The INIT_ALL_FALSE() macro implements the first phase. It 
gives definitions of C++ Boolean variables for all defined inputs and sets all Booleans 
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corresponding to inputs of the current frame to false. UPDATE_ALL() queries the reports of 
all the sensors in the current status of the environment, in our case obtains from the vision 
module reports for the current frame. We have a new intermediate phase 
CHECK_NEW_LANDMARKS() that ensures all information from sensors is labeled with its 
time step identifier. A sensor reading now is labeled with subindex 0, but for the previous 
fame the index is -1. Indexes are shifted when this macro is executed. In our case, this 
ensures that sightings are for the current frame and that previous sightings also have the 
correct fame numbers relative to the current frame. As before, PLACE_CS_ALL() will 
evaluate the output expressions using the inference engine. If a landmark is found 
consistent, it will forward the sighting to the localization module (or any other module that 
may benefit from it, like the action to kick when the front goal is visible). PLACE_CS_ALL() 
will have as many if statements as outputs/proofs are requested. For example, testing 
(evaluating) the Cs_FG macro, corresponds to asking the inference engine if we have a 
consistent sighting of the front goal. Finally COPY_ALL_BOOL() shifts all the current 
Boolean values in C++ Boolean variables to the Boolean variables corresponding to previous 
frames (so the previous frame values are correctly set for the next execution of the template 
method Run()). We avoid keeping the reports and evaluating predicates regarding vision 
reports on previous frames. 

3.6  Evaluation of the Temporal Model 
The entire architecture, and the models, were also validated in a Graphical User Interface 
(GUI) simulator. That is, the roboconsistency.h files produced for a model as output by 
DPL can be used by the GUI simulator as well. A user interacting with the GUI simulator 
can set up the vision reports (for example, set up a scenario where the front goal and front 
post are visible and the front post is to the right of the front goal). The GUI simulator then 
indicates which of these landmark sightings are regarded as worth forwarding to the 
localization module. This simulator facilitates the debugging of the entire architecture 
without having to execute the consistency module on the robot. This is particularly useful in 
the evaluation of temporal properties. On the robot, validation is particularly hard because 
sighting errors only occur sporadically at a frame rate higher than 25 Hz. Our simulator 
allows reproducible scenarios of what vision might report to the localization system and this 
was used to validate the correctness of the PL expressions resulting from a model. The 
inference engine is also the same in the simulator and the on-board execution module on the 
robot. In order to provide a way to consistently set and evaluate a scene, the simulator 
wraps the C++ expressions in a graphical user interface (GUI) (refer to Fig. 5).  

(a) (b) (c) (d) 

Fig. 5. (a) The simulator showing one particular object (RP) as visible in the current frame. 
(b) Two consistent objects in the current frame. (c) Three inconsistent sightings in the 
current frame. (d) The persistent back goal (BG) wins over the temporary sightings of 
the right post (RP) and the front goal (FG) 

The user of the simulator places landmarks on rows, and the succession of rows represents 
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the order in which these objects are seen (with top to bottom representing left to right in the 
field of vision). The first column shows the landmark. The next two columns allow the user 
to select what the visibility state is for the previous (Pre) and current (See?) frames. The 
rightmost column shows the output of the consistency module (Cs) after performing its 
reasoning. Furthermore, the GUI allows the dragging and dropping of objects to change the 
order, as well as addition (Add) and deletion (Delete) of landmarks. 
Fig. 5 (b) shows two consistent sightings. Even though the two landmarks RP and BG were 
not visible in the previous frame, they are consistent with each other, allowing them to be 
forwarded on to the localization module. In fact, this is the same result that a traditional 
value domain reasoning system would obtain. This is also true for Fig. 5 (c) where we can 
see three objects that are inconsistent with each other. Since all the objects only occur within 
one single frame, the only conclusion that can be drawn is that nothing is consistent in that 
scene. Once information varies over time, a richer belief about the environment can be 
formed. Fig. 5 (d) shows the same scenario as Fig. 5 (c), but this time the temporal properties 
of the visible objects vary. The back goal that was visible in the previous frame as well as the 
current frame is given precedence over the right post and the front goal that were only 
visible in a single frame.  
Temporal and spatial tests can be combined as in Fig. 6 (a). Objects that are consistent in 
either space or both space and time are ruled as being consistent in the world view of the 
system. Only inconsistencies that persist over both space and time will force the system to 
conclude that nothing is consistent (Fig. 6 (b)). 

 
Fig. 6. Whether an Object is visible is indicated by See? for the current frame and by Pre 

for the previous frame. Column Cs shows whether the corresponding object is 
concluded to be consistent. (a) The two persistent landmarks (RP and BG) are 
consistent with each other, but inconsistent with the front goal (FG). (b) Nothing is 
consistent in this view 

3.6.1  Evaluation on the Robot 
We also have analyzed the effectiveness of the approach in a Sony AIBO ERS-7 in the lab. 
Fig. 7 shows a lab setting where we can rapidly produce opposite goals in a frame and 
immediately after block one goal, or the other. In the log, we found sequences where the 
robot is seeing only the front goal and reports it as consistent. When the back goal appears 
as well, for that first frame, the front goal remains consistent and the back goal is labeled 
inconsistent (note that in the discussion of the KF, MM, and MCL localizers we indicated 
that the frame with both goals becomes not usable). If the back goal persists with the front 
goal for one more frame, then both goals are now labeled inconsistent (note that the model 
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can easily be adjusted if a different effect is desired besides having two consecutive frames 
with both goals to rule them out). If the front goal drops out, then the back goal in the 
previous frame and the back goal in the current frame both become consistent. We have no 
space here to discuss more examples of the versatility of the modeling here, but using the RP 
also helps since the blue goal is in the right left-to-right order with respect to the post.  
 

(a) Both goals are visible. (b) The blue goal is covered. (c) The yellow goal is covered. 
Fig. 7. Lab Examples. A setting that allows sequences of frames where two goals are 

reported by vision. Goals can be covered and uncovered quickly 

4. Plausible Logic for the Referee 
One of the most crucial aspects of soccer is the offside rule (rugby, hockey and many others 
have similar variants). Typically, the rule is a source of much debate, and almost every 
soccer fan forgets one or more of the exceptions when first presenting the rule to a novice. 
The rule represents an interesting resource for the defense, and its comprehension is crucial 
for the attacking team. Naturally, soccer referees (main and assistant) are mostly judged by 
their ability to officiate the rule. 
If robotic players are to participate in a competition in 2050 and defeat the human world 
champion they would need to reason about these types of rules. Moreover, we can foresee 
that an artificial agent can enforce the rules in leagues like the simulation league or even the 
Sony AIBO competition as there are now video analyzers that recognize players, landmarks 
and the ball (Ruiz-delSolar et al., 2006). 
The official rules of the game, as per the FIFA web site indicate that Rule 11 corresponds to 
the off-side rule.  

It is not an offence to be in an offside position. A player is in an offside position if he is  
• nearer to his opponents’ goal line than both the ball and second last opponent  

A player is not in an offside position if he is 
• on his own half of the field of play or  
• level with the second last opponent or  
• level with the last two opponents  

A player in an offside position is only penalized if, at the moment the ball touches or is 
played by one of his team, he is, in the opinion of the referee  

• interfering with play or  
• interfering with an opponent or  
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• gaining an advantage by being in that position.  

There is no offside offence if a player receives the ball directly from  
• a goal kick or  
• a throw-in or  
• a corner kick.  

We now describe this with a model using PL with the programming language DPL. We will 
mimic closely the official wording, although simpler equivalent models can be described 
more succinctly. We define the objects we need to talk about as the last two opponents and 
the ball.  
 
type Last2Opponents = {Opp1, Opp2}.   
type Objects = {Ball} + Last2Opponents. 
 

We also need to describe the possible types of activities for a player and the possible ball 
transfers.  
 
type Plays = {IfPlay, IfOpp, TkAd}.  
type Transfers = {GlKk, ThwIn, CnrKk}. 

The robotic referee would need to deduce from its sensors whether a player is level with the 
second last opponent.  
 
type lvl(x <- Last2Opponents). 
 

Also, using its sensors, it must identify the involvement of the player in play and the types 
of transfers that result in no offside.  
 
type play(x <- Plays). 
type xfer(x <- Transfers). 
 

The default situation is that a player is not committing an offense, as per the official rules 
above. Note that we are naming rules with more meaningful names that just a rule 
identifier.  
 
NoOffence: {} => ~offsideOffence. 
 

The remaining rules are now clear from the similarity with the FIFA’s Rule 11.  
 
Offence: {offsidePosition, active} => offsideOffence. 
Offence > NoOffence. 
    
NotOffside: {} => ~offsidePosition. 
 
Offside: {nearr(x) | x <- Objects} => offsidePosition. 
Offside > NotOffside. 
 
OwnHalf: {ownHalf} => ~offsidePosition.  OwnHalf > Offside. 
    
lvl: {lvl(x)} => ~offsidePosition.  lvl > Offside. 
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NotActive: {} => ~active. 
 
Active: {play(x)} => active.  Active > NotActive. 
 
Transfer: {xfer(x)} => ~offsideOffence.  Transfer > Offence. 
 

5. Plausible Logic for the RoboCup@Home 
RoboCup@Home is a league that concentrates on real-world applications for robotics. It has 
a strong focus on interaction between autonomous robots and humans, aiming at the 
development of applications that can assist humans in everyday life (van der Zant & 
Wisspeintner). We believe that such applications will become prevalent in the near future 
and will be an integral part of our lives in areas such as public transport, housework, care, 
and medicine. We have explored human-robot interfaces for assisting learning of blind 
children (Bartlett et al., 2003) and e-mail between blind adults (Estivill-Castro & S., 2006). As 
originally proposed (van der Zant & Wisspeintner), RoboCup@Home anticipates many 
applications of robots assisting elderly humans with situations like emergencies. 
We have presented, as part of the Open Challenge in RoboCup 2007, the use of rules in DPL 
for a scenario where an elderly lady (Grandma) lives alone at home. While she does not 
require constant care, raising an alarm in an emergency or if something unexpected happens 
can be of vital importance. We now illustrate the constructing of these rules for our scenario. 
We use vision as the main source of input and information about the environment since 
RoboCup@Home settings can hardly have specific sensors for robots. Again, the suggested 
methodology for building a model is to introduce the rules incrementally, adding 
consideration of possibly visible objects one at a time. 
We presume that the raising of an alarm could be forwarded to a behavior module on the 
robot. Thus, alarm means an alarm should be raised about Grandma’s welfare. By default, no 
alarm should be raised. Default: {}⇒~alarm The frames analyzed by vision have attached a 
frame identifier f. Ft',t denotes the sequence of frames between two points in time, t and t'. 
The variable now denotes the point in time when a decision for an alarm is being made. For 
a short time in the past, say half an hour, we use short, but long is a long time, say 8 hours. 
The variables long and short could represent a collection of tunable parameters, for those 
rules that use them. Again, sightings from the sensors are plausible assumptions and See(x,f) 
is true if the vision module reports that object x is visible in frame f. Sorry Grandma, but to 
your robotic helper you are just an object. 
A prolonged absence of Grandma is reason to raise an alarm. PL represents this as a 
definition for what absence means (absence = ∀f∈Fnowlong ~See(Grandma,f)), one plausible rule 
Absence: {absence}⇒alarm, and an instance of the priority relation Absence > Default. In DPL 
this can be expressed as follows.  
 
Default: {} => ~alarm. 
Absence: {absence} => alarm.  Absence > Default. 
 

Grandma is likely to be in trouble (suffered a fall) if not standing, that is Horizontal. If 
Grandma is horizontal, then Grandma is by necessity visible. Our implementation can 



66  Robotic Soccer 

assume that the analysis of a frame by vision can not assert Horizontal(Grandma,f) without 
also asserting See(Grandma,f) over matching frame ranges. A fall is likely if Grandma is 
Horizontal for a short time. Thus, formally, we need again a definition (lying = ∀f∈Fnowshort  
Horizontal(Grandma,f)), two refining rules (Lying: {lying} ⇒ fall, and Fall: {fall} ⇒ alarm), and 
one more instance in the priority relation Fall>Default. This can be expressed by the 
following DPL rules.  
 
Lying: {lying} => fall. 
 
Fall: {fall} => alarm.  Fall > Default. 
 

With the simple model so far, we can already handle two cases that might be cause for 
concern and raise an alarm. However, in a real-world scenario, it may be perfectly valid for 
Grandma to lie down and rest. It is likely that when Grandma is lying down on her bed, that 
she may be resting. We now model this refinement. We assume that the robot can sense 
Over(x,y,f), that means that object x is over object y in frame f. Over(x,y,f) implies See(x,f) and 
See(y,f). There is no possibility that Grandma can be absent and over her bed, so rules 
Absence and OnBed can never conflict. Mathematically, onBed = ∃f∈Fnowshort   
Over(Grandma,Bed,f). The refinement is introduced with a rule that indicates the exception 
OnBed: {onBed} ⇒ ~alarm. And the priority over the rule that raises an alarm when lying 
OnBed > Lying. The corresponding DPL rules are as follows.  
 
OnBed: {onBed} => ~fall.  OnBed > Lying. 
 

However, if Grandma stays in bed for too long and is not getting up, this may still be cause 
for concern. Therefore, if Grandma is horizontal for a long time, raise an alarm regardless of 
where she is. We specify what it is to be lying for too long as LyingLong: {lyingLong} ⇒ 
notGettingUp, where lyingLong = ∀f∈Fnowlong  Horizontal(Grandma,f). Then, we have an 
exception to the exception with the rule NotGettingUp: {notGettingUp} ⇒ alarm and another 
instance of the priority relation NotGettingUp > Default. So we can extend our DPL model 
once more to take the amount of time that Grandma has been lying down for into account.  
 
LyingLong: {lyingLong} => notGettingUp. 
NotGettingUp: notGettingUp => alarm.  NotGettingUp > Default. 
 

Grandma is likely to be okay if the long time she is lying is at night and on the bed. At night 
you cannot see the sun. Grandma is not likely to get up at dawn, and may go to bed before 
dark. All we know is that bedtime overlaps nighttime. This leads to the following definition 
nighttime = ∃f∈Fnowlong ~See(Sun,f). We model the new revisions by another rule Nighttime: 
{nighttime} ⇒ ~notGettingUp. This is a revision on when it is OK to be lying too long 
Nighttime > LyingLong. The following DPL code handles this scenario.  
 
Nighttime: {nighttime} => ~notGettingUp.  Nighttime > LyingLong. 
 

To continue with this illustration, we ask the question what happens if Grandma is not 
home alone. Perhaps we want to raise an alarm if a stranger is looming over Grandma. For 
purposes of this scenario, a stranger is anyone other than Grandma. The presence of a 
stranger is not alarming unless Grandma is horizontal. We define the condition our sensors 
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can detect as looming = ∃f∈Fnowshort  See(Stranger,f) ∧ ∀f∈Fnowshort  Horizontal(Grandma,f). Then, 
we define the rule Looming: {looming}⇒alarm. And place it in the hierarchy with 
Looming>Default. This can be expressed in DPL as follows.  
 
Looming: {looming} => alarm.  Looming > Default. 
 

To better illustrate how these rules work, Figure 8 summarizes the relationship between the 
rules shown above. To cope with more complex scenarios, additional rules can be created 
and priority relations can be added to resolve potential conflicts between the existing set of 
rules and the newly added set. 

 
Fig. 8. Grandma’s rules represented graphically. A priority is represented by an arc. The 

anticlockwise end beats the clockwise end 

5.1  Implementation and Evaluation 
The DPL model for Grandma’s helper was implemented and evaluated in a similar fashion 
to the robotic soccer models introduced earlier. Using the GUI simulator, all combinations of 
inputs were tested to verify that the response (alarm or no alarm) was consistent with the 
model’s discussion. An instance of the simulator using the complete set of rules is shown in 
Figure 9. 
The user can set the conditions as perceived by a virtual vision module. If the user changes 
the inputs, the engine attempts to prove the alarm output. The “Proof” output column for 
alarm is set to +1 if an alarm should be raised and to -1 if no alarm should be raised. An 
output of 0 would indicate that the current situation cannot be decided either way (because 
a proof always leads to loop). This cannot (and did not) occur with the given set of rules. 
The “Negation” output column shows the results of proofs of ~alarm. 

 
Fig. 9. Evaluation of the Grandma-Alarm model in the Plausible Test GUI simulator. The 

state of the DPL inputs is set on the left side of the screen while the output (the proof 
result from the engine whether alarm should be set or not) is shown on the right 
hand side 
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The same model and the DPL proof engine were then used on an ERS-7 Sony AIBO for the 
RoboCup@Home open challenge.  We used the same vision module of our robotic soccer 
code. Any person dressed in blue is easily recognized using the code that recognizes the 
blue goal, while we set the bed yellow so we reused the modules for identifying the yellow 
goal. An orange circle passes for the sun, and thus the code for the module to recognize balls 
was reused. Any other object, when visible, was perceived as a stranger. 
While most of the robotic software used for the league (such as vision, the behavior module, 
and the networking code) could be re-used some changes needed to be made to 
accommodate the Grandma scenario. A new module is introduced with the template 
method and the phases we discussed before. The template method executes every time a 
frame is ready and analyzed by vision. This new module forwards alarm signals to other 
modules (a behavior module or a network connection if an alarm takes the value true for the 
current frame). Naturally, some of the definitions must be translated into concrete detectable 
sensor information. Thus, some C++ code needs to be produced. For example, in a soccer 
game, the goal would never be expected to be in a vertical position. Since it does make a 
difference whether Grandma is standing upright or is lying in a horizontal position, a 
method was added that would determine whether the dimensions of the blue object (if 
reported as visible by the vision module) were horizontal (wider than its high) or vertical 
(higher than its width). Similarly, if both goals (i.e., both Grandma and her bed) were 
visible, C++ code needs to be added to compare their relative positions to provide the 
information whether Grandma is lying on the bed or not. C++ code needs to be added for 
the other terms defined in PL that demand information from processing sensory input. To 
determine if Grandma had been lying down for long, we developed new C++ code that 
counts the number of frames that Grandma had been seen in a horizontal position.  

 
6. Conclusion 
One of the most satisfying aspects of our implementation is that it has proven efficient 
enough to be running on board a Sony AIBO while in competition in the soccer 4-legged 
league or in RoboCup@Home. Table 1 shows the CPU-timings on board an ERS-7 running 
our C++ implementation with three different models and two situations. It may be 
surprising that while the robot was in the playing state, chasing the ball and executing kicks, 
the execution is faster than while standing as a goalie. However, the standing situations 
have usually on average 2 landmarks per frame. But while playing, frames with 2 objects in 
sight are less frequent. In all cases, the inference engine is executed six times per frame, to 
verify if each of the landmarks is consistent. 
 

Model Activity Phase 1 and 
Phase 2 

95 % 
Confidence 

Interval 

Phase 1, 
Phase 2, and 

Phase 3 

95 % 
Confidence 

Interval 

Net Phase 3 

4 Chasing 749 μs ± 7 μs 931 μs ± 8 μs 182 μs 
4 Standing 1,438 μs ± 31 μs 1,687 μs ± 35 μs 249 μs 
3 Standing 407 μs ± 15 μs 622 μs ± 17 μs 215 μs 
2 Standing 209 μs ± 13 μs 371 μs ± 17 μs 162 μs 

Table 1. CPU-times for the 3 phases of our template method on a Sony AIBO ERS-7 
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1. Introduction  
 

One of the biggest challenges for vision systems in mobile, autonomous robotics is to show 
adaptivity to changing visual circumstances. Many state of the art robotic platforms still use 
color segmentation as the basis for vision, even though this technique performs badly when 
the robot is removed from the exact lighting environment for which it was calibrated. 
Nevertheless, the very nature of a mobile platform with cameras on board, suggests that it 
will move and thus lighting conditions will change.  
All variants of human soccer regularly use color-coding, but robotic soccer is currently 
limited to soccer fields with carefully controlled illumination conditions. Experiments in the 
RoboCup competition have shown how detrimental even the smallest lighting changes can 
be to platforms with cameras on board. Competitors calibrate their systems multiple times, 
even on the same field, simply because the ambient light in the room varies with the time of 
day. Small variations adversely affect the ability of agents to accurately assess the visual 
scene. Robotic soccer requires accurate visual information and our current systems simply 
do not provide this under variable or unknown illumination conditions. 
Many attempts to resolve this issue involve a priori geometric information regarding the 
objects in the visual scene. For example, if I know that the only round thing that I expect to 
see is the ball, then I can identify the ball by its round shape —I do not need its color. Such 
techniques are useful but often require far more intensive computation. Robotic soccer is a 
real time adversarial, nondeterministic and inaccessible setting, on a platform with limited 
computational power. Therefore, some geometric image processing solutions are simply not 
suitable. 
In this chapter, we describe our solution to this problem. Our solution is fast enough to run 
on the limited resources of a mobile system under the constraints of real-time image 
processing. Our technique is still basically a color segmentation process, so it runs in 
equivalent time to systems that are already used for robotic soccer. Faster processors or 
more reliable hardware (cameras/lenses) will result in more reliable and more robust 
systems under even larger illumination variations. 
We do not attempt to exhaustively classify an entire color class for a single illumination 
condition. Rather we calibrate a core color class of, say, orange, that will remain orange 
under many illumination conditions. This sparse classification means that in no image will 
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every pixel that looks orange be classified as orange, however in every image some pixel 
that looks orange will be classified as orange. We can quickly find some pixels of any given 
class, independent of the illumination condition, and complemented with other techniques, 
we are able to identify objects. 
Simple geometric shapes are usually easy to locate. A circle, for example, requires three edge 
points. We can thus use a special edge-detection algorithm to quickly find three points on 
the edge of the circle; starting from any of the pixels we have identified. A more complex 
shape may require a description of the entire edge. For this purpose we have developed a 
fast edge detection algorithm that can be used in conjunction with a border following 
algorithm so that we do not have to process all of the edges in the entire image. 
A large proportion of the machine vision literature of recent times, both in RoboCup and 
elsewhere (Gunnarsson et al., 2005; Shimizu et al., 2005; Kak & DeSouza, 2002), has 
attempted to address the problem of dynamic illumination conditions. We present a viable 
solution here, provided that the conditions are not too widely variable. Our technique has 
been applied with success to the Four-Legged league in RoboCup. We have illustrated our 
ability to correctly identify objects on the field in real time in complex and dynamic lighting 
environments. The object recognition system is efficient for the RoboCup environment and 
is robust to changes in color intensity and temperature. It is based on a sparse classifier that 
is very accurate, but only on pixels that are at the core of each color class. It essentially 
refuses to make a decision for most other pixels, labeling them as unknown. The necessary 
ideas of image segmentation appear in Section 3 and the use of the sparse classifier appears 
in Subsection 5.1. Optimized edge-detection is the second pillar of our approach. Thus, 
Section 4 shows how we find the border of objects without performing complete edge 
detection. How everything comes together is described in Section 5. Detecting object 
boundaries in simple objects is discussed in Section 6, while Section 7 handles more complex 
objects. Accuracy of our methods is reported in Section 8. We offer final remarks in Section 
9. 

 
2. Pipeline for Color-Coded Environments 
 

A vision pipeline is a sequence of techniques and algorithms applied in a pipeline 
architecture (Shaw & Garlan, 1996), where each step in the pipeline manipulates or analyses  
 

 
Fig. 1. The Bruce et al image processing pipeline 
 
image data. There are certainly many varied methodologies for image-processing solutions 
and it is also true that robotic vision systems reflect this variety depending on the specific 
application context of the system. However, across a variety of problem domains within 
mobile autonomous robotics, a similar pipeline has emerged as a standard not only as a 
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standard in RoboCup (Ogihara et al., 2005; Veloso et al., 2005; Chalup et al., 2004; 
Chen et al., 2003), but also in other robotics applications (Halme et al., 2000; Kak & DeSouza, 
2002). 
This pipeline was first described by Bruce, Balch and Veloso (Bruce et al., 2000) in the 
context of the RoboCup competition and is shown in Fig. 1. The first stage in the pipeline is 
image segmentation (b) where each pixel in the image is labeled as one of a set of color 
classes. Pixels that look, for example, blue, are labeled as belonging to the class blue. After 
the image is segmented, it is passed to a blob-former (c). Blobs are groupings of connected 
pixels that all belong to the same color class. Each blob can then be analyzed to determine its 
properties or relation to other blobs. This is the object-recognition stage (d). The Bruce et al. 
pipeline is certainly not the only pipeline used by mobile, autonomous robots. Indeed, even 
within the RoboCup competition we have seen many interesting and significant variations 
in recent years, such as the one in the German team code (Röfer et al., 2005). However, the  
 

 
Fig. 2. All the (orange) ball pixels in Fig. 3 mapped to the RGB colur spac (left) and the YUV-

colour space (right). Note that the shape in space defined as orange is not regular 
 
Bruce et al. pipeline does possess certain advantages that make it an extremely popular 
choice. Firstly, it is very efficient — it requires only one pass over the raw data and one pass 
over color segmented data in order to complete the object recognition task. It is relatively 
easy to implement and there are third-party libraries available that implement some of its 
functionality. Another advantage is that it is also relatively easy to calibrate and to use in 
various different conditions. So significant are these advantages that even some competitive 
teams do not deviate far from the pipeline, despite its age (Chalup et al., 2004; Chen et al., 
2003). 
In the context of real-time autonomous robotic vision, color is one of the only object features 
that is sufficiently easy to distinguish in order to make the image processing fast enough to 
keep up with the frame rate of the camera. A pipeline similar to Bruce et al. can even be 
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used in military hardware in order for missiles to detect targets via the infrared spectrum 
(Shaik & Iftekharuddin, 2003). 

 
3. Colour Classification 
 
We describe a color classifier tailored for the first part of the pipeline, namely, image 
segmentation. The classifier described here is as fast as a lookup table, but considerably 
more compact than any other classifier available (it is under 4KB). Also, in contrast to other 
classifiers used at RoboCup, its representation is intuitive. 
We may represent a color classifier as a function 
 

colour_class: Y×U×V→ colors (1) 
 
that given a triplet (y,u,v) produces a color class (a member of a discreet set of color 
classifications). This function may be easily represented as a single characteristic function for 
each member of colors. For example, let class_orange: Y×U×V→ {true, false} return true 
when the pixel (y,u,v) belongs in the class orange. 
The set of all pixels in the color space that we would like to classify orange cannot be 
accurately described by any linear discriminator (refer to Fig. 2). This is because the orange 
area is not regular. This makes the individual characteristic functions difficult to define. 
 

 
Fig. 3. The highlighted pixels both classify to orange because they have the same component 

(YUV) values. But the human eye clearly perceives one as red and the other as orange 
because of the context of the image 

 
It is clear that a more complex knowledge-representation alternative would be required to 
exactly represent each color class. We certainly lose accuracy whenever we attempt to define 
the class orange by any linear discriminator. We are, however, quite unconcerned with this 
loss of accuracy. The reason why such accuracy is unimportant is illustrated in Fig. 3. The 
two highlighted pixels in the image on the left have exactly the same (y,u,v) tuple even 
though our eye clearly perceives one as red and one as orange due to the context of the 
image. Should that pixel be classified as orange or red? Clearly the human eye, to some 
extent, defines color by what it expects to see given the surrounding context of the image. 
An ideal classifier would therefore classify a pixel as class orange only when the 
predominant color of the surrounding shape is orange. The problem, of course, is that image 
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segmentation is usually the first step in object recognition (and such recursion could be 
CPU-costly). The first image analysis algorithm does not yet know the context of the object 
in which the pixel lies. For this reason, even a comprehensive look-up table (an artificial 
neural network, a support vector machine, or a decision tree), will classify pixels incorrectly. 
For this reason, we will be content with a classifier that recognizes the core class, where core 
means those values (y,u,v) that remains on the same class across a wide variety of 
illumination conditions. We will ignore pixels that could fall into more than one class 
depending on surrounding context.  
Thus a composition of linear descriptions will be a suitable representation. We start with 
some simple characteristic functions. A characteristic function of each color class can 
therefore be represented by the projection functions on each of the dimensions Y, U and V. 
For example, the three projections Yorange, Uorange and Vorange can be used to approximate 
class_orange in the following way: 
 

class_orange (y,u,v) =  Yorange (y) ∧ Uorange(u) ∧ Vorange(v)  (2) 
 
where ∧ stands for logical AND.  
Each of the characteristic projection functions has a domain of 256 values and thus can be 
feasibly stored in a look-up array (of size 256 bits) that stores 1 if Yorange, is true and 0 
otherwise. Thus, there is a look-up table of 256 values for each of Yorange, Uorange and Vorange 
which we store in 3 arrays. A characteristic color_class  function can then be represented by 
a C++ bitwise AND-operation: 
 

color_class (y,u,v) = Y[y]&U[u]&V[v]. (3) 
 
We can store the look-up for several characteristic functions in compact arrays of int type 
(rather than Boolean type) if they are of convenient width (32 bits is a convenient width 
because it represents an int data type on a modern 32-bit processor). We do this by putting 
the look-up for the first characteristic function in the first bit (left-most bit) of the value, the 
second function look-up in the second bit, and so on. If more characteristic functions are 
required, then we simply increase the size of the data type. 
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However, there are typically few color classes. Thus, we can use more characteristic 
functions and consider them organized into a hierarchy. The left-most bit represents the 
highest decision rule. If a pixel is not already classified, we proceed to the next characteristic 
function, until one rule classifies it. The Machine Learning or Data Mining community 
would refer to this as a Decision List (Witten & Frank, 2000). This can be implemented with 
efficient shift operations that compute the discrete log2  of the result to determine the ID of 
the color class. This entire method of classification is shown in Algorithm 1. 
This implementation of our algorithm is similar to that presented by Bruce et al. 
(Bruce et al., 2000). The innovation of our approach is that each color class may be 
represented in the array more than once because Algorithm 1 retrieves an index to the class, 
not the class itself. There are two advantages to this system over Bruce et al.. The first is that 
our algorithm allows us to discriminate non-rectangular regions in the color space using a 
decision list format. The second is that the representation of the calibration file is very easy 
to understand and edit (even by hand). This is advantageous when learning a classifier, 
validating the classifier, or inspecting the pipeline functionality with tools that link to the 
AIBO. The Bruce et al. algorithm does not permit more than one linear discriminator for 
each color class, and therefore does not permit non-rectangular color regions. This makes 
the Bruce et al. algorithm unsuitable for use in both of the calibration techniques (robust and 
sparse) that we will introduce shortly. 
 

Algorithm Average time on AIBo Amount of memory 
 per frame (ms) consumed (bytes) 

Our method 1.71 3060 
Complete look-up table 1.41 16777216 (16Mb) 
k-Nearest Neighbours Depends on k but very slow fairly small 

 ( 1ms / k) (4 bytes .k) 

Support vector machines 1.93 262144 (256Kb 
compressed) 

Table 1. Comparison of our Decision List classifier with other available methods 
 
Our entire classifier is at most 3060 bytes in memory and runs very quickly. Table 1 
compares our method with some of the other classifiers that are being used in the RoboCup 
competition. It is easy to understand why our technique is so much faster than the others. If 
classification is treated as a spatial problem (k-Nearest Neighbors), then the classifier is 
required to compute Euclidean distances that involve a square root operation. If it is treated 
as a decision- tree, then it may process up to 20 levels of conditional statements before a 
decision is reached. Our method has a runtime cost only marginally larger than the fastest 
possible solution of the look-up table. 
In general, calibration for classification is a supervised learning task; given a set of sample 
pixels with known color class, derive a classifier to assign a color class to future pixel values. 
It is important to recognize that we may not encounter every possible (y, u, v) tuple in the 
training set, so the classifier must generalize. We consider two types of calibrations possible: 
robust and sparse. Let P be a training set of n images and Orangei be the set of pixels that we 
wish to classify as orange (for example) within the i-th image. Then an ideal robust 
classification for the class orange is: 
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class_orange (y,u,v) = true ⇔  (y,u,v) ∈ ∪i=1
n Orangei . (4) 

 
That is, if a pixel with values (y ,u, v) is recognized as orange in any of the images in the 
training set, then the classifier should label this pixel as class orange for any future images. 
Of course, an ideal robust classifier may not be possible (the same (y, u, v) tuple may be 
assigned to two different classes in the training set even within the context of the same 
image). An ideal classifier may also suffer from over-fitting (Witten & Frank, 2000). In 
practice, we weaken the condition by asserting that the classifier should label a pixel as class 
orange if it is recognized as orange more often than any other color class. 
By contrast, an ideal sparse classification for the class orange is: 
 

class_orange (y,u,v) = true ⇔  (y,u,v) ∈ ∩i=1
n Orangei . (5) 

 
That is, we  label a pixel (y, u, v) as orange only if it is recognized as orange in all of the 
images in the training set. Again, sometimes it is necessary to weaken this condition. In 
practice we label a pixel as orange, if it is recognized as orange in most of the images in the 
training set. 
There are both benefits and drawbacks to each of these two calibration methods. Because we 
are aiming for versatility to illumination conditions, we take advantage of sparse 
classification. 
Each of our characteristic projection functions, as described above, is capable of storing any 
pattern of 255 bits. However, for the task of calibration we restrict this to a continuous block 
of 1’s any where within the domain of the function. We label the lowest positive bit for a 
particular projection (y, u or v) and class (COLOR) as Minproj,COLOR. Similarly we label the 
highest positive bit Maxproj,COLOR. This means that each characteristic projection function is 
essentially testing the clause 
 

( Minproj,COLOR  ≤ x )∧ ( x ≥  Maxproj,COLOR). (6) 

 
Therefore each characteristic function may be written 

class_COLOR (y,u,v)  =  ( MinY,COLOR  ≤ x )∧ ( x ≥  MaxY,COLOR) 
∧ ( MinU,COLOR  ≤ x )∧ ( x ≥  MaxU,COLOR) 
∧ ( MinV,COLOR  ≤ x )∧ ( x ≥  MaxV,COLOR). 

(7) 

 
It is therefore this representation, in the form of a decision list (Witten & Frank, 2000) that we expose 
to the user. A typical calibration file has the following format: 
Colour_ID_1 Min_Y Max_Y Min_U Max_U Min_V Max_V  
Colour_ID_2 Min_Y Max_Y Min_U Max_U Min_V Max_V ...  
Of course, we are limited in the number of characteristic functions we can apply by the size 
of the selected data type, as explained above. In our case we are limited to 32 characteristic 
functions which, of course, may be increased if a larger data type is used. The results of 
applying one such characteristic function can be seen in the screen-shot in Fig. 4. Here the Y, 
U and V channels are calibrated separately to produce the overall characteristic function. 
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Fig. 4. We may calibrate for each colour by separately examining the Z, U and V 

components and finding the projections for each characteristic function. This image 
shows our manual calibration tool allowing the user to select the Y (grey-scale in the 
image), U (yellow-scale in the image) and V (blue-scale in the image) projections for 
the class orange separately  

 
Although the rule format restricts us to linear discrimination within the color space, 
significant flexibility is achieved by the decision list format as Fig. 5 illustrates. Image (a) 
represents the class orange that we want our classifier to learn. In Image (b) the bounding 
rectilinear area minimally surrounds the class orange. This is the optimal linear 
discriminator that completely contains the class, but it does not give a very good solution. 
There is a large area that our classifier will label orange that is not orange. By using a 
decision list format we can do much better. We first find a characteristic function for the two 
shaded areas in Image (c), and label these pixels ‘not orange’ (i.e.  unknown). The while loop 
in Algorithm 1 will only continue evaluation until a characteristic function returns true. 
Therefore, if the shaded areas in (c) are tested before the rule in (b), then pixels within them 
will not be classified as orange even though the linear discriminator in (b) would have 
classified them so. In this way it is possible to obtain relatively good classifications of colors. 
Of course, if we are training a sparse classifier instead of a robust one, we will not be 
interested in a box that completely surrounds the color class. Instead we will want a 
discriminator that contains the core of each class. In this case linear discriminators are more 
than adequate. Of course we may require more than one characteristic function to 
adequately describe the core of each color class (Image (d) in Fig. 5). 
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Fig. 5. (a) Colour classes cannot be described by orthonormal rectangular regions in the 

color space. Therefore (b) classification by linear discrimination is typically bad 
because it labels many pixels that are not in the class. (c) We may use linear 
discrimination in combiantion with decision lists to do a better job. If the shaded 
regions are labelled not in the class, and are higher in the list, pixels within them will 
not be labelled as belonging to the class. (d) More than one charcteristic function can 
be used for each colour class. This is particularly useful for sparse classification where 
only the core of each color is required 

 
4. Optimized Edge Detection 
 

Edge detection is often ignored in dynamic computer vision applications due to the high 
runtime cost associated with sliding a processing window over an entire image. We have 
obtained (Lovell, 2007) very optimized methods for edge detection based on effective 
methods such as Canny’s and Sobel’s. While our optimizations considerably improve the 
performance of the Sobel’s algorithm, and the resulting algorithm is an order of magnitude 
faster than Canny’s, but it is still computationally expensive. Here we focus on a second 
alternative that enables us to delay edge detection until it is required (late edge detection). 
By delaying the edge detection phase we have found it possible to use edge detection as a 
fundamental tool in our image-processing pipeline because only the areas of the image 
where edge detection is required will be examined for edges. 

 
4.1 Late Edge Detection 
The challenge is to identify interesting sections of the image where edge detection would be 
useful, rather than apply the difference and window testing of Canny’s or Sobel’s methods 
to every pixel of the image. Edge detection is usually an early step in the image-processing 
pipeline so it is unlikely that we will have a large amount of contextual data on which to 
base such a decision. But, assuming that we can identify some points inside interesting 
objects, it is then possible to use edge detection to locate the edges of that object and use 
them for feature extraction. For now, we will simply assume that we have identified 
p = (x, y) as a pixel that is contained within an object for which we need to find the edges. We 
discuss here two techniques depending on the amount of edge information that is required. 
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Fig. 6. (a) Vectorization of a circle does not require all the edge points to be known. Any 

three points on the boundary of the circle can be used to loate its centre by the 
perpendicular bisectors method as shown in this figure. (b) Patial edge detection on a 
convex shape (such as the left one in (b) ) may not produce enough points to correctly 
identify and parameterize the shape. If the shape is not convex, further sample points 
may be needed, or complete edge detection may be requried 

 
Full or complete late edge detection is a technique we use when a complete description of 
the edge of the object is required. This renders traditional edge detection on a relevant object 
within the image. However, it is not always necessary to find the complete edge of each 
object. For example, we are only required to know three points on the edge to find the 
correct parameterization of a circle (see Fig. 6). In this instance, we use a partial late edge 
detection that can find n points on the boundary without actually tracing the entire 
boundary. The difference between the two algorithms is illustrated in Fig. 7. We describe the 
partial edge detection first, because the complete one will build on some of these techniques. 
 

 
Fig. 7. Full Late Edge Detection on an image (a) results in (b) a full list of pixels that compose 

the edges in the image. (c) Partial Late Edge Detection locates only a subset of 
boundary points for an object 

 
4.2 Partial Late Edge Detection 
The idea of partial edge detection is that, given some seed point p = (x, y) that we know to be 
within the boundary of an object, we wish to find a set E of n pixels that lie on the boundary. 
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To do this we cast n evenly spaced rays out from p, examining each pixel on the ray as we 
come across it. Each pixel is compared with its neighbors to check the gradient change in 
intensity. By examining the pixels along a ray in this way, we are essentially performing a 
Sobel’s gradient comparison. Edges are therefore detected well when they are 
approximately orthogonal to the ray — which is most of the time if the shape is convex. 
Of course, if the shape is not convex then we may not be able to gather enough information 
to parameterize it in this way (see Fig. 6 (b)). In this case, casting rays from a second point p2 
(or more) may sometimes be sufficient for parameterization. More complex shapes will 
require our second method. By using the Manhattan distance on the color space, we have 
been able to successfully handle edge detection even in blurry images (Lovell, 2007). 

 
4.3 Complete Late Edge Detection 
Sometimes it is not adequate to know only a sample of the boundary points. For example, 
for vectorisation we require an entire list of spatially connected edge pixels that represent 
the boundary of an object. Although our method for this full late edge detection is slower 
than a partial edge detection, it is still significantly faster than traditional edge detection that 
must be performed on the whole image. 
Let B(p, I) → p’ be a standard border following algorithm that, given a pixel p on the border 
of an object in a raster image with borders marked I, returns the next pixel around the 
border of an object  p’. Our late edge detection algorithm is then defined by Algorithm 2. 
 

 
 

Of course in Line 4 we may use Sobel’s window (or optimizations of it (Lovell, 2007)). We 
show some images in Fig. 8 that illustrate the results of this algorithm. The edge detection is 
complete in that a full list of pixels that compose the border of a particular object are 
discovered, but the algorithm does not need to examine any unnecessary pixels to do this. 
Irrelevant sections of the image are never examined because the algorithm uses a border 
follower. 



Robotic Soccer 

 

82 

 

 
Fig. 8. A full Late edge Detection on a single object within an image reveals the boundary of 

that object without examining any unrelated areas of the image. In this figure we 
show a full edge detection on the ball, starting from the pixel indicatedy the green in 
the source image 

 
One of the problems associated with this technique arises if the edge detector is unable to 
form closed contours. This issue can be somewhat avoided by a sensitive calibration (that is, 
one that forms thick edges).  However, occasionally we will be forced to abandon an attempt 
at identifying the edge of the object. By bounding the pixels in the edge of each object we 
can abort unsuccessful attempts. 

 
4.4 Border Following.  
There are many standard border following algorithms that we can apply as B in 
Algorithm 2, all of which are extremely fast (Θ(n)) on the number n of pixels in the border). 
We describe here one of the simplest for completeness. This is a standard algorithm that 
operates in 8-connected space, but it can be easily modified to work in 4-connected space. 
Let D (p, d) be a function that returns the next pixel from p in direction d. Let the directions 
be defined as in Fig. 9. 
 

 
Fig. 9. Direction definitions for the border following method in Algorithm 3 

 
5. Illumination Independence 
 
We now introduce an efficient object recognition system that is robust to changes in color 
intensity and temperature. Our algorithm will use our edge-detection methods to obtain a 
description of the boundaries of objects. A list of features in the boundary of the object, plus 
its color, are usually sufficient for object recognition of landmarks and the ball in RoboCup 
and for many other object recognition tasks (Lovell, 2007). 
Our algorithm will provide this list of features as a basis for object recognition in a wide 
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variety of illumination conditions without re-calibration. It can do this because it does not 
rely solely on color classification in order to form blobs. We present two variations of our 
method. One variation runs extremely quickly but is only able to find simple shapes. The 
other variation is slightly more processor-intensive but will recognize an arbitrary shape. 
 

 
 
It is well accepted that edge detection algorithms are far more robust to changes in the 
temperature and intensity of light than color based segmentation algorithms. This is easy to 
illustrate. Consider Fig. 10 which illustrates the effect of varying the illumination intensity 
(a) and temperature (b) of a common scene in RoboCup. Although the edge information in 
the images is not lost until the illumination levels become extremely low, the robust color 
calibration becomes useless quite quickly. 

 

 
Fig 10. This figure shows the result of varying (a) illumination intensity and (b) color 

temperature on a common scene in RoboCup. The top rwo of images is the source 
image, the middle row is a robust classification and the bottom row is our edge 
detection routine. Note that although variation in illumination conditions is 
detrimental to color segmentation, it does not particularly affect edge detection 
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It is apparent then that edge detection, rather than color segmentation, is a better basis for 
object recognition systems if robustness to dynamic lighting conditions is a requirement. 
However, edge detection on its own will not yield sufficient information quickly enough. 
For example, to find the ball in the binary edge images in Fig. 10 we would need to run a 
circle detection algorithm such as the Hough transform. This would be far too slow for our 
purposes. Instead, our method works by combining edge detection with the sparse 
classification technique introduced earlier. 

 
5.1 Building a Sparse Classifier  
While it is extremely unlikely that a pixel-color classifier can be built for variable 
illumination conditions, we may, however, train a sparse one as long as there is not too 
much variation. Fig. 11 shows how this is possible. As the lighting conditions vary, the 
perceived color changes in a non-predictable way ((a) and (b)). However, as long as there is 
some overlap we may classify only the pixels in the overlap section as orange (c). We 
therefore have found a core class orange that contains pixels that are perceived as orange 
across both images. The classification itself (c) would be poor if we were to use it for object 
recognition purposes, but we do not wish to use it directly in this way. 
 

 
Fig 11. This figure shows the result of varying illumination conditions on the color space. 

For both images (a) and (b) a perfect calibration was made and every pixel that was 
labelled orange is plotted in the three dimensional YUV space. Notice that the 
location of the orange colour class shifts in the space as the illumination changes. We 
can find the core of the colour class orange (c) by only classifying pixels that are 
labelled orange in both images. This leads to a poor robust classification, but a good 
sparse classification 
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We see now how it is possible to train a sparse classifier for dynamic illumination 
conditions. We simply widen our set of training images to include many images from 
different lighting environments and, in the manner described above, train a sparse classifier 
to label only the pixels that are at the core of each color class. Of course if the lighting 
conditions are too variable then the intersection operation of the sparse classifier 
Equation (5) will yield an empty set. In this case we should be less ambitious with our 
illumination conditions. 
 

 
Fig. 12. The basic algorithm for illumination-independent object recognition. A sparse 

classification (colimn 2) is used along with a border-following algorithm (column 3) 
to locate regions within the image. These regions can be analyzed for objects of 
interest (column 4). Note that the system uses the same classification in each 
illumination condition with accurate results 

 
5.1 Combining Edge Detection with Sparse Classification  
One initial algorithm for illumination-independent object recognition is shown in 
Algorithm 4. In this algorithm we use the list of labeled pixels as seed points to find the 
border points of each object in the image. Although we can not be sure that every pixel that 
is part of, for example, the ball, will be labeled as orange, we can be certain that some of 
them will. Therefore to find the border points of an object we start at a seed point and iterate 
over pixels in any direction until a previously identified edge is found (Line 4). Once we 
find an edge we may border trace using the algorithm in the previous section 
(Subsection 4.4) to obtain the entire list of pixels in the border. 
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This process renders an image segmentation that works in a similar fashion to other region-
growing techniques (Wan, 2003) except that it has the advantage of being illumination-
independent. Refer to Fig. 12 where each row in the table shows the process working under 
a different illumination condition (but with the same calibration file). The first picture is the 
source image for the row, the second shows the results of a sparse classification step, the 
third shows the result of Algorithm 4 and the final image shows the object recognition step. 
In each case the ball, goal and beacon are found correctly, despite the large variation in 
illumination. 
 

Component Average time on AIBO 

Our basic pipeline Sparse classification 1.71 ms
 Edge detection 20.90 ms

 Border following 17.71 ms 

 Object recognition 5.87 ms 

 Time taken for 30 frames (1s of data) 1385.70 ms

The Bruce et al pipeline Robust classification 2.42 ms
 Blob forming 9.13 ms

 Object recognition 6.21 ms

 Total per frame 17.76 ms

 Time taken for 30 frames (1s of data) 532.80 ms

Table 2.The runtime cost of basic illumination-independent object recognition is quite high 
compared to the Bruce et al. pipeline. A large component of this cost is the edge 
detection and border following steps; therefore, optimizing these steps will improve 
the runtime cost of our algorithm 

 
The disadvantage of this method is the runtime cost. Refer to Table 2 for a breakdown in the 
runtime cost of this algorithm, compared to the Bruce et al. pipeline. Most of the execution 
time is taken in the edge detection step. This edge detection step uses a significantly 
optimized version of Sobel’s edge detection, but remains the main runtime cost of 
Algorithm 4 (Lovell, 2007). However, in what follows we suggest specialized edge detection 
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algorithms, rather than a general box to include in the pipeline. The algorithms we will 
describe significantly improve the efficiency of Algorithm 4 to make it feasible for use in 
real-time robotic environments. 
Notice that Algorithm 4 is not fast enough to analyze 30 fps on an AIBO. In fact, thirty 
frames analyzed at this speed take 1404.3ms, or just under one and a half seconds. Clearly, a 
large part of the cost of the algorithm is associated with the edge detection and border 
following steps. Therefore, we propose two modifications to Algorithm 4 in order to make it 
execute quickly enough to use in a mobile, autonomous robotic environment. 
Both of our alternatives use our late edge detection technique (Section 4). By delaying the 
edge detection step until it is required, we can perform edge detection only on the sections 
of the image in which we need it. 

 
6. Detecting Simple Object Boundaries 
 

The first of our alternatives uses the partial late edge detection that we described in 
Section 4. There are several cases where we do not require a complete description of the 
boundary of an object in order to parameterize it, as occurs with most simple shapes. The 
ball in RoboCup is a good example because it is circular. We require only three points on the 
boundary of the ball in order to apply the geometrical technique of perpendicular bisectors 
to find the center and radius (Fig. 6). Therefore, we need only to cast three rays in different 
directions from a seed pixel p that we are sure is part of the ball. Of course, we may wish to 
cast more rays, or to start with more than one seed point, in order to check if we have 
actually found the ball or just some other object that also looks orange. This is an extremely 
fast ball-finding algorithm.  
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There are other shapes as well that can be found in this way. We present in Algorithm 5 our 
fast algorithm for determining the parameters of a rectangle provided the angle of 
orientation is known a priori. If the angle of the horizon in the image is known, then this 
algorithm can be applied to find (for example) the beacons or goals in RoboCup or a great 
many rectangular shaped objects in the real world.  
We use the method outlined above to find a set P of points that are on the boundary of the 
rectangle. The points are then rotated in space so that the rectangle is aligned with the axes 
(Line 2). Each vertical column and horizontal row is then examined to find the lines on 
which the most points in P lie (Lines 6-21). These lines are labeled as the sides of the 
rectangle (Line 23). Finally the four corners are rotated back to the frame of reference of the 
image (Line 24). If the aspect ratio of the rectangle is also known a priori, the algorithm 
adjusts the rectangle based on the side that had the weakest support value (S). Similar 
algorithms may be employed to detect any regular polygon. 
If enough original sample points are chosen in the initial set P of points, then the algorithm 
is quite tolerant to noise in the image and even eliminates points where the edge has been 
determined incorrectly (see Fig. 13 in the next section). 
 

 Component Average Time on 
AIBO (ms) 

The Bruce et al pipeline Robust classification 2.42 
 Blob forming 9.13 
 Object recognition 6.21 
 Total per frame 17.76 
 Time taken for 30 frames (1s 

of data) 532.80 

Sparse classification 1.71 
Edge point detection 6.71 
Object recognition 1.64 

Our pipeline using 
only simple object 
recognition 

Total per frame 15.35 
 Time taken for 30 frames (1s 

of data) 460.50 

Table 3. Byusing our partial Late Edge Detection in conjunction with the sparse 
classification, our object recognition pipeline is not only illumination-
independent, it executes faster than the Bruce et al. pipeline 

 
6.1 Runtime Performance of Simple Object Detection 
In Table 3 we examine the runtime performance of simple object recognition. Note that the 
two object recognition components in Table 3 should not be directly compared. Much of the 
work that happens in object recognition in the Bruce et al. pipeline is performed in the shape 
recognition phase in our pipeline. The most expensive components of this pipeline are edge-
point detection algorithms and shape recognition, but the pipeline is still a dramatic 
improvement on the basic pipeline in Algorithm 4. Indeed, this pipeline is not only 
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illumination-independant, it is faster than the Bruce et al. pipeline. We could potentially 
analyze 60 fps at this speed. 

 
7. Detecting Complex Object Boundaries 
 

The second of our alternatives uses the full late edge detection that we described in 
Section 4.3. The basis of this method was that a point on the boundary of an object would be 
found in the same way as above, casting a ray from a seed pixel p until we reach the edge of 
the object. We noted in Section 4.3, particularly in Fig. 6, that it might not be enough to 
simply cast rays from seed pixels to determine the parameters of a complex shape. 
We therefore proposed Algorithm 2, a combination of a boundary-following algorithm and 
a partial late edge detection that could be used to discover and trace the boundary of an 
object in linear time. 
 

 
Fig. 13. (a) One of the main roblems with our method is that islands can be found and traced 

instead of the border of the object. (b) We use a standard polygonal interior test to 
detect this situation 

 
Algorithm 2 will, under most conditions, return a list E of pixels that represents the 
boundary of the object in which the pixel p resides. Due to noise in the image, on occasion, it 
is possible for E to locate an island, rather than the object. Refer to Fig. 13 (a) where the 
yellow pixels illustrate the ray cast from p (the red pixel) and the green pixels indicate the 
edge, E, that has been located. The correct boundary of the object has not been found in this 
case due to noise in the image. 
 We may use the standard polygonal inclusion test (O’Rourke, 1998) to detect this situation 
(Fig 13 (b)). 
A ray cast from any point to a point on the edge of a polygon cuts the polygon an odd 
number of times if that point is inside the boundary of the polygon. We wish to see if our 
original point p is inside the polygon represented by E. Therefore the algorithm is simple. As 
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E is constructed (Algorithm 2), we count the number of times a pixel q = (x, y) is placed in E 
with qx = px and qy < py. If this number is odd then the original point p is inside the polygon 
E, otherwise it is outside. 
Another problem that may be encountered due to noise in the image is that the edge 
detector does not return a closed contour: that is, there may be gaps in the list of pixels that 
comprise the edge of the object. If the edge detector is calibrated to be sensitive, (that is, for 
thick edges), then this is not a frequent problem (Lovell, 2007). When the anomaly occurs it 
is possible to detect it by bounding the number of pixels that may comprise the edge of an 
object. In this case, we discard the edge entirely and the object is missed in that frame. 
Once the boundary has been correctly determined, it is usually useful to vectorise it. This 
can be done in linear time (Lovell, 2007). Once a vectorization has been obtained there are 
several useful and fast analysis algorithms (Lovell, 2007). 

 
7.1 Runtime Performance of Complex Object Detection 
Most object recognition tasks will blend a mixture of objects that can be detected using 
simple object recognition, and objects that must use complex object recognition. Table 4 
shows the runtime cost of such a system. Images in these tests were from the RoboCup 
domain and had a mixture of balls, beacons and goals (representing simple objects) and 
opponent AIBOs (representing complex objects). 
 

 Component Average Time on 
AIBO (ms) 

The Bruce et al pipeline Robust classification 2.73
 Blob forming 8.99

 Object recognition 14.71

 Total per frame 26.43

 Time taken for 30 frames (1s 
of data) 792.90

Sparse classification 2.51
Edge point detection 7.98Our pipeline 
Simple shape recognition 5.06

 Complex shape recognition 10.44

 Object recognition 1.34

 Total per frame 27.33

 Time taken for 30 frames (1s 
of data) 819.30

Table 4. The final runtime cost of the two pipelines including analysis of both simple and 
complex objects. Our pipeline executes less than 1ms/frame slower than the Bruce 
et al. pipeline but provides an illumination independent object recognition system 

 
We make several observations on Table 4, particularly with respect to the introduction of 
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complex objects (AIBOs). In order to analyze images containing other AIBOs (Lovell, 2007), 
we must identify their skeleton so the processing that was done on blobs (in the Bruce et al. 
pipeline) and on complex shapes (in our pipeline) is enough to identify a complete and 
ordered list of pixels along the border of the AIBOs’ uniforms. We do not, however, include 
a full AIBO recognition algorithm in either pipeline. 
This processing represents one extra step for the Bruce et al. object recognition component 
than for our pipeline. This is reflected in the slower processing time for object recognition 
for the Bruce et al. pipeline than was seen in Table 2 and Table 3. Our object recognition has 
no extra overhead because this work is done in the complex shape recognition component. 
Different sample images were used for this set of tests (so that AIBOs could be included) so 
minor variations from the data in the above tables are to be expected. Classification is 
marginally slower in these images because there are more potential colors to classify and 
therefore a longer decision list. 
We see from this table that our pipeline is essentially equivalent in speed to the Bruce et al. 
pipeline, being less than 1% slower. Therefore, we have managed to provide an 
illumination-independent object recognition system for minimal extra cost. 
 

 

 
 

Object 
Occurrences 

in 300 
Images 

Recognized 
(simple) 

Accuracy
(%) 

Recognized 
(complex) 

Accuracy 
(%) 

 Blue Goal  123  117  95.12%  109  88.62%  
 Yellow Goal 119  114  95.80%  107  89.92%  

P/B Beacon 57 56 98.25% 51 89.47% 
B/P Beacon 83 79 95.18% 76 91.57% 
P/Y Beacon 34 31 91.18% 29 85.29% 

Stationary 
Camera 

(300 
Images) Y/P Beacon 62 57 98.39% 54 87.10% 

 Orange Ball 212 203 95.75% 192 90.57% 
 Red AIBO 87 - - 63 72.41% 
 Blue AIBO  112  - - 86  76.79%  
 Blue Goal  97  86  88.66%  73  75.26%  
 Yellow Goal 86  76  88.37%  68  79.07%  

P/B Beacon 52 45 86.54% 31 59.62% 
B/P Beacon 35 29 82.86% 23 65.71% 

Moving 
Camera 

(200 
Images) P/Y Beacon 39 34 87.18% 27 69.23% 

 Y/P Beacon 41 34 82.93% 29 70.73% 
 Orange Ball 156 139 89.10% 111 71.15% 
 Red AIBO 49 - - 31 61.22% 
 Blue  AIBO  54  - - 29  53.70%  

Table 5. The accuracy of our object-recognition system in a set of 500 images: 300 taken from 
a stationary camera, and 200 contain some degree of blur. The images are taken 
over a variety of lighting conditions 
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8. Accuracy of our Method 
 

We have collected 500 images that contain scenes that may be expected in a typical 
RoboCup game. The image database is divided into two sections. The first 200 of the images 
are taken from a moving AIBO (and thus contain varying degrees of blur), the other 300 are 
taken from an AIBO standing still. The images vary in lighting condition (200-1500 LUX, 
with dynamic shadows) though they are similar enough that a suitable sparse classifier has 
been found (see Section 5.1). 
Table 5 shows the accuracy of our system. There are several things to note here. Firstly, the 
system performs well — especially given the variable lighting conditions. Even in images 
taken from a moving camera the system performs well enough to use as the primary 
sensory input of a soccer-playing robot. 
The second thing to notice is that we may determine the extent of the closed contour 
problem (Section 7) by comparing the accuracy of our system on simple objects with the 
accuracy achieved when we detect these same objects using our algorithm for complex 
objects. Typically, we only fail to detect objects due to this problem in less than 10% of 
images taken from a stationary camera. This accuracy is sufficient for complex shape 
recognition like AIBO posture recognition [Lovell, 2007]. We fail to detect objects 
approximately 25% of the time when the images contain blur. This is to be expected — 
complete edge detection in blurry images remains a difficult problem. Table 5 shows only 
the positive accuracy (that is, objects in each image that were correctly identified). There 
were an insignificant number of false positives — less than 10 for all objects in all images — 
however, this result is not significant to the discussion in this chapter. It is also possible to 
rule out false positives (Lovell, 2007). 

 
9. Conclusion 
 

We have discussed an approach to object recognition inspired on the vision analysis 
pipeline. However, the linear organization of the pipeline is a model that propagates the 
decision of each filter, and therefore, it propagates mistakes. It is natural that after one pass 
over the pipeline, feedback from the result to one or several of the filters would improve the 
overall result. For example, finding a large circular orange ball may facilitate finding yellow 
goals and red AIBOs in the image since now we have information of where the ball is. Also, 
we have illustrated that not every pixel in the image most be processed by the entire 
pipeline and thus we can avoid processing some regions of the image.  
These remarks suggest two avenues for expanding our work. First, we can have some areas 
of the image significantly advanced on stages of a vision pipeline whose results may be 
input to other areas or early filters. Second, running the pipeline with parameters that 
emphasize speed but coarse results may enable further later executions of the pipeline on 
the same image with feedback information and adapted parameters. Having a very fast and 
robust pipeline here means that as CPU-speeds increase, we can run them very effectively. 
Notice that as resolution of the frames increases linearly, the number of pixels increases 
quadratically, similarly, as the frame rate increases linearly, the number of pixels that needs 
analysis increases quadratically. Executing a fast pipeline like ours will enable more reliable 
and robust systems under even larger illumination variations as we move into faster 
processors and more reliable hardware. 



Color Classification and Object Recognition for Robotic Soccer under Variable Illumination 

 

93 

10. References 
 

J. Bruce, T. Balch, and M. Veloso. (2000). Fast and inexpensive color segmentation for 
interactive robots. In Proceedings of the International Conference on Intelligent Robots 
and Systems, (2061–2066). IEEE Computer Society Press. ISBN: 0-7803-6348-5. 

S. Chalup, R. Middleton, R. King, L. Li, T. Moore, C. Murch, and M. Quinlan. (2004) The 
NUbots’ team description for 2004. In Proceedings of RoboCup 2004 — Robot Soccer 
World Cup VIII, Lisbon, Portugal, pages CD–Rom Proceedings. Springer-Verlag.  
ISBN: 3-5402-5046-8. 

J. Chen, E. Chung, R. Edwards, N. Wong, E. Mak, R. Sheh, M. Kim, A. Tang, N. Sutanto, B. 
Hengst, C. Sammut, and W. Uther. (2003). A description of the rUNSWift 2003 
legged robot soccer team. In Proceedings of RoboCup 2003 — Robot Soccer World Cup 
VII, Padua, Italy, pages CD–Rom Proceedings. Springer-Verlag. ISBN: 3-5402-2443-
2. 

K. Gunnarsson, F. Wiesel, and R. Rojas. (2005) The color and the shape: Automatic on-line 
color calibration for autonomous robots. In Proceedings of RoboCup 2005 — Robot 
Soccer World Cup IX, Osaka, Japan. Springer- Verlag. ISBN 3-540-35437-9 

A. Halme, K. Koskinen, V-P. Aarnio, S. Salmi, I. Leppnen, and S. Ylnen. (2000). Workpartner 
— future interactive service robot. In Proceedings of the Millennium of Artificial 
Intelligence Conference, 9th Finnish Conference on Artificial Intelligence, pages CD–Rom 
Proceedings. Finnish Artificial Intelligence Society. ISBN: 9-5122-5128-0. 

A. Kak and N. DeSouza. Robotic vision: What happened to the visions of yesterday? In 
Proceedings of the 16th International Conference on Pattern Recognition, (839–847). IEEE 
Computer Society Press, 2002. ISBN: 0-7695-1695-X. 

N. Lovell. (2007) Machine Vision as the Primary Source of Input for Mobile, Autonomous Robots. 
PhD thesis, Griffith University, Nathan, 4111, QLD, Australia, 2007. Available 
www.cit.gu.edu.au/˜s2130677/PhDthesis/nLovell.pdf.  

Y. Ogihara, Y. Shibata, H. Najima, K. Kii, K. Oda, and T. Ohashi. (2005) Asura: The kyushu 
united team 2005 in the four-legged robot league. In Proceedings of RoboCup 2005 — 
Robot Soccer World Cup IX, Osaka, Japan, pages CD–Rom Proceedings. Springer-
Verlag.  

J. O’Rourke. (1998). Computational Geometry in C. Cambridge University Press, U.K. 
T. Röfer, R. Brunn, S. Czarnetzki, M. Dassler, M. Hebbel, M. Jungel, T. Kerkhof, W. Nistico, 

T. Oberlies, C. Rohde, M. Spranger, and C. Zarges. (2005) GermanTeam 2005. In 
Proceedings of RoboCup 2005 — Robot Soccer World Cup IX, Osaka, Japan. Springer-
Verlag. ISBN 3-540-35437-9  

J. Shaik and K. Iftekharuddin. (2003). Automated tracking and classification of infrared 
images. In Proceedings of the 2003 International Joint Conference on Neural Networks, 
(1201–1206). IEEE Computer Society Press. ISBN: 0-7803-7899-7. 

M. Shaw and D. Garlan. (1996). Software Architecture: Perspectives on an Emerging Discipline. 
Prentice Hall, U.S.A. ISBN: 0-1318-2957-2. 

S. Shimizu, T. Nagahashi, and H. Fujiyoshi. (2005) Robust and accurate detection of object 
orientation and id without color segmentation. In Proceedings of RoboCup 2005 — 
Robot Soccer World Cup IX, Osaka, Japan. Springer- Verlag. ISBN 3-540-35437-9 

M. Veloso, S. Chernova, C. McMillen, P. Rybski, J. Fasola, F. vonHundelshausen, A. Trevor, 
S. Hauert, and R. Espinoza. (2005). Cmdash05: Team description paper. In 



Robotic Soccer 

 

94 

Proceedings of RoboCup 2005 — Robot Soccer World Cup IX, Osaka, Japan, pages CD–
Rom Proceedings. Springer-Verlag. ISBN 3-540-35437-9   

S. Wan. Symmetric region growing. (2003) IEEE Transactions on Image Processing, 12(9):1007 
1015. ISSN: 1057-7149. 

I. Witten and E. Frank. (200) Data Mining — Practical Machine Learning Tools and Technologies 
with Java Implementations. Morgan Kaufmann, U.S.A. ISBN: 1-5586-0552-5. 

 



5 
 

Towards Model-based Vision Systems for  
Robot Soccer Teams 

 
Murilo Fernandes Martins, Flavio Tonidandel and Reinaldo A. C. Bianchi 

Centro Universitário da FEI 
Brazil 

 
1. Introduction    
 

Since it’s beginning, Robot Soccer has been a platform for research and development of 
independent mobile robots and multi-agent systems, involving the most diverse areas of 
engineering and computer science. There are some problems to be solved in this domain, 
such as mechanical construction, electronics and control of mobile robots. But the main 
challenge is found in the areas related to Artificial Intelligence, as multi-agent systems, 
machine learning and computer vision. The problems and challenges mentioned above are 
not trivial, since Robot Soccer is dynamic, uncertain and probabilistic. 
A computer vision system for a Robot Soccer team must be fast and robust, and it is 
desirable that it can handle noise and luminous intensity variations. A number of techniques 
can be applied for object recognition in the domain of Robot Soccer, as described by 
(Grittani et al., 2000). 
The research of (Grittani et al., 2000) is based only on color information, as well as the 
research of (Weiss & Hildebrand, 2004) that uses color information to reduce the amount of 
information contained in each image frame through a called “relevance point filter”. 
Other researches uses the shape model of the objects to detect on the image, technique 
generally used in local vision systems. The research of (Gönner et al., 2005), for instance, 
detects the ball through it’s shape model projected on the image, a circumference, but still 
uses color-only information to recognize the robots. 
No matter which technique is used to solve the Robot Soccer computer vision challenge, it 
must be able to determine position and angle of the robots and the ball with maximum 
accuracy and minimal processing time possible, because the success of the strategy and 
control system depends on the information given by the computer vision system. 
This chapter extends the work presented by (Martins et al., 2006a), which considers the use 
of a well known image segmentation technique – the Hough Transform – to locate the 
mobile robots and the ball on global vision images, taking advantage of the domain 
characteristics – the robots and ball shape. To implement the Hough Transform technique, 
which is in most cases implemented in robotic systems using special hardware, only an off-
the-shelf frame grabber and a personal computer are used. A new approach to interpret the 
Hough space is proposed, as well as the method used to recognize objects, which is based 
on a constraint satisfaction approach. 
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The chapter is organized as follows: Section 2 describes the most commonly used color 
spaces in Robot Soccer computer vision systems – RGB and HSI. The Section 3 introduces 
the Hough Transform. Section 4 describes the system implement in details and Section 5 
presents and discusses the results obtained. Section 6 concludes this chapter and presents 
suggestions for future work, as well as the work that has already been done to enhance the 
system. 

 
2. Color Spaces – RGB and HSI 
 

Color is the output of a vision system to the perception of different wave lengths reflected 
by the objects in an observation. Color spaces are representation models that define the 
primitives do describe the colors. Many image editor softwares work with different color 
spaces, including the RGB (Red, Green, Blue) and HSI (Hue, Saturation, Intensity) color 
spaces (Forsyth & Ponce, 2002). The RGB color space is characterized by a cube with R, G 
and B axis. The Fig. 1 illustrates the RGB cube. Notice that similar color can be represented 
by many RGB values, what makes hard to build a threshold color filter based on the RGB 
parameters. 
 

 
Fig. 1. The RGB cube representation 
 

 
Fig. 2. The HSI conical representation 
 

The parameters R, G and B represents three channels of colors red, green and blue, where, 
generally, each channel is represented by an 8-bit, implying in 255 different levels of color. 
The merge of the three channels results in the well known 24-bit true color. 
The HSI color space represents a color by Hue, Saturation and Value, where Hue is the 
color, Saturation identifies how strong the color is and Intensity represents the luminosity 
intensity of the color. The Fig. 2 shows the conical HSI representation. 
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The HSI color space is represented by a cone, with a  0 to 360 degrees interval for Hue and a 
0 to 100 per cent interval for Saturation and Intensity. Notice that, for any value of Hue, if 
Saturation is set to 0, then only colors in a gray scale level can be described. 
As described by (Penharbel et al., 2004), the HSI color space is better to build a filter to 
separate colors independent of the luminosity than the RGB color space. The main challenge 
of using HSI color space is the need of converting the image pixels from RGB, which is 
tipically the format delivered by ordinary frame grabbers, to HSI. This conversion has a 
computational cost that can avoid the use of HSI color space and many researches tend to 
use the RGB color space on their filters, like the filter described in (Bianchi & Reali-Costa, 
2000). 

 
3. The Hough Transform 
 

The Hough Transform (HT) (Hough, 1959) is one technique of image segmentation used to 
detect objects through models adjustment. This technique requires that an object class is 
determined and such class must be able to describe all possible instances of the referred 
object. The parameterization of an object class defines the form of this object, therefore, 
variations of color on the image, or even on the objects, do not affect the performance and 
efficiency of the HT. To detect objects on an image, the HT tries to match the edges found on 
the image with the parameterized model of the object. 
The HT has rarely been used in robotic systems operating in real time and, when used, it 
generally needs specific hardware due to its computational complexity. In Robot Soccer, the 
HT is only used to locate the ball – but not the robots – as described in (Gönner et al., 2005) 
and (Jonker et al., 2000). 

 
3.1 Circles Detection with Hough Transform 
Circles are a very common geometric structure in Robot Soccer since all objects can be 
represented by one or more circles. The ball for instance is a sphere, but it becomes a circle 
when projected on the captured image. In FIRA Mirosot and RoboCup Small Size categories, 
the robots are identified through labels on their upper part. These labels can be of any form 
and must contain determined a priori colored areas to allow distinction among the robots of 
different teams. The label used in this work has two circles at 45 degrees with respect to the 
front of the robot, which complies with FIRA rules (Fig. 3). These circles have the same 
diameter of the ball used. 
 

 
Fig. 3. Label used to identify the robots 
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Circles are parameterized by the triplet (xc,yc,r), which defines a set of equidistant points in r 
from the central point represented by the Cartesian coordinate (xc,yc). A circle can be 
parameterized using polar coordinates by the equations: 

θcosrxx c += (1a) 

θsinryy c += (1b) 
In this manner, for known values of the triplet (xc,yc,r) and varying the angle θ in all 0 – 360 
interval, a complete circumference can be drawn. The space of parameters, also called 
Hough Space, is three-dimensional. In Robot Soccer, objects move in two dimensions since 
there is no depth variation of objects on the image, allowing a constant value for radius r to 
be employed. Thus, the space of parameters becomes bidimensional and it is represented by 
the point (xc,yc). 

 
3.2 The Hough Space 
To detect circles of constant radius, on an image that contains only (x,y) edge points, using 
the HT consists on determining which points belong to the edge of the circle centered in 
(xc,yc) and of radius r. The HT algorithm determines for each edge point of the image a set of 
possible centers in the Hough Space, set which will be defined iteratively by the variation of 
θ. Equations (1a) and (1b) become: 
 

θcosrxxc −= (2a) 

θsinryyc −= (2b) 
 
Fig. 4 demonstrates the algorithm execution for three points on a circle edge of the image on 
the left, and the respective Hough Space generated is shown on the right. Three circles of 
radius r drawn on the Hough Space, from 3 points on the edge of the circle with center (xc,yc) 
on the image, intersect themselves in only one point, which is exactly the central point of the 
circle on the image. Each edge point on the image generates a circle in the Hough Space. 
Each edge point of this circle in the Hough Space receives a vote. The greater the number of 
votes a point receives, the greater the probability of this point being a circle center. These 
points with greater probability are relative maximum of the Hough Space and they define 
the centers of existing objects on the image. 
 

 
Fig. 4. Example of Hough Space generation 
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4. Description of the Implemented System 
 

The system described in this section was developed to work in two different situations: first, 
when the two teams have the same kind of robot label on the top of them and second, when 
the opponent have a different label. In the first case, the system will recognize the opponent 
in the same way it recognizes its own players. In the second case, the detection of the 
opponent robots is done by the color information. Both cases are described below. 

 
4.1 A Model-based Approach to Recognize the Objects 
The implemented computer vision system has seven stages, as follows: image acquisition, 
background subtraction, application of edge filter, Hough Space generation, determination 
of high probability points to be centers of circles on the image and objects recognition 
(robots and ball). 

 
4.1.1 Image Acquisition 
The image acquisition system consists of an analogical camera with a composite video 
output and an off-the-shelf video frame grabber based on Bt-878 chipset. This equipment 
can acquire up to 30 frames per second. In this work, two image resolutions were used: 
320x240 and 640x480 pixels, both with color depth of 24 bits. Thirty pictures were captured 
for each resolution. Fig. 5-left presents one of the images used. 

 
4.1.2 Background Subtraction 
As previously mentioned, only the edges of the image are relevant to the HT. Each point of 
the edge is an iteration of the HT algorithm. To optimize the performance of this algorithm, 
a simple method of background subtraction was used. It computes the difference between 
the image captured and a background image, without the moving objects. The background 
image is updated each frame time, using a method known as Running Average (Piccardi, 
2004), according the equation below: 

iii BFB )1(1 αα −+=+ (3) 
where the background image is represented by B, the captured image is represented by F 
and α is a learning rate used to determine how fast static objects become part of the 
background image. Although the method is simple, it is efficient for this application because 
the background does not suffer major modifications. The final image contains only the 
mobile objects, resulting in relevant edges only. The background image is presented on Fig. 
5-center and the result of the background subtraction can be seen on Fig. 5-right. 
 

 
Fig. 5. (left) Captured image containing a ball and two complete teams of robots (center) 

background and (right) result of background subtraction 
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4.1.3 Canny Edge Filter 
There are many different techniques capable of extracting edge information on an image, as 
described by (Forsyth & Ponce, 2002). The present work uses a well known technique for 
edge detection, the Canny filter (Canny, 1986), which produces binary images. Fig. 6-left 
shows the result of edges detection with the Canny filter on an image that the background 
was subtracted (Fig. 5-right) and was converted into gray scale (to lower the processing 
time). 

 
4.1.4 Hough Space Generation 
The Hough Space can be generated from the resultant binary image produced with the 
Canny filter. The generation of the Hough Space with the algorithm described in Section 2 is 
correct, but not efficient. Although this algorithm generates the Hough Space correctly, it 
does several redundant iterations to produce the points of possible circle centers. This 
redundancy happens because when varying the angle θ, it generates 360 centers points for 
each edge point with decimal precision. However, the digital images are composed of pixels 
located on a grid, where each pixel position is an integer number. Therefore, the use of 
decimal precision is irrelevant and redundant. 
To eliminate redundancy, an algorithm for circle drawing proposed by (Bresenham, 1965) 
was used. This algorithm determines points of a circle using only integers, through the 
addition of a value determined a priori. Moreover, the algorithm takes advantage of points 
symmetry in a circle: points position is computed in only one octant and, by symmetry, the 
points of the other 7 octants are determined, without repetition of previously drawn points. 
In this way, the processing time for the generation of the Hough Space is minimized, 
allowing the use of applications in real time. The Hough Space generated for the edge points 
of the image in Fig. 6-left can be observed in Fig. 6-right and Fig. 7 shows the same Hough 
Space in a 3D view, where the Z-axis represents the probability of a point being a center of 
an existing circle on the image. 

 
4.1.5 Circles Determination from the Hough Space 
After the Hough Space is generated, the following step is to find out the points that received 
more votes in the space in order to detect the possible circle centers (xc,yc), with r kept 
constant. It is possible to consider r constant because the distance between the camera and 
the field is greater than the field dimensions, and the radius variation is less than 5%. This 
fact also implies in no significant distortion in the images. 
This stage is the one that presents greater problems in terms of circle detection. As any edge 
point generates a set of points (in a circle) that receives votes in the Hough Space, there 
might be misrepresenting votes producing false relative maximums. 
The implemented algorithm verifies whether a voted point reached a minimum number of 
votes – determined a priori – as the Hough Space is being generated. If a point exceeds this 
threshold, it is stored only once in a vector of possible centers. At the end of the Hough 
Space generation, this vector stores the number of votes for each point that exceeded the 
minimum number of votes. 
To guarantee that all points representing real circle centers on the image are in the vector, a 
low minimum number of votes is defined. But, because of this low threshold, there might be 
false relative maximums in this vector. Another problem is that, due to the nature of the HT 
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and the Canny filter, a circle in the image may generate several possible centers, lying close 
to each other. 
 

 
Fig. 6. (left) Result of the application of the Canny filter on Fig. 5-right and (right) Hough 

Space generated for the edge points, where brighter points have more votes 
 

 
Fig. 7. A 3D view of the Hough Space shown on Fig. 6 (right) 
 
The first step to separate the false center from points where real circle centers are located is 
to order the points in the vector by the number of votes received using the Quicksort 
algorithm. After this ordination, the point in the first position in the vector represents the 
global maximum and is considered a circle center and is inserted in a new vector, the vector 
of centers. 
As the real center of a circle can be defined as the point that was voted the most, and 
overlapping between two circles do not occurs, all the points that the Euclidean distance to 
the first center is less 2r can be removed from the vector of possible centers. After this, the 
second position will represent the second maximum and can be considered as a center, and 
so on. 
The algorithm continues until iterations reach a maximum number of circles determined, or 
until the end of the vector of possible center is reached. This algorithm results in a vector 
with points distant enough from each other to be considered different circles. 

 
4.1.6 Object Recognition 
This stage is the only one that considers color information and image illumination. 
Therefore, to successfully recognize objects it is necessary to distinguish them, what can 
only be done when the main colors, defined by the competition rules and different for each 
team, as well as the secondary colors, used in order to differentiate the robots of the same 
team, are known. 
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To define the colors in the image first the mean color of each circle is computed, using a 5 x 5 
mask centered in the points found during circle detection. Then, these colors are converted 
from the RGB to the HSI color space. As mentioned in Section 2, in this color space, pixels 
are described by the triple (Hue, Saturation, Intensity). The Hue component describes the 
color of the pixel. It ranges from zero to 360 degrees, where zero degree is red, 60 yellow, 
120 green, 240 blue and 300 degrees magenta. The Saturation component signals how white 
color is present, and the Intensity component represents illumination. In this color space, 
illumination variations do not modify the hue value of a pixel. 
Using this color space, it is easy to define the colors in the image: the mean colors of the 
circles are ordered by the Hue component using the Quicksort algorithm. As the colors in 
the HSI color space are always in the same order and at least 30 degrees apart, and the 
number of circles of each color is known a priori, it is very easy to define the colors of the 
objects. For the circles in Fig. 5-right, the following colors were found: one orange circle 
(Hue = 21), three yellow (H = 45, 48 and 50), two green (H = 154 and 160), two cyan (h = 200 
and 207), three blue (all at 223) and two pink (H = 348 and 354). The histogram of the Hue 
component of the same image is presented in Fig. 8.  
 

 
Fig. 8. Histogram for the Hue component of the pixels present in Fig. 5-right 
 

Now that the color of each circle is known, deciding which circle is the ball and which ones 
are parts of the same robot can be done by solving a problem of constraint satisfaction. 
According to (Russell & Norvig, 2002) a constraint satisfaction problem is “a special kind of 
search problem that satisfies additional structural proprieties beyond the basic requirements 
form problems in general”. In this kind problem, the states are defined by the value of a set 
of variables and the goals specify constraints that these values must obey. In the robot 
recognition problem, the constraints are that the two circles that are in the robot 
identification label must be at a fixed distance, 2r. Another constraint is that each circle of a 
primary color must be matched with one circle of a secondary color. 
To identify which circles belongs to each robot, the algorithm searches in the vector of 
centers which circles are of a primary color (blue or yellow): this circles are defined as roots 
of three trees. After defining the roots, the algorithm searches in the vector for circles that 
are at 2r from the primary color circles and adds them as child nodes of the corresponding 
tree. 
If all robots are located distant one from another, this procedure will result in three trees 
with only one root and one child, defining a robot. Having a center for each labeled circle 
and the position of the circles known, the algorithm determines the global position (x, y) of 
the robot on the image and its direction angle in relation to the axis x. As the ball is the only 
object that can be orange because this color cannot be used for any another object, any 
orange circle is considered a ball and there is no need to construct a tree to recognize balls. 
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However, there might be a situation where robots are close to each other, or even touching 
each other, as in Fig. 9-left. In this case, instead of a tree for each robot, the algorithm will 
build one tree with three child nodes. It will also build two trees with one child node, as 
expected (Fig. 9-right). In this case, the algorithm needs to remove child nodes from the tree 
with three child nodes. To do this, first nodes that are not of a secondary color are removed 
(it might be another robot’s primary color or the ball). And second, the algorithm removes 
from the wrong tree the circles that are of a secondary color which are already represented 
in a correct tree. The algorithm will stop when all the trees are correct, representing one 
robot. The final output of the implemented system can be observed in Fig. 10-right. 
 

 

Fig. 9. (left) Image with three robots touching each other and (right) the trees built by the 
algorithm 

 

  
Fig. 10. (left) Captured image containing a ball and two complete teams of robots and (right) 

result of the execution of the system, showing the computed position of each object 

 
4.2 A Color-based Approach to Recognize the Objects 
To detect the opponent robots, the color information is given a priori, but there’s no 
information about the shape of the labels used by opponent. For this case, an approach to 
recognize the robots by their color, instead of recognizing by the shape model, is used. 
This implementation is described in details in (Martins et al., 2006b) and follows the 
proposal of (Bianchi & Reali-Costa, 2000), where line segments are traced when a pixel of 
the given color is reached. The system first defines, from the histogram of the image 
resulting of background subtraction (Fig. 8), the range of the opponent color and then a 
sparse pixel sampling is done. Notice that the sparser the pixel sampling is, the faster the 
algorithm will be, but it may imply in an inefficient recognition because this sampling may 
not reach all opponent’s color blobs. 
When a pixel of desired color is reached, horizontal and vertical line segments are traced 
from this pixel position until a non-desired color pixel is reached. The first line segment to 
be traced is the horizontal, followed by the vertical segment, which is traced from the mid-
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point of the horizontal segment. For the process of tracing horizontal and vertical segments, 
was given the name “cross-processing” (Martins et al., 2006b). 
When the cross-processing is applied to a circle, only one iteration is necessary to determine 
it’s center, but when the cross-processing is applied to other shape models or irregular 
geometric shapes, more iterations are required to determine the center of this object. The 
cross-processing runs, recursively, n times for each pixel of desired color, where the iteration 
m starts from the mid-point of the vertical segment achieved at the last m-1 iteration. 
The cross-processing is executed many times for the same object, because the sparse pixel 
sampling may result in many pixels of desired color from the same object blob. Each cross-
processing execution for each pixel of desired color generates a possible center point. 
Some geometric shapes, as the one illustrated on Fig. 11, can have many possible centers 
after the complete sparse pixel sampling. To determine the center of the object, a mean 
between the possible center points is computed. This mean is a spatial mean where each 
dislocates the center to it’s nearby. The more a region of the blob has possible center points, 
the nearer from this region will be the final center computed. The possible center points 
considered to compute the mean are those which have an Euclidean distance of less than a 
threshold defined a priori. The Fig. 11 illustrates how the mean computation approximates 
the possible center points and converges to the center of the object. 
Computing the mean allows that, even on noisy images, the objects can have their centers 
determined. The Fig. 12-right illustrates a noisy image containing objects with different 
shapes and their centers determined (red point). Notice that there are objects which the 
centers computed are not the real centers, but these centers remain into the object blob. 
This approach doesn’t ensure that the real center of the objects will be achieved, but an 
estimated center close to the real center, no matter the shape of the object, allowing the 
recognition of the opponent robots for obstacle avoidance and strategy issues, for instance. 
 

 
Fig. 11. The cross-processing resulting in the possible center points and the mean 

computation to determine the center of the object 
 

 
Fig. 12. (left) center detection of objects with different shapes in a standard image (right) 

center detection on the same image with noise 
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5. Experiments and Results 
 

The HT and cross-processing implementations were made in C++ and the computer vision 
library OpenCV (Intel, 2007) was used. The results were obtained in a computer with an 
Intel Pentium 4 Hyper Threading processor running at 3.2 GHz. The program was executed 
under Windows XP, configured for priority in real time. 

 
5.1 Execution Times 
As the goal was to use the system for an application in real time, the performance evaluation 
considers as being an acceptable maximum time for the algorithm execution the time 
interval of an image acquisition. The acquisition systems commonly used in Robot Soccer, as 
the described in this work, are able to acquire 30 pictures per second. Therefore, the 
maximum time available for processing is 33 ms. 
Table 1 presents the performance results for the HT implemented system, showing the 
amount of time needed for each processing stage. The values presented are the average of 
the execution of the system with 30 different images, in two different resolutions (320x240 
pixels and 640x480 pixels, both 24 bits NTSC color images). The images used in this test 
contained six robots and two balls. In each image, the objects are in a different position, 
spread randomly over the entire field, including the corners. The difference between the 
sum of the stages times and the total time is small and can be considered rounding error. 
This results show that the implemented system is capable of recognizing objects not only in 
real time, but allowing 13 ms for other processes, as strategy and robots control. 
As previously mentioned, all adjustable parameters of the system were kept constant for all 
experiments described in this work. For images with a resolution of 640x480, the radius r 
was set to 8 pixels, while the minimum number of votes was set to 16. For images with a 
resolution of 320x240, the radius r was set to 4 pixels and the minimum number to 10. The 
thresholds of the Canny filter were defined off-line: the low threshold used was 75 and the 
high threshold was 150. 
 

Image size Task 
320x240 640x480 

Background subtraction 0,8412 ± 0,001 5,1667 ± 0,003 
Color conversion + Canny filter 1,6163 ± 0,002 7,8435 ± 0,005 
Hough Space generation 1,4621 ± 0,006 6,3683 ± 0,02 
Circle centers determination 0,0334 ± 0,001 0,0267 ± 0,001 
Objects recognition 0,0031 ± 0,0001 0,0023 ± 0,0001 
Total time 4,0674 ± 0,009 19,4083 ± 0,03 

Table 1. Execution Times (in milliseconds) 
 
For the cross-processing the parameter n, the number of iterations, was set to 5, with a pixel 
sampling interval of 10 pixels for lines and columns, clustering the possible centers with a 
Euclidean distance of less than the threshold set to 70 pixels. The time measured for images 
with resolution of 320x240 pixels was 3,037 ms with a standard deviation of 0,0354 and 5,892 
ms with a standard deviation of 0,0672 for the 640x480 resolution images. 
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5.2 Light Intensity Variation Robustness 
To verify the robustness of the system in respect to light intensity variation, a second 
experience was performed: again, 6 robots and 2 balls were placed in a random position of 
the field and then the light intensity was slowly changed from 300 Lux to 1300 Lux. This 
experiment was repeated 10 times, each time placing the objects in a different position, 
randomly chosen. To be able to compare the system described in this paper, the same 
experiment was performed with a color based system that uses threshold and blob coloring 
techniques to find the robots, calibrated at 1000 Lux (Penharbel et al., 2004). 
The result of these experiments is presented in Fig. 13. It can be seen that, while the system 
proposed in this work is robust to light intensity variation, detecting all objects in all the 
trials, the color based system only performed well when light intensity was near 1000 Lux. 
This experiment also indicates that color noise do not affect the system. As it is model-based, 
different illumination in the same image may change the color of an object, but, 
nevertheless, will not affect the system capability to compute the position of any object. 
Finally, the system was tested while controlling the robots during a real game, with the 
robots moving in all positions of the field, presenting the same performance as in the two 
experiences described above. 
 

 
Fig. 13. Number of detected objects versus light intensity variation for the model-based 

system proposed in this chapter and the color-based system implemented by 
(Penharbel et al., 2004) 

 
5.3 A Specific Case in which the System May Fail 
The system is able to recognize all the robots in any case but one. After the tests, a very 
specific case was observed, which is very difficult to occur in a Robot Soccer match, where 
the system may fail. The robots arrangement in the image is one that even the human vision 
is unable to distinguish the robots with certain.  The Fig. 14 illustrates two image sequences 
of the system processing steps where it may fail and not recognize the robots. Each line 
shows an example with the captured image, followed by the Canny filter, the Hough Space 
generated, the circles detected and the objects recognized. 
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Fig. 14. Specific case where the system may fail, not detecting the robots 
 
On the first image sequence (upper line) of Fig. 14 the robots can’t be recognized because 
every circle of primary color has two child nodes and the constraint satisfaction approach 
fails. On the Second image sequence (lower line) of Fig. 14 one of the robots is slightly 
dislocated compared to the first image sequence, resulting in a circle of primary color with 
only one child node, which results in the recognition of all the robots. 

 
6. Conclusion and Future Work 
 

This chapter described the use of artificial intelligence and computer vision techniques to 
create a fast and robust real time vision system for a robot soccer team. To increase the 
system performance, this work proposes a new approach to interpret the space created by 
the Hough Transform, as well as a fast object recognition method based on constraint 
satisfaction techniques. The system was implemented entirely in software using an off-the-
shelf frame grabber. 
Experiments using real time image acquisition allow concluding that the implemented 
system is robust and tolerant to noises and color variation since it considers just the objects 
form, and automatically determines the color information, needed only to distinguish the 
robots among themselves. Robots are well detected in every position of the field, even in the 
corners or inside the goal area, where light intensity is lower than in the center of the field. 
The measured execution performance and the tests of object recognition demonstrate that it 
is possible to use the described system in real time, since it fulfills the demands on 
performance, precision and robustness existing in a domain as the Robot Soccer. 
Future works include the implementation of the control of the camera parameters, such as 
aperture, zoom, focus, gain and others, in real time. To be able to construct this new part of 
the system, a camera that allows the control of these parameters through a serial port was 
bought and is being tested. Finally, distortion lens was not mentioned in this work and, 
although being small, will be addressed in a future implementation. Another work that is in 
initial phase of development is the automatic color calibration, in which is intended to use 
the Hue histogram of colors and clustering algorithms, like K-Means (Forsyth & Ponce, 
2002) and is based on recent researches, like (Sridharan & Stone, 2005). 
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1. Introduction 
 

In literature, some authors propose to see artificial intelligence as the design of an intelligent 
agent (Russell & Norvig, 2003). An agent is an entity that perceives its environment, thinks 
and acts accordingly. An intelligent agent in this sense is one that makes rational decisions. 
Therefore, some authors like to call them rational agents. The part of artificial intelligence 
that focuses in the study of rational agents and the way they cooperate, coordinate and 
negotiate as abstract social entities is called multiagent systems. 
A lot of techniques have been proposed in the effort of making rational agents. Every one 
presents its own advantages and disadvantages and their efficiency varies among different 
domains. Hence, it seems interesting to try to combine techniques and measure their 
efficiency when they work together. Such approaches are known as hybrid systems. 
Evaluating and testing multiagent systems in real life is very complicated. Many domains 
are complex, dynamic and uncertain. Diverse testbeds have been created to allow 
researchers to easily test and compare ideas for extrapolating them to real situations later. 
One of the most known testbeds for multiagent systems nowadays is the RoboCup 
competition. 
RoboCup initiative is an international project that promotes artificial intelligence, robotics 
and related areas, through a competition and conferences system with robotic soccer as the 
base problem. The ultimate goal is “by year 2050, to develop a team of fully autonomous 
humanoid robots that can win against the human world champion team in soccer”. The 
competitions are divided into many leagues, one of them being the 3D simulation league. In 
RoboCup 3D, the environment is complex, dynamic and noisy. 
This chapter focuses on the development of a decision making framework of a RoboCup 3D 
simulation agent based on a recently explored fuzzy-Bayesian hybrid classifier.  Fuzzy 
theory and Bayesian methods have been used by separate for years and they have presented 
good results in various domains. A fuzzy-Bayesian approach faces uncertainty in decisions 
with probabilistic reasoning and learning, and treats variables involved in the process as 
fuzzy variables, which are expressed linguistically and are computed mathematically. This 
decision making approach tries to combine the best of statistical data processing with 
human-like view of attributes related to a problem. 
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On the other hand, a simulation allows reproducing a real environment approximating 
physical conditions by means of complex mathematical models. This provides the 
advantage of being able of changing parameters for representing different environments 
and to correct mistakes in which many times, in real life, there is no backing out. RoboCup 
3D simulation has these characteristics and is a relatively recent RoboCup league with a 
long way to go. 
The efficiency of a fuzzy-Bayesian decision making system for a soccer agent, however, is 
constrained to the degree of quality of the world model data. This is why the development 
of the agent is done in a 3-layer fashion. The lowest layer consists of obtaining accurate 
motion models. The middle layer uses such models and a particle filter to allow a precise 
self-localization of an agent. With the filtered position of an agent, positions of other objects 
in the world are easily computed. Finally, the highest layer uses the middle-layer data for 
making decisions with the fuzzy-Bayesian framework. 

 
2. Soccer 
 

Since 1997, the RoboCup Soccer Simulation 2D has been one of the main contributors to the 
RoboCup initiative in terms of multiagent learning, coordination, communication and 
opponent modelling. However, the simulation omits several aspects that affect robots in real 
situations. The motion of dynamic objects is restricted to two dimensions. Also, the physics 
are simplistic and don’t allow complex behaviours. 
In order to fulfill the RoboCup ultimate goal by 2050, the simulation system must treat 
agents as physical entities with realistic features. After all, the RoboCup goal implies the 
development of humanoid-like robots and therefore the simulation league must converge 
with the humanoid league in some point. As more realistic agent models were needed, the 
3D simulation league was created. The agents are spheres1 , but 3D interactions make the 
environment more complex and more interesting for researchers in artificial intelligence and 
multiagent theory. The simulator serves as the main platform in the RoboCup Simulated 
Soccer League, part of the RoboCup competitions, whose main event is celebrated every 
year. 

 
Fig. 1. Monitor for the RoboCup 3D Soccer Simulator 

                                                 
1  This year the simulator was changed radically and the agents are now humanoids, which makes the 
RoboCup 3D domain even more complex and interesting. 



Probabilistic and Statistical Layered Approach for High-Level Decision Making 

 

111 

The RoboCup 3D simulator is a software that provides two elements: a core system called 
the soccer server and a monitoring tool. The simulator is aimed for three main tasks: allows 
players to sense and act in their environment, has rules for several situations in a soccer 
match and applies the laws of physics to recreate a real-like scenario. 
The environment of the current soccer simulation2 is a big box which contains a virtual 
soccer field. It respects FIFA specification for international real soccer matches. Simulation 
steps are 0.01 seconds long and agents receive sensations every 20 simulation steps. The 
global coordinate system of the field is as follows: the x-axis extends over the horizontal line 
that extends from the left to the right. The y-axis is over the field and is perpendicular to the 
x-axis. The z-axis points up. The global angle marks 0 degrees in the direction of the x-axis 
and grows in counter-clockwise direction. A graphical representation of the soccer field 
coordinate system and the global angle direction is shown in figure 2. The elements in the 
field are divided in two classes: 

• Static elements are elements in the environment whose position is fixed. 
o Landmarks: reference points for localization. 

 Four posts, two for each of the goals 
 Four flags, which are placed in each corner of the field 

o Goal: A rectangular box with width 7.32m, height 2.0m and depth 2.0m. 
There are two goals, one for each team. They are located over the end line 
of the field, with two vertical posts touching the line and a crossbar 
joining those posts. A team scores one point if the ball passes gets inside 
the goal box. 

o Field: A rectangle of width U[64.0m, 75.9m] and length  U[100.0m, 
110.9m]. It is subdivided in regions such as the left and right half areas, 
the penalty boxes, the goal boxes and the center circle. The field is 
contained inside a box of width equal to the field’s width plus a border 
size of 10.0m, length equal to the field’s length plus the border size of 
10.0m and height 40.0m. 

• Dynamic elements are elements in the environment which can change their positions 
over time. 

o Players: The main actors in the environment. Players have a spherical 
shape, with radius 0.22m and mass 75kg. The color depends on the team: 
one team has blue players and the other has red players. 

o Ball: A sphere with radius 0.111m and mass U[0.41kg, 0.45kg], which is 
much smaller than the mass of the players. The weight of the ball varies 
from game to game, but it is constant during a game once it has been set. 

 
FIFA rules are implemented in the simulator in different play modes like kick-off, goal  
kicks, corner kicks, throw-ins and free kicks. If agents try to violate rules entering an area 
that is prohibited by the current situation, they are teleported to a valid position, which 
depends of the current situation. In corner kicks, throw-ins and free kicks, the invalid area is 
inside a circle of 9.15 meters of diameter around the ball. In goal kicks, the invalid area is the 

                                                 
2  The current simulator version is 0.5.6 (July 2007). It is now more oriented to the new humanoid 3D 
simulation. 
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enemy penalty area. In kick-off, the invalid area is the semi-circle of 9.15 meters of diameter 
in the center of the field plus the opponent’s half field. 
 

 
Fig. 2. Global coordinate system in the RoboCup 3D Soccer Simulator 
 
In the RoboCup 3D Soccer Simulation agents are homogeneous, in the sense that their share 
the same properties and have the same set of perceptors and effectors (except for the 
goalkeeper that has an extra effector for catching the ball). An agent is an entity that 
perceives its environment through sensors and acts upon that environment through 
effectors (Russell & Norvig, 2003). In the 3D simulator, an agent is a client software with 
such characteristics and connects to the simulation engine through a communication server. 
Data packages generated and received by the server are strings in form of s-expressions. 
Agents that receive these messages must parse these strings in order to analyze the 
information contained in the package. 
The process of interactions between agents and the simulation engine consists of two steps: 
initialization and life cycle. Agents have a set of effectors and perceptors to act upon their 
environment. Communication is allowed by using certain effectors and perceptors. 
Among the effectors we can find create, init, beam, drive, kick, say and pantilt. The goalkeeper 
has an extra catch effector. The agent moves in the environment using its drive effector and 
interacts with the ball using the kick effector. The set of perceptors includes vision, game 
state, agent state and hear. The say effector and the hear perceptor make communication 
possible. 
To make a more realistic simulation, some effectors and perceptors are affected by white 
noise. This means that errors are normally distributed with expected values  and 
different standard deviations. The exception is the pantilt perceptor (part of the agent state 
perceptor) in which values are rounded to the next integer value. Table 1 shows all the error 
sources and their characteristics. 
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Uncertainty in perceptors and effectors 
 Drive effector 

  
   

   
Kick effector 

  

   
   

Vision perceptor 

   
Agent State perceptor   
Table 1. Sources of uncertainty in the RoboCup 3D simulation environment. 

 
3. Motion Models 
 
Obtaining the motions models in RoboCup 3D is the first and most essential task to 
accomplish before working on high level design. Knowing the motion models means 
knowing what is going on behind the scenes in the simulation. Not only we can predict the 
results of dynamic object actions, but we also can explain some behavior and thus construct 
better high level solutions. 
The models were derived from a formal mathematical analysis. For obtaining accurate and 
feasible parameters for the motion models, the power of statistical analysis and curve fitting 
tools was exploded. The parameters were obtained under ideal conditions, i.e. noise 
produced by the simulator in effectors and perceptors was eliminated. The methodologies 
and results of this chapter were published in (Bustamante et al., 2007). 

 
3.1 Definition 
A motion model of a dynamic object is described formally as a function from certain duple 

 in time  to a duple  in time , where  is the position vector,  is 
the velocity vector and , that is: 
 
  (1) 

 
3.2 Agent Motion Model 
The movement of the agent is affected by the drive force (applied to its drive effector) and 
by the air friction. The drive force vector  is defined as 
 
  (2) 
 
The force vector does not have a z-axis component because spherical agents can’t jump. The 
air drag force is defined as (Marion & Thornton, 2003) 
  (3) 
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The constant  represents the coefficient that imposes an air drag force to a body and  is 
the body’s velocity. The equations that model the forces over each axis are 
 

  (4) 
 
Here  is the mass of the agent,  is the acceleration,  is the drive force (in newtons), 

 is the air drag coefficient for the agent and  is the global horizontal angle in the x-y 
plane. Also let  and . 
Let  be the drive force percentage, i.e. the drive force command sent to the 
Drive Effector. The relation between  and  is given by 
 

  (5) 

 
As the equations that model the forces for both axis are similar, it is enough to analyze x- 
axis and generalize for y-axis later. The differential equation that models the movement on 
the x-axis is expressed as a differential equation from (4) 
 

  (6) 

 
3.2.1 Agent Speed Model 
Solving the differential equation (6) gives 
 

  (7) 

 
Finally for simplicity some constant terms are defined like the terminal speed of the agent 

  (8) 

 
which is the maximal speed that the agent can reach when the drag force equals the drive 
force. Also, let’s define a time constant 
 

  (9) 

 
Finally, the agent’s speed model is expressed as 
 
  (10) 
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3.2.2 Agent Position Model 
Once having the speed model, the agent’s position model is determined relatively easy 
integrating equation (10) from  to  
 
  (11) 
 
where  is the integration constant and represents the initial position. 

 
3.3 Ball Motion Model 
Unlike the agent, the movement of the ball can be separated in two different phases: 

1. In the first phase, a kick force is applied to the ball for 10 simulation steps. Thus the 
ball is affected by the kick force and by the air drag force in X and Y, and is also 
affected by gravity in Z. 

2. In the second phase, the ball decelerates and is affected just by the air drag force in 
X and Y, and additionally by gravity in Z. 

 
3.3.1 First Phase of Ball Motion 
In the first phase, the ball behaves like an agent with constant force (kick force). The force 
vector is defined as 
 
  (12) 
 
Let  be the global horizontal angle in the x-y plane between the agent and the ball and  
the elevation angle sent to the kick effector. The equations that model the forces over each 
axis are 
 

  (13) 
 
Here  is the mass of the ball,  is the acceleration,  is the kick force (in newtons) and 

 is the air drag coefficient for the ball. Also let , 
 and . 

 
Let  be the kick force percentage, i.e. the power command sent to the Kick 
Effector. The relation between  and  is given by 
 

  (14) 
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As with the agent, we can generalize one equation for both X and Y axis, but we have to 
define a different equation for z-axis. The differential equation that models the movement 
on X and Y is expressed as 
 

  (15) 

 
The differential equation that models the movement on Z is expressed as 
 

  (16) 

 
3.3.1.1 Ball Model for the First Phase in X-Y 
Notice that equation (15)  is the same of that of the agent (6). Then, we only summarize the 
finals equations: 
 
  (17) 
 
  (18) 
 
where  is the terminal speed of the ball (i.e. the maximal speed that the ball could reach 
if the kick force was applied for a long time). 

 
3.3.1.2 Ball Model for the First Phase in Z 
The solution to the differential equation (16) for Z is expressed as 
 

  (19) 

 
This is very similar to equation (7). We have to define the terminal speed of the ball in Z as 

  (20) 

 
Finally we have 
 
  (21) 
 
  (22) 

 
3.3.2 Second Phase of Ball Motion 
In the second phase, the ball decelerates until it stops moving in X and Y, and it bounces 
until it stops moving in Z. The equations that model the forces over each axis are 
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  (23) 
 
The differential equation that models the movement on X and Y is expressed as 
 

  (24) 

 
The differential equation that models the movement on Z is expressed as 
 

  (25) 

 
3.3.2.1 Ball Model for the Second Phase in X-Y 
Solving differential equation (24) gives 
 

  (26) 
 
The amplitude  represents the initial speed of the second phase, which must be 
equal to the final speed of the first phase evaluated in 10 simulation steps of 0.01 seconds 
each). Formally, 
 
  (27) 
 
Using equation (26) the speed is given by 
  (28) 
 
and the position by 
  (29) 

 
3.3.2.2 Ball Model for the Second Phase in Z 
Solving differential equation (25) gives 
 

  (30) 

 
The constant A can be calculated using the initial condition  as 
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  (31) 

 
Substituting this value in equation (30), the speed model is given by 
 

  (32) 

 
which in terms of constants is 
 
  (33) 
 
and the position model is given by 
 
  (34) 
 
When the ball is at rest,  is equal to the radius of the ball. 

 
3.5 Finding the Values of the Coefficients 
The next step is to evaluate the coefficients needed by the model. We already know  and 

, so we must look specifically for , ,  and  in order to have a complete 
description of the equations. 
Two scenarios were defined for obtaining representative data from the simulation. In the 
first scenario, an agent is placed in the center of the soccer field and runs over the x-axis 
with maximum acceleration towards the opponent’s goal. In the second scenario, the ball is 
placed at the center of the field and is kicked by an agent with maximum acceleration 
towards the opponent’s goal. 
Tracking the data of the scenarios via the monitor’s port, a set of pairs (t, x) were obtained 
where t is time and x is position, which describes the movement of the agent and the ball 
over the x-axis. The values of the coefficients were computed with Matlab  and the Curve 
Fitting Tool, using the set of pairs (t, x) and the motion models, giving the following results 
 
  (35) 
 
  (36) 
 

  (37) 

 

  (38) 
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We can get the medium viscosity with the aid of the Stokes’ equation (Marion & Thornton, 
2003) 
  
 
where  is the radius, and  the viscosity coefficient. This quantity must be calculated with 

 which is a drag force caused only by the fluid, opposite to  that represents a drag 
force caused by the fluid and the system motion. Using the radius of the ball  we 
have 

  (39) 

 
We can infer that the simulated medium is not air as the value of  is bigger than the air 
viscosity which is approximately . 

 
3.6 Practical Applications 
The physics model described so far can be used to implement higher level behaviors like 
soccer skills. In the next sections we describe two of such skills. 

 
3.6.1 Goto 
Using the Goto skill the agent is capable of moving to any <x, y> coordinate on the soccer 
field. The movement of the agent consists of three steps: 1) acceleration, 2) constant speed 
and 3) deceleration. In fact, the most important is step 3 because in the first two steps the 
agent must apply the maximal force, but in the last step the agent must decide at which 
moment stops. For breaking, the agent applies a drive force vector of magnitude zero and 
makes use of the drag force to stop. It calculates the distance  that it needs to stop 
moving when drive force becomes zero. This distance is compared with the distance that the 
agent needs to cross to reach its destination . If , the agent keeps 
applying a drive force, otherwise the agent stops applying the drive force.  can be 
calculated as 
 
  (40) 

 
3.6.2 Dribbling 
The Dribbling skill provides the agent with the ability to move from one place to another 
without losing the possession of the ball. For accomplishing this task, the agent needs to run 
in the direction of the ball’s velocity vector and kick the ball with the exact force that allows 
the agent to kick again in a near future without loosing possession and without colliding 
with the ball. 
This is a difficult skill that few teams have implemented efficiently. One of the few teams 
that have implemented the dribble skill efficiently is SEU3D (Xu et al., 2006), but no precise 
explanation is given in their team description paper about their method. Our idea is that the 
agent can decide at which distance  it desires to kick the ball after kicking it for the first 
time. Then the agent can use this distance to find the needed kick force. In fact,  is the 
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displacement of the agent between kicks, but is also the displacement of the ball. Using 
equation (11) with the assumption that the agent has reached its terminal speed and 
equation (29) we have 
 
  
  

  

  

 
We can find the value of  with equation (27). But this equation needs a 
simplification. In fact, in that equation  is much smaller that  because the agent 
can only apply a very small speed to the ball due to the restriction that the kick force is 
applied only for a little period of time. Hence we have 
 

  

 
but also  equals . Then, we finally get the kick force that the agent needs apply 
to the ball for an efficient dribble skill as 
 

  (41) 

 
3.7 Experiments 
For evaluating the models of the agent a scenario was defined were an agent is placed in the 
center of the soccer field and runs with maximum acceleration towards the opponent’s goal. 
For the ball, a scenario was defined where the ball is placed at the center of the field and is 
kicked by the agent with maximum acceleration towards the opponent’s goal. The error of 
the models against the noiseless real data is computed to make an objective evaluation of 
such models. Results of comparison are shown in table 2. Also, we present here two graphs 
that show the efficiency of our physics model when it is applied to a) GoTo Skill and b) 
Dribbling skill.Mean and standard deviation were computed of the absolute errors between 
the values thrown by the models and the expected real values, thus 
 
  (42) 
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 Mean Standard 
Deviation 

Agent Motion Model  
Ball Motion Model (X-Y)  
Ball Motion Model (Z)  

Table 2. Mean and standard deviation of the absolute error (in meters) between data thrown 
by the motion models and real information thrown by the simulator in debug mode 

  
3.7.1 Goto 
In this experiment an agent uses the Goto skill to move 10 meters away from its initial 
position. Figure 3 shows the real and estimated values of the distance between the agent 
position and the destination. We can notice that 1) our physics model is so accurate that both 
curves almost superpose and 2) the efficiency of the GoTo skill is so good that the agent 
reach its destination without oscillating in the final position. 

 
Fig. 3. GoTo Experiment. The real and the estimated positions almost overlap which 

indicates a good accuracy of the physics models 

 
3.7.2 Dribbling 
Figure 4 shows the speed of the agent and the ball versus time. The agent runs towards the 
ball in the direction of the ball’s velocity vector. We can notice that 1) The first kick is 
weaker than the others because the agent has not reached its maximal speed and 2) The 
agent never decelerates. 
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Fig. 4. Dribbling Experiment. The agent does not decelerate which indicates an efficient 

dribble as the agent never collides with the ball 

 
4. Probabilistic Localization 
 
Localization refers to the problem of determining the pose of an agent from sensor data 
(Fox, 1998). The pose of an agent represents the location and orientation of a robot relative to 
a global coordinate frame (Thrun et al., 2005). 
The localization problem has been claimed as "the most fundamental problem to providing 
a mobile robot with autonomous capabilities" (Cox, 1991). It is a fundamental problem 
because if an agent ignores where it is, it is not feasible to decide what action to execute. 
Unfortunately, in most situations, an agent cannot sense the pose directly, i.e. it is not 
equipped with a noise-free sensor for measuring its position. So the agent has to compute its 
pose based on relative and absolute measurements of reference points. The set of all 
absolute reference points is the so-called map of the environment. The map contains the 
reference points in global coordinates. 
In RoboCup 3D, the agent’s pose is a tuple , where  is the 2D position of 
the robot in the global coordinate frame and  is the orientation of the agent’s pan-tilt 
angle, respectively. The aforementioned reference points are the corner flags and the goal 
posts. In robotics, reference points receive the name of landmarks to indicate that they are 
used for robot navigation. In the soccer simulation, a RoboCup 3D soccer agent receives the 
range (distance) and bearing (angles) to each visible landmark, along with a signature that 
identifies it. Hence, there is no uncertainty about the identity of each flag, but the range and 
bearing measurements are affected by Gaussian noise. In most real situations, a robot does 
not directly sense the characteristics of the landmarks. Instead, it has to extract or infer 
important features from data. 
When an agent receives relative information of the reference points by means of its vision 
perceptor, it has to guess its location as accurately as possible. This is even harder because 
the intrinsic uncertainty in perceptors and effectors. To increase accuracy, an agent must 
filter the noisy data to get a reliable and precise pose estimate. 
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4.1 Classification of Localization Problems 
Thrun divides the localization problem into three dimensions (Thrun et al., 2005), 
depending on the nature of the environment and the previous knowledge: 

• Local/Global Localization: Characterized by the initial knowledge of the agent. It has 
three categories: 

o Position tracking: Assuming that the initial agent's pose is known, this 
method         uses the motion model to track the position of the agent 
considering a small-effect         noise (usually approximated by a unimodal 
distribution like a Gaussian). As the uncertainty is around the agent's true 
pose, the problem is called local. 

o Global localization: In this case, the initial pose of the agent is unknown, i.e.      
when the agent is placed in the environment it lacks information about 
where it is. It is a harder problem than position tracking. 

o Kidnapped robot problem: It has the same characteristics than global 
localization, but with more difficulties. It assumes that the agent can be 
teleported to other location during its operation. It is hard because the 
agent believes that it knows where it is while in reality it does not. In 
global localization, the agent knows for sure that it does not know where 
it is. Usually, wrong beliefs about the state of the world are worst than 
ignorance about the world itself. 

• Static versus Dynamic Environments: A static environment is that in which the agent 
is the only dynamic object. A dynamic environment is that in which many objects 
change their poses over time. Clearly, a dynamic environment presents much more 
difficulties than a static environment. 

• Passive versus Active Approaches: Passive localization refers to the case when a 
module external to the agent observes the agent’s operation over time. An active 
localization approach is that in which the agent has a control module that 
minimizes its localization error. 

In RoboCup 3D, the localization problem consists of position tracking with possible 
kidnapping, in a dynamic environment under an active approach. It is considered as 
position tracking because the agent usually knows its initial position (and the initial position 
of all its teammates) due to previously defined formations and roles. The kidnapped 
problem emerges when an agent violates some rule of the soccer simulation, like trying to 
access a restricted area in a free kick situation, in which the agent is teleported to an allowed 
sector of the field. The environment is dynamic because there are many moving objects in 
the environment in addition to the agent that have their own dynamics (the ball, teammates 
and opponents). Finally, the approach used is active because the agent has its own 
localization module. 
Several approaches have been proposed in literature for the localization problem, trying to 
reduce the effect of noise and increase the accuracy of the computed position as more 
information is obtained over time. The two classical approaches in literature are the Kalman 
Filter and the Monte Carlo localization. The former uses continuous Bayes’ filters and the 
latter uses particle filter principles. 
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4.2 Markov Localization 
Markov localization (Fox, 1998) is a special case of probabilistic state estimation applied to 
mobile robot localization. It represents the straightforward application of Bayes’ filters to 
localization (Thrun et al., 2005). It addresses the problem of pose estimation from sensor 
data given an initial hypothesis of a static environment, and uses Bayes’ rule and 
convolution to update the belief whenever the robot senses or moves. As the environment is 
static, Markov assumption holds: the agent’s location is the only state which affects sensor 
readings. 
Instead of maintaining a single hypothesis of the agent’s pose, Markov localization 
maintains a probability distribution over the space of all such hypothesis (Fox et al., 1999). 
Probabilities are used as weights of these different hypotheses in a formal mathematical 
way. 
A Markov localization method requires both an observation model and a motion model 
(Röfer et al., 2005). The observation model defines the probability for sensing certain 
measurements at certain locations. The motion model expresses the probability for certain 
actions to move the agent to certain relative poses. 
Markov localization is a direct application of state estimation within the framework of 
"Partially Observable Markov Decision Processes" (POMDP). POMDP use a state estimator 
for estimating the state of the world based on sensor data and on the actions taken by the 
agent. Markov localization is a special case of such a state estimator: the agent is a mobile 
robot and the state of the world is the position of the robot within its environment (Fox, 
1998). 
Algorithm 1 shows the Markov localization method. First of all, a prediction is done using 
action  (line 1). Then the resulting belief is updated using percept  (line 2). Finally, the 
belief is normalized (line 3). 
 

 
Algorithm 1. Markov localization 

 
4.3 Monte Carlo Localization 
Monte Carlo localization (MCL) is a type of Markov localization in which the probability 
distribution over the space of all pose hypothesis of the agent is modeled with a set of 
particles (Thrun et al., 2005). Monte Carlo Localization is based on particle filters (a.k.a. 
Sequential Monte Carlo methods), which are approximate Bayes’ filters that use random 
samples for posterior estimation (Thrun et al., 2000) . Each particle represents the hypothesis 
of an agent having a certain pose. Such particles consist of a robot pose and a certain 
importance weight. Like in Sampling Importance Resampling (SIR) filters (Skare et al., 
2003), the importance weights are approximations to the relative posterior probabilities (or 
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densities) of the particles. Also, Monte Carlo importance sampling resembles genetic 
algorithms (Higuchi, 1997). MCL has become very popular among localization algorithms in 
the last years, mainly because it is easy to implement, it can process raw sensor 
measurements, it is non-parametric and it can represent non-linear, non-Gaussian, multi-
modal probability distributions (Ronghua & Bingrong, 2004). 
Formally, the MCL algorithm approximates the belief state  by a set of  weighted 
samples (which represent a discrete probability density function) in the following way 

  (43) 

The variable  is a sample of the random variable L in time t. The variable  represents 
importance weights. Ideally, each particle should be proportional to the posterior belief 

 such that 

  (44) 
These particles, together with the current control , are given as input to the motion model 
of the agent. Then each particle is weighted using the measurement model. After this, we 
have an updated set of particles. Finally, the most crucial step in MCL is executed: 
resampling, in which N new particles are selected with replacement from the updated set, 
where the probability of selecting each sample is proportional to its weight. After the 
resampling step, the particles approximate the true posterior belief. The resulting particle set 
has many duplicates due to selection with replacement, which causes particles with higher 
weights to appear more in the final set than particles with lower weights. Algorithm 2 
shows the Monte Carlo localization method. 
 

 
Algorithm 2. Monte Carlo localization 
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4.4 Solving the Kidnapped Robot Problem 
The classical MCL algorithm presented in the above sections cannot recover from robot 
kidnapping or global localization failures. As time goes on, particles converge to a single 
pose and the algorithm is not able to recover if such a pose is invalid. The problem is 
specially important when the particle set size is small ( ). This problem can be 
solved by injection of random particles. Assume that the agent may be kidnapped at any time  
with small probability. Then add a fraction of random samples in the motion model for 
attacking the problem and adding robustness at the same time. 
The number of particles injected at each iteration changes over time. We can use the 
measurement probability for this purpose. Thrun (Thrun et al., 2005) proposed a 
modification to the MCL algorithm called Augmented Monte Carlo Localization (AMCL), 
which is shown in Algorithm 3. 
 

 
Algorithm 3. Augmented Monte Carlo localization 
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Algorithm 3 injects random particles to counterattack the problem of global localization. 
The particles could be drawn according to a uniform distribution, but a better idea is to 
generate particles from the measurement distribution which is feasible due to the fact that 
the sensor model in our domain is based on landmarks. A new strategy is suggested: to 
fusion the information of every sensed landmark using a Kalman Filter, thus computing a 
more accurate pose from the measurements. With this strategy we aim to generate better 
particles for the injection of particles phase of AMCL. We call this approach KFSF-AMCL 
(Kalman Filter Sensor Fusion for AMCL). A Kalman Filter is a recursive filter which 
estimates the state of a system from incomplete and noisy measurements. In position 
tracking, the Kalman Filter has similar steps to the particle filter: it updates the state using a 
motion model and corrects it using the measurement model. When used for sensor fusion, 
only the measurement update is needed which is stated in the following equations 
 

  (45) 
 
Here,  is the current state or pose estimate,  is the vector of measurements, 

 is Kalman gain which minimizes the a posteriori error covariance,  is 
the a posteriori estimate error covariance,  is the measurement error covariance 
and  relates the process state to the measurement. 

 
4.5 Experiments 
A experiment was carried out to probe the performance of AMCL algorithm in the 
localization of a RoboCup 3D agent. Systematic resampling is used in all experiments 
because implementation of particle filters in robotics use this kind of mechanism very often 
(Thrun et al., 2005). Furthermore, the size of the particles set was fixed to 100, the vision is 
restricted (the official ranges are 180 degrees for the horizontal plane and 90 degrees for 
latitudal angle) and the AMCL parameters for injection of random particles were fixed to 

 and . 
The experiment is aimed to prove the accuracy of the AMCL algorithm with different 
resampling strategies. A graphical explanation of the experiment is shown in figure 5. 

 
Fig. 5. Scenario for localization experiment 1 
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Table 3 shows the results obtained with simple MCL. The error is the x-axis is relatively big, 
given that the minimal kick distance is 0.07 meters between the agent and the ball. The error 
appears because the noise in effectors and perceptors is accumulated over time and the 
algorithm is unable to recover from errors due to low variance in particles. 
 

 Error in x-axis
Minimum 0.000174046 
Maximum 3.43221 
Average 1.18437 

Table 3. Accuracy of simple MCL 
 
In table 4 we can see the comparison among different configurations of AMCL. The worst 
strategy is obviously the random landmark heuristic with an average error of  in the 
axis were the agent is moving (x) and  in the other axis (y). The maximum error is 

 which is relatively high considering that the minimum kick distance to the ball is  
meters. Following the random strategy we have the closest landmark heuristic with an 
average error of  meters and the average of landmarks heuristic with  meters. 
AMCL algorithm with Kalman Filter Sensor Fusion gives the best results with an average 
error of  meters, a maximum error of  meters and a standard deviation of  
meters. 

 Absolute Error 

Implementation maximum mean standard 
deviation 

Random 0.277 0.142 0.064 
Closest 0.155 0.079 0.050 

Average 0.090 0.045 0.022 
KFSF 0.084 0.033 0.022 

Table 4. Accuracy of AMCL with four different implementations of SampleLandmarkModel 

 
5. Probabilistic Decision Making 
 
RoboCup simulation is an excellent test-bed for machine learning algorithms. It presents a 
multiagent cooperative and adversarial scenario in a partially observable, episodic, 
continuous and non-deterministic noisy environment. 
Given such uncertainty, classical logic-based approaches fail to achieve a high performance. 
Thus, a probabilistic method is ideal for dealing with this kind of environment. 
The simplest probabilistic approach is the Naive Bayesian classification (Langley et al., 1992) 
which has proven to be successful in many applications (Lewis, 1998) in spite of the not 
always fulfilled conditional independence assumption of the attributes given the class. If we 
wish to use this classifier in the RoboCup simulation domain, we confront two main issues. 
First, the classical Naive Bayes classifier assumes that the attributes are discrete, but in 
RoboCup simulation the attributes are in the range of real numbers and thus are continuous. 
Second, the classifier must lead to a fast decision process because the soccer simulator 
demands almost real-time decisions with low thinking times for the sense-think-act cycle of 
the agents. 
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In literature, continuous attributes are handled using conditional Gaussian distributions for 
each attribute’s likelihood given the class. Other approach is to discretize by crisp 
partitioning the domain of the attributes, but this can lead to loss of information. 
Instead of discretizing, the issues are overcome using a fuzzy extension namely Fuzzy Naive 
Bayesian classifier in the following way: the continuous attributes are fuzzified and 
combined with probabilities of the naive Bayes model in a straight easy way. The formulas 
used in the fuzzy extension resemble the original naive Bayes equations, so the classification 
process is still fast and reliable plus providing an incremental learning mechanism. 
The Fuzzy Naive Bayesian classifier is implemented in a RoboCup simulation 3D team for 
decision making. It was tested specifically to evaluate the best receiver of a pass in a given 
situation. In the next sections, an explanation is given about the Fuzzy Naive Bayes model. 
Furthermore, it is compared versus a Gaussian Naive Bayes classifier, another approach of 
handling continuous attributes. Initial results obtained on this chapter for the Fuzzy Naive 
Bayesian classifier applied to decision making in RoboCup 3D were published in 
(Bustamante et al., 2006). Later performance comparison to Gaussian Naive Bayes classifier 
in the same pass skill scenario was published in (Bustamante et al., 2006b). 

 
5.1 Naïve Bayes and the Fuzzy Extension 
The Naive Bayes classifier is a simple Bayesian network with one root node that represents 
the class and  leaf nodes that represent the attributes. Let  be a class label with  possible 
values, and  be a set of attributes or features of the environment with a finite 
domain  where . The classifier is given by the combination of the Bayesian 
probabilistic model with a maximum a posteriori (MAP) rule, also called discriminant 
function (Rish, 2001). The Naive Bayes classifier is defined as follows 
 

  (46) 

 
where  is a complete assignation of attributes, i.e. a new 
example to be classified,  is a short for  and  is a short for . The equation 
assumes conditional independence between attributes. 
To deal with continuous variables, the domain of attributes can be crisp partitioned, but that 
could cause a loss of information (Friedman & Goldszmidt, 1996). We use a better method 
proposed in (Störr, 2002), namely a Fuzzy Bayesian classifier, a hybrid approach in which 
attributes are fuzzified before classification. The Fuzzy Naive Bayesian classifier is defined 
as 
 
  (47) 

 
where  and  denotes a membership function or degree of truth of 
attribute value  in a new example . All degrees of truth must be normalized such 
that  for all attributes . 
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The probabilities required by the fuzzy model can be calculated similarly to classical Naive 
Bayes as 

  (48) 

  (49) 

  (50) 

 
where Laplace-correction (Zadrozny & Elkan, 2001) applied to smooth calculations avoiding 
extreme values obtained with small training sets. Here  is the set of all training examples 

, where ,  refers to the number of examples 
,  denotes the degree of truth of  in a example , and 

 is the membership of attribute  in such example. All degrees of truth 
must be normalized such that  and . 

 
5.2 Gaussian Naïve Bayes 
One typical way to handle continuous attributes in the Naive Bayes classification is to use 
Gaussian distributions (Mitchell, 1997) to represent the likelihoods of the features 
conditioned on the classes. Thus each attribute is defined by a Gaussian probability density 
function (PDF) as 
 
  (51) 
 
The Gaussian PDF has the shape of a bell and is defined by the following equation 
 

  (52) 

 
where  is the mean and  is the variance. In Naive Bayes, the parameters needed are in 
the order of , where  is the number of attributes and  is the number of classes. 
Specifically we need to define a normal distribution  for each 
continuous attribute. The parameters of such normal distributions can be obtained with 

  (53) 

 

  (54) 
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where  is the number of examples where  and  is the number of total examples 
used for training. Calculating  for all classes is easy using relative frequencies such 
that 

  (55) 

 
5.3 Empirical Scenarios 
Selecting a good scenario for training the classifiers is not trivial. In simulated soccer, 
there is a large set of possible scenarios for a given skill. The pass evaluation skill was 
chosen as the test-bed for the training of both classifiers. One of the reasons why it was 
selected is that passing is a fundamental characteristic of an agent that aims to play a soccer 
game. Specifically, deciding what teammate is the best receiver in a given situation could 
lead to better chances to score later in the game. 
The scenario used to obtain the training set is explained below. A passer agent is placed in 
the center of the field with the ball at a distance of , where 

 is the minimum kicking radial distance between the agent and the ball stated in 
the soccer server. A teammate agent  is placed near the ball at a distance . An 
opponent agent is placed similarly, with a distance  from the ball. The angle 
between the teammate and the opponent from the ball’s view point must be . 
The passer agent aligns with the ball to pass it to its teammate and both the teammate and 
the opponent try to intercept the pass. Once the teammate touched the ball, the episode is 
labeled as SUCCESS. If the opponent touches the ball first, the episode is labeled as MISS. 
A graphical representation of this scenario is shown in figure 6. 
 

 
Fig. 6. Training scenario for supervised learning of parameters of each classifier. Three 

agents are involved: a passer agent (A), a receiver teammate (T) and an opponent (O). 
The ball is marked as (B) 

 
In the case of the Fuzzy Naive Bayes classifier, aside of obtaining the probabilities of the 
bayesian model, we have to establish the fuzzy sets for each variable. Fuzzy sets represent 
linguistic values and are mathematically expressed with membership degree functions. We 
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defined the fuzzy sets for each variable heuristically. The sets chosen for distance to the ball 
, distance to teammate  and distance to opponent  variables are {short, medium, 

long}, and for  and  variables are {closed, medium, wide}. A graphical representation of each 
fuzzy variable is shown in figure 7. 
 

 
Fig. 7. Fuzzy Sets for each Fuzzy Variable. (a) Distance to the ball , (b) Distance to 

teammate  and distance to opponent , (c) Alignment Angle  and (d) Angle 
between teammate and opponent  

 
5.4 Experiments 
For evaluating the efficiency in the domain of interest, we created a simulated-soccer test-
scenario shown in figure 8. The ball is placed at  and the agent is placed 
at . After that, three teammate agents and four 
opponents are placed randomly at . 
The passer uses a classifier to choose the best receiver teammate, i.e. the teammate with 
better chances to intercept the pass successfully. The passer uses the classifier evaluating all 
1 vs. 1 competitions between each teammate and each opponent (because the classifier was 
trained this way). Then it selects the teammate with the maximum probability of success 
given its worst probability in all its 1 vs. 1 competitions, formally 
 
  (56) 
 
being  the set of all teammates,  the set of opponents and  is the 
probability of success of the competition between teammate  and opponent .  
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Fig. 8. Test scenario for the pass evaluation skill. Four opponent agents (black circles) and 

three teammates (gray circles) are placed randomly in a certain area. The passer 
(white circle) and the ball (little circle) are placed a few meters away 

 
Table 5 summarizes the success rates of Fuzzy Naive Bayes, the Gaussian Naive Bayes and 
additionally, a random strategy after 500 episodes. 
 

Class Fuzzy Naive Bayes Gaussian Naive Bayes Random Strategy 
SUCCESS 80.8 79.6 56.6 

MISS 19.2 20.4 43.4 
Table 5. Percentage of successful passes after 500 episodes on the test scenario 
 
As we can see in table 5, both the Fuzzy Naive Bayes classifier and the Gaussian Bayes 
classifier outperform the random strategy. But the difference between the Fuzzy Bayes and 
the Gaussian Bayes approaches is indiscernible. However, recall that fuzzy variables and 
fuzzy sets for each variable were chosen heuristically. This leaves an open path for 
researching the use of better variables and more accurate sets to increase the performance of 
the hybrid classifier. 
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1. Introduction 
 

In the last two decades the concept of multi-agent mobile systems has been observed in 
many computer simulations, laboratory examples and in some practical applications. 
Among such systems robot soccer has shown to be a very popular research game and has 
served as a perfect example of multi-agent systems in the last few years (Ferber, 1999; Moss 
& Davidsson, 2002; Stone & Veloso, 2000).  
In this work the mathematical background of the developed robot soccer simulator is 
presented. The main purpose of the simulator design procedure is to obtain a realistic 
simulator which would be used as a tool in the process of strategy and control algorithms 
design for real world robot soccer as well as for other mobile-robotics related topics. To 
assure transferability to the real system the obtained strategy algorithms have to be 
designed on a realistic simulator. The main motivation for robot soccer simulator 
development was to design and study multi-agent control and strategy algorithms in FIRA 
Middle or Large League MiroSot category (5 against 5 or 11 against 11 robots). However, on 
FIRA’s (Federation of International Robot Soccer Association) official website 
(www.fira.net) there exists a simulator for SimuroSot league, which could only be used in 
Middle League MiroSot (5 against 5 robots). A similar simulator was built by (Liang & Liu, 
2002) where robot motion is simulated by dynamic model, collisions remaining 
oversimplified. There also exist a number of other simulator applications but not many 
papers are available. An important part of every realistic robot soccer simulator is collision 
modelling and simulation. Good mathematical background in rigid body collisions 
modelling and simulation could be found in (Baraf, 1997). Another useful contribution in 
the field of robotic simulator is (Larsen, 2001) where collisions are treated by spring-dumper 
approach rather than by impulse force only. The use of spring-dumper linkage in collisions 
makes velocities changes continuous, which is less problematic for simulation than 
discontinuous change of velocities (Fremond, 1995) obtained by impulse usage. However, 
spring and dumper coefficients are not easy to identify. Moreover, when observed from 
macroscopic time scale (as it is in simulation) collisions are indeed discontinuous events. 
Simulated robots should have a realistic shape, which should not be represented simply 
with a square (the real shape of the robot is not a square) otherwise the simulation of ball 
guidance and other collisions becomes unrealistic. Furthermore, some of the available robot 
soccer simulators do not treat collisions well, especially the collisions among robots (robot 
corners), collisions between robot and boundary and situations where the ball is in-between 
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two robots or robot and boundary. Algorithms on such simulators are also not transferable 
enough to the real system. A majority of them is used for competitions in simulation league 
and these simulators do not need to be realistic. 
With a rapid progress of computer graphics used in computer games, animated movies and 
other purposes a number of physics engines have appeared which can realistically simulate 
rigid body dynamics considering variables such as mass, inertia, velocity, friction, etc. Some 
of available physics engines are ODE – Open Dynamics Engine, Ageia physX, AERO, Karma 
in Unreal Engine and many others. Their usege enables computer simulations, animations 
and games such as racing games to appear more realistic. Depending on their usage there 
exist two types of physics engines, namely real-time and high precision. When dealing with 
interactive computing (e. g. video games), the physics engines are simplified in order to 
perform in real-time. On the other hand high precision physics engines require more 
processing power to be able to calculate very precise physics and are usually used by 
scientists and computer animated movies. Some of physics engines are free and open 
source. As such they can also be used to simulate physics in different research oriented 
experiments. These packages are usually comprehensive and therefore quite difficult to 
manage, use and modify. When constructing the mobile robot its mathematical background 
was completely developed by our team, which enabled us to get a better insight into the 
problem domain and gave us the possibility to efficiently solve some simulator specifics as 
mentioned in the sequel.  
The presented simulator is mainly used as a tool in control and strategy design of multi-
agent system in real game and therefore needs to be realistic. Strategy design could be 
developed also on a real plant but there are some important reasons which benefit the usage 
of realistic simulator as stated in the paper. Some vital parts of the simulator are explained 
and modelled in more detail, beginning with the kinematics and dynamic motion modelling 
considering kinematics constraints and, further on dealing with different collisions 
modelling. The stress is given to the motion modelling where the assumptions of pure 
rolling conditions are made and dynamic properties are included. The results of this part are 
motion models of the ball and the robot with differential drive. Some new ideas of collision 
formulation and realization (taking into account the real robot shape) are used as well. 
Collisions are simply solved by mathematically correct discontinuous change of velocities 
(states of the velocity integrators), which is more convenient for realization than simulating 
collisions by applying impulse force (Baraf, 1997; Larsen, 2001). However, collisions are only 
described by approximate models, which are sufficient enough for realistic behaviour of the 
obtained simulator. Precise collisions modelling is usually very demanding because of many 
factors, which should be considered during collision. When simulating a realistic game a 
precise collision modelling is less important than motion modelling. This is because the 
game strategy is designed to play a good game where different collisions are undesired and 
we want to avoid them. Nevertheless collisions still happen and have to be handled. The 
problems of collision detection and the method of finding the exact time of the collision are 
exposed too. For the latter the existing algorithms in Matlab Simulink are used.  
The system presented in this paper is available for other researchers. It can be used for 
mobile-robot related experiments, such as multi-agent strategy design, agent behaviour 
analysis, robot motion planning, cooperation, collision avoidance, motion planning, control 
and the like. The presented simulation is available at our website (Klančar, 2007). 
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The work is organized as follows. First, a brief system overview is revealed, followed by the 
mathematical model derivation of basic agents (robots and ball). Then some new ideas of 
collisions modelling considering complex robot shape are presented in more detail. Finally 
some experimental results and conclusions are given. 

 
2. System Overview 
 

The robot soccer set-up (see Fig. 1) consists of ten Middle League MiroSot category robots 
(generating two teams) of size 7.5cm cubed, orange golf ball, rectangular playground of size 
2.2×1.8m, colour camera and personal computer. Colour camera is mounted above 
playground (each team has its own) and is used as a global motion sensor. The objects are 
identified from their colour information; orange ball and colour dresses of robots. The agent-
based control part of the programme calculates commands for each agent (robot) and sends 
them to the robot by a radio connection. The robots are then driven by two powerful DC 
motors; one for each wheel. 
 

 
Fig. 1.  Robot soccer system overview 

 
The role of the simulator developed in the paper is to replace the real playground, camera, 
robots and ball, which is expensive and needs a large place to be set up. Therefore the 
simulator must include mathematical models of motion as well as collisions which happen 
on the playground. 

 
3. Mathematical Modelling 
 

To simulate robot soccer game mathematic motion equations should be derived first. The 
playground activities consist of two kinds of moving objects: robot and ball. Therefore their 
motion modelling (Egeland, 2002) is presented in the sequel. 

 
3.1 Robot Model 
The robot has a two-wheel differential drive located at the geometric centre, which allows 
zero turn radius and omni-directional steering because of nonholonomic constraint 
(Kolmanovsky & McClamroch, 1995). It is an active object in the robot soccer game. Its 
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appearance is given in Fig. 2 and its motion is described in the sequel by kinematics and 
dynamic motion equations. 

   
Fig. 2.  Symbol description 

 
Where To=(xo, yo) is robot geometric centre, Tc=(xc, yc) is its mass centre, mc is body mass, mk 
is wheel mass and Jc, Jk, Jm are moments of inertia for robot body around axis Z, for wheel 
around its axle and wheel around axis Z, respectively. Supposing pure rolling conditions of 
the wheels, the following kinematics constraints can be written: 
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Where θ is robot orientation, φr and φl are angles describing wheels rotation and d is distance 
between mass centre and geometric centre. According to the first constraint in Eq. (1), the 
robot cannot slide in the sideways, while the second and the third constraints describe pure 
rolling of the wheels. The null space of kinematics constraints (1) defines robot kinematics 
motion equation, given as: 
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Dynamics motion equation can further be derived using Lagrange formulation (Welles, 
1967) 
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the last part of Eq. (3), λj are Lagrange multiplicators associated with j-th (j=1…3) constraint 
equation and ajk is k-th (k=1…5) coefficient of j-th constraint equation. Lagrangian is defined 
as: 
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Defining m=mc+2mk, J=Jc+2Jm+2mk(d2+b2) and expressing (4) by robot mass centre variables 
the following is obtained: 
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According to (3) the dynamic model is written as: 
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where λ1, λ2, λ3 are Lagrange multiplicators which can effectively be eliminated by the 
procedure given in (Oriolo et al., 2002; Sarkar, 1994). Brief summary is given in the sequel. 
Lagrangian formulation (3) can be expressed in matrix form, such as:  

 λqAuqEqFqqVqqM )()()(),()( T−=++  (7) 
where M(q) is inertia matrix, ),( qqV  is vector of position and velocity dependent forces, 

)(qF  is vector of friction or dumping forces, E(q) is input transformation matrix, u is input 
vector of actuator forces and torques and A(q) is the matrix of kinematics constraints. 
System kinematics from Eq. (2) expressed in matrix form reads: 
 )()( tvqSq =  (8) 
and matrix form of kinematics constraints from Eq. (1) is 
 0)( =qqA  (9) 
Calculating first derivative of (8) gives 

 vSvSq +=  (10) 
Lagrange multiplicators can finally be eliminated by substituting (8) and (10) in Eq. (7) and 
pre-multiplying by ST. The part with Lagrangian multiplicators vanish because STAT=0. 
The dynamics of electric part (the motors) can usually be neglected, as electrical time 
constants are usually significantly smaller than mechanical time constants.  

 
3.2 Ball Model 
The ball is a passive object whose motion across the playground can be described by five 
generalized coordinates as shown in Fig. 3. 
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Fig. 3.  The ball rolling on the plane 

 
Dynamics motion equation can be derived using Lagrange formulation 
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where L stands for difference between kinetic and potential energy, P stands for power 
function (dissipation function), kq  stands for generalized coordinate and ( )tf  is external 
force respectively and is nonzero when the ball collides. Lagrangian is defined as  
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where m is the ball mass and J is moment of inertia. Supposing pure rolling conditions the 
following kinematics constraints follow  
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where r is ball radius. Both conditions in Eq. (13) give perfect rolling of the ball, i. e. motion 
with no slipping. Constraints in Eq. (13) are holonomic (integrable) and can be used to 
eliminate two generalized coordinates. Further on, by neglecting rotation around z axis 

0=zω  and using constraints (13), equation (12) is rewritten as  
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where fD is dumping coefficient. Considering (11) the final motion equation of the ball are as 
follows 
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4. Collisions Modelling 
 

During the motion of the robots and  the ball on the playground several collisions between 
them are possible. They are given as submodels and describe the collision between moving 
objects: the robot-ball collision model, the robot-boundary collision model, the ball-
boundary collision model and the collision between robots model. When simulating a 
realistic game, a precise collision modelling is less important than motion modelling. This is 
because the game strategy is designed to play a good game where different collisions are 
undesired and we want to avoid them. Nevertheless collisions still happen and have to be 
handled. However, in the sequel the collision models only approximately describe real 
situations. Most of the presented models are therefore relatively simple for realization in a 
simulator. 

 
4.1 Robot-Boundary Collision 
When modelling collision of the robot to the boundary, the test whether all robot corners are 
inside the playground must be performed first. If they are, this means that there is no such 
collision. The procedure is represented by diagram in Fig. 4. 

 
Fig. 4.  Robot–boundary collision simulation diagram 

 
The notation Diff. Equation 1 in Fig. 4 stands for Eq. (3). When the robot hits the boundary 
with two corners, it stops and so robot kinematics equation (in Fig. 4 marked as Diff. 
Equation 2) becomes: 
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More demanding case appears when the robot hits the boundary with one corner only. If the 
angle between the robot and the boundary is greater than the proposed threshold value, the 
robot starts to rotate around the corner (see Fig. 5). 

 
Fig. 5.  One-corner collision with the boundary 

 
The velocity in point TK with tangential direction to the outer circle in Fig. 5 is obtained by a 
transformation of the left wheel rim velocity ( rL ⋅ω ). Angular velocity ωTK in point TK is 
thus: 
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and linear velocity of the robot centre (vTs) is: 
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Robot kinematics equation (in Fig. 4 marked as Diff. Equation 3) then becomes: 
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If the angle between the robot and the boundary is less than the mentioned threshold, the 
robot slides along the boundary (see Fig. 4). 
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4.2 Ball-Boundary Collision 
In the ball-boundary collision elastic collision is supposed. The velocity component parallel 
to the boundary remains the same, while the perpendicular velocity component changes 
sign and is multiplied by a factor less than one, representing energy loss. To assure proper 
rebound without penetration, zero crossing algorithm implemented in Matlab Simulink 
environment is used to treat the problem of integration over discontinuities correctly and 
efficiently. This algorithm simply changes the integration step by bisection, according to 
some input variable (distance between ball and boundary multiplied by sign which is 
negative if the ball is outside the playground), until the exact time of discontinuity appears.  

 
4.3 Robot-Ball Collision 
Mutual impact of the robot and the ball can be described with collision model of two 
spheres (Fig. 6). Mathematically the model is based on kinetic energy and momentum 
balance equations as follows 
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where indexes 1 and 2 stand for the first and second sphere, v represents the velocities 
before and w the velocities after the collision, while m1 is robot and m2 ball mass 
respectively. 
The playground coordinate system is rotated so that axis x connects mass centres of the 
spheres (see Fig. 6). 

 
Fig. 6.  Collision of two spheres 
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Because of the coordinate system rotation the impact force is different from zero only in 
normal direction of the collision, i. e. direction x. Thus the velocities in direction y remain 
the same. Final non-trivial velocities after the collision are then given by: 
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where index 1 stands for the robot and index 2 stands for the ball. If m2 is very small in 
comparison with m1, a simplification of Eq. (23) is justified. Some manipulations give: 
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Furthermore, energy loss is realized by multiplying the part of Eq. (24) inside the brackets 
by factor k less than one. 

 
Fig. 7.  Robot-ball collision 

 
Calculated velocities after the collision are then used as new initial states of the integrators 
in the simulator. This is equivalent to applying and simulating impulse force caused by 
collision but is less suitable for realization (Egeland, 2002; The Math Works, 1998). 
However to assure a realistic collision of the robot and the ball, a concrete robot shape has to 
be modelled. The actual robot shape is shown in collision situation in Fig. 7 and the idea of 
how to include the real robot shape into the model is given in Fig. 8. 
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Fig. 8.  Shape of the robot (inner) and its rim 

 
The outer shape is the rim of the robot obtained if the ball is rolled around the robot and its 
positions are recorded. With the proposed reshaping the collision of the robot with the ball 
can be treated as a collision between two points (ball centre and point on robot rim). Because 
linear and angular velocities of the robot are given for geometrical centre, the following 
transformations have to be done in order to obtain the velocities in the point of the rim 
where the collision with the ball occurs: 
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Function r(ϕ) is the distance from the robot centre to the collision point on the rim and ϕ is 
the angle from the local robot axis x to the line connecting the robot centre and the collision 
point. To solve Eq. (23) the playground coordinates are rotated first so that axis x is in 
tangential direction of the rim (in the point of collision). After that the collision results are 
transformed to the global coordinates. 
The shape of the robot is described with two look-up tables (distance r(ϕ) and tangent(ϕ) of 
the rim), which are addressed with angle ϕ. To detect if the ball hits the robot, a check of the 
distance between their centres must be performed. If the distance is less than the one 
obtained from look-up table r(ϕ), the ball hits the robot. The accurate time of the collision is 
again obtained by zero crossing algorithm. So proper collision without penetration (within 
machine precision) and accurate integration over velocities are assured. 

 
4.4 Collisions Between Robots 
The collision of two or even more robots is undoubtedly problematic from the modelling 
point of view. However, the complexity of the model must be strongly dependent on the 
demands of the realistic simulator, where the compromise between reality approximation 
and simulation precision must be found according to the simulation usage aims. During 
simulator design a few more or less approximate solutions were tested until finally the best 
one was implemented. When designing the control strategy of the robot soccer game, it 
seems that collisions between robots are not so important because one focuses mainly on 
shots on goal, on passes, organizing defence and similar actions, while collisions between 
robots are more or less undesired. However, collisions between robots are quite frequent in 
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the game and in the case of defence also very important. Therefore they must be treated 
correspondingly in a realistic simulator.  
 
Collision Detection 
A collision detection algorithm (Klančar et al. ,2003) consists of two steps. In the first step 
only the information about a possible collision is obtained. The second step is then 
performed only if the possibility obtained from the first step exists. In the second step a 
separating plane between objects is found. The reason for performing collision detection in 
two steps is only due to lower computational burden. Thus, the second step is performed 
only in situations where collision is almost inevitable. 
The first step is performed by analyzing bounding boxes of all robots. The latter have their 
sides parallel to the global coordinate axes, thus representing the rectangle in which robot in 
its current position is included (see Fig. 9). The possibility of two objects colliding exists only 
if the bounding boxes overlap. The overlapping between two bounding boxes is determined 
by checking if their sides overlap in both axis directions (x and y) at the same time. 
 

 
Fig. 9.  Overlapping of bounding boxes in both directions 
 
As mentioned before the second step is performed only if the overlapping of bounded boxes 
from the first step exists. The separating plane is calculated so that one object (convex 
polyhedrons) is on one side of the plane and the other on another side of the separating 
plane. The separating plane always exists if two objects do not invade. 
 
Collision Realization 
In a two-dimensional space the separating plane is a straight line. It is convenient that the 
separating plane has a normal in the same direction as is the normal direction of collision. A 
separating plane should thus contain the side of one of the two objects which are involved in 
collision (see Fig. 10).  
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Fig. 10.  Collision of two robots 

 
When a collision of two robots appears, the following holds: 
 ∫=Δ dtFG  (26) 

where G  stands for conservation of momentum and dtF  is force impulse acting at the time 
of collision. Because of the force impulse a sudden change in velocities of the two robots 
occurs. Force impulse acts only in normal direction of the collision. Thus only the velocity 
components in the normal direction of the collision change while perpendicular components 
remain the same. To calculate the new velocities of the robots after collision the force 
impulse tFJ Δ=  has to be calculated. The detailed procedure to estimate the velocities of 
two rigid bodies after collision is described in (Baraf, 1997; Klančar et al., 2003). The idea is 
to calculate the relative velocities in the collision point p  (see Fig. 10) before and after the 
collision in normal direction. It is always true that the absolute value of the relative velocity 
in normal direction after the collision remains the same compared to the absolute value of 
the relative velocity in normal direction before collision in point p . From that property the 
amplitude of force impulse can be calculated.  
Force impulse in normal direction n  of the collision (also normal of the separating plane at 
the time of the collision, see Fig. 10) of the two frictionless bodies is given by 
 )t(njJ 0=  (27) 
where t0 is time of the collision and j is amplitude of the force impulse. For the normal 
direction of the collision the following relation can be written  
 −+ −= relrel vv ε  (28) 

meaning that absolute value of relative velocity in normal direction after collision +
relv  

remains the same or is lowered for energy loss factor ε in comparison with to absolute value 
of relative velocity in normal direction before collision −

relv . From the property (28) the 
amplitude of force impulse j in Equation (27) can be estimated according to procedure 
described in (Baraf, 1997). Let )t(pa 0

− be the velocity of contact point of robot A before 

impulse J is applied and )t(pa 0
+  velocity of contact point of robot A after applying 

impulse. Similarly notations )t(pb 0
− , )t(pb 0

+  are used for the second robot B taking part in 
the collision. Relative velocity in normal direction before applying impulse is thus 
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 ))t(p)t(p()t(nv barel 000
−−− −⋅=  (29) 

and after applying impulse 
 ))t(p)t(p()t(nv barel 000

+++ −⋅=  (30) 
Defining  
 )t(xpr aa 0−=  (31) 
where ar  is the displacement vector between mass centre ax  of the robot A and collision 

point p . Further let ( )0tva
−  and ( )0ta

−ω  be the liner and angular velocity of robot A before 

and ( )0tva
+  and ( )0ta

+ω  after applying force impulse. The following velocities can be 
written for mass centre of robot A and for the point of collision 
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Here Ma stands for mass of robot A and I is the corresponding moment of inertia. The same 
notation is used for robot B. Inserting Equations (32)  and (33)  to Equation (34),  the 
following relation is obtained 
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The velocity in the contact point of robot B considering opposite direction of impulse force is 
thus  
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Inserting Equations (35) and (36) into Equation (30) and then combining obtained equation 
with Equation (28) the amplitude of impulse is finally calculated as 
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Having estimated the impulse, linear velocity +v  and angular velocity +ω  for robot mass 
centre can be calculated by using relations (32), (33). It is namely equivalent to impulse force 
because of collision simulation but more suitable and accurate for realization. To obtain 
accurate t0 zero crossing algorithm implemented in Matlab Simulink could be used in order 
to assure accurate integration of discontinuous velocities signals. This algorithm simply 
changes integration step by bisection, according to some input variable (distance between 
robots multiplied by a sign which is negative if robots penetrate), until exact time of 
discontinuity is achieved. However, the problem of high frequency oscillations around a 
discontinuity (chattering) appears when two or more robots stay in contact (robots pushing 
each other). Therefore step size of simulation becomes very small which results in halting of 
the simulation. Thus a better solution is to check for correspondingly small distance 
between one robot corner and the separating plane belonging to another robot. If separating 
plane does not exist, the time before penetration of the simulated robots must be taken into 
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account. The obtained velocities after the collision are then used to determine new initial 
states of the integrators in the simulator, which is equivalent to simulating impulse force 
because of the collision. The former is more suitable and accurate for realization, though.  

 
5. Experimental Validation 
 

In the sequel a few examples of simulator operation will be compared to the operation of a 
real set-up. In these comparisons similar conditions (initial pose, velocities and situations) 
are ensured. These visual comparisons give some impression about the capability of the 
simulator to realistically describe the real set-up. 
The situation where the ball collides with the wall and the robot is presented in Fig. 11. Here 
the robot stands still while the ball starts to move with initial velocity v= 0.8 m/s. In the left 
graph of Fig. 11 the experiment result from the real set-up is presented while the right one 
shows a similar simulated experiment. In both figures the object shapes are drawn with 165 
ms resolution (simulation sampling time is 33 ms). 
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Fig. 11. Comparison of collision between the ball and the wall and between the ball and the 

robot on a real set-up (left) and on the simulator (right) 
 

In both cases a similar ball motion is recorded. More interesting is the second ball collision 
where the ball hits the robot and rebounds from the robot specific shape presented in Figs. 7 
and 8. The difference between both of thecompared figures is the course of the ball which is 
supposed to be a straight line on the simulator but in a real set-up it has a slight deviation 
from the straight line motion. This might happen because of the ball spinning effect after the 
collision and some other (stochastic) effects such us uneven terrain, dirt on the ground 
which were not considered in the simulator. 
In Fig. 12 the simulated and real robot hits the boundary at the 45° angle relative to the 
boundary. In both cases the robot starts with constant velocity (v=0.5 m/s). 
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Fig. 12. Comparison of collision between the robot and the wall and between the ball and 

the robot on a real set-up (left) and on the simulator (right) 
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It can be observed that both examples in Fig. 12 (real and simulated) are almost identical. 
In Fig. 13 comparisons between robots from a real set-up (first column) and simulated 
robots (second column) for three different collision situations (rows in Figure 13) are given. 
The experiments were performed with the same initial conditions (starting positions, 
orientations and velocities).  
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Fig. 13.  Comparison of collisions between real robots and simulated robots 
 
From the proposed representation also the estimation of robots course and their speeds in 
certain time (sample time is 33 ms) can be observed. The first and second row of Fig. 13 
show the situation where compared subjects are relatively equal. The real situation where 
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robots wheels slide on the real set-up is shown in the third row in Fig. 13. Here of course 
simulator gives wrong results. It is evident that the proposed robots collision model 
captures the behaviour of the real robots to the reasonable extent, which means that 
simulated situations cover a vast majority of collisions in real game sufficiently well.  
Presented collision models give sufficient representation of real situation. However, a lot of 
factors in real set-up are of significantly stochastic character what means that their 
modelling is not justifiable from the usable simulator point of view (fast enough on available 
personal computers, simple enough, etc.). The mentioned factors are: nonuniform friction, 
dirt or dust on the playground or wheels, shape of the robot, robot strength which depends 
on battery status, wheel sliding, friction is different for the direction along or perpendicular 
to the direction of wheels, etc. If comparison is performed over longer time interval shown 
results are useless due to above reasons. Main goal of the work however is to present 
reasonably accurate motion and collision models and thus contributes to obtain more 
realistic simulator, which would be used as a tool in the process of strategy and control 
algorithms design. Therefore, the validation of the simulator as a whole should be done 
through transferability of obtained strategy algorithms to the real system. It can be 
confirmed that the behaviour of the simulator is similar enough to the real setup which 
means that the designed algorithms on a simulator (strategy and low level control) can be 
without modifications directly used also in real games. The simulator was tested in a 
number of European and World competitions in FIRA MiroSot league (real robots) category. 
There the game strategies used in real competitions were mostly developed by using the 
presented simulator. 

 
6. Conclusion 
 

The introduced simulator is mostly used as a tool in the process of strategy and control 
design for real robot soccer game. Therefore, its verification is done through transferability 
of the obtained strategy algorithms to the real system. The verification shows that the 
behaviour of the simulator is similar enough to the real setup, which means that the 
designed algorithms (strategy and low level control) can directly be used without 
modifications in real games as well. 
The designed simulator has significant improvements in comparison with the available 
simulator in MiroSot leagues (simulator for SimuroSot) and other available simulators; the 
advantages being dynamics motion modelling and a realistic shape of the robots, which 
contributes to a more realistic simulation of robot ball interactions, collisions with robots, 
robots and boundary interactions and the situations where the ball is captured between two 
objects (it cannot invade any object). The presented simulator proved to be a good 
approximation of the real system. The motion models as well as collision models give 
realistic descriptions, which enable the simulator designed algorithms to be used on the real 
system. 
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Abstract 
 

We are looking for a generic solution for the optimized ball passing problem in the robotic 
soccer which is applicable to different RoboCup leagues and other digital simulated sports 
games like basketball or ice hockey. In doing so, we show that previously published ball 
passing methods do not properly balance the anticipated rewards, costs, and risks.  The 
multi-criteria nature of this optimization problem requires using the Pareto optimality ap-
proach. As the problem itself is substantially inconvex, nothing else except the search of all 
available alternatives in the Pareto set appears to be applicable in this case.  Real-time con-
straints are further complicating the problem.  We propose a scalable and robust solution for 
decision making with multiple optimality criteria; its quality degrades in a graceful way 
once the real time constrains are kicking in.  Our method is treating equally direct and lead-
ing passes to the partners and self passing while fast dribbling the ball by the player. The 
new method also allows easily modeling the whole spectrum of risk aversive to risk talking 
attitudes; therefore it is generic indeed.  

 
1.  Introduction 
 

1.1  Ball Passing Algorithms: State of the Art  
In the real-life and robotic soccer the rational player who controls the ball has four choices: 
shooting at the opponent goal, dribbling (moving without losing control of the ball), holding 
the ball, and passing it to a teammate or to self.  
We are assuming that at given moment of time the choice between these higher-level op-
tions has been already made and the player is going to pass the ball by making the further 
choice between lower-level options representing alternative ways to execute this pass. As 
this decision making skill is generally regarded to be critical for the success of a soccer team, 
we investigate how ball passing could be implemented in the best possible way. 
Early RoboCup scholars have identified the major peculiarities of ball passing and devel-
oped algorithms for the simulated soccer [1, 2]. These methods have proved to be good, as 
the soccer teams using them have been performing in the RoboCup competitions very suc-
cessfully. Because we have not found in the academic literature any other published meth-
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ods since then, this is presumably the state of the art; thus in what follows, we will be using 
these two algorithms as the prototypes for further improvement.   
In both algorithms the soccer agent chooses values of the direction of the kick and its force. 
In [1] the anticipated outcome of this action is evaluated using two heuristic indicators: (1) 
the tactical value of the end point where the ball can be intercepted by the fastest teammate 
and (2) the fuzzy estimate of the likelihood of this interception. The latter is the function of 
the time balance between the fastest teammate to the ball and the fastest opponent. Stone & 
McAllister [1] also proposed using both direct passes to the receiver’s position and leading 
passes that allow sending the ball to the teammate who is blocked by opponents from re-
ceiving a direct pass. In this method, the tactical value of the interception point is the only 
criterion for selecting the best option; the likelihood of success is used as a constraint for 
eliminating poor alternatives. Although this method has proved to be good enough for 
ATT-CMUnited-2000 making it to the third place in the RoboCup 2000 competition in the 
simulation league, it neglects some risks that are indeed present in the soccer game. One of 
them is the possible proximity of other opponents to the anticipated interception point. We 
would also disagree with [1] in that the ball should be always intercepted by the receiver in 
the minimal time. This may result in lost opportunities in executing leading passes when the 
ball is deliberately sent to the point of the field having the best tactical value. Thus the re-
ceiving player must be moving exactly towards this point if it is indeed safe to do so; the 
ball passing algorithm should be based on this assumption.  
The ball passing decision making algorithm implemented in FC Portugal, the 2000 World 
champion [2], in many respects is similar to [1]. Additionally it is taking into account the 
opponent player congestion in the vicinity of the ball destination.  Several additional factors 
are considered, such as ball travel distance, opponent goal scoring opportunity if the pass is 
successful, and the possible outcomes if the ball would not be intercepted as intended. The 
decision is made by deliberating on 5 options for each receiving teammate: direct pass, lead-
ing pass, pass to the expected location of the teammate, pass to a point near teammate hav-
ing low congestion, and pass along a low congestion line. Each alternative is evaluated 
using 9 performance indicators. With the purpose of making a choice, these indicators are 
analyzed using a set of heuristic logical rules, i.e. a sort of a decision tree.  It is known that 
FC Portugal outplayed ATT-CMUnited-2000 in the 2000 RoboCup competitions. We can 
only speculate whether the improved ball passing algorithm was a decisive factor or not. It 
is clear that the second algorithm must be good; yet it is much more complex and more 
difficult to analyze and optimize.   
A presumably even more advanced ball passing algorithm incorporating leading passes 
with player collaborating using inter-player communication was recently reported in a very 
short paper [3]. This algorithm is all based on a decision tree. In what follows, we demon-
strate that a decision tree may overlook some indeed good ball passing options, which is the 
shortcoming of this algorithm.  

 
1.2   Unresolved Issues and Research Objectives  
We would mention three issues that we address in this paper.  

1. No benchmark so far. Although known algorithms have proved to be good in-
deed, from the scholarly standpoint their common weakness is in that they are just 
collections of sophisticated heuristics; it is still unknown to what extent they could 
be further improved and what the benchmark solution is.   
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2. Smoothly balancing rewards and risk. We believe that the ability to easy imple-
ment a continuous spectrum of risk-taking vs. risk aversive strategies by the soccer 
agent is highly desirable feature in any algorithm for modeling player behavior. 
Indeed, while risky passes should be completely avoided near own goal, they are 
affordable or even could be desirable on the opponent side. However, in the exist-
ing ball passing methods the deliberations with regards to risks and rewards, if 
any, do not render themselves as a controlled feature.  

3. Avoiding possible conflicts with the real-time constraints, as the ball passing algo-
rithms are computation intensive.  So far the RoboCup scholars have been tackling 
with this inventively, yet somewhat unsystematically, by reducing computations 
to the reasonable minimum just by using various heuristics. Further reduction in 
the amount of required computations in such algorithms may be normally possi-
ble at the expense of abrupt loss in the quality of decisions, as this is done, for ex-
ample, by removing some branches in the decision tree.   

We believe that these issues can be resolved and it is indeed possible using the Decision 
Science techniques, such as multi-criteria decision analysis (MCDA). In doing so, we are 
pursuing the following objectives.  
Developing a theoretical framework for a truly optimal ball passing algorithm that is utiliz-
ing all the potential of the soccer agent and could serve as a benchmark. We want this solu-
tion to be generic and thus reusable in any robotic soccer league. This intention is standing 
in a concert with other RoboCup scholars looking for generic solutions [4].  
Fully identifying rewards, risks, and costs involved in passing the ball and demonstrating 
how they could be balanced in the proposed framework. In particular, we wish to offer an 
easy way to implementing a continuous spectrum of attitudes by the soccer player. We also 
want that decisions about ball passes to stem from the deliberation of all reasonable options 
that are available to the moment with very few parameters controlling the balance between 
risk taking and risk aversion. These parameters must all have clear meaning.  
All-in-one implementation. We would like to have a generic solution that subsumed direct 
and leading passes and passes to self. With regards to leading passes, too few details have 
been revealed in both [1] and [2] so far on how the end point is determined, although this is 
a non-trivial task. We wish to propose a simple method for implementing this critical fea-
ture.  
Addressing the real-time constraints. We want to propose a truly scalable solution with just 
one parameter which determines the amount of the required computations. We also want to 
design a robust ball passing algorithm so that if we are forced to eliminate some computa-
tions for the sake of saving computation time, that would be resulting only in a gradual loss 
of the decision quality.  
Section 2 provides the reward/risk/cost analysis of ball passing. In Section 3 we briefly 
explain the essence of the Pareto optimality and demonstrate how this concept applies to 
optimized ball passing. Section 4 provides a solution to searching the Pareto set for the 
optimal decision. Section 5 explains how the real-time constraints in the proposed method 
could be walked around in a graceful way. Section 6 concludes this work.  
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2.   Rewards, Risks, and Costs in Ball Passing  
 

Prior to developing the optimal decision making algorithm, in this section we identify the 
criteria that govern the decision by the soccer player to pass the ball; we wish this list to be 
as complete as possible.  
In doing so, we slightly modify the ball passing problem formulation as compared to [1, 2]. 
In our case, player with the ball considers all possible points (x, y) in the field and must 
decide to which point he should send the ball now; he also must choose the speed that the 
ball will have upon the arrival in this point.  The end speed affects the probability of the 
successful interception by the receiving teammate; it also determines the ball travel time and 
thus the incurred risk.  The decision is made by comparing these and some other criteria 
calculated for different ball passing options.  
Once the passing player has made his choice of the point and of the ball end speed, he is 
able to determine the kicking force and direction, which are the actual decision variables. If 
the required kicking force exceeds the available limit, the point is just removed from the 
consideration. Likewise, points are eliminated if the perceived risks are prohibitively high. 
This feature could be implemented similar to the existing algorithms; conservative elimina-
tion rules can be applied to avoid unnecessary deliberations and reduce computations. In 
what follows, we demonstrate this on examples.  
Each remaining potential destination point for pass is assigned a vector criterion having 
continuous values of its m components.  So there is a two-dimensional decision space (kick-
ing_force, direction) and an m-dimensional criterion space.  
For the analysis, we replace the continuous decision space by a discrete one.  Initially, with 
the purpose to find a benchmark solution, we deliberately consider that the number of 
points in this space is large enough so that in terms of our criteria the difference between the 
neighbors was negligibly small.  
For the further analysis of the decision criteria semantics, we split them in three categories: 
(1) rewards, (2) risks, and (3) costs.   
Rewards. We see two rewards, or gains, from passing the ball; we wish to maximize both.  
First can be measured by the tactical value f1(x,y) of the point where the ball will be sent to.  
As the tactical value proposed in [1] and [3] serves this purpose very well, we will be using 
a similar one. It encourages sending the ball up the field to the opponent side; points closer 
to the opponent goal have higher tactical value. Because of the function is anti-symmetrical 
for x-coordinate, it equally discourages from passing the ball close to own goal.  
The second reward function reflects the chance to score the opponent goal once the ball 
arrives to its destination (x, y). This could be measured by the following heuristic criterion: 

)1),(/(),(),(2 += yxnyxyxf oppα ,    (1) 

where α(x,y) is the angular size of the goal as seen from (x, y) and nopp(x,y) is the anticipated 
number of opponent players in the cone having (x, y) as its vertex; the base of this cone is 
the opponent goal that is slightly stretched sideways.   

Risks. The risks involved in ball passing can be all regarded as soft constraints because of 
presence of uncertainty; this is a further improvement of the idea proposed in [1]. Risks 
were identified bearing in mind that the receiving player is intercepting the ball in minimal 
time if only he has no other choice; rather we assume that he must be moving to the point 
where the sender decided to get it delivered to. (This could be implemented using commu-
nication and/or so-called ‘smart’ ball interception algorithm.) Hence we need to address 
more risk factors than our predecessors.  If the risk incurs any time balance, we calculate it 
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with some conservative margin in the favor of the opponents. This margin increases with 
the distance to the ball passing end point. 

1. Opponent may reach (x,y) before the teammate. The risk function r1(x,y) is the time 
balance between the arrivals of the fastest opponent and the fastest teammate to 
this point. If this balance is negative, r1(x,y) is zero.  

2. Ball can be intercepted by the opponent on its way to (x,y). The risk function r2(x,y) 
is the time balance between the intended arrival time of the ball in (x,y) and the 
earliest time when it can be stolen by the opponent. If this balance is negative, 
r2(x,y) is zero.  

3. Teammate may be too late in point (x,y) after the ball rolls by. So the risk function 
r3(x,y) is the probability of the teammate failing to reach the ball in (x,y). This prob-
ability is 1 if the teammate cannot arrive in (x,y) before the ball and decreases fast 
to 0 with the extra time available for the player. The risk also increases if the ball is 
moving in (x,y) too fast which is making it difficult to intercept.   

4. Once the ball has been received by the teammate, too many opponents may get 
close by. The risk function r4(x,y) is the time balance between the arrivals of the 
first and second fastest opponents in (x,y), plus some positive heuristic constant 
r4max. If this sum is negative, r4(x,y) is zero. If both opponents arrive simultane-
ously, r4(x,y)=r4max.  

5. If the teammate fails to intercept the ball, it may cross the field boundary; the inter-
ruption of the game by the referee that would follow thus giving some advantage 
to the opponent. Similar case is when passing the ball may create the offside situa-
tion.  The risk function r5(x,y) is zero everywhere except the points where the ball 
trajectory, if continued, may intersect the field boundary or the offside line. In 
these cases the risk is some constant r5max less the time remained until the ball 
crosses the line.  Thus on the field boundaries we get r5(x,y)= r5max. Negative values 
are brought up to zero. 

6. The receiving player may have too low stamina to chase and handle the ball (this 
information is made available to the ball controller via aural sensor). The risk func-
tion r6(x,y) is the time when the receiving teammate reported low stamina minus 
current time plus positive heuristic constant r6max. If this sum is negative, r6(x,y) is 
zero.   

7. Ball may not reach the destination point at all, as (x, y) is too far away for given ini-
tial ball speed. As the ball movement is distorted by noise, the actual maximal ball 
traveling distance may differ from the calculated theoretical one, Dmax.  A soft con-
straint r7(x,y) is used to reflect this risk. For points whose distance is significantly 
less than Dmax, r7(x,y) is zero; near Dmax values of r7(x,y) are positive.  

For convenience, the seven risk functions described above might be scaled so that they all 
are taking values in, say (0, 10). We wish to simultaneously minimize each of them.  
Costs. The obvious cost factor is the time required for obtaining the anticipated rewards, 
which we want to minimize. Taking this in consideration makes sense because the precision 
of the situation prediction decreases with the forecast time substantially. In this respect, it is 
just another risk factor. Yet cost is also may be an objective, as we are obviously interested 
in achieving the tactical gain faster. Cost could be measured by the nonlinear function c1(x,y) 
whose value is zero for short passes and grows with the time needed the ball to reach (x,y). 
This criterion would be discouraging too long passes if, given all the rest conditions equal, 
shorter ones exist.  
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Discussion. We believe that this is the most complete list of factors affecting ball passing, as 
it contains new elements. Heuristic constants are used for scaling only; thus they are not the 
‘magic numbers’ that are omnipresent in existing ball passing algorithms. Some factors have 
been taken into account by previous scholars, yet none of them has provided a comprehen-
sive list in academic publications.  The identified risks have different severity and likelihood 
to occur. Of them, risk factor 1, is probably best known to all RoboCup scholars, as it is 
incurred very often.  On the other hand, factor 7, although well understood, has been pre-
sumably treated in [1, 2] just as a hard constraint. However, a soft constraint is more appli-
cable in the general case as the ball movement noise may be significant in the RoboCup 
leagues dealing with physical robots. As in [1, 2] the interception of the ball only in minimal 
time was assumed, risk factor 2 was not considered. By deliberately distinguishing between 
risks 1 and 2, we thus propose more general approach.  Risk factor 6 has been also left unno-
ticed in the RoboCup literature; in some situations, however, this may result in the complete 
failure to pass the ball. Also new is the cost consideration; it looks like nobody before has 
tried to consider the cost as a factor. Yet the most significant difference of our approach 
from [1, 2] is in that we are not applying any logical rules to the performance indicators, nor 
do we suggest merging them in one.   
Concept demonstration. With the sole purpose of the concept demonstration used through-
out this paper, we have designed an example with three simplifications. (1) Decision space 
is further reduced to determining the direction of pass only; end speed in the destination 
point (x, y) is a fixed parameter of the algorithm. (2) Only the tactical value of the end point 
is used as the reward. (3) Risk and cost factors merged in just one parameter by applying 
heuristic rules.  
This allowed using two-dimensional displays for the visualization. The full-blown algo-
rithm is treating all criteria separately without merging those using heuristics. 
Screenshots in Fig.1 illustrate application of different constraints to a grid of 3600 points 
considered as candidates for passing the ball by player 11 from the right-hand team. The 
eliminated points are shown in light gray; the darker points are the remaining alternatives. 
The player must select the best from them based on the vector of performance indicators 
available for each point.  
We wish this decision to be optimal in some sense. This sense is the Pareto optimality.  

 
3   Applying the Pareto Optimality Principle to Ball Passing  
 

Pareto optimality, first originated in economics, is now a standard principle for solving 
vector optimization problems with conflicting criteria [5, 6].  The criteria identified in Sec-
tion 2 are indeed conflicting, as the higher rewards are normally coming at higher risk and 
cost. In what follows, for the purpose of illustration, we will replace the reward function 
with the negation thereof; thus we want all our criteria to be minimized simultaneously.  
In the general case, though, simultaneous minimization cannot be achieved.  The Pareto 
optimality principle only offers a method for substantially reducing the set of decision al-
ternatives by identifying among them the set of so-called non-dominated alternatives; alto-
gether they are making the Pareto set, or the Pareto frontier [5, 6].  
By definition, the criteria vector vi = {vi1,…,vim} is dominated by vector vj = {vj1,…,vjm} if the 
following condition holds: 

}{ jkik vvk >∀ .     (2) 
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(a) applied the maximal ball rolling distance     (b) added the opponent/teammate time balance 

                constraint only (risk factor 7)                             constraint (risk factors 1 and 7) 

  
(c) added the early interception of the ball by    (d) all risk constraints applied; the remaining 
      the opponent (risk factors 2 and 7)                       points are the player decision making 

options 
Fig.1. Screenshots of the software tool developed for analyzing the soccer player tactics.  Of 

the original 3600 points, some have been eliminated by applying the ball distance con-
straint first. Individual captions explain additional constraints that have been applied 
then 
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This means that vj is located inside the cone in Rm with the vertex vi, the sides of this cone 
being parallel to the coordinate subspaces Rm-1. Fig.2 illustrates this situation for m=2. 
By definition, the Pareto set is the subset of the alternatives which are all non-dominated. 
An example is shown in Fig. 3. Note that the Pareto set is not necessarily convex, nor is it in 
the general case even connected. The computational complexity of determining the Pareto 
subset in the finite set with N elements is O(N2).   

 

   
Fig.2. Vector vj dominates 
vi  

Fig.3. The Pareto set contains 
all non-dominated points 

Fig.4. While vj both domi-
nates and ε-
dominates vi,  vk 
dominates vi only 
plainly 

 
In Section 4, we will be also using a weakened version of the dominance relation, which is 
called ε-domination (Fig.4). The set of non-ε-dominated points is referred to as ε-Pareto set.  
The common-sense meaning of a non-dominated alternative vj is that outside the Pareto set 
there is no another alternative that outperforms vj simultaneously by all criteria; at least one 
criterion value is worse, anyway.  From this follows that the optimal decision should be 
sought within the Pareto set; all the rest alternatives could be just eliminated as they are all 
inferior.  
Noteworthy that, eliminating decision alternatives before identifying the Pareto set, as it has 
been done before in the ball passing algorithms, may result in that some of the Pareto opti-
mal points would be apparently removed without even evaluating thereof. This is exactly 
what may happen in decision trees. Unless the tree decision conditions are designed so 
carefully that any eliminations do not affect the Pareto set, there is no guarantee that the 
decision making algorithm yields optimal solution to the problem in all cases. However, the 
trouble is in that such a decision tree is difficult to design, and for each new applied prob-
lem this must be done over and over again. On the other hand, the Pareto optimality princi-
ple offers a general solution.  
So in ball passing we follow this principle. The Pareto set of the alternatives that player 11 in 
Fig.1(d) should be indeed choosing from is shown in Fig 5.  As all the rest alternatives are 
dominated, we should eliminate them. This example suggests that either the leading pass to 
player 9 should be executed (five slightly different options), or player 11 should leave the 
ball for himself (two options). Passes to player 10 are not in the Pareto set. Fig. 6 shows the 
situation as it occurs in the criterion space. It is clearly seen that the Pareto set is non-convex 
and disconnected. Disjoint parts of the Pareto set correspond to different teammates who 
can receive the pass; this is the result of that the criteria are substantially non-monotonic, 
multi-modal functions.   
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Fig. 5. Situation in Fig.1(d) with the points        Fig.6. The ball passing alternatives in the 

making the Pareto set highlighted                      criterion space. Points in the Pareto set 
have larger size 

 
The MCDA theory leaves the final choice of the single alternative from the Pareto set up to 
the decision maker. In doing so, the latter should rely on his/her aspirations, such as risk 
taking and risk aversion. In our case, however, the decision maker is the artificial agent; it is 
the algorithm developer who must formalize the player preferences which could be used for 
searching the Pareto set for the only ‘truly optimal’ alternative. This search is exactly about 
balancing the rewards, risks, and costs; in what follows, we explain the idea of balancing.   
A naïve approach suggests merging the criteria in just one and applying commonly known 
single-criterion optimization techniques. For example, one can use the utility function U of 
the decision variables (x,y), which is a weighted sum of risk Risk and gain Gain: 

),()1(),(),( yxRiskwyxGainwyxU ⋅−+⋅−= ,    (3) 
where w is the positive weight, 0≤w≤ 1; it reflects the importance of Gain for the decision 
maker, as compared to Risk whose weight is thus 1-w. (Note the minus sign indicating that 
we are using –Gain(x,y) as criterion). 
To find the solution, the utility function (3) must be minimized. Equation U(x,y) = c, where c 
is some constant, in the criterion space represents the slant straight line shown in Fig.6.  
Search for the optimal solution in this case would be moving this line towards the origin by 
decrementing c until the line (shown in the dashed style) intersects with just one decision 
alternative B. Presumably, this would be the optimal, balanced solution sought.  
Unfortunately, this simple approach does work only when the Pareto set is convex [6]. If 
non-convexity is in place, some elements of the Pareto set would be never rendered as the 
solutions to the optimization problem, no matter what values the decision maker assigns to 
w.  However, this is counter intuitive, as each point in the Pareto set is the best option for 
some combination of the decision maker preferences. In our example we can scan all possi-
ble preferences by making the weight w taking all possible values in the range 0≤w≤ 1. Note 
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that, as β =tan(w), this parameter determines the angle β of the line U(x,y) = c (in Fig.6, 
w=0.335). With w changing, the line is inclined in all the range of angles from 0 to 90 de-
grees.  This ‘optimization’ process would render only three points, A, B, and G of total 
seven available in the Pareto set (marked with black circles). The rest four would be never 
returned as solutions, though, in spite of that the weight is continuously running in the 
whole permissible range and the missed points are lying in between.  
Other known methods based on merging criteria in a single one would be also unsuccessful 
in the general case if the Pareto set is non-convex.  This just illustrates the fact that with the 
multi-modal criteria functions which we are dealing with in the robotic soccer, a different 
way to finding the balanced solution of the optimization problem should be taken.  

 
4.   Searching the Optimal Ball Passing Decision in the Pareto Set  
 

The different way is applying more sophisticated methods for searching the Pareto set that 
can work with non-convex problems. As there is a plethora of such methods, we will dem-
onstrate just one, developed by the author of this paper. The method is called ‘the sequential 
elimination of the poorest alternative’. Because it does not rely on any information about the 
criteria functions, it is applicable to any MCDA problem with a finite Pareto set. This nicety, 
comes at rather low cost: with the total of K elements in the Pareto set, the computational 
complexity of this algorithm is O(K2).  (Note that K<<N, where N is the number of points in 
the set of the alternatives before any eliminations.)  
The key assumption is that each criterion has its relative weight; in our case this information 
is reflecting the preferences of the developer of the decision making algorithm. So let X be 
the set of all alternatives, P ⊂ X be the Pareto set, x∈X be a decision vector, g1(x),…gn(x) be 
the criteria functions (all of which we want to simultaneously  minimize), and w1,…,wn be 
the non-negative weights whose sum is 1.  The algorithm is shown in Fig.7. 
 

S := P; 
for ( k := 1 to K-1 )  
{ 

With probability wj, randomly select j-th criterion; 
Find the element x∈  S having the maximal value of gj(x); 
remove x from S; 

} 
return the last remaining element in S  
Fig.7. The algorithm for searching the Pareto set for the single optimal 
solution 

 
The algorithm has K-1 iterations, eliminating one element from the Pareto at a time. In each 
step, one criterion is randomly selected; let j be its index. Because weights are used as the 
probability distribution, more important criteria are being chosen more frequently than the 
less important ones.  For j -th criterion, the alternative having the maximal (i.e. the poorest) 
value of gj(x) is removed from the working copy of the Pareto set S. The process ends when 
only one element remains in the working copy. This is the approximation of the balanced, 
optimal solution to the problem. With K increasing, this approximation converges to the 
precise optimum.  
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A simplified version of this algorithm with equal weights does not even require any ran-
domization; criteria for the element removal can be selected in turns. If applied to the exam-
ple in Fig.6, this simplified method will be first using the -Gain criterion to remove point G. 
On the next iteration point A will be removed using Risk. Next F will be removed using -
Gain, and so on. The sole surviving alternative in this case will be D, which is the solution.  
The too scarce discrete subset of the continuous Pareto set like shown in Fig.6 appears to be 
too rough approximation. Recall that this is all what has remained from the original 3600 
points; so if we want a denser approximation of the Pareto frontier, we should be starting 
with even larger number. Because further increasing this number is not an option, we are 
using the ε-dominance relation instead of the strict one (Fig.4). This concession can be justi-
fied by that the criteria values are calculated with some errors anyway. As we can guessti-
mate the standard deviation of these errors, we can choose ε of the same order of magni-
tude.  Thus the discrete ε-Pareto set will be much denser; the application of the random 
elimination in this case would result in much smaller volatility of the solution.  
Fig.8 and 9 give the idea of what happens to the situation in Fig.5 and 6 once ε-dominance is 
applied; the player indeed gets much more options to chose from. The cost for this is slight 
deviation from the strict Pareto optimality and a longer, yet not prohibitive, computation 
time. The benefit is the better robustness of the solution search algorithm.  
 

 
Fig.8. Situation with the ε-Pareto set. Note       Fig.9. The ball passing alternatives in the 
          the increased number of points.                          criterion space. Points in the ε-Pareto 
          The solution is shown as a black cross.               set have larger size. The solution is 
          Player prefers avoiding risky passes                   shown as a black cross. The -Gain 

weight  is 0.335 
 
Assigning weights to the criteria in the proposed framework has transparent meaning.  
Unlike using weights to sum up criteria similar to (3), in our method there is no way for that 
a high value of one criterion apparently compensates for the insufficient value of the other. 
This is because weights determine only the priorities in the elimination of poor alternatives. 
So it is safe to say that the proposed technique allows easily modeling the full spectrum of 
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risk taking and risk aversive attitudes of the decision maker. This is made possible by as-
signing weights.  
So far we have been using the example with the weight of -Gain 0.335, i.e. Risk had twice as 
much higher weight. This results in the risk-aversive decision shown in Fig. 8 and 9. Player 
11 prefers to pass the ball to teammate 10 rather than taking the chance of sending the ball 
to teammate 9 whose position appears to be is much better.  By changing the weight in favor 
of higher gains, it is possible to persuade the player to pass the ball to player 9 (see Fig. 10, 
11).  The slant straight lines shown in Fig. 9 and 11 indicate the weight w only; they are not 
used to find the solution, as different procedure applies. 
 
5.   Addressing the Real-Time Constraints   
 

As described so far, the optimal ball passing decision making algorithm in terms of compu-
tations appears to be even more demanding than the algorithms proposed in [1, 2, and 3].  
In the first experiments in 2003 with our simulated soccer team SFUnleashed we have indeed 
found that the quality of decisions made by players while passing the ball non-
monotonically depended on the total number of points N. Starting with small number of 
points, quality was noticeably increasing with N. Then, with greater N, we observed signifi-
cantly decreased performance. Indeed, with large N the player process could not complete 
all required computations during one simulation cycle.    
As it should be expected for a real-time system like robotic soccer, attempts to utilize all the 
player potential by using sophisticated optimization may be counterproductive because of 
the prohibitive computation time. Still we decided to find a way out so that the real-time 
constraints were not so restrictive. Our solution comprises two ways for the time reduction.  
The first way is further reducing the number of alternatives that wittingly are not in the 
Pareto set; this can be done by applying more heuristics. Besides those outlined in Fig.1, we 
are using one more, by replacing the equidistant grid with randomly scattered points in the 
vicinity of each teammate. In doing so, we want to ensure that the teammate can reach the 
given point before the ball arrives in it. This is achieved by determining the size of the area 
around the teammate; this area is then randomly populated by the points (Fig.10, 11).  
The second way is automatically adjusting the number of generated points N during the run 
time with respect to the actually available time in the simulation cycle. As we know that the 
complexity of the whole method is O(N2), it is always possible to estimate affordable N in 
advance in the current simulation cycle and thus prevent real-time constraints from kicking 
in. Reducing N would result in only gradual increase of the random deviations from the 
optimal solutions, without any abrupt losses in the quality of decisions on the average. This 
behavior is quite different from that of the algorithms based on decision trees whose real-
time scalability is very limited.  
Thus the proposed algorithm is robust by design and it is indeed scalable with respect to 
tightened or relaxed real-time constraints.   

 
6. Conclusion 
 

The full-blown algorithm is just a straightforward generalization of the simplified method 
illustrated in the above examples. The only difference is that instead of the two criteria func-
tion we are using all ten. The algorithms for computing these criteria have been described in 
Section 2; some of them are similar to that can be found in the RoboCup literature. More 
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elaborated criteria set combining different rewards, risks, and costs allows coupling our 
method with the ‘smart’ receiving player behavior when the ball is intercepted in the point 
having best tactical value rather then just in the fastest way. One new criterion allows avoid-
ing failed passes that are possible in the previous algorithm when the receiving player is 
exhausted.  The proposed method is general, as it is equally treating direct and leading 
passes and passes to self. 
Still the major new element of our ball passing algorithm is the application of the Pareto 
optimality principle and the related method for searching the Pareto set.  This innovation 
guarantees that, for given set of the decision maker preferences, with the discrete approxi-
mation of the Pareto set dense enough, the solution of the ball passing problem yielded by 
this method cannot be further improved.  Therefore, the proposed method can be used as a 
benchmark for evaluating different algorithms based on heuristics. 
Our method provides a convenient way to implementing all the range of the decision maker 
attitudes by balancing gains, risks, and costs in a flexible way. Therefore, the new approach 
allows enriching the soccer team tactics without complicating the control logic.   
The proposed algorithm is robust with respect to the real-time constraints. It allows avoid-
ing the violation of these constraints by adjusting during the run time just one parameter, 
the total number of decision alternatives in the initial set. As this set is generated randomly, 
its size reduction would only result in a gradual random deviation from the optimal deci-
sion.   
As the proposed approach to optimization is general, besides ball passing, we consider 
using it for optimizing other low-level decision making in the robotic soccer, such as player 
positioning, dribbling, and scoring the goal. We also expect that similar approach is appli-
cable to higher-level decisions involving the choice between the lower-level actions.  
 

 
Fig. 10. Situation with 400 points randomly 

generated about the teammates. The 
decision is more risky than in Fig. 7., 
but its gain is higher 

Fig. 11. The ball passing alternatives in the 
criterion space with ε  -Pareto set 
highlighted. The -Gain weight is 
0.614. Note the different angle of 
the line 
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Abstract 
 

This chapter presents the research performed in the context of FC Portugal project in the 
areas of agent architectures, coordination methodologies, coaching and agent development 
tools. FC Portugal’s research has been integrated in several teams that have participated 
with considerable success in distinct RoboCup leagues and competitions. The chapter 
includes a brief description of the main competitions in which FC Portugal has participated 
with focus in the simulation leagues and related challenges. It also presents some of the 
developed techniques and results achieved in controlled experiments. These results, 
together with the impressive record of results achieved by FC Portugal teams in RoboCup 
competitions show that the techniques developed can significantly improve any soccer 
robotics team performance. 

 
1. Introduction  
 

This chapter will be structured around the main contributions of the FC Portugal project in 
the field of Soccer Robotics. 
Initially, the environment of the RoboCup Simulation League Competitions (2D and 3D 
Simulators, Physical Visualization and Nanogram), and also of the Middle-Size League will 
be presented, as they form the base where the contributions have been applied. 
The main research goal of FC Portugal project is the development of a formal model for the 
concept of team strategy for a competition with an opponent team having opposite goals, 
general enough to be instantiated to various dynamic competitive domains. The formal 
model enables the design of an agent architecture suitable for RoboCup simulation league 
agents and a world state model capable of storing the information needed for an intelligent 
agent to play soccer. It has been applied in Simulation (2D, 3D, Coaching and Physical 
Visualization) and Real Robot RoboCup Soccer Leagues (middle-size, small-size and legged 
leagues) allowing for a flexible and structured strategy instantiation. It has also been applied 
to other domains such as the RoboCup Rescue.  



Robotic Soccer 

 
168 

The project research focus is also concerned with developing general decision-making and 
cooperation models for soccer playing. Cooperation mechanisms include the Situation Based 
Strategic Positioning and Dynamic Positioning and Role Exchange mechanisms.  
Situation Based Strategic Positioning (SBSP) mechanism is used to calculate the strategic 
positionings of all agents in the team according to the game situation. The agent 
autonomously calculates its base strategic position, adjusting it according to the ball position 
and velocity, situation and player type strategic information. This mechanism enables the 
team to move similarly to a real soccer team, covering the ball while remaining distributed 
along the field allowing for a cooperative positioning among autonomous agents. 
The Dynamic Positioning and Role Exchange (DPRE) enables players to exchange their 
positionings and player types in the current formation if the utility of that exchange is 
positive for the team. Positioning exchange utilities are calculated using the distances from 
the player's present positions to their strategic positions and the importance of their 
positionings in the formation on that situation. 
Communication languages and protocols, to convey the most relevant information at the 
right times to players were also developed. Research was also focused on intelligent control 
of players’ sensors to achieve maximum coordination and world state accuracy.  
Coaching is a very important research topic in Soccer Robotics. Coach Unilang – a general 
language to coach a (robo)soccer team was developed to enable high-level communication 
between a coach agent (or human coach) and a soccer robotics playing team. Our FC 
Portugal coach conveys strategic information to players, while keeping their individual 
decision autonomy, by using this language. 
FC Portugal is also very concerned with the development of agent evaluation and 
monitoring tools like our offline client methodology, that permits the reiteration of the 
execution of the agent without real-time constraints allowing a precise insight into the 
agent’s reasoning; WstateMetrics, that evaluates the accuracy of world states, and is used to 
assess the development of the intelligent sensors and communication protocols capabilities; 
and Visual debugger used to graphically, and in a very intuitive way analyze the reasoning 
of all the agents in the team in a integrated manner. 
While most of these techniques have been developed in the context of simulated soccer 
robotics, some are already applied in real robot teams and other domains. 
The chapter presents the evaluation of the developed techniques performed in controlled 
experiments and also in real competitions where teams that resulted from the presented 
research have participated. 
The rest of the chapter is structured as follows. Section 2 presents the RoboCup initiative 
focusing in the rules of the competitions where FC Portugal research has been applied and 
tested. Section 3 is focused on some of the aspects of the architecture of FC Portugal agents 
used in most of our teams. In section 4 the developed coordination methodologies are 
presented while section 5 presents and gives directions into our coaching research. Section 6 
is devoted to the principles and implementation of our multi-agent development tools and 
section 7 presents the results of some controlled experiments that were performed to test the 
coordination methodologies. Finally, section 8 draws the conclusions. 
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2. RoboCup International Initiative 
 

RoboCup is an international initiative that aims to motivate the research on multi agent 
systems and intelligent robotics (Kitano, H., et al. 1997). Every year RoboCup organises 
scientific meetings and world robotic competitions in the fields of robotic soccer and robotic 
search and rescuing. Some competitions use simulated environments while others use real 
robots. 
In the real robots competitions there are several leagues including the middle-size, small 
size, four-legged (based on AIBOs from Sony) and humanoid soccer leagues. These 
competitions, besides having different rules concerning robots and field dimensions differ in 
autonomy of the robots and robot construction details. While in the middle-size and legged 
league, robots are autonomous and sensors are mounted on the robots, in the small-size 
league a single agent may decide and send commands to every robot of a team. The agent of 
the small size league typically receives information from a camera positioned above the field 
to detect the robots and ball positions. The middle-size league will be explained in more 
detail, as some of the coordination methodologies developed by FC Portugal are currently 
being transferred to this league. In simulated environments there are several competitions 
that are detailed in the following sections.  

 
2.1 Middle-Size League 
In the middle size league two teams of at most 6 real autonomous robots play soccer in a 
18x12m field. Robots height is limited at 80cm, the radius is limited at 50cm and the weight 
is limited at 40kg. Robots are completely autonomous, although they are allowed to 
communicate each other, and all sensors must be mounted on the robots. The environment 
is color marked i.e. the field is green, the lines are white, goals are painted in blue and 
yellow and the ball is orange. Robots must be black except for the markers of each team that 
must be cyan and magenta. 
The mechanical and electrical/electronics solutions found to build the robots play a very 
important role in the final efficiency to play soccer. Also the vision subsystem is critical for 
the final performance of the robots. Games are very active and interesting and the top teams 
exhibit some very interesting coordinated behaviour. 

 
2.2. Simulation 2D League 
RoboCup Simulation League is one of the 3 leagues that started the RoboCup official 
competitions in 1997. In fact a demonstration of the soccer simulator used in this 
competition had already been done during the pre-RoboCup 2006. The view of the RoboCup 
Organizers is to concentrate the research in this league at the top-level modules of the soccer 
robotics problems: the high-level decision and the coordination of teams of, possibly 
heterogeneous, robots. Over the years the 2D simulator has evolved, including new features 
and tuning some others, but the core architecture of the simulator is the same as the one 
used in 1997. 
In the 2D simulation league a simulator, called soccerserver (Chen et al., 2007), creates a 2D 
virtual soccer field and the virtual players, modelled as circles (Fig. 1). The simulator 
implements the movement, stamina, kicking and refereeing models of the virtual world. The 
models in the simulator are taken from real robots (like the differential drive steering) and 
from human-like characteristics (like the stamina model). 
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Fig. 1. 2D simulator architecture from (Kitano, H., et al. 1997) 
 
Teams must build the software agents that control each of the 11 virtual robots and also a 
coach agent. The control of the agents is performed by sending commands to the simulator. 
The main commands are dash(dpower), turn(tpower), kick(kpower,kangle), tackle(tangle) and 
catch(cangle) (used only by the goalie). The simulator implements several virtual sensors for 
each robot and sends the measures of these sensors to the robots periodically. The most 
important sensor is the vision sensor, but there’s also a sense body sensor (that informs the 
player of its stamina and own speed) and a hearing sensor. Sensory data is in general subject 
to noise or to some other type of pre-processing that precludes the agents from knowing the 
exact value of the measures. 
The simulation advances in steps of 100ms, meaning that every 100ms the positions and 
velocities of every player and of the ball are updated by the simulator. Some of the sensory 
data (like some modes of the vision sensor) is sent to the agents with a different period than 
that of the simulation update. 
Each agent controls only one virtual robot and must coordinate its efforts to make its best 
contribution for the teams’ goals. It is important to note that the knowledge of the various 
agents about what is happening at a certain moment is not identical, due to noise and 
restrictions on several sensors (like the angle of vision or the cut-off hearing distance). Also 
the environment is very dynamic with the opposite team controlling their robots to oppose 
the teams’ goals. 
The coach agent is a special kind of agent that receives, from the simulator, the positions of 
all players in the field and of the ball without noise. However, the coach as severe 
limitations on its communication with field agents, that make it impossible to control the 
field robots using the coach information. The coach may have a very significant impact on 
team performance by giving advice to the field players and using it to perform high-level 
tasks like tactic analysis and selection or opponent modelling. 
Visualization of the games is assured by an independent application that communicates to 
the simulator to receive the players and ball positions. Fig. 2 and Fig. 3 show two possible 
visualizations of the games in the 2D simulation league. All the 3D features of the viewer in 
Fig. 3 are not modelled in the simulator but inferred by the viewer for better attraction.  
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Fig. 2. 2D Simulation League Traditional Viewer 
 

 
Fig. 3. 2D Simulation League Viewer with 3D displaying capabilities (Sedaghat M. & al. 

2003) 

 
2.3. Simulation 3D League 
The first version of the 3D simulation league simulator was made available to the RoboCup 
community during January 2004. The proposal of the 3D simulator had the following 
objectives: 

• Replace the 2D environment of previous simulator with a 3D environment; 
• New, more realistic, physics model; 
• Simulation results should not be dependent on available computational power or on the 

quality of network resources. 
The differences between the new 3D simulator (Obst, O. & Rollman, M., 2005) and the 2D 
simulator (Chen, M. et al., 2007) used in previous RoboCup competitions, and in our 
previous research, are very significant.  
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Similarly to the 2D simulator, the simulation environment of the RoboCup 3D Simulation 
League is based on a client-server model. The simulator is the server and agents and 
visualization tools are the clients. The simulator creates the virtual environment (soccer 
field, markers, goals, etc.) where agents live, sends sensory information to the agents, 
receives their actions and applies the virtual physics model in order to resolve positions, 
collisions and interactions with the ball. Each team plays with 11 agents that must cooperate 
to score as much goals as possible while not allowing the other team to score.  
The development of the 3D simulator used available open-source tools extensively. It uses 
the SPADES (Riley, P. 2003, Riley, P., 2003a) framework for the management of agent-world 
communication and synchronization, ODE (Smith, R., 2006) for the physical model, expat 
(Expat XML Parser, 2004) for XML processing, Ruby (Ruby 2004) for scripting language 
support and boost (Boost, 2004) for several utilities. 
The 3D simulation server is implemented above a platform called SPADES (System for 
Parallel Agent Discrete Agent Simulation) (Riley, P., 2003). SPADES is a middleware system 
for agent-based distributed simulation. It aims to provide a generic platform to run in multi-
computer systems. It implements the basic structure to allow the interaction between agents 
and a simulated world so that the users do not have to worry about communication and 
synchronization mechanisms such as sockets, addresses, etc.  
SPADES’ main features are: 

• Agent based execution – support to implement sensations, thinking and actions.  
• Distributed processing – support to run the agents applications on many computers. 
• Results unaffected by network delays or load variations among the machines – SPADES 

ensure that the events are processed in the appropriate order.  
• Agents can be programmed independently from the programming language – the agents 

can be programmed in any language once it provides methods to write/read to/from 
Pipes.  

• Actions do not need to be synchronized in the domain – the actions of the agents can 
take effect at varying times during the simulation. 

SPADES components are organized in a client-server architecture. The Simulation Engine 
and the Communication Server are provided by SPADES; while the Agents and the World 
Model are built by the user and run upon the formers.  
The Simulation Engine is a generic piece of software that provides abstractions to create 
specific world models upon it. Agents may run in the same computer of the Simulation 
Engine on in remote computers linked to the network, in this case a Communication Server 
must be running in the remote computer. The World Model module must be running in the 
same computer of the Simulation Engine. This module specifies the characteristics of the 
environment where the agent will live.  
SPADES implements what it calls the sense-think-act cycle in which each agent receives 
sensations and replies with actions. That means that an agent is only able to react after 
receiving a sensation message. The agent is also capable of requesting its own sensations, 
but the principle remains - a sensation must always precede an action. In order to allow 
actions between “normal” sensations, SPADES provides an action called request time notify 
that returns an empty sensation and after receiving it the agent is able to respond with 
actions. For example, if an agent received a sensation at cycle 100 and wants to produce an 
action at cycle 110, and if the next sensation will only arrive at cycle 120, the agent can ask to 
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receive a time notify message at cycle 110 and just reply with the desired action after 
receiving it. 
Fig. 4 depicts the sense-think-act cycle and the time where each of its components runs. 
From A to B a sensation is sent to the agent. After receiving the sensation (from B to C) the 
agent decides which actions will be executed; then from (C to D) the actions are sent do the 
server.  
 

 
Fig. 4. SPADES Sense-Think-Act Cycle 
 
In many agents, the sense, think and act components may be overlapped in time (like in Fig. 
4). There is just one restriction: The thinking cycles for one agent cannot be overlapped. This 
constraint makes sense, since just a single processing unit is used per agent, and thus, just 
one sensation at time can be processed. 
As stated before the simulator runs upon the SPADES, and uses ODE to calculate the 
physical interactions between the objects of the world. The graphical interface is 
implemented using OpenGL. 
The 3D simulation server (Obst, O & Rollmann, M. 2005) allows twenty two agents (eleven 
from each team) to interact with the server in order to play a simulated robotic soccer game. 
Each agent receives sensations about the relative position of the other players and field goals 
and other information concerned with the game state and conditions. The information about 
the positioning of the objects in the world is given by the vision sensor that initially allowed 
the agent to receive visual information in 360 degrees but changed in 2006 to a 180 degrees 
angle of vision. The agents have the shape of a sphere (Fig. 5). Replying each sensation an 
agent sends actions like drive or kick. Driving implies applying a force on the body with a 
given direction and kicking implies applying a force on the ball radially to the agent. Each 
sensation is received on every 20 cycles of the server and each cycle takes 10 ms. 
 

 
Fig. 5. 3D Simulation League Match – Sphere Robot Model 
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Each sensation takes 10 cycles to reach the agent (send delay) and actions sent by the agent 
take 10 cycles to reach the simulator. Hence a sent action starts to take effect at the time the 
next sensation is sent by the server as it is shown in Fig. 6. 
 

 
Fig. 6: Server-Agent Protocol in 3D simulator 
 
In 2007 the robot model used in the 3D simulator changed from the sphere to a humanoid 
model. Also the SPADES support was abandoned and a new simpler type of timer was 
developed. The humanoid simulator only allowed games of two against two, but it is 
expected that in the future the number of robots for each team will increase. Figure 7 shows 
an image of the RoboCup 2007 3D Simulation Final. 
 

 
Fig. 7. 3D Simulation League Match – Humanoid Robot Model 

 
2.4. Microsoft Soccer Robotics Challenge 
As part of its efforts to promote their recent Robotics Studio (Microsoft, 2007), Microsoft 
developed a simple soccer simulator and sponsored a new demonstration league at 
RoboCup 2007. Microsoft Robotics Studio uses the AGEIA PhysX physics-based 3D engine 
(AGEIA, 2007) to create simulated but realistic environments for robotics research while 
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making it easy to move the developed controllers to real robots. The AGEIA PhysX enables 
developing rich immersive physical gaming environments with features such as explosions; 
and characters with complex, jointed geometries.  
Initially, it was supposed that teams would work with an early version of the simulator 
supporting only wheeled robots so that developers could have a chance to become familiar 
with the simulator and could work on team strategy and high-level coordination. However, 
Microsoft fastly developed a reasonably stable simulator capable of using legged robots. 
This was the simulator used in RoboCup 2007 competition. However, focus of the 
competition had to be moved from coordination to vision, low-level robot control and 
navigation, since the simulator was not stable enough to accommodate more than two 
players by team. 
The new robot soccer simulation developed, included a 3D simulated soccer field and 
refereeing services, as well as support enabling different simulated robots to be used as 
soccer players. A simulated four-legged robot player, called RobuDog (Fig. 8), from 
Robosoft, was developed to be the base of the competition (Robosoft, 2007). Robosoft also 
previewed its hardware-based RobuDog robot, stating that the code developed for use in 
the simulated competition can be used directly on this new physical robot.  
 

 
Fig. 8. The Robudog Real Robot (Robosoft, 2007) 
 

 
Fig. 9. The Robudog Simulated Robot and Micrsoft Robotics Soccer Challenge Field 

(Robosoft, 2007) 
 
The new league was quite successful in RoboCup 2007 – Atlanta (Fig. 9). In the future it will 
become more clear that Microsoft is not limiting itself to just simulation. They intend to 
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work closely with robot manufacturers to develop real soccer playing robots with software 
development based on the Microsoft Robotics Studio, making an impact in robotics over the 
next years. Microsoft gained support from a number of robot manufacturers including 
Kuka, Lego Systems, iRobot, SRI International, Yujin Robotics, Coroware, Parallax, 
Robosoft, etc. Thus, support for this new league seems well secured and new, more 
challenging rules are being developed for next year. 

 
2.5. Physical Visualization League 
The Physical Visualization (PV) Soccer League is a new RoboCup league where small real 
robots, called Eco-Bes, play soccer on top of a virtual field with a virtual ball, thus using the 
concept of augmented reality (Mackay, W. & Gold, R., 1993). Augmented Reality is an 
environment that includes both virtual reality and real-world elements (Milgram, P. & 
Kishino, F., 1994). Most augmented reality research uses a processed video which is 
augmented with virtual elements. The Augmented Reality at Physical Visualization League 
can improve the simulation, adding virtual elements that surround the real player. An 
example applied in that soccer league is a virtual leg with the ability to kick and to dribble 
the virtual ball and vision to perceive the world state (Azuma, 1997). 
The Physical Visualization League offers a very interesting challenge for teams since several 
research challenges are included in this setup (Vision Based Self Localization, Data Fusion, 
Real-Time Control; Decision and Cooperation). The simplicity of this setup compared with 
the small-size league, makes it very interesting for educational and demonstration purposes 
(RoboCup, 2007a). 
The Eco-Be is a very small vehicle remotely controlled by infrared commands, currently 
handmade. As presented in Fig. 10, it is composed by two step motors (1), a li-ion polymer 
battery (2), a control board (using an 8bit PIC18 family processor) (3), an Infrared Sensor (4) 
to receive its movement commands and an aluminium body (5). The robot can not send any 
kind of messages and its position is determined by an external camera (Yanagimachi, S. & 
Guerra, R., 2007). Each robot has a configurable ID, which can be freely changed. The robot 
can use each motor individually and each motor has three different speeds available. While 
using the fastest speed, all resources are drained from the controller, disabling the reception 
of new commands during this fast movement. 
The kit furnished by Citizen contains a set of 20 robots with one charger, two AC/DC 
adapters and one infrared transmitter. 
 

 
Fig. 10. The Eco-Be Robot (Yanagimachi, S. & Guerra, R. 2007) 
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The Eco-Be has a simple protocol of communication to control its movement. The robot’s IR 
sensor recognizes a command through the modulation of the flash light as a square wave at 
40 kHz with an on-to-off ratio of 50%. The period of Signal/Space allows the translation into 
valid logical states. 
The LIRC software (Linux Infrared Remote Control) encodes the correct sequence of flash 
lights to compose a valid string to the robot (LIRC, 2007). LIRC is an open source software 
capable to decode and send infrared signals from and to the common serial port. It receives 
commands via socket and sends them to the infrared device driver. A specific 
communication protocol is followed in order to send commands to the robot.  The 
transmitter uses a public circuit which receives a signal from the serial port and polarizes 
the infrared LED accordingly. The robot’s Infrared Protocol accepts a string of 12 bits as a 
valid word. The first 5 bits identify the destination robot. The next three bits command the 
left motor and the following three command the right motor. The last bit is used for parity. 
The Physical Visualization Sub-League started in 2007 focused on augmented reality, on its 
practical simple environment, and on demonstrating that the possibilities of the Eco-Bes are 
not limited to robot soccer. The league format had three competitions: demonstrations, 
technical developments and soccer tournament (RoboCup, 2007a). The main rules and 
league format details are shown as follow. 
The final rules applied at RoboCup 2007 defined that each team plays with just two players 
in the soccer games. The number of players was fixed at only two players by the league 
committee due to technical limitations of the platform in this initial stage of development. 
Each soccer match takes ten minutes and each team has an optional break time of two 
minutes.  
The PV League main part, the soccer tournament, is organized in two stages: the group 
stage and the elimination rounds. In the group stage, like in real soccer, each team is 
awarded 3 points winning, 1 for a drawing and 0 for a losing. In this group stage each team 
plays once with the other teams in the same group and the top two teams move forward to 
elimination rounds. 
The elimination rounds have extra time of five minutes in case of a draw in the regular time. 
If no team scores a goal, teams alternately start a sequence of five penalty kicks. In this 
penalty kicks the attacker has to score a goal, the ball starts at middle field and the attacker a 
little behind. There is no limit to the number of times each player can touch the ball however 
the penalty kick is over if the ball exits trough the back line or after thirty seconds without a 
goal. If after five penalty kicks for each team the score is even, a new series of five penalties 
without goalies starts. Finally if the game is still tied a coin is flipped to decide the winner. 
Rules of the tournament disallow communication between the teammates in such a way that 
it is solely up to the server to provide players’ with sensory data. 
The soccer tournament was organized with two groups of five teams playing the round-
robin model. The best four go to the semi-finals, and, then, the winners pass to the finals. 
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Fig. 11. PV League Schematic Setup (RoboCup, 2007a) 
 
Prior to any game the camera is calibrated to recognize the field and the robots’ markers. 
Each robot is identified by an individual marker that is recognized by the vision system. 
Each robot then receives an ID that corresponds to its marker and thus may be controlled by 
an autonomous agent running on a separate PC. Fig. 11 presents the field Schematic Setup. 
A server application is responsible for controlling the socket connections with the clients, the 
monitor, the camera and the communication with the infrared USB transmitter. It has a file 
that defines the field size and the positions of each goal and each flag pole. For each instant, 
the server just has to identify the robots using their color markers. For the other elements, 
the server uses the positions in the configuration file. The server, then, compiles all 
information and, for each robot, it sends the relative positions (polar coordinates) of all 
elements in the field, including the ball and the other robots. 
An associated monitor application uses the same information to draw the field and project it 
at the display where the robots play. The server sends the robot’s absolute position to the 
monitor that projects them in the screen with a considerable precision. The monitor also 
shows the virtual ball.  
Fig. 12 depicts a match with all the necessary elements. The field’s background, lines, goals 
and poles are the passive elements drawn by the monitor. The marks below the robots and 
the ball is repeatedly updated, this way when the robots are over the screen monitor, the 
setup transmits the sensation the robots are really controlling the virtual ball with their 
physical movements. 
 

 
Fig. 12. Snapshot from a PV-League official match 
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Developing new low level skills for physical robots in virtual environments is a very 
challenging task as it was clear in RoboCup 2007, first edition of the PV-League. Methods 
for navigation, ball dribbling, passing, shooting and for goalie positioning were the basis for 
having a successful team.  
In RoboCup 2007 it was also clear that: this new competition was clearly both viable and 
successful, the hardware platform can have a bright future, where multi-robot research can 
be directed to new and diverse scientific goals and finally that the league is very attractive to 
a wider audience. 

 
2.6. Nanogram League 
The RoboCup Nanogram competition challenges researchers to construct microscopic robots 
that compete against each other in soccer-related agility challenges. These robots measure a 
few tens of micrometers to a few hundred micrometers in their largest dimension and have 
masses ranging from a few nanograms to a few hundred nanograms. 
The playing field consisted of a set of insulated interdigitated electrodes, across which an 
AC waveform can be applied (Donaldt, B.; Levey, C. ; McGray, C.; Rus, D. & Sinclair M. 
2003), (Donald, B; Levey, C.; McGray, C.; Paprotny, I. & Rus, D., 2006). This waveform 
provides both the electrical power and the control instructions for the micro robots through 
a capacitive coupling. A digital camera placed on top of the field captures the action through 
a microscope sending it to the robot’s control systems.  
 

 
Fig. 13. Nanogram League Field (top), comparison of 16 fields with a coin (bottom-left) and 

the league Visualization Equipment (bottom-right) (McGray, C.; Arai, F.; Jacoff, A.; 
Tadokoro, S. & Gaitan, M., 2007) 
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For the first demonstration competition held in Atlanta in 2007, the contest consisted of 
three compulsory exercises: The 2 Millimeter Dash; the Slalom Drill; and the Ball-Handling 
Drill.  
 

 
Fig. 14. The 2 Millimeter Dash; the Slalom Drill; and the Ball-Handling Drill (McGray, C.; 

Arai, F.; Jacoff, A.; Tadokoro, S. & Gaitan, M., 2007) 
 
In the 2 Millimeter Dash, each microrobot must sprint across the playing field from one side 
to the other. The micro-robot begins with its entire structure behind one of the goal lines, 
and then it must dash until the first point of its structure crosses the opposing goal line. 
Each team will be allowed three trials being the winner determined by the best of the three.  
In the Slalom Drill, the path between goals was blocked by simple objects (representing 
inanimate "defenders") that the micro-robot should avoid as it goes from one goal to the 
other. Each team was allowed three trials counting for scoring the best of the three.  
The Ball Handling Drill was a more soccer-like challenge. The objective was for the robot to 
dribble as many balls as possible into the goal within three minutes, also avoiding the 
inanimate "defenders". The balls consisted of thin-film discs of silicon nitride, with dimples 
on their base to enable easy sliding along the field of play. Also, each team had three trials 
for this ball handling drill, with balls and defenders placed in different locations for each 
trial. 
The league was also quite successful in its first appearance in RoboCup 2007. ETH Zurich 
(Swiss Federal Institute of Technology) won all the competitions, achieving the 2 Millimeter 
Dash in 316 milliseconds, the Slalom Drill in 583 milliseconds and scoring three goals in the 
Ball Handling Drill. 
 

 
Fig. 15. Two IRIS ETH Zurich microrobots on the Nanogram playing field (McGray, C.; Arai, 

F.; Jacoff, A.; Tadokoro, S. & Gaitan, M., 2007) 
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In future years of competition, it is predictable that the competition should become more 
complex and the environment less structured, to encourage progress in robot cooperation, 
3D manipulation, on-board power supplies, integrated logic and sensing, locomotion over 
rough terrain and robust operation in dirty, wet, and volatile environments (McGray, C.; 
Arai, F.; Jacoff, A.; Tadokoro, S. & Gaitan, M., 2007) 

 
3. Agent Architecture and Knowledge Structures  
 

To enable a team to perform cooperative multi-agent tasks, like playing simulated soccer, in 
a partially cooperative, partially adversarial environment a lot of knowledge is needed. 
Also, agents must have a world state representation as updated and as accurate as possible. 
Whenever the domain becomes more complex, knowledge importance is even greater. This 
is the case in multi-objective, partially cooperative and adversarial domains in which agents 
have limited perception and action capabilities. For this type of domains we argue that to 
correctly perform cooperative tasks, agents should include knowledge at three levels:  

• Individual action execution; 
• Individual decision-making; 
• Cooperation. 

Knowledge for executing actions is concerned with the specific commands needed to 
perform a given low-level skill. Individual decision-making knowledge is concerned with 
the way agents choose the action to execute. Knowledge for cooperation is concerned with 
tactics, situations, dynamic formations, roles, dynamic plans and communication protocols 
(Reis, L.P. & Lau, N., 2001). Representation structures for this type of multi-level knowledge 
are one of our research goals.  The world state representation must remain updated so that it 
may be used to effectively decide the individual and cooperative actions to perform. The 
following methods are used to update our agent's world state information: visual perception 
analysis; communication; and action prediction. 

 
4. Coordination Methodologies 
 

In RoboCup past editions, teams with the best decision making mechanisms were very 
successful. In RoboCup 2001, the champions (Tsinghuaeolus (Yao, J.; Chen, J.; Cai, Y., Li, S. 
2002) also champions in 2002) and vice-champions (Brainstormers (Riedmiller, M. & Merke, 
A., 2002)) did not use the coach agent and trusted mainly on their better low-level skills and 
well-tuned individual decision-making mechanisms. In RoboCup 2004 STEP won the 
competition mainly due to their fast dribbling ability. So, besides having a configurable 
strategy and flexible coordination mechanisms (Lau, N. & Reis, L.P. 2002), well-tuned 
individual decision making mechanisms are still very important in RoboCup simulation 
league (Teixeira, C.; Lau N. & Reis, L.P. 2004). 
How to define roles based on standardized agent behavior characteristics for the RoboCup 
simulated soccer domain is one of the problems that has been tackled. To improve the 
flexibility of our team, agents are able to switch their relative positions (for a given 
formation) and roles (that define agent behavior at several levels), at run-time, on the field. 
We have proposed, and continually developed, Situation Based Strategic Positioning (SBSP) 
mechanism (Reis, L. P.; Lau, N. & Oliveira, E. C. 2001) that may be used to dynamically 
spatially position a team using different flexible formations for different situations. This 
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mechanism is based on the distinction between active and strategic situations (Reis, L.P. & 
Lau, N. 2001). If an agent is not involved in an active situation then it tries to occupy its 
strategic positioning that change according to the situation of the game. Situation is a 
concept on a high-level analysis of the game (attacking or defending for example). SBSP was 
one of the main innovations of FC Portugal and is now used directly or as the base for the 
positioning systems of many simulated soccer teams and being used in some middle-size 
league teams. 

 
4.1. Strategical Coordination 
CMUnited brought the concepts of formation and positioning to RoboSoccer (Stone, P. & 
Veloso, M.) (1999; Stone, P., 2000) and used dynamic switching of formations as well. FC 
Portugal extended these concepts and introduced the concepts of tactics and player types. 
FC Portugal's team strategy is based on a set of tactics to be used in different game situations 
and a set of player types (Fig. 16). 
Tactics include several formations used for different game specific situations (defense, 
attack, goalie free kick, scoring opportunity, etc). Formations are composed by eleven 
positionings that assign each player a given player type and a base strategic position on the 
field. 
One of the most significant features is the clear distinction between strategic situations 
(when the agent believes that it is not going to use an active behavior soon) and active 
situations (ball recovery and ball possession). In strategic situations, players use a SBSP 
mechanism (presented in section 4.2). For active situations---ball possession, ball recovery or 
game stopped---decision mechanisms based on the integration of real soccer knowledge are 
used. 
 

 
Fig. 16. FC Portugal’s Strategical Model 

 
4.2. Situation Based Strategic Positioning 
Situation Based Strategic Positioning (SBSP) mechanism (Reis, L.P. & Lau, N. 2001; Reis, L. 
P.; Lau, N. & Oliveira, E.C. 2001) is used for strategic situations (in which the agent believes 
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that it is not going to enter in active behavior soon). To calculate its strategic positioning, the 
agent analyzes which is the game situation. Then the agent calculates its base strategic 
position in the field in that formation, adjusting it according to the ball position and velocity, 
situation and player type strategic information. The result is the best strategic position in the 
field for each player in each situation. Since, at each time, only a few players are in active 
behavior (conducting the ball or trying to recover the ball) most players are close to their 
strategic positionings. SBSP enables the team to move similarly to a real soccer team, 
covering the ball while the team remains distributed along the field. 
 

 
Fig. 17. SBSP – Situation Based Strategic Positioning 

 
4.3. Dynamic Positioning and Role Exchange 
The Dynamic Positioning and Role Exchange (DPRE), and Dynamic Covering (Reis, L.P. & 
Lau, N. 2001), was based on previous work from Peter Stone (Stone, P. 2000) which 
suggested the use of flexible agent roles with protocols for switching among them. The 
concept was extended and players may exchange their positionings and player types in the 
current formation if the utility of that exchange is positive for the team. Positioning 
exchange utilities are calculated using the distances from the player's present positions to 
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their strategic positions and the importance of their positionings in the formation on that 
situation. 
 

 
Fig. 18. DPRE – Dynamic Positioning and Role Exchange 

 
4.5. Intelligent Perception and Communication 
The Communication model of the simulation league is restricted by the available bandwidth 
and uncertainty of message delivery. In 2002 the communication rules have changed: 
bandwidth has been constrained (messages with maximum length of 10 bytes), but 
uncertainty on delivery can now be reduced. Also, a new form of visual communication 
(enabling players to point to regions of the field) has been introduced. We identify four 
potential research areas in the definition of a communication protocol:  

• What to communicate?  
• When to communicate?  
• Who should be heard at each time? 
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• How received messages will affect player's behavior? 
Previous approaches have used message contents, mainly, to share world state knowledge 
between players (Stone, P. 2000), to communicate useful events/opportunities and to 
enhance cooperation (Reis, L.P. & Lau, N. 2001). With the reduction in message size, teams 
must carefully select which information should be conveyed. We have extended our 
ADVCOM principle: "Communicate only when you have something important so say" 
(Reis, L.P. & Lau, N. 2001) with "Communicate only what is important", measuring the 
importance of each piece of information through utility metrics based on the current 
situation and on estimated teammates knowledge. This idea was also been extended with a 
Situation Based Communication framework (Ferreira R.; Reis, L.P. & Lau, N. 2004). In 
RoboCup simulation league, if two or more players talk in the same simulation cycle, the 
simulator delivers only one of the messages to the other players. Teams have dealt with this 
restriction either by assuring that only one player talks in each cycle or by allowing several 
players to talk (Reis, L.P. & Lau, N. 2001). We believe that the first approach is not 
sufficiently flexible and reliable and thus have used the second approach (Reis, L.P. & Lau, 
N. 2001). In our protocol every player estimates the importance of his knowledge to the rest 
of the team through utility measures and only communicates when its communication 
utility his higher than the others or is above a threshold. 
In the simulation league agent's visual perception is obtained through controllable sensors. 
Players may control their visual quality, the sensibility angle and the position of their neck 
relatively to the agent's body. We have developed intelligent perception mechanisms, 
namely, SLM - Strategic Looking Mechanism (Reis, L.P. & Lau, N. 2001). SLM decides the 
direction a player should look, in each cycle, maximizing the predicted world state update 
value from that perception. 

 
5. Game Analysis and Coaching 
 

In RoboCup simulation league, the online coach agent has a global vision of the field 
(without errors) gathered from the soccer server (Chen et al., 2007). The coach agent is able 
to analyze the game and send high-level commands to his team in order to improve the 
team global behavior. 
In previous work (Reis, L.P. & Lau, N., 2002) we have explored different ways of 
implementing the coach agent. Different coaching architectures have been implemented and 
compared (Fig. 19), including the division of the coach agent into one assistant agent 
(capable of gathering game statistical information and opponent modeling information) and 
a principal coach (that uses the information provided by the assistant coach in order to 
decide the best tactic to be used by the team at each moment in the game). Other coaching 
architectures were also explored, including the subdivision of the coach functions by the 
players in order to have a completely distributed coaching behavior. 
We have proposed Coach Unilang – a general language to coach a (robo)soccer team (Reis, 
L.P. & Lau, N., 2002). The development of translators from Coach Unilang to Clang has 
provided us with a very useful tool to test team behaviors and to participate with success in 
the Coach Competition. 
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Fig. 19. Coaching Architectures of COACH UNILANG 
 
6. Agent Analysis and Debugging Tools 
 

Soccer Playing Agents have the following characteristics: autonomy, reactivity, pro-activity 
and social ability. Although agents take their decisions autonomously, the developer should 
be able to motivate the use of “good” actions and deprecate the use of “bad” actions. 
Furthermore the environment of the simulation leagues is uncertain, dynamic, real-time, 
heterogeneous, partially cooperative, and partially adversely. Agents take a large amount of 
decisions in very short time and understanding their decisions at the same time they are 
executing is a very complex task. Having these considerations in mind, we feel that offline 
analysis of agent’s decisions, i.e. examining agent reasoning after execution, without real-
time pressure, is the best way of making in-depth analysis of agent’s reasoning. 
Our debugging methodology is based on the following principles: 

• Offline debugging; 
• Visual debugging; 
• Superimposed real environment and agent physical knowledge; 
• Feature-focused debugging; 
• Information structured in layers of abstraction with different detail levels. 

In the context of the development of FC Portugal agents we have identified the following 
features that should be object of independent selection by the developer during a debugging 
session:  

• Communication; 
• Ball Possession; 
• Ball Recovery; 
• Synchronization; 
• Low-level skills; 
• Opponent Modeling. 
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The selection of each of these features, although independent, is not exclusive. The 
developer can activate one or more of the above listed features at each moment providing 
him with maximum flexibility in the selection of the information he finds relevant. 
During the course of the development of FC Portugal agents, the following development 
tools have been implemented: 

• Visual Debugger used to analyze the reasoning of agents (Reis, L.P. & Lau, N., 2001).  
• Team Designer that enables the graphical definition of soccer strategies;  
• Offline client methodology;  
• WstateMetrics that evaluates the accuracy of world states;  

Evaluation by domain experts using graphical tools is another methodology that has been 
used to fine tune our team. 

 
6.1. Visual Debugger 
The main debugging tool of FC Portugal is called Visual Debugger (Fig. 20). Its 
implementation is based on CMUnited99 layered disclosure tool (Stone, P., Riley, P. & 
Veloso, M., 2000) and the soccerserver logplayer application. CMUnited layered disclosure 
tool included the possibility of synchronous visualization of the game (using soccermonitor) 
and of one of the players reasoning (at several levels of abstraction) saved in action logfiles. 
We have integrated the two applications (logplayer with layered disclosure and 
soccermonitor) in a powerful team debugging tool and added the visual debugging 
capabilities and real and believed world-states superposition. 
 

 
Fig. 20. The Visual Debugger window 
 
Visual information is much more easily handled than text information. Soccermonitor (Chen 
et al., 2007) includes the possibility of drawing points, lines and circles over the field, but 
this functionality is not reported as being used by other teams. This soccermonitor feature 
was exploited, modified and extended. Agents can present their reasoning in graphical way 
using a simple API that includes functions like: 
 
LogDrawLine(level, xy_i, xy_f, color); 
LogDrawCircle(level, xy_center, rad, color); 
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This way the agent knowledge can easily be superimposed (and compared) with real data 
taken from the simulator logfile. This allows the developer to understand why the agent 
decided in a particular way and to focus developer attention on the most relevant features 
that need to be improved. 
The developer can navigate over the pre-recorded game back and forth, examining the 
reasoning of each of the 11 players in the team. The level of detail of the information 
retrieved by the visual debugger may be controlled by the developer. 

 
6.2. Team Designer 
Team Designer application includes a tactics editor, a game statistical analysis tool, an 
offline coach and an online coach. The tactics editor allows the definition of the whole 
strategy to use during a given game: tactics, formations, individual player decision, strategic 
positioning features, etc. may all be changed in a friendly and safe way. Some of the tactic 
parameters are defined by direct manipulation of their graphic view. This is the case for the 
definition of players’ home positions inside a formation and for the definition of new 
situations using the integrated offline coach. 
The creation of a new strategy may use features from previously saved strategies, through 
the selection of which items are interesting to merge (Fig. 21). 

 
Fig. 21. Defining a tactic using Team Designer 
 
The analysis tools gather game statistical information that is shown to the user and sent to 
the online coach. The statistics include ball position in several field matrixes, shoots and 
passes by field areas, ball loss and recovery positions, etc (Reis, L.P. & Lau, N., 2002). 

 
6.3. Offline Client 
In some situations the action log files saved by players are not sufficient to understand what 
really happened in a certain situation. A finer debugging degree can be achieved by 
employing our offline client tool.  
The principle of the offline client is that we can repeat the execution of an agent over exactly 
the same setting of a previous game without the intervention of the server and without real-
time constraints. Then we can use a normal debugger (like gdb) to examine the contents of 
all variables, set breakpoints, etc. at the execution situations we want to analyze. 
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A special log file, that records every interaction with the server and the occurrence of timer 
signals, must be generated to use the offline client. If an agent has probabilistic behavior 
some more information might be needed. The offline execution of an agent is achieved 
through a stub routine that reads the special log file. Player’s behavior is maintained, as it is 
not affected by the substitution of this stub routine. The execution of a normal debugger 
over this offline client permits complete control of the execution flow of the agent reasoning. 
 
7. Results and Discussion 
 
The experiences performed to validate the approach used eight of the historical best known 
2D soccer simulation teams. FC Portugal base team, using a single, well-tuned tactic, was 
tested against these teams using different coordination methodologies.  
The first experiment was performed by performing 10 soccer 2D simulated games each of 
the 8 opponents selected, using five distinct positioning systems. A total of 10*8*5=400 
games were performed for this experiment. The positioning systems used were: 

• PACTS (Simple Active Positioning) – No strategic positioning. Agents always assume 
active positioning (ball possession or ball recovery active behavior). 

• PACTF (Active Positioning with Static Formation) – Similar to PACTS but all agents 
posses a default static formation. If no active action is sufficiently good, agents return to 
their base positions. 

• SPAR (Positioning by Attractions and Repulsions) – Positioning based on Stone et al. 
algorithm (Stone et al., 2000). Players are attracted by the ball, repelled by teammates 
and attracted by opponents if they have the ball or repelled otherwise. 

• SP (Simple Strategic Positioning) – Using only one situation and one dynamic formation. 
• SBSP (Situation Based Strategic Positioning) - Using situations for attack, defense, goal 

kicks, corners and throw-ins. 
The analysis was made by automatically calculating, using the tool previously described, the 
goals scored and conceded in each game, the number of games won, draw or loosed by the 
team, the number of shoots made and conceded and global ball possession statistics in three 
field regions (attack, middle field and defense). The results achieved are shown in Table 1.  
Analysing the results achieved it is easy to conclude that the best results are achieved using 
SBSP positioning. Another conclusion is that a good positioning system like SBSP enables 
the team to achieve better results against the best teams. The difference between the SP and 
SBSP positioning systems is clearly visible mainly against the best opponents (TSI and KB) 
while has low or almost no influence against the weakest opponents. 
The second experiment was performed in order to evaluate the usefulness of the DPRE – 
Dynamic Positioning and Role Exchange mechanism. Ten games were performed against 
each of the eight selected opponents with and without using DPRE. The results achieved in 
the 10*8*2= 160 games conducted, are summarized in Table 2.  
By analysing the results achieved, the main conclusion is that DPRE has greater impact 
against the best opponents. Although the number of shoots of the opponents does not 
increase significantly, the number of conceded goals increases significantly by not using 
DPRE. By analysing some of the real games in more detail it may be concluded that in some 
situations by not executing appropriate positioning exchanges in defense “holes” appear in 
the team defense letting the opponents score easily. 
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Table 1. Results Achieved Using Different Positioning Systems 
 

 
Table 2. Results Achieved with and without using DPRE 

 
8. Conclusions 
 

FC Portugal research on coordination methodologies enabled the definition a model for the 
strategy of team for a particular soccer game. This model is then implemented over SBSP 
and DPRE, enabling the team to perform in a very efficient way, as shown by our controlled 
experiments and competition results, and also in a real-soccer like manner. The 
development tools that enabled the tuning of the cooperative team behaviour and 
individual decision and individual skills mechanisms have been presented. These tools are 
based on general principles that can be of applied to the development of several types of 
agent in different domains. 
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FC Portugal achieved more than 15 awards in international RoboCup competitions. These 
awards included wining the World championships of the 2D simulation league (in 2000), 
Coach Competition (in 2002) and 3D simulation league (in 2006) and several European 
championships (including RoboCup Rescue). Its participation in the very recent World 
Championship of the Physical Visualization league resulted in the 2nd place (in 2007). The 
collaboration of FC Portugal members with CAMBADA and 5DPO Middle-Size teams 
resulted in a technology transfer from the simulation league to the real robots leagues, as, 
for example, the coordination model of the CAMBADA team (showed in the RoboCup 2007 
free challenge) directly based in SBSP. 
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1. Introduction 
 

Robot soccer pits teams of fast-moving robots in a dynamic environment (Sng et al., 2002). 
Robot soccer fosters AI and intelligent robotics research by providing a standard problem 
where a wide range of technologies can be integrated and examined (Asada & Kitano, 1999). 
Today two international robot soccer federations, RoboCup (RoboCup, 2007) and FIRA 
(FIRA, 2007), organize competitions in an eclectic range of categories. Those competitions 
are accompanied with technical conferences. The first international robot soccer tournament 
MiroSot'96 was held at Korea Advanced Institute of Science and Technology (KAIST), in 
November, 1996. At the time of writing, we can count more than ten different robot soccer 
leagues from RoboCup and FIRA. 
Taxonomy of the robot soccer leagues could start with the vision system used.  The global 
vision group contains all the leagues that allow a global vision system (camera that gives an 
eye-bird view of the playing field). The image processing is done on a PC that controls the 
robots via a radio link. Whereas the local vision group contains all the leagues that require 
the vision processing to be done on the robots themselves. In this second group, the robots 
achieve a higher level of autonomy.  Only wheeled robots are used in the global vision 
group. Whereas, the local vision group can be subdivided into wheeled robots and legged 
robots. Finally there are simulation leagues that provide a test bed for multi-agent research 
for those who do not have access to real robots.  
Robot soccer not only stimulates robotic research, but also provides a platform for 
computational intelligence education that allows the development of engaging 
undergraduate level assignments.  However, there are several limiting factors for the 
widespread use of robot soccer as a research platform or a teaching tool.  Most robot soccer 
leagues like the popular RoboCup Small Size and FIRA Mirosot leagues require a large 
playing field and a team of several postgraduate students to build the hardware and 
develop the complex software.  The least resource-demanding robot soccer league is the 
simulation league.  Unfortunately, by its very nature, this league does not provide the 
invaluable experience of real robots.  With the constraint of using real robots, the least 
resource-demanding robot soccer league is arguably the FIRA KheperaSot league.  This 
league represents Desktop Robot Soccer, in the sense that the playing field fits on a desktop or 
a computer laboratory bench. 
The regulations of the KheperaSot league impose size restrictions on the robots.  The size 
limitation lowers the entry barrier for participants in relation to other robot soccer 
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tournaments, making it more accessible to individuals and small teams with modest 
funding and infrastructure support. The size limitation also poses challenge for hardware 
technology.  It pushes the limits of how much processing and sensing can be put into the 
small package at a reasonable cost. However the size is not as small as to requiring 
miniaturisation technology beyond the reach of standard electronics and construction 
techniques. The KheperaSot league was the first fully autonomous robot soccer league of 
FIRA.  
Section 2 provides an overview of KheperaSot league.  Section 3 describes the winner of the 
2003, 2004 and 2005 KheperaSot World Cups.  Section 4 discusses how robot soccer can be 
used in the undergraduate curriculum.   Section 5 concludes the paper. 

 
2. KheperaSot League 
 

The KheperaSot league has its origin in the 1997 Danish Robot Soccer Championship 
organised by Henrik Hautop Lund (Lund, 1999).  The Khepera robot (Fig. 1) is a two-
wheeled cylindrical robot with a diameter of 70 mm, equipped with a ring of 8 IR proximity 
sensors, wheel encoders and a linear camera turret (Fig. 2) that produces a horizontal linear 
image of 64 pixels with 256 grey levels. These 64 pixels allow the detection of the ball (a 
yellow tennis ball), the goal (large black zone), and the opponent robot (wearing a black and 
white stripped shirt). 
The main difficulties of the KheperaSot league reside in the limited computational resources 
(512K of memory) and the low resolution of the linear camera. 
 

 
Fig. 1.  Khepera II robot 
 
The KheperaSot playing field is 105 centimetres long and 68 centimetres wide (see Figure 3) 
and is surrounded by grey walls. The goals are openings in opposite walls and are painted 
black inside. Both goals look identical. A match consists of five rounds of at most four 
minutes each.  A round ends when a goal is scored or when the ball does not move for thirty 
seconds.  The team that scores the largest number of goals is declared the winner. At the 
beginning of a round the ball is placed at the centre of the field. The players are positioned 
differently at the start of each round. 
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Fig. 2.  Linear camera turret 
 
The referee points out 180-degree rotation symmetric starting positions.  Each player starts 
facing its opponent's goal line. A starting position in the opponent's half is possible. The 
KheperaSot environment is shown in Figure 4. 
 

 
Fig. 3.  KheperaSot's floor plan 
 
Unlike leagues allowing a global vision system, the KheperaSot robot has to find it own 
position in a completely symmetric environment. The only information that the robot can 
exploit is that it is facing the opponent's goal line at the start of each round. But if the robot 
get disoriented in the course of a round, it is impossible to determine which goal is the 
opponent goal from visual clues.  Apart from the intrinsic limitations of the odometers, 
pushing by the opponent can create further odometric errors.  It was not uncommon in the 
first years of the competition to see confused robots score own goals. 
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The cylinder shape of the robot and the grooves on the tennis ball makes dribbling the ball a 
challenging task. During a game, the ball might be pushed into a corner. It is not a trivial 
task to unstuck the ball from the corner. 

 

 
Fig. 4.  KheperaSot's arena 
 
One of the most attractive features of the KheperaSot league is its relatively low cost.  Robot 
soccer leagues which require many robots and a large field such as RoboCup – Small Size 
League, have budgets of at least 30,000 US$ for the hardware (Peel, 2003). KheperaSot 
requires a much smaller budget.  Moreover the playing field can fit on a desktop.  A single 
person can look after a KheperaSot system, whereas the other leagues have typically teams 
of half-a-dozen people. 

 
3. Description of Kheperoo 
 

QUT's entry in the KheperaSot league, called Kheperoo, has won three KheperaSot World 
Cups in a row (2003, 2004 and 2005) before retiring. In this section, we give an overview of 
the system and describe the strategy used. 
The software architecture used is a finite state machine with multiple threads running 
concurrently.  Kheperoo's top priority in the game is to get to the ball first and move the ball 
away from the opponent.  If Kheperoo manages to move ball away from the opponent’s 
vision field, the opponent will need some precious time to locate the ball again.  During that 
time, our robot can take advantage of the opponent confusion and push the ball towards the 
opponent line. Kheperoo deliberately does not try to head for the goal directly, but simply 
the opponent line. The rationale behind this decision is that the opponent is more likely to 
be in between its goal and the ball because of the symmetry of the starting condition.   
 
After racing to the ball, Kheperoo dribbles the ball towards  the opponent’s goal line based 
on the estimated orientation provided by the wheel-encoders (they play the role of a virtual 
compass for a short period of time).  
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If Kheperoo is lucky, the ball may end up directly in the opponent’s goal. Most of the time, 
the ball will get stuck against the opponent’s wall. This situation triggers a complex 
behaviour to push the ball into the opponent goal. An overview of Kheperoo finite state 
machine is shown in Figure 5. 
 

 
Fig.  5. The finite state machine of Kheperoo 
 
Apart from the main control thread, a watchdog thread is used to monitor the robot's 
wheels' status. The robot has to be able to detect and stop when it runs against a wall to 
avoid the wheel slippage problem and prevent any damage to the robot itself. The actual 
wheel speeds and desired wheel speeds are compared to determine whether a static obstacle 
is in the way. 
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To alleviate the problem of accumulative odometry error, Kheperoo will reset its pose when 
it knows the actual direction base on some specific situations. When the robot moves 
steadily along the side wall, its direction must be either facing opponent or facing own goal 
lines, this information and its current pose based on odometry can be used to determine its 
actual direction. The robot can also calibrate its direction using proximity sensor when it 
stops in front of the opponent wall. 
Complex behaviours such as unstuck the ball from the corner also use the watchdog to 
complete their tasks. To unstuck the ball, first, the robot will position itself carefully with 
respect to the ball, then push the ball straight to the wall until some resistance is felt. After 
that, the robot will spin on itself to unstuck the ball. Hopefully, the ball will roll out from the 
corner. 
For dribbling the ball, we use the fact that it is more effective to control the ball direction 
when the ball is rolling because the ball already has some momentum. One method to make 
the ball roll straight away before the robot starts dribbling is to give a strong kick to the ball. 
After the kick, the ball usually rolls in a straight line and the robot can continue to forward 
dribble the ball. In some case, the ball does not roll in a straight direction and the robot 
needs to circle around the ball to recover its dribbling direction. But at least after the kick, 
the ball has moved closer to the opponent side. 
We attribute the success of Kheperoo in competition to its speed, robustness to sensor noise 
and ability to handle deadlock situations. 

 
4. Experiences with desktop robot soccer as a teaching tool 
 

The development of practical sessions and assignments for undergraduate teaching 
typically requires a compromise between what is achievable by an average student and 
what engages the interest of a more advanced students in the class. Selecting a suitable 
compromise is particularly problematic for undergraduate computational intelligence (CI) 
teaching units which typically attempt to cover a very broad range of AI and machine 
learning techniques.  At our university, the curriculum of the CI unit includes topics like 
fuzzy logic, neural networks, reinforcement learning and genetic algorithms.  We believe 
that the undergraduate students should experience the non-deterministic characteristics of a 
real robot environment (as opposed to a simulated one).  Students should focus on the 
interaction of a single robot with its environment before dealing with scenarios that require 
a multi-agent system.  In other words, students should familiarize themselves with sensory 
noise, motor characteristics and uncertainty before trying to coordinate complex robot 
behaviours for a team play in a multi-agent framework.   
A challenge with teaching abstract concepts is finding illustrative examples for the ideas 
presented.  That is, finding real problems to be solved with the abstract methods provided 
in the lectures. In the prevailing teaching paradigm, the lecturer instructs the student on 
how to solve a problem step by step.  The lecturer also tells the student what problems are 
solvable with each problem-solving method.  The drawback with this approach is that the 
lecturer performs the greatest part of the cognitive processing.  This is why we have 
followed a problem based approach.  The goal of the assignment is formulated and given to 
the students who should find suitable solutions to the problem by themselves.  It is up to the 
students to decide which of the CI techniques covered in the lectures are relevant to their 
problem.  In this context of problem based teaching, the lecturer and the tutors become 
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coaches for groups of students.  In problem based learning, it is very important to make 
goals, assignments and expectations on the students as clear and exhaustive as possible 
(Ambury, 1992). If the requirements are unclear the students might lose interest in the 
course or do something totally different than what was expected by the teachers. 
Below is the weekly task schedule of the laboratory sessions.  The first sessions are relatively 
structured and served as an introduction to mobile robotics to most of the students 
(Keeratipranon et al., 2003). 
• Session one; get an idea on how we can communicate with the robot 

a. Install KTProject (software to compile and download executables to the 
Khepera robot) 

b. Get familiar with Tera Term Pro (terminal emulator for serial communication 
with the Khepera robot) 

c. Communicate with the robot using Matlab 
d. Modify the obstacle avoidance, Braitenberg vehicle project such that the robot 

avoid the black area (robot’s IR proximity sensor cannot detect black object as 
black colour does not reflect well the IR signal back to the robot) using 
KTProject 

e. Implement a wall following behaviour. 
• Session two; provide students with a template example  

a. Reverse engineer the template; student will know how to 
1. Read and use proximity sensor values 
2. Control a robot using the keyboard and serial communication 
3. Create a multi threaded program (multi tasking)  
4. Detect that the robot  is stuck 
5. Estimate the direction of the robot base on the left and right wheel 

encoders. 
b. Create a new project using a given template. 
c. Interact with the robot via keyboard control 
d. Modify the wall following function so that it can follow a T-shape object. 
e. Brainstorm about what basic behaviours are required in order to create a robot 

soccer player. 
• Session three; implement some basic behaviours 

a. Continue the exploratory work on proximity sensors.  
b. Finish the obstacle avoidance and wall following behaviours.  
c. Implement a ball following behaviour. In this behaviour, the robot will follow 

the moving ball using only proximity sensors while the ball is in front of the 
robot at a short distance and moved by a person. 

d. Implement a circle around the ball behaviour. In this behaviour, the robot will 
move around a static ball. 

• Session four; implement more complex behaviours 
a. History shows that many teams will not have completed the wall following, ball 

following, or circle around the ball behaviours. Therefore, this session gives more 
time for the slower teams to catch-up. 

b. Implement a dribble the ball behaviour. In this behaviour, the robot will push 
the ball forward in a straight direction.  The pushing ball behaviour is one of the 
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milestones for the assignment. Teams that cannot demonstrate this behaviour 
on the real robot by the deadline suffer a penalty in their final marks. 

• Session five; milestone week and use of a new sensor: the linear camera 
a. At this stage of the semester, every team should have mastered the proximity 

sensor well enough to demonstrate a dribbling behaviour. 
b. Get familiar with the linear camera.  
c. Design a look for the ball and a go to ball behaviours.  

• Session six; vision sensor 
a. Implementation of a look for the ball behaviour. The aim of this behaviour is to 

locate the direction of the ball. A tennis ball can be differentiated from other 
objects as it has a bright colour compared to the wall or the goal. 

b. Implementation of a go to ball behaviours. After locating the ball, the robot has 
to be able to move to the ball. The desired property of this behaviour is speed 
and reliability.  

• Remaining three sessions; free style development 
a. The development of all other behaviours is left to the initiative of the students.  

They have to decide which of the techniques presented in the lecture they will 
use (if any).  The tutors employ at this stage a problem based learning 
approach to guide the student groups. 

• Final session; friendly competition 
a. Each team has the opportunity to showcase the result of their effort in the end 

of the semester KheperaSot competition. The assignment marks do not depend 
directly on the competition results, but observations made during the games 
are taken into account for some marking criteria. 

 
Outside the laboratory sessions, the students have access to a KiKS, Khepera simulator 
(Nilsson, 2001). 

 
5. Discussion 
 

As discussed above the KheperaSot in its current form poses challenges in motion control, 
navigation and self-localisation, as well as in higher level autonomous behaviour design and 
implementation.  
The reason why we support and encourage the KheperaSot league is the complete 
autonomy of the robot combined with its small size. The autonomy enhances the 
educational value of the tournament by putting it on par with prospective autonomous 
mobile robot applications that have to rely entirely on their own sensors to acquire 
information of the world around them. The autonomous nature of the KheperaSot league 
also provides a natural evolutionary pathway for the game, allowing it to maintain 
challenges as the technology and the experience of the players advance.  
The size limitation lowers the entry barrier for participants in relation to other robot soccer 
tournaments, making it more accessible to individuals and small teams with modest 
funding and infrastructure support. The size limitation also poses challenge for hardware 
technology. It pushes the limits of how much processing and sensing can be put into a small 
package at a reasonable cost. However the size is not as small as to require miniaturisation 
technology beyond the reach of standard electronics and construction techniques. 
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We have successfully integrated Khepera robot soccer into our computational intelligence 
course. The laboratory sessions are organized in a standard computer laboratory equipped 
with rows of computer benches.  At the beginning of a session, we bring in the soccer fields. 
Students have demonstrated that they gain understanding of the many issues with 
embedded systems programming such as the real time aspects; interrupt driven 
programming, and completely different program debugging resources. 
Student’s programming skills have been expanded from the experience with real robots. 
Students can have a visual feedback through the displayed behaviour of the robot. 
Unexpected situations have happened such as a failure to track the ball while the robot is 
moving fast to the ball. This failure is not necessarily due to the low frame rate of the camera 
but can be due to the backward tilt of the robot with the acceleration (the ball goes below the 
horizon).  These types of real-world problems are not experienced with a simulator. 
The most obvious extension of the current KheperaSot is the replacement of the current 1D 
vision by a 2D colour camera. Digital image sensors of the type used in mobile phones are 
cheap and widely available, some of them include a microprocessor for low level image 
processing. Two solutions are already available for the Khepera: the adaptation of the 
CMUcam by K-team (K-team, 2007) and the 2D camera developed by the Paderborn team 
(Chinapirom et al., 2004). Both allow vision image processing on the robot. Upgrading the 
vision system will provide the enriched realism of the game without a large increase in cost. 
With a 2D vision system the KheperaSot league will have all the features of the humanoid 
and AIBO leagues, which are all autonomous, with the added complication of legged 
locomotion. For some time to come, wheeled locomotion will allow much faster games than 
the legged leagues resulting in more interesting games. Most importantly, 2D vision will 
facilitate multi-player teams and thereby largely expanding the opportunities for 
collaborative strategies. An expansion to 3 player teams seems feasible with a moderate 
enlargement of the playing field and without fully loosing the desktop characteristic of the 
KheperaSot league.  One may argue that increasing the number of players per team also 
rises the cost. However, because of the autonomy of the robot, teams could be formed by 
students of different institutions each providing their own robots. Our ultimate vision 
would be to bring the cost to a level where individual enthusiast could buy their own pocket 
sized soccer robot for participating in a school or neighbourhood team.  
Up to now the league uses Khepera robots, hence its name; however the rules do not 
exclude other manufacturers. As more powerful small size and low power single board 
computer (SBC) come on the market at low prices, such as the Gumstix (Gumstix, 2007) 
boards.  We expect alternative robots to be built for the game. 
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1. Introduction 
 

The problem of creating a four-legged robotics football team is a very difficult and 
challenging problem. Regardless of the hardware design and manufacture, there are several 
fields involved, like low level locomotion, perception, location, behavior development, 
communications, etc., which should be addressed for developing a fully functional team. In 
practical terms, this means that the software project to develop a robotics soccer team can be 
very large, which implies that verification, debugging and monitoring tools are needed and 
play a very important role in software development time (which uses to be a very expensive 
resource). 
This work is focused on the architecture and behavioral programming model we use to 
develop a team in the Sony Four-Legged League, which is one of the official leagues of the 
RoboCup. All the code, examples, and tools we present in this work have been developed 
for the TeamChaos team1, which has participated in the 2004, 2005 and 2006 editions of the 
RoboCup and several international competitions, and is a follow up of the former 
TeamSweden team, which has participated in the previous editions (1999 to 2003). In this 
league, all the teams must use the same physical platform, in particular the commercial four-
legged robot AIBO developed by Sony. The most recent model, AIBO ERS-7, integrates one 
CPU (64-bits RISC Processor 576MHz), audio interfaces (speaker and stereo microphones), 
switch sensors, two infrared distance sensors and a CCD camera (350K pixels) as 
exteroceptive sensors, accelerometers as internal sensors and wireless LAN for 
communications.  
In the 2007 RoboCup Edition, the teams of four-legged league consist on four robots, which 
have to operate fully autonomously, i.e., there is not external control, neither by humans nor 
by computers, thus all the processing must be done on board and for practical reasons it has 
to be performed in real time, which prevents us from using time consuming algorithms. 
Because of the fact that the hardware platform is standard, we can consider this as a 
software only league. The field is also standard; there are many color coded objects in the 

                                                 
1 http://www.teamchaos.es 
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field to make easier the sensing, like ball, goals and beacons, and each team wears a colored 
uniform. However, in a real soccer field there are not characteristic colored cues, therefore, 
rules of RoboCup are gradually changed year after year in order to push progress towards 
the final goal, “by the year 2050, develop a team of fully autonomous humanoid robots that can win 
against the human world soccer champion team”. The official platform and field of this league 
for the RoboCup 2007 Edition is shown in Fig. 1. 
 

 
Fig. 1. Official platform (left) and field (right) of four-legged league in 2007 RoboCup 

Edition 
 
This league proposes a very demanding scenario, with high uncertainty in perceptions and 
limited processing capabilities. In addition, having a competition implies that at certain 
periods the software development and tuning presents high activity peaks. These facts 
condition the way robots have to be programmed. Our approach to this problem is twofold: 
we define a software architecture into which all the different modules plug, and we use a 
programming language that can drastically reduce development time for certain modules, 
in particular all behavior related modules. 
We follow the ThinkingCap architecture (Saffiotti et al., 1995), a two-layer architecture 
which clearly reflects a cognitive separation of modules. From the conceptual point of view, 
modules are arranged by the nature of their processing tasks. From a software point of view, 
the interfaces are clear and well defined, so that replacing or improving modules is not a 
demanding task. Our current instance of the architecture makes extensive use of the 
behavioral paradigm, and for implementing those behaviors we have opted for the LUA 
language (Ierusalimschy et al., 1996). LUA is a simple yet powerful embedded language 
with a quite portable interpreter. We have integrated LUA in the architecture and have 
developed a set of tools for the on line edition, monitoring and debugging of control 
programs. This allows us to develop and modify behaviors while testing robots on the 
playing field at runtime. Moreover, the behaviors can be tested and verified before the 
execution on the real robot using those software tools, which dramatically reduces the 
severity and duration of downtime during development time. In order to simplify and reuse 
behaviors, we organize them in two types depending on the complexity and functionality: 
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low-level behaviors, which perform specific actions (go to ball, look for ball, kick ball, etc), 
mostly reactive, and high-level behaviors, which perform high level tasks (defend, attack, 
pass, penalty shootout, etc), mostly deliberative. These usually imply the use of some form 
of state, and we have opted for the Hierarchical Finite State Machine (HFSM) paradigm 
(Hugel et al, 2005) to design them. We have developed a visual editor for HFSMs (based on 
Hugel’s code), which automatically generates LUA code directly executable by our 
architecture. 
This chapter is organized as follows. Section 2 describes the control architecture. Section 3 
describes the LUA language and how it has been incorporated into the architecture. Section 
4 and 5 describe low-level and high-level behaviors respectively. Section 6 presents some 
conclusions and future work. 

 
2. Control Architecture 
 

2.1 The ThinkingCap Model 
The architecture used by each robot is an instance of the ThinkingCap architecture (Saffiotti 
et al., 1995). Fig. 2 shows the main elements of this layered architecture; the lower layer 
provides the interface to the actual hardware, the middle layer maintains a consistent 
representation of the environment around the robot and provides the reactive robot control, 
the higher layer maintains the representation of the objects in a world frame and performs 
decisions considering the global information, and the communication layer provides the 
interface to share information with the other members of the team.  
 

 
Fig. 2. Instance of the Thinking Cap architecture for the four-legged league 
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The lower layer provides an abstract interface to the sensori-motor functionalities of the 
robot (Commander Module – CM). This module accepts abstract commands from the upper 
layer, and implements them in terms of actual motion of the robot effectors. In particular, it 
receives set-points for the desired linear, lateral and angular velocity, and translates them to 
an appropriate walking style by controlling the individual leg joints. 
The middle layer maintains a consistent representation of the space around the robot 
(Perceptual Anchoring Module - PAM), and implements a set of robust tactical behaviors 
(Hierarchical Behavior Module – HBM). The PAM acts as a short-term memory of the 
location of the objects around the robot: at every moment, this module contains an estimate 
of the position of these objects based on a combination of current and past observations with 
self-motion information. The PAM module is also in charge of camera control, by selecting 
the fixation point according to the current perceptual needs (Saffiotti & LeBlanc, 2000). The 
HBM implements a set of navigation and ball control behaviors. 
The higher layer maintains a global representation of the field (Global Map - GM) and 
makes real-time strategic decisions based on the current game state, situation assessment 
and role selection (Hierarchical Finite State Machine - HFSM). Self-localization in the GM is 
based on fuzzy logic (Buschka et al., 2000), (Herrero-Pérez et al., 2004). The HFSM 
implements a behavior selection scheme based on finite state machines (Hugel et al, 2005). 
In addition, global ball sharing is also based on fuzzy logic (Cánovas et al, 2004). 
Radio communication is used to exchange position and coordination information with other 
robots (Team Communication Module - TCM) using customs protocols over UDP/IP. 
Intercommunication between the different modules is implemented by data structures 
interchange. The two more important data structures are those representing the world state, 
either in a local or global frame. The information stored in these structures can be related to 
either static objects (nets, landmarks) or dynamic objects (ball, teammates, opponents). The 
local state represents the objects that have been recently perceived by the robot camera in a 
robot centric frame. The data structure that represents the local state is called Local Perceptual 
Space or LPS (Saffiotti et al., 1995), which consists on an array of Local Perception Objects or 
LPO. Each one of these LPOs includes polar positioning information (ρ and θ) and an 
anchoring value, which somehow represents the reliability of that precise perception and 
decreases over time (Saffiotti & LeBlanc, 2000). At each control cycle, all the objects that have 
not been re-perceived are rotated and translated according to the odometry estimation. The 
global state represents all the objects that can be in the environment in a world frame, in our 
case the field viewed from the goalkeeper position. The data structure that represents the 
global state is called Global State or GS, whose contents is the result of fusing information 
from different sources (time aggregation of own camera perceptions and/or other robots 
global states). The most important information for soccer game play is that related to self-
positioning (implemented by filtering the different camera perceptions and odometry 
estimates) and ball positioning (implemented by filtering the local position of the ball from 
the different team robots and their absolute position estimations). The first one is important 
for zonal behaviors (i.e. keeping the goalkeeper in its own area), while the second is 
important when the robot does not sees the ball or it is too far to get good distance 
estimation. 
From the control point of view, the behaviors use the information contained in the LPS 
(typically low-level behaviors of the HBM) and the GS (typically high-level behaviors of the 
HFSM) to perform reactive or strategic decisions, which finally translate into movement 
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commands (forward, lateral and angular velocities or kicking actions) or perceptual 
commands (object necessities or needs). While the former are more or less standard in any 
soccer-playing robot (and certainly in any four legged robot), the later are specific to this 
instance of the ThinkingCap architecture (Saffiotti & LeBlanc, 2000). The needs are stored in 
an array, and they represent the priority to actively look for an object in the environment. 
The PAM uses this array to determine at each cycle which object it should look for, typically 
the one with the highest priority. In case that two or more objects share the highest priority, 
the one selected is the one less recently seen. In any case, when looking for an object, if any 
other is perceived it is incorporated into the LPS. In addition to this, behaviors can also 
share information with teammates (ball booking, role information, etc). 

 
2.2 Integration with OPEN-R 
The API for programming and debugging code for the AIBO platform, Sony OPEN-R SDK, 
is merely an interface to develop software for the Aperios OS, which is the real-time 
operating system used by the entertainment robots of the company. This API discloses the 
specifications of the interface between the system layer and the application layer. The software 
developed using these specifications is object-oriented and modular, where each module is 
an OPEN-R object. In practice, OPEN-R objects are threads running concurrently with many 
inter-threads connections which invoke methods of the OPEN-R objects, i.e., the way to 
manage the concurrency is event-oriented programming. The software to control the robots 
consists on multiple objects with various functionalities running concurrently and 
communicating each other via inter-object communication. The programming language 
supported by this API is C++, including its functionalities.  
The Thinking Cap architecture has been programmed using OPEN-R. The natural way to 
implement the different modules of the architecture is by using one OPEN-R object for each 
module of the architecture, being the connections between objects implemented by the 
event-oriented inter-object communication of Sony OPEN-R SDK. Moreover, this 
implementation provides effective modularization as well as clean interfaces, making it easy 
to develop different parts of it. Furthermore, it allows the execution of each module in a 
computer, using RP-OPEN-R (Remote Processing OPEN-R) which is a tool for compiling 
and executing OPEN-R objects on x86-based CPUs or AIBO robots. For instance, the low 
level modules can be executed on-board and the high level modules can be executed off-
board, where some debugging tools are available. However, due to the real-time constraints, 
this distributed implementation generates serious synchronization problems, which cause 
delays in decisions and the robots cannot react fast enough to dynamic changes in the 
environment. 
Because of the reasons above mentioned, we have favored two particular implementations 
of the Thinking Cap architecture using OPEN-R objects, which we call distributed and 
monolithic respectively. The distributed version is composed of three OPEN-R objects: low 
level control (ORLRobot), high level control (ORHRobot) and communications (ORTcm). 
The low level object contains the functionalities of the robot CM and the PAM module in 
charge of the head or camera, which allows executing this module independently for 
debugging. The high level object contains all the behavioral part of the system, the HBM and 
the HFSM, and the GM, the global representation of the field, which allows executing this 
module off-board receiving or simulating the data from the low level object. The 
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communications object implements an interface to communicate the robots using customs 
protocols over UDP/IP. The trade-off between synchronization problems and modularity 
for debugging is met using this distributed version of only three OPEN-R objects, instead of 
one object for each module. The monolithic version has two OPEN-R objects only: robot 
control (ORRobot) and communications (ORTcm) objects. The robot control object contains 
all the functionalities of the robot included in the ORLRobot and ORHRobot modules 
described above, while the communications object is exactly the same. 
In order to maintain both implementations, the different software modules are programmed 
using standard C++ code, and at compilation time it is decided whether it will be a 
distributed or a monolithic version. Fig. 3 shows the two possible implementations of the 
architecture at compilation time, each thread or OPEN-R object contains many software 
modules of the Thinking Cap architecture. As mentioned above, the distributed 
implementation allows running modules independently, which facilitates drastically the 
debugging, and the monolithic implementation avoids the synchronization problems of the 
inter-object communications of OPEN-R objects, mainly due to concurrency issues. 
 

 
Fig. 3. Implementations of the architecture: distributed (left) or monolithic (right) 

 
3. The LUA Interpreter 
 
3.1 The LUA-based Development Cycle 
Because the AIBO exhibits a closed and restricted programming system, the only way to 
incorporate new software to the robot is by way of OPEN-R objects coded in C++. The 
typical on robot development cycle is as follows: a C++ program is edited and compiled in a 
desktop computer using a cross compiler for the AIBO CPU. The generated binaries are then 
written in a memory stick (usually attached to the computer using an USB card reader). The 
memory stick is then inserted into the robot. Finally the robot is switched on and the 
program is verified or validated. There are alternatives to this process, some of them 



Embedded Behavioral Control of Four-legged Robots 

 

209 

involving using FTP to send the new binaries to the robot, but it is always needed to reboot 
or switch on the robot, which usually takes a couple of minutes). The typical off robot 
development cycle is much simpler, because the C++ programs can be compiled to the 
desktop computer CPU and then executed there. Unfortunately, this procedure can only be 
used to check for the completeness of software modules, but not for the verification and 
validation of actual robot execution (despite the use of a good simulator, which are not 
freely available). For these situations the real robot is needed, and the debugging is quite 
tedious. In particular, this is more exacerbated during competitions, in which during a short 
time, a lot of behaviors and their parameters have to be modified and checked (and even 
created from scratch). 
In this situation, it is close to be mandatory the use of a series of tools that can boost 
development and debugging time on robot. Therefore, many teams working with the AIBO 
platform are using different high-level languages in their behaviors designs. For example, 
some teams use a reduced version of Perl (Upenn team, from University of Pennsylvania) or 
Python (UNSW team, from University of New South of Wales) interpreters to implement 
their high-level behaviors and for rapid development using scripts, which are compiled into 
intermediate opcodes for efficient performance. Other teams have developed specifics 
languages to engineering the behaviors of multi-autonomous agents in complex and 
dynamic environments, like the Extensible Agent Behavior Specification Language (XABSL) 
(Loetzsch et al., 2006). All of these approaches have their pros and cons. XABSL is a XML 
based language, which without the proper editing tool is very difficult to develop. Current 
XABSL tools only work with GermanTeam2 architecture and are very specific for that 
system. On the other hand, Perl and Python are general use languages, but because of the 
OPEN-R and hardware constraints, only a reduced interpreter can be used. Perl code 
readability and maintenance is difficult, and learning curve is quite high. Python is a much 
cleaner language, but its features (base libraries) are far more complex than what is needed 
for developing behaviors. In addition Python interpreter footprint is large compared to Perl 
and other options. For these reasons, we have adopted LUA3 as the programming language 
of the behaviors of our architecture. LUA (Ierusalimschy et al., 1996) is a free and open-
source multi-paradigm programming language, extremely compact and primarily used as a 
scripting language or an extension to another language, mainly C/C++. It is primarily 
considered an extension language although it can be categorized as extensible, interpretive, 
iterative, logic-based, multi-paradigm, object-oriented, reflective, or as a scripting language. 
The main characteristic is that it utilizes meta-mechanisms instead of implementing various 
features directly. This means that the core of the language is fairly restrictive because it is 
embedded, but it can be extended to include other desired features. Because the language 
does not include these extensions by default, it avoids the overhead for unused functions, 
streamlining the code to make it optimal for embedding within another program. 
Nowadays, this language is primarily used in video games because of its versatility. 
In order to enable the LUA interpreter to interact with the sensory and motor routines 
implemented in the OPEN-R modules, the interpreter was extended so that it is able to call 
C functions exported by the modules, namely a C extension module for LUA. Basically, this 

                                                 
2 http://www.germanteam.de 
3 http://www.lua.org 
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extension module is an interface to access data variables in the OPEN-R routines and 
activate functions that set sequence of motions, behaviors, team messages, etc. The data 
variables are the structures defined in the control architecture of the robotic team, which is 
depicted in Fig. 2. Both the HFSM and the HBM are implemented using LUA scripts with 
this interface, being the difference the input/output data variables and the activation 
functions. In the HFSM, the data variables are used to coordinate and make decisions 
considering the team, the global state of the game and the messages of the teammates, and 
the decision is the activation of a low level behavior in the HBM. In the HBM, the behaviors 
only depend on the local state around the robot, being the actions the activation of 
perceptual needs and locomotion commands, including kicks. 
With the use of LUA, the on robot development cycle is as follows: a LUA source file is 
edited in the desktop computer, and then it is sent to the running robot (the development 
tools make some validation and verification checks, and the file is only sent if it contains no 
errors). From this moment on, successive calls to the edited script will use the new version. 
This is clearly a much nicer and helpful approach than the C++ one. In addition, although 
syntax check is performed, the new code can have potential errors. Because of the lack of 
LUA pointers, in any case, the new code cannot crash or hang the AIBO CPU, which is a 
quite common situation while debugging C++ code. In order to simplify code management, 
each behavior (be it low-level or high-level) is coded in a single LUA source code file 

 
3.2 Integration of the LUA Interpreter 
Because of LUA runs by interpreting bytecodes for a register-based virtual machine, we 
have performed different experiments to evaluate its computational cost because this is a 
critical point in real-time applications, like robotics soccer is. While interpreting LUA 
bytecodes is extremely fast, the integration of the LUA virtual machine with the legacy C++ 
code presents some difficulties. Because we use LUA source files that can be edited and 
replaced at any time, we do not store the bytecodes. The control cycle of our architecture is 
quite tight given the hardware platform, and typically both a low-level and a high-level 
behavior are executed every 100 ms. The time consumed by the interpreter should be 
minimum in order to leave as much CPU as possible for the vision process (PAM). For the 
integration we have tried and evaluated three different strategies: 
 
• Each time a script is called it is loaded from the file and then interpreted. This is the 

simplest approach, and the very first to be implemented. While it is simple, the 
overhead of interpreting two files every control cycle is too high. 

• The first time a script is called it is loaded and kept into memory, and then interpreted 
at every successive call. The advantage of this approach is that the loading time 
(accessing the memory stick is quite time consuming) is reduced, but when the behavior 
is modified the system must signal the interpreter to reload it. 

• The first time a script is called it is compiled to bytecodes and the kept into memory, 
and then executed at every successive call. The advantage of this approach, much like 
the just-in-time compilers (JIT) standard to the Java world, is that both the loading time 
and the interpretation time are reduced. In this case it is needed to signal the interpreter 
when a behavior has been modified to reload and recompile it. This is by far the more 
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complex approach (from an implementation point of view) and the one that has finally 
being selected. 

 
Fig. 4 shows a plot of the time in microseconds consumed in several calls to a high-level 
LUA behavior. The curve labeled as original is the simple approach, and the curves labeled 
as Optimization 1 and Optimization 2 are the two successive improvements. In average the 
three approaches consume approximately 40 ms, 17 ms and 7 ms respectively. The variance 
in execution time is due to the execution time of the other concurrent processes, being it 
larger when the task consumes more CPU. The measured time is the difference between the 
end and start times of the interpreter process obtained from the real time clock (RTC). As it 
can be seen, the third approach is by far the less time consuming (by a factor of nine with 
respect to the simple approach), and is the one that it is currently in use in our system. 
 

 
Fig. 4. Execution time (μs) for the three integration approaches of the LUA interpreter 

 
3.3 ThinkingCap Services of the LUA Interpreter 
Because behaviors need to access to information provided by other modules of the 
architecture, we have extended the LUA interpreter to interact with the routines 
programmed using OPEN-R; in particular, we have implemented a C extension module to 
call C functions exported by the OPEN-R modules. Basically, the library to interact with the 
Thinking Cap architecture, named chaoslib, is an interface to access data variables in the 
OPEN-R routines and activate functions that set sequence of motions, behaviors, team 
messages, etc. We will describe the most important methods of the library for a better 
understanding of the different examples shown below. The chaoslib methods can be grouped 
into: data access methods, control action methods, coordination methods, and persistence 
methods. 
Data access methods allow accessing all the different information that is generated by the 
different modules of the architecture, mainly the LPS and the GS. The most important 
methods are: 
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• chaos.lps_getLpo(index). Returns a table containing the values of the LPO stored at 

position 'index' of the LPS. A set of convenience constants is available (BALL, NET1, 
NET2, etc). 

• chaos.gsGetMyPos(). Returns a table containing the estimation of the location of the robot 
from the GS. 

• chaos.getBallVel(). Returns a table containing a vector with the estimation of the velocity 
of the ball. The goalkeeper typically uses this to decide a defensive action. 

• chaos.getGlobalBall(). Returns a table containing the estimation of the location of the ball 
from the GS. 

• chaos.getMates(). Returns a table containing the estimation of the location of the 
teammate members. 

 
Control action methods send commands to the other modules of the architecture, like 
locomotion commands, object necessities and kicking routines activation. The most 
important methods are: 
 
• chaos.setVlin(vlin). Sets the desired robot’s linear velocity. 
• chaos.setVrot(vrot). Set the desired robot’s rotation velocity. 
• chaos.setVlat(vlat). Set the desired robot’s lateral velocity. 
• chaos.setKick(kickid). Performs a kicking routine with identifier ‘kickid’. 
• chaos.setNeeded(index, value). Sets the necessity of LPO object at LPS position ‘index’ to a 

value of ‘value’. 
• chaos.trackLandMarks(). Special method that sets necessities for localization specific 

objects. 
• chaos.setBehavior(behavior). Executes a behavior with name 'behavior'. 
 
Coordination methods allow the robot to interact with its teammates. These can be related 
to the current role of the player, implemented with a dynamic role allocation method 
(Agüero et al., 2006a), and with the booking of the ball, implemented with a distributed 
mutual exclusion method (Agüero et al., 2006b).  The most important methods are: 
 
• chaos.getRole(). Returns a table containing the current role of the robot. 
• chaos.haveBookedBall(). Returns a table containing a truth-value representing the ball 

booking state for the robot. 
• chaos.bookBall(). Ask the other robots that we want to book the ball. 
• chaos.releaseBookedBall(). Tells the other robots that we no longer want to book the ball. 
 
Persistence methods allow the behavior to obtain information about previous activations. 
This is due to the fact that consecutive activations of a behavior imply loading bytecodes 
into the LUA virtual machine. In this way, a behavior can share with itself some form of 
behavior state, and know information related to its activation. Data storage is implemented 
in a hash table. Because LUA does not support types, the global hash table has parameters to 
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specify data types. Current supported types are string, integer and float. The most 
important methods are: 
 
• chaos.getBehaviorInfo(). Returns a table containing the information about the current 

behavior. This information includes a behavior execution timer and a flag indicating if 
it is the first time the behavior is executed. 

• chaos.setGlobal(key, type, value). Stores the variable with name 'key' of type 'type' with the 
value 'value' into the global hash table. 

• chaos.getGlobal(key). Gets the value of the variable with name 'key' from the global hash 
table. 

• chaos.getCurrentState(). Gets the current state of the game as set by the external referee. 

 
4. Low-level Behaviors 
 

4.1 The HBM Model and Tools 
Behavior-based systems are increasingly used in many robotic applications, including 
mobile units, manipulators, entertainment robots and humanoids. Behavior-based systems 
were initially developed on mobile robots, where complex tasks were achieved by 
combining several elementary control modules, or behaviors (Brooks, 1986). In most of these 
systems, however, arbitration between behaviors was crisp, meaning that only one Behavior 
was executed at a time, resulting in jerky motion. In other systems, several behaviors are 
executed concurrently and their outputs are fused together, resulting in smoother motion 
during switching of behaviors (Cameron et al., 1993), (Saffiotti, 1997), (Saffiotti et al., 1993). 
The use of behavior-based system for more complex plants than a wheeled unit needs a 
framework which is able to handle several DOF (Kim et al., 2001) uses fuzzy rules to control 
a 6 DOF arm, and (Lever et al., 1994) describes an automated mining excavator that uses 
concurrent behaviors. However, the complexity of these systems makes the design process 
very demanding: (Kim et al., 2001) uses 120 rules to perform a Pick Up task, and (Lever et 
al., 1994) uses a neural network for behavior arbitration, thus giving up the readability of the 
arbitration rules. 
We follow an approach to building behavior-based systems that can be applied to control 
plants with many DOF. Complexity is addressed by a hierarchical decomposition (Saffiotti 
& Wasik, 2002) of the overall task into simple behaviors. These behaviors are encoded by 
small sets of fuzzy rules. In addition, fuzzy meta-rules are used to encode the way behaviors 
are combined together: this makes it very easy to re-configure the system for different tasks. 
We define a set of basic behaviors, that is, behaviors that perform elementary types of 
actions, most of them common to all players independently of their role in the field. In our 
domain, these include turning toward the ball, going to the ball, or moving to a given 
position. These behaviors constitute the basic building blocks from which more complex 
types of actions are obtained by hierarchical composition. The behaviors, which are 
packaged in the HBM module, are defined by way of fuzzy rules (Saffiotti et al., 1993), 
(Saffiotti et al., 1995). The input space used by all behaviors is the local state provided by the 
PAM, which contains the current estimates of the position of all the objects in the field. The 
output space consists of the velocity set-points which are transmitted to the CMD module. 
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An additional control variable is used to indicate which kicks are applicable in the given 
situation. 
Thus behaviors are coded by using fuzzy rules of the form: 
 
 if <predicate>   then <action> 

 
where predicate is a formula in fuzzy logic that evaluates a series of properties of the local 
state. This can be done without the need of an analytical model of the system or an 
interaction matrix, which may be difficult to obtain for complex plants and tasks, as the 
RoboCup case is. It is also worth noting that the uncertainty in fuzzy system is taken in 
account as well. 
 

 
Fig. 5. Membership functions for the posLeft, posAhead and posRight conditions 
 
In order to give a more concrete impression of how behaviors are implemented, we show 
here the gkcutb behavior. For sake of clarity, all the rules shown in this section are given in 
pseudocode and in a slightly simplified form with respect to the actual rules implemented 
in the robot. The rules are actually implemented using different LUA methods. The 
goalkeeper’s gkcutb behavior uses three rules to control the lateral motion of the robot 
(action strafe) to locate it on the trajectory from the ball to the centre of the net. It also uses 
three rules to control the orientation of the robot to point the head toward the ball (action 
turn). This behavior does not use the forward motion, and thus it is always set to zero 
(action go). Finally, it controls the type of kick to be applied (action kick). If the ball is close 
enough and the robot is pointing to a safe area it tries to kick it using its both arms and the 
chest. 
 
 if posLeft     then strafe RIGHT 

 if posAhead     then strafe NONE 

 if posRight     then strafe LEFT 

 if headedLeft     then turn RIGHT 

 if headedAhead    then turn NONE 

 if headedRight    then turn LEFT 

 if and(freeToKick,  ballClose)  then kick FRONTKICK 

 always     go STAY 
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The aim of this behavior is to keep the goalkeeper on the trajectory of the ball to the net. The 
rule conditions are evaluated from features of the local information, like Ball<ρ, θ> (distance 
and orientation to the ball), and produce a truth value between 0 and 1. Fig. 5 shows the 
truth value, or membership function, of the first three conditions as a function of the x position 
of the robot with respect to the ball-to-net trajectory. These functions are defined by the 
designer, and depend on how the robot should try to cut the ball. The consequent of the 
rules indicate which control variable should be affected, and how: the first three rules 
involve lateral motion of the robot, while the three following rules involve rotational 
motion. Each rule affects the corresponding control variable by an amount that depends on 
the truth value of its condition: smaller or larger adjustments to the robot motion will be 
generated depending on how much the robot is close to the ball-to-net trajectory. Rules are 
evaluated and combined according to the standard Mamdani approach. 
Behaviors also may incorporate perceptual rules used to communicate the perceptual needs 
of active behaviors to the perceptual anchoring module (PAM), by using fuzzy rules of the 
form: 
 
 if <predicate>   then need <object> 

 
whose effect is to assert the need for an object at a degree that depends on the truth value of 
condition. 
In order to give a more concrete impression of how perceptual behaviors are implemented, 
we show here the trackbnet1 behavior. This behavior is useful when the robot tries to store a 
goal in the opposite's net. In this situation it will always concentrate attention on the ball, 
but when it is close to the ball, it might want to also get information on the relative position 
of the net, in order to fine motion to head to the net. This can be accomplished with only the 
following two rules: 
 
 always     need BALL 

 if ballClose    then need NET1 

 
where always is a condition which is always true. In a situation where the ball is at 400mm 
from the robot, the truth-value of ballClose is 0.7, and these rules assert a value of needed of 
1.0 for the anchor BALL and of 0.7 for NET1. Behaviors are dynamically activated and 
deactivated according to the current task and situation, and several behaviors can be active 
at the same time. The needed values stored in the S state are those asserted by the active 
behaviors, combined by the max operator. This guarantees that perceptual anchoring only 
depends on the currently active behaviors, hence on the current task. 
We build complex behaviors by combining simpler ones using fuzzy meta-rules, which 
activate concurrent sub-behaviors. This procedure can be iterated to build a full hierarchy of 
increasingly complex behaviors. The mechanism used to perform behavior composition is 
called Context-Dependent Blending (Saffiotti, 1997). Thus, under the CDB paradigm flexible 
arbitration policies can be obtained using fuzzy meta-rules of the form: 
 
 if <predicate>   then use <behavior> 
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For each such rule, the controller evaluates the truth value, in range [0,1], of <condition> 
and activates <behavior> at a level that corresponds to this value. Several behaviors may be 
active at the same time: in this case, their outputs are fused by a weighted combination 
according to the respective activation levels. Fusion is performed on each control variable 
independently. The use of fuzzy logic to fuse the outputs of concurrent behaviors provides a 
smooth transition during switching between behaviors (Saffiotti, 1997), which would be 
difficult to achieve in architectures based on crisp arbitration like subsumption architecture 
(Brooks, 1986). 
As an example, the following meta-rules implement the gkclearb behavior, which uses four 
rules to decide what action to take: turning until the robot faces the ball, moving the robot to 
approach the ball location, kicking the ball or moving the robot between the ball and the 
opponent's net. The behavior also controls the type of kick to be applied; depending on the 
orientation of the robot, it uses either arms or the head. 
 
 if not(ballSeen)     then use faceball 

 if and(ballSeen, ballClose, freeToKick) then use dokick 

 if and(ballSeen, ballClose, not(freeToKick)) then use alignbnet1 

 
One key characteristic of our behaviors combination technique is that there are well-
established techniques to perform fuzzy fusion of the output of behaviors (Saffiotti, 1997). 
The rule-based approach and hierarchical organization allows us to design, implement and 
test very complex behaviors, like the goalkeeper behavior, with a limited amount of effort. 
The goalkeeper behavior involves the use of navigation, manipulation, and perceptual 
actions in a highly dynamic and unpredictable environment. The full goalkeeper has been 
decomposed into 12 behaviors, which involve more than 70 fuzzy rules (including those in 
the basic behaviors) plus 12 perceptual rules. The development of these rules required about 
4 weeks of work by one person (Martínez & Saffiotti, 2003). 
We have implemented a Java based editor for HBM behaviors and a monitor. The HBM 
editor (Fig. 6b) is a simple text editor with an integrated LUA interpreter, which is used for 
detecting syntax errors. If the edited behavior contains no syntax errors, it can be sent to the 
robot at any time, without the need of stopping or rebooting it. The HBM monitor (Fig. 6b) 
is a visual tool that shows information very helpful for debugging behaviors. It includes: the 
table of objects (ball, nets, landmarks) with their anchoring value and relative positions, the 
current estimated robot position, the current output of the HBM (velocities), the current 
active behavior, a graphical display of the most recently viewed objects in robot centric 
coordinates, and a graphical display of the current global robot position with its uncertainty. 
When debugging single behaviors, we can easily contrast what the robot is actually doing 
and what it should be doing, and knowing what it actually perceives. A very difficult to 
debug issue is checking the different preconditions of an action with the real robot because 
the uncertainty in the perception and localization systems. With this approach we can 
produce a preliminary version of a behavior with several parameters estimated, then put the 
robot on the field and execute a single behavior. We then monitor the execution of the 
behavior, modify the LUA code accordingly and send it to the robot. We repeat this process 
until we are satisfied with the result. We then can execute the full system allowing for the 
change of the active low-level behavior by the high-level behaviors. 
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Fig. 6. The HBM tools, code editor (left) and monitor (right) 

 
4.3 Goalkeeper Example 
We can use complex behaviors to form even more complex ones, thus creating a behavior 
hierarchy. A simplification of the goalkeeper's strategy is exemplified in Fig. 7. The squared 
boxes indicate basic behaviors, that is, behaviors that directly control motion and do not call 
any sub-behaviors. 
There is a set of behaviors that are common to all players and are also used by the 
goalkeeper. 
 
• lookball: Turns the robot until it directly sees the ball. 
• go2ball: Moves the robot to the ball location. 
• dokick: Moves the robot towards the ball and applies a kick. 
• alignbnet1: Moves the robot until it is aligned with both the ball and the opponent's net. 
 
While most basic behaviors are coded by means of fuzzy rules (as described in the previous 
section), there are some cases in which they are not needed. This is the case of the lookball 
behavior. It is intended for finding the ball by means of turning on place. The behavior code 
is as follows: 
 
slowTime = 400 

 

local ball = chaos.lps_getLpo(BALL) 

local info = chaos.getBehaviorInfo () 

 

if info.isNew > 0 then 

 sgn = ball.theta / math.abs (ball.theta) 

 chaos.setGlobal("BALL_DIRECTION",INTEGER,sgn) 

end 

sgn = chaos.getGlobal("BALL_DIRECTION") 

 

vrot = 0 

if info.timer < slowTime then 

 vrot = 50 * sgn 

else 

 vrot = 75 * sgn 
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end 

 

chaos.setNeeded(BALL,1.0) 

chaos.setVlin(0) 

chaos.setVrot(vrot) 

chaos.setVlat(0) 

 
For performance reasons, if the robot is not seeing the ball, it is best to turn towards the 
place where the robot last saw it. This is accomplished using the LUA based state methods, 
using the global variable BALL_DIRECTION. In addition, during the first four seconds the 
robot turns slowly (the ball might be close to the robot) and then turns faster (to cover the 
maximum area per time). 
 
There are some basic behaviors which are specific for the goalkeeper: 
 
• gktracklms: Select the least recently seen landmark as a desired perceptual goal. It 

directly calls the LUA special method trackLandMarks() 
• gkkeepout: Turns the robot slowly moving until it is outside its net. 
• gkkeeparea. Put the robot facing forward and then moves it to the goalkeeper area. 
• gkkeepbarea. Put the robot facing backwards and then moves it below the penalty area. 
• gkcutb. Turn and move sideways in order to intercept the ball trajectory. 
 

 
Fig. 7. Behavior hierarchy for the goalkeeper 
 
The other behaviors in the hierarchy are complex behaviors intended to perform the 
following goalkeeper tasks: 
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• goalkeeper: Top-level goalkeeper behavior. 
• gkscanobj: Scan the field on place until a given object is found. Look at landmarks and 

nets cyclically. 
• gklocalize. Get a better position estimation through looking for the closest landmarks. 
• gkclearb. Turn and move forward in order to kick the ball out of the goalkeeper’s area. 
 
Some of the above behaviors express specific perceptual needs by way of perceptual rules. 
For instance, most behaviors express a need for the ball position. The gkkeepout and 
gkkeeparea behaviors both need to have accurate information about the robot's own location 
in the field, and hence they express a need for the most probably visible landmarks, 
including the opponent's net. Moreover, gkcutball and gkclearb behaviors both need to have 
accurate information about the ball position in addition to the robot's own accurate location 
in the field (to avoid self scoring). In general, the overall perceptual needs of the goalkeeper 
behavior depend on which sub-behaviors are activated at every moment, and are used to 
direct perception. 

 
5. High-level Behaviors 
 

5.1 The HFSM Model and Tools 
For specifying and implementing high-level behaviors we make use of the Hierarchical 
Finite State Machine (HFSM) paradigm (Hugel et al, 2005). In some way or another, the 
notion of state is usually implied on the execution of a high-level behavior: there is a 
necessity on knowing what was the state of execution between two successive invocations of 
the behavior. In the RoboCup, most teams implement some form of state machines, be they 
ad hoc implementations or the output of formal tools like XABSL (Loetzsch et al., 2006) or 
Petri Nets (Ziparo and Iocchi, 2006).  
An HFSM consists on a set of states, meta-states, which are state machines, and transitions 
between states and/or meta-states. When the robot is in a state, it executes the 
corresponding state's code, which is standard LUA code accessing to local perceptions (ball, 
nets, landmarks, etc.), global information (global ball position, own location, etc.) and 
shared messages (teammate positions, etc.) from other robots. The states usually invoke low-
level behaviors (faceball, go2ball, etc). The transitions between states and/or meta-states 
define the conditions to change from one to the other state by the initial and final conditions 
of the states or meta-states. The meta-states are automata in their self and must carry out all 
the preconditions for an automaton; they must have an initial state, which is executed first, 
and cannot contain itself, i.e., an automaton can contain several meta-states (but not itself) 
and these meta-state can be referenced in different places in our automaton or from other 
automaton without duplicating code. This simple yet powerful paradigm allows us to 
specify and reuse machines than can be used inside others, avoiding the repetition of code 
and allowing for a better code management. For instance, if a typical set of actions is 
modeled using a meta-state called Score, whenever the conditions for scoring are satisfied 
and no matter in which state we are, we can always call that meta-state. Thus we write code 
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for scoring once, and we can invoke it in different situations. This is much like a subroutine 
is in programming. 
In our implementation, the main HFSM is a meta-state. Meta-states can be referenced from 
different states without duplicating code. The transitions are implemented defining two 
conditions to change between states: test code and priority. When the robot is in a state, it 
checks the test conditions from all transitions from this state. If some of these tests are 
satisfied, the new state for the robot is the final state of that transition otherwise the robot 
continues executing the current state. In the case many transitions come out from the same 
state, the priority associated to the transition is used to decide the final state. In practice, 
transition code is checked considering the priority, and when the conditions of a transition 
are satisfied, the robot’s state is changed. When the transitions are checked, not only the 
transitions from the state (inside the meta-state) are checked but also the transitions from the 
meta-state. In fact, transitions from the meta-state are first checked, that is, transitions from 
meta-states have more priority than transitions from states. 
The HFSM mechanism is also used for role assignment and execution (Agüero at al., 2006a), 
so that field players can play different roles in different game conditions. For example, if a 
defender goes to the ball it can change its role to attacker and another robot should change 
to its own role to defender. This can be easily achieved defining several meta-states and 
sharing information between the robots in order to know when to change. Fig. 8 shows an 
example of the HFSM of field players using three roles: attacker, defender and supporter. 
Each one of these roles is implemented as a meta-state, and the transitions reflect the 
conditions for switching from a given role to another. 
 

 
Fig. 8. A sample HFSM with meta-states and transitions 
 
A very important feature of the HFSM model is that a visual tool can be easily produced, so 
that code development is greatly sped up. We have implemented a Java based visual editor 
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for HFSM which is based on a early implementation of the tool by the Université de 
Versailles (Hugel et al, 2005). We have redesigned the GUI and in addition to generating 
C++ code, we also generate LUA code. The development process with the HFSM tool is as 
follows. The user starts by creating a set of states and meta-states with their corresponding 
transitions. Then the corresponding LUA code for the states and transitions is edited. 
Finally, the user can generate LUA code using the corresponding menu and then transfer it 
to the robot. The generated LUA code is included in a single LUA file. This process can be 
repeated over time without the need of stopping or rebooting the robot. The GUI includes a 
tree view of the whole HFSM (to get an overview of all the states, meta-states and 
transitions) and a visual view of the selected meta-state (Fig. 9a). When the code of a state or 
transition is edited, a programming window is open with a syntax-coloring editor and the 
list of available behaviors that can be invoked (Fig. 9b). 
 

 
Fig. 9. The HFSM editor, for meta-state edition (left) and code edition (right) 

 
5.2 Attacker Example 
In order to show how to apply HFSM to robotics soccer players, we present and describe a 
simple attacker, quite similar to the one currently used for competitions, being the major 
difference the lack of role negotiation (which is implemented in a higher level state machine, 
as shown in Fig. 8). The Attacker HFSM (shown in Fig. 10) is composed of three states: 
FaceBall, GoToBall, and Score. This HFSM should be activated only when the ball is in direct 
view of the robot (this is something that a higher level state machine should be take care 
for). The rationale behind the Attacker is to turn towards the ball (by calling the faceball 
behavior from the FaceBall state), then move towards the ball (by calling the go2ball behavior 
from the GoToBall state), and finally pushing the ball towards the net. This last action is 
complex enough to be divided into some stages, and thus the state Score is in fact a meta-
state. 
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Fig. 10. The Attacker HFSM 
 
The Score meta-state (shown in Fig. 11) is composed of three states: ApproachBall, Align, and 
DoKick. This meta-state should be activated only when the robot is close enough to the ball 
(approximately 50 cm). The rationale behind the Score is to move in a more precise way 
towards the ball (by calling the go2ball behavior from the ApproachBall state) while taking 
care than the robot, the ball and the net are more or less aligned (by calling the alibnet1 
behavior from the Align state), and finally produce a kicking movement that pushes the ball 
into the net (by calling the dokick behavior from the DoKick state).  
 

 
Fig. 11. The Score meta-state 
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In general, the LUA code embedded in the previously described states is very simple, and 
consists in a call to the corresponding behavior, because each state has been designed to 
correspond to a single behavior. For instance, the DoKick state contains the code: 
 
chaos.setBehavior("dokick") 

 
There are some states that need a little more complex code. For example, the GoToBall state 
not only calls the corresponding single behavior go2ball for robot movement, but also takes 
care of calling the appropriate localization related tasks, to avoid that in long displacements 
the robot misses the landmarks. This is the main difference between the state GoToBall and 
ApproachBall: the later does not perform localization tasks to concentrate the visual focus of 
the robot on the ball. The GoToBall state LUA code is as follows: 
 
local gs = chaos.gsGetMyPos() 

local ball = chaos.lps_getLpo(BALL) 

local net1 = chaos.lps_getLpo(NET1) 

local net2 = chaos.lps_getLpo(NET2) 

 

if (gs.quality < 0.6) then 

 chaos.trackLandMarks() 

end 

if (net1.anchored < 0.5) and (net2.anchored < 0.5) then 

 chaos.setNeeded (NET1, 1.0) 

end 

 

chaos.setBehavior("go2ball") 

 
The code performs three activities. If the robot is not properly localized (its localization 
quality goes below 0.6) a special method trackLandMarks() is called, which sets necessities for 
the most relevant landmarks or nets. In addition, if one of the nets has not been perceived 
for some time, it sets the necessity for the opponent’s net, which might be helpful when 
attacking. Finally, it always invokes the go2ball behavior. 
Besides having LUA code in the states, there is also LUA code in the transitions, which 
basically check for the preconditions of activation of the corresponding state. These usually 
imply simple tests of either the local or global state (LPS or GS). For instance, the Kickable 
transition code from state ApproachBall to DoKick (Fig. 11) is as follows: 
 
local ball = chaos.lps_getLpo(BALL) 

 

if ball.rho < 600 then  

 return true 

else  

 return false 

end 
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This code tests if the distance of the robot to the ball is less than 60cm, in which case the ball 
can be kicked. 

 
6. Conclusions 
 

This work has presented the architecture and behavioral programming model used to 
develop a team of the Sony Four-Legged League, which is one of the official leagues of the 
RoboCup. This league is a very demanding scenario, with high uncertainty in perceptions 
and limited processing power. In addition, having a competition implies that some dates the 
software development and tuning presents high activity peaks. These facts condition the 
way robots have to be programmed. Thus, our main goal has been improving productivity 
as much as possible while being able to correctly develop all the required behaviors. 
The approach consists on adopting a programming architecture that reflects a cognitive 
separation of modules and allows for an efficient management of modules code. Because the 
standard programming mode of the AIBO robots makes use of OPEN-R and C++, the on 
robot behavior development control cycle is very unproductive, and this is typical task that 
sooner or later must be done (typically in dates close to or during the competition). We have 
then opted to use an embedded language to make much easier the behavior development 
task and have selected the LUA language for its many features, being the more important 
benefits its reduced footprint, its clear language and its execution speed. We have shown 
different examples of behaviors coded with the language and the main methods of the 
custom library to access the architecture from LUA. 
In order to organize behaviors in the architecture, we divide them into two types, low-level 
and high-level behaviors, which are implemented using the HBM and the HFSM model 
respectively. The HBM model allows us to define behaviors by way of fuzzy rules and fuzzy 
meta-rules in order to cater with uncertainty in both perceptions and actions. The HFSM 
model allows us to define behaviors by way of state machines in order to sequence high-
level tasks. The combination of these two models allows for the combination of the 
conceptual expressiveness of state machines and the robustness of fuzzy controllers, with 
the added benefit of being programmed in LUA, which allows for a very productive 
development cycle. 
Although all the work presented has been directed towards robotics soccer, it is important 
to note that the methodology and tools presented can be used in other scenarios in which 
the on robot behavior development is an important or crucial task. Two future lines open on 
this work: porting all the software and technology to a humanoid robot, and incorporating 
the methodology in the development of a prototype unmanned boat. 
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1. Introduction 
 

The main difficulties of perception systems, mainly to be applied to robots which play 
soccer, may be listed as: recognition of objects in a very short time and provision of accurate 
information to the control system. To accomplish these tasks, many researches in the sensor 
fusion field have been carried through with the objective of determining complementary or 
redundant information of the world.  
Throughout the years, several works have been proposed to tackle the problem of 
integrating sensor data to enhance the recognition performance of robotic systems (Bai et al, 
2003; Fanny et al, 2004; Lanthier et al, 2004). Bai et al (2003) propose a fusion strategy based 
on Gaussian distribution over the space of robot position, with the main goal of estimating 
the robot position, using only range sensors. As the proposed method is based on an 
asynchronous sensor fusion, and it depends essentially on robot’s dead reckoning, the 
strategy fails whereas the robot runs long distances. Ferrein et al (2005) combines sensor 
fusion techniques to estimate ball position in a robot soccer field, namely, a weight grid and 
a Kalman filter strategies. A comparative study was made and the proposed method 
overperformanced traditional ones, although the work is very Robocup domain-specific. 
Lanthier et al (2004) use data from inexpensive sensors (sonars and infrared (IR) sensors) to 
enhance the accuracy of a stereo-based system, whose strategy of data fusion relies on an 
occupancy grid technique and a Kalman filter.  
All those works propose different ways to combine sensor data in order to improve sensing 
performance. Considering all these elements, a generic framework which copes with the 
problem of perceiving objects in front of a mobile robot is then proposed. The framework 
has been applied in Robocup domains, but it can be easily transferred into other robotic 
fields, under just few adjustments.  
The aim of this chapter is to present the proposed framework, which tries to establish an as 
much as possible tradeoff between accuracy and on-the-fly information. The system consists 
of a vision servoing module, presented on the top of the robot, in charge of perceiving the 
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relevant objects (ball and robots), and a set of IR distance sensors whose data are fused with 
the vision information in order to achieve the spatial location of objects in front of the robot. 
In the vision system, a cascade of boost rejection (Viola & Jones, 2001) with a Support Vector 
Machine (SVM) (Vapnik, 1995), at the final stage, are used to guarantee a more accurate 
classification, in a short time. To integrate all sensor data, a Takagi-Sugeno (TS) fuzzy logic 
based system tries to balance the better situation in which each sensor data may be used or 
integrated, and gives the final spatial location of the objects in the soccer field. The proposed 
framework brings threefold contributions: i) a low computation cost perception system; ii) 
to the best we know, a novel calibration system, with the use of a regression SVM to obtain a 
mapping between the world and image coordinate systems, without the need of a rigid 
transformation scheme, and iii) a fusion system which provides a robust sensor integration. 
A thorough analysis of each module has been carried through and results have been shown 
to highlight the proposed framework characteristics.  
The rest of the chapter is structured as follows: in Section 2, the system architecture of the 
soccer robot used and the overall structure of the perception framework are given; in 
Section 3, a brief overview of the image classification methods is presented; in Section 4, the 
fuzzy engine used into the framework is discussed; in Section 5, the novel calibration 
method and its performance analysis are detailed; Section 6 shows some experimental 
results. Finally, Section 7 draws some conclusions and future works. 

 
2. System Architecture of the Soccer Robot 
 

In Fig. 1, the hardware architecture of the soccer robot, which have been worked with, is 
depicted. It is essentially a three wheel robot base with a set of IR sensors and a two degrees 
of freedom (DOF) servoing vision head.  
 

 
Fig. 1. Hardware architecture of the soccer robot 
 

So that  robots play soccer, integration architecture of the perception, control and navigation 
modules is necessary. Thereby, the architecture proposed in (Costa & Bittencourt, 1999) is 
used as dorsal spine of aggregation of all robot modules. This architecture is illustrated in 
Fig. 2. 
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Fig. 2. Software architecture of our soccer robot 
 

The cognitive module is a system based on symbolic knowledge which handles information 
come from instinctive level, as well as, asynchronous messages received from other robots 
(autonomous agents). This module gives global and local goals to the robot, as output. The 
instinctive level is in charge of identifying environment states and choosing the more 
appropriate behaviour for the robot’s current state and goals. The reactive level 
communicates directly to the perception system, receiving a frame containing information 
about spatial location and velocity of the targets (ball and robots) in front of the robot. Fig. 3 
illustrates how this process works. Detailed information of the frame contents (Fig. 3) given 
by perception system to the control system is discussed in Section 4. 
 

Autonomous Agent

Página 1

FRAME CONTENT

Mailbox
(Reactive level)

( frame <numFrame> ( see <perceptionTime> )
( object name <idObject> )
( angle <angleObject> )
( dist <distanceObject> )
( vel <velFuzzy> ) )

Perception
system

 
 
Fig. 3. Communication protocol between the perception system and the reactive level 
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2.1 The Perception Framework: Overall Architecture 
 

The perception system consists of two threaded modules. After acquiring sensor data, each 
frame and a respective set of distance data are processed in the specific modules. The 
objective of this step is to prepare these simple data for the data fusion stage. Fig. 4 shows 
this process. 
 

Image
Acquisition

IR Distance
Acquisition

S1 processing module

Sn processing module

Object 
recognition

Fuzzy
Processor
(Fusion) object

information

Feature 
extraction

 
 

Fig. 4. Communication protocol between the perception system and the reactive level 
 

Particularly, in the vision-based module, each acquired image goes to a feature extractor in 
order to achieve Haar-like features (Viola & Jones, 2001). These features are, then, classified 
using a cascade of weak classifier (Adaboost), with an SVM at the end, validating all the 
classification process. Then, after converting the raw information come from the IR distance 
and synchronizing it by a timing line strategy, all this information goes to a fuzzy processor, 
giving object information in form of frames (Minsk, 1975), illustrated in Fig. 3.  
In the next sections, detailed information about the perception system, as well as, for 
completeness, a brief overview of the classification methods used is given. 

 
3. Overview of the Classification Methods 
 

In this section, an overview of the image classification methods applied in the vision system 
is highlighted, as well as, the way these methods have been combined in order to provide a 
more reliable object recognition system. This new approach represents an advance with 
respect of our first implementation in (Oliveira et al, 2005). 

 
3.1 Adaboost 
In (Viola & Jones, 2001), a complete system for face recognition is presented. Motivated by 
this approach, we decided to use Haar-like features in the same way to recognize the ball 
and robots in the soccer field by means of an SVM, at the end, in order to turn the vision 
task more robust. With the use of an SVM classifier is intended to decrease the high number 
of false alarm the Adaboost classifier, against Haar-like features, is prone to. For 
completeness, we present a brief description of the method and the way it has been used.  
Haar wavelate templates (or Haar-like features) have been firstly used in (Oren et al, 1997), 
along with an SVM classifier, in order to recognize people. The set of these templates was 
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further expanded in (Viola & Jones, 2001) to incorporate other kinds of contrast differences. 
Fig. 5 illustrates the common set of the templates. 
 

 
 
 
Fig. 5. (a), (b) and (c) are templates for line features; (e) and (f) are for edge features and (g) 

is the center-surrounded feature 

 
These feature templates are regard to contrast differences in the image pixels. Fig. 6 shows 
how these templates are applied in the proposed system. 
 

 
 
Fig. 6. Templates used in the image pixels 

 
Haar-like features are extracted from the image in an overlapping way. Hence, this 
approach leads to an overcompleted set of features feasible to be applied in object 
categorization tasks (Viola & Jones, 2001). For each feature, in the image, a weak classifier 
hj(x) is trained and has the following form: 
 

,,0

,1
)(

⎩
⎨
⎧ <

=
otherwise

fpif
xh jjj

j
ϕ     (1) 

where x is an m×n image subwindow which consists of a feature fj, a threshold z j  and a 
parity pj which indicates the direction of inequality. Each of hj(x) reacts to a Haar-like 
feature. The final Adaboost classifier is composed by all weak classifiers and it is 
represented as in Fig. 7. 
As in Fig. 7, information about all subwindows extracted from the feature extraction module 
is goes through a cascade of 15 weak classifiers (C1…C15).  
As mentioned before, at the end of the rejection cascade, an SVM classifier has been 
employed in order to reinforce the decision made previously and decrease the number of 
Adaboost false alarms. 

(a) (b) (c) (d) (e) (f) (g) 
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Fig. 7. A cascade of rejection classifiers with an SVM classifier at the end 

 
3.2 Support Vector Machine 
SVM is a deterministic learning machine which employs linear discriminant functions into 
the raw input vector, in case of linear SVMs, or into a high dimensional feature space, in 
case of non-linear SVMs (Vapnik, 1995). As a supervised method for data classification, its 
structures embodies a training and prediction stages. In the training stage, algorithms 
provided by optimization theory are applied in order to learn how to separate the input 
space; when necessary, a mapping to a higher dimensional feature space is accomplished to 
guarantee the linear separability of data in any circunstance. In prediction stage, the 
classifier has the following forms in (2) and (3). 
 

1,
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Considering a training sample Ω = {(xi, di)}, where i= 1...N samples, xi is the ith input element 
and di is the ith desired output, represented by the set {+1, -1}. Then, the discriminant 
function for a linear SVM is given by (2), where +1 represents an object and -1, a non-object. 
In case of non-linear SVM, (2) is written in the form. 
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where z  represents a kernel function which implicitly maps, by means of a inner product, 
the input space to a higher dimensional space. The most usual kernel function can be listed 
as: 

1. Polynomial: 0,)()( >+= γγφ TT
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A function is only considered a kernel if it satisfies the Mercel’s condition (Cristianini & 
Shawe-Taylor, 2003; Kecman, 2001), i. e., must be semidefinite and positive. 

 
4. Sensor Fusion Using Fuzzy 
 

In this section, the fusion processor, shown in Fig. 4, is described. This processor is based on 
a Takagi-Sugeno (TS) fuzzy engine (Takagi & Sugeno, 1985), responsible to decide which 
data from the sensors are to be taken into account in order to guarantee the most accurate 
object information to the robot. The TS fuzzy system has been built from the spatial sensor 
location on the soccer robot, and is depicted in Fig. 8. The main idea of the system is to 
provide spatial location of objects in front of the robot in polar coordinates (θ, d) and every 
location is regard to the mass center of the soccer robot. This information comes as from the 
IR distance sensor as from the camera (according to a calibration scheme, described in 
Section 5). 
Hence, the decision of taking the angle or distance information from the IR distance sensor, 
from the camera, or combining both of them, must be made by the TS fuzzy system.  
According to Fig. 8, the further the object is from the IR distance sensor (S1 to S5), the more 
accurate is the determination of the object angle. This is verified in the following way: the 
spread of each IR distance sensor is made by way of a 3 cm wide cylinder (distance between 
receptor and emitter); for instance, an object between A1 and A1’ will have a less accurate 
angle determined by the distance sensors than an object between A2 and A2’, if only IR 
distance sensors are considered. In other words, the angle provided by the IR distance 
sensor will be more accurate in region A2 and A2’ than in region A1 and A1’, since the first 
one is narrower. 

 
Fig. 8. Determination of the fuzzy structure based on sensor location in the robot 

Nevertheless, considering the precision scale, fuzzy sets are defined, according to Fig. 
9, with the aim of determining the best angle information to the soccer robot 
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Fig. 9. Fuzzy sets determined from sensor physical disposal in Fig. 8. d is measured in cm 
 
From these fuzzy sets, eight rules were proposed: 

 
R1: IF distance = SHADOW THEN distance = d(camera) 
R2: IF distance = SHADOW THEN angle = a(camera) 
R3: IF distance = VERYCLOSE THEN distance = d(Si) 
R4: IF distance = VERYCLOSE THEN angle = a(camera) 
R5: IF distance = CLOSE THEN distance = d(Si) 
R6: IF distance = CLOSE THEN angle = a(camera)*0,5 + a(Si)*0,5 
R7: IF distance = FAR THEN distance = d(Si) 
R8: IF distance = FAR THEN angle = a(Si) 

 
The functions a(.) e d(.) represent, respectively, the angle and distance obtained by the 
camera and IR distance sensors. The real values of distances and angles, after evaluation of 
the rules, are determined by: 
 

,
∑
∑=

i

ii zS
ψ

ψ      (4) 

 
where } i  is the T-norm of each antecedent and zi  is the result of the function f(x, y), 
responsible for describing the relationship between the fuzzy sets of the antecedent. 
 
At the end of the fusion process, each object is identified and located by means of a internal 
representation frame structure (Minsky, 1975):  
 
( frame <numFrame> ( see <timePerception> ) 
( object_name <idObject> ) 
( angle <angleObject> ) 
( dist <distanceObject> ) 
( vel <fuzzyVel> ) ) 
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For each image frame <numFrame>, all objects are located and identified by an object name 
<idObject> and three supplied characteristics: angle relative to the center of the base of the 
robot <angleObject>, object distance regards to the front of the robot <distanceObject> and 
fuzzy velocity of each object <fuzzyVel>.  
 
The fuzzy velocity <fuzzyVel> is determined by (5). Fig. 10 shows the fuzzy sets used. 
 

<fuzzyVel> = [µl(difP), µm(difP), µh(difP)],    (5) 
 

where µi(difP) are membership functions, and i represents each fuzzy set of linguistic 
variable velocity (low, medium and high). difP is the difference between centroid location of 
an object in relation of frames n and n − 1. 
 

 

Low Medium High 

μ(pixels) 

Pixels 10 20 30 40 50 60
 

Fig. 10. Fuzzy sets for fuzzy velocity (fuzzified by pixel information). This information is just 
fuzzified and passed by the control module as an estimative 

 
This velocity information is not intended to be accurate since the control module will 
translate it into a treatable knowledge within other fuzzy controllers. Hence, the universe of 
discourse represents the diagonal of the image frame given by the camera sensor. This 
information is just fuzzified and passed to the control module as an estimative. 
 
5. Calibration Method 
 

Based on the features extracted from the image (height, width, area, centroid), object 
location is determined in polar coordinates (θ, d), where θ represents the angle and d is the 
distance relatives to the robot mass center. 
To determine these polar coordinates, two regression SVMs have been employed: with 
respect to θ, a mapping function between the pixel coordinate of the centroid of the object 
and the concerned physical angle; with respect to d, a mapping between the height of the 
object in the image and the respective distance between the robot and the concerned object. 
To obtain the mapping function centroid-angle, radii and parallel lines are drawn in a white 
paper, according to Fig. 11. Objects with a determined centroid pixel have been placed in 
each intersection in order to gather information to train the regression SVM. 
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Firstly, a set of pairs (centroid pixel, angle) is achieved from the centroid of each object in 
front of the robot and the relative angle to the mass center of the robot. 

 
Fig. 11. Calibration map used to extract angles and distances from the image 
 
The vision head is composed by two servo-motors, and, thus, it has two DOF: pan and tilt 
movements. In order to taper the angular distortion effect in the image, which occurs when 
the vision head takes different positions related to z axis, an angle value is added to the 
previous pair (centroid pixel, angle), according to Fig. 12. 
In resume, in each angle (20, 35, 50 and 65 degrees), a set of pairs (centroid pixels) is 
determined and a tuple (centroid pixel, angle, angle of head) is given to the regression SVM. 
 

 
Fig. 12. Angles of the servoing vision head used to enhance the regression SVM 

performance. The position (0, 0, 0) corresponds to the initial position in which the 
vision head starts when it is switched on 

Initial position (0,0,0) in 
the camera axis (lateral 
view)
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Information about distance is then extracted to complete the perception information when 
the objects are found in shadow areas. To obtain more accurate information of the distances, 
in case of a shadowed object, the robot may rotate its body to correct the estimated distance 
given by the image. This information is achieved by a simple relation between object height 
and distance. 

 
5.1 Performance Analysis 
Evaluation of the system has consisted to measure the difference between the true and the 
obtained values. To do this, the calibration map, in Fig. 11, was used once, but, now, with 
specific angles (-16.5, -8, 0, 8 and 16.5) and distance values (25, 30, 35, 40, 45, 50 and 55) and 
for each angle shown in Fig. 12. Results are, then, summarized in Table 1. 
Table 1 shows the angles obtained by the regression SVM. The angles was gathered through 
four different angular positions of the vision head, and with objects in different places in the 
classification map shown in Fig. 11.  
After data have been gathered to populate Table 1, analysis of the system error has been 
carried through and Table 2 summarizes the results. In Table 2, the absolute deviation of the 
measurements is placed regards to the mean values found in Table 1. The mean values of 
the absolute deviation were computed and they corresponds to the mean deviation obtained 
in each angular position of the vision head, as in Table 3. 
It is worth noting a systematic positive error in the final correction values found, which 
indicates a higher error to the right side of the vision system. Hence and according to the 
final mean error of the system (see Table 3), the value of 1.88 degrees has been added to the 
angles obtained by the regression SVM. The final error could be explained by one or more of 
the items in the list below: 
 

• Radial distortion of the camera lens – higher distortion of the camera lens to the 
right side; 

• Calibration error – an error in building the calibration map; 
• Regression SVM – lack of sufficient generalization or information to the regression 

SVM. 
 

The values in the Table 3 can be better visualized with the respective values of the standard 
deviation in each point as shown in Fig. 13. 
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Vision head = 20 degrees (angles obtained by regression SVM) 
True  
angle 

In 
25 cm 

In 
30 cm 

In 
35 cm 

In 
40 cm 

In 
45 cm 

In 
50 cm 

In 
55 cm 

Mean 

-16.5o -16.0o -15.0o -15.0o -15.0o -15.0o -15.0o -15.0o -15.1o 
-8o -9.0o -10.0o -9.0o -9.0o -9.0o -9.0o -9.0o -9.1o 
0o -1.0o -1.0o -1.0o -1.0o -1.0o -1.0o -1.0o -1.0o 
8o 5.0o 4.0o 4.0o 5.0o 5.0o 5.0o 5.0o 4.3o 

16.5o 14.0o 14.0o 14.0o 14.0o 14.0o 14.0o 14.0o 14.0o 
Vision head = 35 degrees (angles obtained by regression SVM) 

-16.5o -15.0o -15.0o -16.0o -16.0o -16.0o -16.0o -16.0o -15.9o 
-8o -10.0o -10.0o -10.0o -10.0o -10.0o -10.0o -10.0o -10.0o 
0o -1.0o   -1.0o   -1.0o   -1.0o   -1.0o   -1.0o   -1.0o   -1.0o 
8o 5.0o 4.0o 4.0o 6.0o 6.0o 6.0o 6.0o 5.6o 

16.5o 14.0o 14.0o 14.0o 14.0o 14.0o 14.0o 14.0o 14.0o 
Vision head = 50 degrees (angles obtained by regression SVM) 

-16.5o -18.0o -18.0o -17.0o     -17.7o 
-8o -11.0o -10.0o -11.0o     -10.7o 
0o -2.0o -2.0o -2.0o     -2o 
8o 4.0o 5.0o 7.0o     5.3o 

16.5o 13.0o 12.0o 12.0o     12.3o 
Vision head = 65 degrees (angles obtained by regression SVM) 

-16.5o -17.0o -17.0o      -17o 
-8o -8.0o -9.0o      -8.5o 
0o -1.0o -2.0o      -1.4o 
8o 4.0o 4.0o      4o 

16.5o 13.0o 12.0o      12.5o 
 
Table 1. Results for each vision head angle assumed in the training phase (20, 35, 50 and 65) 
 

Vision head = 20 degrees 
True angle Mean Absolute deviation 

-16.5o -15.1o -1,4o 
-8o -9.1o 1,1o 
0o    -1.0o 1,0o 
8o 4.3o 3.7o 

16.5o 14o 2.5o 
Vision head = 35 degrees 

-16.5o -15.9o -0.6o 
-8o -10.0o 2.0o 
0o    -1.0o              1.0o 
8o   5.6o 2.4o 

16.5o 14.0o 2.5o 
Vision head = 50 degrees 

True angle Mean Absolute deviation 
-16.5o -17.7 o 1.2o 

-8o -10.7 o 2.7o 
0o -2.0 o 2.0o 
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8o 5.3 o 2.7o 
16.5o 12.3 o 4.2o 

Vision head = 65 degrees 
-16.5o -17.0 o 0.5o 

-8o -8.5 o 0.5o 
0o -1.4 o 1.5o 
8o 4.0 o 4.0o 

16.5o 12.5 o 4.0o 
 
Table 2. Absolute deviation between the mean of the angle values obtained by the regression 

SVM and the real angles (calibration map) 
 

Vision head angle Erro correction 
20o 1.4o 
35o 1.46 o 
50o 2.56o 
65o 2.1o 

Mean 1,88o 
 
Table 3. Mean error correction of each vision head angular position 
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Fig. 13. Graph of the overall error correction 

 
6. Experimental Results 
 

A version of the proposed framework using an SVM multi-classifier to recognize the objects 
in the soccer field (same team robot, the other team robot and ball) can be found in (Oliveira 
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et al, 2005). To evaluate this system, Table 4 summarizes results over different illumination 
values, according to Robocup rules for F180 robot competition (Robocup, 2007).  
 

Illumination  
(lux) 

Classification  
Rate (%) 

570 87.75 
660 84.08 
780 84.87 
800 86.36 
920 87.72 
970 90.00 

 
Table 4. Classification rate over different illumination values, measured by means of a 

luximeter 
 
A luximeter was used to evaluate the illumination over the objects in the field. In order to 
decrease the illumination changing effect, the YCrCb colour space was used. After the object 
pixels have been classified, a cluster algorithm was applied in order to give the centroid of 
the object, considering: for the robots, the colours of the balls on the top of the robot, which 
discriminates the same team and the other team robots; and the ball.  
 
Considering different kernels, Table 5 shows the overall performance classification rate over 
800 luxs of illumination. 
 

Kernel 
type 

Classification  
Rate (%) 

Linear 77.6 
Gaussian 84.6 
Sigmoid 78.5 

3 deg. polynomial 64.2 
 
Table 5. Use of different kernel types and its respective classification rate in 800 luxs 
 
It is worth noting that Gaussian kernel has given the best classification rate and has 
motivated its use for classification and the results in Table 4. 
Considering all the aforementioned, and motivated by the speed and good results in object 
recognition (Viola & Jones, 2001) by the boost classifiers, we have decided to apply a new 
classification approach, described in Section 3.1. 
The performance of the system was again evaluated in the same conditions. Table 6 shows 
the last results in different illumination values (in luxes). As can be seen in Table 6, the 
classification performance rate increased with a respective increasing in speed (from 5 to 10 
fps), since the Gaussian SVM is only applied in the final stage of the cascade rejection of the 
Adaboost (15 stages used. For more information, see Section 3.1). 
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Illumination  
(lux) 

Classification  
Rate (%) 

570 88.01 
660 90.34 
780 91.23 
800 91.67 
920 93.45 
970 94.06 

 
Table 4. Classification rate over different illumination values, measured by means of a 

luximeter 

 
7. Conclusions 
 

A framework for perception in robotics soccer has been presented. The proposed framework 
has shown been effective in recognize coloured objects in the soccer field but it might be 
slightly changed to be used in different approaches, through a new set of training samples 
and fuzzy rules. 
A TS fuzzy engine has been used to integrate information from different sensors, 
particularly, an IR distance sensor and a camera. To integrate these sensor data, a novel 
calibration method, based on a regression SVM, was developed and it has shown a robust 
mapping between the calibration map and the obtained values in camera space, with a low 
average error of 1.88 degrees.  
Also, the vision system was evaluated, and the new scheme, with an addition of a cascade of 
boost rejection and an SVM, has given better performance than in (Oliveira, 2005). The 
Adaboost classifier decreased the computation cost for the object recognition task and the 
SVM, used at the last stage of the cascade, reinforce the decisions taken by the Adaboost. 
Future work has been conducted to a temporal image fusion by means of a tracking system, 
which will allow a robot to analyze of the behaviour of the robots and the ball. Moreover, 
this system will help to enhance the classification performance by decreasing yet more the 
number of false alarms. 
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1. Introduction 
 

Many embedded systems, such as those found in planes, trains, cars, robots and machine 
tools, exhibit specific timeliness, predictability and precedence constraints that must be 
respected. In many cases they are built on top of COTS microprocessor boards, possibly 
PCcompatibles, e.g., PC104, SBCs and Mini-ITX, and using multi-tasking operating systems 
or kernels, both real-time (RTOS) and general purpose (GPOS) despite the profound 
architectural and functional differences exhibited by these two classes of software 
infrastructures (Gopalan, 2001). 
In fact, GPOS are typically time-shared multi-processing systems, optimized to manage 
heterogeneous classes of resources such as CPU, memory, disk, network interface, etc. The 
performance criteria for these systems are mostly associated with average throughput and 
fairness, the typical applications are not strictly time-constrained and may exhibit 
unpredictable blocking and execution times and activation latencies. Conversely, RTOS 
favor the timely execution of the activities they support. However the predictability 
delivered by this class of OSs comes at a price, which usually takes the form of additional 
information and constraints on the application tasks, e.g., bounded worst-case execution 
time, minimum inter-arrival time or activation period, relative phases and precedence 
constraints, and on operating system primitives, e.g., bounded blocking times, predictable 
synchronization primitives, suitable schedulers and admission control. 
The architectural dichotomy presented by RTOS and GPOS leads to significant differences 
at the application implementation level, and thus the choice of using an RTOS or a GPOS 
may not be completely dictated by the timeliness and predictability aspects, only. For 
example, in soft real-time applications, which tolerate occasional failures in the time 
domain, GPOS may be preferred since they deliver sufficient real-time performance and 
generally outperform RTOS in practical aspects like hardware support, price, availability 
and diversity and quality of development tools. 
Nevertheless, GPOS lack some features that are commonly required by embedded 
applications, e.g., support for automatic activation of recurrent tasks with enough precision, 
phase control and precedence constraints. These difficulties have been perceived in the 
scope of the CAMBADA middle-size robotic soccer team (Cambada), developed at the 
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University of Aveiro, Portugal, and led to the development of a user-space simple process 
manager library, called PMan, which extends the native services provided by the underlying 
GPOS, Linux in this case. The PMan services are currently used to automatically trigger 
processes, adapt the Quality of Service (QoS) delivered to each process according to the 
operational environment, and to enforce phase and precedence constraints between distinct 
but related processes. 
This chapter describes the PMan library implemented in Linux and presents results that 
confirm the usefulness of the services provided. It is organized in the following way: Section 
2 discusses related work; Section 3 addresses the internals of the process manager layer 
(PMan); Section 4 presents a case study including practical experiments and Section 5 
concludes the chapter. 

 
2. Related work 
 

Since the mid 90s that several attempts were made to achieve real-time performance with 
time-sharing general purpose operating systems. One approach that received substantial 
attention from the research community was the use of CPU reservations (Lee et al, 1996) 
(Jones et al, 1997) according to which a task could establish a contract with the CPU, 
reserving a given amount of time units every given period. These reservations would have 
priority over the time-sharing tasks. However, this model was not adequate to provide low 
jitter execution, could lead to large blocking unless a consistent system-wide reservation 
scheme was applied to all resources, and did not account for variable execution time. This 
aspect caused particular inefficiency in multimedia applications, thus (Chu and Nahrstedt, 
1997) proposed supporting a new class of periodic but variable execution time tasks, which 
was completely built at user-level, thus highly portable, but required a kernel that could 
provide reserves. 
This same idea of providing real-time support to applications running in user space was 
also the motivation for the development of the LXRT module in RTAI/Linux (LXRT). This 
module permits executing hard real-time tasks in user-space context, with a positive impact 
in the application development effort and in the system integrity, since programming errors 
caused by the real-time tasks do not jeopardize the overall Linux kernel sanity. This feature 
comes at a cost of degraded real-time performance, namely latency and jitter, particularly 
when Linux system calls are used by the tasks. The Xenomai project (Xenomai) presents 
several resemblances with RTAI/LXRT, however has a greater focus in facilitating the 
developers migration from RTOS to GNU/Linux based environments, by providing an 
emulation layer that supports diverse RT-APIs via skins, e.g., for VxWorks, POSIX and 
μITRON. Both of these approaches provide good timing performance but require adequate 
kernel level support that is not provided by the Linux kernel alone. 
A different path was followed by Chu and Nahrstedt (1997) in which soft real-time 
operation was achieved with a simple user-space scheduler based on the fixed priorities 
defined within POSIX.4. We also follow this approach, providing a user-space scheduler 
that can simply be executed as a normal application in a Linux GPOS, without need for 
kernel patches or specialized kernels. With respect to (Chu and Nahrstedt, 1997), we take a 
step further adding support for off-sets and precedence constraints. 
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3. The process manager layer - PMan 
 

The core of our proposal is the processor manager layer, called PMan, which aims at 
facilitating the development of soft real-time applications, extending the native services 
provided by the underlying GPOS in the following aspects: 

• automatic activation of recurrent tasks; 
• settling of relative phase control, allowing to establish temporal offsets among 

tasks; 
• precedence constraints, conditioning the release of processes to the conclusion of a 

set of predecessors; 
• on-line process management and QoS adaptation, allowing adding and removing 

processes at run-time as well as changing dynamically the temporal properties of 
the executing ones, without service disruption. 

The time management within PMan is associated to a periodic tick whose source is 
userconfigurable and can be generated with a timer or an external event. For example, in the 
CAMABADA project the PMan tick is associated with the arrival of image frames, in order 
to minimize the latency between the image acquisition and the activation of the related 
processing tasks. 
The PMan operation relies on certain data concerning the processes, which is kept within 
the PMan table. A process record in this table is shown in Table 1. The process name and 
process pid fields allow a proper process identification, which is used to associate a table 
entry with a particular process and to send OS signals to the processes, respectively. The 
period and phase fields are used to trigger the processes at adequate instants. The period is 
expressed in number of PMan ticks, allowing each process to be triggered every n ticks. The 
phase and delay fields permit de-phasing the processes activation, for example to balance 
the CPU load over time, with potential benefits in terms of process activation jitter. The 
deadline field supports a basic reflection mechanism permitting the process, when 
necessary, to carry out sanity checks or recovery actions in case of process misbehavior. A 
user specified process is automatically activated upon occurrence of a deadline miss event. 
The following section of the PMan process record is devoted to the recollection of statistical 
data, which can be useful for profiling purposes. Finally, the status field keeps track of the 
current process state. 
The library of services associated to the PMan layer is summarized in Table 2. The layer is 
initialized via the PMAN_init service and terminated with PMAN_close. The process 
registration in the PMan table is carried out with PMAN_procadd. After registering it is 
necessary to bind the process OS pid using PMAN_attach. This separation allows having a 
process registering itself autonomously or having a third party managing the registration 
and properties of other processes. Process entries may be removed from the PMan table by 
calling PMAN_procdel. PMan_detach dissociates a process from a PMan table entry. 
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Table 1. PMan process record 
 

 
Table 2. PMan services 
 
Attaching/detaching processes can be carried out online to allow, for example, selecting one 
from a set of processes to carry out a given action according a desired cost function, i.e. 
implementing functional alternatives that can be useful during CPU overloads.  
A specific feature of PMan is the support for precedence constraints among processes. For 
example, in a classical sampling-controller-actuation loop it is necessary to guarantee that 
these functions are executed strictly in this order to have the end-to-end latency minimized. 
With the recent advances in computing hardware, e.g., hyper-threading and multi-core 
CPUs, simpler techniques such as those based on fixed priorities are no longer enough to 
enforce the right sequencing, being necessary to use explicit synchronization primitives. 
These ones become hard to use in non-trivial situations with many-to-many dependencies 
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between processes or when the set of processes and, consequently, their precedence 
relations, vary dynamically. To cope with this difficulty the PMan library manages 
automatically the precedence constraints among processes. Applications declare precedence 
relationships using PMAN_precadd and, conversely, PMAN_precdel to remove previously 
established relationships. PMan checks all related precedences before actually releasing a 
process. The status of precedence constraints is updated whenever processes terminate. 
The PMAN_QoSupd call allows changing the QoS allocated to each process at runtime. The 
QoS attributes depend on the underlying OS. The current implementation over Linux 
considers the OS priority as a QoS parameter. The application processes are assigned 
realtime priorities, with SCHED_FIFO scheduler, via the sched_setscheduler system call. 
The process priority, supplied as argument to PMAN_QoSupd, must be within the range 
[sched_get_priority_min, sched_get_priority_max]. Similarly, the temporal properties of one 
process can also be updated dynamically using PMAN_TPupd. The ability to change the 
QoS of processes at runtime is particularly useful when the environment is highly variable 
and/or hard to characterize, allowing the application to dynamically adapt itself, allocating 
more resources to the processes that, in each instant, have higher impact on the global 
performance. 
The PMAN_epilogue call must be issued by every process managed by PMan, just before 
termination. This service is required for internal PMan management, namely verification of 
deadline violations and updating precedence constraints. PMAN_query, on the other hand, 
allows accessing the statistical data of each registered process, which can be useful, for 
example, for profiling and load management. Finally, PMAN_tick carries out temporal 
management in PMan, incrementing the tick count, activating processes, checking task 
deadlines, etc. This service must be requested periodically either with a system timer or with 
an external event. The latter mode, which is not commonly found, supports a transparent 
synchronization of the application execution with an external event stream, such as the 
arrival of image frames from a camera with automatic image capture. 

 
4. Process synchronization with PMan: a case study 
 
4.1 The CAMBADA vision subsystem architecture 
As stated above, the PMan library was developed to address some difficulties perceived in 
the scope of the CAMBADA RoboCup middle-size robotic soccer team (Cambada). 
Currently, the vision subsystem architecture (Fig. 1) uses one catadioptric configuration 
implemented with a low cost Fire-wire web-camera (BCL 1.2 Unibrain camera) and a 
hyperbolic mirror. The camera delivers 640x480 YUV images at 30 frames per second. When 
a new frame becomes available, the image handling process is automatically triggered and 
the frame is placed in a shared memory buffer. The Color_Class[i] set of processes (Fig. 1) 
will then analyze the acquired image for color classification, creating a new one with color 
labels, i.e., an 8 bit per pixel image. This image is also placed in a shared image buffer, which 
is afterwards analyzed by the Obj_track[i] object detection processes (Fig. 1). The output of 
the detection processes is placed in the real-time database (RTDB) which can be accessed by 
the other processes on the system, such as the control action and world state update. 
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Fig. 1. CAMBADA vision subsystem architecture 

 
4.2 Motivation for explicit precedences and relative offsets 
The activation of the image-handling processes is carried out by the PMan manager right 
after the arrival of each new image frame. In earlier versions (Pedreiras etal. 2006; 2007) the 
PMan triggered sets of related tasks simultaneously, using priorities to enforce precedence 
constraints. This approach worked well with a single CPU and in the absence of 
hyperthreading but it failed to enforce such constraints when the computing platform of the 
robots was updated to Intel™ Core2Duo™ processors with two CPUs and hyper-threading. 
This is a common problem in real-time applications, which depend on specific features of 
the underlying hardware platform. When the platform is replaced, previous assumptions 
may fail leading to a poor application performance and possibly to a system failure. 
Therefore, the PMAN_precadd and PMAN_precdel primitives (Table 2) were added to the 
PMan library to deal with precedence constraints explicitly, as referred in Section 3.  
Another identified problem was the need to adjust the control parameters individually, for 
each robot, due to differences in CPU processing power and thus differences in end-to-end 
image handling latencies. Moreover, the highly variable nature of the execution time of 
image processing activities further complicated the controller tuning. To solve these 
problems the actual release instant of the control process was decoupled from the 
termination of the preceding object tracking processes and it was set with a predetermined 
offset with respect to the image reception. This technique substantially reduces the 
dependence of the control performance on the underlying hardware used and it was added 
to the current version of PMan. 

 
4.3 Experimental results 
To experimentally verify the implementation and assess the performance of the PMan 
library several experiments were carried out using the CAMBADA architecture depicted in 
Fig. 1. Table 3 shows the process set used in the experiments. 
 

 
Table 3. Experimental process set 
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Two hardware platforms were used, one based on an Intel Pentium M Processor at 1.6GHz 
(Asus A3N notebook PC) and another based on an Intel P4 DualCore at 2.6GHz (Asus 
Pundit desktop PC). Both run the Linux 2.6.22 kernel, with the timer frequency set to 1000 
Hz and the High Resolution Timer Support enabled. The first experiment aimed at assessing 
the overhead induced by the PMan layer, namely by executing the PMAN_tick service. 
Table 4 shows the latencies measured from the activation of the readFireWire process, which 
calls PMAN_tick, to the start of execution of Color_Class[0], the process that executes right 
after. Two different scenarios have been considered. The first scenario (Immediate) 
corresponds to a slight modification of Table 3 in which the Delay parameter is made equal 
to 0 for all processes. This means that all processes execute as soon as possible, i.e., when the 
CPU is available and the precedence constraints are met. The other scenario (Deferred) 
corresponds to the parameters specified Table 3. Both scenarios differ only in the activation 
of the Control and WSUpdater processes, which is deferred by 20ms after the trigger in the 
latter case. 

 
Table 4. Upper bound on the execution time of PMAN_tick 
 
The measured latencies vary between 5μs and 93μs in the notebook platform and between 
8μs and 42μs in the desktop platform. As expected, the average values are lower for the 
desktop PC due to the higher CPU processing power. It should also be remarked that the 
deferred execution incurs an additional execution penalty, resulting from the need to create 
a wake-up thread and an extra call to the nanosleep primitive. Nevertheless, in any of the 
scenarios analyzed the additional overhead and latency induced by the PMAN_tick event 
are negligible in face of the PMan tick period considered (33ms). 
Table 5 shows the results of a second experiment, aiming at verifying the effectiveness of the 
deferred activations, namely those of the Control process. When the activation is immediate, 
i.e. with Delay=0, the activation latency is highly variable (with the notebook) and hardware 
dependent, reaching an absolute jitter of almost 18ms in the worst-case, which is over 50% 
of the sampling period, a non-negligible value from the control performance point of view. 
With deferred activation, i.e. Delay=20ms, the absolute jitter is substantially reduced, being 
below 3.5ms for the notebook and below 35 micro-seconds for the desktop PC. Note that in 
the experiments the precedence constraints are always enforced and thus part of the jitter 
observed in the notebook platform results from the predecessor tasks requiring more than 
20ms to complete thus pushing the activation of the control process. 
 

 
Table 5. Control process activation delay 
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As expected, enforcing a deferral in the activation of processes that are subject to precedence 
constraints can have a noticeable impact on the respective regularity practically eliminating 
the respective jitter. Furthermore, the activation latency and associated jitter become nearly 
hardware independent. This increased execution predictability facilitates the tuning of 
feedback controllers, such as those used within the Control process, resulting in improved 
control performance. 
Fig. 2. presents a histogram of the control process activation latencies both with deferred 
and immediate execution in the notebook platform. The reduction in the jitter figures is 
clear. With the deferred execution near 90% of the process activation latencies occur within a 
vicinity of 1ms of the desired value while with immediate execution the activation pattern is 
substantially enlarged, with latencies ranging from near 6ms to around 23ms and two clear 
peaks. It should be remarked that with immediate execution the start time of the control 
process depends solely on the completion of its predecessors and that this instant depends 
on the amount of processing they required. This amount depends on the richness of the 
images, i.e., on the number of regions that have to be checked, a parameter that depends on 
the environment (colors of the objects surrounding the playfield, illumination intensity and 
nature, etc.) and is, to a large extent, unpredictable and highly dynamic. Therefore, to allow 
a fair comparison among the diverse scenarios a fixed synthetic workload was generated 
and used throughout the experiments. 
Fig. 3 presents a histogram similar to that in Fig. 2 but referring to the desktop platform. The 
major distinction between the results with both platforms is the strong reduction in the jitter 
achieved with the desktop PC caused by its substantially higher processing power. 
Particularly, it is worth noticing the high accuracy with which the control process is 
triggered in the desktop PC with deferred execution. When this process is triggered the 
precedence constraints are always already met and thus the residual jitter is due to the 
handling of OS events, only. This behavior is confirmed quantitatively by inspecting Table 5. 
The control process activation for the desktop platform varies between 20078micro-seconds 
and 20046micro-seconds, with a standard deviation of 3 micro-seconds. 

 
Fig. 2. Control process activation latency with deferred execution (left) and immediate 

execution (rigth), notebook platform 
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Fig. 3. Control process activation latency with deferred execution (left) and immediate 

execution (right), desktop platform 
 
Fig. 4 shows an excerpt of an execution timeline in the notebook PC. Process activations are 
indicated by small circles. The four Color classification processes and the five Object tracking 
processes execute in sequence, inheriting the execution jitter of their predecessors. However, 
the Control and World State update processes, on top, have a deferred activation that absorbs 
the execution jitter of the predecessors, resulting in a higher activation regularity. Notice, 
nevertheless, that these processes also have precedence constraints, which are always 
enforced, even if the execution of the predecessors takes longer than the specified deferral 
delay. 

 
Fig. 4. Process execution timeline. Notebook PC, deferred execution 

 
5. Conclusions 
 

Using general purpose operating systems for soft real time applications has several 
advantages related with low costs and the abundance of device drivers and software tools. 
However, such applications still require adequate timing services, for process activation and 
synchronization. 
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In this chapter we presented a process management library that provides such services with 
substantial hardware independence and executes completely within user-space, being thus 
very flexible to deploy and use. In particular, this library provides support for periodic 
process activations, possibly with relative offsets and explicit precedence constraints, and 
also dynamic adaptation of temporal parameters and QoS attributes. 
The library was developed within the scope of the CAMBADA RoboCup middle-size soccer 
robots. Using this application as a case study, the chapter presents several practical 
experiments that show the low overhead induced by the process management structure and 
the effectiveness of its support for precedence constraints and relative offsets with hardware 
independence. 
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1. Introduction 
 

The RoboCup simulated soccer league (RoboCupSoccer) is an important and useful tool for 
multi-agent and machine learning research which provides a distributed, multi-agent 
environment in which agents have an incomplete and uncertain world view 
(Kitano et al., 1995; Kitano et al., 1997).  The RoboCupSoccer state-space is extremely large, 
and the agent perception and action cycles in the RoboCupSoccer environment are 
asynchronous, sometimes resulting in long and unpredictable delays in the completion of 
actions in response to some stimuli.  The large state-space, the inherent delays, and the 
uncertain and incomplete world view of the agents can increase the learning cycle of some 
machine learning techniques onerously. 
There is a large body of work in the area of the application of machine learning techniques 
to the challenges of RoboCupSoccer (e.g. Luke, 1998a; Luke, 1998b; Ciesielski & Wilson, 
1999; Stone & Veloso, 1999; Uchibe, 1999; Ciesielski & Lai, 2001; Ciesielski et al., 2001; 
Riedmiller et al., 2001; Stone & Sutton, 2001; Bajurnow & Ciesielski, 2004; Riley & Ciesielski, 
2004; Lima et al., 2005; Riedmiller et al., 2005; Riley, 2005), but because the RoboCupSoccer 
environment is so large, complex and unpredictable, the extent to which such techniques 
can meet these challenges is not certain.  More progress could be made more quickly if the 
complexity and uncertainty could be reduced: while tactics may differ due to uncertainty in 
the environment, high-level strategies learned in a less complex and more certain 
environment should transfer directly to a more complex and less certain environment.   
SimpleSoccer1 (Riley, 2003) was developed as an environment that reduces complexity and 
uncertainty sufficiently to increase the viability of machine learning techniques, yet retains 
sufficient complexity and dynamics to allow learning from SimpleSoccer to be directly 
transferrable to the RoboCupSoccer environment. 

 
2. The SimpleSoccer Robot Soccer Simulator 
 

The primary objective when creating the SimpleSoccer environment was to create an 
environment complex and dynamic enough that while low-level tactics may differ due to 

                                                 
1 Full documentation and source code is located at http://www.rileys.id.au/SimpleSoccer.html 
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West Goal East Goal 

the removal of systematic uncertainty, high-level strategies directly applicable to the 
RoboCupSoccer environment could be developed, thus providing a simple yet sufficiently 
accurate model of the RoboCupSoccer environment that allows rapid learning.  The design 
objective was achieved by modelling only the attributes of the RoboCupSoccer environment 
necessary to allow ball and player interaction with the provision of basic player actions, and 
by not modelling the client-server environment and systematic uncertainty inherent in 
RoboCupSoccer.  The SimpleSoccer environment is comprised of : 

• the soccer field 
• fixed landmarks - the goals 
• the ball 
• up to two teams with a maximum of eleven players each. 

The SimpleSoccer environment was inspired in part by simplicity of the Ascii Soccer 
environment (Balch, 1995), but is a more complex environment which more closely models 
the RoboCupSoccer environment.  

 
2.1 The Field 
The soccer field in SimpleSoccer is represented by a two-dimensional grid with the goal 
markers being the only landmarks available to players (Fig. 1) The goal area for 
SimpleSoccer, in keeping with the RoboCupSoccer field and goals, is a defined area at each 
end of the field.  The boundaries in SimpleSoccer, except for the goal areas, are hard barriers 
which impede movement of the ball and players: the ball does not rebound from the 
boundaries.  Both the field size (length and width expressed as a number of cells) and goal 
size (in cells) are configurable.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Soccer field and landmarks in the SimpleSoccer environment (grid lines not shown) 
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Player whose vision perspective is being illustrated

View Angle 
View Length

2.2 The Players 
Player movement and sensory capabilities in SimpleSoccer are similar to those of 
RoboCupSoccer.  In the SimpleSoccer environment players may move in any direction, 
specified by a real-valued angle from 0.0 to 360.0 degrees relative to the player’s current 
facing direction.  Similarly, the ball can be kicked in any direction.  Player and ball locations 
are specified by discrete grid co-ordinates, or cells: while movement and other actions can 
be in any direction, at the completion of an action, player and ball final locations are 
quantized to discrete cells.  A player can only kick the ball if the ball is within a defined 
kickable distance (measured in cells) from the player. 
Players in SimpleSoccer have a field of vision similar to that of RoboCupSoccer.  Fig. 2 
shows the range of a player’s vision in the SimpleSoccer environment – players can see 
objects in a diamond-shaped area in the direction the player is facing.  A player’s viewing 
diamond is determined by the view angle and view length, and only objects of interest (ball, 
player or goal) within a player’s viewing diamond can be seen by the player.  The black 
circles shown in Fig. 2 represent objects on the field – only one is visible to the player in the 
diagram.  At each time interval during a game all players are presented with the cell co-
ordinates of, and direction (relative to the player’s facing direction) and distance (number of 
cells) to any object of interest in the player’s field of vision.  Note that the information 
supplied to the player is limited to object location – no information regarding the movement 
of an object, either direction or speed, is supplied.  The location, and hence direction to, an 
object is only known to a player if that object is visible to the player.  Players may infer the 
location of objects based on previously known information, but this is likely to be less than 
reliable.  
The detail of the visual feedback delivered to a player in the SimpleSoccer environment is 
the same irrespective of the player’s vision parameters – only the size of the viewing 
diamond changes, the amount of detail does not.  Unlike the RoboCupSoccer environment, 
players are not able to sense objects that are close but not visible to the player – the only 
sense available to players in the SimpleSoccer environment is visual. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The visible range of a player in the SimpleSoccer environment 
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2.2.1 Available Player Actions 
The set of player actions provided by the SimpleSoccer simulator is a combination of some 
very basic, simple actions and some more complex hand-coded combinations of the basic 
actions.  The complete set of actions available is listed in Table 1. 
 

Action Description 

Turn The player turns through the angle specified.  
Argument: direction. 

Dash The player dashes in the direction specified with the power 
specified. 
Arguments: direction, power, face. 

Kick If the ball is within a kickable distance from the player, the player 
kicks the ball in the direction specified with the power specified. 
Arguments: direction, power, face. 

RunTowardGoal If the direction to the player’s goal is known, the player dashes once 
in that direction, otherwise no action is taken.  
Argument: power.  

RunTowardBall If the direction to the ball is known, the player dashes once in that 
direction, otherwise no action is taken.  
Argument: power. 

GoToBall If the direction to the ball is known, the player dashes towards the 
ball and continues to dash in that direction until the ball is within 
the kickable distance, otherwise no action is taken.  
Argument: power. 

KickTowardGoal If the direction to the player’s goal is known, and the ball is within 
the kickable distance, the player kicks the ball once in the direction 
of its goal, otherwise no action is taken.  
Argument: power. 

DribbleTowardGoal If the direction to the player’s goal is known, and the ball is within 
the kickable distance, the player kicks the ball once in the direction 
of its goal, then dashes once in the same direction. 
If the direction to the player’s goal is not known, or the ball is not 
within the kickable distance, no action is taken.  
Argument: power. 

Dribble If the ball is within the kickable distance, the player kicks the ball 
once in the direction it is facing, then dashes once in the same 
direction.  
If the ball is not within the kickable distance, no action is taken.  
Argument: power. 

DoNothing The player takes no action. 

Table 1. Available player actions 
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For each of the actions shown in Table 1: 
• direction is specified in degrees in a clockwise direction relative to the direction the 

player is facing. 
• power is specified as a percentage of maximum power and determines the number 

of cells the player or ball will travel as a result of the action. 
• face, where specified, if true causes the player to turn to face in the direction 

specified after the completion of the action performed. 

 
2.2.2 Player Default Action 
If a player is unable to determine an action to be taken based on the information known, the 
player may, if so configured, perform a hand-coded default hunt action - on the basis that 
the most likely cause for a player not being able to determine an action is that the ball is not 
visible.  The hand-coded hunt actions available as default actions are listed in Table 2.   
 

Default Action Description 

Hunt Action 1 
Goto Ball 

if the ball is not visible then 
dash in a randomly chosen direction 

else  
if ball is not in kickable distance then 

dash toward the ball 
else  

do nothing 
Hunt Action 2 

Locate Ball 
if the ball is not visible then  

dash in a randomly chosen direction 
else 

do nothing 
Hunt Action 3 

Random Turn 
turn 90° in a randomly chosen direction 

Table 2. Player default actions. 

 
2.3 The Game 
A SimpleSoccer game is played between two teams, each with a minimum of zero and a 
maximum of eleven players.  There must be at least one player present on the field, and the 
team sizes may be unequal, thus allowing for single player or single team training.  The East 
team starts the game on the right-hand (or east) side of the playing field (as viewed by the 
observer) and kicks towards the East Goal (Fig. 1).  Similarly, the West team starts the game 
on the left-hand (or west) side of the playing field and kicks towards the West Goal.  At the 
start of play the ball is placed at the centre of the field, and only the team kicking-off may 
enter the centre circle until contact is made with the ball. 
There is no referee in the SimpleSoccer environment, thus there are no free kicks for offside 
or other rule violations.  The ball is never out of bounds; the boundaries (except for the goal 
areas) are hard barriers which impede movement of the ball and players.  There is no 
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concept of player momentum and stamina as implemented in the RoboCupSoccer 
environment. 

 
Fig. 3. SimpleSoccer program flow 
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When the ball is kicked, the distance it will travel is calculated (as a number of cells) and the 
ball will travel that distance at a constant speed and direction unless it is kicked again, or it 
encounters a barrier (the field boundary or a player) or reaches a goal.  Similarly, when a 
player dashes, the distance the player will travel is calculated (as a number of cells) and the 
player will travel that distance at a constant speed and direction unless it initiates a new 
action or encounters a barrier (the field boundary, a goal or a player). 
The SimpleSoccer environment provides players with a single sensor that detects visual 
information about the field, such as the distance and direction to objects in the player's 
current field of view – no other information is provided to the player.  There is no coach, 
and there is no communication of any kind between players.  In contrast to the 
RoboCupSoccer environment, no random “noise” is introduced to the visual sensor 
information provided to the player – thus the information provided is complete and certain, 
and there is no loss of clarity of vision over distance. 
A SimpleSoccer unit of time is a single tick corresponding to one iteration of the program’s 
main loop (Fig. 3).  At each tick the ball and players are moved, if necessary, a single cell (as 
a result of a previous action) and each player is presented with their new (visual) view of 
the state of the game, whereupon each player determines what action, if any, is to be taken 
and that action is begun (any previous action still in progress is superseded by the new 
action).  
After each goal scored the ball is replaced at the centre of the field and the players replaced 
to their side of the field, and the game continues.  The game is terminated when one of the 
following conditions is met: 

• the maximum game time, measured in ticks, expires. 
• the target number of goals is scored by any team. 
• a period of no player action, measured in ticks, occurs. 

 
3. Evolving Goal-Scoring Behaviour 
 

The usefulness of the SimpleSoccer simulator as a simplified model for the robot soccer 
environment is demonstrated by using the environment to train a simulated robot soccer 
player to exhibit goal-scoring behaviour.   

 
3.1 Overview 
A messy-coded genetic algorithm (Holland, 1975; Goldberg et al., 1989) is used to evolve a 
population of simulated robot soccer players, with the SimpleSoccer simulator being used to 
evaluate the players’ ability.  The behaviour of the players is governed by a fuzzy inferencing 
system (Zadeh, 1965; Jang et al., 1997) with the ruleset for the fuzzy inferencing system being 
evolved by the genetic algorithm.   
Players being evolved are endowed with a configurable subset of soccer-playing skills taken 
from the full set of skills shown in Table 1.  In addition, if a player is unable to determine an 
action to be taken based on the information known to it, the player will perform one of the 
hand-coded default actions listed in Table 2.  
Players perform one of the available actions, or the configured default action, in response to 
external stimulus; the specific response being determined by the fuzzy ruleset and the fuzzy 
inferencing system. The external stimulus used as input to the fuzzy inference system is the 
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Planning 

Task Execution 
Movement 

Actions 

Sensors

visual information supplied by the soccer simulator. The output of the fuzzy inference 
system is an (action, value) pair which defines the action to be taken by the player and the 
degree to which the action is to be taken.  For example: 
 

(KickTowardGoal, power) 
(RunTowardBall, power) 
(Turn, direction) 

 
where power and direction are crisp values representing the defuzzified fuzzy set 
membership of the action to be taken. An example rule developed by the genetic algorithm 
is: 
 

if Ball is Left and Goal is Left then Turn SlightlyLeft 
 
The fuzzy inferencing system and messy-coded genetic algorithm are described briefly in 
the following sections, and in more detail in (Riley, 2005). 

 
3.2 Player Architecture 
The traditional decomposition for an intelligent control system is to break processing into a 
chain of information processing modules proceeding from sensing to action (Fig. 4).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Traditional control architecture 
 
The control architecture implemented in this work is similar to Brooks’ subsumption 
architecture (Brooks, 1985).  This architecture implements a layering process where simple 
task achieving behaviours are added as required.  Each layer is behaviour producing in its 
own right, although it may rely on the presence and operation of other layers.  For example, 
in Fig. 5 the Movement layer does not explicitly need to avoid obstacles: the Avoid Objects 
layer, if present, will take care of that.  This approach creates players with reactive 
architectures and with no central locus of control (Brooks, 1991).   
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Fig. 5. Soccer player layered architecture 
 

For the soccer player implemented for this work, the behaviour producing layers are 
implemented as fuzzy if-then rules and governed by a fuzzy inference system comprised of : 

• the fuzzy rulebase. 
• definitions of the membership functions of the fuzzy sets operated on by the rules 

in the rulebase. 
• a reasoning mechanism to perform the inference procedure.   

 
The fuzzy inference system is embedded in the player architecture, where it receives input 
from the soccer server and generates output necessary for the player to act (Fig. 6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Player architecture detail 

 
3.2.1 Soccer Server Information 
The application by the inferencing mechanism of the fuzzy rulebase to external stimuli 
provided by the soccer server results in one or more fuzzy rules being executed and some 
resultant action being taken by the player.  The external stimuli used as input to the fuzzy 
inference system are a subset of the visual information supplied by the soccer server: only 
sufficient information to situate the player and locate the ball is used.   
The SimpleSoccer server delivers only regular visual messages to the players: there are no 
aural or sense equivalents of the aural and sense messages delivered by the RoboCupSoccer 
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server in that environment.  Information supplied by the SimpleSoccer server is complete, in 
so far as the objects actually in the player’s field of vision are concerned, and certain.  
Players in the SimpleSoccer environment are aware at all times of their exact location on the 
field, but are only aware of the location of the ball and the goal if they are in the player’s 
field of vision.  The SimpleSoccer server provides the object name, distance and direction 
information for objects in a player’s field of vision.  The only state information kept by a 
player in the SimpleSoccer environment is the co-ordinates of its location and the direction 
in which it is facing. 

 
3.2.2 Fuzzification 
Input variables for the fuzzy rules are fuzzy interpretations of the visual stimuli supplied to 
the player by the soccer server: the information supplied by the soccer server is fuzzified to 
represent the degree of membership of one of three fuzzy sets: direction, distance and power; 
and then given as input to the fuzzy inference system.  Output variables are the fuzzy 
actions to be taken by the player.  The universe of discourse of both input and output 
variables are covered by fuzzy sets (direction, distance and power), the parameters of which 
are predefined and fixed.  Each input is fuzzified to have a degree of membership in the 
fuzzy sets appropriate to the input variable. 
The SimpleSoccer server provides crisp values for the information it delivers to the players.  
These crisp values must be transformed into linguistic terms in order to be used as input to 
the fuzzy inference system.  This is the fuzzification step: the process of transforming crisp 
values into degrees of membership for linguistic terms of fuzzy sets.  An example of input 
variable fuzzification is shown in Fig. 7.  In this example the crisp input variable x has a 
degree of membership (μ) of both fuzzy sets A1 (0.6) and A2 (0.1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Input variable fuzzification 
 

The membership functions shown in Fig. 8 are used to associate crisp values with a degree 
of membership for the fuzzy sets direction, distance and power.  The parameters for these 
fuzzy sets were not learned by the evolutionary process: they were fixed empirically.  The 
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initial values were set having regard to SimpleSoccer parameters and variables, and fine-
tuned after minimal experimentation in the SimpleSoccer environment. 

 

Fig. 8. Direction, distance and power fuzzy set membership 
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3.2.3 Implication and Aggregation 
The core section of the fuzzy inference system is the part that combines the facts obtained 
from the fuzzification with the rule base and conducts the fuzzy reasoning process: this is 
where the fuzzy inferencing is performed.   
After the input values are fuzzified they are applied to the antecedents of the fuzzy rules.  
For fuzzy rules with multiple antecedents, the fuzzy operators AND and OR are used as 
appropriate to obtain a single number that represents the result of the antecedent 
evaluation.  This value is the degree to which the rule is true and is then applied to the 
consequent membership function.  The evaluation of the antecedents is as follows: 

• for the disjunction of rule antecedents, the fuzzy operator OR is defined by the 
fuzzy set operation union: 

( ) ( ) ( )[ ]xxx BABA μμμ ,max=∪  
 

• for the conjunction of rule antecedents, the fuzzy operator AND is defined by the 
fuzzy set operation intersection: 

( ) ( ) ( )[ ]xxx BABA μμμ ,min=∩  
 
The method implemented to correlate the result of the antecedent evaluation to the 
membership function of the consequent is the correlation minimum, or clipping method, 
where the consequent membership function is truncated at the level of the antecedent truth 
(Fig. 9).   
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Correlation minimum example 
 
Aggregation is the process of combining the correlated fuzzy sets to produce a composite 
fuzzy region that represents the solution variable.  The solution fuzzy region is then 
defuzzified if a crisp solution is required (as is the case in this work).  The aggregation 
method used in this work is the min/max aggregation method.  This method ORs the 
correlated consequent fuzzy set for each rule with the contents of the solution variable’s 
output fuzzy region.  This process takes the maximum of the consequent fuzzy set and the 
solution fuzzy set at each point along their mutual membership functions.   
Fig. 10 is an illustration of a two-rule Mamdani Fuzzy Inferencing System (FIS) which 
implements the correlation minimum implication method and the min/max method of 
aggregation (Mamdami & Assilian, 1975).   

1.0

0.0
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Fig. 10. 2-rule Mamdani FIS using Correlation Minimum implication and min/max 

aggregation.  Reproduced from (Jang et al., 1997) 

 
3.2.4 Defuzzification 
The defuzzification method used is the mean of maximum method.  This technique takes the 
output distribution and finds its mean of maxima in order to compute a single crisp number. 
This is calculated as follows:  
 
 
 
 
where z is the mean of maximum, zi is the point at which the membership function is 
maximum, and n is the number of times the output distribution reaches the maximum level.  
An example outcome of this computation is shown in Fig. 11.   
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Mean of Maximum defuzzification method.  Adapted from (Jang et al., 1997) 
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3.2.5 Action Selection 
Only one action is performed by the player in response to stimuli provided by the soccer 
server.  Since several rules with different actions may fire, the action with the greatest level 
of support, as indicated by the value for truth of the antecedent, is selected. 

 
3.3 Player Learning 
This work employs an evolutionary technique in the form of a messy-coded genetic 
algorithm to evolve the rulebase that defines the behaviour of a robot soccer player.  A 
genetic algorithm (GA) is an adaptive search technique which maintains a population of 
potential solutions that evolves over time in accordance with the rules of the genetic 
operators implemented by the algorithm.  Each member of the population has its fitness as a 
solution to the problem evaluated against some known criteria, and members of the 
population are then selected for reproduction based upon that fitness, with a new 
generation of potential solutions being generated from the offspring of (typically) the most 
fit individuals.  The process of evaluation, selection, reproduction, recombination and 
mutation is iterated until an acceptable solution is shown (Fig. 12). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. The GA evolutionary cycle 
 
The evaluation of the worth of an individual as a solution is achieved by the use of a fitness 
function.  The objective of the fitness function is to numerically encode the performance of 
the individual with reference to the problem for which it is a potential solution.  This is an 
extremely important part of the process, for without a fitness function which accurately 
evaluates the performance of potential solutions, the search will fail. 

Evaluate 
Population 

Check Termination 
Condition

Selection & 
Reproduction 

Recombination 

Mutation

Generate 
Initial Population 

Stop 



Learning to Play Soccer with the SimpleSoccer Robot Soccer Simulator 

 

295 

The flexibility provided by the messy-coded genetic algorithm is exploited in the definition 
and format of the genes on the chromosome, thus reducing the complexity of the rule 
encoding from the traditional genetic algorithm.  Learning is achieved through testing and 
evaluation of the fuzzy rulebase generated by the genetic algorithm.   
The fitness function used to determine the fitness of an individual rulebase takes into 
account the performance of the player based upon the number of goals scored, or attempts 
made to move toward goal-scoring, during a game.  
The genetic algorithm implemented in this work is implemented using the Pittsburgh 
approach, where each individual in the population is a complete ruleset (Smith, 1980). 

 
3.3.1 Representation of the Chromosome 
For these experiments, a chromosome is represented as a variable length vector of genes, 
and rule clauses are coded on the chromosome as genes. The encoding scheme implemented 
exploits the capability of messy-coded genetic algorithms to encode information of variable 
structure and length. The mutation operator is analogous to the mutation operator for 
classic genetic algorithms, whereas the classic crossover operation is replaced by a cut-and-
splice operation (Goldberg et al., 1989). It should be noted that while the encoding scheme 
implemented is a messy encoding, the algorithm implemented is the classic genetic 
algorithm: there are no primordial or juxtapositional phases implemented. 
The basic element of the coding of the fuzzy rules is a tuple representing, in the case of a 
rule premise, a fuzzy clause and connector; and in the case of a rule consequent just the 
fuzzy consequent. The rule consequent gene is flagged to distinguish it from premise genes 
thus allowing multiple rules, or a ruleset, to be encoded onto a single chromosome.  
For single-player trials, the only objects of interest to the player are the ball and the player’s 
goal, and what is of interest is where those objects are in relation to the player. A premise is 
of the form: 
 

(Object, Qualifier, {Distance | Direction}, Connector) 
 
and is constructed from the following range of values: 
 

Object : { BALL, GOAL } 
 Qualifier : { IS, IS NOT } 

 Distance : { AT, VERYNEAR, NEAR, SLIGHTLYNEAR, 
      MEDIUMDISTANT, SLIGHTLYFAR, FAR, VERYFAR } 

 Direction : { LEFT180, VERYLEFT, LEFT, SLIGHTLYLEFT, STRAIGHT, 
     SLIGHTLYRIGHT, RIGHT, VERYRIGHT, RIGHT180 } 

 Connector : { AND, OR } 
 
Each rule consequent specifies and qualifies the action to be taken by the player as a 
consequent of that rule firing thus contributing to the set of (action, value) pairs output by 
the fuzzy inference system. A consequent is of the form: 
 

 (Action, {Direction | Null}, {Power | Null}) 
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and is constructed from the following range of values (depending upon the skillset with 
which the player is endowed): 
 
 Action : { TURN, DASH, KICK, RUNTOWARDGOAL,  
      RUNTOWARDBALL, GOTOBALL, KICKTOWARDGOAL, 
      DRIBBLETOWARDGOAL, DRIBBLE, DONOTHING } 
 Direction : { LEFT180, VERYLEFT, LEFT, SLIGHTLYLEFT, STRAIGHT, 
      SLIGHTLYRIGHT, RIGHT, VERYRIGHT, RIGHT180, 
      TOWARDBALL, TOWARDBOAL} 
 Power : { VERYLOW, LOW, SLIGHTLYLOW,  MEDIUMPOWER, 
      SLIGHTLYHIGH, HIGH, VERYHIGH } 
  
Fuzzy rules developed by the genetic algorithm are of the form: 
  

if Ball is Near and Goal is Near then DribbleTowardGoal Low 
if Ball is Far or Ball is SlightlyLeft then Run TowardBall High 

 
In the example chromosome fragment shown in Fig. 13 the shaded clause has been specially 
coded to signify that it is a consequent gene, and the fragment decodes to the following rule: 
 

if Ball is Left and Ball is At or Goal is not Far then Dribble Low 
 
In this case the clause connector OR in the clause immediately prior to the consequent clause 
is not required, so ignored.  
 

 (Ball, is Left, And) (Ball, is At, Or) (Goal, is not Far, Or) (Dribble, Null, Low) 

Fig. 13. Messy-coded genetic algorithm example chromosome fragment 

Chromosomes are not fixed length: the length of each chromosome in the population varies 
with the length of individual rules and the number of rules on the chromosome. The 
number of clauses in a rule and the number of rules in a ruleset is only limited by the 
maximum size of a chromosome, which for this work was 64 genes. The minimum size of a 
rule is two clauses (one premise and one consequent), and the minimum number of rules in 
a ruleset is one. Since the cut-and-splice and mutation operations implemented guarantee no 
out-of-bounds data in the resultant chromosomes, a rule is only considered invalid if it 
contains no premises. Any invalid rules are ignored when the ruleset is applied.  A complete 
ruleset is considered invalid only if it contains no valid rules.  
An example complete chromosome and corresponding rules are shown in Fig. 14 (with 
appropriate abbreviations).  Some advantages of using a messy encoding in this case are: 

• a ruleset is not limited to a fixed size 
• a ruleset can be over specified (clauses may be duplicated) 
• a ruleset can be under specified (not all genes are required to be represented) 
• clauses may be arranged in any way 
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Premise Consequent 

 
Rule 1: if Ball is Near or Ball is not Far and Goal is Near then RunTowardBall Low 
Rule 2: if Ball is At and Goal is VeryNear then KickTowardGoal MediumPower 
Rule 3: if Ball is Left then Turn Left 

Fig. 14. Example chromosome and corresponding rules 

In contrast to classic genetic algorithms which use a fixed size chromosome and require 
“don’t care” values in order to generalise, no explicit “don’t care” values are, or need be, 
implemented for any attributes in this method. Since messy-coded genetic algorithms 
encode information of variable structure and length, not all attributes, particularly premise 
variables, need be present in any rule or indeed in the entire 
ruleset.  A feature of the messy-coded genetic algorithm is that the format implies 
“don’t care” values for all attributes since any premise may be omitted from any or all rules, 
so generalisation is an implicit feature of this method. 

 
3.3.2 Selection and Reproduction 
Selection and reproduction are important processes for evolutionary algorithms.  
Individuals from the population are selected according to some criteria to be reproduced for 
the next generation.  GA reproduction is essentially a cloning operation in which the 
individuals selected for reproduction are copied, and it is during the recombination process 
that the copies are mated to form new individuals.  For genetic algorithms, selection and 
reproduction alone cannot introduce new individuals into the population: that is achieved 
throug the genetically-inspired recombination operators of crossover (cut-and-splice in the case 
of messy-coded GAs) and mutation.  The purpose of selection and reproduction is to favour 
fitter individuals on the basis that the fitter an individual the more likely it will produce 
even more fit offspring. 
A fitness-proportionate method of selection (Holland, 1975; Goldberg, 1989) known as 
“roulette wheel“ selection was implemented for this work.  With this method the number of 
times an individual is expected to be selected to reproduce is the ratio of the individual’s 
fitness to the average fitness of the population.  The implementation can be likened to a 
biased roulette wheel, where each individual in the current population has a slot on the 
roulette wheel proportional to that individual’s fitness.  The roulette wheel is spun once for 
each parent required, with the winning individuals being paired for reproduction. 

 
3.3.3 Cut-and-Splice for Variable Length Chromosomes 
Since the messy-coding implemented allows chromosomes of different lengths the crossover 
operation of the classic genetic algorithm needs to be modified.  For messy-coded genetic 
algorithms the crossover operation is considered in its two distinct steps: the cut operation 
and the splice operation.  The cut operator cuts each chromosome at a randomly chosen 

(B,N,O) (B,nF,A) (G,N,A) (RB,-,L) (B,A,A) (G,vN,O) (KG,-,M) (B,L,A) (T,L,-) 
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0 0 1 0 1 0 0 0 0 1 0 1 0 1 0

Cut points Splice points

1 1 0 1 0 0 0

Parents

1 1 1 1 0

0

Offspring

1 1

0

0

position, and since the chromosomes may be of different lengths, the resultant fragments 
may also be of different lengths.  The splice operator concatenates the fragments produced 
by the cut operator, resulting in two new chromosomes of possibly different lengths from 
the original chromosomes.  The cut-and-splice operation implemented in this work 
guarantees the operations will not result in out-of-bounds data in the resultant 
chromosomes.   Fig. 15 is an example of the cut-and-splice operation for messy-coded 
chromosomes. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15. Example cut-and-splice operation 

 
3.3.4 Mutation 
Mutation, which helps to maintain diversity in the population, is the arbitrary modification 
of individuals.  The mutation scheme implemented in this work is a variation of random 
single-bit mutation, but in this case it is random single-allele mutation since the genes 
encoded in this work are integer values rather than single bits.  This is a method in which a 
single allele is chosen randomly for modification to a random value.  The mutation operator 
implemented guarantees mutations will not result in out-of-bounds data in the resultant 
chromosome.   

 
3.4 Experimental Evaluation 
A series of 20 trials was performed in order to test the viability of the fuzzy inferencing 
system for the control of the player, and the genetic algorithm to evolve the fuzzy ruleset.  
The following sections describe the trials performed, the parameter settings for each of the 
trials and other fundamental properties necessary for conducting the trials. 

 
3.4.1 Fitness Evaluation 
The objective of the fitness function for the genetic algorithm is to reward the fitter 
individuals with a higher probability of producing offspring, with the expectation that 
combining the fittest individuals of one generation will produce even fitter individuals in 
later generations.  The fitness function used in these trials rewarded individuals for, in order 
of importance: 

• the number of goals scored in a game 
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• minimising the distance of the ball from the goal 
This combination was chosen to reward players primarily for goals scored, while players 
that do not score goals are rewarded on the basis of how close they are able to move the ball 
to the goal, on the assumption that a player which kicks the ball close to the goal is more 
likely to produce offspring capable of scoring goals.  This decomposes the problem of 
evolving goal-scoring behaviour into the two less difficult problems:  

• evolve ball-kicking behaviour that minimises the distance between the ball and 
goal, and  

• evolve goal-scoring behaviour from the now increased base level of skill and 
knowledge 

 
The actual fitness function implemented was: 
 
 
 
 

(1) 
  
 
 
where 

goals =  the number of goals scored by the player during the trial 
kicks =  the number of times the player kicked the ball during the trial 
dist =  the minimum distance of the ball to the goal during the trial 
fieldLen =  the length of the field 

 
Note that this fitness function indicates better fitness as a lower number, in effect 
representing the optimisation of fitness as a minimisation problem.   

 
3.4.2 GA Control Parameters 
The genetic algorithm parameters used in all 20 trials are shown in Table 3. 
 

Parameter Value 

Maximum Chromosome Length 64 genes 
Population Size 200 
Maximum Generations 25 
Selection Method Roulette Wheel 
Crossover Method Single point cut-and-splice 
Crossover Probability 0.8 
Mutation Rate 10% 
Mutation Probability 0.35 

 

{=f

goals×0.2
0.1

fieldLen
dist

×
+

0.2
5.0

0, >goals

0, =goals
0, >kicks

0, =kicks01.{
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Table 3. Genetic algorithm control parameters 
3.4.3 Simulator Control Parameters 
The SimpleSoccer simulator parameters used in all 20 trials are shown in Table 4. 
 
 

Parameter Value 

Field Length 61 cells 

Field Width 31 cells 

Goal Width 7 cells 

Kickable Distance 1.0 cells 

View Angle 90 degrees 

View Length 5 cells 

Maximum DASH distance 7.5 cells 

Maximum KICK distance 15 cells 

Player Skillset All skills listed in Table 1 

Default action Hunt action 3: Random turn 

 
Table 4. SimpleSoccer control parameters 

 
3.4.3 Trial Results 
For the results reported, each trial consisted of one complete execution of the genetic 
algorithm during which multiple simulated games of soccer were played, with the only 
player on the field being the player under evaluation.   
For each game, the player was placed at a randomly selected position on its half of the field 
and oriented so that it was facing the end of the field to which it was kicking, and the ball 
was placed at a randomly selected position along the centre line of the field.  A game was 
terminated when one of the following conditions was met: 

• the maximum game time of 1000 ticks expired. 

• the target  of 10 goals was scored, reflecting a fitness value of 0.05.  This figure was 
chosen to allow the player a realistic amount of time to develop useful strategies 
yet terminate the search upon finding an acceptably good individual. 

• a 100 tick period of no player action occured. 
 
A randomly generated population of players was generated and evolved over time by the 
genetic algorithm, with the evaluation of each member of the population being performed in 
the SimpleSoccer environment.  The evolutionary search  was stopped:  

• after a specified maximum number of generations, or 
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• when the specified target fitness was reached by any player. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16. SimpleSoccer: Best individual fitness 
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Fig. 17. SimpleSoccer: Population average fitness 
Fig. 16 shows the best individual fitness from the population after each generation for each 
of the 20 trials.  This graph shows that individuals able to score goals were found after very 
few generations, with some individuals being capable of scoring multiple goals in the 
allotted time. 
Fig. 17 shows the average fitness of the population after each generation for each of the 20 
trials.  This graph shows that the average performance of the population improves steadily 
and plateaus, but while individual players do score goals, the population does not approach 
an average fitness of 0.5, or goal-scoring behaviour.   
These results show that the method presented is capable of training a simulated robot soccer 
player to develop goal-scoring behaviour.  The method uses a genetic algorithm to evolve 
the fuzzy rulesets that drive the soccer player’s behaviour, with the evolutionary process 
being allowed to run for a maximum of only 25 generations which, while sufficient to 
demonstrate the effectiveness of the method, is probably not sufficient to evolve players 
with robust,  consistent goal-scoring behaviour. 

 
3.4.4 SimpleSoccer as a Model for RoboCupSoccer 
To gauge the effectiveness of the SimpleSoccer environment as a model for RoboCupSoccer 
a further series of 20 trials was performed in the RoboCupSoccer environment.  Similar 
simulator and GA control parameters were used.  Game times for the RoboCupSoccer 
environment were limited to 120 seconds (real time) rather than a number of program ticks.  
The results of these trials are shown below. 
Fig. 18 shows the best individual fitness from the population after each generation for each 
of the 20 trials.  It is evident from a comparison of Fig. 16 and Fig. 18 that while good 
individuals are found quickly in both environments, the algorithm seems to produce more 
consistent behaviour in the RoboCupSoccer environment.  These data show that once a good 
individual is found in the RoboCupSoccer environment, good individuals are then more 
consistently found in future generations than in the SimpleSoccer environment. 
Fig. 19 shows the average fitness of the population after each generation for each of the 20 
trials.  This graph shows that the performance of the population does improve steadily and, 
in some of the trials, plateaus towards a fitness of 0.5, or goal-scoring behaviour.  Fig. 19 also 
shows that the average fitness curves for the RoboCupSoccer trials are less tightly clustered 
than those of the SimpleSoccer trials (see Fig. 17), probably reflecting the more stochastic 
nature of the environment. 
While the difference in the results of the experiments in the RoboCupSoccer and 
SimpleSoccer environments indicate that SimpleSoccer is not an exact model of 
RoboCupSoccer, as indeed it is not intended to be, there is sufficient similarity in the results 
to indicate that the SimpleSoccer environment is a good simplified model of the 
RoboCupSoccer environment.   
Much of the motivation for creating the SimpleSoccer environment was the prohibitive time 
to train players in the real-time RoboCupSoccer environment and the need to reduce that 
training time to improve the efficiency and effectiveness of machine learning methods for 
training simulated robot soccer players.  Table 5 shows the average number of seconds of 
real time for a single fitness evaluation in each of the environments used to evolve players 
for robot soccer, and from the data shown in Table 5 it is evident that the goal of creating a 
more efficient environment for machine learning techniques has been achieved.   
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Fig. 18. RoboCuSoccer: Best individual fitness 
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Fig. 19. RoboCupSoccer: Population average fitness 
The RoboCupSoccer simulator used throughout this work was version 7.10, compiled and 
executed  on  an  HP 9000/777 workstation running version 11.0 of the HP-UX operating 
system.  The SimpleSoccer simulator was originally developed on an HP9000/777 
workstation running HP-UX version 11.0, and was later ported to an Intel Pentium-based 
PC running Windows XP.  Evaluation times are quoted for each of those systems.  No trials 
using the RoboCupSoccer simulator were performed on the PC.  Note that although the 
SimpleSoccer evaluation time is two orders of magnitude smaller on the PC, RoboCupSoccer 
evaluation times would not enjoy the same improvement if executed on the PC – the 
RoboCupSoccer evaluation times are constrained by the real-time nature of the simulator, 
and the training game times were 60 seconds.  Any benefit from running the 
RoboCupSoccer simulations on faster hardware would be evident in the few seconds of 
overhead time only, and would not significantly reduce the evaluation time. 
 

Simulator Platform Seconds/Evaluation 

RoboCupSoccer HP 9000/777 workstation. 120MHz PA-7200 CPU, 
256MB RAM, HP-UX 11.0 Operating System 70.65 

SimpleSoccer HP 9000/777 workstation. 120MHz PA-7200 CPU, 
256MB RAM, HP-UX 11.0 Operating System 10.20 

SimpleSoccer Compaq PC.  1.6GHz Pentium M CPU, 512MB 
RAM, Windows XP Operating System 0.112 

Table 5. Evaluation times 

 
4. Summary and Discussion 
 

The goal of this work was to create an environment with similar complexity and dynamics 
to the RoboCupSoccer environment, but with reduced uncertainty, both in player  
perception and in the player’s interaction with the environment.  The motivation was to 
create an environment in which the training times of machine learning techniques would be 
reduced sufficiently so as to improve the viability of such techniques, and to show that 
players could be trained in this environment to display reasonable goal-scoring behaviour.  
The SimpleSoccer environment was developed for this purpose, and through some sample 
experiments it was shown that the SimpleSoccer environment does aid in the reduction of 
training times for some machine learning techniques.   
The implementation of a messy-coded genetic algorithm which successfully evolves the 
ruleset for a fuzzy logic-based simulated robot soccer player was described.  Several trials 
were performed to test the capacity of the method to produce goal-scoring behaviour.  The 
results of the trials performed indicate that the player defined by the evolved fuzzy rules of 
the controller is capable of displaying consistent goal-scoring behaviour. 
Furthermore, tests in which the initial population for RoboCupSoccer was seeded with 
players evolved in the SimpleSoccer environment suggest that there is significant benefit in 
using the SimpleSoccer environment as an heuristic to generate high quality initial solutions 
for the RoboCupSoccer environment (Riley, 2003; Riley, 2005).  The evolution of players 
displaying reasonable goal-scoring behaviour is achievable in the SimpleSoccer 
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environment in a fraction of the time it would take in the RoboCupSoccer environment, and 
only a few generations are required in RoboCupSoccer to refine the behaviours evolved in 
the SimpleSoccer environment.  High-level strategies learned in the more certain 
SimpleSoccer environment are directly transferrable to the RoboCup environment, and 
when used as the starting point for further learning can help to reduce the training time in 
the RoboCup environment. 
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1. Introduction  
 

This work describes a method of analysing fitness landscapes and uses the method to 
analyse the difficulty of learning goal-scoring behaviour for robot soccer – a problem that is 
considered to be very difficult for evolutionary algorithms.  Learning goal-scoring 
behaviour can be made easier or harder by varying the amount of expert knowledge 
provided to the evolutionary process.  Expert knowledge can be varied by changing the 
innate player behaviours available, providing an a priori problem decomposition (that is, 
breaking the problem into a series of smaller, easier problems) or by providing a composite 
fitness function that effectively guides the search. 
The concept of fitness landscapes, and the idea that the process of evolution could be 
studied by visualizing the distribution of fitness values across the population as a landscape, 
has been long-established in the field of evolutionary biology, having been first proposed by 
Sewell Wright (Wright, 1932). Later the landscape analogy was revived with the 
development of formal methods to handle optimization problems in complex physical 
systems (Frauenfelder et al., 1997). A major area of concern with fitness landscapes is that 
there is no generally accepted definition of what constitutes a fitness landscape. There is not 
much agreement in the field as to what a fitness landscape is and how it should be arranged 
- whether a neighbourhood relation is required to describe it, and much less agreement as to 
what the neighbourhood relation should be. This work addresses these shortcomings by 
describing a simple, “black-box” neigbourhood relation that defines the fitness landscape 
generated by an evolutionary search. The efficacy of the method is shown by applying an 
evolutionary technique to a difficult search problem (learning goal-scoring behaviour), and 
using autocorrelation and information content landscape measures to analyse features of the 
resultant fitness landscape to explain how the difficulty of the problem is changed by 
injecting human expertise. The analysis reveals that when only basic skills are available to 
the player the fitness landscape is very flat and contains only a few thin peaks.  As more 
human expertise is injected, more gradient information becomes apparent on the landscape 
and genetic search is more successful. 
Evolving soccer-playing skills for robot soccer players is a well-known difficult problem for 
evolutionary algorithms. A wide variety of approaches and technologies have been used in 
attempts to construct good robot soccer players. These include hand-coding, genetic 
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algorithms, genetic programming, reinforcement learning, neural networks, behaviour-
based and deliberative agents, and various combinations of those. In the early years of the 
RoboCupSoccer competition (Kitano et al., 1995) a few researchers attempted to fine tune, or 
learn incrementally, some low-level skills using AI machine learning techniques 
(Stone, 1998; Stone & Sutton, 2001), but nearly all entrants used hand-coded skills and 
strategies (Luke, 1998). Even today hand-coded players, or players with hand-coded skills, 
generally continue to outplay players whose skills have been entirely learned or developed 
automatically (Lima et al., 2005). For example, the 2005 RoboCupSoccer 2D simulation 
league winner used hand-coded strategies which employed a mixture of hand-coded skills 
and skills developed using machine learning techniques (Riedmiller et al., 2005). There has 
been only limited success when applying standard machine learning techniques to this 
problem.  Much of the work to date has been characterised by researchers beginning their 
work with high expectations, then ratcheting down their expectations as the work 
progresses, and finally adjusting their goals (and the soccer playing behaviours and skills of 
the players being developed) to align with the progress being made.  
The size of the robot soccer search space and the paucity of solutions that lead to good 
soccer-playing behaviour tend to suggest that, in the extreme case, the problem resembles a 
needle-in-a-haystack problem (Jones & Forrest, 1995a; Langdon & Poli, 1998a; Right et al., 
2002), indicating a possible cause for the difficulty of the problem for evolutionary 
algorithms. Previous work in the area of evolutionary learning for robot soccer has focussed 
on the learning, and what parameters and controls need to be manipulated in order to 
produce acceptable soccer-playing behaviour, but there has been no systematic investigation 
of the difficulty of the problem. Understanding why problems are difficult for evolutionary 
algorithms is a critical step not only in solving the particular problem under investigation, 
but also in advancing the field and improving the potential usefulness of evolutionary 
algorithms. The goal of this work is to describe a method for analysis of the fitness 
landscape generated by the problem of learning goal-scoring behaviour for robot soccer, and 
to use the analysis to better understand the difficulty of the problem and how progress 
might be made. 

 
2. Evolving Goal-Scoring Behaviour for Robot Soccer 
 

For this work a messy-coded genetic algorithm (Holland, 1975; Goldberg et al., 1989) is 
used to evolve a single robot soccer player in the SimpleSoccer simulated soccer 
environment (Riley, 2003).  The behaviour of the player is governed by a fuzzy inferencing 
system (Zadeh, 1965; Jang et al., 1997) with the ruleset for the fuzzy inferencing system 
being evolved by the genetic algorithm.   
The player being evolved is endowed with a configurable subset of soccer-playing skills 
taken from a rich set of basic and hand-coded skills and default actions.  The player executes 
one of the skills or performs the default action available to it in response to some external 
stimulus; the specific response being determined by the fuzzy ruleset and the fuzzy 
inferencing system. The external stimulus used as input to the fuzzy inference system is the 
visual information supplied by the soccer simulator.   
A full description of the method used to evolve the soccer player is given in the previous 
chapter. 
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3. Fitness Landscapes 
 

Wright’s original diagram, reproduced in Fig. 1, is a two-dimensional depiction of the 
relative “adaptiveness” of all possible combinations of allelic states for genes on a particular 
chromosome. The diagram is effectively a contour map with the contour lines representing 
levels of adaptiveness. This original diagram included no labels for the axes, and no 
indication was given as to how the various gene combinations should be arranged on the 
landscape - no notion of “neighbourhood” was defined or discussed by Wright. In 
landscape terms, the neighbourhood relation defines which points, or individuals, are 
arranged as immediate neighbours on the landscape, and so is extremely important in 
defining the landscape. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Diagrammatic representation of the field of gene combinations in two dimensions 

instead of many thousands. Dotted lines represent contours with respect to 
adaptiveness. Reproduced from (Wright, 1932) 

 
Much of the work involving fitness landscapes avoids a rigorous definition of the landscape 
under analysis (Jones, 1995a), and where it is mentioned or implied at all the landscape is 
usually assumed to be the single-bit mutation landscape: the landscape generated by 
arranging all single-bit mutations of a chromosome represented as a string of binary digits 
such that chromosomes that differ by only a single bit are neighbours, then plotting the 
fitness of each chromosome on a separate axis. On such landscapes, genetic operators such 
as crossover are assumed to take hypersteps over the fitness landscape described by 
mutation. There have been attempts to overcome this deficiency, and following is a 
description of some of major recent work in the field. 
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The NK fitness landscape model (Kauffman, 1989; Kauffman & Levin, 1987) was proposed 
as a means to study how epistasis - the dependency of fitness upon the interaction of the 
allelic state of multiple genes (Lush, 1935) - affects the ruggedness of the fitness landscape. 
An NK fitness landscape is defined by a fitness function which can be tuned in order to alter 
the ruggedness of the resultant fitness landscape.  The fitness function is defined by two 
parameters: the number of genes (N), and the number of epistatic links, or interactions, 
between genes (K). In the most common implementations each gene has two possible alleles, 
thus the genotype can be represented by a bit string of length N. Each gene in a 
chromosome contributes to the fitness of the chromosome based on K+1 values: its own and 
those of the K genes to which it is linked. The three-dimensional fitness landscape is 
constructed by arranging chromosomes in two dimensions on the landscape such that bit 
strings that differ in the value of only one bit are neighbours, then using the fitness of the 
chromosomes as the third dimension. The NK landscape is widely used by the evolutionary 
computation community to generate epistatic landscapes as test functions for search and 
optimisation techniques (De Jong et al., 1997; Heckendorn et al., 1999; Skellett et al., 2005; 
Smith & Smith, 2001). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. An example of a fitness landscape for bit strings of length three, where the 

neighbourhood relation is defined by point mutation. Fitness values (randomly 
assigned) are shown in parentheses. Reproduced from (Hordijk, 1996) 

 
Weinberger (1990a; 1991a) proposed a fitness landscape model in which the landscape is 
represented as a graph on which the vertices correspond to individuals and have associated 
fitness values, and traversing the edge of the graph corresponds to the action of a genetic 
operator (mutation, crossover etc.) and so taking a step on the landscape. Jones (1995a; 
1995b), Culberson (1994), and later Hordijk (1996) describe similar fitness landscape models 
in which the landscape is represented as a graph (e.g. Fig. 2). Reidys and Stadler (2002) 
analyse a similar fitness landscape topography, focussing on the geometry of the moves 
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from one vertex to another and provide a mathematical treatment of the edge traversals and 
the resultant complex topographies.  
Culberson’s model described a landscape defined by a crossover operator rather than 
mutation, and in which the graph vertices represented a population of points. Jones presents 
a similar model, and expands it further to include the concept that each genetic operator 
defines its own separate landscape (Jones 1995a).  In Jones’ “one operator, one landscape” 
model, an evolutionary algorithm which implements the genetic operators selection, 
mutation and crossover makes transitions on three separate landscapes (Fig. 3).  According 
to Jones’ model the evolutionary algorithm takes steps on the mutation landscape, after 
which individuals are paired to form vertices on the crossover landscape and further steps 
are then taken on that landscape, and then the population is gathered into a vertex on the 
selection landscape for a further step there. The neighbourhood relation in Jones’ model is 
therefore simply defined by the genetic operator for each landscape. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. A simplified view of an evolutionary algorithm operating on three landscapes.  

Reproduced from (Jones 1995a) 
 
More recently Moraglio and Poli (2004) presented a new topological framework for 
evolutionary algorithms and as part of that framework redefine the mutation and crossover 
operators to be more tightly linked to the fitness landscape. In the model proposed by 
Moraglio and Poli the genetic operators are defined by the fitness landscape upon which 
they operate – the genetic operators are a natural consequence of the neighbourhood 
relation and distance metric of the fitness landscape. For example, under what Moraglio and 
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Poli call topological uniform crossover, offspring are defined as those individuals that lie 
between the parents on the fitness landscape. Similarly, under topological ε-mutation, 
offspring are defined as those individuals that lie ε steps away from the parent on the fitness 
landscape. 
In essence, the fitness landscape is a metaphor – a metaphor in which the landscape is often 
thought of as a 3-dimensional terrain, where the peaks (hills or mountains) represent areas 
of high fitness and the valleys between the peaks low fitness. A fitness landscape which 
depicts the fitness values of a population that varies greatly in fitness will likely display 
many local high peaks surrounded by deep valleys. Such a landscape is said to be rugged. 
Similarly, if many individuals in the population have a similar fitness, the landscape will 
vary little and is said to be flat. Search on some landscapes is notionally easier than search 
on others – search on a predominantly flat landscape is likely to be difficult, as is search on a 
rugged landscape with peaks and valleys randomly distributed. 
In evolutionary biology the proliferation of an individual’s genetic material is considered 
the ultimate objective of life, and the success or failure of a particular genotype, or its 
phenotypic expression, is most often measured by the number of progeny it produces – so 
for evolutionary biology, the fitness of an individual is a function of the number of progeny 
produced by that individual. For evolutionary optimisation the objective is usually less 
nebulous, and the success or failure of a particular genotype, or phenotype, is measured by 
a well-defined fitness function, and typically the number of progeny produced by an 
individual is a function of the fitness of that individual. Fitness landscapes are used in 
evolutionary biology and evolutionary optimisation to show the correlation between 
genotypes, or phenotypes, as a measure of success or failure and search difficulty 
(Jones & Forrest, 1995b; Kauffman, 1989; Kauffman & Levin, 1987; Langdon & Poli, 1998b; 
Vassilev, 1997).  

 
4. Which Fitness Landscape? 
 

As discussed in the previous section there are several possible definitions of, and 
representations for, fitness landscapes, and choosing the definition and representation 
which best describes the combination of the problem being studied and the algorithm being 
used to study it is extremely important.  
A fitness landscape is most often defined by three basic attributes: 

• a search space 
• a relation that defines which points are neighbours in the search space 
• a fitness function that assigns a fitness value to each point in the search space 

A significant problem with this definition of fitness landscapes is the specification of the 
neighbourhood relation. The neighbourhood relation and its specification is extremely 
important because any discussion of landscapes invariably involves the terms “peaks” and 
“valleys”, and no peak or valley can exist without the notion of neighbourhood – a peak is 
only a peak because it is higher than its neighbours.  
Often the neighbourhood relation is defined in simple terms, such as the hamming distance 
for bit strings, or by defining all single bit mutations of a bit string as neighbours. This 
potentially ignores an important ingredient in the evolutionary processes: evolutionary 
algorithms are usually governed by some combination of several operators. A definition of 
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the neighbourhood relation in terms of the actual mix of genetic operators (for example, 
selection, mutation and crossover) being used by the algorithm would seem to be more 
relevant and useful to an analysis of the performance of the algorithm. Since the search is for 
individuals of good fitness, the individuals which comprise the search space and their 
associated fitness values should ideally be arranged as a fitness landscape which has 
individuals of better fitness clustered together so that the landscape contains peaks and 
valleys representing the fitness extremes. The issue is how to represent the fitness landscape 
to achieve that, and a critical question is: what attributes of an individual should determine 
the locality of that individual on the fitness landscape?  
If the neighbourhood relation is not defined correctly in terms of describing the actions of 
the algorithm being used to perform the search, then the fitness landscape is not the 
landscape searched by the search algorithm, and so not necessarily indicative of the 
difficulty of the search. On a physical landscape points are neighbours, or next to each other, 
because (for example) a person walking on that landscape can traverse the distance between 
those points in a single step. The corollary is that if a searcher walking on a landscape is not 
able to traverse the distance between two points in a single step, then those points are not 
next to each other and so, by definition, are not neighbours on the landscape defined by that 
searcher and the associated granularity of search (a single step). Simply plotting attributes of 
the members of the search space against fitness – for example chromosome length in the 
case of a genetic algorithm, or program length for genetic programming – while possibly 
useful for visualising the fitness distribution of the search space, may not be sufficient to 
describe the fitness landscape traversed by the search algorithm, since there may be no 
reason to expect that the search algorithm could traverse the distance between neighbouring 
points on that landscape with a single step. 
As discussed earlier, a fitness landscape is a metaphor and an aid to the visualisation of the 
operation of a search algorithm, but for anything other than the actual landscape traversed 
by the search algorithm the metaphor is flawed and the visualisation is misleading. For 
example, the analogy of the search algorithm to a short-sighted explorer wandering over a 
(possibly rough) terrain (Langdon & Poli, 2002) is only valid for the actual fitness landscape 
searched by the algorithm, and anything else gives a misleading view of the complexity, or 
ruggedness, of the landscape. For the explorer analogy to be useful, the neighbourhood 
relation must reflect the notion that an individual’s neighbour on the fitness landscape is 
any individual in the search space which can be reached in a single step of the explorer. In 
the case of an evolutionary algorithm, the explorer is the algorithm, and the single step is the 
combination of whichever genetic operators are implemented by that algorithm: selection, 
mutation and crossover. It should also be remembered that during the search the explorer 
may not be able to see all its theoretical neighbours. This is because, for an evolutionary 
algorithm using crossover, the individuals reachable in a single step from one parent 
depend upon the other individuals selected for mating, and while an individual can 
theoretically mate with any other individual in the search space, in reality the individuals 
available for selection are restricted by the size of the population. So to continue the analogy 
of the short-sighted explorer, not only is the explorer short-sighted, but also lacks peripheral 
vision.  
While it should be remembered that the 3-dimensional fitness landscape is just a metaphor, 
since in most cases the surface being traversed by the searcher will be multi-dimensional 
and so complex that there will be no landscape that could actually be visualised, the analogy 
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of the searcher on a 3-dimensional landscape is a useful aid to imagining how a search 
algorithm might use the available attributes of the search space. 
It is important to understand that the (metaphoric) fitness landscape is defined by a number 
of attributes, which include the search algorithm, and not solely by the specification of the 
problem. It is not valid to visualise a fitness landscape without reference to a search 
algorithm, and then decide what algorithm will best search the landscape – the operation of 
the search algorithm defines the neighbourhood relation, and so the shape, of the landscape.  
Previous work with fitness landscapes recognises the need to refer to the search algorithm 
when characterising the landscape (Hordijk, 1996; Jones & Forrest, 1995b; Reeves, 1999; 
Vassilev et al., 2000). Jones and others (Hordijk, 1996; Jones & Forrest, 1995a) further suggest 
that each operator employed by a search algorithm (e.g. selection, mutation and crossover 
for a genetic algorithm) should be viewed as operating on its own landscape. The notion 
that search operators define and act on separate landscapes may be useful for studying the 
effect of individual operators, but the combined effect of each move on each landscape 
needs to be considered. If the algorithm employs multiple operators, then the output of the 
algorithm is some combination of those operators, so it is not reasonable to consider a move 
on the “mutation landscape” without considering how that then affects a subsequent move 
on the “crossover landscape”.  
A further problem with the “one operator, one landscape” approach is determining what 
constitutes an operator. Jones (1995a) has, in the case of evolutionary algorithms, suggested 
that selection, mutation and crossover should each define and operate on separate 
landscapes, but none of those operators are necessarily atomic. Is an operator considered to 
define its own landscape simply because it has a well-known label? The breakdown of the 
evolutionary operation into the three operators of selection, mutation and crossover seems 
somewhat arbitrary. 

 
5. Landscape Measures 
 

Early work on the characterisation of landscapes involved analysing structural parameters 
such as the number and distribution of local minima (Edwards & Anderson, 1975; 
Sherrington & Kirkpatrick, 1975; Tanaka & Edwards, 1980).  More recently, several methods 
for measuring and analysing landscapes for search algorithms have been proposed. The 
methods proposed can be categorised into two broad streams: statistical measures 
(Altenberg, 1995; Hordijk, 1996; Jones & Forrest, 1995b; Lipsitch, 1991; Manderick et al., 
1991; Weinberger, 1990b; Weinberger, 1991b) and information measures (Borenstein & Poli, 
2005a,b,c; Vassilev, 1997; Vassilev et al., 2000). Borenstein and Poli have extended the 
information measure to include a measure of the performance of the algorithm and so define 
a “performance landscape” which may prove useful but does not yet have sufficient history 
to gauge its efficacy. All the methods proposed have in common the notion that the points in 
the search space are arranged according to some neighbourhood relationship, and a 
measure of fitness, performance or information content associated with the points defines 
the ruggedness of the landscape.  
The methods used to measure and analyse the structure of fitness landscapes in this work 
are the autocorrelation method suggested by Weingberger (1990b; 1991b), and the 
information content approach suggested by Vassilev et al. (Vassilev, 1997; Vassilev et al., 
2000). These methods were chosen because they are different methods of measuring the 
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structure of landscapes and, while there seems to be no generally accepted standard 
approach, both methods have gained some favour and are commonly cited as reasonable 
landscape characterisation methods (Hordijk, 1996; Merz & Freisleben, 1999; Smith et al., 
2002; Stadler, 1996). Jones’ Fitness Distance Correlation (Jones & Forrest, 1995b) is an 
interesting landscape measure but requires that the solution be known in order to calculate 
the metric, so is not applicable to this work. 

 
5.1 Autocorrelation and Correlation Length 
Correlation measures are the most commonly used means of characterising fitness 
landscapes and are seen as good indicators of ruggedness. A landscape is characterised as 
rugged when it contains multiple local maxima (minima). Typically, the more rugged the 
landscape the lower the average fitness correlation between neigbouring points on the 
landscape. Autocorrelation refers to the correlation of a time series with its own past and 
future values, and is also known as serial correlation, referring to the correlation between 
members of a series of numbers arranged in time. Autocorrelation is a correlation 
coefficient, but instead of measuring the correlation between two different variables, 
autocorrelation measures the correlation between two values of the same variable at times 
Xi and Xi+k, where k is the number of time steps, or lag, between the two values.  
 
Autocorrelation definition (Hordijk, 1996; Weinberger, 1990b; Weinberger, 1991b): 
 
Given measurements Y1, Y2, …, YN, at time X1, X2, …, XN, where N is the number of 
measurements, and 
 
 
 
 
the time lag autocorrelation function is defined as 
 
 

(1) 
 
 
Note that from Equation 1, if                 there is much correlation between the points k steps 
apart in the series, whereas if                   there is little correlation. 
Weinberger proposed that a random walk be generated on the fitness landscape, where each 
step on the walk is taken between neighbouring points but the neighbour to which the step 
is taken is selected randomly, and the fitness values for each point visited during the 
random walk form a time series of numbers. The autocorrelation function can then be used 
as a measure of the ruggedness of the landscape described by the random walk. 
The correlation length of a series of numbers is the largest distance, or time lag, between 
points for which some correlation exists. Hordijk (1996) defines the correlation length of a 
time series as one less than the first time lag for which the autocorrelation falls inside the 
region bounded by the two-standard-error bound (i.e. one less than the first time lag at 
which the autocorrelation becomes statistically equal to zero, making the correlation length 

0.1≈kr
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the largest time lag for which the correlation between two points is still statistically 
significant). This is the method used for calculating the correlation length in this work. The 
two-standard-error bound e for a series of N points is defined as 
 
 
 
 
so the correlation length l is defined in this work as the first lag for which 
 
 

(2) 

 
5.2 Information Content 
An alternative to the statistical autocorrelation measure proposed by Weinberger is 
Vassilev’s information content method, based on both classic and algorithmic information 
theory (Chaitin, 1987; Shannon, 1948). Vassilev et al. propose three information measures 
that characterise the structure of a fitness landscape from a series of points generated by a 
random walk over the landscape (Vassilev, 1997; Vassilev et al., 2000) : 
 

• Information Content – characterises the ruggedness of the landscape. 
• Partial Information Content – measures the modality of the landscape. 
• Information Stability – the sensitivity of the information content measures. 

 
These measures are calculated by generating a random walk of length n on the fitness 
landscape, with the aim being to extract information by characterising the series of points as 
an ensemble of objects. To calculate the information content, a string S(ε) is constructed 
representing a group of objects generated from a random walk over the fitness landscape, 
where 
 
  
and S(ε) is enumerated according to the function  
 
 
 
and 
 
 
 
 
 
Thus the string S(ε) defines a sequence of objects where each object is represented by a 
substring SiSi+1 being a sub-block of length two of the string S(ε).  
The parameter ε is a real number taken from the interval [0.0, 1.0] (in this case) which 
defines neutral fitness and determines the accuracy with which the string S(ε) is defined. If 
the absolute fitness difference between neighbouring points is less than ε, the points are 
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considered to be of equal fitness. This means that as ε  increases from 0.0 to the maximum 
possible fitness difference between points along the walk (1.0), the amount of fitness change 
(entropy), and the sensitivity of         , decrease to zero. 
The information content H(ε) is defined as the entropic measure of the group of sub-blocks 
of length two of string S(ε), and is given by 
 

(3) 
 
P[pq] are frequencies of the possible blocks pq of elements from the set                given by 
 
 
 
where n[pq] is the number of occurrences of pq in S(ε) and n is the length of S(ε). 
 
The partial information content M(ε) is a measure of the modality (the number or frequency 
of local optima) of the landscape, and is calculated by filtering out elements of the string S(ε) 
which are not essential for measuring modality to create a new string S’(ε), then measuring 
the length μ of the new string. The string S’(ε) is defined as 
 
 
 
 
Thus the string S’(ε) has the form                    , representing the slopes of the path taken by 
the random walk over the landscape, and so is empty if S(ε) contains only 0s.  
The partial information content M(ε) is given by 
 

(4) 
 
Note that when M(ε) = 1.0, the path taken by the random walk over the landscape is 
considered to be maximally multimodal, and when M(ε) = 0.0, the path is flat. 
The information stability ε* is defined as the smallest value of ε for which the landscape 
becomes flat (i.e. for which S’(ε) is empty). Since ε  governs the sensitivity of the information 
content and partial information content measures, ε* is a measure of the difference in fitness 
between neighbouring points on the random walk. 

 
6. Fitness Landscape Definition 
 

As discussed in sections 3 and 4, there has been much previous work done with regard to 
fitness landscapes, and there is a variety of views and some disagreement.  The previous 
sections of this work have presented a discussion of the issues.  For the purposes of this 
work it is critical that the fitness landscape being analysed be formally defined, and that the 
definition be related to the search algorithm used to search the landscape. 
Genetic algorithms are typically thought of as performing a search on a landscape described 
by single-bit mutation, where mutation performs a local search and the crossover operation 
is depicted as a hyperstep on the mutation landscape, allowing mutation to perform a local 
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search on a different, usually distant part of the landscape.  For this work however, the 
fitness landscape is considered to be defined by the overall operation of the genetic 
algorithm.  
The autocorrelation and information content measures used in this work to characterize the 
fitness landscape provide an analysis of a series of numbers: in the case of the 
autocorrelation measures, the analysis indicates how well correlated numbers in the series 
are.  Of significance is not so much how the numbers in the series are collected or generated, 
but that the series be representative of the entity – in this case the fitness landscape – being 
measured.  The random walk proposed by Weinberger is a good means to generate a 
representative series of points for the single-bit mutation landscape (provided that the walk 
is sufficiently long or that the landscape is statistically isotropic), but is not directly 
applicable to the landscape defined by the overall operation of the genetic algorithm. 
Consider an observer watching a genetic algorithm searcher perform a random walk on a 
fitness landscape and assume that although the observer is able to discern the granularity of 
the search (the genetic algorithm’s single steps), the means by which the GA determines 
where each step takes it is hidden from the observer.  
The observer sees the searcher walking randomly over the landscape and considers points 
on the landscape one step apart to be neighbours. The definition of the neigbourhood 
relation is of no consequence to, and is not required by, the observer since the searcher is 
defining neigbouring points by performing the walk. If the random walk performed by the 
genetic algorithm searcher was sufficiently long, and the “altitude” (fitness) at each step 
recorded for the observer, the entire fitness landscape would be determined by observation. 
The landscape so determined would be the precise fitness landscape defined by the search 
algorithm.  
A random walk of s steps is conducted as follows: 

• An individual i0 is randomly selected from the search space 

• For each step s, s = 1 .. maxsteps 

• is-1 undergoes mutation with probability Pmutation 

• Another individual i, i ≠ is-1, is randomly selected from the search space 

• Crossover is performed between i and is-1 with probability Pcrossover, resulting 
in two new individuals i'1 and i'2, both of which are neighbours of (a single step 
from) is-1 

• Set is = i'1 and step to is 

This “black box” view of the genetic algorithm operation and consequential determination 
of the neigbourhood relation and fitness landscape doesn’t change the actual operation of 
the genetic algorithm or the conceptual notion of the algorithm conducting a parallel search 
of different areas of the fitness landscape.  What this view does is change the notion of the 
step size of the genetic algorithm from the result of a single genetic operator to the 
amalgamation of the genetic operators used by the algorithm, so the perception of the 
topography of the landscape is changed accordingly.  This view of the fitness landscape 
satisfies the requirement that the landscape neigbourhood relation be defined by the search 
algorithm and is the definition used for the robot soccer problem addressed by this work. 
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7. Search Space and Fitness Landscape Analysis 
 

Since the skills with which a player is endowed will undoubtedly affect the ability of the 
player to learn goal scoring behaviour, a key question is “How does changing the skills available 
to the soccer player affect, or change, the fitness landscape?” It would seem to be somewhat 
intuitive that changing the skills available to the players in some way alters the fitness 
landscape over which the search is conducted. In fact the fitness landscape is altered by 
changing the skills available to players, but it changes because the underlying search space 
is different for each set of skills: the chromosomes are interpreted differently for each 
skillset, and in fact may take on different values for each skillset depending upon the range 
of skills available in the skillset, so the individuals (players) that comprise the search space 
are different for each skillset. Since changing the skills available to the players defines a new 
search space it also defines a new fitness landscape.  
The same is not true of changing the function used for the fitness evaluation. Different 
fitness functions alter the fitness landscape, not the underlying search space, because the 
individuals that comprise the search space remain the same. Furthermore, since only the 
means by which the individuals are evaluated is changed, the change to the fitness 
landscape is not in the neighbourhood relation but only in the fitness values of the 
individuals. For this reason, changing the fitness function has the potential to significantly 
change the fitness landscape, and so affect the effectiveness of the search process. Some 
fitness functions could make “mountains out of molehills” – teasing gradient information 
out of otherwise flat landscapes. Sometimes this is valid, but sometimes the definition of the 
fitness function effectively solves the problem for the search algorithm. 
The difficulty of learning goal-scoring behaviour is evidenced by the size of the search 
spaces defined by the different skillsets of the players. These search spaces range in size 
from 1.55×10158 different chromosomes for the base skillset of {Turn, Kick, Dash} to 7.4×10161 
for the complete skillset. The calculation of search space size is described in detail in 
(Riley, 2005). 

 
7.1 Experiments Performed 
A number of experiments were performed in order to examine how the fitness landscape, 
and the performance of the resulting search over it, is affected by varying the player skillset 
(refer to the full list of available skills shown in Table 1 of the previous chapter), the default 
action (previous chapter, Table 2) and the fitness function (discussed below). In addition to 
the evolutionary search, five random walks (as described in section 6) were conducted for 
each experiment, each walk starting at a randomly selected point on the fitness landscape 
and continuing for a duration of 100,000 steps. The statistics gathered during the walks are 
also analysed. 

 
7.2 Fitness Functions Evaluated 
Two fitness functions were compared: a composite fitness function and a simple, goals-only 
fitness function.  For both fitness functions implemented the fitness values range from 0.0 to 
1.0, with 1.0 being the worst fitness possible, and optimal fitness values approaching 0.0. 
The simple, goals-only fitness function rewards a player for goals scored only – the greater 
the number of goals scored the greater the reward. The goals-only fitness function was 
implemented as: 



Robotic Soccer 

 

320 

 
(5) 

 
 
 
where goals is the number of goals scored by the player. 
 
The composite fitness function rewards, in order of importance: 

• the number of goals scored in a trial 
• minimising the distance of the ball from the goal 

 
This combination was chosen to reward players primarily for goals scored, while players 
that do not score goals are rewarded on the basis of how close they are able to move the ball 
to the goal on the assumption that a player which kicks the ball close to the goal is more 
likely to produce offspring capable of scoring goals. This decomposes the original problem 
of evolving goal-scoring behaviour into the two less difficult problems:  

• evolve ball-kicking behaviour that minimises the distance between the ball and 
goal, and  

• evolve goal-scoring behaviour from the now increased base level of skill and 
knowledge 

 

The composite fitness function was implemented as: 
 
 
 
 

(6) 
 
 
 
 
where goals is the number of goals scored by the player 
 kicks is the number of times the player kicked the ball 
 dist is the minimum distance of the ball to the goal 
 fieldLen is the length of the field 
 
Note that both the simple and composite fitness functions represent the problem as a 
minimisation problem, so a lower fitness value is a better result than a higher fitness value. 

 
7.3 Genetic Algorithm Parameters 
The genetic algorithm parameters used in the experiments were chosen empirically after 
some experimentation. The population size and number of generations were chosen to 
provide reasonable population diversity and search space coverage. The GA parameters are 
shown in Table 1. Each player was allowed a fixed time in which to score as many goals as 
possible. 
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Skill Description 

Maximum Chromosome Length 64 genes 

Population Size 500 

Maximum Generations 500 

Selection Method Elitist: a percentage of the best players is retained, with the 
remainder selected using the Roulette Wheel method. 

Elitist Retention Percentage 2.5 

Crossover Method Single Point Cut and Splice 

Crossover Probability 0.95 

Mutation Rate 10% 
Mutation Probability 0.15 

Table 1. GA parameters 

 
7.4 Results and Analysis 
For each experiment the following information is presented for analysis and comparison: 

• Data from the evolutionary search: 
o Line graphs showing the population average fitness and individual best 

fitness for generations 1 to 500. Note that a lower fitness is a better fitness. 
o A bar chart showing the cumulative fitness distribution for all individuals 

evaluated during the 500 generations, showing the percentage of all 
individuals evaluated which failed to kick the ball (denoted by “nm” on 
the graph x-axis), moved the ball closer to the goal (graduated), kicked 
one goal, two goals, three goals etc. 

• Data from the random walks: 
o A correlogram showing the autocorrelation data for time lags 1 to 100 for 

the five random walks and the two-standard error bounds. 
o A graph showing the information content data for 0 <= ε  <= 1.0 for the 

five walks. 
o A table showing: 

 the mean fitness and fitness variance of the points visited in the 
random walks. 

 the fitness distribution for all individuals evaluated during the 
random walks. 

 the average autocorrelation for the first time lag (i.e. for 
immediate neighbours). 

 the average correlation length. 
 the average information content H(ε) and average partial 

information content M(ε) for selected ε. 
 the average information stability ε∗. 
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7.4.1 Experiment 1: Composite Fitness; All Skills; Default Action = Hunt Action 1 
Experiment 1 is the problem for which the search algorithm has been given the most help in 
the form of initial player skills, default action, and a composite fitness function to guide the 
search. The data shown on the graph of population average fitness (Fig. 4) tend to indicate 
that the population as a whole ceases to improve after 30 to 40 generations though, as 
evidenced by the graph of best fitness values, individuals of good fitness continue to be 
found beyond that point. The percentage of the population exhibiting ball-kicking or goal-
scoring behaviour is reasonably high, as shown by the frequency distribution (Fig. 5). 
From the data presented in Table 2 it is apparent that although the mean fitness of the 
100,000 individuals evaluated during the random walk is close to 1.0 (indicating no ball 
movement) and the variance small, the random walk did find individuals which exhibited 
goal-scoring behaviour, and in fact found more than 100 individuals which scored multiple 
goals. 
The autocorrelation data shown in Fig. 6 and the correlation length given in Table 2 indicate 
that the fitness landscape for this problem (as described by the random walk) offers a 
reasonable amount of gradient information that the search algorithm can use to guide the 
search. With an autocorrelation of ~0.32 for points on the random walk a single step apart 
and a fairly steep descent for points further apart, the correlation between next and near 
neighbours on this fitness landscape is not so high that a search algorithm is led unerringly 
to a solution, but with a good correlation and a long correlation length the problem, in this 
form, should be readily solved by a search algorithm able to take advantage of the 
landscape features. 
 
 

Table 2. Experiment 1: Random walk statistics 
 

Random Walk Statistics (Average over 5 walks) 

Mean Fitness 0.98283 
Fitness Variance 0.00669 

Goals Individual Fitness No Movement Ball Movement
1 2 3 4 5 >5 

Number of Individuals 95974 3462 434 99 26 4 1 0 
Autocorrelation r(1) 0.31716 
Correlation Length 41 

ε 
Information 

Content 
H(ε) 

Partial Information 
Content 

M(ε) 
0.0 0.12447 0.03266 
0.2 0.09770 0.03020 
0.4 0.06179 0.01269 
0.6 0.00754 0.00098 
0.8 0.00229 0.00025 

0.885 0.00000 0.00000 
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Fig. 4. Experiment 1: Average and best fitness 
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Fig. 5. Experiment 1: Ball movement and goals scored 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Experiment 1: Autocorrelation 
 
The information content graph shown in Fig. 7 supports the autocorrelation data for this 
experiment. Information stability is quite high at 0.885, indicating a high difference in fitness 
among neighbouring points, so pointing to some good gradient information being present in 
the landscape. H(0.0) is not particularly large, indicating that the diversity of shapes on the 
landscape is not high. Similarly M(0.0) is relatively small, indicating that the degree of 
modality of the landscape is low. 
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Fig. 7. Experiment 1: Information content 

 
7.4.2 Experiment 2: Composite Fitness; Base Skills; Default Action = Hunt Action 1 
The difference between this experiment and experiment 1 is that instead of the player being 
endowed with all available skills, the player in this experiment has only the base skills of 
turn, kick and dash.  The player has hunt action 1 configured as the default action.  The 
fitness function is the composite fitness function.   
The data shown on the graph of population average fitness (Fig. 8) indicate that 
improvement of the population stops at about generation 150, and although the graph of 
best fitness values indicates that individuals exhibiting goal-scoring behaviour continue to 
be found, terminating the search after generation 150 would not have adversely affected the 
result.  Fig. 9 shows that the percentage of the population exhibiting goal-scoring behaviour 
is extremely small, with a very large proportion of the population not kicking the ball at all. 
 
 

Table 3. Experiment 2: Random walk statistics 

Random Walk Statistics (Average over 5 walks) 

Mean Fitness 0.99947 
Fitness Variance 0.00014 

Goals Individual Fitness No Movement Ball Movement
1 2 3 4 5 >5 

Number of Individuals 99776 224 0 0 0 0 0 0 
Autocorrelation r(1) 0.10724 
Correlation Length 9 

ε 
Information 

Content 
H(ε) 

Partial Information 
Content 

M(ε) 
0.0 0.01268 0.00180 
0.1 0.01258 0.00178 
0.2 0.01256 0.00178 
0.3 0.00202 0.00022 

0.371 0.00000 0.00000 
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Fig. 8. Experiment 2: Average and best fitness 
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Fig. 9. Experiment 2: Ball movement and goals scored 
 
These results show clearly the effect of removing from the players a range of mid-level 
hand-coded skills, and raise the question of what effect removing those skills has on the 
structure of the fitness landscape and how that affects the search. 
The autocorrelation graph (Fig. 10) and correlation length (Table 3) indicate that the fitness 
landscape for this problem offers only a limited amount of useful gradient information the 
search algorithm can use to guide the search.  With an autocorrelation of ~0.1 for points on 
the random walk a single step apart and falling to zero for points just a few steps further 
apart, the correlation between next and near neighbours on this fitness landscape indicates 
that the structure of the fitness landscape is close to random and not as conducive to search 
as was the fitness landscape of experiment 1, thus increasing the difficulty of the problem. 
Similar to experiment 1, the data presented in Table 3 show the mean fitness of the 100,000 
individuals evaluated during the random walk is close to 1.0 (indicating no ball movement) 
and the variance very small, but in this case no individuals exhibiting goal-scoring 
behaviour were found during the random walk.  
The information content graph for this experiment (Fig. 11) supports the autocorrelation 
data.  Information stability is relatively low at 0.371, indicating a low difference in fitness 
among neighbouring points.  With the autocorrelation data indicating a near random 
landscape, and information stability indicating a low fitness variation among neighbouring 
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points, there is almost no useful gradient information in the landscape to guide the search.  
H(0.0) is very small, indicating that the diversity of shapes on the landscape is very low.  
Similarly M(0.0) is extremely small, indicating that the landscape lacks any real degree of 
modality.  Both values further indicate the lack of useful landscape data to guide the search.  
The data presented all indicate that the removal of a set of mid-level, hand-coded skills has 
changed the relative difficulty of the problem, and that this is a result of the structure and 
features of the fitness landscape being altered by the problem representation – what was a 
landscape reasonably rich in features that helped guide the search has become a relatively 
barren landscape lacking in information useful for search. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Experiment 2: Autocorrelation 
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Fig. 11. Experiment 2: Information content 
 
 
7.4.3 Experiment 3: Composite Fitness; All Skills; Default Action = Hunt Action 3 
For experiment 3 the player is again given access to all available skills.  The difference 
between experiment 3 and experiment 1 is that the default hunt action for experiment 3 is 
limited to a 90° turn in a randomly chosen direction.    
The graphs of population average and best fitness (Fig. 12) indicate that while the 
evolutionary search was able to find individuals which scored multiple goals, the overall 
population hardly improved for the duration of the search.  The percentage of the 
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population exhibiting ball-kicking or goal-scoring behaviour is low, as shown by the 
frequency distribution (Fig. 13).  From the data presented in Table 4 it is evident that the 
random walk found very few individuals which exhibited goal- scoring behaviour – 
significantly fewer than in experiment 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. Experiment 3: Average and best fitness 
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Fig. 13. Experiment 3: Ball movement and goals scored 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14. Experiment 3: Autocorrelation 
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Fig. 15. Experiment 3: Information content 
 
 

Table 4. Experiment 3: Random walk statistics 
 
The autocorrelation and information content data shown in Fig. 14, Fig. 15 and Table 4 paint 
a similar picture – from the data it is clear that the fitness landscape lacks much of the 
gradient information evident in experiment 1, and is even closer to random than in 
experiment 2.  Information stability at 0.5 indicates a reasonable difference in fitness among 
neighbouring points, but with an autocorrelation of 0.025 for points on the random walk a 
single step apart and a correlation length of only 3, this fitness landscape offers the searcher 
virtually no assistance.  H(0.0) and M(0.0) are both extremely small, indicating that the 
diversity of shapes and the degree of modality on the landscape are very low, further 
indicating the lack of any useful landscape data to guide the search. This is entirely due to 
the removal of any sort of intelligence from the default hunt action. 

Random Walk Statistics (Average over 5 walks) 

Mean Fitness 0.99927 
Fitness Variance 0.00029 

Goals Individual Fitness No Movement Ball Movement
1 2 3 4 5 >5 

Number of Individuals 99801 168 31 1 0 0 0 0 
Autocorrelation r(1) 0.02546 
Correlation Length 3 

ε 
Information 

Content 
H(ε) 

Partial Information 
Content 

M(ε) 
0.0 0.01344 0.00193 
0.1 0.01344 0.00193 
0.2 0.01344 0.00193 
0.3 0.00899 0.00120 
0.4 0.00703 0.00090 
0.5 0.00000 0.00000 
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7.4.4 Experiment 4: Goals-only Fitness; All Skills; Default Action = Hunt Action 1 
In experiment 4 the player is given all available skills and the default action is hunt action 1.  
The fitness function used for this experiment is the goals-only fitness function, so the player 
is rewarded only for scoring goals. 
The results for experiment 4 are very similar to those for experiment 1, with the major 
difference being the autocorrelation and information content data (Fig. 18, Fig. 19 and 
Table 5).  The population average fitness is higher for experiment 4, but this is expected for a 
goals-only fitness function - since players are not rewarded for moving the ball close to the 
goal players not actually scoring goals are assigned the worst possible fitness of 1.0.  The 
best fitness and fitness frequency graphs (Fig. 16 and Fig. 17) are almost identical (for goal-
scoring behaviour in the case of the fitness frequency graph), indicating that the 
evolutionary search was almost not affected by the change in fitness evaluation.   
The autocorrelation and information content graphs (Fig. 18 and Fig. 19) indicate that the 
fitness landscape has somewhat less gradient information useful for search, but still 
sufficient to facilitate a successful search.  In fact, the data from Table 5 show that the 
random walk for experiment 4 found more players which scored goals than did the random 
walk for experiment 1.  This is further indication that when the players are given the full 
complement of hand-coded skills the number of solutions in the search space increases, and 
so the difficulty of the problem and the importance of the fitness evaluation are both 
reduced significantly.   
From Table 5 it can be seen that as for experiment 1, information stability is quite high at 
0.882, indicating a high difference in fitness among neighbouring points and the existence of 
good gradient information on the landscape.  H(0.0) is much lower than for experiment 1, 
indicating that the diversity of shapes on the landscape is much lower.   
 

Table 5. Experiment 4: Random walk statistics 

Random Walk Statistics (Average over 5 walks) 

Mean Fitness 0.99672 
Fitness Variance 0.00189 

Goals Individual Fitness No Movement Ball Movement
1 2 3 4 5 >5 

Number of Individuals 99417 n/a 456 104 19 3 1 0 
Autocorrelation r(1) 0.09497 
Correlation Length 20 

ε 
Information 

Content 
H(ε) 

Partial Information 
Content 

M(ε) 
0.0 0.03028 0.00520 
0.2 0.03028 0.00520 
0.4 0.03020 0.00519 
0.6 0.00868 0.00116 
0.8 0.00229 0.00025 

0.882 0.00000 0.00000 
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Similarly M(0.0) is very small, and much smaller than for experiment 1, indicating that the 
degree of modality of the landscape is much lower.  These are expected results for the goals-
only fitness evaluation compared to the composite fitness function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16. Experiment 4: Average and best fitness 
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Fig. 17. Experiment 4: Ball movement and goals scored 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 18. Experiment 4: Autocorrelation 
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Fig. 19. Experiment 4: Information content 

 
8. Conclusions and Further Work 
 

This work has presented a method for the analysis of the fitness landscape described by the 
problem of learning goal-scoring behaviour using a genetic algorithm. The method 
described uses landscape measures to examine features of the fitness landscape such as the 
degree of correlation between, or randomness of, points on the landscape, the modality of 
the landscape, and the ruggedness of the landscape. These landscape features are used to 
better understand the reasons for the difficulty of the problem, especially for evolutionary 
algorithms. The autocorrelation and information content measures are indicative of the ease 
with which the searcher will be able to identify the most productive areas of the landscape 
and in which direction (on the landscape) the search should proceed.  
Also presented in this work is an analysis of the fitness landscape for the robot soccer 
problem using the landscape measures described, showing how the measures can be used to 
assess how varying different attributes (e.g. initial player skills, player default action and the 
fitness function) changes problem difficulty. The analysis indicates that as more human 
expertise and expert knowledge is injected into an evolutionary search algorithm via hand-
coded innate skills, smart default actions and a composite fitness function to guide the 
search, the problem of learning goal-scoring behaviour for robot soccer becomes more 
solvable.  In the case of the experiments performed for this work, the genetic algorithm is 
able to evolve individuals which display goal-scoring behaviour to the extent that they are 
able to consistently score multiple goals in the tests conducted.  This is an expected result, 
and the focus of this work is on using the fitness landscape analyses to explain the results 
and the difficulty of the problem.  
The fitness landscape analysis further indicates that as human expertise and expert 
knowledge is removed from the algorithm by restricting the hand-coded innate skills and 
smart default actions available to the players, or by using a simple goals-only fitness 
function, at some threshold the problem becomes intractable for the evolutionary algorithm. 
This suggests that while there may be gradient information in the fitness landscape, as the 
human expertise is reduced the density of solutions in the search space becomes very low, 
the “mountain ranges” in the landscape begin to become isolated from each other, and the 
landscape begins to appear as a flat plain, sparsely populated by individual peaks – so the 
problem begins to resemble a needle-in-a-haystack problem. In this case the genetic algorithm 
is not able to locate the sparsely distributed gradient information any way other than by 
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randomly sampling the search space and it performs little or no better than random search - 
confirmed by a small number of tests performed comparing genetic and random search. 
This is an indication that the injection of human expertise and expert knowledge acts like a 
magnifying glass to the searcher - as more expertise and knowledge is injected the fitness 
landscape features conducive to search are magnified, and as the expertise and knowledge 
is removed those landscape features become less discernible. As the granularity of the 
injected knowledge is decreased (e.g. a less rich set of skills) the modality of the landscape 
decreases and the gradients between peaks become smoother. 
This is one of the underlying causes of the difficulty of the robot soccer problem for 
evolutionary algorithms, and the analysis presented in this work suggests that with a 
difficult problem such as robot soccer an evolutionary algorithm will only find a reasonable 
solution if one of: 

• a rich skill set (placing the initial population closer to the desired solution) 
• a composite fitness function (providing a solution recipe) 

is present - if both of those components are absent the problem becomes very difficult for 
evolutionary algorithms.  
Varying player skills changes the search space of the problem – a different set of players is 
being searched for each skillset. It is therefore not surprising that changing the innate skills 
of the players has a significant effect on the outcome of the search – searching the set of 
players which have essentially been pre-coded to exhibit good soccer-playing skills is almost 
guaranteed to find more players exhibiting better goal-scoring behaviour than searching the 
set of players which have no pre-coded soccer-playing skills. This is akin to searching for 
good goal-scoring behaviour in an assembled group of premier league soccer players, and 
then searching an assembled group of randomly selected people off the street – every now 
and then a person from the street will score a goal, but the premier league players will do it 
more often and more consistently. 
The default player action was shown to be a very significant determinant of performance for 
the robot soccer problem. This was also seen in the results presented by Luke (1998). For this 
work the default action was almost always invoked when the ball could not be seen. The 
importance of the default action tends to suggest that while some basic skills such as 
kicking, dribbling, perhaps even passing, can be somewhat readily learned, learning subtle 
tactics and strategies is difficult.  
Similarly, it was shown through experiments that compared the effectiveness of a simple 
goals-only fitness function against that of a composite fitness function that a composite 
fitness function can better guide the search. A well-designed composite fitness function can 
effectively act as a recipe for solving a problem. A great deal of human expertise and expert 
knowledge can be injected into a composite fitness function, and in effect the problem can 
virtually be solved by the fitness function before the algorithm begins the search.  
Further work to ascertain the best balance between the two components identified as being 
necessary for successful evolutionary search (a rich skill set or a composite fitness function) 
would be useful, as would work to determine if there is a limit in the level of initial skills at 
which a difficult problem becomes intractable. 
Within the evolutionary computation community there are several definitions and 
variations of the fitness landscape traversed by an evolutionary algorithm.  This work 
proposed a definition of the fitness landscape described by the combination of the genetic 
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algorithm and the problem being investigated, but further work needs to be done to develop 
a consistent definition of the fitness landscape, or landscapes, described by the operation of 
an evolutionary algorithm. With a consistent landscape definition, more work can be done 
to develop measures that will aid researchers in tuning algorithms and search methods 
based on landscape analysis. 
The fitness landscape definition used for this work is based on the assumption that the 
combination of the genetic operators implemented defines the neighbourhood relation of 
the landscape, and that the fitness function defines the height of the landscape at each point. 
Given this definition the shape, ruggedness, and indeed the searchability of the landscape, 
will be affected by changes to any of the genetic operators and the fitness function. This 
suggests that it would be advantageous to experiment with various combinations of those 
parameters in order to determine if a search might be successful or what combination would 
improve the chance of a successful search, prior to launching into an exhaustive search. A 
useful avenue of further work is to develop a framework for this prior analysis so that a 
description of the means by which the analysis should be conducted can be determined (for 
example, the number and size of random walks conducted over the landscape in order to 
calculate the landscape measures), as well as quantifying the desired values for the 
landscape measures. 
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1. Introduction     
 

Movement analysis is a fundamental ability for any kind of robot. It is especially important 
for determining and understanding the dynamics of the robot’s surrounding environment. 
In the case of robot soccer players, movement analysis is employed for determining the 
trajectory of relevant objects (ball, teammates, etc.).  
However, most of the existing movement analysis methods require the use of a fixed camera 
(no movement of the camera while analyzing the movement of objects). As an example, the 
popular background subtraction algorithm employs a fixed background for determining the 
foreground pixels by subtracting the current frame with the background model. The 
requirement of a fixed camera restricts the real-time analysis that a soccer player can carry 
out. For instance, a human soccer player very often requires the determination of the ball 
trajectory when he is moving himself, or when he is moving his head, for making or 
planning a soccer-play. If a robot soccer player should have a similar functionality, then it 
requires an algorithm for real-time movement analysis that can perform well when the 
camera is moving. The aim of this work is to propose such an algorithm for an AIBO robot. 
This algorithm can be adapted for almost any kind of mobile robot. 
The rationale behind our algorithm is to compensate in software the camera movement 
using the information about the robot body and robot head movements. This information is 
used to correctly align the current frame and the background. In this way, a stabilized 
background is obtained, although the camera is always moving. Afterward, different 
traditional movement analysis algorithms can be applied over the stabilized background. 
Another feature of our algorithm is the use of a Kalman Filter for the robust tracking of the 
moving objects. This allows to have reliable detections and to deal with common situations 
such as double detections or no detection in some frames because of variable lighting 
conditions. 
This chapter is organized as follows. In section 2 we present some related work. In section 3 
is described the here proposed motion analysis algorithm for AIBO robots. Experiments 

                                                 
1 This research was partially funded by Millenium Nucleus Center for Web Research, Grant P04-067-F, 
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using real video sequences are described and analyzed in section 4. Finally, some 
conclusions are given in section 5. 

 
2. Related Work 
 

A large literature exists concerning motion analysis in video streams using fixed cameras. 
As an example, the PETS event is held every year, in which several state-of-the-art tracking 
and surveillance systems are presented and tested. See for example (Ferryman, 2002) and 
(Ferryman, 2005). Different approaches have been proposed for moving object 
segmentation; including frame difference, double frame difference, and background 
suppression or subtraction. In the absence of any a priori knowledge about target and 
environment, the most widely adopted approach is background subtraction (Cucchiara et 
al., 2002). Motion History is another simple and fast motion detection algorithm. According 
to (Piater & Crowley, 2001), the Motion History and Background Subtraction algorithms 
have complementary properties, and when possible it is useful their joint use. 
Image alignment using gradient descending is one of the most used alignment algorithms. It 
can be divided into two formulations: the additive approach, which starts with an initial 
estimation of the parameters, then iteratively finds appropriate parameters’ increments, 
until the estimated parameters converge (Lucas & Kanade, 1981); and the compositional 
approach, which estimates the parameters using an incremental warp. This last approach 
iteratively solves the estimation problem using an incremental warp of the images to be 
aligned with respect to a template. This allows pre-computing the Jacobean more efficiently 
(Baker & Matthews, 2001). However, the key to obtain an efficient algorithm is switching the 
role of the image and the template. This leads to the formulation of the inverse 
compositional algorithm (Baker & Matthews, 2002), where the most computationally 
expensive operations are pre-calculated, allowing a faster convergence. In (Ishikawa et al., 
2002) it was proposed the robust inverse compositional algorithm as an extension to the 
inverse compositional algorithm, allowing the existence of outliers into the alignment with 
almost the same efficiency. 
Regarding object tracking, Kalman Filtering, Extended Kalman Filtering and Particle 
Filtering (also known as Condensation and Monte Carlo algorithms) are some of the most 
common used algorithms. Due to its simplicity, the Kalman filter is still been used in most of 
the general-purpose applications when the linearity and Gaussianity assumptions are valid. 
The here-proposed motion detection and tracking system is based on the described 
algorithms: background difference and motion history for motion detection, robust inverse 
compositional algorithm for the image and background alignment, and Kalman filtering for 
the tracking of moving objects. 

 
3. Proposed Motion Detection System 
 
3.1 System Overview 
In figure 1 a block diagram of the proposed system is shown. The system is composed by 
four main subsystems: Image Alignment, Motion Detection, Detection Estimation, and 
Background Update. In the Image Alignment module, the last updated background image 
( Bk−1) and the last frame image ( Ik−1) are aligned with respect to the current frame image 
( Ik ). The camera motion angles (ακ) are employed in this alignment operation. Both aligned 



Motion Detection and Object Tracking for an AIBO Robot Soccer Player 

 

339 

images, *
kB  and *

1kI − , respectively, are then compared with Ik  in the Motion Detection 
module for determining the current moving pixels. As a result of these comparisons, the 
Motion History and Background Subtraction algorithms generate preliminary detections (a set 
of moving pixels), 

KHD  and 
kBD , respectively. These detections are joined in the Rejection 

Filter module, and a final set of candidate blobs (moving objects) Detk is obtained using 
adjacent moving pixels. The motion detections are analyzed in the Detection Estimation 
module using a Kalman Filter, and the final detections Detk* are obtained. Finally, the 
background is updated using *

kB , Ik  and Detk* (which defines the new foreground pixels) 
by the Background Update module. 
 

 
Fig. 1. Block diagram of the proposed system. Parameters are described in the main text 

 
3.2 Image Alignment 
The alignment of the last updated background image ( Bk−1) and the last frame image ( Ik−1) 
is implemented using the robust inverse compositional algorithm (Ishikawa et al., 2002). The 
alignment operation is implemented as a sequence of incremental warps (see section 2). The 
initial estimation of the warp is calculated based on the camera motion angles (stored in the 
ακ vector; they correspond to the tilt, pan and roll camera rotation angles). The initial 
estimated warp is a composition of a rotation followed by a displacement. The angle of 
rotation is estimated as the variation of the roll angle of the camera, while the displacement 
Dx/Dy in the X/Y axis corresponds to the pan/tilt angle: 
 

( ) ( )
( )
( ) ( ) ( ) ( )( )

2 2 1 1 2 1

2 1

2 2 1 1

sin sin

180

cos cos 180

R pan tilt pan tilt roll roll

pan pan

tilt pan tilt pan

BA BA

Dx

Dy BA BA

α α α α α α α

α α

α α α α

= ⋅ − − ⋅ − + −

= − ⋅

= − ⋅ − − ⋅ ⋅

 (1) 

 
where Rα  represent the rotation in radians, Dx and Dy represent the displacement in pixels 
in their respective axis, BA is the angle of the body, and the angles 1tiltα , 1panα , 1rollα , 2tiltα , 
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2panα , 2rollα  are the tilt, pan and roll angles of the robot’s head in the last and in the current 
image, respectively, measured in radians. 
Then the warp is defined by a set of six parameters as: 
 

( )
( )

1 1 3 5

2 1 4 6

Wx P x P y P

Wy P x P y P

= + ⋅ + ⋅ +

= ⋅ + + ⋅ +
 (2) 

 
where (Wx, Wy) define the new pixel coordinates which initial coordinates were (x,y). A pure 
displacement warp has the parameters P1 to P4 equals to zero, and the parameters P5 and 
P6 equals to the displacement in pixels in the x and y axis respectively. A pure rotation warp 
has the parameters P1 to P4 equals to the rotation matrix, and the parameters P5 and P6 
equals to zero. Finally, a compound warp of a rotation followed by a translation have the 
parameters: ( )1 cos 1RP α= − , ( )2 sin RP α= − , ( )3 sin RP α= , ( )4 cos 1RP α= − , 5P Dx= , 

6P Dy= . 
For aligning Bk-1, the area of the current image (Ik), which has being estimated to overlap the 
background, is chosen as a template for the algorithm. This preliminary template is divided 
into nine blocks (sub-images). In each block, the normalized variance of its pixels (intra-
block variance), and the normalized variance of the error with respect to the correspondent 
block in the background (inter-block variance) are calculated. A variability factor is computed 
as the quotient of the intra-block variance and the inter-block variance. The six blocks with 
the largest variability factors are selected as the final templates for the background 
alignment. Taking into account the normal camera motion, Bk-1 and Ik should have different 
spatial sizes for a correct alignment. In our implementation, Bk-1 has the same height than Ik, 
but the double of its width. We will denote the set of parameters defining the warping of the 
background PB. The algorithm for obtaining PB is detailed described in (Ishikawa et al., 
2002).  
For aligning Ik-1, the calculated warp of Bk-1 is employed as a first approximation. However, 
given that Ik-1 and Ik have the same size, the calculated warp has to be actualized with a 
composition with a prior displacement to achieve the same spatial configuration of the 
background (Ik-1 should be translated into background spatial coordinates). Then, the result 
has to be composed with a post displacement to reach the spatial configuration of the 
current image (the warped image should be taken back to its original coordinates). Thus, 
defining P1 as the set of parameters needed to produce a displacement equal to the last 
position of Ik-1 inside the background, and P2 as the set of parameters needed to produce a 
displacement equal to the inverse of the estimated final position of Ik inside the background, 
the warp needed to align Ik-1 is (the set of parameters defining this warping are PI):  
 

( , ) ( , ) ( ( , ) ( , ))W W W W=I 2 B 1x P x P x P x P  (3) 
 
For simplicity on the notation, x denotes both spatial image coordinates. The function 
W(x,P*) corresponds to a warping operation over x using the set of parameters P*. 
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3.3 Motion Detection 
The motion detection module is composed by three algorithms, Motion History and 
Background Subtraction for movement detection, and Rejection Filter for filtering wrong 
detections and forming the movement blobs.  
 
 
3.3.1. Motion History 
This module keeps a representation of the motion history in the sequence of frames for each 
time step k. For detecting the motion, the distance in the luminance space between the 
current image Ik and the last aligned image *

1kI −  is calculated, obtaining the difference image 
DMk defined as follow: 
 

*
1if ( ) ( )

( )
0 otherwise

k k m
k

mIncrement I I T
DM −

⎧ − >⎪= ⎨
⎪⎩

x x
x  (4) 

 
Where mIncrement corresponds to a factor of increment in the motion, and Tm corresponds 
to a motion threshold. DMk contains the initial set of points that are candidate to belong to 
the MVOs (Moving Visual Object). In order to consolidate the blobs to be detected, a 3x3 
morphological closing (Russ, 1995) is applied to DMk. Isolated detected moving pixels are 
discarded applying a 3x3 morphological opening (Russ, 1995). The motion history image 
MHk, calculated from DMk, is then updated as: 
 

1 *k k kMH MH DecayFactor DM−= +  (5) 
 
Finally, all pixels of MHk whose luminance is larger than a motion detection threshold (Th) 
are considered as pixels in motion. These pixels generate the detection image 

KHD . 3x3 
morphological closing and opening are applied to 

KHD . 

 
3.3.2. Background Subtraction 
Foreground pixels are selected at each time k by computing the distance between the current 
image Ik and the current aligned background *

kB , obtaining 
KBD  as:  

 
*1  ( ) ( )

( )
k

k k p

B

if   I B T

D
0   otherwise

⎧ − >
⎪⎪= ⎨
⎪
⎪⎩

x x

x  (6) 

 
In order to consolidate the blobs to be detected, a 3x3 morphological closing is applied 
followed by a 3x3 morphological opening.  
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3.3.3. Rejection Filter 
Blobs corresponding to neighbor (8-connectivity) moving pixels are built. Both images 
containing moving pixels, 

KHD  and 
KBD , are used for this computation. For each blob b a 

movement density MDb is defined as: 
 

( ) ( )1

( )

k k
x b

b

I x I x
MD

Area b

−
∈

−
=
∑

 (7) 

 
MDb measures the average change in the last frame for the blob b. Ghosts, defined as groups 
of pixel that are not moving, but detected as moving because they were part of a MVO in the 
past, should have a low MDb, while the MVOs should have a large MDb. Then, blobs with a 
small area (area ≤ Tb), with a large area (area ≥ Ts) and blobs with a small movement density 
(MDb ≤ Td) are considered miss detections and discarded. 

 
3.4 Detection Estimation 
Target objects (the MVOs) are tracked by keeping a list with the state of each of them. The 
state of a given target u includes the position of the center of mass (xu,yu), the speed 
(Vxu,Vyu), the area (au), and the growing speed (Vau). For each received movement blob, the 
area and the center of mass are calculated. These variables are used as sensor observations, 
and integrated across the different motion detections (the ones coming from 

KHD  and 
KBD ), 

and over time using a first order Kalman Filter (Gong, 2000). This process includes six 
stages: prediction, observation-target matching, update, detection of new targets, targets elimination, 
and targets merge. After those six stages, the target state list, whose values are estimated by 
the Kalman Filter, corresponds to the final motion detections (Detk*). 
Prediction. Using a first order cinematic model, it predicts the state vector for each target 
based on the last estimated state, and projects the error covariance ahead. 
Observation-Target matching. In order to update the targets, it is imperative identifying 
which observation affects each target. For each observation-target combination, a confidence 
value is calculated as the probability function given by the Kalman filter for the target 
evaluated on the observation. For each target, all observations with a confidence value over 
a threshold Tt1 are associated with the target. If an observation does not have any associated 
target, then it is considered as a new target candidate and passed to the Detection of new 
targets stage. For each observation associated with a target, speeds (spatial speed: Vx and Vy, 
and growing speed Va) are estimated. This estimation is performed using the difference 
between the target state before the prediction and the observation state, divided by the 
elapsed time since last prediction. 
Update. It computes the Kalman gain, updates the state vector for each target using their 
associated observations, and updates the error covariance. The targets without associated 
observations are not updated. 
Detection of new targets. All observations without an associated target are considered as 
new target candidates. Their spatial speed is calculated as the distance from the image 
border, in the opposite direction of the image center, divided by the elapsed time since the 
last frame, and their growing speed is set to zero. 
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Targets elimination. Targets without associated detections in the last two frames are 
considered as disappeared MVO, and eliminated from the target list. 
Targets merge. For each target-target combination, two confidence values are calculated as 
the probability function given by the Kalman filter for one target evaluated on the other 
target state. If any of this confidence values is over a threshold Tj, then the two targets are 
considered equivalents, and the target with the largest covariance (measured as the 
Euclidian norm of the covariance matrix) is eliminated from the target list. 

 
 
3.5 Background Update 
The background model is computed as the weighted average of a sequence of previous 
frames and the previously computed background: 
 

* *

*

( )   ( )
( )

( ) (1 ) ( )   

k k

k

k k

B if DET
B

I B otherwiseα α

⎧ ∈
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x x
x

x x
 (8) 

 
4. Experiments 
 

For the experiments, an AIBO robot using the motion software of the UChile Kiltros AIBO 
soccer team (Ruiz-del-Solar, 2007), configured for allowing just head movements was used. 
The algorithm runs in the robot in real-time. For analysis purposes, two video sequences 
were employed. In both, the robot moves its head in an ellipsoidal way, keeping the roll 
angle of the camera approximately aligned with the horizon. While the robot is moving its 
head, a ball is moving, once in the same direction of the camera movement, and once in the 
opposite direction. In figure 2, the different stages of the algorithm while processing the 
frame 28 of the first video sequence are shown. 
The here-proposed motion detection algorithm can be enhanced using additional object 
information, such as color when detecting moving balls. Thus, in the Rejection Filter module, 
it was implemented a ball color filter applied to the blobs. This color filter uses the average 
U-V values (YUV color space) from each blob for filtering. If the Euclidean distance between 
the U-V average value of a blob and the ball U-V value (model) is larger than a threshold Tc, 
then the blob is discarded. This filter decreases significantly the number of false positives 
errors. It should be stressed that this filter can be applied only after the blobs have been 
already detected. 
The first/second video sequence was 33/37 frames long. 11/14 frames contain a moving 
ball, but the first appearance of the ball cannot be detected because there is no way to know 
if the ball is moving or if it is stopped. Thus the relevant information are only 9/12 frames 
with moving ball, 6/9 of them were successfully detected, which correspond to a successful 
detections rate of 67%/75%. In table 1, consolidated statistics of the analysis of these video 
sequences, with and without using the color filter are shown. 
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Fig. 2. Process stages at frame 28 in video sequence 1. (a) Motion history representation MHk. 

(b) Background model *
kB . (c) Motion history error image (error intensity values are 

enlarged for better visualization). (d) Background subtraction error (error intensity 
values are enlarged for better visualization). (e) Current Image Ik. (f) Motion history 
detection DHk in black overlapped to the current image. (g) Background subtraction 
detection DBk in black overlapped to the current image. (h) Final detections DETk*, 
generated by the Kalman Filter 

Sequence number 1 2 
Number of frames 33 37 
Frames with a detectable moving ball 9 12 
Ball color filter Off On Off On 
Frames with successful moving ball detection 6 (67%) 6 (67%) 9 (75%) 6 (50%) 
Detections corresponding to moving balls 7 6 9 6 
Detections corresponding to ghosts 9 0 7 0 
Detections corresponding to other moving objects 10 0 8 0 
False detections (excluding ghosts) 296 2 265 5 
Total number of detections 322 8 289 11 
False detections average by frame, excluding ghosts 8,97 0,06 7.16 0,14 

Table 1. Analysis of detections in the video sequence 1 and 2 
 
For a better understanding of the algorithm in figure 3, six frames of the video sequence 1are 
shown. There is shown the first frame (a), two frames with a ball moving in the opposite 
direction of the camera movement (b) and (c), and three frames with a ball moving in the 
same direction of the camera movement (d), (e) and (f). In those frames, there are marks 
with boxes for the detections, which color represents the detection kind: red for successful 
detections, blue for fake detections and black for ghost detections. Solid line boxes represent 
detections after the color filter application; in contrast, dotted line boxes represent detections 
eliminated by the color filter. In figure 4, six frames of the video sequence 2 are shown. 
There are shown three frames with a ball moving in the same direction of the camera 
movement (a), (b) and (c), in those frames the tracking is performed successfully; and three 
frames with a ball moving in the opposite direction of the camera movement (d), (e) and (f), 
where the movement is detected partially. 
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Fig. 3. Six example frames in video sequence 1. Solid line rectangles represent detections 

after the color filter application; in contrast, dotted line rectangles represent detections 
eliminated by the color filter. Red boxes denote correct detections; black boxes, ghost 
detections; and blue boxes, false detections. (a) Frame 1: there is no ball (all movement 
analysis algorithms need more than 1 frame for making comparisons). (b) Frame 16: 
the ball and his ghost are detected. (c) Frame 17: the ghost of a disappeared ball is 
detected. (d) Frame 28: tracking a ball. (e) Frame 29: tracking a ball. (f) Frame 30: 
tracking a ball 

 

 
Fig. 4. Six example frames in video sequence 2. Solid line rectangles represent detections 

after the color filter application; in contrast, dotted line rectangles represent 
detections eliminated by the color filter. Red boxes denote correct detections; black 
boxes, ghost detections; and blue boxes, false detections. (a) Frame 13. (b) Frame 14. 
(c) Frame 15. (d) Frame 24. (e) Frame 25. (f) Frame 26. From frame 13 to frame 15 there 
is a successful ball tracking. In frames 24, 25 and 26 there is a fast appearance of a ball, 
in this frames the ball is detected partially 

 
5. Conclusion 
 

In this work we proposed an approach for motion detection and object tracking with a 
moving camera, with application to robot soccer. In the proposed system, the camera 
movements are compensated in software by aligning the current frame and the background. 
Results of the motion detection and tracking of objects in real-world video sequences using 
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the proposed approach were shown. The system operates in real-time and the relevant 
moving objects, the ball in this case, are detected and tracked. 
In the described system, the images’ alignment is achieved using the robust inverse 
compositional algorithm, which requires an initial estimation of the warp. This initial 
estimation is obtained from the measured camera motion (robot joints’ information). We 
have developed an improved images’ alignment module based on local features (SIFT 
features), which does not require any information of the camera motion (Vallejos, 2007). This 
module runs at 5 frames per second. Currently, we are working on reducing the processing 
time of the module, and in its integration into our motion detection and object tracking 
system. 
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1. Introduction    
 

RoboCup competitions were first proposed by Mackworth in 1993. The main goal of this 
scientific competition is to exploit, improve and integrate the methods and techniques from 
robotics, machine vision and artificial intelligence (AI) disciplines to create an autonomous 
team of soccer playing robots. At the time of preparing this chapter, RoboCup is organized 
in several different leagues including soccer simulator (2D and 3D), small size, middle size 
and legged robots, (Kitano, 1997a, Kitano et. al, 1997. Kitano, et. al, 1998). These leagues are 
designed to break down the problem into several venues so that the challenges can be 
addressed efficiently. Robots in middle-size league should operate autonomously only with 
local resources including local sensors, batteries and local vision. Each team can have a 
maximum number of four robots with a maximum footprint of 2000cm2. They can 
communicate with each other through a central computer via a radio link. The rules in the 
competition are the same as the international soccer rules as far as they are practical for 
robots (Kitano, 1997b). 
Recently, most conventional mobile robots have used a wheeled mechanism. Such 
mechanism consists of two independent driving wheels responsible for all needed robot 
motions (front-steering and rear-wheel driving mechanism). Motion restriction is a major 
problem in the use of such mechanism in mobile robots. There are also other suggested 
mechanisms such as universal wheel mechanisms, ball wheel, crawler and offset steered 
wheel mechanisms (Watanabe, 1998, West, 1992, Nakano, 1993).  
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Omni directional mobile robots have been popularly employed in several applications 
especially in soccer player robots considered in Robocup competitions. Such robots can 
reach to any position with no rotation through a straight line, so they can provide high 
mobility with no motion restriction. In these robots, providing high speed with an 
acceptable error is a very important factor in the competitive and dynamic environments 
(see Fig. 1). An omni directional robot can respond more quickly and it would be capable for 
more sophisticated behaviors such as ball passing or goal keeping.   
Control and self- localization of omni directional mobile robots are important issues and 
different teams in the Robocup competitions have used different techniques to tackle it. 
Setting the PID controllers coefficients heuristically with no prior estimation based on just 
trials and errors is generally very time consuming. On the other hand, solving the set of 
coupled differential equations is very complicated and may not be practical for a real time 
control (Kalmar-Nagy, et. al, 2002). Some teams decoupled the mathematical model of the 
system while the others use fault tolerant control strategy for their systems (Jung, et. al, 
2001). Real-time path generation based on the polynomial spline-interpolation with 
prediction of velocities of spline functions is also proposed and used (Paromatchik, et. al, 
1994).  A fuzzy model of the omni directional robot control was studied analytically in 
(Watanabe, 1998). In this chapter, we propose a calibration method for the robot controller 
in dynamic environments based on a simple motion to estimate initial values for the PID 
coefficients. For reliable and robust control, we propose a combined feedback from the 
odometry and vision mechanisms.  
We show that the accuracy of the vision based self localization is not uniform everywhere in 
the field. Thus, we apply the sensitivity analysis method to evaluate the performance of the 
vision self-localization for feedback generation and we suggest techniques to improve the 
accuracy of the location feedback. By combining these strategies and utilizing the 
comprehensive omni directional robot (Samani, et. al, 2004), Persia Middle Size team won 
the 1st place in world Robocup technical challenge competitions in Portugal 2004 and 3rd 
place in Italy 2003. 

 
Fig. 1. A comprehensive omni directional robot having omni directional vision, motion and 

kicking systems 
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Another significant subject in the robots’ soccer competition is artificial intelligence (AI), 
since soccer needs cooperative behavior and coordination between agents which need some 
form of intelligence. In this chapter, we propose a comprehensive AI architecture for this 
purpose in three well defined, distinct layers which provides the team with fully dynamic 
and flexible team work with little computational or architectural complexity cost.   
This chapter is organized as follow. Sections 2, 3 and 4 describe the kinematics, dynamics 
and control of the robot respectively. Feedback generation and self localization using both 
omni-vision and odometry is presented in section 5. The omni directional kicking 
mechanism is described in section 6. The artificial intelligence algorithms in our robot are 
explained in details in section 7 and the experimental results is explained in section 8. We 
finally conclude this chapter in section 9.  

 
2. Robot Kinematics 
 

2.1 Omni Directional Wheels and Robot Chassis 
Omni directional robots usually use special wheels. These wheels are known as omni 
directional poly roller wheel. The most common wheels consist of six spindle like rollers 
which can freely rotate about their longitudinal axis (Fig. 2a) (Asama, 1995, Watanabe, 1998).  
 

              
                                         (a)                                                                                           (b) 
Fig. 2. (a) Omni directional poly-roller wheel, (b) Omni directional small-roller wheel 
 
The surface shape and size of the poly rollers are designed such that all six rollers form a 
complete circle and generate a low vibration while rotating similar to a normal wheel. 
However, since the wheel has a low surface contact on the field compared with a normal 
wheel, the slippage is more severe. Due to the low vibration, this wheel is suitable for the 
actuating mechanism and is connected to DC motors while it is not proper for feedback 
generation considering its slippage. In order to avoid the slippage effects of this wheel, we 
design another type of omni directional wheel which consist of small cylindrical rollers 
mounted on the main body of the wheel in a feedback mechanism (Fig. 2b). As shown in 
Fig. 2b, this wheel covers a polygonal shape, so the wheel vibration is considerable. In fact, it 
should be mounted on the system with a flexible structure such as a flat spring (Fig. 3). Shaft 
encoders are mounted on these wheels. 
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Fig. 3. Omni directional small-roller wheel connected to the body via a flat spring 
 
A robot with three omni directional wheels can essentially follow any 2D trajectory. Our 
robot structure includes three big black omni-directional wheels for motion system (Fig. 5a), 
and three small free wheels on which shaft encoders are mounted as feedback mechanism  
(Fig. 4b) (Asama, et. al, 1995, Watanabe, 1998). 
 

 
Fig. 4. (a) Three black omni directional poly-roller wheels act as actuators, (b) three free 

omni directional small-roller wheels used in a feedback mechanism 
 
2.2 Kinematics Equations 
Using omni directional wheels, the schematic view of robot kinematics can be shown as 
follows (Fig. 5) (Kalmar-Nagy, et. all, 2002). 
 
 
 
 
 
 
 
Fig. 5. Robot kinematics diagram 
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In the figure above, O is the robot center of mass, Po is defined as the vector connecting O to 
the origin and Di is the drive direction vector of each wheel. Using unitary rotation matrix, 

)(θR  is defined as:  
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The positions vectors 
31 ,..., oo PP with respect to the local coordinates centered at the robot 
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where L is the distance of wheels from the robot center of mass (O). The drive directions can 
be obtained by:  
                                                                      

oii L
PRD ×= )(1 θ  (3) 

                                
⎥
⎦

⎤
⎢
⎣

⎡
=

1
0

iD
                

⎥
⎦

⎤
⎢
⎣

⎡=
0
1

2D                 
⎥
⎦

⎤
⎢
⎣

⎡

−
=

1
3

2
1

3D
 (4) 

Using the above notations, the wheel position and velocity vectors can be expressed with the 
use of rotation matrix )(θR as:  

                                                                  
oioi PRPR ×+= )(θ   (5) 

                                                                  
oioi PRPV ×+= )(θ   (6) 

The vector [ ]T
o yx=P  is the position of the center of mass with respect to Cartesian 

coordinates. The angular velocity of each wheel can be expressed as:  
                                                             

i
T
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where r is the radius of odometry wheels. Substituting for 
iV  from equation (6) yields:  
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Note that the second term in the right hand side is the tangential velocity of the wheel. This 
tangential velocity could be also written as:  
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From the kinematics model of the robot, it is clear that the wheel velocity is a function of 
linear and angular velocities of robot center of mass, i.e.:  
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Or in a equivalent vector form:  

                                                                      SWφ ×=
r
1  (11) 

where L is the distance of wheels from the robot center of gravity (O) and r is the main 
wheel radius. 

 
3. Robot Dynamics 
 

Linear and angular momentum balance for the robot can be written as: 
                                               ∑

=
=×
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1
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where 
oP  is the acceleration vector, if  is the magnitude of the force produced by the ith 

motor, m is the mass of the robot and J is its moment of inertia about its center of gravity. 
Assuming no-slip condition, the force generated by a DC motor can be written as:  
                                                                     VUf βα +=  (13) 

where, }3,2,1),({ == itViV  is the velocity of each wheel. The constants α  and β  are motor 
characteristic coefficients and can be determined either from experiments or from motor 
catalogue. Note that }3,2,1),({ == itU iU  is the voltage applied by supplier to the DC 
motors. Substituting equation (13) into equation (12) yields:  
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This system of differential equations can be written in the matrix form as: 
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and 
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4. Robot Controller 
 

PID controllers are used for controlling the robot position and orientation. In this chapter we 
propose a controller that is robust enough for controlling a soccer player robot (Jung, et. al, 



Comprehensive Omni-Directional Soccer Player Robots 
 

 

353 

2001). For obtaining the PID controller coefficients, one needs to first obtain the whole 
transfer functions of the system and then solve it accordingly. Since the equations, even if 
derived properly, are a set of coupled nonlinear differential equations, it is very difficult to 
solve them. Even though we derive and solve the equations, the results (PID coefficients) are 
not reliable since they depend on many other parameters such as ground surface friction 
factor, characteristics of batteries and so on. So the equations will be decoupled with these 
assumptions: 
1. Omni directional mechanism is a mechanism which can reach to any position with no 

rotation ( 0=θ ) through a straight line, this specification help the robot to reach the 
desired position in the least time compared with a 2 wheel mechanism. It is also true 
that every curve can be divided into some straight lines and at the end of each line the 
robot did not need to rotate to follow the next line. 

2. Whenever it is necessary to rotate (for example when the robot kicker should be in a 
particular position) the robot rotates while it is moving in a straight line to reach the 
right position. This can be regarded as a pure rotation in addition to the first 
assumption. 

3. The pure rotation in our robot is obtained by applying equal voltages to each motor. 
4. In order to find PID coefficients for the robot position controller, moving through a 

straight line is very similar to move through an axis like X Direction (Y=0 in equation 
15) The voltage obtained from position controller is then added to the voltage found by 
orientation controller.  

Based on the above assumption, the robot position is not depend onθ , so for position 
control, we assume that θ =0. In the cases where rotation is required, the voltage obtained 
from orientation control for each motor equally added to the position controller output.  
For PID tuning in position controller, a simple movement was considered, i.e., θ =0, Y=0 (or 
a constant value) in equation 15. Similarly, for orientation control, a pure rotation is 
considered, i.e., X=0 (or constant), Y =0 (or constant).  

 
4.1 Position Controller Architecture 
Figure 6 illustrates the overall block diagram of the system. As it is clear from Fig. 6, the 
omni directional robot control loop contains a PID and PD controller (with the transfer 
function HPID), a plant transfer function (HP which is obtained from the system dynamics) 
and a self-localization transfer function (as a feedback function that only senses the robot’s 
position).  
A noise node, N, is also included that has an additive effect on the system position input. 
The input of the system is considered to be a step function and the output is the robot 
position and orientation.  
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Fig. 6. Control diagram of the omni directional robot 

 
4.1.1 HPID Transfer Function 
HPID can be written in a general form as follows:  

                                                        sK
s

KKsH D
I

PPID ++=)(   (18) 

Here Pk , Ik and Dk are proportional, integral and derivate gains respectively.  

Experiments showed that the system overall performance is satisfactory and thus this type 
of controller is robust enough for controlling a soccer player robot (Kalmar-Nagy, et. al, 
2002). 

 
4.1.2 HP Transfer Function 
As it is mentioned in section 4, two simple motions were considered and solved, namely 
straight line motion of the robot in x direction and pure rotation about the z axis. The former 
means that one motor is turned off and the other two are turned on with the same angular 
velocity while the latter means that all three motors are turning with the same angular 
velocities.  
We will study the orientation separately in section 4.2. The output voltage from the 
orientation controller (w) is then added to the voltage obtained from the position controller 
output ( iv ). The assumption of summing up these voltages is valid while motors are 
operating in their linear regions.  In order to apply the straight line motion, one can consider 
equation (15) with: 0=θ  and 01 ==== θθϕ y  and 32 ϕϕ −= . Equation (15) 
reduces then to: 
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2
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Applying Laplace transfer function to equation (19) with the initial 
conditions: 0)0(,0)0( == XX , one obtains: 
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It should be noted that for ideal case (in absence of noise) the complete transfer function for 
position control will be obtained as follows ( 1 =onLocalizatiSelfH ): 
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Figure 7 shows the step and noise response curves with various kp, kI, kD values.  
 

                         
Fig. 7. (a) System step in addition noise, (b)  Step response of the PD response for different 

values of DIp kkk ,,  controller for orientation control 

The following observations can be deducted. The dotted line in Fig. 7a shows a step function 
with an added noise of Gaussian distribution. In this curve the noise is applied to the system 
every 40 micro seconds due to the robot processing time. The mean value and standard 
deviation of the noise are 0. In Fig. 7a, by increasing Pk , Ik  (dash-dotted line & solid line), 
the system response delay time will increase too. Also, there are some overshoots in these 
curves. However, by increasing the Dk  value, this effect will reduce drastically. In order to 
find optimum values for the PID coefficients, different combinations of the parameters were 
selected and examined. Eventually, the proper PID coefficients were obtained for our system 
as 10,1,1 === dIp KKK . The response of the system for these values is depicted by thick 

solid line in Fig. 7a. 

 
4.2 Orientation Control 
It is also necessary to apply a controller for the robot rotation control. Assume that the robot 
only rotates about its vertical axis, i.e., Z-axis. We then derive: 321321 , UUU ==== ϕϕϕ . 
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Substituting these values into the third equation in relation (15) leads us to: 
                                                            1

2 33 LULJ =+ θβθ   (22) 

Applying Laplace transform to the above equation yields 
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and considering a PD controller for this case, we obtain the total transfer function for 
orientation control as: 
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Figure 7b shows the step response of the control system. Since the experience showed that 
residual error for orientation control is not of great importance in our scenario, a PD 
controller will result in desired system response.  Therefore, there is no need to apply the 
Integrator controller for the orientation or robot.  
The optimum parameters for this case are kp=100, and kD=10. The step response for these 
parameter values is shown by solid line in Fig. 7b.  The slight overshoot is desirable since we 
did not consider the effects of friction that damps the response in our model. 

 
4.3 Final Robot Controller 
In order to implement the position controller, the position error vector is determined as 
follows: 
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while the vector [x y] and [x’ y’] are the initial and the desired position of robot in the field 
respectively. Thus, the position control output can be written as: 

                                                         
dt
dK

dt
dKK DIP

eeeV ∫ ++=  (26) 

where V expresses the output of the position controller for the driving units whose 
components on each driving wheel are extracted with: 

                                                                            i
T

i DV ⋅=V   (27) 

In this equation, vector Di is the drive direction of ith motor. The output of the position 
controller for each motor is iv . Considering the PD controller for orientation control, 

assuming that the head angle of the robot is δ and the desired head angle is Δ, the error 
angle is then determined as: 

                                                                           δ−= ΔeΔ  (28) 

The orientation controller output is thus given by: 

                                                                 
dt

deKeKw Δ
DΔP +=   (29) 
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The voltage from the orientation controller output is then added to the voltage obtained 
from the position control output. The final applicable voltages on the motors are then 
computed as:  

                                                                           wvu ii +=   (30) 

This voltage is applied to each motor to reach the desired point. Since the system sensitive 
parts such as electronic control board, computer, batteries, etc., may be damaged by rapid 
rotation of the robot, we need to apply an upper and a lower threshold for the orientation 
controller output. Practically we set the threshold to be ± 10v.  
The PID and PD coefficients were obtained from the two previous cases, used as a first 
estimation. This is due to the robot working conditions such as friction, gear boxes 
clearances and tolerances, motors mechanical time constant and etc that are not considered 
in modelling. The proper coefficients were then tuned experimentally in each competition. 
The results showed that for real cases, the maximum changes in the calculated values were 
around 10%. Therefore, such simplification is a good approximation for control model. 
Therefore, such simplification is a good approximation for control model. 

 
5. Feedback Generation and Self-Localization 
 

The position control method described in the former sections, calls for some form of position 
feedback in order to work properly. The performance of this feedback lies in its reliability, 
accuracy and real time computability. There have been plenty of algorithms and methods 
proposed by different researchers in the literature (Borenstein 1997, Olson 2001, et. al, 
Talhuri, et. al, 1993). Among them self- localization by visual information and odometry 
approach are dominant due to their special characteristics which will be discussed in the 
following paragraphs. 
In this work, a compound novel method was developed and optimized for RoboCup MSL 
(Middle Size League) in which both visual and odometry information are used to ameliorate 
a real time, accurate and reliable method. Although optimized for soccer player robots, the 
self-localization method proposed here has enough modularity and flexibility to be 
applicable in most robotics applications involving self-localization. 
Each of these complementary methods (vision/odometry self-localization) operates 
autonomously and has its own advantage and drawbacks in providing position feedback for 
robot control. For example, odometry method is known to have memory-based operation, 
accumulative error, low jitter, simplicity of implementation, cheap hardware, etc.  
On the other hand, vision-based self- localization algorithms often have memoryless 
implementations (although there exists memory-based ones), no error accumulation, high 
jitter, relatively high computation complexity and expensive hardware. That is why 
amalgamating these methods can bring us to a global novel algorithm with good 
performance in vast and diverse conditions.  
In the first subsection, the vision self-localization is explored in details and its different 
aspects are inspected. The second subsection describes a sensitivity analysis on the proposed 
method that demonstrates its performance in different locations in the field. Then using the 
evidence of sensitivity, slight modifications are presented for further robustness of the 
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overall algorithm. Next, odometry self- localization is proposed in brief and at last, the 
fusing algorithm of both visual and odometry outputs is described together with an 
Additive White Gaussian Noise (AWGN) model for the jitter. 

 
5.1 Vision-Based Self-Localization Using Omni Vision Sensor 
 

5.1.1  Hyperboloidal Omni-vision Sensor 
The hyperboloidal mirror is a specific solution among the family of polynomial mirror 
shapes. These mirrors do not provide a central perspective projection, except for the 
hyperbolic one, but still guarantee a linear mapping between the angle of elevation φ and 
the radial distance from the center of the image plane ρ (Fig. 8) (Gaechter, S., 2001).   

 
Fig. 8. Schematic diagram of the omni vision sensor 
 
Another required specification is to guarantee a uniform resolution for the panoramic 
image. The resolution in the omni directional image increases with growing eccentricity, 
( ρ ), when using a camera with an images of homogenous pixel density. (see Fig. 9) 

 
Fig. 9. (a) Input omni directional image, (b) perspective and (c) panorama image (Yachida, 

M., 1998) 
 
Searching through the literature, we found that the following hyperbolic curve is commonly 
used for omni directional vision mirror (Ishiguro H., 1998): 
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22

−=− yx   (31) 

However, this equation is suitable for the mirror with large size and wide view. For our 
soccer player robot, we need an image with a diameter of 3.5m on the field. To design a 
compact mirror with wide view, the above curve scaled down by a factor of 2.5 to yields: 

                                                         25.6
7.11353.233

22

−=− yx   (32) 

Next, a special three stages process was considered for the mirror manufacturing: 
1) Curve fabrication , 2) Polishing, 3) Coating 
In the first stage the curve was fabricated on steel 2045 with CNC machining. Then, the 
work-piece was polished by a special process and finally Ni-P electroless plating was 
employed.  

 
5.1.2 Vision-Based Self-Localization 
Vision module was designed with several goals in mind; preparing spatial information of 
ball, opponents, team mates and self-localization raw data, exploited by self-localization 
module, are the key prospects. Our robot platforms were equipped with omni directional 
cameras (Talluri, et. al, 1993), with which the projection of the whole field area was available 
to the camera with a hyper-parabolic mirror described in section 5.1.1. Since the omni 
directional mirror introduces a map with very high non-linearity between pixel separation 
in the scene and the real physical distance (of such pixels) in the field itself, it is not reliable 
enough to develop algorithms which use distances as their input data with such mirrors.  
Instead angles are preserved completely in a linear manner if the center of mirror and 
camera are aligned perfectly. Therefore, the algorithms with angles as their input data are 
more reliable and can perform more efficiently.  
Our approach in vision-based self-localization is based on arcs. In basic geometry, there is a 
fact that having an angle of observationω to a fixed and spatially known object in a 2D 
plane, can provide us with possible loci of the observation point. Actually, the points are 
located on the circumference of two circles ( 21,CC ). This simple idea is illustrated 
graphically in Fig. 10. 

 
Fig. 10. Angle of observationω and the two related arcs 
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The proposed algorithm here employs three different observation angles to constrain the 
unique position of observer (robot) in the field (assuming the ideal case with no visual 
noise). A good set of observation angles should have the following properties: 

• Availability from different locations in the field.  
• Extractable from visual data with low computational effort.  
• The arcs resulting from these angles must be independent which means they 

should leave no location ambiguity at any point in the filed. 
• The greater the angles magnitude, results in the lower sensitivity to visual noise 

(that will be discussed later).  
Since goals are fixed landmarks and at least one of them has reasonable observation angle 
within the whole field area, their use for self-localization is popular in Robocup Middle Size 
League (Stroupe, et. al, 2002). An insightful examination through different combinations of 
possible observation angles for this purpose revealed that the following three angles are 
suitable regarding the above characteristics: 

1. The observation angle from the robot itself to the nearest goal ( Goalα ). 

2. Angle between the center of the farthest goal and left side of the nearest one ( Goalβ ).  

3. Angle between the center of the farthest goal and right side of the nearest one ( Goalγ ). 

These angles are depicted for an arbitrary location of the robot in the field in Fig. 11.  
Assume that the intersection points between Arc(j), and Arc(k) to be defined as: 

                                      kj
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where the superscripts denote intersecting arcs and a subscript denotes the index of 
intersection. Note that the robot position is always on one point located on Arc (1).  
First, a list of intersection points pairs are made using equation 33. In order to find the exact 
location of the robot, the Euclidian distances of different pairs of intersections are computed 
and the one which has zero norm is selected as the answer. In other words, there is only one 
point that is located on the intersection of three arcs and this point is the real position of the 
robot in ideal case, i.e., with no noise.  
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Considering imperfectness in visual information extraction, the intersection of Arc(1) with 
other two arcs may not coincide. In such a case, the set that yields the minimum distance 
introduces the possible position of the robot. The final position is simply computed by 
averaging over the neighboring intersection points that satisfy the above criteria (Fig. 11).  
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Fig. 11.  (a) Angles observed by the robot, (b) The arcs and possible intersection positions 
 
5.2 Sensitivity Analysis 
The performance of vision-based self-localization method, developed in this work, relies on 
accurate visual information obtained from the vision module by means of image processing 
algorithms and techniques. Since goals are of two distinct colors in the play field (Yellow 
and Blue), the pixels representing them are distinguished by their position in RGB color 
space, and then their position and angle of observation are extracted with special region 
growing algorithms.  
As mentioned before, although the angles are preserved linearly in the omni directional 
filed of view projected by the hyperbolic mirror, there is always the possibility that some 
error would exist in the detection procedure.  
The sensitivity analysis of vision-based self-localization method reveals the regions in which 
the method is most sensitive to visual noise. The sensitivity of some performance 
characteristic y regarding parameter xi, is defined as the measure of its change yΔ , resulting 

from a change ixΔ  in the parameter xi. Suppose:  

                                                                  ),...,,( 21 nxxxyy =  (35) 

The variation of y is defined as: 
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where y
xi

S denotes the sensitivity of y with respect to parameter xi , and is computed as: 
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Applying the above analysis on the proposed self- localization method in section 5.1 shows 
that in certain areas near the corner posts, the sensitivity increases and the accuracy of the 
method degrades drastically. Therefore, the proposed algorithm may be prone to severe 
errors in these regions (see Fig. 12). Since there are flags in the corner posts (that are of good 
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visibility and detectibly in that region by vision module), these landmarks are proper 
candidates for self-localization in these regions.  

 

 
Fig. 12. Sensitivity of vision-based self-localization method at different location in the field 
5.3. Localization Using Flags 
For achieving better performance in the regions in which the sensitivity of the vision-based 
self-localization method is high, flags are used instead of goals to determine the position of 
robot. The procedure can be summarized as follow.  

• By using visual data of goals and previous location of robot from its memory, the 
location of robot is roughly determined as Front-Left, Front-Right, Back-Left, Back-
Right, where Front and Back show opponent and own side fields respectively.  

• The nearest flag is then detected and the distance of robot to the flag base is 
approximated by a non-linear map constructed experimentally.  

• Since the exact position of flag is known and the relative position of robot from flag 
is also available (R), then calculating the final robot position is a trivial task, i.e.:  
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Since the method of localization changes in these regions, and in order to avoid bouncing 
and confusion between these two methods, a hystersis strip (the grey area between two arcs 
near the flag in Fig. 13) is defined. Therefore, once the method changes to usage of flag 
(robot crosses the inner ring), it sticks to the new algorithm till the robots moves out of the 
outer ring in the hystersis strip.  
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Fig. 13. The schematic view of the robot and flag near the corners (the grey strip is where the  

hystersis occurred) 

 
5.4. Self-Localization Using Odometry 
As it can be seen in Fig. 4b, three free rotating omni directional wheels are placed 60 degrees 
apart from the main driving wheels. These wheels are only passive, attached to three 
independent shaft encoders and have the role of odometry wheels. In reference (Samani, et. 
al, 2004) the direct method for position extraction using the data of shaft encoders is 
described. We only state the results here: 
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where [ ]Tyx θ  is vector containing the position and orientation of the robot. Further 
simplification of the third equation in (39) results in: 
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5.5 Final Position Estimator 
In order to obtain the final position estimation for the robot, both visual and odometry 
outputs must be fused in an appropriate fashion that would take advantage of each method 
to make flaws from the other one ineffective. For example, due to the inherent nature of 
vision-based self-localization, there is undesired jitter at its output, but, in return, odometry 
self-localization has smooth changes that can be used as a low-pass filter for vision-based 
self-localization results. Having this in mind, we came up with the following procedure for 
estimating the final position: 
 

Step 1: Vision-based self-localization estimates the current position of the robot based on 
visual information from the current frame. 

Step 2: Odometry utilizes the last computed position and determines the new position 
using the equation set (39). 

Step 3: The position of robot is then computed as a weighted average of odometry and 
vision-based self-localization as: 

                                                      VisionOdometry PPP 1.09.0 +=  (41) 

Using these coefficients results in smoothing the variation (due to jitter in vision-
based self localization) of final position estimation. The coefficients in equation 
(41) were obtained by carrying on tests on the robot position. 

Step 4: The initial position for odometry in step 2 is then set to the computed robot 
position in the step 3 and the calculation continues for the next frame.  

 

Since the outputs of both odometry and vision-based self- localization are prone to errors, 
and due to inherent random nature of these errors, a 2D Additive White Gaussian Noise 
(AWGN) is added to the output of a perfect self-localization block in the feedback path as 
shown in Fig. 6. The noise can be formulated as:  
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where 
xσ  and 

yσ are noise deviation in X and Y directions, respectively. These values are 

then added to the position obtained from the self-localization module, (x0,y0), to obtain the 
probabilistic location of the robot, i.e. (x,y) as:  
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6. Omni Directional Kicking System 
 

For a soccer player robot, usually one direction is used for directing the ball to the goal or 
other destinations. Therefore, the ball handler and kicking mechanism is added in this 
direction which help the robot to get a suitable form for directing the ball.  
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Although the conventional mechanism can work for any soccer robot, it has some 
limitations which require additional movements for a particular behaviour. In other words, 
each robot has a specific head for kicking the ball and must adjust it to the proper direction 
during the game. These adjustments in the single head robot increase its rotation 
significantly and reduce its maneuverability. In order to minimize such rotations, we use 
two extra kicking mechanisms to form an omni directional kicking system. The position of 
these kicking systems is shown in Fig. 14a. As it can be seen from the figure, each kicker is 
assembled between two omni directional wheels and forms a system with three heads in 0°, 
120°and 240° angles. Three types of soccer player robot in the form of 10 teams, which 
participated in Robocup, were examined in order to assess the rotation rate of each type. 

   
Fig. 14 (a) Omni directional kicking system of the robot, (b) Average rotation rate for three 

types of soccer player robots 
 
In this assessment, the number of complete rotations for each robot in one minute was 
measured and the total average of them was then calculated. Fig. 14b shows these numbers 
for three types of robots, i.e.: 

1- Two independent driving wheels mechanism 
2- Omni directional navigation system (one head) 
3- Omni directional navigation and kicking system (three heads) 

There is a significant decrease in the rotation rate between the first type and the third type of 
these robots shown in Fig. 14b. The number of complete rotation per minute for omni 
directional single head and three heads robot are 5 and 2 respectively. It shows that using 
the omni-kick system is very useful and can reduce the rotation rate in robots with the same 
navigation system about 60%.  
Essentially, fewer necessary rotations simplifies the algorithm needed for following a 
trajectory, cooperative behaviors and increases the speed and flexibility for directing the ball 
to the desired destination.   
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7. Artificial Intelligence 
 

Artificial Intelligence has been of researchers' interest for many years since the need for 
autonomous systems emerged. Several approaches to this specific issue have been studied 
widely in different areas ranging from pure cognitive science outlook to pure engineering 
perspective; each having its own methodology. Although these approaches have different 
standpoints, it has shown that amalgamating the findings of each, results in very interesting 
achievements. In this section we will follow the engineering approach in general, for that its 
applications in practical engineering problems are more dominating.  
From the early days of utilizing machines, systems able to make some simple decisions 
when needed, became necessary in some applications. Engineers overcame this type of 
criteria in their design with simple logics which were implemented mechanically or 
electronically. 
But in the past few decades the need for complicated tasks by robots has called for 
sophisticated methods in artificial intelligence. For example, in situations where robots had 
to be utilized on another celestial body in the space, the remote control of such robots were 
not practical, so the robot needed to have its own intelligence in order to accomplish its 
mission successfully. As another example, assume a robot which has to perform like 
humans in a particular task (i.e. ping-pong player robot); as humans decide intelligently for 
such behaviors, such robots has to be able to decide intelligently as well.   
From the discussion above, it's pretty much clear that in the field of concentration of this 
chapter (soccer player robots), artificial intelligence is of great importance in both agent level 
and team level behavior. In the following subsections the principle ideas have been 
developed and explored in detail. This section is organized as following, firstly the local and 
global world models will be discussed, and then the architecture of the proposed AI 
hierarchy and its modules will be explored in details. Next a discussion on communication 
protocols, used as a medium for transmitting data between agents, will be considered. And 
finally a brief discussion on trajectory computation will be carried out.  
7.1 World Model Construction 
Although each agent tries to extract the real world map from the fusion of visual and non-
visual data as accurate as possible, but "noisy data" and "non-global optimized" algorithms 
reduce the reliability of processed data. First, let us clarify what is meant by "noise" and 
"optimized algorithms" with a few examples in a mobile robot. The flaws of color space 
modeling result in wrong color classification, which in turn makes the object detection 
algorithms prone to errors. As a result, a robot may not see an opponent because of its poor 
color table for the opponent's tag color, or it may see an orange T-shirt in the spectators' area 
as a ball!  These wrong outputs are referred as "noise". By this classification, the CCD noise 
pattern or faulty shaft encoder samples due to motors noise are excluded. There is a trade 
off between speed and reliability in most algorithms. Middle size league in Robocup has a 
well-defined environment (e.g. distinct colors, defined sizes and etc), which can be very 
helpful in simplifying the design of a fast algorithm.  
Since a predefined environment is assumed, any changes in this environment can more or 
less result in wrong movements. For example, for self-localization the width of goals are 
assumed to be fully viewable in close situations; when an object taller than a robot (like a 
human) cuts or occludes a part of a goal in the image, the output of the vision self-
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localization module will not be reliable anymore. Detection of such a situation can be a very 
cumbersome task and making the algorithm very complicated and therefore slow. 
From the discussion above, it is apparent that multi agent data fusion algorithms are 
necessary for constructing a better approximation of the real world. In addition to the 
software which resides on each robot, stand alone software for network communication, 
world model construction, cooperative behavior management and game monitoring need 
also to be developed. The world model module receives different data sets from every agent. 
Each data set contains different environmental information like self, ball and opponents' 
positions. Each data carries a 'confidence' factor; a larger confidence factor means a more 
reliable piece of information. The most recent data sets are then chosen for data fusion, in 
which the following rules and facts are applied: 

• Closer object are of assumed to be of more accuracy. 
• Objects further than a specific distance could be said to be totally inaccurate. 

(This distance is heuristically obtained) 
• An object in the field cannot move faster than an extreme value. 

With respect to the above facts, the module filters unwanted duplicates of objects, (e.g. 
many opponents close to each other seen by different agents), calculates the best 
approximation for ball and opponents' positions with first order Kalman filtering, gives 
every object a confidence factor, applies a low pass filter on data and finally constructs a 
complete world model. This new world model contains information about the objects which 
may not have been seen by each agent correctly and also enhances approximations of all 
environmental information. The constructed world model is then sent back to all agents so 
they will have a better view of the world around them! 

 
7.2 Artificial Intelligence Architecture 
The architecture proposed and used for the purpose of a soccer player team has a 3 layer 
hierarchical framework, namely AI Core, Role Engine and Behavior Engine (Murphy, R., 
2000). These layers are completely independent with well defined interfaces to avoid 
complexities in further developments (i.e. adding new behaviors in order to accomplish a 
certain role more effective must not influence the AI Core layer). This particular 3 layer 
architecture enables us to decentralize the whole AI routines among a ground machine and 
robots in the field accordingly, which in practice means that AI Core, resides in and runs on 
a ground machine outside the field (along with the monitoring module), while Role and 
Behavior Engines run as local processes in individual robots' processing units. The 
following diagram shows the building blocks and their interaction in the proposed 
architecture. 
The interaction between the modules on different machines is provided by a communication 
protocol which bundles commands and parameters generating command packets and 
interprets the incoming packets for other modules. In the following, each layer, its interface 
and parameters will be discussed in details. Finally the communication protocol designed 
for performing the interactions will be described briefly.  
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7.2.1 AI Core 
As it can be seen from Fig. 15, AI Core is the topmost layer in our proposed architecture. 
This core has been implemented using case based reasoning method in which all the 
possible cases had been anticipated during the design process, these cases will be discussed 
shortly. Although no adaptation or learning takes place in this layer, clever design and 
useful parameter definition can give enough flexibility to this layer, while avoiding 
convergence problem in adaptive designs.  
The objective of this layer can be simply stated as following: 

• Collecting data from World Model Constructor (WMC) module.  
• Collecting parameter values set by human supervisor before the game. 
• Extraction of GameState from the above parameters and setting it to a member 

of the following set: GameState={HighDefence ,MedDefence, LowDefence, 
LowAttack, MedAttack, HighAttack} 

• Assigning each necessary role for each GameState to the robot which can 
execute the role better. 

• Sending the role and its parameters along with world model information to 
selected robots. Now let's take a closer look at the algorithms performing the 
above steps. The GameState is uniquely derived from the following table.  

 
                  Ball Region 
Ball Ownership  

Region 1 Region 2 Region 3 Region 4 

Own Team MedDefence LowDefence MedAttack HighAttack 

Opponent Team HighDefence LowDefence LowAttack MedAttack 
 

Table 1. Derivation of GameState from world model information 
 

 
 

Fig. 15. AI core visual module and the defined regions 
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In order to avoid undesirable sudden changes of GameState, which can result in sudden 
changes in roles assigned to robots, GameState determination was implemented memory 
based. This means that the current GameState is selected as the most dominant GameState in a 
pool of GameStates from the last few seconds. In AI Core, roles are changed in a manner in 
which a continuity exists between current and previous assigned roles, therefore, robots 
never experiment sudden changes in roles (for example the role defense never changes to 
attack in the next cycle). Four roles are assigned for each GameState manually based on the 
evaluation of the opponent team strategy. For example, MedAttack might be associated with 
the following roles: Goal Keeper, CenterDefence, Supporter and Attacker. In a more conservative 
situation Supporter might be substituted with a CenterFieldSupporter. 

 
7.2.2 Role Engine  
After assignment of each necessary role to the robot which can perform it better by AI Core, 
the role, along with its optional parameters are sent to the agent through the communication 
layer. The task of the Role Engine is to: 

• Initiate the new assigned role (i.e. by proper termination of the previous role)    
• Initiate a thread to feed the Behaviour Layer with necessary behaviours in order to 

accomplish the assigned role.  
• Determining the essential behaviours according to the parameters received from 

the AI Core, and feeding them sequentially to the Behaviour Layer.  
• Watching the results of each behaviour returned from the Behaviour Layer (i.e. 

success or fail) and deciding the action to take according to results returned.  

 
7.2.3 Behaviour Layer 
Behaviours are the building blocks of the robot's performance which includes simple actions 
like rotating (behRotate), or catching the ball (behCatchBall) and etc. The Behaviour Layer is 
the lowest layer in our architecture.  
This layer receives a sequence of behaviours along with some parameters from the upper 
layer (Role Engine) and executes the essential subroutines in order to accomplish a certain 
behaviour. These subroutines use world model information and trajectory data in order to 
perform necessary movements.   

 
7.3 Cooperative Behaviour  
Here we give an example of how all these layers and modules cooperate in a synchronous 
fashion to finally show an intelligent set of behaviours. Assume in a certain point of time 
during the match, AI Core evaluates the robots’ positions, the ball location and the team 
possessing it from the global world model reported by WMC, and then concludes the state 
of the play to be MedAttack from table 1. This defines the strategy of the game which 
consequently requires some certain roles to be present in the field like Attacker, Supporter 
and Defender. The AI Core then assigns each role to the robot which is most qualified to 
perform that role. In order to avoid unwanted bouncing between roles of a single robot, 
there exists a First In Last Out (FILO) queue for each robot in the AI Core. This queue acts as 
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an intermediate between AI Core and each single robot, for that it fetches the roles assigned 
by the AI Core to each single robot and then from the previous values of its memory, 
determines if the new role has enough credibility to be assigned to the robot or if the current 
role is still the winner of the queue (having the majority of positions in the queue). This way 
the roles are somehow low pass filtered before assignment. 
Now suppose the role Attacker is finally decided to be assigned to a robot by the FILO 
queue in the AI core; this role along with some parameters (i.e. shooting distance) is passed 
to the robot’s Role Engine. The Role Engine evaluates the state of the robot by checking its 
global world model and determines if the robot possesses the ball or not. In case of no 
possession, it sends the Behaviour Layer a command to start behCatchBall behaviour. This 
routine gets the rudder of the robot, fetches the best path to the destinations from trajectory 
module and then issues appropriate commands for the control module to move the robot to 
its destination (i.e. behind ball in this example). If the behaviour was successfully finished, 
which means complete possession of the ball, it returns a success code to the role which has 
called behCatchBall. Having the possession of the ball, now, the role Attacker calls another 
behaviour behDribbleBall which is again a subroutine in the Behaviour Layer. The intent of 
this behaviour could be moving the ball toward the opponent’s goal while avoiding 
obstacles (like opponent’s robots). When this subroutine got the robot to the desired 
shooting distance (which was previously passed to the Role Engine by the AI Core), it 
returns the success code to Attacker role. This role then sends a request to the Behavior 
Layer to perform the behShootToGoal behaviour, and this process repeats as many times as 
needed. The key point here is that the Role Engine evaluates the state of the robot and 
selects which behaviour is needed; the rest is left to the Behaviour Layer to watch over 
proper execution of the behaviour.   

 
8. Experimental Results 
 

In order to evaluate the performance of the position controller suggested in section 4.1 and 
self-localization error, four experiments were designed.  
First, PID position control was applied. The robot tracked on a straight line of 1m length 
near the center of the field with no rotation. Second, the PD orientation control was 
employed with just rotation about the Z-axis of the robot. Third, the robot was programmed 
to follow a sinusoidal curve (“A” in Fig. 16) with the wave-length of 5m and amplitude of 
3.5m near the center of the field. Finally, the robot pursued two sinusoidal curves similar to 
curve A, but far from the center of the field (“B” and “C” in Fig. 16). 
In the first experiment, the PID constants were set as those calculated in section 1.C.  The 
maximum deviation from the straight-line tracking and the final position error were 
measured to be 8 cm and 4 cm respectively (right line in Fig. 16). 
In the second experiment, again the PD controller parameters are set to the calculated values 
for orientation control (section 4.2). The maximum error from the set point angle was 
0.03π radians. 
These two experiments show that the final error for both tracking and pure rotating are in 
an acceptable level and the PID and PD controller parameters are selected properly. 
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In the third experiment, the robot had to track the sinusoidal curve (“A” in Fig. 16) while 
rotating about its Z-axis. 
 

 
 

Fig. 16. A, B and C depict the robot trajectories. The numbers shows each robot position on 
each curve. The right picture illustrates the straight line followed by the robot 

 
The measured errors were between 10 to 12 cm and occurred at points 4, 10, 13 and 17 in 
curve “A” in Fig. 16. The maximum deviation was measured to be around 12 cm that 
occurred in point 4. 
In the last experiment, the curves were located near the edges of the field (“B, C” in Fig. 16) 
The maximum deviation between the real and desirable path was measured to be around 23 
cm that is less than 7% for this case study.  
Figure 16 shows the position of the three robots on the field at different times while Fig. 17. 
is a picture of the robot tracking on the curves “A”, “B”, and “C” in the competition field. 
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Fig. 17. Notations “A”, “B”, “C” are the robots that followed the corresponding “A”, “B”, 

and “C” curves in Fig. 21 

 
9. Conclusion 
 

1. In this study, we propose PID and PD controllers for position and orientation 
controls respectively. Then, the controller parameters were estimated using a 
simplified model by taking into account the effect of noise. By using these 
parameters in the real robot, it was shown that the strategy was appropriate for an 
omni directional robot. 

2. Self-localization method utilized in this study used a combination of the odometry 
system (using a shaft encoder) and vision-based localization. Using the geometrical 
properties of circles, we managed to calculate the exact position of the robot in the 
field. Next, a sensitivity analysis was carried out to determine the inaccurate points 
in the field. For those regions, we used the flags as our landmarks in the corners to 
overcome such difficulty. An algorithm, employing the above techniques, was 
developed and tested on the real field.  
The test results showed that the asymmetric errors for omni directional mobile 
robots were reduced drastically on those areas. The improvement of performance 
was more than 80% in position and orientation in comparison with the time when 
only the original localization was used. 

3. For the first time, omni directional navigation system, omni-vision system and 
omni-kick mechanism have been combined to create a comprehensive omni 
directional robot. This causes great reduction in robot rotation during soccer play. 

4. The idea of separating odometry sensors from the driving wheels was successfully 
implemented. Three separate omni directional wheels coupled with shaft encoders 
placed 60 apart of the main driving wheels. The result was reducing errors such as 
slippage in the time of acceleration. 
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1. Introduction    
 

The field of robot soccer is a useful setting for the study of artificial intelligence and machine 
learning. By considering the learning processes used in multi-agent systems, such as 
cooperative action learning with multiple agents, optimization of strategies for new 
opponents, robust handling of noise and other disturbances, and real-time learning during 
live gameplay, it is possible to grasp real-world problems in a fairly abstract way. For this 
reason, there has recently been active research and exchange of information concerning a 
robot soccer game contest called RoboCup. Meanwhile, in simulations using robots, it is 
necessary to tackle noise and to address the issues involved in processing the signals 
obtained from multiple sensors, and it is not always possible to evaluate and analyze this 
information effectively. When focusing on game strategy learning, it is often effective to 
perform a priori evaluation and analysis by computer simulation. In this section we 
introduce an idea for autonomous adaptive evolution with respect to the strategies of 
opponents in games, and we present the results of evaluating this idea. Specifically, we start 
by introducing a hybrid system configuration of classifier systems and algorithmic 
strategies. Then, with the aim of implementing real-time learning in mid-game, we 
introduce a bucket brigade algorithm which is a reinforcement learning method for 
classifiers, and a technique for restricting the subject of learning depending on the frequency 
of events. And finally, by considering the differing roles assigned to forwards, midfielders 
and defenders, we introduce a technique for performing learning by applying differences to 
the reward values given during reinforcement learning. We pitted this technique against 
soccer game strategies based on hand-coded algorithms, and as the results show, our 
proposed technique is effective in terms of increased win rate and the speed of convergence 
on this win rate.  

 
2. Soccer Video Game and Associated Problems 
 
2.1 Overview of Soccer Video Game 
The type of soccer game that we will deal with here is a software-driven video game with 
soccer as its theme in which two teams battle for the most points. Figure 1 shows a typical 
game scene targeting the area around the current position of the ball. The screen also 
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includes a diagram showing a total view of the game in the lower right hand corner. The 
size of the field was set to 20.0×110.0 grid world, considering that the size of the actual 
soccer pitch is 20 m long ×110 m wide. Positions on the field and the locations of objects 
placed on the field are defined using three-dimensional coordinates in the width (x), length 
(y) and height (z) directions. Data on the field is all processed using floating-point values. 
The movement of the soccer ball is controlled by physical computations. The ball state is 
determined by its position vector Vbp, direction vector Vbd, speed V, and acceleration Va. The 
position vector Vbp and speed V are updated in each cycle of the environment according to 
Equation (1) below: 
 

Vbp = Vbp + Vbd × V        and        V = V + Va. (1)  
 
The soccer players can be in any of three states — stationary, accelerating, or moving — and 
are assigned a position vector Vp, a direction vector Vd, and information about the actions 
they are performing. Changes of state occur when a player takes some kind of action based 
on the information input from the environment. 
 

 
Fig. 1. Example of typical game scene targeting the area around the current position of the 

ball 
 
Each team has 11 players, and the movements of the 11 players of one team are controlled 
by computer. The algorithm to control player action is thought up beforehand by a game 
designer and programmed as a set of control rules in IF-THEN (condition-action) format. 
Figure 2 shows an example of a rule written in IF-THEN format and the corresponding 
scene. The rule states “If the ball is right in front of me while I am in front of the goal and if 
two players of the other team are between me and the goal, then pass the ball to an 
unmarked player on my team.” The program for determining player action consists of a 
detector, a decision-making section, and an effector. Based on information input from the 
environment, the detector determines the position and state of each player, the position of 
the ball, the distance between a player and the goal, etc., and passes these results to the 
decision-making section. This section then determines player actions according to an 
algorithm described in IF-THEN format as described above. Examples of player actions 
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include kick, trap, and move in accordance with current circumstances. The effector finally 
executes these actions in the environment based on instructions received from the decision-
making section. Now, the operation of all or some of the 11 players making up the opposing 
team is performed by the user, that is, the game player. If the game player is in charge of 
operating only some of the players on his team, the actions of the remaining players will be 
controlled by the same algorithm as that of the team controlled by computer.  

 
Fig. 2. Example of a rule written in IF-THEN format and corresponding scene 

 
2.2 Problems with Conventional Technique 
As described above, the conventional approach to producing a soccer video game is to have 
a game designer devise the algorithm for controlling player action and to then describe and 
program that algorithm as a set of rules in IF-THEN format. Recently, however, the Internet 
is making it easier for anyone to participate in video games and the number of game users is 
increasing as a result. This development is generating a whole new set of problems. First, 
the increasing number of users means that the differences in strategies that users prefer and 
excel in can no longer be ignored and that multiple strategy algorithms must be 
simultaneously supported. Second, the appearance of users with advanced techniques has 
generated a need for decision-making algorithms under even more complicated 
environments. And finally, as the Internet makes it easy for new users to appear one after 
another, it must be possible to provide and maintain bug-free programs that support such 
complex decision-making algorithms in a time frame much shorter than that in the past. In 
other words, the human- and time-related resources required by development and 
maintenance work are increasing dramatically while the life cycle of each game is 
shortening. The conventional technique is hard pressed to deal with this situation. 

 
3. Hybrid Decision-making System 
   

We have studied the equipping of game programs with machine learning functions as an 
approach to solving the above problems. This is because incorporating machine learning 
functions in an appropriate way will enable the system to learn the game player’s strategy 
and to automatically evolve a strong strategy of its own. It will also eliminate worries over 
program bugs and significantly reduce the resources required for development and 
maintenance. A number of techniques can be considered for implementing machine learning 
functions such as neural networks, Q-learning (Sutton & Barto, 1998) and genetic algorithms 
(GAs), and we have decided, in particular, on incorporating functions for acquiring rules 
based on classifier systems (Holland, 1992). We came to this decision considering the many 
examples of applying evolutionary computation to the acquisition of robot decision-making 
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algorithms (Gustafson & Hsu, 2001; Luke, 1998; Pietro et al., 2002) in the world of robot 
soccer games such as RoboCup (Kitano et al., 1997; RoboCup), learning classifier systems 
takes advantage of GAs and reinforcement learning (Sutton & Barto, 1998) to built adaptive 
rule-based systems that learn gradually via online experiences (Holmes et al., 2002; Huang 
& Sun, 2004; Kovacs, 2002), and considering the compatibility between the IF-THEN 
production-rule description format and classifier systems and the resulting ease of program 
migration. 
At the same time, the bucket brigade algorithm (Belew & Gherrity, 1989; Goldberg, 1989; 
Holland, 1986; Riolo, 1987a; Riolo, 1987b; Riolo, 1989) used as a reinforcement learning 
scheme for classifier systems needs time to obtain an effective chain between classifiers. As a 
result of this shortcoming, the bucket brigade algorithm is not suitable for learning all 
strategies from scratch during a game. A conventional algorithm, on the other hand, 
provides solid strategies beforehand assuming fixed environmental conditions, but also 
includes a rule that states that a player encountering undefined environmental conditions 
must continue with its present course of action. In light of the above, we decided to apply 
classifier-based learning to only conditions/actions not described by an explicit algorithm. 
In short, we adopted a hybrid configuration combining a conventional algorithm and a 
learning section using a classifier system (Sato & Kanno, 2005). 
Figure 3 shows the basic idea of the hybrid decision-making system using a classifier 
system. This hybrid system is achieved by embedding a conventional algorithm into a 
classifier system as a base. The conventional algorithm is unaffected by learning and is 
implemented as a set of “privileged classifiers.” Specifically, the reliability (credit or 
strength) of a privileged classifier is set to the highest possible value and is not targeted for 
updating by learning. If, after analyzing a message list, there are no privileged classifiers in 
the classifier list that match a current condition, the strength of a classifier that does is 
updated. Classifiers can also be discovered here using genetic algorithms. 
 

 
Fig. 3. Basic idea of the hybrid decision-making system using a classifier system 
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4. Event-driven Learning Classifier System 
 

The preliminary experiments revealed that a hybrid-type system has the potential of 
exceeding a human-designed algorithm provided that search space can be contracted by 
limiting the target of learning to actions. On the other hand, having humans select 
conditions beforehand does nothing to eliminate the problems associated with the 
conventional way of generating conditions.  
To solve this dilemma, we decided to switch the rules to be learned for each game player 
(user) that the computer opposes. This is because the total possible search space in theory 
need not be the target of learning if only the strategy of the game player in the current match 
can somehow be dealt with. Furthermore, it was decided that all of the current player’s 
strategies would not be targeted for learning but rather that the number of events targeted 
for learning would be limited to that that could be completed in real time. Figure 4 shows 
the configuration of the proposed event-driven classifier system (Sato & Kanno, 2005). This 
system differs from standard classifier systems in three main ways. First, the proposed 
system adds an event analysis section and creates a table that records event frequency for 
each game player. Second, the classifier discovery section using genetic algorithms targets 
only actions while conditions are generated by adding new classifiers in accordance with the 
frequency of actual events. Third, the system updates the strength of classifiers by the 
bucket brigade algorithm starting with high-frequency events and continuing until learning 
can no longer be completed in real time. The proposed system also adopts a hybrid 
configuration combining a conventional algorithm and classifier system as before. Finally, 
the system provides for two types of rewards that can be obtained from the environment: a 
large reward obtained from winning or losing a game and a small reward obtained from 
succeeding or failing in a single play such as passing or dribbling the ball. In short, the 
above system focuses only on strategy that actually occurs with high frequency during a 
game and limits learning space to the range that learning can be completed in real time. 
 

 
Fig. 4. The configuration of the event-driven hybrid learning classifier system 
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5. Reward Allotment Based on the Role of Each Position 
 

Table 1 shows the success rewards for each play that were used in these tests. Preliminary 
tests were performed to make a prior survey of the number of times the players performed 
pass and dribble actions in a single game, on the basis of which the rewards for passing and 
dribbling were set so that the product of the success reward for passing and the number of 
passes made was more or less equal to the product of the success reward for dribbling and 
the number of dribble actions performed. The goal-scoring success reward was set to a high 
value because goal-scoring is of great importance to the outcome of a game. For all the in-
game agents apart from the goalkeeper, learning was performed by applying success 
rewards to each play without any particular regard to differences in the role of each 
position. For example, when a pass was made successfully, bucket brigade learning was 
performed so that the same reward value (16) was obtained by each player irrespective of 
whether the player was assigned to a forward, midfielder or defense role. And when a 
player takes the ball from a member of the opposing team, bucket brigade learning is 
performed by obtaining the same reward value (15) regardless of the difference in roles 
between the players involved.  
 
 GETGOAL DRIBBLE PASS GETBALL LOSTBALL TOTAL 
Forwards 60 4 16 15 -50 45 
Midfielders 60 4 16 15 -50 45 
Defense 60 4 16 15 -50 45 
Table 1. The success rewards for each play that were used in a team H1 
 
On the other hand, in real soccer games, the forward, midfielder and defense players are 
assigned different roles and emphasize different aspects of their play depending on these 
assigned roles. Accordingly, it is thought that giving different success rewards to each 
player considering the role assignments of forward, midfielder and defense players might 
lead to a better game winning rate. These role assignments into consideration might lead 
result in cooperative learning that contributes to a better winning rate. Table 2 shows the 
basic concept for determining the success rewards for each player (Sato et al., 2006). For 
example, a forward should take as many shots at goal as possible in order to gain points. 
Forwards are therefore given a large success reward for shots at goal, while their reward for 
stealing the ball from the opposing team is made relatively small. Conversely, the main duty 
of defense players is to prevent the opposing team from being able to take shots at goal. 
Defense players are thus given greater rewards for stealing the ball from the other team, and 
relatively small rewards for successful shots at goal. Meanwhile, the role of midfielders is to 
move the ball forwards to connect between the defense and forward players, and to act as 
surrogate defense or forward players when necessary. Accordingly, their success rewards 
are more evenly spread, with extra emphasis on actions such as passing and dribbling.  
 

 GETGOAL DRIBBLE PASS GETBALL LOSTBALL 
Forwards Large Average Average Small Average 
Midfielders Average Large Large Average Average 
Defense Small Average Average Large Average 

Table 2. The basic concept for determining the success rewards for each player 
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6. Evaluation Experiments 
 
6.1 Experiment on Event-driven Hybrid Learning Classifier Systems 
 
6.1.1 Evaluation Method 
We prepared three strategy algorithms beforehand to help generate data for evaluation 
purposes. The first one is strategy-algorithm A as a product prototype. The remaining two 
are strategy-algorithm B and strategy-algorithm C both based on strategy-algorithm A but 
modified to place weight on offense and defense, respectively. These three strategies were 
made to play against each other beforehand and each was set to have about the same 
winning percentage. 
In the experiments, the outcome of games played between two teams in a soccer 
environment was observed. The players on one team used one of the above conventional 
algorithm-type decision-making systems while those on the other team used the event-
driven hybrid classifier system proposed in Section 4. The first 20 seconds during a single 
game was time for learning and applied to constructing a classifier system. Each pair of 
teams played 10,000 matches and team effectiveness was evaluated from its winning rate Rw 
defined as the following equation. 
 

Rw = Nw / (Nt – Nd),      (2) 
 
where Nt, Nd, and Nw are total number of matches, number of draws, and number of wins 
respectively. The experiments evaluated the ability of the proposed event-driven classifier 
system to deal with a diverse environment and to adapt to a dynamic environment. 
First, Fig. 5 summarizes the experiment for evaluating the ability to deal with a diverse 
environment, that is, the ability to deal with more than one strategy algorithm. Specifically, 
event-driven classifier system H1 incorporating algorithm A was made to play against 
strategy-algorithms A, B, and C, and the outcomes of the resulting matches were observed to 
see whether learning could be performed to give H1 a winning rate better than 50% against 
all of these strategies. 
 

 
Fig. 5. The experiment for evaluating the ability to deal with a diverse environment 
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Next, Fig. 6 summarizes the experiment for evaluating the ability to adapt to a dynamic 
environment, that is, the ability to adapt to changes in strategy. Here, event-driven classifier 
system H1 incorporating algorithm A was first made to play against strategy-algorithm A. 
Next, given that system H1 had evolved into system H1’ having a strategy that could 
adequately deal with strategy-algorithm A, system H1’ was made to play against strategy-
algorithm B to see whether it could further evolve to achieve a winning rate better than 50%. 
Similarly, given that system H1’ had evolved into system H1” having a strategy that could 
adequately deal with strategy-algorithm B, system H1” was made to play against strategy-
algorithm C to see whether it could again evolve to achieve a winning rate better than 50%. 
In short, match outcomes were observed to see whether the hybrid system had the ability to 
adapt to intermittent changes in strategy along the time axis. 
 

 
Fig. 6. The experiment for evaluating the ability to adapt to a dynamic environment 

 
6.1.2 Experimental Results and Discussion 
 
Dealing with a diverse environment:  
Table 3 shows the results of evaluating the ability to deal with a diverse environment. This 
table shows the results of 10,000 matches. Against algorithm A, system H1 won 32%, lost 
17%, and drew 51% of the games played. Against algorithm B, it won 32%, lost 14%, and 
drew 54% of the games played. And finally, against algorithm C, it won 23%, lost 12%, and 
drew 65% of the games played. In other words, system H1 exhibited a degree of learning 
resulting in a winning percentage better than 50% against all three algorithms. Figure 7 
shows the relationship between number of matches played and winning rate Rw. This figure 
shows the first 500 matches for each pairs of teams. These results show that system H1 could 
adapt to each of the three algorithms in several ten matches.  
The results shown in Table 3 and Fig. 7 tell us that event-driven classifier system H1 
incorporating algorithm A could achieve a winning rate better than 50% against strategy-
algorithms A, B, and C by learning. System H1 therefore has the ability of dealing with a 
diverse environment. 
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 Won Lost Drew 
Algorithm A vs. H1 32% 17% 51% 
Algorithm B vs. H1 32% 14% 54% 
Algorithm C vs. H1 23% 12% 65% 

Table 3. Ability to deal with a diverse environment. This table shows the results of 10,000 
matches 

 
Adapting to a dynamic environment:   
Table 4 shows the results of evaluating the ability to adapt to a dynamic environment. This 
table shows the results of 10,000 matches. Here, classifier system H1’ is the result of learning 
by playing against strategy-algorithm A, and from the table, we see that it also adapted to 
algorithm B by playing against that algorithm to the point of winning 31%, losing 14%, and 
drawing 55% of the games played. Likewise, classifier system H1”, the result of adapting to 
algorithm B, also adapted to algorithm C by playing against that algorithm to the point of 
winning 22%, losing 12%, and drawing 66% of the games played. Figure 8 shows the 
relationship between number of matches played and winning rate Rw for system H1’ with 
respect to algorithm B and for system H1” with respect to algorithm C. This figure shows the 
first 500 matches for each pairs of teams.  
 

 Won Lost Drew 
(A -> ) B vs. H1’ 31% 14% 55% 
(B  -> ) C vs. H1” 22% 12% 66% 

Table 4. Ability to dynamic environment. This table shows the results of 10,000 matches 
 
As for the experiment on evaluating the ability to adapt to a dynamic environment, the 
results of Table 4 and Fig. 8 show that the event-driven classifier system could evolve and 
achieve a winning rate better than 50% in the face of intermittent changes in strategy along 
the time axis. 
At the same time, Figs. 7 and 8 show that this system requires about 80 matches to evolve to 
a point where it can either deal with a diverse environment or adapt to a dynamic 
environment. To achieve a practical, working system, though, it is desirable that the system 
be able to adapt with fewer learning steps. Making learning more efficient with a smaller 
number of matches is a topic for future research. 
In either case, the event-driven classifier system could adapt to the conventional algorithm 
in question in about 80 matches. As reference, Fig. 9 shows the relationship between number 
of matches played and success rate of dribbling, and shooting. These results reveal that an 
event-driven classifier system can improve the success rate of dribbling and shooting by 
about 5%. 
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Fig. 7. The relationship between number of matches played and winning rate of H1 
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Fig. 8. The relationship between number of matches played and winning rate for system H1, 

H1’, and H1” 
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Fig. 9. The relationship between number of matches played and success rate of dribbling 

and shooting 

 
6.2 Experiment on Reward Allotment Based on the Role of Each Position 
 
6.2.1 Evaluation Method 
For the evaluation data, we used three different algorithmic strategies that were employed 
in earlier trials. The tests involved playing matches between two teams in a soccer 
environment and observing the number of games won and lost. An algorithmic decision-
making system was used for the players of one team, while an event-driven classifier system 
was used for the players of the other team. The event-driven classifier system was evaluated 
by using a number of teams in which each player was set with different success reward 
values for plays such as passing and dribbling, according to the aims of the test. 
In practice, we investigated whether or not changes in the game winning rate are caused by 
giving each player different success rewards based on the role assignments of different 
positions. We also investigated whether or not there were any changes in the game winning 
rate by changing the balance of success rewards of each type of play. 
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Three event-driven classifier systems incorporating algorithm A were prepared with 
differences in the rewards used for bucket-brigade learning. Specifically, these were a team 
H2 in which the success rewards of each player were set considering the role assignments 
shown in Table 5 in line with the basic policy mentioned above in section 3.3, a team H3 in 
which the success rewards of each player were set as shown in Table 6 based on the 
opposite idea to the above mentioned basic policy, and a team H1 which was set with the 
rewards used in the prior tests shown in Table 1. These three teams were each made to 
battle against algorithmic strategies A, B and C, and we comparatively evaluated them by 
determining the final asymptotic winning rates and the speed with which they converged 
on these final rates. 
 
 GETGOAL DRIBBLE PASS GETBALL LOSTBALL TOTAL 
Forwards 80 2 8 5 -50 45 
Midfielders 60 4 16 15 -50 45 
Defense 40 2 8 45 -50 45 
Table 5. The success rewards for each play that were used in a team H2 
 
 GETGOAL DRIBBLE PASS GETBALL LOSTBALL TOTAL 
Forwards 40 2 8 45 -50 45 
Midfielders 60 2 8 8 -50 45 
Defense 80 2 8 5 -50 45 
Table 6. The success rewards for each play that were used in a team H3 
 
Next, we will describe the test method used to evaluate the relationship between the 
winning rate and the balance of success rewards of each type of play. The event-driven 
classifier system incorporating algorithm A provides a total of four teams — two different 
teams in which the success rewards of each player are set considering their role 
assignments, and two different teams in which no particular consideration is given to role 
assignments. Specifically, we provided two new teams — H4, in which the balance of 
success rewards for each play is modified as shown in Table 7 based on the rewards shown 
in Table 1, and H5, in which the balance of success rewards for each play is modified as 
shown in Table 8 based on the rewards shown in Table 5. Each of these four teams was 
matched against algorithmic strategies A, B and C, and we compared them with each other 
in terms of the eventual asymptotic winning rate and the speed of convergence on this rate. 
We also investigated the relationships between the success rewards and the success rates of 
each play and between the winning rate and the success rate of each play, with the aim of 
using this information to analyze the strategies acquired through learning by the event-
driven classifier system. 
 
 GETGOAL DRIBBLE PASS GETBALL LOSTBALL TOTAL 
Forwards 60 2 8 10 -35 45 
Midfielders 60 2 8 10 -35 45 
Defense 60 2 8 10 -35 45 
Table 7. The success rewards for each play that were used in a team H4 
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 GETGOAL DRIBBLE PASS GETBALL LOSTBALL TOTAL 
Forwards 80 4 16 5 -60 45 
Midfielders 60 8 22 15 -60 45 
Defense 40 4 16 45 -60 45 
Table 8. The success rewards for each play that were used in a team H5 

 
6.2.2 Experimental Results and Discussion 
 
Position role assignments and winning rate:  
Figures 10-12 show the results of evaluating the relationships between the position role 
assignments and winning rates achieved by team H1, H2, and H3. In these figures, each 
point represents the average result obtained by playing 200 successive games 30 times. From 
Figures 10-12, the event-driven classifier systems H1– H5 incorporating algorithm A were 
able to perform learning to achieve a winning rate of more than 50% with all three of the 
algorithmic strategies A, B and C. Also, in all the matches with algorithms A, B and C, the 
winning rates were highest and converged the fastest with team H2, where the success 
rewards of each play were set as shown in Table 5 considering the roll assignments. The 
lowest rising speed was achieved with team H3, where the success rewards of each play 
were set as shown in Table 6 using weightings opposite to those of the basic strategy. The 
event-driven classifier system thus seems to be able to contend with opponents having a 
wide variety of strategies, and it seems that conferring different success rewards to each 
type of play considering the role assignments of forward, midfielder and defense players 
results in a better winning rate and faster convergence. 
 

The balance of success rewards of each play and the winning rate:   
Figures 10-12 also show the results of evaluating the relationship between the balance of 
success rewards of each play and the winning rate. In the matches played with all three 
algorithms A, B and C, team H1 ultimately converged on a higher winning rate than team 
H4, and the winning rate also rose at a faster rate. Team H2 ultimately converged on a 
higher winning rate than team H5, and its winning rate rose at a faster rate. Our results 
show that the winning rate and speed of convergence differ significantly when changes are 
made to the balance of success rewards for each play, regardless of whether or not the 
position role assignments are taken into consideration. 
On the other hand, with regard to the tests for evaluating the relationship between the 
winning rate and the balance of success rewards for each play, Figs. 10-12 show that 
differences in the winning rate and the rate of convergence were caused by changing the 
balance of success rewards for each play independently of whether or not position role 
assignments were considered. Accordingly, by conferring different success rewards to each 
type of play by considering the role assignments, and by carefully setting the balance of 
success rewards for each type of play, it is thought that it is possible to gain further increases 
in the rate at which games are won and the rate of convergence. On the other hand, with 
regard to which specific value should be set, no explicitly determined procedure is set in 
particular. Although it can be determined by trial and error, it is also possible to consider 
determining the success reward values for each type of play by applying a procedure such 
as evolutionary computation. Further study will be needed relating to techniques for finding 
optimal values for the success rewards for each type of play. 
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Success rate of each play:   
Figures 13–15 respectively show the ball possession rates, the number of pass per game, and 
the number of successful goals per game achieved by each team. The ball possession rates 
and the number of pass per game exhibit no particular correlation to the winning rate, but 
were highest for teams H1 and H2, while teams H3 produced lower values of magnitude. As 
for the number of successful goals per game, all the teams eventually converged on a rate of 
about 0.6, but our results show that this value rose much faster for team H2 which had a 
high winning rate. 
Figures 13 and 14 show that the ball possession rate and the number of pass per game had 
no particular bearing on the winning rate, with team H2 achieving higher values than team 
H1, and teams H3 producing low values. On the other hand, in Tables 1, 5 and 6, the sum 
total of the values of the success rewards for dribbling awarded to forward, midfielder and 
defense players are found to be 12 for team H1, 8 for team H2, and 6 for teams H3, which 
corresponds to the order of the ball possession rates in Fig. 13. Also, with regard to the 
success reward values for passes, the sum total values were 48 for team H1, 32 for team H2, 
and 24 for teams H3, which corresponds to the ordering of the number of pass per game in 
Fig. 14. Specifically, it seems that the rate of success of individual play actions has a strong 
tendency to be dependent on the sum total of the success rewards for each type of play for 
forward, midfielder and defense players, independently of whether the game is won or lost. 
On the other hand, the number of successful goals per match was 180 for teams H1 and H2, 
and 200 for team H3, which does not correspond with the ordering in Fig. 15. In Fig. 15, the 
goal success rate of team H2, which has the highest winning rate, rises the fastest. In order to 
successfully score a goal, it is impossible to ignore the relationships with other forms of play, 
and it is thought that rather than being determined solely by the value of the success reward 
for an individual play, it is strongly related to whether the game is won or lost. 
 

 
Fig. 10. The relationship between the position role assignments and winning rate (Algorithm 

A vs. H1 – H5) 
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Fig. 11. The relationship between the position role assignments and winning rate (Algorithm 
B vs. H1 – H5) 
 

 
Fig. 12. The relationship between the position role assignments and winning rate (Algorithm 

C vs. H1 – H5) 
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Fig. 13. The ball possession rates achieved by team H1, H2, and H3 (vs. Algorithm A) 
 

 
Fig. 14. The number of pass per game achieved by team H1, H2, and H3 (vs. Algorithm A) 
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Fig. 15. The number of successful goals per game achieved by team H1, H2, and H3 (vs. 

Algorithm A) 

 
7. Conclusion 
 

In this section we have reported on the results of applying a classifier system to the 
acquisition of decision-making algorithms by agents in a soccer game. First, we introduced 
the hybrid system configurations of the existing algorithms and a classifier system. Then, in 
order to implement real-time learning while a game is in progress, we introduced a bucket 
brigade algorithm that implements reinforcement learning for the classifier, and a technique 
for selecting the subject of learning depending on the frequency of events. And finally, we 
introduced a method for performing learning by awarding players different reward values 
during reinforcement learning depending on whether they are assigned the role of forward, 
midfielder or defender. We played this technique against an existing soccer game with 
hand-coded algorithms, and we evaluated the win rate and the speed of convergence. As a 
result, we demonstrated that this is an effective means for autonomous adaptive evolution 
to deal with the opponent’s strategies in mid-game. It should be stressed that the technique 
introduced here has only been evaluated by computer simulation in a video game. When it 
is applied to a robot soccer game, there are other factors that have to be considered, such as 
processing information input from multiple sensors and dealing with noise. However, by 
employing an algorithm that was effective in previous RoboCup contests as the existing 
algorithm implemented inside the hybrid system, it ought to be an effective technique even 
in robot soccer games. 
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1. Introduction  
 

To give optimal visual-feedback, which helps to control a robot, it is important to make its 
vision system more robust and accurate. In the RoboCup Small Sized League (F180), a global 
vision system that is robust to unknown and varying lighting conditions is especially 
important. The vision system, which is in common use, processes an image that identifies 
and locates robots and the ball. For low-level vision, the color segmentation library called 
CMVision (J. Bruce et al., 2000) has been used to segment color and to connect component 
analysis to return colored regions in real time without special hardware. After color is 
segmented, objects are identified based on the color segmentation results, and then the 
robot’s pose is estimated. To improve the vison system’s robustness to varying light 
conditions, color (A. Egorova et al., 2004) must be calibrated in advance, but the system that 
does this requires minimal set up time. 
In this chapter, we describe a robust and accurate pattern matching method for 
simultaneously identifying robots and estimating their orientations that does not use color 
segmentation. To search for similar patterns, our approach uses continuous DP matching, 
which is obtained by scanning at a constant radius from the center of the robot. The DP 
similarity value is used to identify object, and to obtain the optimal route by back tracing to 
estimate its orientation. We found that our system’s ability to identify objects was robust to 
variation in light conditions. This is because it can take advantage of the changes in intensity 
only. 
Related work and our approach are described in section 2. Section 3 describes the method 
for robust and accurate object identification. The experimental results are presented in 
section 4. Section 5 discusses some of the advantages of the proposed method. Finally, 
section 6 concludes the chapter. 

 
2. Related Work 
 

In the RoboCup Small Size League, one team must have 50 mm blue circles centered on the 
top of its robots, and the other team’s robots must have 50 mm yellow circles. To detect the 
robot’s orientation and to identify it, teams are allowed to add extra patches with up to three 
colors. Figure 1 shows patterns that are currently being used. 
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Fig. 1. Example of general identification patterns 
 
Pattern (a), called “white bar”, is used to precisely calculate the pose of robot. The robot’s 
orientation is calculated using a white stripe and the least squares method (K. Murakami et 
al., 2003) or second moment (D. Ball et al., 2004). Other sub patches are also used for 
identification.  
Pattern (b), called “butterfly”, has been reported in (J. Bruce & M. Veloso, 2003). Geometric 
asymmetry can be used to find the rotational correspondence for orientation estimation. 
Pattern (c), called “pie slice-based”, is unique and is described in (S. Hibino et al., 2002). The 
method that uses this patch scans the circular pattern using markers on the robot. The low 
angle resolution is not adequate (8 degrees). 
These methods use information from color segmentation to determine a robot’s identity. 
Such colors have problems with changes in brightness and nonuniform color intensity, 
including sharp shadows, over the field. 

 
2.1 Proposed Patch Pattern 
Our approach uses only the changes in intensity obtained by scanning at a constant radius 
from the center of the robot and does not use the color segmentation results. Therefore, we 
can paste suitably-colored patches on top of the robot, as shown in Fig. 2. This approach 
makes possible a large number of different patterns for identification and makes it easy to 
modify patch patterns. Moreover, preparing the rule-based reference table by user for object 
identification is no longer necessary. 
 

 
Fig. 2. Examples of our ID plates 

 
3. Object Identification 
 

DP matching calculates the similarity between a reference pattern and an input pattern by 
matching the intensity changes of the robot’s markers. After the DP matching has been done, 
a similarity value is used to identify the robot. Correspondence of the optimal route 
obtained by back tracing is used to determine its orientation. The flow of the proposed 
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Fig. 3. Overview of our vision system 
 
method is as follows and shown in Fig. 3. 
 
1. Color conversion (RGB to YUV) 
2. Detection of the center of blue/yellow colored circles 
3. Converting to one-dimensional signal by scanning at some constant radius from the 
center of the robot 
4. Identifying our robots by continuous DP matching 
5. Finding the robot’s orientation by back tracing 

 
3.1 Detection of the Center of Blue/Yellow Colored Circle 
It is important to detect the center of the blue/yellow circle because our approach uses this 
center position to convert to one-dimensional signals for object identification. The following 
describes an algorithm used to determine the center of a circle given three points on a plane. 
The three points determine a unique circle if, and only if, they are not on the same line. The 
relationship of these three points is expressed as: 
 

222222 )()()()()()( kckcjcjcicic yyxxyyxxyyxx −+−=−+−=−+− , (1) 
 
where (xc, yc) is a center coordinate and three points on the image are (xi, yi) (xj, yj) (xk, yk). 
Equation (1) is a linear simultaneous equation. Thus, (xc, yc) is determined by Gaussian 
elimination using the following steps: 
Step1 Detect blue/yellow colored circle. 
Step2 Extract contour points of the circle. 
Step3 Randomly select three points from the contour points and calculate center position 
(xc, yc)by equation (1). 
Step4 Increment a count in the accumulator at point (xc, yc). 
Step5 Repeat Steps 3 and 4 100 times. 
Finally, the spot with the most votes is determined to be the center of the main marker. 
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Fig. 4. Converting to one-dimensional signal 
 
3.2 Converting to One-dimensional Signal 
The intensity values of YUV on the top of the robot are obtained by scanning at a constant 
radius (r=10 pixel) from the detected center of the circle, as shown in Fig. 4. It is impossible 
to obtain the 359 points (1 degree each) on the circle’s perimeter because of the low-
resolution of the image. To solve this problem, we apply the bilinear interpolation to 
estimate the robot’s orientation with sub-pixel accuracy. 
Image coordinate (x, y) for an angle θ is obtained by 
 

cc yryxrx +=+= θθ sin,cos , (2) 
 
where (xc, yc) is the center position on the image coordinate. Since the values of (x, y) are real 
numbers, the intensity value I(x, y) is interpolated by the bilinear interpolation method used 
for two-dimensional operations, for instance magnifying an image. The interpolated 
intensity value is calculated as shown in Fig. 5 (a). 
 

))1,1()1,0()1(())0,1()0,0()1)((1(),( mIImnmIImnyxI +−++−−= . (3) 
 
Figure 5 (b) shows the interpolated intensity values of Y. This can be useful in estimating the 
orientation angle with sub-pixel accuracy. Finally, the intensity values of Y normalized to 0-
255, U and V are obtained as a one-dimensional signal from the circle patches on the robot 
as shown in Fig. 4 (b), and these values are expressed as: 
 

359,,0)sin,cos()( ⋅⋅⋅== jrrII jjj θθθ . (4) 
 

 
   

 
Fig. 5. Bilinear interpolation 
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Fig. 6. Example of back tracing 
 

 
Fig. 7. Symmetrical DP path 

 
3.3 Identifying our Robots by Continuous DP Matching 
To uniquely distinguish a robot, intensity values I(θj) as a reference pattern for each robots, 
are registered initially by clicking with a mouse on points in the direction of the robot’s front 
to help to assign an ID to each robot. Continuous DP matching is done to calculate a 
similarity between the reference patterns and the input pattern of the current image. 
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Continuous DP matching DP matching has been used in various areas such as speech-
recognition (H. Sakoe et al., 1978). DP matching is a pattern matching algorithm with a 
nonlinear time-normalization effect. Timing differences between two signal patterns are 
eliminated by warping the axis of one, so that the maximum coincidence is attached as the 
minimized residual distance between them. The starting point of the input pattern provided 
by scanning, as described in section 3.2, is not at the same position as the reference pattern. 
Therefore, continuous DP matching can be useful in computing the similarity distance by 
considering the lag of each starting point. The input pattern is repeated twice as (1 < i < 2I) 
and this handling is shown in Fig. 6. 
In this implementation, the symmetrical DP path, shown in Fig. 7 (a), is used. Minimum 
accumulated distance is calculated by the following equations. The vertical axis represents 
reference pattern frame j, and the horizontal axis represents input pattern frame i. Initial 
conditions are given as: 
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where I and J are the lengths of the patterns. The minimum accumulated distance g(i, j) on 
the i frame and j frame are calculated by: 
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Local distance ld(i, j) on the point of (i, j) is computed as: 
 

2
1 ))()((),( jttt IIjild θθ −−= . (7) 

 
The length for the optimal route: 
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is used to obtain the normalized accumulated distance by: 
 

),(
),(

)(
Jic
Jig

iG = . (9) 

 
Object ID recognition The continuous DP matching is done to calculate similarity distances 
for each reference pattern, when a robot’s blue/yellow circle is detected. The identity of the 
robot is determined by selecting the reference pattern which is given the minimum value of 
G. 
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Fig. 8. Back tracing 

 
3.4 Identifying our Robots by Continuous DP Matching 
To detect the robot’s orientation, back tracing, i.e., computations of local corresponding 
points of input and reference patterns by reference to the selected DP path, is done as 
follows: 
1. DP matching and labelling of the selected DP path 

While computing the minimum accumulated distance, the path selected by equation 
(6) is memorized with label a/b/c as shown in Fig. 7 (b). 

2. Back tracing 
After normalizing minimum accumulated distance, the minimum value of G(i, J) is 
selected as a starting point for the back tracing as shown in Fig. 8 (a). 
 

),(minarg'
)22/(

JiGi
IiJ ≤≤

= . (10) 

 
The optimum route is tracked by referring to the label, either ‘a’, ‘b’, or ‘c’ at each node 
as shown in Fig. 8 (b). The DP path labelled ‘a’ means insert, and ‘c’ means delete. 

 
Path ‘b’ means that frame i and j are a pair of corresponding points. When path ‘b’ 
appears on the optimum route, the orientation of the current robot θ is estimated by: 
 

ji θθθ −= , (11) 
 
where θi is the orientation angle of input pattern and θj is reference pattern. This 
process is finished when the route, by back tracing, reaches the end point (j = 0), and 
the angle θ points at the robot’s orientation are averaged (front direction). 

As we mentioned above, object orientation and ID are determined by continuous DP 
matching and not by color segmentation. 
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Proposed method General method 

Noise 
SSD DP Least-squares method Second moment 

0 0.30 0.76 0.85 1.08 
1 1.71 1.10 - - 
2 4.20 1.75 - - 

Table 1. Average of absolute errors of orientation estimation in simulation experiments 
[degree] 

 
Proposed method General method 

 
SSD DP Least-squares method Second moment 

White bar 0.30 0.76 1.17 0.96 

Patch pattern 1.71 1.10 - - 
Table 2. Average of absolute errors of orientation estimation in real experiments [degree] 

 
4. Results 
 

The robustness and accuracy performance of the proposed method in varying light 
conditions was evaluated by simulation as well as by experiment. 

 
4.1 Results for Orientation Estimation 
Simulation results To determine the accuracy of the orientation estimation, the estimated 
angle using the proposed method is compared to ground truth. Table 1 shows the 
simulation results from evaluations of 360 patterns (1 degree each). Our method more 
accuracy estimates orientation than general methods based on the least-squares method (K. 
Murakami et al., 2003) and the second-moment method (Ball D. et al., 2004) using the white 
bar ID plate. 
The accurate center position of the blue/yellow colored circle for main marker can not be 
obtained, when there is noise in the circle’s perimeter. In this case, we evaluated the 
robustness of our method using the pattern in which the center positions of the circle 
translate to its neighbors. Noise 1 in Table 1 is an area of 3x3 pixels, except for the center. 
Noise 2 is an area of 5x5 pixels, except for the center and noise 1. Five pixels represent 25 
millimeters. The SSD in Table 1 indicates the method of linear matching using the sum of 
squared differences to estimate the orientation. The SSD method is more accurate than the 
proposed method when a very accurate center position (noise 0) is obtained. However, our 
method is effective with respect to errors in the center position of the circle because the DP 
warping function can obtain the optimum correspondence against the gap. 
 
Experimental results Table 2 shows results for experiments using the real vision system, in 
which a camera is mounted at a height of 4,000 mm. It can be seen that our method performs 
almost as well as the general method, and that it works well with respect to the white bar. 
This shows that our method can determine which way the opponent robot is facing.  
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Fig. 9. Results for ID recognition in simulation experiments  
 
This information is useful for intercepting a ball that is being passed. 

 
4.2 Results for Object Identification 
Simulation results To determine our methods robustness to variations in light condition, 
we created a model of illuminant and the marker using CG. We varied the pixel intensity of 
the input image by changing the illuminant. Figure 9 shows ID patterns under illuminant 
changes in the simulation and identification performance with 11 unique robots. Our 
system’s performance is stable against the change in lighting conditions. However, 
recognition performance suffers at noise 2. When there is an error of two pixels in the center, 
the center is near the edge of the main marker. Therefore, it is difficult to calculate the one-
dimensional signal, and the recognition ratio decreases. 
 
Experimental results Figure 10 shows images captured at illuminance ranging from 100-to-
2,900 lux. In the experiment, we evaluate 330 images for 11 unique robots in varying light 
conditions (100∼3,000 lux). Figure 11 shows object identification ratios for the 330 images. 
Note that here, general method means color segmentation-based object identification 
adjusting the threshold to obtain high performance for lighting condition between 600 to 
1,000 lux. On the other hand, for reference patterns of our method, only images captured 
under 1,000 lux light are registered. It is clear that our method performs better with respect 
to varying light conditions, because our approach is not based on color segmentation but on 
matching using changes in intensity obtained by scanning at a constant radius from the 
center of the robot. 

 



Robotic Soccer 

 

404 

 
Fig. 10. Images captured at the illuminance from 100 to 2,900 lux 
 
5. Discussion 
 

This section describes some of the benefits of the proposed method. 
- Easy set up 

To register reference patterns for each robot’s ID, orientation is obtained by clicking 
on the fronts of the robots to assign an ID to each one. There is no need to make a 
rule-based reference table to identify objects. 

- Easy patch modification 
Since the white bar is used to estimate the robot’s orientation in the general method, 
there is less space in which to paste sub-marker patches. This means that our method 
allows for more space on the top of the robot and that is very easy to modify the 
patch pattern because of its easy set up. 

- Robustness with respect to varying light conditions 
There is no perfect color segmentation. Even if the lighting conditions change, 
because of the weather, our method can work well because the changes in intensity 
are used to detect a robot’s orientation and identity. 

- Determining the direction of an opponent robot 
Our method for estimating the robot’s orientation works well with any shaped-patch 
patterns such as white bar or butterfly. Therefore, it is possible to know which way 
the opponent robot is facing. This means that our robot can intercept a ball being 
passed between opponent robots. 

 
Our method has a disadvantage associated with conversion to a one-dimensional signal. If 
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Fig. 11. Experimentals ID recognition results 
 
the center of the circle cannot be accurately calculated, it is difficult to accurately convert to 
it to a one-dimensional signal. To calculate accurately, the object’s identity and orientation 
must be known, so that the error of the center position within two pixels can be suppressed. 
Moreover, when determining the ID, it is necessary to compare the input pattern to all 
reference patterns. Therefore, as the number of robots increases the computational cost is 
increases. 

 
6. Conclusion 
 

This chapter described a novel approach to detecting orientation and identity of robots 
without color segmentations. We showed that the proposed method more accurately 
estimates orientation than the general method, that it is robust to varying light conditions. 
The system using the proposed method runs in real time on a Xeon 3.0 GHz PC, so the 
system can be completely setup in a short amount of time by a single operator. 
Future works will focus on more automation in the reference pattern registration procedure. 
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1. Introduction    
 

The RoboCup middle size league is one of the leagues that have the longest histories in 
RoboCup. This league has unique features, for example, bigger robots (around 45cm square) 
plays on the largest field (say, 18m×12m in 2007), any global sensory system is not allowed 
to use, all robots have on-board vision systems and controllers. Each robot plays based on its 
own sensory information, and it can share some information with teammates and a coach 
box located outside the playing field over wireless communication, then, shows some 
cooperative behaviors among them during the game. 
This chapter briefly introduces research activities in RoboCup middle size league. A variety 
of research topics have been attacked in this league. Some of them are common to other real 
robot leagues such as small size and 4-legged leagues. For example, robust real-time on-
board vision system, precise localization based on vision system, and design of cooperative 
behavior are actively investigated in RoboCup middle size league. On the other hand, skill 
and cooperative/competitive behavior acquisition/emergence based on machine learning 
techniques is also well-studied. The latter is focused on in this chapter. 
First, a purposive behavior acquisition of a single robot based on machine learning 
technique is introduced. Reinforcement learning is one of machine learning techniques and 
extensively studied to be applied to acquisition of robot behavior like shooting a ball into a 
goal. It has a simple framework and algorithm to be applied to robots however some 
difficulties exist in practical use because of its simplicity. In order to overcome these 
problems, some modular learning and hierarchical systems have been proposed. Not only 
reinforcement learning but also evolutional methods have been investigated as well. Some 
examples will be shown. 
Next, studies on cooperative/competitive behavior acquisition based on machine learning 
techniques are introduced. Application of machine learning to multi-agent system usually 
has some difficulties because of complex dynamics of the system. The complexity is induced 
by decision making by multi-players, growing amount of information to decide an action by 
an individual, perceptual aliasing, and so on. In order to reduce the complexity, wireless 
communication between teammates is commonly used. In case of unavailability of 
communication between players, for example, lack of communication with opponents, 
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methods of situation estimation and acquisition of appropriate behavior in the estimated 
situation has been proposed. Finally, discussions and future work are given. 
 

 
Fig. 1. A game scene of middle size league from RoboCup2005 

 
2. RoboCup Middle Size League 
 

Robots of no more than 50 cm square play soccer in teams of up to 6 robots with an orange 
soccer ball on a field whose size is 18×12 meters. Matches are divided in 15-minute halves. 
Overhead cameras or external sensors around a field are forbidden in this league. Almost 
robots have omni-directional cameras and some of them have additional ordinary cameras 
in order to detect a ball and localize themselves on the field. A referee box system is 
introduced for conveying referee decisions to robot players without interception of 
operators from the teams. It successfully enhances the autonomy of the game. Robots have 
omni-directional vehicles with 3 or 4 omni-wheels and maximum speed of robots is up to 4 
m/sec, then, precise motion control and localization are necessary. All robots have ball 
kicking devices and speed of a kicked ball is up to 11 m/sec. The devices can kick a ball 
upward, therefore, fast and better image understanding and price control are required 
especially for a goalie to prevent a loop shoot. Because the size of the field has become larger 
and larger, more cooperative behaviors among teammates should be taken in a game. 

 
3. Behavior Acquisition Through Trials and Errors 
 

We briefly review reinforcement learning scheme for various behavior 
acquisition/executions first then introduce some examples of acquisition of basic skills. 

 
3.1 Layout of Manuscript 
Fig.2 shows a basic framework of reinforcement learning. An agent can discriminate a set 
S of distinct world states. The world is modeled as a Markov process, making stochastic 
transitions based on its current state and the action taken by the agent based on a policyπ . 
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The agent receives reward tr  at each step t . State value πV , the discounted sum of the 
reward received over time under execution of policyπ , will be calculated as follows: 

∑
∞

=

=
0t

t
trV γπ

(1) 

 
Fig. 2. Agent-environment interaction 
 

 
Fig. 3. Sketch of state value function 
 
Fig.3 shows a sketch of a state value function where a robot receives a positive reward when 
it stays at a specified goal while zero reward else. The state value becomes highest at the 
state where the agent receives a reward and discounted value is propagated backward to 
the most recent states. 
The state value increases if the agent follows a good policy π. The agent updates its policy 
through the interaction with the environment in order to receive higher positive rewards in 
future. Analogously, as animals get closer to former action sequences that led to goals, they 
are more likely to retry it. For further details, please refer to the textbook of Sutton and 
Barto(Sutton and Barto, 1998) or a survey of robot learning(Connell and Mahadevan, 1993). 
 
3.2 Basic Behavior Acquisition 
As an early study of applications of reinforcement learning techniques to a real soccer robot, 
acquisition of shooting behavior is investigated (for example, (Asada et al., 1996)). Recent 
investigation has been continued by teams. For example, Brainstormer-Tribot team has 
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applied reinforcement learning to dribbling behavior of a real robot without any computer 
simulation based on physical world and robot models, and the robot acquires an 
appropriate motion for the behavior within reasonable time. 
Asada et al.(Asada et al., 1996) presented a method of vision-based reinforcement learning 
by which a robot learns to shoot a ball into a goal. Several issues in applying the 
reinforcement learning method to a real robot with vision sensor by which the robot can 
obtain information about the changes in an environment were discussed. A state space was 
constructed in terms of size, position, and orientation of a ball and a goal in an image of an 
ordinary camera (shown in Fig.4) and an action space is designed in terms of the action 
commands to be sent to the left and right motors of a vehicle. In order to speed up the 
learning time, a mechanism of Learning from Easy Missions (or LEM) is implemented. 
LEM reduces the learning time from exponential to almost linear order in the size of the 
state space. At this moment, the behavior was acquired in a soccer simulator on a 
workstation and the acquired behavior is implemented on a real robot. 
 

    
Fig. 4. A picture of the robot and image features composing an input vector 

 
3.3 State Space Construction 
Reinforcement learning has been investigated as a method for robot learning with little or no 
a priori knowledge and higher capability of reactive and adaptive behaviors. However, 
there are two major problems in applying it to real robot tasks: how to construct a state 
space, and how to reduce the learning time. Robot learning such as reinforcement learning 
generally needs a well-defined state space in order to converge. However, to build such a 
state space is one of the main issues of the robot learning because of the inter-dependence 
between state and action spaces, which resembles to the well known “chicken and egg” 
problem. 
Asada et al.(Asada et al., 1995) proposed a method of robot learning by which a set of pairs 
of a state and an action are constructed to achieve a goal. A state is defined as a cluster of 
input vectors1 from which the robot can reach the goal state or the state already obtained by 
a sequence of one kind action primitive regardless of its length, and that this sequence is 
defined as one action. The input vectors are clustered as hyper ellipsoids so that the whole 
state space is segmented into a state transition map in terms of action from which the 
optimal action sequence is obtained (see Fig.4). 

                                                 
1 An input vector usually consists of the sensory information. An example is shown at the right side of Fig.4. 
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Fig. 5. An example of state space construction 
 
Takahashi et al (Takahashi et al., 1996a,b) presented a method by which a robot learns a 
purposive behavior within less learning time by incrementally segmenting the sensor space 
based on the experiences of the robot. The incremental segmentation is performed by 
constructing local models in the state space, which is based on the function approximation 
of the sensor outputs to reduce the learning time, and on the reinforcement signal to emerge 
a purposive behavior. The method is applied to a soccer robot that tries to shoot a ball into a 
goal. The experiments with computer simulations and a real robot were carried out. As a 
result, a real robot has learned a shooting behavior within less than one hour training by 
incrementally segmenting the state space. 
Uchibe et al. (Uchibe et al., 1998a,b; Asada et al., 1998, 1999) proposed a method that 
estimates the relationships between learner’s behaviors and other agents’ ones in the 
environment through interactions (observation and action) using the method of system 
identification. In order to identify the model of each agent, Akaike’s Information Criterion is 
applied to the results of Canonical Variate Analysis for the relationship between the 
observed data in terms of action and future observation. Then, reinforcement learning based 
on the estimated state vectors is performed to obtain the optimal behavior. The proposed 
method is applied to a soccer playing situation, where a rolling ball and other moving 
agents are well modeled and the learner’s behaviors are successfully acquired by the 
method. 

 
3.4 Towards Complex Behavior Acquisition 
A simple and straightforward application of reinforcement learning methods to complex 
behavior acquisition is considerably difficult due to its almost endless exploration of which 
time easily scales up exponentially with the size of the state/action spaces, which seems 
almost impossible from a practical viewpoint. One of the potential solutions might be 
application of so-called modular learning and multi-layered system in which a set of expert 
modules learn and one gating system weights the output of the each expert module for the 
final system output. This idea is very general and has a wide range of applications. Stone 
and Veloso (Stone and Veloso, 1998) has proposed to introduce layered learning system 
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with basic skills such as “shootGoal”, “shootAway”, “dribbleBall”, and so on. Kleiner et al 
(Kleiner et al., 2002) has also proposed multi-layered learning system for behavior 
acquisition of a soccer robot. Their experimental results show that the performance of the 
acquired behavior learned by lower and higher modules simultaneously is better than the 
one of the behavior that lower and higher modules are trained separately. However, we 
have to consider the following two issues to apply it to the real robot tasks: 
 

 Task decomposition: how to find a set of simple behaviors and assign each of them to a 
learning module or an expert in order to achieve the given initial task. Usually, human 
designer carefully decomposes the long time-scale task into a sequence of simple 
behaviors such that the one short time-scale subtask can be accomplished by one 
learning module. 

 Abstraction of states and/or actions for scaling up: To accomplish a complex behavior, 
much sensory information is taken into account and the exploration space for learning 
behavior based on the information easily becomes huge. In order to cope with 
complicated real robot tasks, more abstraction of the states and/or actions is necessary. 

 
A basic idea to cope with the above two issues is that any learning module has a limited 
resource constraint and this constraint of the learning capability leads us to introduce a 
multi-module and multi-layered learning system. That is, one learning module has a 
compact state-action space and acquires a simple map from the states to the actions, and a 
gating system enables the robot to select one of the behavior modules depending on the 
situation. More generally, the higher module controls the lower modules depending on the 
situation. The definition of this situation depends on the capability of the lower modules 
because the gating module selects one of the lower modules based on their acquired 
behaviors. From the other viewpoint, the lower modules provide not only the rational 
behaviors but also the abstracted situations for the higher module; how feasible the module 
is, how close to its subgoal, and so on. It is reasonable to utilize such information in order to 
construct state/action spaces of higher modules from already abstracted situations and 
behaviors of lower ones. Thus, the hierarchical structure can be constructed with not only 
experts and gating module but also more layers with multiple homogeneous learning 
modules. 
Takahashi and Asada (Takahashi and Asada, 2000) proposed self-construction of 
hierarchical structure with purely homogeneous learning modules. Since the resource (and 
therefore the capability, too) of one learning module is limited, the initially given task is 
automatically decomposed into a set of small subtasks each of which corresponds to one of 
the small learning modules, and also the upper layer is recursively generated to cover the 
whole task. In this case, the all learning modules in the one layer share the same state and 
action spaces although some modules need only the part of them. 
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Fig. 6. A multi-layered learning system for vision based behaviors (Takahashi and Asada, 

2001) 
Their following work (Takahashi and Asada, 2001, 2003) focused on the state and action 
space decomposition according to the subtasks to make the learning much more efficient. 
Further, Takahashi et al, (Takahashi et al., 2003b, 2005c; Nishi et al., 2006) realized 
unsupervised decomposition of a long time-scale task by finding the compact state spaces, 
which consequently leads the subtask decomposition. 

 
4. Cooperative/Competitive Behavior 
 

Cooperative/competitive behavior realization is one of the most interested topics in 
RoboCup community. Peter stone et al.(Stone et al., 2005) proposed “keep away” task in 
RoboCup simulation league and many investigations have been done on the task (for 
example, (Kuhlmann and Stone, 2004; Taylor and Stone, 2004; Stone et al., 2005)). The topic 
also interests people participating in RoboCup middle size league. In this section, related 
works are briefly introduced. 

 
4.1 Cooperation Via Environmental Dynamics 
Cooperation is one the most important issues in multiagent systems. There is a trade-off 
between the centralized control and the distributed one from the performance viewpoint of 
cooperation. Takahashi et al.(Takahashi et al., 2001) proposed a method to emerge 
cooperative behaviors via environmental dynamics caused by multi robots in a hostile 
environment without any planning for cooperation. Each robot has its own policy to achieve 
the goal with/without explicit social behavior such as yielding. Co-existence of such robots 
in a dynamic, hostile environment produces various environmental dynamics, in which the 
heterogeneous robots can be seen as cooperating each other. Fig.7 shows an example of how 
the two robots recover each others’ failures quickly. Two type robots, A and B, were 
prepared in this case. Type A robot is selfish, skillful and careful to shoot a ball. On the other 
hand, Type B is moderate and not so skillful but has a much fast shooting behavior. (1) 
indicates that the two different robots follow a ball. Type B robot tries to shoot a ball to the 
opponent goal at (2). But it failed at (3) because the ball handling skill of type B is not so 
good, and type A robot recovers the failure soon. Type A robot tries to shoot the ball, but the 
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opponent goalie defends it at (4). Type A robot tries to shoot the ball from left side of the 
goal at (5) and (6), but unfortunately fails again while type B robot moves its position behind 
type A robot. Type B robot tries to recover the failure of type A robot’s shooting at (7), and it 
shoots the ball successfully after all at (8).  
 

 
Fig. 7. A sequence of a failure recovery behavior among two robots 

 
4.2 Strategy Learing for a Team 
Team strategy acquisition is one of the most important issues of multiagent systems, 
especially in an adversary environment. RoboCup has been providing such an environment. 
A deliberative approach to the team strategy acquisition seems to be difficult for applying in 
such a dynamic and hostile environment. Takahashi et al.(Takahashi et al., 2002b) presented 
a learning method to acquire team strategy from a viewpoint of coach who can change a 
combination of players each of which has a fixed policy. Assuming that the opponent has 
the same choice for the team strategy but keeps the fixed strategy during one match, the 
coach estimates the opponent team strategy (player’s combination) based on game progress 
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(obtained and lost goals) and notification of the opponent strategy just after each match. The 
trade-off between exploration and exploitation is handled by considering how correct the 
expectation in each mode is. A case of 2 to 2 match was simulated and the final result (a 
class of the strongest combinations) was applied to RoboCup-2000 competition.  

 
4.3 Emergence of Cooperative Behavior Though Co-evolution 
Co-evolution has been investigated as a method for multi agent simultaneous learning. 
Uchibe et al.(Uchibe et al., 1998c,d; Uchibe and Asada, 2006) discussed how multiple robots 
can emerge cooperative behaviors through co-evolutionary processes. As an example task, a 
simplified soccer game with three learning robots is selected and a GP (genetic 
programming) method is applied to individual population corresponding to each robot so 
as to obtain cooperative and competitive behaviors through evolutionary processes. The 
complexity of the problem can be explained twofold: co-evolution for cooperative behaviors 
needs exact synchronization of mutual evolutions, and three robot co-evolution requires 
well-complicated environment setups that may gradually change from simpler to more 
complicated situations so that they can obtain cooperative and competitive behaviors 
simultaneously in a wide range of search area in various kinds of aspects. 

 
4.4 Dynamic Roll Assignment Based on Module Conflict Resolution 
It is necessary to coordinate multiple tasks in order to cope with larger-scaled and more 
complicated tasks. However, it seems very hard to accomplish the multiple tasks at the same 
time. Uchibe et al.(Uchibe et al., 2001) proposed a method to resolve a conflict between task 
modules through the processes of their executions. Based on the proposed method, the robot 
can select an appropriate module according to the priority. In addition, they applied the 
module conflict resolution to a multiagent environment. Consequently, multiple tasks are 
automatically allocated to the multiple robots.  

 
4.5 Coping with Behavior Alternation of Others 
Existing reinforcement learning approaches have been suffering from policy alternation of 
others in multi-agent dynamic environments that may cause sudden changes in state 
transition probabilities of which constancy is needed for behavior learning to converge. A 
typical example is the case of RoboCup competitions because behaviors of other agents may 
change the state transition probabilities. The keys for simultaneous learning to acquire 
competitive behaviors in such an environment are 

 a modular learning system for adaptation to the policy alternation of others; and 
 an introduction of macro actions for simultaneous learning to reduce the search space. 

Takahashi et al.(Takahashi et al., 2005a,b; Edazawa et al., 2004; Takahashi et al., 2003a, 
2002a) presented a method of modular learning in a multi-agent environment in which the 
learning agents can simultaneously learn their behaviors and adapt themselves to the 
resultant situations by the others’ behaviors. 
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Fig. 8. A multi-module learning system in multi-agent environment 

 
4.6 Behavior Based on Estimation of Status of Others 
The existing reinforcement learning approaches have been suffering from the curse of 
dimension problem when they are applied to multiagent dynamic environments. The keys 
for learning to acquire cooperative/competitive behaviors in such an environment are as 
follows: 

 a two-layer hierarchical system with multi learning modules is adopted to reduce the 
size of the sensor and action spaces. The state space of the top layer consists of the state 
values of the individual modules at the lower level that indicate how close to the goals, 
and the macro actions are used to reduce the size of the physical action space, and 
further, 

 other’s state estimation modules by observation are added in order to estimate to what 
extent the other agent task has been achieved and the estimated state values are used 
in the top layer state space to accelerate the cooperative/competitive behavior 
learning. 

Takahashi et al. (Takahashi et al., 2006) showed a method of modular learning involving the 
above two issues, by which the learning agent can acquire cooperative behaviors with its 
team mates and competitive ones against its opponents. The method is applied to 4 on 5 
passing task, and the learning agent successfully obtained the desired behaviors. 
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Fig. 9. A hierarchical system for behavior acquisition in multi-robot environment 

 
5. Discussion and Future Work 
 

This chapter briefly overviewed research activities, especially on behavior acquisition/ 
emergence based on machine learning techniques, in RoboCup middle size league. This 
research area has kept attracting people and been investigated not only in middle size 
league but also other ones such as simulation soccer and 4-legged leagues. Many results of 
applications of machine learning techniques to robots in the RoboCup domain show 
promising contributions to generate adaptive behaviors in real situations. On the other 
hand, many difficulties in practical use have also been unveiled so far. For example, 
selection of important features for purposeful behaviors, purposive behavior discovery 
through observation of others, self task decomposition and integration, rapid team strategy 
adaptation during a game, and so on, are to be investigated furthermore. One of the goals of 
RoboCup is “By the year 2050, develop a team of fully autonomous humanoid robots that 
can win against the human world soccer champion team.”(Federation) A game of a middle 
size league robot team v.s. a human team was demonstrated in RoboCup2007 Atlanta USA. 
The human team showed much better performance than the robot team although it won the 
championship in the middle size league this year. Taking achievements in the past decade 
into consideration, however, we foresee that robots will play soccer with human players, 
learn many skills, cooperative/competitive behaviors, team coordination, positioning in the 
teams, fast adaptation of team strategy, and so on through interaction during games, and 
finally a robot team beats the human world soccer champion team. 
 

 
Fig. 10. A demonstration game scene of robot and human teams 
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1. Introduction      
 

This text is a summarization of a series of shorter articles published about this topic (and 
related problems) during the years 2005-2007 (E.g. Tucnik et al. 2006a, Tucnik et al. 2006b). 
In previous articles we have been commonly using the term “agent” when referring to 
the MiroSot robots. We will continue in this practice in this text as well. We believe that 
there is no conflict in using this term because the idea of autonomous entity (in the way the 
agent is usually defined, see below) is well-corresponding with the role of the MiroSot 
player. Therefore, whenever the term of “agent” or “robot” or “player” is used, we are 
referring to the same entity. Any exceptions will be explicitly mentioned.  
The principles of the robot soccer game are well-known, but it is usually a good idea to 
begin with the basics. Comprehensive description of all rules and specifications is available 
at www.fira.net (FIRA – Federation of International Robot-soccer Association). Therefore, 
only basic information will be provided, when we feel it is necessary or important. We will 
be dealing with the MiroSot (micro-robot soccer tournament) Middle League (5vs5 players). 
This league of the tournament is played on the pitch of the size of 220cm x 180cm, robots 
must be smaller than 7.5cm x 7.5cm x 7.5cm and the robot’s weight must not exceed 650g.  
Together with other categories of the robot soccer (HuroCup, KheperaSot, NaroSot, 
AndroSot, RoboSot and SimuroSot, for details see the same webpage as in the above 
paragraph), the MiroSot league also serves a certain purpose: “MiroSot initiative gives a good 
arena for multi-agent research, dealing with research subjects such as cooperation protocol by 
distributed control, effective communication and fault tolerance, while having efficiency of 
cooperation, adaptation, robustness and being real-time.” (citation taken from 
http://www.fira.net/about/overview.html, date 20th July 2007).  We will try to follow this 
aim, as it was defined by FIRA, in our work. Illustrational photograph of the MiroSot robot 
is presented at the Fig. 1. During the game, there is always a coloured patch on the topside 
of the robot. This colour patch will identify the robots in the team.  
This chapter will be focused on the control mechanism and decision-making issues only. We 
are not interested in image processing or data transmission problems. We have decided that 
it is no purpose of this text to discuss these matters. Therefore, we will dare to assume that 
these parts of the system work without any errors or malfunctions and we are obtaining all 
the data needed.  
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Fig. 1. A MiroSot robot 
 
For the both strategic (team-oriented) and tactical (individual) control of the team, we have 
decided to implement the multicriterial decision-making (MDM) principle. The more 
common approach to the robot soccer problem may be found in (Kim et al., 2004). 
The multicriterial decision-making approach has an excellent adaptability potential but 
requires perception of the whole game and its environment from another perspective. From 
the agent’s point of view, the environment is perceived as a set of (more or less important, 
see below) influences and the agent is continually trying to find the most appropriate, 
the most profitable reaction to the given situation. The description of the MDM algorithm is 
presented in the third part of this chapter.  

 
2. Terminology and Basic Definitions 
 

The use of multicriterial approach requires a definition of terms that will be used during 
the explanation of its principles. Explanation of the general MDM algorithm will be 
provided here (its application will be presented for better understanding on the goalkeeper 
example in the part 9). 
The time given for the decision-making process (DMP) is strictly limited by the time of 
image processing speed. Generally, this is the most time-demanding part of the whole 
decision-making process. Therefore, all time-subordinate tasks have to be done in the given 
time frame. The image processing speed is quoted in frames per second (FPS) and the higher 
this value is, the better. It may happen that it is a team that has a better reaction time which 
wins over the team with better strategy, because it is capable of faster reactions. It is 
an utmost necessity to try to keep image processing speed as fast as possible. The time frame 
given by the image processing speed and cycle of activities performed during the decision-
making process together define the iteration of the game. In other words, the iteration is 
a complete set of activities beginning with image processing tasks, continuing with situation 
analysis, action, role and task assignment and instruction processing and ending with 
the transmission of the instructions to the robot, all in the given time frame. E.g. when we 
have reached the speed of 50FPS in image processing tasks, then we have to be able to make 
all strategic and tactical decisions in 1/50 [sec] to keep up pace with the rest of the system. 
Any delay would cause a serious trouble. 
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2.1 Attributes 
The environment is perceived by the agent as a finite set of attributes. The attribute is 
a numerically represented and limited (see below) description of the measure of presence of 
a certain characteristic of the environment. E.g. a position of the agent on the playground’s 
grid is an attribute of the environment. However, the attributes’ domain is not limited to the 
“tangible” information only. Any information that has a descriptive value may be perceived 
as an attribute, if we are able to determine its highest and lowest value possible. For analysis 
purposes, it may be useful to divide the attributes into four groups, according to their 
descriptive domain, as it is presented at the Fig. 2.  
 

 
Fig. 2. Attributes are divided into four groups  
 
The agent is an integral part of the environment for both itself and other agents. Other 
agents are taken as a part of the environment. The agent‘s representation of the world is 
formed by the four indicated types of descriptors. When the agent is obtaining an attribute’s 
value, either perception (sensors) or computation is used during the process.  
 
The external descriptors are attributes used to describe characteristics of the real-world 
environment. E.g. speed of other robots, position of the ball (or robot) on the playground, 
etc. This type of information provides the cornerstone for DMP for the derived descriptors 
are based on it. During the game, this type of information has to be reliably provided by 
the image processing module (see part 5 – Strategic Control Module). In other words, this is 
the reliable base for decisions to be made. If we are unable to satisfy the reliability 
requirement and do not have a set of solid facts which we may use for decision-making, 
than all decision-making effort is futile. The “real-world environment” expression, used 
at the beginning of this paragraph, is valid for the environment of the MiroSot game. For 
the purposes of SimuroSot, the formulation “software environment” should be used and so 
on, depending on the problem domain.  
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The internal descriptors are used to describe internal states of the agent. E.g. velocities of its 
wheels, battery level, etc. For our problem domain, they usually have only limited impact on 
the DMP. E.g. the velocities of the robot’s wheels are, in fact, output of the DMP. Also, 
the other internal characteristics of the agent are designed to fulfil the needs of the robot 
soccer game perfectly and therefore are not so important. But they may play an important 
role when we are trying to apply this decision-making method to another type of problem 
(other than robot soccer). In certain cases, the internal states of the agent may have a critical 
decision-making importance. This type of attributes has to be reliable as well.  
 
The support descriptors are based on the real-world information (both external and internal 
nature) and are derived from it. Support descriptors are category of attributes computed on 
the basis of reliable data from the environment and agent itself. They are used for 
supplemental calculations (if they are needed) when planning movement, collisions, 
turning, etc. The realization of many tasks depends on these support calculations.  
 
The predicted descriptors are used to take the effect of the action into account when making 
decision or planning. The predicted position of the robot is an example of this type of 
descriptor. This type of (predicted) information is, in general, unreliable (“Is unreliable” or 
“may be unreliable” – it is depending on the given attribute. Own actions, for instance, may 
be predicted precisely, actions of opponent’s agents very imprecisely, as we have no way 
how to affect them directly.) to a certain degree, but is important for making decisions, that 
needs to reflect possible impact of an action. Prediction has gradually lower reliability as we 
try to predict further in future. When the speed of the game is taken into account, it is 
reasonable to predict up to maximum (rather less) time of approximately 1-2 [sec] 
(depending on the both team‘s capabilities). Prediction of more distant future is useless and 
may lead to incorrect conclusions in the DMP. Precise time interval of applicable prediction 
is a question of extensive testing and image processing speed.  
It is important to stress up the fact that we are always dealing with a certain degree 
of imprecision in the real-world cases. This is caused by the imprecision of our sensors used 
for monitoring of attributes, wrong calibrations, rounding of numbers in calculations and 
other undesirable influences. There are several major sources of uncertainty in 
the environment (Decker, 1995): (1) uncertainty of the environment – monitoring 
of environment by sensors is made with imprecision. It may happen that the agent is unable 
to recognize the ball or other players on the pitch for a moment; (2) uncertainty of other 
agents – the opponent’s agents next actions are not certain (also it is possible that hardware 
malfunction occurs in the own team); (3) uncertainty of actions – the actuator apparatus 
of the agent may fail to perform the action as planned.  
Nevertheless, it is possible to keep these effects in reasonable boundaries. Detection of 
failures and consequent actions has to be implemented in the decision-making mechanism. 
However, for the purposes of this text we will avoid further discussion about the failure 
detection and handling, for these are complicated problems unrelated to the decision-
making and control issues which are our main aim. Much useful information regarding 
the topic of failure detection and solving may be found in (Aguilera et al., 1997; 
Byrne & Edwards, 1996; Kit, 1995; Menzies, 1999; Tichý, 2003).  
All four types of the descriptors are only special types of attributes. The agent’s internal 
concept of the world is formed by all four types of attributes. This separation into groups is 
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useful for analysis purposes only and apart from the reliability of the information value 
there is no other influence on the DMP. The whole set of all attributes A used in the DMP 
may be formally described:  
 

),...,( 1 zaaA = , ∞<<<−∞∈∈∀ maxminmaxmin ,,)(: iiiiii aaaaaDomAa  (1) 

 
A  is a set of all attributes and every attribute has a finite minimal and maximal value. 

Every attribute is normalized before it is used in DMP. The following formula is used for 
normalization:  
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(2) 

 
After application of the norm function for each attribute, a following is valid:  
 

1;0)( ∈ianorm  (3) 

 
Therefore, a comparison of attributes of different units of measurement is possible. After 
normalization, no measurement units are used and normalized attribute value is just 
a number.  

 
2.2 Environment 
The definition of the attribute and its properties was discussed in the part 2.1. 
The environment is defined by a limited set of attributes. The whole environment has to be 
perceptible by an agent (in case of derived descriptors, the agent has to be able to compute 
them). Attributes that are not perceptible by an agent may be omitted for they have no 
influence on the DMP. From the agent’s point of view, the environment E  may be formally 
defined as:  
 

))(( AnormE =  (4) 

 
Therefore, the agent is working with normalized attributes when making a decision. 
Although the set of all attributes A  was defined by (1), we present following specification 
for better understanding (these sub-sets are representing types of descriptors):  
 

PREDICTEDSUPPORTINTERNALEXTERNAL AAAAA ∪∪∪=  (5) 

 
An important role in the DMP plays time. The temporal aspect of DMP may not be omitted 
for the effects of the actions have to be taken into account. For these purposes 
a configuration C  is defined by the following formula:  



Robotic Soccer 

 

426 

 

( )T
z

TT aaC ,...,1=  (6) 

 
T  stands for the game iteration (time) index. The configuration C  of the game represents 
a state of all attributes (their values) in the given moment. The time index will always be 
positioned in superscript position in the following text.  
 
Note: A total number of game iterations may be calculated from the game length and video 
processing speed. E.g. for 10 [min] of the game and image recognition speed of 50 [FPS], we 
have a 10 x 60 x 50 = 3000 iterations of the game. This is a 3000 potential decision-making 
moments, although in many iterations there will be no decision-making at all (agents will be 
processing designated tasks). Important is that the number of iterations is always finite and 
data about the game and decision-making process should be stored in some kind of log or 
data storage medium for the game analysis after the match.  

 
2.3 Definition of Agent 
The universal definition of an agent, according to (Ferber, 1999), is following:  
 
“An agent is a physical or virtual entity 
(a) which is capable of acting in an environment, 
(b) which can communicate directly with other agents, 
(c) which is driven by a set of tendencies (in the form of individual objectives or of 
a satisfaction/survival function which it tries to optimize), 
(d) which possesses resources on its own, 
(e) which is capable of perceiving its environment (but to a limited extent), 
(f) which has only a partial representation of this environment (and perhaps none at all), 
(g) which possesses skills and can offer services, 
(h) which may be able to reproduce itself, 
(i) whose behaviour tends towards satisfying its objectives, taking account of the resources and skills 
available to it and depending on its perception, its representations and the communications it 
receives.”  
 
In the case of the MDM agent (agents that are using MDM algorithm for decision-making), 
the main deviations from this universal definition are in (e) and (f). The MDM agent 
possesses all the information about the environment that it needs to make a qualified 
decision. This is both necessary and sufficient condition that must be fulfilled in order to 
function properly. All the information types are defined in the design phase of the agent’s 
development process and there should be no other information needed. Otherwise, it is 
a design flaw.  
The definition mentioned above is very universal and very general and it is not very suitable 
for our purposes. We would like to present a more specific (formal) definition of the agent. 
We will proceed from the formalized definition of the (reactive) agent as it is presented in 
(Wooldridge, 2002; Genesereth & Nilsson, 1987; Kelemen, 2001; Kubik, 2004), but some 
significant changes have to be made in agent’s formalized definition for the MDM-based 
agent. The reactive agent basis will be sufficient enough at this moment because we will try 
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to keep it as simple as possible for comprehensibility purposes. Further extension of this 
definition is possible to reflect social aspect of the game.  Following definition is translated 
specifically from (Kubik, 2004), but similar versions are also present in other sources 
(Wooldridge, 2002; Genesereth & Nilsson, 1987; Kelemen, 2001) (for perception P and 
environment E):  
 

PEpercept →:  (7) 

 
“Perception of the agent has immediate effect on its actual state:”  
 

IIPstateofchange →×:__  (8) 

 
“Every action from the set of actions A, which is agent able to perform, the agent performs on 
the basis of application of the perception function on the actual internal state of the set I (set of all 
states of the environment):”  
 

AIPaction →×:  (9) 
 
“Apart from the change of internal state have actions also impact on the environment:”  
 

EEAimpact →×:  (10) 

 
“The agent is a 6-tuple:” 
 

{ }actionstateofchangeperceptIAP ,__,,,,  (11) 

 
“The set of goals of the agent C  is a subset of the set I . The goal may be characterized 
as a maintaining goal and may be theoretically running infinitely (to be in a state of readiness and 
continual functionality), or reaching goal, which is defined by a state which achieving is 
characterized as a goal accomplishment.”  
 
This is the end of the definition taken from (Kubik, 2004).   
 
For the purposes of the MDM implementation, the cited definition has to be modified.  
 
The MDM-oriented agent is a 6-tuple: 
 

{ }WVTPSC ,,,,,  (12) 

 
 
 
Where: 
C ... set of game configurations (defined by (6)), 
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S ... set of internal states of the agent (definition is following), 

P ... set of perception functions (definition is following), 
T ... transition relation for transition between states (definition is following),  
V ... set of all possible variants of solutions (definition is following),  
W ... set of weight functions (definition is following).  
 
In the case of the MDM-based agent, the goal orientation of the agent is specified by its 
actual state. State is, in fact, an algorithm, performing certain operations in the environment, 
but it is more useful to use the abstraction of the term “state” for easier understanding. Thus, 
whenever the “action” or “state” of the agent is mentioned, we are referring to the same 
thing.   
 
The set of states S  contains two subsets SS  and TS . Thus, TS SSS ∪= . The set of 

stable states SS  contains maintaining goals (continual functionality of an agent). The agent 
is remaining in the stable state and there are two situations which may force him to change 
it: (a) an exceptional situation occurred – the agent has to take actions leading to correction 
of the exceptional state of the environment in order to be able to be in its stable state again; 
(b) the game situation requires agent to change its basic behavioural pattern and to do 
something else (E.g. the agent in the role of an attacker was waiting for the pass and as soon 
as he gets the ball under its control, its is trying to score a goal). In the case (a), the agent is 
making a transition to the temporal state, in the case (b) to another stable state. It is 
important to remain as much as possible in the stable states for these are defining functional 
behaviour leading to the highest benefit of the team. 
 
The system of sets of temporal states TS  is containing states used to handle exceptional 
situation which is disrupting standard behavioural pattern, defined by the stable state. 
There is a special type of dependency of temporal states on stable states. Formally, it may be 
defined this way:  
 
For every agent, there exists the set of stable states { }SnSS ssS ,...,1=  and the system of 

sets { }TmTT SSS ,...,1= . SSi Ss ∈∀  has assigned a subset TTi SS ⊆ . For TiTj Ss ∈∀  is 

( )TjSi ss ,  an ordered tuple. ∪
m

i
TTiTTi SSSS

1

:
=

=∈∀  and subsets TTkTTi SSSS ⊆⊆ ,  

are pairwise disjoint. In other words, each stable state has assigned a set of temporal states 
(it may be even an empty set). For better understanding, Fig. 3 is representing this situation.  
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Fig. 3. Stable state has assigned a set of temporal states used to handle exceptional 

conditions that may occur 
 
Another part of the agent is the set of perception functions P . P  contains functions 

Pp j ∈ representing agent’s sensors. The definition from (Ferber, 1999), mentioned at the 

beginning of the part 2.3, is describing agent’s definition of the world in this way: 
“...the agent (e) is capable of perceiving its environment (but to a limited extent) and (f) has only a 
partial representation of this environment (and perhaps none at all)”. There is an important 
difference in the MDM-based agent case. The MDM-agent has all the information needed for 
making the decision. Because the environment )(AnormE = is from the agent’s point of 
view all the information needed (fulfilment of this condition is a matter of proper design 
and testing), then following expression must be valid for the agent in order to be able to 
function properly: 
 

( ) )()(,...,1, jjjjj anormappzjAa =∃∈∈∀  (13) 

 
In other words, all attributes of the environment are monitored by perception functions. 
Following expression is valid for Pp j ∈ : 

 

∞<<<∞−∈∈∀ lklkpDomPp jj ,)(:  (14) 

 

1,0)Im(: ∈∈∀ jj pPp  (15) 

 

Thus, every percept ja  is normalized to interval 1;0 .  

 
The transition relation T is used to set transitions between states. At the Fig. 4 is shown 
the situation of the stable state with maximum number of transitions for temporal states and 
two transitions to other stable states from the state 1SS . Because the transitions between 
temporal states themselves are not so important (after finishing the behaviour in temporal 
state, the agent continues its functioning in another state), we are interested in a transition 
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index iT , which is a number of possible ways beginning in given stable state SiS  and 
ending either in itself or another stable state. Transition relation must follow these 
restrictions: (a) There must be no cycles between temporal states, (b) the state must not have 
a transition directly leading to itself, (c) total maximum possible number of ways how to 
solve the situation (every transition is a reaction to the configuration in the given moment) is 
represented by dnesscomplicate  value, given by the formula:  
 

( ) (2 1) ,a
Si Si Scomplicatedness s b s S= − + ∈  (16) 

 
Where a  is a number of temporal states related to the given state Sis   in the means of 

definition in the part regarding the system of sets of temporal states TS  (see above). 

b  represents a total number of stable states which are accessible from Sis . This is 
important because we are able to specify total computational capacity needed for 
considering reactions (making prediction computations during the DMP).  
 

 
Fig. 4. A maximum number of transitions between states is finite 
 
The three restrictions mentioned in the above paragraph specify the characteristics of the T  
relation: (a) T  is not symmetric, (b) T  is not reflexive, (c) T  is transitive.  
 
The set of variants of possible solutions  V  contains s-tuples of attributes subsistent to 
every transition between two states. Formally:  
 

( ) NsrsiAaaavVvssss isrrj
T

iji ∈=∈=∈∃⎯→⎯∀ ,),,...,1(,,,...,::, 1
 (17) 

 
Elements of the set V  are used for the calculation of convenience (see below). 
 



Multicriterial Decision-Making of the Robot Soccer Team 

 

431 

The set of weight functions W contains weight functions assigned to the each attribute of 
every Vvr ∈ . Formally:  
 

( ) )(:,...,:: 1 iiisrri awWwaavVvAa ∈∃=∈∃∈∀  (18) 

 
For further explanation of weight functions, see part 3.2: “Attributes and Weight Functions”.  

 
2.4 Other Agent’s Characteristics 
Agent was defined in the part 2.3. In this part we would like to present some other 
characteristics and design conditions in addition to this definition.  
 
For every state Ss ∈ must be true, that it has at least one transition defined: 
 

1: ≥∈∀ ii VSs  (19) 

 
In this case: 
 

0: =∈∃ ii VSs  (20) 

 
There is a danger of deadlock, because there is a state with no transition defined. Agent 
would not be able to do anything else.  

 
3. Principle of the MDM, Attributes and Weight Functions 
 

Attributes describing environment must have certain properties. Above all, they must be 
numerically represented. Issues regarding attributes´ design are discussed in this part. 
Examples of attributes and their weight functions will be provided here. 
There are some limitations in the attribute design process. Following conditions must be 
fulfilled before the attribute may be implemented in the system: (a) attribute must be 
numerically represented, (b) attribute must be limited (see (1)) and (c) the agent must be 
able to obtain the attribute’s value from the environment (see (13)). The (a) condition is the 
most restrictive, because many influences are difficult to be represented numerically. In 
human decision-making, for instance, the emotions play an important role. Although it may 
be possible to implement it somehow, it is obvious that there is a big problem for analysis 
and design and the solution will always be very questionable.  
For many influences we would like to implement in the system and which have a problem 
with the numerical representation, there exists an emergency solution. We may use 
techniques used for fuzzy expert systems definition (resp. fuzzy sets definition) where we 
use the subjective division of linguistic variables into sets, which returns a numerical value 
for the variable. Still, the subjective nature of this approach brings some degree of 
unreliability into decision-making process because we may never be sure if the subjective 
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definition was made properly. However, the most of the attributes is usually of “technical” 
nature and numerical representation is not very problematic issue, fortunately.  

 
3.1 Principle of Multicriterial Decision-making  
The MDM is used on two levels in the robot soccer game: (a) individual agent’s decisions, 
(b) team behaviour decisions. However, the principle is same in both situations. 
The following formula is used to compute the convenience value for any solution rv  (this 
formula is an adaptation of standard formulas used in multicriterial decision-making, 
presented in (Ramik, 1999; Fiala et al., 1997)):  
 

NsrsiAaVvanormwveconvenienc ir

s

i

xT
i

T
r ∈=∈∈=∑

=

+ ,),,...,1(,,,))(()(
1

 
(21) 

 
Where x  is time needed to perform the action rv  and we are considering the game 

situation in a certain time moment T . The w  represents a weight function, assigning to 
each attribute its importance and it is described in the next paragraph.  
 
Before the attribute Aaa ii ∈,  is evaluated and we obtain its convenience value, 

the weight function ( )ziaw ii ,...,1),( ∈ must be applied on it. Thus, every attribute in 
the environment has at least one weight function assigned. One attribute may have assigned 
more than one weight function depending on the number of variants it participates in. The 
utility of usage of the weight function is in the setting of attribute importance value for the 
DMP and decisions are reflecting reality more accurately. All attributes taken into account 
during the decision-making are supposed to have some influence on it. However, the one 
attribute’s importance is not equal to another. Therefore, the application of the weight 
functions may not be omitted.  
 
The formula (21) is the most critical for the MDM-agent because it represents the most 
fundamental basics of the multicriterial decision-making principle.  

 
3.2 Attributes and Weight Functions 
The form of the weight function is depending on the ideal state of environment we are 
trying to achieve and on the extent of tolerance for the difference between the actual and 
ideal state. In many cases, the ideal state is only a theoretical abstraction, but it is providing 
a reasonable orientation for the agent in the means of what is good and what is not good for 
it.  
Example: The ideal would be to move to the desired position as fast as possible. Therefore, 
the ideal solution is consuming neither time nor energy. This is, of course, physically 
impossible, but the agent is trying to get as close to is as it is possible, saving as much time 
and energy as it can.   
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There is also a difference whether the agent is trying to process an action and reach the 
desired state of the environment or whether it is trying to remain in its state except when the 
exception occurs. The former case is typical for the temporal states of the agent (see the 
definition in the text above); the latter is typical for the stable states, where the agent is 
trying to perform its behaviour as long as possible.  For better understanding, see Fig. 5. 
 

  
Fig. 5. Weight functions of attributes. The function on the left is motivating the agent to 

change its stable state to solve the exceptional situation, the function on the right is 
representing agent in the temporal state, trying to change the attribute’s value to 
the tolerable level  

 
For each type of the state, a threshold value is set. In the case of stable states, the threshold is 
used to ignore minor differences between the actual and ideal state. In other words, percept 
may be not intensive enough for the agent to be reasonable to react to it. On the other hand, 
there are also temporal states which are used to solve the exceptional situations. We need to 
know when the state of the environment is suitable enough to continue in the stable state 
algorithm processing. In both cases, the threshold value is assigned to the state.  
In the part 9 of this text, the case study describing behaviour of the goalkeeper agent is 
presented. Further explanation of problems opened in this part will be provided there.  

 
4. Environment Description and Attribute Composition and Decomposition 
 

The proper description of the environment is essential for the function of the MDM control. 
The agent-environment interaction has special requirements that have to be met and such 
matters are discussed at the end of this part.  
The composition and decomposition of attributes is important in the analysis phase of 
the development process. It has no influence on the decision-making itself. In fact, 
the decision-making should be giving the same results after application of 
composition/decomposition technique. The benefit is in the easier understanding of the 
environment for the human operators because they may use any level of the differentiation 
as they see fit.  
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4.1 Agent - Environment Interaction 
The range of the agent’s actuators is limited. Usually, agent is not able to change all 
attributes of its environment. This is generally valid for all agents in the real-world situation. 
E.g. the human is able to perceive much more than he is able to influence directly. 
The situation is similar in the robot soccer environment. The way it works is described on 
the Fig. 6: 
 

 
Fig. 6. Agent-environment interaction 

 
The set of attributes (that we are able to identify and define) is often not providing 
description of the environment with sufficient precision. On the other hand, many minor 
influences are forming a significant power together, which is important for the decision-
making process only as a sum of these negligible influences.  
The solution to problem how to get a description of the environment that suits our purposes 
is represented in a technique of composition and decomposition of attributes. It is common 
that the final value of an attribute is obtained as a sum of several less important attributes. 
While using the MDM principle, we are able to regulate the description for our purposes 
while maintaining its descriptive power.  

 
4.2 Composition and Decomposition of Attributes 
Let us begin with an example which is not connected with the robot soccer problem. We 
believe that this example is well-suitable for the explanation purposes. Let us consider the 
environment of our agent described by just one attribute “FINAL PRICE” which does not 
provide as much descriptive potential as we need. We would like to be able to work with it, 
but with more precision than it is now possible. We know that the “FINAL PRICE” is 
composed of two constituents “COST” and “PROFIT”, as you can see at the Fig. 7. 
 

 
Fig. 7. The composition and decomposition of an attribute 
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Let us leave aside the exact participation of lower-level attributes on the upper-level 
attribute’s value. It is simply composed of two constituents of lower-level of description. 
The lower level is more precise. It is same the other way. General situation is presented at 
the Fig. 8: 
 

 
Fig. 8. An attribute aN is composed of lower-level attributes aN1, ..., aNx. 
 
The variable AaN ∈  is any attribute of the environment and it is a composition of 

constituents ),...,1(, xiaNi = . In general, we may use the decomposition/composition as 
we see fit, but there are two restrictions:  
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The weight of an attribute must remain the same as it was before the decomposition and:  
 

N
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NxN
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N aaaa ⎯⎯⎯ →⎯⎯⎯⎯⎯ →⎯ ),...,( 1  (23) 

 
The process of decomposition may be inverted by the process of composition without any 
change (in the means of empiric or descriptive value).  

 
5. Strategic Control Module 
 

The schematic representation of the strategy control module (and the rest of the system) is 
presented in this part of the chapter. It is necessary to perceive control mechanism as a part 
of a whole. The whole system controlling the multi-agent team must act co-ordinately.  
Basically, only three modules are needed to control the robot soccer team. The information 
needed for the decision-making process are provided by the video recognition module, 
the control module is responsible for decision-making tasks and transceiver module is 
sending instructions to the robots on the pitch. The work of the first and third module is 
automated; the control module’s activity is depending on the complexity of the situation on 
the playground. The basic scheme described above is represented on the Fig. 9. 



Robotic Soccer 

 

436 

   
Fig. 9. An information-flow circle (on the left) and the decision-making cycle (on the right)  
 
However, the situation is not that simple. There is a whole sequence of activities in 
the strategic control step, which is most important to us. More detailed description of 
the control process’ communication is described in the part 5.1. of this chapter. Explanation 
of the strategic module functioning is in the part 5.2. 

 
5.1 Communication 
The system is communicating according to the following scheme (Fig. 10):  
 

 
Fig. 10. Scheme of communication 
 
The architecture client-server is used for communication. There is only one server in 
the system, represented by the “control” module. Clients are not communicating directly, 
but through the “control” module only. Clients are connected to the “control” module and 
set into listening mode. Information obtained by the “control” module is distributed to 
the respective modules. This is providing the necessary data-flow inside the system. As 
the system is divided into separated modules, the physical location of them is no longer of 
any interest to us due to the use of socket communication. When the dedicated network is 
used, we are not limited by the other form of data traffic and the control system is able to 
fully utilize the computational potential of the terminal it is running on.  
Every module uses obtained data and is attaching own part of information to it. Exception is 
the transceiver module which is sending data on the field without any additional 
information.  
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The two parts of the system are not necessary: The diagnostic module and the logger 
module. For the latter, it was already mentioned that it is useful for us to have some kind  of 
feedback from the system for subsequent analysis of the game. The diagnostic module is 
monitoring communication flow and in the case of any error, the human operator is 
informed. However, these two parts are unnecessary for the decision-making process and 
have only a support role.  
The decision-making cycle is formed by the following sequence of activities: (1) the image 
from the video camera is processed and positions of all players and of the ball are 
recognized; (2) the strategic module is using this information to compute all the remaining 
attributes needed to make a decision and appropriate reaction is decided upon them; (3) 
the output of the strategic module – instructions for the robots – is send by a transceiver 
module to all players; (4) new information is being obtained from the game by the video 
camera. The situation is shown at the Fig. 9. 

 
5.2 Strategic Control Module 
From our point of view, the most important part of the system is the strategic control 
module. It was mentioned above that there is a sequence of activities present, as it is shown 
at the Fig. 11. 
 

 
Fig. 11. Strategy control module 
 
There are three levels of decision-making present. At the high level, the game configuration 
recognition is made in the situation assessing step. In other words, the system is trying to 
recognize any known pattern of behaviour and react to it. The most important attribute of 
the game is the possession of the ball. Whoever controls the ball controls the game. 
Accordingly, the set of all possible strategies is divided into three subsets: (1) offensive 
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strategies (our team has the ball); (2) defensive strategies (opponent has the ball); (3) conflict 
strategies (no one has the ball or the possession of it is controversial – both teams have 
players very close to it). The most appropriate reaction is selected by the MDM, while 
the attributes are calculated or predicted as needed in order to be able to make a qualified 
decision. When the reaction is selected, every agent has basic conception of its behaviour in 
the next step of the game. The decision-making process is continuing at the medium level.  
At this level, the individual adaptations are made to the assigned behaviour. The agent has 
assigned a role, which is determining its coordinating position (if it is subordinate to 
the other agent or not). The specification of a reaction is vague and it must always be 
adjusted to the actual situation. Again, as the agent is adapting the parameters of the task to 
its actual situation, it may predict the course of actions as needed. At the low level, there is 
in fact no decision-making at all. The action is divided into atomic operations and these are 
just adjusted to the physical limitation of the robot’s kinetic apparatus (we need to avoid 
slipping, falling, going into a skid, etc.). These atomic operations adjusted to physical 
parameters of the environment are called instructions. Instructions are, in fact, nothing 
more than commands used to setting the wheels velocities of the agent. This is the output of 
the strategic module and the instructions are send by a transceiver to all respective agents 
on the pitch.  

 
5.3 Prediction 
As it was mentioned before, the agents are using a prediction to approximate the future 
development of the game. This is not unusual; the systems dealing with the robot soccer 
problem are often using some kind of simulation mechanism for possible solution 
predictions, computations or verifications. The most important is prediction of 
the movement of the opponent’s agents (We do not need to predict movement of our agents; 
we have this information stored in the memory. Therefore, for our agents, the prediction is 
used only for evaluation of possible situations or computing positions in coming iterations.). 
The situation is shown at the Fig. 12. 
 

 
Fig. 12. Prediction of the position of an agent 
 
We are predicting future position from the previous iterations of the game (three or four 
previous iterations are providing enough information to predict position in the next 
iteration of the game). For the illustration purposes, we present general for of formulas 
primarily used for the quadratic extrapolation:  
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0t  is the oldest iteration.  

 
6. Team Strategy and Individual Behaviour 
 

There are two points of view on the control responsibility – the team strategy decisions and 
individual actions. Excellent team must find the equilibrium between both approaches. 
The database of possible strategic formations and movements is used for coordination.  
It is a common solution, that the team is maintaining a formation. Each member of the team 
has assigned a position on the pitch and is responsible for certain area. The goalkeeper’s 
purpose is to guard the goal and passing the ball forward if it is possible. The defender is 
covering the goal from the angles where it cannot be done by the goalkeeper and is 
interfering with the opponent’s players. The attacker is trying to get the ball under control, 
avoid the opponent’s players and score the goal. Although all agents act individually, the 
basic pattern is defined centrally.  
For the MDM principle, there is no other way than use the combined centralized-
autonomous approach where the centralized decision sets the common course of action and 
every agent act individually, but in correspondence to other agents’. To use some sets of 
rules to maintain formations (or similar solutions) would make the whole decision-making 
extremely difficult, complicated and human-control-proofed. Moreover, the analysis and 
design would be immensely difficult.  
Therefore, the principle of coordination is based on the progressive change of behaviour 
from centralized control to the individual decisions. As the decision-making process is 
continuing and reasoning is proceeding to lower levels of the strategy module (see Fig. 11), 
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the agent has gradually greater influence on the form of final realization. Besides, the agent 
has to adapt universal form of algorithm to actual situation every time.  

 
7. Modular Strategic Control 
 

The actions of the robot players may be decomposed to atomic tasks. The strategic scenarios 
may also be decomposed to actions is a similar way. In this part, the possibility of change of 
the set of actions taken into account while making decision is discussed.  
The strategic scenario is a coordinated reaction of (one or more) agents to the situation on 
the pitch. It is useful to have pre-prepared scenarios to most common situations. If 
the situation on the playground cannot be recognized or if there is a large probability of 
incorrect reaction, some kind of default behaviour should be used.  
There is an advantage hidden in the state-organized structure of behaviour. Once 
the algorithms are prepared (for either stable or temporal state) the expansion or 
constriction of the set of states is easily done. When we have the behavioural structure for all 
states, it may be similar to the one presented at the Fig. 13.  
 

 
Fig. 13. Example of the behavioural pattern of an agent 
 
To change the behaviour of an agent, some transitions may be suppressed. However, 
conditions (19), (20) must be fulfilled. The structure presented at the Fig. 13. is called 
the behavioural pattern of an agent and it is defined individually for every type of the agent 
on the pitch (attacker, goalkeeper, defender). E.g. there would be another behavioural 
pattern defined for the aggressive strategy and for defensive strategy.  
The great advantage is the modularity of the behavioural pattern.  New states (algorithms) 
may be easily incorporated into existing structure and there is no need for changes in 
the basic structure. Also, this feature is invaluable for the testing and weight function tuning 
purposes.  
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7.1 Machine Learning 
The most appropriate learning method for the MDM principle is the reinforced learning, 
according to the MDM principle requirements. Explanation of this method can be found in 
(Ferber, 1999) and (Kubik, 2004). However, it is important, that it is only a high level of 
strategic module that is capable of learning. On the medium and low level, the actions must 
be already debugged and performed precisely; the high level is responsible for the situation 
recognition and this is a process where the learning may be proven useful.   

 
8. Synchronization of Team Activities 
 

During the robot soccer game, a group of mobile agents must often coordinate their actions 
to follow the team strategy. Therefore, there is a need to adapt the plan of each participating 
agent in order to act co-ordinately. Although the basic set of actions, which would be taken, 
is known from the high level of the strategy module, the final way of realization is 
depending on the situation on the playground.  
As the most appropriate solution was selected the application of hierarchy for 
the coordination purposes. Generally, it is possible to decide which player has the best 
position on the pitch. Therefore, such an agent is taking the lead for the execution of 
co-ordinated action. We have only two types of roles for this purpose. The role of leader is 
assigned to the agent in the best or most important position. The support role is used for 
other agents.  
Because we need all team members (except the goalkeeper) to be able to participate in 
the game properly, the designation of the agent into the position (attacker, defender) is not 
constant. It may be changed during the game. However, the distribution of power on 
the pitch must remain the same. Therefore, another agent (usually with the worst position 
for the actual action) takes its place instead.  
It is the leader who chooses the most appropriate solution for his situation. Other players 
are acting accordingly. E.g. when our team is attacking, it is usually a good idea to have 
a player near to the opponent’s goal. When the ball is near, only a swift move will score 
a goal. Other actions may be planned in a similar way.  

 
9. Case Study – Goalkeeper’s Behaviour Description  
 

For explanation purposes and better understanding, a description of the goalkeeper’s 
behaviour will be provided. The aspects of MDM described in the previous parts of this 
chapter will be shown on this example.  
The goalkeeper’s behaviour is not directly dependent on other team member’s behaviour. 
Therefore, the case study is not unnecessarily complicated by the social aspect of the game. 
Discussion about these features would take a lot of time and for basic understanding it is not 
necessary to make things difficult.  
The goalkeeper’s main task it to protect the goal from the opponent’s players. To do this, it 
is important to monitor the position of the ball. Because the ball may not move 
unpredictably (except the case of collision), but only in the direction of movement of 
the robot which has it under control, we use prediction described by formulas (24), (25), (26), 
(27), (28). We have to react to the next position of the ball, not to the actual one. The problem 
is schematically described on the Fig. 14. 
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Fig. 14. Protecting the goal 
 
The activity of the goalkeeper is following: (1) remain on the abscissa CD; (2) set 
the coordinates (point E) to intersection between point B and the predicted position of 
the ball (point A), (3) the front must remain turned concurrently with the line q (90° or 270°). 
By following this simple set of rules, the goalkeeper is able to defend the goal. The time 
difference between the moment T0 and the point A may be adapted as needed (according to 
the speed of game and capabilities of the opponent’s players). However, this simple 
behaviour is furthermore complicated by handling exceptional situations which may never 
be entirely avoided in the real world. The most common problem is moving away from 
the line of movement.  
Using the terminology introduced in the beginning of this chapter, the stable state of 
the goalkeeper agent is defending the goal. Two deviations from the ideal state may occur: 
the agent may be away from the designated line (CD) or he may be turned in an incorrect 
angle. If both exceptions occur, it is obvious in what order should be exceptions handled. 
First will be positioning, second will be turning in the proper angle. Therefore, there are 
monitored two corresponding attributes – the position (it is compared with the optimal state 
(see Fig. 14)) and the rotation. The positioning and turning are two temporary states; each of 
them is a simple algorithm solving the part of the problem. When the exceptional situation 
occurs, the decision-making procedure is performed and appropriate action selected.  
 



Multicriterial Decision-Making of the Robot Soccer Team 

 

443 

 
Fig. 15. Temporary state – turning. There is an exemplary “actual value” present 
 

 
Fig. 16. Temporary state – positioning. The maximum value of the attribute DIST is given by 

dimensions of the pitch (its diagonal is 2842,53 mm) 
 
It is important that there is a threshold value assigned to the each state. The purpose of the 
stable state is to prevent treating of every negligible difference from the ideal state. Certain 
level of imprecision has to be tolerated always. For the stable state, the threshold value is 
used to recognize when the algorithm should stop. See the Fig. 15 and 16 for details.  
The behaviour of the goalkeeper agent is therefore defined by the behavioural pattern 
shown at the Fig. 17.  
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Fig. 17. Behavioural pattern of goalkeeper agent 
 
The “DM” symbols at the Fig. 17 are representing decision-making moments. Until the 
threshold value is exceeded, the agent remains in the stable state “Defending goal”. If the 
agent is turned in a wrong angle or has a wrong position, the stimulus’ power will 
overcome the threshold and action with highest convenience value is selected and done.  
Generally, there are two ways how to continue. The first way requires the agent to make 
prediction of development more than one step ahead. In this case, when deciding what to do 
next, the whole sequence of activities is considered (i.e. sequence of actions POSITIONING 
and TURNING, in our case). In this case, a maximum number of possible solutions will be 
matching the formula (16). This approach is making the planning and co-ordination more 
effective.  
The other way how to proceed is to select only one next action at the time. This gives the 
agent an opportunity to quickly react to problems. However, the maximum effectiveness of 
the agent is obtained when it is staying in the stable state.  
The goalkeeper’s behaviour may be further complicated by the incorporation of the 
defender agent into our case. To be effective, the agents need to adapt their behaviour to 
each other. However, the leading agent is goalkeeper. He continues to perform his task as it 
was described above, the defender is trying to cover goal where it is impossible for the 
goalkeeper.  

   
Fig. 18. The co-ordinated behaviour of the goalkeeper and defender against opponent’s 

attack (white agents on the right side) 
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This description of the goalkeeper’s behaviour is not meant to represent a complete 
behaviour of an agent. Its purpose is to illustrate the application of the MDM principle on 
the exemplary situation.  

 
10. Conclusion and Future Work 
 

The MDM method shows a great potential in the means of adaptability and speed. From this 
point of view it is suitable for the purposes of the robot soccer game. It is able to react 
quickly enough in the strict time-frame limitation of the image processing speed. Its 
modular framework (implementation of the actions is made separately) allows an easy 
modification of behavioural control. The behaviour of the individual agent or the team as a 
whole may be easily changed by the human operator or some form of heuristic control. This 
allows the team to easily change the tactics and strategy and surprise the opponent.  
However, there are some serious setbacks present. The control mechanism development is 
difficult mainly in the analysis and testing phases. Implementation of isolated tasks is not a 
problem; this work has to be done no matter what control method is used. What is difficult 
is the initial design of weight functions and transition-between-states debugging. Both 
issues require extensive testing and optimization, which takes a lot of time and effort. Our 
future work will be focused on these problems.  
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1. Introduction 
 

Vision is an extremely important sense for both humans and robots, providing detailed 
information about the environment. A robust vision system should be able to detect objects 
reliably and present an accurate representation of the world to higher-level processes, not 
only under ideal conditions but also under changing lighting intensity and colour balance; 
when fully or partially shadowed; with specular and other reflections; with uniform or non-
uniform backgrounds of varying colour; when blurred or distorted by the object’s or agent’s 
motion; in spite of chromatic and geometric camera distortions; when partially occluded; 
and under many other uncommon and unpredictable conditions. Visual processing must 
also be extremely efficient, allowing a resource-limited agent to respond quickly to a 
changing environment. Each camera frame must be processed in a small, usually fixed, 
amount of time. Algorithmic complexity is therefore constrained, introducing a trade-off 
between processing time and the quality of information gained. 
Within the domain of the RoboCup four-legged league, previous vision systems have relied 
heavily on the colour of objects since the ideal colour of most important objects is specified 
in the league rules: a green field with white lines, an orange ball, yellow and blue goals, and 
pink, blue and yellow navigational beacons.  However, there is considerable scope for 
interpretation and variation allowed by the environmental specification, particularly with 
regard to lighting intensity and uniformity. Agents must be capable of performing under 
varying conditions, albeit with time allowed for detailed calibration procedures. 
Typical systems group the continuous space of colours returned by the camera into a small 
set of discrete, symbolic, colours.  They then attempt to form objects by grouping 
neighbouring similarly-classified pixels (Bruce et. al., 2000; TecRams, 2004). In 
implementation this usually results in a look-up table or decision tree that quickly maps the 
detected pixel value to a symbolic colour. Typical approaches to the generation of this table 
involve a supervised machine learning algorithm, where a human expert provides 
classification examples to a computer program, which generalises these to form the 
complete segmentation (Pham, 2004; Röfer et. al., 2004; Veloso et. al., 2004; Brusey & 
Padgham, 1999; Xu, 2004; Chen et. al., 2003). 
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Unfortunately, as lighting conditions change, the colours of real-world objects change and 
methods relying solely on colour become brittle and unreliable. In addition, these “blob of 
colour” based methods must process each image frame in its entirety, where there is 
frequently a large amount of redundant visual information. In contrast, this chapter presents 
a system that shifts the focus to recognising sparse visual features based on the relationships 
between neighbouring pixels, and detecting objects from a minimal number of such 
features. 
 

 
Fig. 1. A Sony AIBO ERS-7 wearing the red team uniform and the orange ball on the 

RoboCup four-legged league field. Note the coloured goals and localisation beacons. 
The outer wall is optional 

 
There have been a number of modifications attempted to address some of these 
shortcomings with “blob of colour” based vision systems in the RoboCup legged league. A 
dynamic classification approach, where the classification of a pixel value may change over 
time, is one such modification. Approaches based on multiple colour segmentations or 
relative classification have had some success, but such methods rely  on multiple fine 
calibrations or overly simplified representations (Quinlan et. al., 2004; Sridharan & Stone, 
2005; Jüngel et. al., 2003; Wasik & Saffiotti, 2002). The conclusion to be drawn from past 
attempts is that colour segmentation is a difficult problem. Local variations, temporal 
variation, complexity of segments and overlapping classifications all thwart creation of a 
perfect static classification, and dynamic classifications have so far been simplistic or drawn 
unacceptable side effects. The solution lies not in further improving colour classification 
methods, but in moving away from symbolic colour segmentation towards illumination-
invariant vision. 
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Sub-sampled approaches are a recent development in RoboCup vision. Scan lines over the 
colour-segmented image are used in (Stone et. al., 2004) for detecting field lines and (Röfer 
et. al., 2004) and (Veloso et. al., 2004) for object detection. Boundaries are detected between 
regions of segmented colour lying on the scan lines and classified according to the adjacent 
symbolic colours. While still dependent on static colour segmentation this method is highly 
efficient. Along with dynamic colour segmentation, (Jüngel et. al., 2003) recognises that 
colour relationships are invariant under linear shifts in lighting, and detects edges as contrast 
patterns in the three image channels. Both of these approaches provided inspiration for the 
procedures presented in this chapter. 
This chapter presents an image processing system for the four-legged league based on 
minimal sampling of the image frame. Rather than process each image in its entirety this 
approach makes an intelligent estimate of the information content of regions in the image 
and samples those areas likely to be of importance. Features are detected in the sampled 
areas of the image and these are combined to form objects at a higher level of processing. 
Instead of relying on brittle colour segmentations, this approach focuses on the relationships 
between neighbouring pixels, which remain more constant under variations in lighting. 
This approach also presents solutions to, or implicitly avoids, some of the problems 
identified with purely colour-based approaches: colour segmentation need not be so tightly 
defined and calibration time is reduced; the calibrated colour relationship tests are 
environment independent; complex series of manually coded object validity tests are 
minimised; redundant information is avoided as only information-rich areas are sampled 
densely; and object recognition is robust to falsely detected features and unexpected 
background information. This system was successfully utilised by the UNSW/NICTA 
RoboCup four-legged league team, rUNSWift, at RoboCup 2005 and 2006. 

 
2. Theory: Sub-sampled Object Recognition 
 

Our approach is based on feature detection through the use of colour-gradient information 
gathered with a minimal sampling of each image, and object recognition from these 
relatively sparse features. It is based on two major theoretical differences from prior 
systems. Firstly, this approach moves away from absolute colour classification techniques 
and focuses instead on the relationships between neighbouring pixels. This reduces the 
dependency of the system on static colour classifications and precisely controlled lighting 
conditions. Secondly, this approach ceases to process the entirety of each image and instead 
samples only areas of the image likely to be of high informational value. This aids efficiency 
and reduces false positive errors caused by unexpected regions of colour. 

 
2.1 Colour Relationships 
Static colour segmentations are brittle and depend highly upon the exact lighting conditions 
under which the segmentation is made. As lighting conditions change the absolute colour 
values of pixels projected from a certain object change considerably. However, the colour-
space differences between pixels representing distinct real-world colours change far less. 
While pixel values change under varying light, the values for all pixels will change in 
approximately the same way.  Thus, while each colour may no longer be recognisable under 
a static classification, the difference between two colours remains discernible. Note that the 
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change in relative values is not exactly linear, depending on the particular characteristics of 
the light source, so while relative colour is more stable than absolute colour it is not so stable 
that it remains constant under excessively varying lighting. 
 

 

 

 

 
Fig. 2. A scene under progressively darker lighting conditions. The left-hand column shows 

images from the ERS-7 camera (after correction for chromatic ring distortion). The 
centre column shows the result of colour segmentation with a colour table optimised 
for bright lighting. The right-hand column shows the result of applying equation (1) 
to the images at the left, subtracting from each pixel the value of the pixel 
immediately above it. Note how this remains stable as the lighting intensity falls, 
while the colour segmented images deteriorate. The implementation described below 
successfully detected the ball in all images 
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 Yx,y = 2|Yx,y – Yx,y-1| 
 Cbx,y = 2(Cbx,y – Cbx,y-1) – 128   (1) 
 Crx,y  = 2(Crx,y – Crx,y-1) – 128 
Consider Figure 2; The left-hand column comprises images as detected by the ERS-7 camera, 
with ambient light intensity decreasing down the page. The centre column displays a static 
colour classification of the images in the left-hand column under a calibration tuned for 
bright lighting. Note that as the ambient light intensity is reduced the images become 
successively darker and the colours recognised by a static classification become increasingly 
less accurate. The images in the right-hand column show a graphic representation of the 
colour-space difference between each pixel and its vertically adjacent neighbour.  Pixel 
values are calculated as given in equation (1). This difference precisely picks out the 
boundaries between the orange ball, white lines and green background. The white wall 
around the edge of the field is also apparent. The upper and lower boundaries of each object 
appear as different colours; the lower boundaries represent transitions away from green 
towards orange or white, and the upper boundaries represent corresponding transitions 
back into green.  Searching for particular boundaries in the original images reduces to 
searching for these particular “colours” over the difference images. Note that these images 
remain relatively stable as the lighting intensity falls, in contrast to the rapid deterioration of 
the colour-segmented images in the centre column. 
Detecting differences in neighbouring pixels is very similar to edge detection. General edge 
detection methods such as Roberts’ and Sobel operators (Roberts, 1965; Sobel, 1970) (see 
Figure 3) are computationally too expensive to execute on every frame from the ERS-7. 
Instead, we may calculate a simple one-dimensional gradient. A crucial difference between 
this method and many standard edge detection algorithms is that the direction of the change 
in colour-space is explicitly captured, and “edges” can be easily classified by the colour 
difference they represent. Each difference-value depends on only two pixels, in this case a 
base pixel and the one immediately above it. Thus, to determine the colour-space transition 
direction at any particular point requires access to only two pixels. Determining the 
transition directions over a line of n pixels in any orientation requires access to only n+1 
pixels, an important result for the sub-sampling approach discussed below.  
 

   
(a)     (b) 

Fig. 3. (a) Roberts’ operator applied to one of the images in Figure 2. The aggregate of the 
operator result over the three image planes is shown as brightness, normalised to a      
maximum value of 255. (b) A simple single-pixel difference as in (1) applied to the 
same image.  Both would normally have a threshold applied before use to reduce 
noise 
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Since the direction of the vector does not depend on the actual pixel values detected these 
vectors will be independent of any linear shift of the colour-space. Although no real-world 
colour-space shift will be perfectly linear, many approximate linearity, being a compression 
or expansion of the colour-space along one dimension. For example, shadowing or reducing 
the intensity of ambient light intuitively compresses the set of observed pixel values 
towards black (i.e., makes them darker, but bright pixels experience greater change than 
dark ones). This reduction in intensity results in a much smaller change (depending on their 
magnitude) to the vectors representing object boundaries in the image. Thus, detecting these 
vectors, rather than specific colour values, is more tolerant of changes in lighting conditions. 

 
2.2 Sub-sampling Images 
The information contained in any given image is distributed over its area. This distribution 
is non-uniform because neighbouring pixels are highly correlated, so the image carries 
redundant information (Burt & Adelson, 1983). Hence a vision system that processes every 
pixel in each image necessarily processes redundant information. But which pixels should 
we process? 
In the four-legged league domain, important objects and landmarks are regions of uniform 
colour. Pixels in the centre of these regions of colour carry little information; their presence 
can be inferred from the surrounding similarly-coloured pixels. It is the edges of these 
objects that carry important information about position, size and orientation. Ideally, only 
pixels near information-bearing edges should be sampled frequently, while pixels in regions 
of relatively uniform colour should be sampled less often. In other domains the texture of 
objects may also provide useful information and samples in highly textured regions may 
provide additional information. 
Knowledge of the environment and geometry of the robot allows first estimate for sampling 
the image.  Figure 4 shows the results of applying Roberts’ operator to two typical images. 
Regions of high information are displayed as edges. In general the lower part of an image 
carries less information (edges) than areas higher up, although the very top part of each 
frame usually captures background information from outside the playing field. 
Objects close to the robot appear lower in the image and larger than objects far from the 
robot. An object such as the ball carries the same amount of information in either case, but 
when closer to the robot this information occupies a larger area in the image. Similarly, field 
lines close to the robot are sparse in the lower areas of the image. Lines further from the 
robot appear higher up and more closely spaced in the image.  
The expected information density reflects this. Figure 5 shows a normalised sum of the 
results of Roberts’ operator over a series of four hundred images captured from an ERS-7, 
holding its head level while turning its body on the spot at approximately one revolution 
each 4.5 seconds. The robot is positioned one quarter of the field length from one goal-line 
and laterally in line with the nearest goal box corner. The result of Roberts’ operator on each 
individual image is thresholded at 40 (of a maximum 255) before being added to the 
aggregate in order to the reduce noise apparent in Figure 4. 
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(a) (b) 

Fig. 4. The results of executing Roberts’ operator over a number of typical in-game images. 
Note that the bottom part of each image, corresponding to objects close to the robot, 
typically contains sparse information. Objects farther from the robot appear smaller 
and higher up the image, leading to greater information density near the horizon 

 

 
Fig. 5. The aggregate result of Roberts’ operator over four hundred images. Note the dark 

region near the bottom of the image, an area of low average information density. 
Near the top of the image the brighter region represents an area of higher average 
information density. Noise due to chromatic distortion correction is visible in the 
image corners 

 
From Figure 5 it can be seen that the average expected information density is low near the 
bottom of each image and increases to a peak about one third of the distance from the top of 
the image.  The information density is approximately constant along horizontal lines. 
This generalisation, that higher parts of an image are likely to carry more information, is 
only valid when the robot’s head is held upright. If the position of the head changes then the 
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expected information density within the image changes too. This suggests that regions of the 
image close to the robot’s visual horizon should be sampled with higher frequency than 
areas far from the horizon. We can calculate an artificial horizon from the geometry of the 
robot’s limbs to provide a reference point invariant with its stance. 

 
3. Implementation 
 

We now describe in detail our sub-sampling robot vision system for the RoboCup four-
legged league. This implementation is strongly biased towards working accurately, robustly 
and consistently in the RoboCup competition rather than towards any notion of elegance or 
mathematical correctness. Despite goals of domain independence implied above, advantage 
is taken of any reasonable domain-specific assumptions that may be made. This 
implementation was used with considerable success in the RoboCup 2005 and 2006 
competitions. 

 
3.1 Scan Lines 
Selection of which pixels to process is by means of a horizon-aligned, variable-resolution 
grid placed over each image, similar to that proposed in (Röfer et. al., 2004). An artificial 
horizon is calculated from knowledge of the geometry of the robot’s stance and camera. The 
horizon represents a line through the image with constant elevation equal to that of the 
camera.  This horizon provides a reference point that is invariant with the stance of the robot 
and aligns the grid with the high-information areas of the image as described in section 2.2. 
A scan-line is constructed perpendicular to the centre of the horizon line, continuing down 
to the lower edge of the image. Scan lines are then constructed parallel to this first line on 
either side of it at a fixed spacing of sixteen pixels; scan lines continue to be constructed at 
this fixed spacing until such lines lie entirely outside the image frame. Between each pair of 
these “full” scan lines a parallel line segment is constructed from the horizon line with a 
fixed length of 64 pixels.  These “half” scan lines are thus eight pixels from each of their 
neighbouring full scan lines.  Between each of these half scan lines and their adjacent full 
scan lines a “quarter” scan line is constructed with a fixed length of 48 pixels, spaced four 
pixels from the scan lines on either side.  Finally, beginning sixteen pixels below the horizon 
and doubling this gap for each line, scan lines are constructed parallel to the horizon line 
until such lines lie entirely below the image frame. 
This constructs a grid as shown in Figure 6 (a), with a greater density of scan lines closer to 
the horizon and more sparsely spaced lines further from it. This grid is used for detection of 
features related to the ball, field, lines and obstacles. The majority of the scan lines are 
perpendicular to the horizon, running from pixels that project close to the robot to pixels 
that project further away. The few scan lines parallel to the horizon are placed to capture 
features on field lines aligned with the camera axis that would otherwise lie entirely 
between scan lines. Since no features are expected to appear above the horizon, no scan lines 
are created above it. 
A separate set of scan lines is constructed for detection of landmarks. Beginning just below 
the horizon line and continuing with an exponentially increasing gap above it, scan lines are 
constructed parallel to the horizon line as shown in Figure 6 (b). These lines are used for 
detection of the landmarks and goals around the field. 
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This same pattern of scan lines may be constructed regardless of the camera orientation, as 
in Figure 6 (c). In cases where the camera is rotated further than one quarter-turn about its 
axis the lower edge of the images becomes the upper edge, as seen in Figure 6 (d); in such 
cases scan lines continue to be processed in the same order and direction. The horizon may 
not appear within the image in situations where the camera is tilted up or down in the 
extreme. In these cases an approximation is made, drawing the horizon along the top or 
bottom edge of the image. 
 

   
(a)     (b) 

 

   
(c)     (d) 

Figure 6. (a) The pattern of scan lines (shown in blue) used to find features on the ball, field, 
lines and obstacles. The horizon is shown as a pale blue line. (b) The pattern of scan 
lines used to search for landmarks. (c) The scan lines are constructed relative to the 
horizon. (d) When the camera rotates more than 90° about its axis the scan lines run 
up the image 

 
This grid of scan lines defines the initial access pattern for pixels in the image. If no features 
of interest are detected then these are the only pixels processed in the image. The scan lines 
typically cover about 6,700 pixels, or twenty percent of an image. More pixels in the vicinity 
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of features and objects of interest are accessed during the image processing but the majority 
of pixels are not processed at all. 
Some scan lines are also constructed dynamically.  After processing of the initial scan line 
pattern described above, more information is available about the information distribution 
over an individual image. It is likely that additional processing in the vicinity of the 
previously detected features will lead to detection of further features, since there is 
significant spatial locality in edge information. Hence, if fewer than seven ball features (see 
section 3.3.1) are found in the initial pass then an extra fixed-size grid of scan lines is 
constructed around each of the detected features. 

 
3.2 Colour Classification 
Although this implementation attempts to move away from reliance on statically classified 
colour such classifications nonetheless provide useful information. Given the specification of 
the four-legged league domain in terms of objects of uniform colour, symbolic segmentation 
is used extensively in landmark detection and provides useful confirmation of features 
detected through other methods. However, only those pixels selected for examination by the 
sub-sampling approach are ever classified. 
Because of the poor quality sensor on the ERS-7, correction is applied for chromatic 
distortion (Xu, 2004) and the particular robot used to capture images is treated as the 
reference robot for linear adjustment between robots as described in (Lam, 2004). These 
corrected images are then loaded into a classification application for classification. 
A simple weighted Parzen kernel classifier provides segmentation. Our experience with this 
classifier suggests that incremental, online training is more useful than increased 
classification accuracy. 

 
3.3 Edge Feature Detection 
Feature detection takes place over the scan lines described in section 3.1. Features of the ball, 
field, lines and obstacles are detected in the vertical and low horizontal scan lines. These 
scan lines are processed from bottom to top (or left to right) and each pixel is compared with 
the previous pixel in the scan line. Rapid changes in the Y, Cb or Cr values indicate edges in 
the image, and particular edge vectors are recognised as being features of a particular 
environmental object. 

 
3.3.1 Detecting Ball Features 
Ball features represent transitions between the orange ball and the green field or white field 
lines. Occasionally transitions into the yellow or blue goal are also encountered and the 
majority are correctly detected by the procedure outlined below. 
For each pixel in turn running up the scan line let (y, u, v) be the values of the Y, Cb and Cr 
channels respectively for this pixel, (dy, du, dv) be the difference between the channels of this 
pixel and the previous (i.e., next lower) pixel, and sum be the sum of the absolute values 
|dy| + |du| + |dv|. A ball feature satisfies: 
 

1. sum >= 20  (a minimum gradient over all channels), and  
2. |du| > 15  (a minimum gradient in the Cb channel), and 
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3. either: 
a. dv = 0, or   
b. |du/dv| < 4  (slope of Cb less than four times slope of Cr), or 
c. sign(du) = -sign(dv)  (Cb changes in opposite direction to Cr).   

 
In order to avoid confusion between strong specular reflection and white field lines a ball 
feature must also satisfy y < 180. Note that these rules capture transitions both towards and 
away from orange without any explicit notion of orangeness. 
These features are then confirmed by consultation with the statically classified colours of 
nearby pixels. While processing a scan line, information about the direction of the scan line 
in the image is calculated. For these tests this is simplified to the nearest basis direction: up, 
down, left or right. The value of du calculated above gives the direction of change at this 
pixel: if du > 0 then the transition is towards orange; if du < 0 then the transition is away 
from orange. A line of five pixels beginning at the pixel under test and progressing in the 
direction of the centre of the ball (simplified to a basis direction) are examined. In order for 
the transition to be confirmed as a ball edge the classified colour of these pixels must satisfy: 
 

1. at least three are classified orange, and  
2. no more than one is classified red, and  
3. no more than one is classified pink, and  
4. no more than one is classified yellow. 

 
A consistent run of orange is not required; any three from the five pixels may be orange. 
Thus we confirm that there are at least some orange classified pixels where they would be 
expected. Note that the pixel under test is not required to be classified orange; in fact it is 
quite often the case that the very edge pixels are somewhat blurred and take on a 
classification of white or yellow.  
From the images in Figure 2 it can be seen that pixels near the upper edge of the ball 
maintain the correct classification under the widest range of lighting intensities. This test 
therefore favours transitions at the upper edge of the ball. The lower part of the ball 
deteriorates to pink or red quite quickly, and indeed this is a major problem with purely 
colour-based blobbing approaches. This test will continue to recognise edges so long as 
three out of five pixels are classified orange, but thereafter will reject the transitions as likely 
spurious. Heavily shadowed edges on the lower half of the ball are detected with a colour 
based approach outlined in section 3.4.3.  
These colour-based tests are necessary because the transition tests are overly lax. The 
complexity of the transition tests here can be likened to the simple thresholding that was 
previously used for colour segmentation. The region satisfying the tests is not well fitted 
and includes many transitions outside the desired set. This method was chosen because it is 
simple enough to provide an easy implementation and demonstrate the validity of the 
concept without introducing many unnecessary complexities; future approaches could 
adopt more complex transition definitions to reduce reliance on colour segmentation even 
further. 
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3.3.2 Detecting Field Lines 
Field line features represent transitions between the green field and white field lines or 
boundaries. For each pixel in turn (after the first) running up the scan line define (y, u, v), 
(dy, du, dv) and sum as for ball feature detection in the previous section. A field line feature 
satisfies: 
 
1. |y| > 32  (a minimum value of Y), and  
2. |dy| > 15 (a minimum gradient in Y), and  
3. |du| < 40  (a maximum gradient in Cb), and  
4. |dv| < 40  (a maximum gradient in Cr), and  
5. |du| < 4 or $sign(du) = sign(dv)$  (a small gradient in Cb, or Cb and Cr slope in the 

same direction).  
 
The direction of change may be calculated in a similar fashion to that for ball features, using 
the indicator dy rather than du. No symbolic colour tests are applied to field line edges. Note 
that this test is likely to misrecognise the boundary between robots and the green field as 
being a field line edge; no attempt is made to prevent this since in our implementation such 
noisy data is handled robustly in the localisation module (Sianty, 2005). 
In addition to detecting field lines, a sparse sampling of each image is made for the purpose 
of detecting the green of the field, as an aid to higher-level localisation systems. Every 32 
pixels along half of the full scan lines a check is made: four line segments of nine pixels with 
a mutual intersection at the centre of each line segment form an axis-aligned star shape 
containing 33 pixels. If at least two-thirds (22) of these pixels are classified as green then the 
centre pixel is marked as a field-green feature. 

 
3.3.3 Detecting Obstacles 
The method for detecting obstacles presented here differs from most other attempts. This 
approach specifically detects the shadows on the field caused by objects lying on it. While 
processing a scan line the Y value at each pixel is tested against a threshold value (we used 
35). If the Y channel falls below this threshold the pixel is classified as an obstacle. A 
maximum of five pixels are classified as obstacles on any one scan line. 
To avoid false obstacles caused by the ball, the robot itself or human referees a state machine 
keeps track of the classified colour of pixels on the scan line as they are processed. The 
twenty pixels immediately above a candidate obstacle are tested: if more than ten green 
classified pixels or five orange classified pixels are encountered then the obstacle candidate 
is discarded. 
The results of ball, line and obstacle detection are shown in Figure 7. 
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Fig. 7. The results of feature detection over a sample image. Ball edge features are displayed 

as yellow points, line edge features as light green points, obstacles as red points and 
field-green features as dark green points. Black points represent features that have 
been discarded due to checks applied after initial detection 

 
3.4 Symbolic Colour Feature Detection 
As noted earlier, colour remains an important part of the four-legged league domain, and 
this approach continues to use symbolic colour classification for detection of beacons and 
goals, using a sub-sampled approach rather than blobbing. Landmark detection takes place 
over the upper horizontal scan lines described in section 3.1. These scan lines are scanned 
left to right and each pixel in turn classified into one symbolic colour via a static colour 
segmentation as outlined in section 3.2. Colour is an appropriate indicator for the landmark 
objects as they are far less subject to variations in lighting during a four-legged league match 
than on-field objects such as the ball. Although the colour segmentation must be tuned for a 
specific environment, the perceived colour of beacons and goals changes little during the 
course of a match. 

 
3.4.1 Detecting Landmarks 
A state machine tracks the number of consecutive pixels found of each of pink, yellow and 
blue along horizontal scan lines, along with the start and end points of these runs of colour.  
Up to one pixel of “noise” (any other colour) is tolerated. Beacons are detected by the pink 
square that appears on all beacons. A run of five consecutive pink pixels (plus one pixel of 
noise) in a scan line creates a beacon feature. Goals are detected by their uniform colour of 
pale blue or yellow. A run of twelve blue or yellow pixels (plus one pixel of noise) creates a 
blue or yellow goal feature. These features are passed to the object recognition system for 
further processing. 
A slight modification to the thresholds is made when the robot’s head is held low and the 
horizon coincides with the top of the image, such as when the robot’s head is controlling the 
ball. Pixels near the top border of the image are subject to significantly more noise (mainly 
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due to chromatic “ring” distortion and its correction) than those near the centre of the 
image, and are more likely to be misclassified. Thus, when the robot holds its head down 
over the ball and is searching for the goal an additional “noise” pixel is allowed in goal 
features. 

 
3.4.2 Detecting the Wall 
While the area outside the green carpeted field is undefined by the four-legged league rules 
there is often a low wall or region of uniform colour surrounding the field. It is 
advantageous to detect this to allow filtering of features and objects appearing off-field. A 
state machine tracks the number of green, grey or white, and other-coloured pixels 
encountered during the scanning of each vertical scan line. A wall feature is detected by a 
series of four green classified pixels (allowing one pixel of noise) followed by a series of at 
least five white or grey classified pixels, followed by a series of two pixels of other colours 
(allowing two pixels of noise). The requirement for non-green above the white pixels 
prevents close field lines being detected as walls. A wall feature is created midway between 
the start and end of the white/grey pixel series. A wall line is constructed using a random 
sample consensus, or RANSAC, algorithm (Fischler & Bolles, 1981). 

 
3.4.3 Detecting Faint Edges 
There are a number of cases where edges in the image become blurred so the ball and field 
line feature detection methods outlined above become less effective. The most common 
cause is motion blur: when either the camera or objects in the environment move quickly the 
result is a blurred image with indistinct edges. In such images the thresholds for change 
required for feature detection may not be met, since the transition is spread over many 
pixels. In these cases an alternative ball feature detection method is used, based on 
segmented colour. While symbolic colour classification is susceptible to changes in lighting 
it is fairly robust to blurring; edge detection exhibits the opposite tendencies.  
A state machine keeps track of the number of orange, maybe-orange (i.e. pink, red and 
yellow) and non-orange (the remainder) pixels detected along a scan line. A transition is 
detected between non-orange pixels and orange pixels, possibly with a number of 
intervening maybe-orange pixels. Three consecutive orange pixels are required to satisfy as 
an orange region, although the number of maybe-orange pixels before this is unbounded. If 
the transition is into an orange region a feature is created at a point midway between the last 
detected non-orange pixel and the first orange or maybe-orange pixel. If the transition is 
away from orange a feature is created at a point midway between the last detected orange 
pixel and the first non-orange pixel, so long as these two points are within six pixels of each 
other. On transitions away from orange the maybe-orange pixels are ignored since such 
pixels usually occur on the lower half of a valid ball. 

 
3.5 Object Recognition 
Object recognition takes place over the features as recognised in the previous section. Object 
recognition involves grouping features related to the same real-world object and extracting 
the important attributes of these objects such as position in the image, position in the 
environment, heading, elevation, orientation and variances over these attributes. The results 
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of the early stages of object recognition are used to focus computational effort when few 
features are initially detected. 

 
3.5.1 Beacon Recognition 
Beacon recognition comprises grouping the detected pink features into candidate beacons 
then searching above and below the pink region for the other characteristic beacon colour 
(pale blue or yellow). Beacon features (which are horizon-parallel line segments) are 
grouped by merging adjacent “overlapping” features. Two features overlap if a line 
perpendicular to the horizon can be drawn that intersects with both features. 
 

  
Fig. 8. A recognised beacon. The beacon features are displayed as horizontal pink lines. The 

white field wall has also been detected, displayed as a purple line 
 
A local search is then performed to classify each group of beacon features as one of the four 
possible beacons, or as falsely detected features. Essential properties such as apparent height 
and heading are deduced from the beacon’s geometry through simple methods which are 
not relevant here. Only a single check is performed to confirm the validity of a candidate 
beacon (c.f. the sixteen checks listed in (Lam, 2004)). The centroid of the beacon must not be 
below the horizon by more than 25 pixels. This check rules out some invalid beacon features 
that might be detected by excessive pink occurring in the ball or red team uniform. 

 
3.5.2 Goal Recognition 
Goal recognition comprises grouping the detected blue and yellow features into candidate 
goals. Goal features are grouped by merging adjacent “overlapping” features in the same 
way as beacon features, relaxed to allow up to one scan line separating features to be 
merged. However, it is possible for two distinct regions of the one goal to be visible as 
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shown in Figure 9. Thus goal feature groups are also merged if they contain features on the 
same scan line. 
 

   
Fig. 9. (a) A recognised goal. (b) The goal is often occluded by a robot, but grouping of 

features leads to correct recognition, even if the goal is divided in half. The two 
possible gaps for shooting are indicated by horizontal white lines. The recognised 
goal is assumed to be aligned with the horizon, so no attempt is made to detect the 
goal outline 

 
As for beacons, the essential properties of a goal are deduced from its apparent geometry 
through simple methods that are not relevant here. A few checks are made to confirm the 
validity of a candidate goal: the aspect ratio of the goal is checked to make sure it forms a 
sensible shape; a goal must not appear further than twenty pixels above the horizon; and a 
number of pixels underneath the candidate goal are tested for colour. If very few are found 
to be green the goal is rejected. The goal is also rejected if many are found to be white, as 
might occur in the blue or yellow patch of a beacon. The aspect ratio and colour checks are 
ignored when the robot holds its head down low while controlling the ball: both are likely to 
trigger falsely, and goal detection is of utmost importance in these cases. 

 
3.5.3 Ball recognition 
Ball recognition is performed after beacon and goal recognition has completed, allowing 
obviously spurious ball features to be ignored. If fewer than seven valid ball features have 
been detected additional scan lines are first created and scanned near existing ball features 
as outlined in section 3.1. 
Ball recognition involves estimating the outline of the ball from the detected features. A 
circle is fitted to the ball edge features using a generalisation of Siegel’s repeated median 
line fitting algorithm to circles, as described in (Mount & Netanyahu, 2001). Under the 
assumption that the majority of the points to fit lie on a circle, this algorithm claims 
robustness to up to 50% outlying data. Slight modifications are made to account for the fact 
that, due to motion blur, the ball frequently does not appear perfectly circular. This 
approach assumes that there is at most one ball in view. 
Given the parameterised equation of a circle as (x - a)2 + (y - b)2 = r2 all triplets of features 
(i, j, k) are considered, from a minimum of four features. Each triplet determines a circle by 
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the intersection point of perpendicular bisectors constructed to the chords formed by the 
triplet. The parameters (a, b) are calculated separately as in (2): for each pair (i, j) take the 
median of the parameter over all choices for the third point, k; for each i take the median 
parameter over all choices for the second point, j; and take the result as the median over i. 
 
 a = med[i] med[j ≠ i] med[k ≠ i,j]  ai,j,k b = med[i] med[j ≠ i] med[k ≠ i,j]  bi,j,k (2) 
 
In contrast to the algorithm presented in (Mount & Netanyahu, 2001) the radius is calculated 
from a single median after the positional parameters have been calculated, as given by (3). 
This aids stability in the presence of a large number of outliers. If at least seven features are 
present then the middle three are averaged to give the radius. This averaging helps to 
reduce jitter induced by image noise. 
 
 r = med[i] ri (3) 
 
As for landmark features, the important properties of the ball may be derived from its 
position and size. Three checks are performed to ensure that the recognised ball is valid. 
Two geometry tests are applied: the ball is discarded if it appears above the horizon by more 
than ten pixels; and it is discarded if its radius is unreasonably large (two thousand pixels). 
Finally, a symbolic colour based test is applied: a valid ball should contain some orange 
pixels within its circumference. This test is only a validity check; the coloured pixels are not 
used for deriving the ball’s properties. 
If the ball is small (a radius of fewer than ten pixels) then a square of side length equal to the 
ball’s radius is constructed around the centre of the ball, and all pixels in this square are 
colour-classified. Otherwise, features that lie within ten pixels of the circumference are 
randomly chosen and a line segment is constructed between the feature and the ball 
centroid. The pixels along this line segment are classified, up to a total of one hundred pixels 
over all features. In both cases counts are maintained of the number of orange, red, pink and 
green classified pixels encountered. If fewer than three orange pixels are encountered the 
ball is discarded. If the radius of the ball is greater than ten pixels and fewer than twelve 
orange pixels are found the ball is discarded. This colour checking is displayed as a cross 
shape of accessed pixels over the ball in Figure 11. 
This approach allows accurate recognition of the ball under a range of conditions. While it is 
limited by an assumption that there is only one ball present in the image, the ball may be 
detected when blurred or skewed, occluded or only partially in frame. Figure 10 shows 
recognition in a number of these cases. The repeated median algorithm exhibits Θ(n3) 
computational complexity in the number of features. Since n is usually small this remains 
appropriate; this implementation limits the number of features used to a maximum of 
seventeen, more than enough to achieve an accurate fit. 
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 (a) (b) (c) 

 

     
 (d) (e) (f) 

 
Fig. 10. Ball recognition in a number of different situations. Ample information available in 

(a) allows for a very tight fit. The repeated median estimator continues to be 
accurate at long range in (b), although at such distances precise information is less 
important. Noise features caused by a second ball in (c) are ignored. A ball lying 
mainly outside the image frame in (d) is still detected accurately, as is a ball 
partially occluded by a robot in (e). A combination of motion blur and skewing in 
(f) lead to a questionable fit  

 
3.5.4 Mutual Consistency 
Once object recognition is complete a small number of checks are made to ensure that the 
perceived objects are mutually consistent. These checks are outlined below, in order of 
application. 
1. The two goals cannot be simultaneously perceived. If they are, the one comprising the 

fewest features is discarded. If they have the same number of features the goal with the 
highest elevation is discarded.  

2. A goal centroid cannot appear inside a beacon. If it does, the goal is discarded.  
3. A beacon centroid cannot appear inside a goal. If it does, the beacon is discarded.  
4. A goal cannot appear above a beacon by more than ten degrees. If it does, the goal is 

discarded. 
5. Diagonally opposite beacons cannot simultaneously be observed. If they are, both are 

discarded. 
6. Beacons at the same end of the field cannot appear within thirty  degrees of each other. 

If they are, both are discarded.  
7. The ball cannot appear above a goal. If it is, the ball is discarded.  
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8. The ball cannot appear above a beacon. If it is, the ball is discarded. 
 These checks conclude visual processing for one frame. The information extracted from the 
recognised features and objects is passed to the localisation and behaviour modules. 

 
4. Evaluation 
 

In our domain of robot soccer, the accuracy and robustness of a vision system reflects 
strongly in the performance of a team of robots in a competitive soccer match. In a limited 
sense this is the most valuable method of evaluation. The goal of the vision system is to have 
robots play the best soccer and a vision system that results in a team consistently winning 
matches is better, in some sense, than a system that does not. However, it is difficult to hold 
other variables constant, so, while being the most important test of a system’s quality, this 
test is also the most subject to random variation, noise and external influences. The 
performance of a team depends upon the performance of the opposing team and the 
environment both on and off the field. Further, this method of evaluation is highly non-
repeatable; it is impossible to substitute an alternative vision system and have the same 
match play out with the exception of changes directly related to vision. Nevertheless, 
evaluation by playing matches remains an important measure of progress. If otherwise 
identical code is used in both teams over a number of competitive matches the influence of 
the vision systems may be observable in qualitative terms. 
Behavioural evaluation of a single robot agent is another important method of evaluation. 
Agent provides information about the performance of its vision system in particular 
circumstances, with much of the interference caused by team-mates and opponents 
removed.  For example, an agent’s behaviour may provide clear indication of whether or not 
it can see a given object.  It is possible to display informative indicators in the form of LEDs, 
or such information might be accessible via a remote data stream. Thus the quality of a 
single agent’s visual information may be subjectively assessed. Alternatively, two 
independent agents might be active simultaneously, and the behaviour and data streams 
from each compared.  Although each agent is processing different input, over time any 
significant systematic differences in visual processing will become apparent.  
Single agent tests bear some semblance of repeatability: situations can be constructed and 
the performance of agents evaluated over a number of similar trials.  Single agent tests are 
particularly useful for evaluating small modifications to a vision system. The RoboCup four-
legged league also presents a number of technical challenges that are useful in evaluating an 
agent’s vision system (RoboCup, 2005). 
One of these was the Variable Lighting Challenge which explicitly tests an agent’s vision 
system’s robustness to changes in lighting conditions over time. In this challenge an agent 
must consistently recognise the standard RoboCup objects while the field lighting changes 
in different ways. While still heavily dependent on higher level behaviours this challenge 
tests robustness of image processing systems to shifts in lighting intensity, colour 
temperature and dynamic shadows. For an agent to perform well in this challenge it 
necessarily requires a highly robust vision system. 
For yet more detail, an agent’s image processing system may be compiled and executed in 
isolation on a standard PC (“offline”), where its performance for particular images or image 
sets may be qualitatively and quantitatively evaluated. This allows direct observation of the 
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performance of a system in precise circumstances, and in many cases provides insight as to 
why a system behaves as it does.  A log file of the image data as sensed by the camera may 
be captured then played back, allowing the performance and internals of the system to be 
visualised and examined in detail. 
Unlike the two previous methods, offline evaluation is fully repeatable and allows multiple 
image processing systems to process exactly the same data and the results to be compared 
with each other and a human-judged ground truth. This allows direct comparison of similar 
vision systems, and comparison against a subjective ideal interpretation. Alongside single 
agent evaluation this method is effective at comparing modifications to a vision system. 
These three evaluation methods present trade-offs between their importance, accuracy and 
ease of administration. This approach, like many others, is designed to perform as well as 
possible in one general environment, here the competitive environment of the RoboCup 
four-legged league. In one sense this real-world performance is the most important 
evaluation measure. 
The rUNSWift team using this system placed first in the RoboCup 2005 Australian Open and 
third in the RoboCup 2005 four-legged league World Championships.  In 2006, rUNSWift 
were again Australian Champions and came second in the international RoboCup 
competition. The extremely successful GermanTeam also use elements of sub-sampling and 
colour relationships (Röfer et. al., 2004), so these methods are clearly a valid and successful 
approach to four-legged league vision. While it is extremely difficult to directly compare the 
accuracy and robustness of different vision systems, this chapter presents some results 
pertinent to this approach. 

 
4.1 Colour Relationships 
A focus on the relationships between neighbouring pixels, rather than symbolically 
classified colour, leads to a great improvement in robustness. As demonstrated in Figure 2, 
variations in lighting quickly lead to the degradation of static colour classifications, while 
colour-space relationships remain far more constant. This was confirmed by the ability of 
the system presented here to perceive the ball and field lines in a range of environments 
without re-calibration. In fact, the colour-difference vectors in this implementation were not 
modified after their initial calculation despite large changes in lighting intensity, colour 
temperature and even camera settings across four different field environments in which the 
implementation was tested. 
This system was also used without significant modification for the 2005 four-legged league 
Variable Lighting Challenge, in which rUNSWift placed third in the world. The rUNSWift 
agent was able to perceive the ball for the majority of the challenge, especially as light 
intensity fell. However, when lighting was made significantly brighter than normal game 
conditions some red/orange confusion hampered performance. These performances 
demonstrate robustness to dynamically variable lighting. 
The reduced reliance on colour segmentation has also led to reduced complexity of and 
effort required for colour segmentation. Coupled with an interactive classification tool and 
the efficiency and flexibility of the kernel classifier, colour segmentation can be performed 
with more sample data and with less effort than previous approaches. The sub-sampling 
system is robust to a sloppy segmentation, although in a competitive environment effort 
should be made to achieve a stable classification. The final rounds of the RoboCup 2005 
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four-legged league competition were performed with a segmentation based on over one 
thousand images, trained in a few hours of human expert time and tested only in the few 
hours before the competition games. 

 
4.2 Sub-sampling 
Focussing image access on regions of high informational value leads to efficiency gains, as 
time is not spent processing redundant information within uniformly coloured regions. 
Domain knowledge allows targeting of high information areas for dense sampling, while 
regions of typically low information may be sampled more sparsely. A dynamic element to 
image sampling allows even more directed processing based on the information gained in 
earlier stages. Most potential invalid object candidates are implicitly rejected: only regions of 
an image likely to contain a particular feature are sampled for it, reducing the number of 
invalid objects it is possible to recognise falsely. 
Pixel access to a typical image is shown in Figure 11, where it can be seen that areas 
containing useful information are sampled with higher density than less informative 
regions. The scan line pattern typically covers only twenty percent of the pixels in an image, 
with dynamic access processing a little more depending on the information gained in the 
initial pass. 
 

   
(a)     (b) 

Fig. 11. Pixel access profiling for a typical image. (a) shows the original YCbCr image with 
scan lines, features and recognised objects displayed. A pixel access profile is 
shown in (b). Dark grey represents pixels that have not been accessed, green 
represents pixels that have been accessed once, and other colours represent pixels 
accessed multiple times. Note how access is clustered around high-information 
areas of the image such as the ball, field lines and beacon 

 
Actual processor time consumed by this approach is in fact similar to previous methods, 
with complete visual processing typically ranging from 10ms – 15ms, depending on image 
content. There are a number of reasons why this is not significantly lower. Firstly, the scan 
line pattern describes essentially random access to the image. Approaches that sample the 
entire image may make good use of processor caching and similar optimisations, but these 
are lost when the image data is accessed in this pattern.  Similarly, image correction and 
colour classification are applied on the fly to pixels as they are accessed, giving random 
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access to correction and classification tables. Disabling chromatic distortion correction leads 
to a small gain in efficiency. Removing all colour classification-based access leads to large 
gains but hampers the still colour-based beacon and goal detection. Finally, it is 
advantageous to use all available compute power to construct the best possible information, 
so optimisation efforts were not made beyond those necessary to reach this level of 
performance. 

 
4.3 Object Recognition 
Moving to a sub-sampled approach makes traditional blobbing approaches to object 
recognition impossible. Instead, more sophisticated object recognition procedures are 
required to form objects from sparsely detected features. A significant advantage to this 
approach is the reduction in complex, hand-coded validity tests for objects. (Lam, 2004) 
explicitly listed thirty such checks involved in blob-based detection of the beacons, goals 
and ball for rUNSWift in 2004, but the code used at the 2004 RoboCup competition 
contained many, many more and spanned thousands of lines of code. The fifteen validity 
tests outlined in section 3.5 represent the entirety of such checks in this implementation; in 
general this approach requires far fewer domain-specific tests. This leads to more efficient 
object recognition, allowing for more sophisticated and computationally expensive 
approaches to obtaining accurate information. 

 
4.4 Shortcomings 
As noted above, while the efficiency of the sub-sampling system as implemented is well 
within acceptable ranges for the four-legged league, improvements may be made by 
optimisations to the image access pattern or a reduction in colour-based tests. Random 
access to both the image data and correction and classification tables make poor use of 
processor caching features. 
The beacon detection implemented in this approach leaves room for improvement. Being 
colour-based, it still has the deficiencies associated with reliance on a finely tuned static 
colour segmentation, but makes use of less information than other approaches. While the 
accuracy was adequate for our purposes there are gains to be made in more accurately 
fitting the beacon model to the available data. However, it is likely that the coloured beacons 
will be removed from the four-legged league field definition in the near future as the league 
attempts to move towards yet more realistic environments. 
Edge-based methods in general respond poorly to blurred images, which are not uncommon 
for legged robots. Significantly blurred images, such as those obtained while contesting 
positions with robots from the opposing team, are poorly processed. Section 5.1 suggests 
some possible improvements. 

 
5. Conclusion 
 

The high level of detail and dependence upon environmental conditions makes creation of 
an accurate, robust and efficient robot vision system a complex task. Rather than a 
traditional focus on colour segmentation of entire images, the vision system outlined in this 
chapter moves towards detection of local relationships between a subset of the image pixels. 
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While systems based on colour segmentation are brittle and respond poorly to variations in 
lighting, the relationships between colours exhibit independence to lighting conditions, 
leading to a more robust system. 
This chapter has demonstrated the stability of colour relationships under variations in 
lighting, particularly intensity. This system continues to provide reliable information under 
a range of environments and variations in lighting conditions, leading to a more robust 
feature detection system. A reduced dependence on colour segmentation also leads to 
reduced calibration time and eases the transition between different environments. 
The effectiveness of sub-sampled image processing approaches has also been demonstrated. 
The information contained in a typical image is not uniformly distributed over its area; 
neighbouring pixels are highly correlated. In order to more effectively make use of 
constrained resources, regions of the image typically high in information content are 
sampled more densely than areas of typically low informational value. A dynamic element 
to the sampling allows an even tighter focus on useful regions in any given image. The sub-
sampled approach leads to efficiency gains and implicit rejection of much unwanted data. 
Given the information provided by a sub-sampled, edge-oriented approach, this chapter has 
also described robust recognition of objects for the four-legged league from relatively sparse 
features. Object recognition is performed over a discrete set of features corresponding to 
particular features in the sampled areas of each image. Domain knowledge allows accurate 
recognition under a range of conditions. 
The successful results obtained by the approach presented in this report outline a path to 
more robust, lighting-independent robot vision. While there is still much work to be done, 
significant improvements in robustness have been gained by a shift of focus away from 
statically classified colour towards detection of colour relationships and transitions. Unlike 
approaches based on selection between multiple colour tables this approach gracefully 
caters for unexpected conditions without the need for additional calibration efforts. In 
contrast to existing dynamic classification approaches, this implementation allows for 
potentially arbitrary complexity in colour and colour-gradient classification without the 
need for adjustments calculated from past observations. 
These changes in focus are likely to be applicable to other robotic vision domains where 
uniform colour is a primary differentiator for important objects. It is immediately applicable 
to other RoboCup leagues, and to other domains requiring robust object recognition under 
tight constraints on efficiency.  

 
5.1 Future Work 
While the system as implemented has been successful, a number of areas may provide 
fruitful future research. The image access patterns described in this report focus on areas of 
typically high information, but the concept can be taken further. A focus on dynamic 
processing, where image access is determined by information obtained by previous 
processing, could lead to even further gains in efficiency. The scan lines themselves could be 
sub-sampled, performing some variation of an interval search for transitions, sampling 
every pixel only around areas containing edges. In addition, temporal awareness might be 
used to further hone access patterns; areas of recently high information value might be 
sampled first and more densely than areas of little recent value. 
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Blurring remains a problem for transition-sensitive techniques. Consulting the relationships 
between pixels at greater intervals than immediate neighbours might allow detection of 
softer edges. A blurred transition between two colours will have a similar profile to a sharp 
transition if viewed over more widely spaced pixels. Conversely, on sharp transitions more 
detail is available from the ERS-7 camera than is currently used. The Y channel is sampled at 
twice the resolution of the chroma channels, and this information might be used to improve 
the accuracy of the location of detected features. 
Perhaps the most clearly beneficial direction for future work is in generalisation of the 
colour gradient space regions used for feature classification. Strong parallels may be drawn 
between colour segmentation and the classification of transitions, the major difference being 
that the transitions are invariant under linear shifts in the colour-space. The classification 
procedure for colour-gradient vectors used in this implementation is of a similar complexity 
to early colour segmentation routines. Applying present-day colour segmentation methods 
to gradient classification would likely lead to a great improvement in the accuracy of 
detected features and further reduce reliance on colour segmentation. 
Finally, there are some possibilities for improvement upon the object recognition methods 
presented in this report. The assumption that there is only one ball, and that it appears as a 
circle, limits both the flexibility and robustness of ball recognition. Some variation on feature 
clustering would serve the dual purposes of allowing recognition of multiple balls and 
rejection of gross outliers. The repeated median circle estimator is effective but its 
computational complexity prevents use of abundant features. The addition of an 
optimisation step such as least squares approximation may prove more efficient and allow 
fitting of more general ellipsoids. 
National ICT Australia (NICTA) is funded by the Australian Government’s Department of 
Communications, Information Technology, and the Arts (DICTA) and the Australian 
Research Council through Backing Australia’s Ability and the ICT Research Center of 
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1. Introduction 
 

It is extremely important for any mobile robotics system to know where it is. If an agent 
does not know where it is or where the objects around it are, meaningful actions become 
very difficult to perform. The main obstacle to efficient and accurate robot localisation is 
noise. Noise is present in every part of a robotics system, both in the sensors as well as in the 
actuators. In a world without noise, with perfect sensors and actuators, localisation would 
be a relatively simple task. 
It is also important to note that localisation is not necessarily restricted to determining the 
pose of a robot, but can also include tracking the state of other objects. Taking the Robocup 
domain as an example, localisation could include discovering the ball position and velocity 
and team-mate robot poses as well as the robot's own position. 
The core concept of robot localisation is estimating the world state through sensor data. In 
most situations, the world state is not directly observable in its entirety – the world is only 
partially observable.  In such cases the state of the world must be inferred from the given 
sensor data, and integrated over time. Different algorithms for robot localisation provide 
varying ways of incorporating the partial observations of the world state into an internal 
representation of the complete world state. 
In this chapter we discuss one particular method of Robot localisation as applied to the 4-
Legged League as part of Robocup, developed by the rUNSWift team for the 2006 
competition.  We base our system on Bayesian probability theory.  The agent keeps a 
distribution over possible states of the world, and updates that distribution as it moves 
about and observes the world. 
The Bayesian foundation for localisation is extremely general, and hence leaves many 
choices in implementation.  What is the space over which the state is assumed to vary?  How 
is the probability distribution over that space represented?  Which observations and actions 
are used to update the distribution. 

 
2. Bayesian Localisation 
 

As an initial example of Bayesian localization we'll use a small robot in a world made up of 
a 5 by 5 grid of states.  Initially we'll assume that the robot is completely uncertain about its 
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location, and so all states in the world are given equal probability.  As the agent moves, we 
shift the probability distribution to account for the movement, and blur the distribution 
slightly as the movement is noisy.  The exact amount of movement and blur is recorded by a 
motion model. 
When the agent makes an observation, for example it notes that a wall appears two units 
north, that observation is processed through a sensor model.  This sensor model records the 
probability of seeing each possible observation in each possible state )|( SOP .  This model is 
discovered prior to attempting to localise by conducting experiments on the sensors. 
With our prior distribution over states, and our sensor model, we can calculate a posterior 
distribution over states using Bayes' rule.  For each state: 
 

)(
)|()()|(

OP
SOPSPOSP =

(1) 

 
We do not usually know the probability of a given observation, P(O) , but luckily that is a 
constant. As we know that the resulting probability distribution must be normalised, we can 
ignore P(O)  and simply renormalise the resulting distribution. 

 
2. State of the Art 
 

Representing probability distributions as tables of probabilities and doing these calculations 
individually for each state can be very slow.  Luckily, there are common representations for 
probability distributions which allow efficient updates. 
The currently preferred methods of localisation in the 4-legged Robocup league include 
Monte Carlo Particle Filters, and uni-modal Extended Kalman Filters. By far the most 
popular of these is the particle filter method. Particle filters approximate a probability 
distribution with a sample of points drawn from that distribution.  Updates are then only 
required for the sampled points. Some reasons for the popularity of particle filters (Fox et 
al., 1999) include their ability to handle non-linear observations (where the mapping from 
observation space to state space is a non-linear function), their quick convergence, and their 
multi-modal nature (being able to track many different possible positions at the same time, 
termed Global Localization). The other popular method of robot localisation is the Kalman 
Filter (Kalman, 1960). This is a state estimation filter which uses a Gaussian probability 
distribution to approximate the current state of the world. The main advantage of this 
method is that it is very computationally efficient, being able to compute the updates 
algebraically in closed form. 
In this chapter we describe a system for robot localisation which is a hybrid of the Extended 
Kalman Filter and the Monte-Carlo particle filter.  Our representation for our probability 
distributions is a weighted sum of Gaussians – similar to having a small set of particles, 
where each particle is itself a Gaussian. We apply observation and motion updates to each 
Gaussian particle in the same way as for a standard Kalman Filter. Each Gaussian particle is 
then weighted according to how well the observation matched the hypothesis. This method 
combines the advantages of both the particle filter method and the Kalman Filter method. 
We are able to approximate arbitrary probability distributions (given enough Gaussian 
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particles), handle high dimensional state spaces, ambiguous observations, and at the same 
time keep computational costs reasonable. 

 
3. Issues in the Localization Domain 
 

The task of robot localization can be seen as calculating the belief distribution of the robot 
position with given observations and control updates. Measurement updates are 
observations of landmarks, in our case distance and heading measurements to the coloured 
beacons. Control updates are a prediction of the belief state after the robot performs some 
movement. 
The task of robot localisation can vary in difficulty depending on various factors. Each of 
these factors will influence the choice of algorithm used for the particular situation, since 
some algorithms are adept at handling certain classes of problems but not others. 
We can categorise localisation problems based on the type of measurements available and 
knowledge of the initial state of the system. Based on these we can classify the problem into 
either Local or Global localisation. In the case of Local localisation, the probability 
distribution function has only a single mode, meaning that the localisation algorithm is only 
required to deal with a small pose error, with the uncertainty confined to a small region 
around the robot’s true pose. In the case of Global localisation, the probability distribution 
function needs to be able to handle multiple modes, and the algorithm used must be able to 
handle high uncertainty in the robot pose. This may be due to large errors in robot motion 
and measurements, or due to the presence of non-unique landmarks. For example, in the 
situation where there are two identical rooms connected by a corridor, the localisation 
algorithm must be able handle a probability distribution function which has a mode in each 
room. 
The ”kidnapped robot” problem is related to the problem of Global localisation. This arises 
if at some point in time the robot is taken from its current location and placed in a 
completely different location. In the case of the Robocup domain, this is especially 
prevalent, since robots are frequently taken off the field or placed back on the field in a new 
location. It is very important that the chosen algorithm can deal with ”kidnapping” quickly 
and efficiently. This problem is magnified even further if the place where the robot is 
replaced has almost symmetrical landmarks when compared to its belief location. 
Whether the environment is static or dynamic will also affect the choice of suitable 
algorithm. In the case of a static environment, the objects which are of concern for the robot 
are stationary during the operating cycle. A dynamic environment, however, may have 
moving objects which can affect the robot, or which the robot must interact with. In this case 
the algorithm must track not only the robot pose, but also the position of the moving objects. 
When applied to the Robocup domain, we can clearly see that it is a dynamic environment. 
Specifically, the orange ball is a moving object which we must track. The team-mate robot 
and opponent robots may also be considered as dynamic objects, but often, as in our case, 
they are ignored because they are very hard to observe. 
The final distinguishing feature of robot localisation that we will consider is the issue of 
single-robot and multi-robot localisation. The simple case is single-robot localisation, in 
which case observations are all made by the one robot, only one pose needs to be tracked, 
and there is no need for communication between robots. Multi-robot localisation offers the 
advantage of the availability of a greater number of sensors and thus a greater number of 
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observations. We can use this increased observational power to improve the accuracy of the 
system as a whole. However, multi-robot localisation also brings with it many challenges. 
The localisation algorithm used must be able to incorporate the observations of other robots 
in the system, which in itself brings about issues such as communication lag. In our case, we 
can use the observations of other robots on the team to better track the position and velocity 
of the ball, and can also set up correlations in order to be able to use the ball as a beacon, 
thus improving not only the accuracy of the ball location, but also of the robots pose itself. 

 
4. Kalman-Bucy Filter Algorithm 
 

At its core the Kalman-Bucy Filter is a recursive solution to the discrete-data linear filtering 
problem. It allows us to estimate the state of a process minimising the squared error.  
Surprisingly, as already noted, this turns out to be equivalent to a Baysian tracking system 
when both prior and observation probability distributions are Gaussian. 
In the case of Robot localisation, the process is the movement of the robot around the field.  
The process to be estimated is governed by the stochastic difference equation: 
 

1kkkk w++=x −−− 11 BuAx (2) 
 
And measurement update: 
 

kkk v+Hx=z (3) 

 
In the equations above, A is an nxn  matrix which relates the process state at the previous 
time step to the current state in the absence of control input. The nxm  matrix B relates the 
control input u to the process state, and w is the process noise, which is assumed to behave 
as a Gaussian Distribution. 
 

 
 

Fig. 1. We approximate a probability distribution function with a uni-modal Gaussian 
distribution 



Robot Localisation Using a Distributed Multi-Modal Kalman Filter 

 
477 

The Discrete Kalman Filter consists of two distinct steps, the time update and the 
measurement update. The time update uses the control input to update the belief state of the 
system, and the measurement update uses possibly noisy observations of the system state to 
improve the state belief estimate. In terms of the Robocup domain, the time update is 
derived from the odometry data from the actuators, and the measurement update is derived 
from the visual sighting of various landmarks around the field such as beacons.  The 
variables which we must keep track of between time steps are the mean vector, and the 
covariance matrix. The mean vector is the best estimate of the world state, and the 
covariance matrix is the multi-dimensional measure of the uncertainty of the current 
estimate. 
 
The time update equations: 
 

1k1kk Bu+Ax=x −−

Q+AAP=P T
1kk −

(4) 

 
The Measurement update equations: 
 

1−−− R)+H(HPHP=K T
k

T
kk

)Hx(zK+x=x kkkkk
−− −
−− kkk H)PK(I=P

(5) 

 
In the time update step we must do two things, we must update the mean state estimate 
based on the control input, and we also need to update the covariance matrix P, that is, we 
need to increase our uncertainty estimate, due to the noise present in the control input. 
The measurement update step is a more complicated process. Firstly we compute the 
Kalman Gain K, this is a measure of how much influence the observation kz  will have on 
the mean state estimate. For example, if we are very certain of our current estimate and we 
judge that the observation kz  is very unreliable, then the Kalman Gain K will be close to 0. 
However, if our uncertainty estimate is very high, that is, we consider the current mean to 
be very unreliable, and at the same time we consider the measurement to be very accurate, 
then the Kalman Gain will be close to 1. 
After we have computed the Kalman Gain, we can adjust the mean state estimate kx  by 
moving it in the direction of the Innovation Vector )Hx(z kk − . The Innovation Vector can 
be seen as the direction in state space in which the mean vector needs to be shifted in order 
for it to more closely agree with the current state observation kz . The more the currently 
observed state disagreed with the mean estimate, the greater will be the magnitude of the 
Innovation Vector, while if the mean estimate is in complete agreement with the observation 
then the Innovation Vector will be 0. 
Finally, we must recompute the covariance matrix P, the uncertainty estimate. In general, 
observations tend to decrease the uncertainty estimate, while control updates tend to 
increase the uncertainty estimate. The derivation of the update of the covariance matrix is 
beyond the scope of this report. See the seminal paper by Rudolf E. Kalman (Kalman, 1960). 
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We can apply the Kalman filter to the problem of Robot Localization as follows. The time 
update step is triggered by the walking module when the robot makes a step.  We can use 
the noisy odometry data to update the mean robot pose of the form θ)y,(x, .  Already we 
have violated the strict definition of a Kalman filter in that the motion of the robot is not a 
strictly linear change in state.  The direction of the robot relates to the position of the robot 
through various non-linear trigonometric functions as shown in Fig. 2. 
The measurement update is triggered when the vision system detects an object. Objects that 
can be detected include the four unique landmarks, or beacons, placed around the field, the 
ball, and the two goals. The vision system returns distance and angle estimates from the 
robot to the object detected. We could use the noisy distance and heading to the landmark to 
form an observed state estimate and then update the mean pose estimate. However, at this 
point the algorithm breaks down again. This is because the standard Kalman Filter assumes 
that the mapping between the state vector and any observation is linear, in the above case, 
represented by the matrix H. If we were able to observe directly, albeit with noise, the robot 
pose in θ)y,(x,  form, then we would be fine. When observing a beacon, however, the 
information given implies that the robot pose can be anywhere on a helix in θ)y,(x,  space. 
Knowing the distance to a landmark places you on a circle of a given radius around that 
landmark, and knowing the heading to it gives you a certain heading at every point on that 
circle, but they do not provide a single point.  The helix is non-linear and cannot be 
represented by a Gaussian. In order to deal with this issue, we need to move to the 
Extended Kalman Filter, which can handle non-linear mappings between observations and 
state. 
 

 
Fig. 2. Gaussian approximation to a non-linear motion update 
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5. Extended Kalman Filter 
 

A Kalman Filter uses linear Gaussians over the state space to estimate the probability 
distribution function. However, as noted in the previous section, if a measurement or 
motion update has a non-linear nature, the classic Kalman Filter algorithm cannot handle 
this kind of situation. A solution to this problem is to linearise the function from state space 
to observation space around certain point such that we would now have a linear Gaussian 
approximation. We use the tangent line (or hyper-plane) which passes through the point x 
as the linear approximation. When applied to the Extended Kalman Filter, we must compute 
the multi-dimensional derivative of the non-linear function - the Jacobian Matrix. Take the 
function F which maps an n-dimensional state space onto an m-dimensional observation 
space: 
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The corresponding Jacobian Matrix would be: 
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Each of the elements of the Jacobian Matrix is a partial derivative of the non-linear function 
F. We can now use this linearisation to be able to incorporate non-linear observations and 
time updates into our Kalman Filter. The time update equations become: 
 

)u,f(x=x kkk 1−

Q+AAP=P T
1kk −

(8) 

 
In the above equation, f is the function which updates the mean state estimate position, it 
may be non-linear, and the matrix A is the Jacobian of this function. The measurement 
update equations become: 
 

1−−− R)+J(JPJP=K T
k

T
kk

)Jx(zK+x=x kkkkk
−− −
−− kkk J)PK(I=P

(9) 

 
and we can now assume that the state to observation equation is no longer linear, becoming: 
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kkk u+)j(x=z (10) 

 
If we consider beacon observations to be two dimensional observations, being heading and 
distance to the beacon, we can derive a Jacobian matrix which is a derivative of the mapping 
between robot pose state space and observation space. The mapping between state space 
and observation space is as follows: 
 

distance 22 )y(y+)x(x= beaconrobotbeaconrobot −−  
 

heading robot
robotbeacon

robotbeacon θ
)x(x
)y(y

= −
−
−−1tan

(11) 

 
If we now compute the first derivative of this function from state space to observation space, 
we get the following Jacobian matrix: 
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A more thorough derivation and explanation of the Extended Kalman Filter can be found in 
other papers (Thrun et al., 2005) (Zarchan et al., 2005). 

 
6. Multi-Modal Localization 
 

The Extended Kalman-Bucy Filter is a powerful algorithm for robot localisation. However, 
one of its major downfalls is the fact that it can only approximate a uni-modal probability 
distribution function. So, for example, if the robot knew it was in one of two positions, say, it 
knew it was next to one of the two goals, the probability distribution function for the pose of 
the robot would have two local maxima, each centred near one of the goals. The Extended 
Kalman Filter, which uses a single Gaussian to represent the pose and uncertainty, would be 
unable to model this situation sufficiently well. This hypothetical situation would be much 
better modelled by the sum of two separate Gaussians, each of which is centred on one of 
the modes. In fact, it is possible to approximate any probability distribution function 
arbitrarily accurately using a weighted sum of an arbitrary number of Gaussians. To 
incorporate multiple modes into the localisation algorithm we use an array of uni-modal 
Gaussians, each with an associated weight. We can then view the full probability 
distribution over the world state as a weighted sum of Gaussians. 
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This weight ranges between 1.0 and 0.0 and is a measure of the probability that that 
particular Gaussian represents the state of the system. A Bayesian interpretation allows us to 
update the weights when an observation is made.  In practice, the Gaussians which match 
the observation well have a higher weight than the Gaussians which disagree with the 
observation. Given an observation covariance R, Jacobian J, and the covariance C of the 
Gaussian prior, we can calculate the combined covariance E. Combining this with the 
innovation vector v we calculate the weight scalar S, which allows us to update the weight 
of the Gaussian distribution. 
 

CJJ+R=E T

υ)Eυ(=S T 1
2
1exp −−
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(14) 

 

 
Fig. 3. A single Gaussian approximates a multi-modal probability distribution poorly 
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Fig. 4. A weighted sum of Gaussians provides a far closer approximation to the true 

distribution 
 
The sum of the weights of all of the Gaussians in the distribution must sum to 1.0 in order to 
make the entire distribution a valid probability distribution (one which integrates to 1.0 
from -1 to 1). In order to maintain this property a renormalisation must happen every time 
the weight of a Gaussian is modified. In addition to this, Gaussians which have a very low 
weight are removed from the distribution array. This is because they represent extremely 
unlikely modes, and for performance reasons we cannot keep track of unlikely modes. 
Another method used to reduce the number of Gaussians that form the distribution is 
merging similar Gaussians. If two Gaussians have a similar mean and similar covariance 
matrices, then one of them is removed and the other becomes the average of the two. To 
calculate the global maxima of the weighted sum of Gaussians distribution a simple 
approach is taken, the maxima is assumed to be the mean of the Gaussian of highest weight. 
This is not strictly correct, but is a good enough approximation, seeing as a correct solution 
for finding the global maximum of a sum of Gaussians is a lot more involved and does not 
provide enough of a benefit for it to be used in our system.  

 
7. The State 
 

An important part of building a tracking system is deciding which state to track.  It is 
possible to track the pose of a single robot as a three dimensional system θ)y,(x, .  This is 
very effective, but it is possible to do better. 
The current rUNSWift system tracks a 16 dimensional state, rather than a 3 dimensional one. 
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This state incorporates tracking the ball as well as tracking all four robots on the team.  This 
enables information from all four robots to be combined when determining the state.  The 
mechanism for distributing this information is discussed below. 
In addition to this, we use more complex motion update than the simple “shift-and-blur” 
model mentioned above.  A Kalman Filter can handle any linear transform on the state as a 
motion update.  If the robot is standing still, this update would normally be an identity 
matrix for a single robot – the robot stays where it is.  With the addition of a ball that moves 
when the robot is not moving, a non-identity transition matrix is required: the velocity of the 
ball is added to the location of the ball at each time step.  This simple change induces a 
correlation between the location of the ball and its velocity in the state distribution.  When 
we see the ball a second time, the new information about its position will also give 
information about its velocity. 
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8. Noise Filtering 
 

Using the power of a multi-modal filter we can improve the robustness of the system to 
spurious observations. In the 4-legged league it is very likely that the vision system will 
make false classifications of objects which are part of the background, such as spectators 
wearing coloured t-shirts. These may be classified as beacons, or goals, or the ball. This is a 
different type of noise in the system to what a standard filter is designed to handle, that is, 
noise that is centred on the mean. We need a way to be able to reject spurious observations, 
otherwise they will significantly reduce the accuracy of the localisation system, more so than 
standard “noisy” observations. Take as an example a seeing a spectator wearing an orange t-
shirt in the crowd, which the vision system classifies as a very large (and thus close) ball. 
The variance of this observation will be small because the closer the ball is the more certain 
we are about its observed distance. This results in our estimate of the ball position shifting 
significantly towards the observed “phantom” ball position, despite the observation being 
false.  
Our solution to this problem is to allow that the observation may or may not be correct, and 
as such when we apply the observation to every Gaussian in the weighted sum distribution 
we also make a copy of the Gaussians which do not have the observation applied, but we 
scale the associated weights down by a constant factor. This constant factor can be seen as 
the probability of a false observation. This means that for every observation, the system 
doubles the number of Gaussians which make up the distribution. These are later culled if 
there are too many or their weights are too small. An observation is said to be a phantom 
observation if the weight of the Gaussian with it applied is lower than the weight of the 
Gaussian without the observation applied. 
This technique works because the more an observation disagrees with the current state, the 
lower the weight will be of the resulting Gaussian after applying the observation. So if an 
observation is made which is extremely unlikely, and so is probably a false one, the 
resulting Gaussian will have a lower weight than the Gaussian without the observation 
applied. 
The effectiveness of this approach was demonstrated to us when we accidentally swapped 
two of the beacons around and asked the robot to position itself at a kick-off position. This 
results in 4 valid landmarks (2 goals and 2 beacons), and 2 invalid landmarks (the 2 
swapped beacons). Despite expecting the robot to localise poorly due to the contradictory 
observations, the robot localised extremely well, rejecting almost all observations which 
were of the switched beacons. This robustness to false observations was extremely 
important at the competition due to the fact that there were spectators close to the field at 
”eye level” who were wearing coloured shirts. Without this noise filtering in the localisation 
system, the performance of the system would have been far lower. It is important to note 
that unlike some previous work (Browning et al., 2002), out system does not reject “bad” 
observations, but rather tracks all possibilities as different Gaussians, rejecting them only 
when they become extremely unlikely. 
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Fig. 5. shows two possible scenarios. One is where the original Gaussian (top left) is split 

into two, the resulting distribution is such that the Gaussian with an observation 
applied has a higher weight than the scaled down Gaussian with no observation 
applied (bottom left). The other is that the observation is spurious and thus the 
Gaussian with the observation applied has a lower weight than the scaled down 
Gaussian (bottom right) 

 
9. Multiple Linearisation Points 
 

One of the sources of error in an Extended Kalman Filter comes from the fact that we are 
approximating a possibly non-linear probability distribution with a linear Gaussian 
function. This is one of the advantages of a particle filter approach to localisation, particle 
filters do not have to linearise a non-linear distribution, since they can approximate any 
probability distribution function. However, using a sum of multiple weighted Gaussians to 
represent our function, we can reduce the error from the linearisation process by better 
approximating non-linear function.  In effect we have a simple, and efficient, unscented 
Kalman Filter or Rao-Blackwellised particle filter. Figure 6 is a representation of the 
linearisation process for the standard Extended Kalman Filter approach. The true 
probability distribution function is not a linear Gaussian one, so in order to approximate it, a 
linear Gaussian distribution is used which is tangential to the true probability distribution at 
the current mean point. 
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Fig. 6. The standard Extended Kalman Filter linearises around only one point, the estimated 

mean of the world state 
 
The way in which we do this is every time a single beacon (note that for the purposes on this 
section, the ball should be considered as being a beacon) is observed, a copy is made of 
every Gaussian in the distribution, with the mean of each copy being offset such that it is the 
same distance from the observed beacon, but is rotated around by a given angle. The 
weights of these new displaced Gaussians are also scaled down. It is important to note that 
the displaced Gaussians can only be generated when only one landmark is observed. This is 
because it is not consistent with the observations to rotate a Gaussian around a beacon if 
there are multiple observed beacons. Every time there is a single beacon observation, only 
one displaced copy is made per existing Gaussian, whereas we would need 2 to maintain 
symmetry. This is done with the aim of improving the speed of the localisation module, 
spawning two additional Gaussians would have been too expensive, so instead we alternate 
whether to rotate the added displaced Gaussian clockwise or anti-clockwise around the 
beacon. In our implementation we chose to rotate the displaced Gaussian by 16 degrees, and 
the weights are multiplied by 0.1. 
The end result of this is a better approximation of the probability distribution function 
through a reduction in the inherent error introduced by the linearisation process. Figure 7 
shows how the two additional linearisation points are placed in relation to the mean, and 
how the multiple linear Gaussians are a closer approximation to the true probability 
distribution function. 
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Fig. 7. Our system adds low weight Gaussians rotated around the beacon, meaning we 

linearise around multiple points 

 
10. Incorporating Teammate Observations 
 

The previous sections have all described ways in which the increased representational 
power of a sum of Gaussians representation allows us to more accurately model a 
probability distribution, and hence more accurately localise.  In this section we discuss the 
distribution of information between robots on a team rather than the representation of 
information on a single robot. 
This incorporation of distributed observations of the world state into Kalman Filter 
localisation is one of the most important improvements of our system over a standard 
extended Kalman Filter. Our technique involves each robot keeping track of a separate 
traditional Kalman Filter, which we update as per normal, but does not form part of the 
main weighted sum of Gaussians probability distribution function. We refer to the data 
stored in this Kalman Filter as the “shared Gaussian”.  Periodically, this is sent to all team-
mates. After being sent, the shared Gaussian is reset to a 'uniform' state, with high variance 
and a mean equal to our best estimation of our pose. This avoids any observations being 
incorporated into a team-mate's state estimate multiple times. In addition to sending the 
Shared Gaussian mean vector and covariance matrix, we also send the cumulative odometry 
information, which we also reset every time a wireless packet is broadcast. 
When a wireless packet is received, we can incorporate the team-mate observation into the 
main probability distribution as a direct observation. There is no need to linearise the 
function mapping observation to state space, since it is already a linear one - all observations 
have already been linearised by the sending robot. The data sent is of the form of a 7 
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dimensional mean vector and a covariance matrix.  This reduced form is used to save 
communications bandwidth. The receiving robot must have a matrix which maps the team-
mate pose and ball position/velocity estimates into its own world estimate. 
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The matrix H is the mapping between the wireless team-mate observation and our world 
state estimate. The matrix B is constructed such that the placement of the 3x3 identity matrix 
corresponds to the index of the robot id from which the packet was received, such that our 
idea of where that team-mate robot is positioned is updated accordingly inside the mean 
vector. 
The inclusion of team-mate observations greatly increases the accuracy of ball position and 
velocity tracking. With this change it is possible for a robot to grab a ball under its chin with 
its own local distance observations turned off, and relying on team-mate robots on the field 
to obtain the distance to the ball. 
In addition, the accuracy of the robot pose itself is greatly improved by this communication. 
Our scheme allows for the ball to act as a moving landmark from which the robots can 
localise. For example, if a very well localised robot is looking at the ball, it can transmit a 
very accurate and certain position of the ball to its team-mates. Following this, a poorly 
localised team-mate robot can look at the ball, and knowing the ball's position, gain 
information about its own location. 
Before introducing this information sharing, our robots required an active localisation 
behaviour.  If a robot is chasing the ball for a prolonged period of time it will have seen few, 
if any, landmarks and would previously become severely mis-localised. The active 
localisation behaviour involves a robot looking away from the ball to glance at a landmark 
to re-localize itself.  The downside of active localisation is that while the robot is looking 
away from the ball, there is a chance the ball could be moved by an opponent and our robot 
will lose track of it.  With information sharing in place, the ball itself helps the robot localise, 
allowing it to focus more on the ball and less on looking around for beacons. 

 
11. Results 
 

We evaluated the effectiveness of our system by setting up various configurations of 
landmarks, balls and team-mates, and then by running a robot between a set of waypoints 
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in order. The robot would stop when it considered itself to be close to a waypoint, and then 
the distance in centimetres between the robots position and the true waypoint position was 
recorded. We performed this test with several different field layouts and between several 
different version of the localisation module.  The field layouts for the various tests are 
shown in Figure 8.  The results are presented in tabulated form, listing the average 
measured distance between the robot position and the waypoint position for every 
waypoint. The total average distance error is also recorded. 
 

 
Fig. 8. This figure shows the respective field layouts for the tests that were run in order to 

evaluate the performance of the system 
 
The first test which we ran is a base test. This involves 4 waypoints, each at a quadrant of 
the field, and all of the beacons and goals. The robot starts near the centre circle and runs 
between the waypoints in increasing numbered order. We use this test to compare the 
accuracy of the previous localisation system, and the new localisation system which has all 
of the enhancements mentioned in this report. 
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Full 2005 Localisation System 
 Mean Error (cm) Standard Deviation 

Waypoint 1 32.0 8.86 
Waypoint 2 18.8 5.15 
Waypoint 3 31.4 23.6 
Waypoint 4 62.8 64.74 

Average 28.0 25.5 
 
 

Full 2006 Localisation System 
 Mean Error (cm) Standard Deviation 

Waypoint 1 37.2 9.32 
Waypoint 2 14.0 5.3 
Waypoint 3 19.0 11.2 
Waypoint 4 17.0 7.7 

Average 21.8 8.3 
 
11.1 Beacon Test 
This test is very similar to the Base Test, except for the removal of 2 beacons.  This change 
makes it much harder for the robot to localise as it receives far fewer observation updates. 
This shows a larger disparity between the old and new localisation systems. 
 

Multiple Linearisations Disabled 
 Mean Error (cm) Standard Deviation 

Waypoint 1 58 30.5 
Waypoint 2 34.2 12.1 
Waypoint 3 20.8 10.3 
Waypoint 4 28.4 8 

Average 35.35 15.22 
 

Multiple Linearisations Enabled 
 Mean Error (cm) Standard Deviation 

Waypoint 1 27.0 12.4 
Waypoint 2 13.0 7.0 
Waypoint 3 37.0 5.1 
Waypoint 4 15.6 2.3 

Average 23.15 6.7 

 
11.2 Noise Filtering Test 
Our system is multi-modal in nature, allowing it to consider observations as possible false 
and possibly true. This results in spurious observations having a far lower effect on the 
accuracy of the system. If the robot observes a landmark which does not make sense for the 
current estimated world state then it is possible for the system to deal with this by using the 
Gaussian without the observation applied as the mean Gaussian instead. The setup for this 
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test is similar to that of the Base Test, except that we swap around the Yellow on Pink and 
Pink on Blue beacons. This result in any observation of either of these beacons as being 
“false”, and hopefully the localisation system will cull them. 
 

Noise Filtering Disabled 
 Mean Error (cm) Standard Deviation 

Waypoint 1 137.0 31.0 
Waypoint 2 191.0 153.0 
Waypoint 3 189.0 8.2 
Waypoint 4 123 13.5 

Average 160.0 51.42 
 

Noise Filtering Enabled 
 Mean Error (cm) Standard Deviation 

Waypoint 1 31.0 8.6 
Waypoint 2 27.3 9.8 
Waypoint 3 34.0 8.6 
Waypoint 4 12.6 1.0 

Average 26.22 7.0 
 
We used a one sided Mann-Whitney U test to test the significance of these results.  The 
Beacon and noise filter tests were significant (the beacon test at p = 0.05 and the noise filter 
test at p = 0.01). The base test is not significant with this small sample, but the changes do 
not degrade performance.  
In the end, the best test is the performance of the entire system. Our experience is that each 
of the changes presented in this chapter lead to small, but important, improvements in the 
level of play of the team as a whole. 
Our current experiments demonstrate a small but not statistically significant improvement 
in accuracy due to the ball tracking.  Our more subjective tests with the whole team in a 
game suggest that this is important for complete game behaviour. 

 
12. Conclusion 
 

The above results show that the documented improvements have had a great effect on the 
overall accuracy of the localisation system. The effectiveness of the Noise Filtering part of 
the system is staggering. It should be also noted that these experiments only measured the 
(x, y) pose error, whereas the localisation system tracks much more data than those 2 
dimensions, including the ball position and velocity. All of the mentioned improvements to 
the localisation system allowed us to great flexibility and power in terms of higher level 
behaviours. This is shown by the fact that our team came 2nd in the World Open in 2006, and 
in the same year were the Australian Champions.  
National ICT Australia (NICTA) is funded by the Australian Government’s Department of 
Communications, Information Technology, and the Arts (DICTA) and the Australian 
Research Council through Backing Australia’s Ability and the ICT Research Center of 
Excellence programs. 
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1. Introduction     
 

The goal of the international RoboCup soccer initiative is to develop a team of humanoid 
robots that is able win against the official human World Soccer Champion team until 2050. 
Currently, there exist a number of different RoboCup soccer leagues that focus on different 
aspects of this challenge. The Four-Legged League is one of them. In the league teams 
consisting of four Sony Aibo robots each play on a field of 6 m x 4 m. The robots operate 
fully autonomously, i.e. there is no external control, neither by humans nor by computers. 
In this chapter we are going to present the Impossibles main architecture and its modules to 
create a fully autonomous team of 4-legged robots (Sony Aibo) for playing soccer according 
to RoboCup 4-legged Soccer League’s rule. This architecture includes different modules 
such as World Model, Vision, Decision Making, Motion Controller, Communication, and 
Localization.  This chapter presents the integration of our researches in different fields 
which came together to create fully autonomous robots for specific purpose that is playing 
soccer as humans do. And this could be a primitive attempt to develop intelligent robots. 
In the first section we briefly describe the specifications of Aibo Robots, the history and rules 
of RoboCup 4-legged Soccer. In Section 2 we discuss previous works which consists of our 
team’s architecture. Fig. 1 demonstrates our team (Impossibles) architecture. In next sections 
each module will be discussed separately. It includes the tasks of the modules, the 
corresponding task in other teams and the scientific methods which were used before or 
those that are presented by us. 
The Vision module consists of chromatic distortion, color classification, line and object 
detection which is mainly concerned on colored image processing. Our Localization module 
applies piecewise linear probabilistic localization method which is based on Markov 
localization. In the case of distributed agents (against centralized agents) these raw data 
should be shared between all teammates via wireless communication. Decision making 
module is responsible for high-level decision and it consists of soccer strategies besides 
fuzzy rules. Motion skills, parameters of walking and movement estimation are the main 
parts of Motion module. In the Tools & Debugging Section we concentrate on debugging 
tools which simplify the process of debugging on the robots and also an interpreter which is 
used for facilitation of determining team strategies and player’s roles.  
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1.1 Why Four-Legged Robot Soccer? 
As an internationally recognized team game, soccer is a perfect standard project for 
studying how multi-robots perform and react autonomously in uncertain, team-oriented 
scenarios. The sport also provides some entertainment value adding good spirits and public 
interest to a concrete test bed event for researchers. These reasons could be the motivation of 
existence of RoboCup Soccer Competitions since 1996. 
After years of competition in soccer with the Small Size and Middle Size robots, which 
moves with wheels, besides Simulation Leagues, 4-Legged Soccer League was added to 
RoboCup. The ambition of 4-Legged soccer league is to simulate the way human beings play 
soccer, with the use of legs. One of the other advantages of 4-Legged robots is that the 
platform is common among all the teams and this establishes a fair test-bed for Artificial 
Intelligence achievements. 

 
1.2 Aibo Robot Specifications 
AIBO robots’ first generation was developed by SONY Corporation in 1999 for 
entertainment purposes besides its use in research laboratories. The Sony Aibo robot is 
currently a very interesting platform to conduct research in Robotics and Artificial 
Intelligence. Aside the numerous captors and actuators, the most important element is that 
Aibo is programmable. The Aibo programming language, built on top of C++, is provided 
by Sony as the OPEN-R SDK. The latest product of Sony Aibos is its third generation Aibo 
robot, ERS-7, with a great tool for wireless communication. 
These robots have 20 degrees of freedom and are equipped with a 576 MHz processor and 
16 MB of RAM. The most important sensor of this robot is a CMOS camera with 56.9° 
horizontal and 45.2° vertical vision angles. 

 
2. Impossibles Architecture 
 

Our previous experience in Multi-Agent System (MAS) architecture design in Simulation 
league environment led us to World Model Based Architecture (WMBA). We employ it as 
our basic designed architecture for concurrently-running objects of Open-R SDK. WMBA 
contains four major tasks which are done independently in following subsystems: 
 

1. Sensing Subsystem  
2. Communication Subsystem  
3. Action Subsystem 
4. Debugging Subsystem   

These subsystems are to run repeatedly with different frequencies. They are managed in 
such a way that objectives are achieved and constraints are convinced. The main constraint 
of the AIBO robots is the limited resources such as CPU. The last subsystem which is new to 
previous architecture is in charge of gathering appropriate information from other 
subsystems and sending them to Aibo Controller software which will be described later. 
Fig. 1 demonstrates the World Model based architecture. Subsystems are denoted by dotted 
rectangles, data flow is shown as arrows, and processes are shown by circles. 
To make Decision Making module completely separate from other parts, we use a non 
Open-R abstract class called AbstractPlayer. There are two pure virtual functions in this 
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abstract class. The first one is sense which is called every time robot gets some new 
information. The second virtual function is decisionMaking which is called in a specific 
period of time to decide about new actions. The result of this function could be any of the 
actions such as walking, shooting, looking, etc. Some actions such as standing back to 
normal position in the case the robot falls down and also Blocking Skills (which will be 
discussed later in detail) are done completely without interrupts or preemptions, so 
decisionMaking is not called during these skills. 
 

 
Fig. 1. Impossibles World Model base Architecture 

 
3. Vision 
 
Undoubtedly, vision is the most powerful sense of human being providing a great deal of 
information for interaction with environment without any physical contact. In this section, 
we concentrate on providing a method for real-time vision in a robot with low 
computational power and limited memory. Real-time vision means processing image frames 
with the speed of robot's camera. The most important sensor of this Aibo robot is a CMOS 
camera with °9.56  horizontal and °2.45  vertical vision angle.  
Vision problem for these robots which refer to recognize type and location of surrounding 
objects is described as follows: 
• Input:  (i) The output of robot camera in the form of 30 pictures per second, with the 

size f 208x160 pixels and in the YCrCb color space consisting color distortion and noise. 
(ii) The value of robot's joints through which the value of camera's pan, tilt and roll can 
be obtained. 

• Output: (i) Robot's distances and angles in relation to the ground's fix location by which 
the robot estimates its position in the field. (ii) Robot’s distances and angles in relation 
to moving objects which determine their position relative to the robot. 

The first work carried out on the image received from robot's camera is the correction of 
distortion existed in the color of image pixel far from the center of image. Then the color of 
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each pixel in the corrected image is attributed to one of the predefined color class. Then, 
existing blobs of each color are formed for the color of existing objects in the image, and 
based on the color, size and density of existing objects in the image is recognized. Also, by 
using a method provided for obtaining the three dimensional coordinates of each pixel in 
the image in the outside space relative to itself, position of each object relative to the robot is 
calculated. Specially, ground's lines are among of important objects in the soccer field which 
are distinguished in a separate manner with seeking green-white edges. Finally, having 
determined the position of objects relative to the robot, the position of robot in the field is 
calculated through the objects having a fixed place in the environment. 
 

 
Fig. 2. Architecture of real-time vision system of robot 
 
Fig. 2 displays the architecture of robot's real-time vision system (Mokhtarian et al., 2007). 
Also this system require offline processing regulating some provided algorithms' 
parameters for various setting prior to the application of software on the robot.  

 
3.1 Correction of Chromatic Distortion 
Aibo robot's camera causes a considerable chromatic distortion in the color of pixels at the 
corners of images. Fig. 3 (a) displays an image taken by such camera from a uniformly 
colored yellow page. Variations of the three color components (Y, Cr, and Cb) of this image's 
pixels are shown in Fig. 3 (b) in terms of pixels' distance from image's center (r). 
The thick and fading curves of Fig. 3(a) illustrate variations of the observed values of the Cr 
component (channel) of pixels, in terms of r, in a number of images taken from uniformly 
colored pages. We define the actual value of each component for these colors, as that 
component's value in the pixels around the center of the corresponding image, where there 
is negligible distortion. 
By shifting the horizontal axis to the width of actual value of the Cr component, for each 
curve (e.g. 141 for yellow) in Fig. 4(b), the diagram of 

actualobserved CrCr −  is obtained for each 

color, which we approximate by a curve of second degree in the form of 2r×γ . These 
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curves are shown in Fig. 4(a) by thin continuous curves. Beside each curve, the actual value 
of the Cr component and the corresponding γ  value are displayed as well. The coefficient 
γ  for each curve depends on the actual value related to the curve, as shown in Fig. 4 (b). 
 

   
(a)                               (b) 

Fig. 3. (a) Image taken from a uniformly colored yellow page. (b) Values of color 
components of Figure 2-a's pixels in terms of distance from the center (Y, Cr, and Cb 
are shown by gray, red, and blue colors respectively) 

 

     
(a)                                             (b) 

Fig. 4. (a) Variations of the component Cr in terms of r in a number of uniformly colored 
pages. (b) γ  values in terms of the actual value of Cr 

 
We approximate the values of γ  by a linear equation in terms of 

actualCr  in the form of 

βαγ +×=′ actualCr . Coefficientsα and β for each color component, are parameters independent 
of images' colors and are determined for the camera with specified parameters (shutter 
speed, white balance, and gain). 
Curves approximating actualobserved CrCr −  using the new coefficient (γ ′  which is on turn 
obtained by a linear approximation from actualCr ) are displayed in Fig. 4(a) as thick dotted 
curves. The maximum error of this two-level approximation in our experiments on 
uniformly colored images –Fig. 4(a) depicts variations of the Cr component of a number of 
them– has been acquired as an inaccuracy of at most 10 units for a component, which seems 
appropriate with respect to the interval of components' values (0..255). After determining 
coefficientsα and β for the component Cr, Equation (1) holds for each pixel of an image. 
 

1
)( 2

2
2

+×
×−=⇒×+×=−

r
rCrCrrCrCrCr observed

actualactualactualobserved α
ββα  (1) 

 
Therefore, having 

observedCr  for each pixel, pixel's distance from the center of the image, and 
coefficientsα and β , the actual value of the Cr component of each pixel's color is obtained 
using Equation (1). Similarly, the actual values of two other components of pixels' colors are 
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obtained and thus the chromatic distortion of the image is corrected. Fig. 5(a) and (b) depict 
two sample images captured by robot's camera and Fig. 5(c) and (d) depict the result of their 
correction. For speeding up the process of chromatic distortion correction of images in real-
time visioning, we use pre-calculated tables for each process. 
 

             
(a)                                (b)                                 (c)                                (d) 

Fig. 5. Two samples images taken by the robot's camera, before ((a) and (b)) and after ((c) 
and (d)) correction of chromatic distortion 

 
3.2 Color Classification 
In order to recognize objects existing in an image, firstly it should be segmented into color 
regions with specified colors and the rest of processes are carried out on the color-classified 
image. We use a three-dimensional ( 128128128 ×× ) color classification lookup table 
mapping points of the YCrCb color space to corresponding color classes. The number of 
colors that should be distinguished from one another )(n is 8. Moreover, we consider an 
additional class named unknown for colors similar to more than one of our specified classes. 
In order to construct this table, we take a large number of images from the environment and 
objects with which the robot is dealing, and after correction of chromatic distortion, we 
specify relevant color segments in each image for the learning tool. 
We conduct color learning and color classification based on the HSL color space since it 
resulted in best outcomes in our experiments regarding colors existing in our environment 
and its lightning conditions. Therefore, having collected the samples of each color class from 
captured images, the averages of H, S, and L components of each color class )( iC  is 
designated the standard point ),,( iii lsh  for that color class in the HSL space. 
In order to determine the class of each cell of the three-dimensional color classification table, 
first we obtain its corresponding point in the HSL space, and then calculate its similarity to 
each color class using a heuristic function in the form of Rnich i ⎯→⎯≤≤ }1|{: . The value 
of this function for a ),,( lsh  point is calculated using Equation (2). 
 

)),,(),,,((
)(

iii

i
i lshlshd

wch =  (2) 

 
In Equation (2), function d  stands for the Euclidean distance between two points in the 
three-dimensional representation of the HSL color space, and 

iw  is the weight of each color 
class which somehow indicates its dispersion in the color space. Therefore, the standard 
deviation of positions of each class's sample points in the HSL space can be thought as an 
appropriate statistical criterion for the weight of that class. In addition, this criterion can be 
used as an initial state for obtaining the optimum set of weights which results in the best 
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outcome (i.e. minimum difference between automatically and manually color-classified 
images) using manual tuning tools or intelligent searching algorithms. 
Having determined point in the HSL space corresponding to each cell of our lookup table, 
and calculated its similarity to each of our color classes, the most similar class is designated 
the color class of that cell. In addition, those points of the HSL space which are almost 
equally similar to more than one color class (i.e. the difference of their similarity to the most 
and the second most similar color classes is lower than a certain value) are placed in the 
unknown color class. Fig. 6 illustrates the color classification table obtained for our Aibo 
laboratory environment. This figure is a cube of side 256 from whose front a cube of side 192 
is taken out. Gray areas of this figure stand for the unknown color class. 
 

 
Fig. 6. Color classes in the three-dimensional space HSL 
 
A sample of color classification (after correction of chromatic distortion) on the image 
shown in Fig. 7(a) is depicted in Fig. 7(b).  
 

     
(a)                                 (b) 

Fig. 7. (a) Image taken by the robot's camera. (b) The result of color classification of (a) 

 
3.3 Transforming a pixel in an image into a point in the space 
A pixel in an image can simply be represented by ),( nm , its coordinates in the image, where 
the coordinates axes of image are chosen as Fig. 8(a) for facilitating the calculations. On the 
other hand, a point in the space can be represented by ),,( zyx , where the coordinates axes of 
the actual space are relative to the robot as shown in Fig. 8(a) (the floor is the plane 0=z ). 

 

     
Fig. 8. coordinates axes in the image and in the actual space 
 
Required parameters of the problem are: 

• α : Camera's tilt  (Angle made by camera and the horizon). 
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• β : Camera's pan  (The angle of camera's deviation to left or right). 
• γ : The angle between the oblique image and its horizontal representation.  

• ch : Height of the camera from the floor. 

• horψ , verψ : Camera's horizontal and vertical angle of view. 

• imagewidth , imageheight : Image's width and height. 

These parameters for Aibo robots are functions of the positions of rear and front legs and the 
three neck angles. 
As a case in point, at each distance from the robot's camera, distances between objects in an 
image are assumed constant, i.e. if we know two objects are at distance d from the camera 
and at distance l pixels from one another in the image, then the actual distance between 
them in the space is regardless of whether they are seen at the center or at the corner of the 
image.  If the given pixel has a value of m  in the horizontal axis, then the actual point is 
located on a plane in the space crossing the point )0,0,0( , thus Equation (3) holds. 
 

)2/tan(/2/ horimagewidthmyx ψ×=  (3) 

0)2/tan(2 =××+× ymxwidth horimage ψ  (4) 
 
Therefore, the point is located on the plane represented by Equation (4). Similarly, if the 
pixel has a value of n  in the vertical axis, then this point is located on a plane in the actual 
space represented by Equation (5). 
 

0)2/tan(2 =××+× ynzheight verimage ψ  (5) 
 
The resulted line of crossing these two planes is a locus whose all points are seen at the 
pixel ),( nm in the image. Since the robot mainly interacts with objects located on the floor, we 
can posit the relevant point on the floor, thus the desired point is obtained by crossing the 
line mentioned above and the floor plane. After shift and rotation of coordinates axes 
relative to camera to axes relative to the robot itself usingα , β , and γ , the results can be 
calculated using Equations (6) and (7). 
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The above calculations have been performed assuming that 0=β , otherwise, the actual 
point )0,,( yx should be rotated by an amount of β around the origin. 

 
3.4 Object Recognition 
Object recognition in robot's vision consists of detecting objects existed in an image, 
assigning actual objects of the environment to them, and locating the recognized object 
regarding the coordinates axes relative to the robot. 
The robot's working environment can be assumed closed, i.e. there is a set of specified 
objects to which no new one will be added. However, it is in general possible for Aibo 
footballer robots to see unspecified objects, i.e. other than known objects of the robot's 
environment (ball, goals, players, and landmarks). In this subsection, recognition of known 
objects based on blob formation is described first, and then recognition of unspecified 
objects. 
 
A) Blob Formation 
In our robot's real-time visioning sub-system, specified objects are recognized based on their 
color, size, and density and position of their corresponding blob in the image. Therefore, the 
next task after color-classification of an image is to form blobs existing in it. 
In order to form such blobs in a color-classified image, connected pieces of relevant colors 
are obtained by a scan on the image. The density of a blob is equal to the number of points 
of the connected piece divided by the surface of the rectangle circumscribing that blob. 
Obviously, small blobs and those having low densities are ignored as noise. Fig. 9 shows a 
color-classified image and its relevant blobs. 

 

     
Fig. 9. A color-classified image and its relevant blobs 
 
B) Specific Object Recognition 
The noteworthy characteristic of specified objects is that their shape and size are known for 
us. Therefore, types of these objects can be recognized knowing positions of relevant blobs, 
and their locations can be determined by geometrical calculations depending on their shape. 
Ball recognition is presented here as a sample of specified objects recognition. 
In order to recognize the ball, which is an orange sphere, the relevant orange blob is 
considered the blob candidate to be the ball. Two parameters, circle's radius R , and 
coordinates of the circle's center ),( cc nm  in the image, should be extracted from this blob. 
They can be calculated by averaging the center and the radius obtained for each three 
arbitrary border pixels of the observed ball. Regarding the parameters and coordinates, the 
ball's actual ),( yx relative to the robot can be calculated using Equations (9) and (8). 
 

)cos()14.850
2
33( β×+×=
R

y  (8) 
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γγ
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cBall
 (9) 

 
White lines in the green fields are benefical information especially for determining the 
position of robot. For more information about our Line Detection methods refer to (Vaezi et 
al., 2007). 
 
C) Recognition of Unspecific Objects 
Unspecified objects' position can not be determined using their geometrical properties (i.e. 
shape). We consider unspecified objects just as some obstacles. Since an Aibo robot has a 
complicated shape whose recognition is not practical in our robot's real-time vision, the 
players in the field are viewed as unspecified objects by our robots. 
Our algorithm is that existing blobs in the image which do not constitute any specified 
object and are located on the floor, are considered unspecified (unknown) objects. The 
assumption that they are placed on the floor allows us to locate their points on the floor 
using their blobs' lowest pixels and the method presented in Section 3.3 for transforming 
image's pixels into points in the actual space. At this location, there is merely an obstacle, 
and nothing about this object is determined but this obstacle's front edge placed on the 
ground. Stages of conducting this procedure for an unspecified object are shown in Fig. 10. 

 

            
(a)                                (b)                                 (c)                                (d) 

Fig. 10. Stages of recognition of an unspecified object 
 
The color-classified image and its relevant blobs are depicted in Fig. 10(a) and (b) 
respectively. Having checked these blobs and understood that they do not belong to any 
known object, the composition of these blobs, which is depicted in Fig. 10(c), is recognized 
as an unspecified object. Two points located at the bottom of this object (bottom-right and 
bottom-left corners of the object) leading us to calculation of this object's whereabouts are 
shown in Fig. 10(d). 

 
3.5 Experimental Result 
Since the presented methods and algorithms are to be used for Aibo robots' real-time 
visioning, the running time and the accuracy of them are two main parameters for 
assessment of these methods' appropriateness. Table 1 displays the running time of our 
visioning stages (accuracies are noted in relevant subsections). According to methods 
described above, the time required for correction of chromatic distortion and color 
classification is constant for all images. The time needed to form colored blobs, which is 
indicated in the third row of the table, is calculated for an almost crowded image including 
all colored objects existing in the environment of Aibos football field. Objects recognition 
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consists of a few calculations and its running time is negligible in comparison with other 
visioning algorithms. 
 
Table 1. Running time of different process in Impossibles Vision subsystem 
 

Visioning Stage Running Time 
Correction of chromatic distortion 4.8 ms 
Color classification 4.1 ms 
Blob formation 3.9 ms 
Object recognition Less than 1 ms 
Line detection 3.8 ms 
Total 16.7 ms 

 
The total amount of time consumed by the visioning process is about 17 ms per image, thus 
almost the half of the time interval between two frames is left available for the rest of 
processes (e.g. decision making, communication, etc.). 

 
4. Communication 
 

Sony AIBO ERS-7 model have a wireless LAN module (wi-fi certificated) which made it able 
to communicate with other teammates to share useful information perceived from the 
environment to improve the quality of each agent’s world model eventually resulting in 
more accurate localization and object detection. 
Furthermore, Due to RoboCup 4-legged rules, each team has an upper band limit of 500 
Kbps for communication among the agents which includes also game manager commands 
but every team has some special UDP port to broadcast. So ideally we can count on about 
100 Kbps bandwidth for each AIBO robot. 
In what follows we will discuss various aspects of communication and will explain the way 
that our communication module is working. 
Impossibles AIBO communication module, as an independent module, works in parallel with 
other modules such as vision, and decision making. It is also in charge of sharing essential 
data amongst all players. For instance, knowing accurate positions of the players are only 
possible by having each player report his information such as its own position to the others. 
The communication module is to be reliable and eventually be aware of the packet loss if 
any exists. It will repeatedly choose entities from World Model (WM) objects based on their 
last report time, their reliability measure and also importance of data for other teammates. 

 
4.1 Information Level 
There are two general strategies for communication in Multi-Agent Systems (MAS) that a 
team can employ depending on system's general architecture and also on what kind of data 
the agents intend to share. 
High Level Commands: This strategy is best applicable in centralized system architecture 
where a center commands its agents; therefore, in this method, all critical and high level 
processes and decision makings are made in center. Consequently, only high level 
commands are sent to agents in order to make them aware of their behavior. 
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Low Level Commands: In this method communication system is trying to share all raw data 
that each agent have and every thing could and should be distributed.  

 
4.2 Centralized vs. Distributed Architecture 
Generally, we consider the communications amongst players distributed, but due to the 
large amount of transmitted data and hence time-consuming processes, agents themselves 
accomplish their own jobs and broadcast the results, i.e. processes data. 
If there wasn't any broadcast feature in our access media, having centralized communication 
may also reduce number of messages which are needed to share all information among 
agents. 

m = number of messages needed to have all information shared between agents 

• With broadcast message: 

o Centralized approach   1+= nm   

o Distributed approach   nm =  

• Without broadcast message: 

o Centralized approach   nnnm 2=+=  

o Distributed approach   ( )1−×= nnm   

When we are considering our access media properties including its broadcast ability and 
limited bandwidth and also the fact that defining an agent as center might be unreliable we 
decide to use distributed communication by broadcasting messages. 
The messages contain low level data sensed and acquired by agents from the surroundings 
such as ball, teammates, and opponent players which are used in  localization and updating 
word model in with each agents self awareness. 

 
5. Localization 
 

Mobile robots must know where there are to operate their tasks properly and this is the first 
step to having autonomous mobile robotError! Reference source not found. (Kortenkamp et 
al., 1998). Mobile robot Localization is the process of determining and tracking the location 
of a mobile robot in global coordinate frame. Localization problem is occasionally referred 
to as the most fundamental problem to providing a mobile robot with autonomous 
capabilities. A number of techniques have been used for this, including grid-based 
approaches or sample-based approaches such as Monde-Carlo. Grid-based approaches 
require computation of the probability even in the area where the probability is negligible 
and in the vast environments grids are either too many or big. The former makes 
communication expensive and the latter makes the results low-resolution. On the other 
hand, sample based approaches which are mostly based on sampling-importance re-
sampling (SIR) algorithms (Rubin, et al., 1988) require the computation of a significant 
number of samples to support high-performance especially for large areas.  
We use a localization algorithm to localize soccer player robots in the field which is called 
piecewise Linear Probability Distribution Localization (PLPDL) ( Vaezi Joze, et al., 2007) that 
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besides designing for low-performance and low-memory machine can localize robots in the 
uncertain and dynamic situation. The approach is based on Markov localization (Fox, 1998) 
which localize robot probabilistically. Our approach inherits from Markov localization the 
ability to localize a robot under global uncertainty. Using piecewise linear functions to 
approximate probability distribution functions of these random variables would help our 
approach to be fast and inexpensive which is suitable for real-time processing of our robots. 
The key idea of Markov localization is to compute a probability distribution over all possible 
position in the environment. Let ),,( θyxl =  denote a position in the state space of the 

robot, which x  and y  are the robot's coordination in the soccer field frame, and θ  is the 
robot's orientation. The distribution )(lBel  expresses the robot's belief for being at position 

l . Markov localization applied two different probabilistic models to update belief function, 
an action model to incorporate movement of the robot and a perception model to update the 
belief upon sensory input. 

 
5.1 Separate Probability Density Functions 
If we suppose that probability of 0xx =  is independent from probability of 0yy =  and 
also other independencies for other coordinate variables of robot location, we could 
conclude from independency rule of probability theory that: 
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yyxxPyxlBel  (10) 

 
This could convince us to use separate probability for each of the coordinates. In contrast 
with Markov Localization assumption or other grid-base localization coordinate variables 
such as x are continuous in real environment, so we should consider them as continuous 
random variables and their density function could be define in the following formula: 
(notice that we assume these random variables are independent, otherwise we have a three 
variable density function) 
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Equation (11) concludes )(xf X  is non-negative function and  1)( =∫
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Using Equation (10) and definition of density function for coordinate random variables: 
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The product of these functions obtains belief of robot to be at this position, namely )(lBel . 
So our new localization method considers a separate probability density function for each 
variable (such as x , y and θ  for mobile robot in 2 dimension environments). In Markov 

Localization0, for each position in the area ),,( 000 θyxl =  there is )(lBel  which means the 

robot's belief for being at position l . In contrast, in Probability Distribution Localization 
(PDL), we have three probability density functions to express our belief for location of robot. 
This model could be used for current location, new observation and also differential motion, 
i.e. ),,( θΔΔΔ yx . We need to update current location of robot in the case of motion and 
reading sensors. In PDL, Motion Update is corresponding to robot motion of Markov 
Localization and Sensor Update is corresponding to sensor reading in Markov Localization. 
• Movement Update: We consider X  a random variable and its probability density 

related to x  position of robot and XΔ  as a random variable of movement of robot in x 
dimension and its probability density. So the new value for X  will be XX Δ+ . In 
this way the corresponding density function for X is obtained. We know from 
probability theory that if X,Y,Z are random variables and Z=X+Y so probability density 
of Z could be conclude by convolving probability density of X and Y. And also other 
random variables will be updated independently using motion data that should be in 
the form of different probability density function for each random variable. 

• Sensor Update: Sensor is usually return to the vision module in robot. However it could 
be any other sensor for localizing mobile robot. If we suppose sensor data return a 
probability density function for each variable such as X and p  that is the belief of 
correctness of these data. Now we should create a new probability density for X by the 
following formula using previous density of X and sensor data in the form of new 
density function and our belief of its correctness:  

 
pFxpFxFx SensoroldNew ×+−×= )1(  (13) 

 
Our probability density functions may become worthless after too many movements or 
sensor updates with small p . So we use the idea of "Sensor Resetting Localization"  (Lenser 
& Veloso, 2000) that considers a threshold for average of p . Some new sensor updates must 
replace when it becomes lesser than the assigned threshold. This could be translated to 
threshold for distribution of our density functions. In such cases, more sensor data must be 
fed by sensor module. The case should happened when the result density function is so 
distributed (a precise parameter needed for determining threshold that could be variance) 
As explained before, Probabilistic Distribution Localization (PDL)'s main output is a 
probability density function and not a crisp value, but PDL is required to provide more 
suitable results for other modules such as motion module. So a kind of clustering algorithm 
can be employed to prepare crisp data as output if it is needed. 

 
5.2 Piecewise Linear Probabilistic Distribution Localization 
In this section we are going to change PDL approach in such a way that it becomes simple 
and suitable for real-time applications for mobile robots. In order to simplify the PDL 
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process, we employ piecewise linear probability densities in order to make our calculation 
and storage system much simpler. In piecewise linear probability densities, functions are 
limited to be made by linear pieces. For storing these functions it is enough to store points 
which are disjunction of linear pieces. For instance, function shown in Fig. 11, could be 
determined by set of following points:  { (0,0) , (1,.5) , (2,.5) , (3,0) } 
 

 
Fig. 11. A sample piecewise linear probability density function 
 
Using piecewise linear function for expressing probability density of location parameter in 
PDL approximate the main probability density to obtain speed and decrease in memory 
usage. Storing set of points instead of storing complicated function could help to decrease 
memory which used for localization purpose. On the other hand applying linear limitation 
over probability density function could imply appearance of faster algorithms for 
Movement update and sensor update that are express bellow. 
• Movement Update: With us considering both probability density of random variables X 

and Y piecewise linear, probability density X+Y is paranoid-segment function. To 
simplify the process, we approximate such functions to be piecewise linear function (we 
should also suggest such a converter algorithm). It could be done using convolution of 
these function as it is discuss before. As an example Fig. 12(a) is probability density 
function of a random variable before movement update. Fig. 12 (b) shows probability 
density of movement and Fig. 12 (c) is the final result of movement update. Fig. 12 (d) 
shows linear approximation of result via PLDL algorithm. 

 

 
Fig. 12. An example of Movement Update process 
  
• Sensor Update: This step is straightforward in piecewise linear density function. Using 

Equation 5-4 we should compute weighted sum of two density function such as Fig. 13 
(a) and (b). These functions have stored by set of points so for calculation result we 
should construct result set using union of x points of both sets with corresponding y 
that could be calculated by sum of corresponding y. Fig. 13(c) illustrates result of Sensor 
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Update with p=0.7. Fig. 13(a) is previous density function for a distinct variable and Fig. 
13 (b) is sensor data of that distinct variable. 
 

 
Fig. 13. Sensor Update example. (a) Previous density function (b) sensor data (c) result by 

p=.7 
 
Also to decrease required memory for storing set of points for probability density functions 
we omit points that express small amount of information. Strictly speaking, each three 
consecutive point construct a triangle, we omit central point when the area of this triangle is 
smaller than a threshold. Additionally, the function is scaled in a way that integral of the 
function becomes one. We could also describe a parameter as maximum number of points in 
the set so we could control the computational time needed for PLPDL. 

 
5.3 PLPDL Application 
The mentioned algorithm used in the software of controlling Aibo robots for playing soccer 
as a self-localization sub-system. Vision used as a sensor and movement update support 
from Motion Controller sub-system. Fig. 14 demonstrates Self-Localization flowchart using 
PLPDL method. We explained sensor data which is supplied by vision in Section 3 and 
movement data will discussed in Section 7. As it presents before probability density 
function for each coordinate variable is stored by set of points. The next sub module is PDF 
Filtering which filters probability density functions in order to omit small values and also 
non-reliable ones. Then, it is determined if some extra samples are required from Vision 
sub-System. This decision is made using a threshold over probability density functions' 
variance after clustering them. 
 

 
Fig. 14. Self-Localization Flowchart 
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When it needs more sensor data it sends a signal to vision module to provide localization 
module with some extra sensor data. This signal also contains information about the 
accuracy of such a data that may cause executing time-consuming routine in Vision sub-
system for more accurate data. Although we do not use information about positions of Aibo 
robots from external source such as other Aibos using wireless communication, it can be 
employed as extra sensor data with smaller belief.  
 
6. Decision Making 
 

As explained in our architecture (Section 2), Decision Making (DM) module plays the key 
role in logical decisions made by agents in a multi-agent environment such as AIBO soccer. 
DM is done in a completely distributed manner in Impossibles AIBO robots; however, 
communication is employed in order to propagate the information obtained from vision, 
sensors, and communication modules. Consequently, information is propagated by 
communication and decisions are made by agents themselves. This section is organized as 
follows: The intra-DM architecture is explained in details in subsection 1. Team behavior is 
given in subsection 2. Subsection 3 is devoted to individual behaviors. 

 
6.1 Architecture 
Intra-DM module in Impossibles AIBO robots have a hierarchical layered architecture (shown 
in Fig. 15). In fact, DM module consists of two major layers. Team Behavior (TB), i.e. tactics, 
layer is the highest one which determines the tactics of the soccer team. Secondly, Individual 
Behavior (IB) layer is the techniques employed by individual players.  As demonstrated in 
Fig. 15, Decision Making (DM) module gets its input from the system’s world model 
including opponent players’, teammates’, and ball’s locations accompanied by some degrees 
of belief which is due to existence of uncertainty in real system environment such as soccer. 
Having gotten the inputs from its world model, the AIBO robot will analyze the input in a 
two-step procedure. Team behavior (TB) sub-module gets DM inputs from world-model 
and then resolves the whole team behavior, e.g. tactics stored in a database. Finally, TB 
passes the team behavior and world model information to the lower layer that is Individual 
Behavior (IB). 

 
Fig. 15. Decision Making Module Architecture 
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As the second step, the Individual behavior (IB) sub-module obtains the whole team 
behavior and world model information form upper layer sub module (TB); then, analyzing 
its inputs, IB sub-module decides one of the possible actions to do. As a matter of fact, these 
actions are the outputs of the IB sub-module and hence the outputs of the whole Decision 
Making (DM) module. This actions set includes (1) shooting in a specified direction with a 
particular power, (2) blocking the way in a special direction, (3) walking through a path 
determined by an array of points, (4) looking in one direction, and (5) grabbing the ball. 

 
6.2 Team Behavior 
As explained above, Impossibles AIBO team tactics is resolved in Team Behavior (TB) sub-
module. The final tactics of the team will be selected from tactics database.  
 
Determining Factors 
Tactics selection step needs two parameters. First, fuzzy membership degree in offense set is 
to be determined, i.e. Defense-Offense (DO). Teammates’ and Players’ sites is defined to be 
the second parameter  
 
A)   Defense vs. Offense 
Tactics of the team is defined by a fuzzy membership degree, i.e. DO, in offense set. Between 
complete defense condition, i.e. 0, and complete offense condition, i.e. 1. The following three 
parameters are calculated and then employed to obtain the membership degree. 
 
1. Caution and Risk: The first parameter which contributes to obtain DO is Caution-Risk 

(CR) fuzzy membership degree. We have employed a fuzzy logic controller which 
outputs CR degree. This fuzzy logic controller gets three inputs:  The result of the game, 
time, and opponent’s strength.  

 

     
  (a)   (b)     (c) 
Fig. 16. Caution and Risk which is the output of fuzzy controller  for (a)  a fixed result (b) a 

fixed Opponent-Strength (c) a fixed Time 
 
2. Ball Ownership: Ball ownership is a critical factor which contributes in producing the 

final selected team strategy of an AIBO soccer team. In real world soccer environment 
we can define ball ownership as a crisp value which at least last long enough to 
determine team strategy. In fact it can be represented via digital magnitudes such as a 
Boolean variable. Ball ownership in AIBO cannot be defined in such a way. Because in 
AIBO soccer game robots intermittent lose the ball; therefore, selected team strategies 
will be changed so irregularly that it becomes impossible for a team either to defend or 
attack. Here we define a fuzzy membership degree in a Ball Ownership (BO) set. In 
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Impossibles robots, the following formula is employed to calculate the BO of the team in 
order to evaluate the team membership degree in the complete ownership set.  

 

( ) ∑
∈

=
ij Teamm j

i d
TeamBO α

1  (14) 

 
The final Ball Ownership (BO) factor is obtained by division of our team’s BO and 
opponent team’s BO. 
 

3. Hyperbolic Danger Safety Degree: As explained above, Ball Ownership (BO) is a factor due 
to players’ rational locations to the ball; however, players’ absolute locations are also 
important. In order to accomplish the job a Hyperbolic Factor (HF) is defined. A 
hyperbola (Gray, 1997)  is a conic section defined as the locus of all points P  in the 
plane the difference of whose distances PFr 11 =  and PFr 22 =  from two fixed points 

(the foci 1F  and 2F ) separated by a distance c2  is a given positive constant k , 

krr =− 12 .  Letting P  fall on the left x -intercept requires that 

aacack 2)()( =−−+= . So the constant is given by ak 2= , i.e., twice the distance 
between the x -intercepts (left figure below).  

 

 
Fig. 17. Hyperbola used to calculate Hyperbolic Factor (HF) 
 

We think of the AIBO soccer field to be locus of hyperbolas with variable positive ‘ a ’ 
and goals to be the focuses of theses hyperbolas; therefore, ‘ c ’ is defined to 
be LengthField _5.0 × , i.e. distance of the goals from the center of the soccer field. 
Each point in the field is defined to have a danger degree (DD) if an opponent team 
member is located in this point. On the other hand, Safety Degree (SD) is defined if one 
of our team members is located in that point. 

 

( ) ( ) ( )
LengthField

PP
PDD ii

i _
Goalour ,distanceGoalopponent ,distance −

=  (15) 

( ) ( ) ( )
LengthField

PP
PSD ii

i _
Goalopponent ,distanceGoalour ,distance −

=  (16) 
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According to above equations, points on a hyperbolic locus with a constant ‘ a ’ will 
have equal Danger Degrees (DD) in the case of having an opponent player in the point. 
Similarly, the points have equal Safety Degree (SD) if one of our team members is 
situated in one of those points. The final Hyperbolic Danger-Safety Degree (HDSD) 
factor is calculated employing players individual Danger Degree (DD), or Safety Degree 
(SD). 
 

( )( )
( )( )players eamopponent t

members our team

2

1

DDf
SDf

HDSD =  (17) 

 
As a significant factor, ( )xf  is selected according to coach basic idea of either defensive 
or offensive strategies. We have employed ‘ Averaging ’ function. Therefore, HDSD  
factor is evaluated: 
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(18) 

 
B) Team Fear-Relax Emotional Degree 
As explained before, team behavior is determined according to Defense-Offense Degree 
(DOD) which lies in the range of 0 to 1. In above subsections, three determining factors were 
defined: Caution-Risk (CR), Ball Ownership (BO), and Hyperbolic Safety Danger Degree 
(HDSD). Now these three parameters are to be combined to represent the final Team 
Behavior Defense Offense Degree. 
 
Team Strategy Database 
In order to avoid having CPU over usage problems, we save predefined team strategies in a 
Team Strategy Database (TSD). In each moment of the game, a linear combination of the 
proper strategies is computed based on TBDOD and players’ locations. Selecting from TSD 
offers two priorities over computing dynamic team strategies. First it supports to have a 
more flexible team behavior, because further team strategies can be added to TSD later. 
Second, this approach helps to decrease the CPU usage.  
Generally, team strategies are categorized into three groups. Defensive strategies, midfield 
strategies, and offensive strategies are the mentioned groups. Two independent defensive 
team strategies (DTS) of Impossibles AIBO robots are presented. Error! Reference source not 
found. demonstrates the first DTS in which our players try to defend opponent’s forward 
players reaching the goal along a line from the center of the field to our goal. It is the most 
defensive strategy of the team employed in critical circumstances.  
Note that the following surfaces represent the values of points on the soccer field according 
to the team strategy. For instance, the dark red points in the diagrams indicate the most 
important regions of the field. On the other hand, the blues ones denote the regions which 
are not considered as significant regions. To clarify the problem it may be useful to declare 
that (0, 2.7) is the center of our goal. Fig. 18(b) demonstrates the general defensive (GD) 
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strategy of the Impossibles AIBO robots employed to some objectives such as preventing the 
game result being changed.  

 
(a)                                                              (b) 

Fig. 18. (a) the maximum defensive team strategy. (b) General Defensive (GD) team strategy 
 

 
Fig. 19. Four basic strategies 
 
Midfield and offensive team strategies of Impossibles are in fact generated easily as a 
combination of the following basic strategies (Fig. 19). 
In Fig. 20 denote midfield and offensive strategies of the team. These strategies are 
generated using the above basic strategies. Here we have employed the simplest operation, 
i.e. multiplication, to produce midfield and offensive team behaviors. 
 

 
Fig. 20. Four strategies which generated using combination basic strategic 

 
Emotional Tactics Selection 
One of the most important aspects of human decision making is the role of emotions in its 
behavior and reactions. Humans choose their actions and make their decisions due to 
several internal variables called emotions. Emotional decision making is employed by 
humankind to avoid time-consuming and computationally-expensive approaches, e.g. using 
mathematical equations in decision making, to optimize the final result in critical 
circumstances such as danger (Locus et al., 2002).  
In order to reduce the computation burden of the team behavior generation, we exploit 
Emotional Tactics Selection (ETS) approach. As presented in, agents’ Emotional Decision 
Making (EDM) is based on their different states, called emotions. Up to now the robots have 
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calculated the fuzzy emotional Fear-Relax (FR) degree of the whole team. Given this degree, 
robots are to compute the team strategy, i.e. a linear combination of Team Strategy Database 
(TSD) elements. Fundamentally, in, transitions from one emotional state to the other are 
thought of being a gradual change, i.e. not suddenly, as it is done in real world animals and 
human. Therefore, we avoid quantization of the given FR degree. In contrast, based on the 
given FR degree, a linear combination of the strategies in TSD is computed as the whole 
team behavior, i.e. team strategy. 

 
6.2  Individual Behaviors (Techniques) 
Impossibles AIBO robots make use of a priority-based selection approach to choose the most 
proper action in various situations. In other words, after calculating some mathematical 
equations, each possible action is assigned to have a score; then, the most appropriate action 
is chosen. For instance, a player, who has the ball ownership, can select one of the following 
actions: (1) Moving with ball, (2) Passing to a teammate player, (3) Shooting toward the 
opponent team’s goal, or (4) Looking around. In this section, different individual behaviors 
are explained logically. A lower level design is provided in Motion Controller (MC) section. 
 
Predefined Dynamic Assigned Regions 
Generally, in multi-agent systems, decision making can be accomplished using one of these 
four solutions (Habibi & Nayeri, 2006): (1) No Sharing Decision Making, (2) Information 
Sharing Decision Making, (3) Centralized Decision Making, (4) Fully Centralized Decision 
making. Impossibles AIBO robots use the second approach. In this method, communication is 
employed just for transporting the information; therefore, neither commands nor decisions 
made by center are transmitted. 
With us using Information Sharing decision making solution, the most critical problem was 
similar behaviors of the robots in the same situations. So robots are assigned predefined 
roles as in real world soccer.  
Players are assumed to have tendency toward their dynamically assigned regions. This 
tendency is represented by a simple spring; hence, there will be a linear dependency 
( 1=α ) between the player’s tendency and the distance from its current location to its 
assigned region.  
 

( ) ( ) ( )( )α
iii PPKP egionAssigned_R,LocationdistanceTendency ×=  (19) 

 
Where ‘ K ’ is a positive constant which can be learned. Experiences show that setting ‘α ’ to 
be 1.3 results in the best known outcome. 
 
Outputs as Decision Making-Motion Engine Interface 
Last of all, having logically produced Individual Behaviors (IB) of the players, Decision 
Making (DM) module passes IBs to the lower level module, i.e. Motion Controller (MC); 
therefore, IBs are considered to the interfaces between the DM and MC modules. In this 
section the employed Individual Behaviors are explained logically. 
1. Looking: The objects stored in World Model (WM) own a saved parameter called 

Update Time (UT). It denotes the last time when a particular object has been seen by an 
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agent. So it may be necessary for agents to refresh their knowledge about their 
surroundings limited to their vision capability, i.e. approximately 1.5 meters. 

2. Running: Walking and Running as two basic categorizations of motion should be 
implemented efficiently because of their importance. A lot of learning algorithms on 
AIBOs have been presented during the past few years (Kohl & Stone, 2004). 

3. Ball Grabbing: In order to get the ball ownership, Decision Making (DM) module of a 
player passes ‘GRAB’ to the lower level module, i.e. Motion Controller (MC). 

4. Shooting & Passing 
5. Blocking  

 
7. Motion 
 

Different approaches can be considered as the way to make AIBOs move in a proper order, 
all accompanied by number of advantages and disadvantages. Enhancing robot’s movement 
by restricting it to mathematical formulas and geometrical models, dividing motion skills 
into some predefined and atomic consecutive series of actions, using simulation results for 
realistic environment, eliciting models for each of the skills based on experimental data and 
learning algorithms, and so on, are instances of how to obtain methods for robot’s motion. 
Studies conducted on all approaches, led us to a hybrid, innovative method with the most 
consistency to other modules, chiefly Decision Making. 
We divided motion skills into two categories based on their usage: Blocking Skills and Non-
Blocking Skills. While performing a non-blocking skill, Decision Making (DM) module can 
make new decisions if necessary, and send an interrupt to Motion Controller module. Thus, 
Motion Controller will preempt or halt the previous action and start performing new 
commands. Walk and rotate are basic actions included in non-blocking skills. On the other 
hand, Blocking Skills are smallest consecutive segments done atomically. Different kinds of 
shoots as well as ball blocking actions are examples of blocking skills. 
We mapped the movement of robot’s joints, while running, to a geometrical space so to have 
a complete set of parameters for Machine Learning techniques. The geometrical shape to 
which we modeled robot’s movement was an ellipse. As a result, the main task of this 
module is done through some offline processes to improve ellipse’s parameters in a way to 
reach a better speed and increase the accuracy of walks. 

 
7.1 Architecture 
This module, Motion Controller (MC), provides an interface of high level commands for DM 
module, such as walk, look, localSearch, ballGrab, defend, block, etc. When these high-level 
commands are received from DM module, a planning algorithm is used to break them into a 
series of low-level commands to satisfy the robot’s conditions and team strategy. Finally, all 
generated data are converted to physical joint values inside the Motion Maker layer. Based 
on the attributes of each skill, the final data will be put in Motion Queues with the special 
characteristics of Blocking or Non-Blocking actions. Data inside the queue are considered as 
segments. 
Segments are treated as atomic actions. These include some points in a 3D coordinating 
system, for example the coordinate of paws, or the camera in relation to body’s center. So, in 
order to convert these points to joint values, we used Inverse Kinematics functions for both 
head and legs. 
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Based on aforementioned architecture, design and implementation of the MC in layers can 
avoid complexity and will increase simplicity of defining new skills. Fig. 21 shows the 
architecture of MC module in brief. 
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Fig. 21 Architecture of Motion Controller Module 

 
7.2 Blocking Action 
Blocking Skills are smallest consecutive segments which can not be preempted or halted 
while being processed. So Decision Making should use them in suitable situations. These 
actions contain consecutive value of joints which can be utilized from a static look up table 
that does not change during the game. We use our structure to store these date in files; 
therefore we have separate configuration files for each blocking skill. These actions contain 
all types of shoots, blockings by goalie and stopping the ball.  

 
7.3 Non-Blocking Action 
None-Blocking skills are those who accept interruptions. While Aibo is processing and 
running non-blocking commands, DM module can decide new actions and send them to the 
robot.  In this case, the robot will halt the current job and start new task. These actions are 
necessary due to uncertain conditions of a soccer game. Walking and ball grabbing are 
simple non-blocking actions. 

 
7.4 Movement Parameter 
We modeled the movement of a robot to the movement of AIBO's paws on the perimeter of 
an ellipse. Although the Aibo leg’s degrees of freedom are less than natural animals, this 
model resembles the natural walk of them more.  
To form the ellipse based on which the robot plans to move, walk needs number of 
parameters. These parameters are as follows: 

− Semi-major axis of the ellipse, with the symbolic name of a, for both front and rear legs 
− Semi-minor axis of the ellipse, with the symbolic name of b, for both front and rear 

legs 
− Coordination (x0, y0, z0) of the center of the ellipses for all legs in relation to body’s 

coordinating system. 
− Angles alpha, beta and theta which gives the ellipse all degrees of freedom. So we can 

rotate the ellipse around each of the 3D coordinating system’s axis. 
Formulating movements of joints has additional advantages affecting the performance of 
other modules, especially Localization. By the use of geometrical models an increase in 
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accuracy of estimations is gained, although most of estimations are based on experimental 
data. This estimation helps Localization module to localize the robots without the use of 
camera or other sensors in an average period. 
Computation of new walk parameters and constructing new motion skills by combining the 
previous motion skills is also another advantage of formulation. Based on some predefined 
parameters for basic skills in addition to mathematical models for skill combinations, there 
would be a chance to gain new motions. For instance, by merging the parameters for a 
simple forward walk and anticlockwise rotation, a new motion can be constructed to 
circulate around a circle with specific radius; this skill, with the radius as an input 
parameter, can be used in ball grabbling action. 

 
7.5 Estimation 
Since repetition of intricate geometrical solutions based on image processing algorithms 
may appear expensive in many cases, motion approximations for movements may be used 
to increase the accuracy of total estimations, and to lessen the cost of localization methods. 
The mechanism for motion estimations is based on robot’s movement, in any of the 
directions, rotations and mixture of all couples of skills. 
For each of the basic skills, X movement (dx), Y movement (dy) and angular movement (dt) 
are estimated and written as attitudes for their own parameters. Whenever a skill is being 
performed by the robot, these movements will be calculated for each time slice first and 
finally will be calculated for robot’s total walk. A simple way of calculating the estimations 
based on dx, dy, dt is shown in Equation (20). Then all these factors are reported to 
Localization module to estimate the location of the robot. 
 

Dx(S) = dx(S) * tp(S)  ,  Dy(S) = dy(S) * tp(S)  ,  Dt(S) = dt(S) * tp(S) (20) 
 
These estimations cause some problems in some cases. Disadvantages of this method 
appears when each skill is performed for short time slices –a result of quick changes in 
decisions- or when there is a great change –unsmooth field for example- in the soccer field. 
Therefore deciding when to use these estimations can be critical and they can cause failures 
or inaccurate localization. So, to prevent these problems, we can avoid estimating quick 
actions (performed less than a specific amount of time) and to make robots learn the 
parameters of the skills when the condition is changed. 
Estimation, in the case of great reliability, can be considered as a helpful component for 
localization and it is worthwhile working on motion estimations in the future. 

 
8. Tools & Debugging 
 

Running compiled code on AIBO is time-consuming and inefficient in many cases. Thus, 
lack of debugging software and simulator for testing and debugging purposes is felt and the 
need is obvious. 
Therefore, Impossibles spent time on writing tools which let us debug the codes running on 
Aibo platform and simulate some geometrical codes without having robots available. These 
tools consist of AIBO Controller and AIBO Geometrical Simulator. 
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8.1 Aibo Controller 
This software is divided into two units cooperating with each other. A DEBUG module 
which is written into memory stick (which can be accompanied by other soccer modules and 
run in parallel with them) and a client application which runs on the PC. 
DEBUG module sends collected data to the client program. Data consist of all internal states 
of other soccer or non-soccer modules (provided for other challenges) in addition to other 
internal representations of the robot (including joint data, images, body sensor data, world 
states, perceptions, etc.) 
On the other side, the client application receives the data and makes it possible to visualize 
and analyze them via different internal implemented algorithms and other user defined 
ones. This will give us opportunity to run vast of algorithms and methods in different fields 
(Image Processing, Motion, etc.) based on data collected. 
On the other direction, since  reaching to the state which revealed bugs in a 
nondeterministic and real  environment is somehow impossible,  setting parameters to 
return back to the desired state, can be found in our controller application.  
Channel between DEBUG module and the client program is a wireless connection. Results 
from experimental statistical analysis of protocols in a wireless communication system led 
us to choose packet sizes and protocols in a way to achieve higher throughput. 
To conclude, a list of features provided by AIBO Controller is followed: 
− Visualization and analysis of data, especially intermediate representations of other 

modules running in the robot. 
− Turning on or off different algorithms and parts of the code for debugging purposes. 
− Modification of robot’s state and parameters to algorithms. 
− Run different algorithms solely on the collected data on the client side instead of the 

robot itself. 
− Designing new blocking skills by reaching to desired and discrete states. 

 
8.2 Aibo Geometrical Simulation 
Writing codes to memory stick after each change and waiting for the robot to load modules, 
all occur for several times and all slow down the process of code development. Thus, a 
simulator was developed by Impossibles to simulate some special purpose codes on the PC 
instead of the Aibo itself. 
One of the most time-consuming processes is the geometrical challenges of robot. 
Geometrical Simulator makes it possible to simulate motion’s geometrical space on the client 
side instead of the robot itself.  This will give us features to develop forward and inverse 
kinematics methods for any kind of robots, simulating and collecting the results of any kind 
of movements, and, designing in companion with testing the movement of robot’s joints 
during blocking actions. 

 
Fig. 22. Aibo model in Geometrical Simulator 
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This software is fed by the codes generating motion steps as inputs and the output will be 
the graphical movements of our Aibo model’s legs and head. The Aibo model in our 
simulator is shown in Fig. 22. 

 
8.3 Code Interpreter 
Most of the codes in a soccer module are dependant on the condition in which the robots are 
playing. These include game strategies, player’s roles and some complex decision making 
commands. Therefore in order to make the code flexible and prevent changes in the 
hardcode each time one of the above alters, converting hardcode into scripts which can be 
interpreted by the AIBO is an essence. 
Scripts facilitate programming Aibos when accompanied by a high-level interpreter module, 
which runs inside the robots.  When the fundamental parts of a soccer software is 
developed, the codes for decision making methods, determination of player’s roles and 
game strategies are written in a simple scripting language and all are stored in memory stick 
as a raw text file. An interpreter module is in charge of translating the scripts into standard 
codes for Aibos and running them logically and consecutively. 
These scripts use a high level interface provided by the main modules in our architecture, as 
mentioned earlier in this chapter, to fulfill the need of a potent access to hardcode. In 
addition to the interface of the main modules, our interpreter supports structural statements 
such as loops and conditional statements. There are some data structures provided for better 
manipulation of collected data from camera, joints and other sensors. 
Players change roles dynamically, so putting them in hardcode would be bothersome. Some 
predefined functions in our interpreter make it feasible to distribute roles among players 
dynamically and prevent any sort of conflictions. This way even if the team strategy is 
changing dynamically in a specific game, responsibilities are assigned to players in a correct 
manner. Taking absence of players into account –when penalized- is another specification of 
those predefined functions. 
Complex decisions can be implemented based on a State Diagram Machine (SDM) in our 
script. All decisions are first converted to states for simplicity, and then implemented by the 
features available in our scripts. SDM makes it possible to easily change decision steps and 
its contents. 

 
9. Conclusion 
 

In this chapter we presented the Impossibles main architecture and its modules to create a 
fully autonomous team of 4-legged robots for playing soccer. This architecture includes 
different modules such as World Model, Vision, Decision Making, Motion Controller, 
Communication, and Localization which are all independent of the robot platform.  This 
chapter presented the integration of our researches in different fields which came together 
to create fully autonomous robots for specific purpose that is playing soccer as humans do. 
And this could be a primitive attempt to developing intelligent robots. 
Participated in two years of RoboCup competitions in Bremen and Atlanta in RoboCup 2006 
and 2007, the team gained some valuable experiences which led to designs of low cost 
algorithms. The most probable restriction in this soccer module is the limited resources such 
as CPU and memory, therefore developing optimized algorithms is the main target of team 
achievements. 
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1. Introduction  
  

RoboCup and robot soccer have seen an enormous growth in the past decade, constantly 
widening the range of used technologies and scenarios. @Home is a new league in RoboCup 
with the aim to foster the development of applications in the domains of service and 
assistance robotics, ambient intelligence and human-robot interaction. In this book chapter, 
the underlying concepts of this new league are introduced. There are strong relations 
between the @Home league and the soccer competitions. An example is 'Natural Interaction 
with robotic systems'. If soccer robots are to play against humans, they should be able to 
understand the human environment, the 'umwelt' that humans are living in. After the 
introduction, we motivate the foundation of this new league by giving some philosophical 
background. 
Then, the structure and rules of the competition are explained. The league uses a set of 
independent benchmarks that test certain abilities in the domains of human robot 
interaction, manipulation, navigation, localization, and human and object recognition. 
Adapting, enhancing and integrating these benchmarks consequently over the years offer 
the opportunity to guide research and development toward robust, useful and applicable 
solutions.  
Not all benchmarks are predefined. An Open Challenge is provided as a platform to 
generate new, innovative and possibly unconventional ideas. Promising ideas are then used 
to adjust the road map of the league. The scope of necessary technologies is wide. Teams 
have to integrate many different technologies, communicate, exchange knowledge and 
develop multi-purpose components that can be transferred between different leagues to be 
successful in the competition. A central goal of @Home is to provide platforms for exchange 
and standardization of science and technology in the robotics domain. 
Section 4 points out how the @Home league is actually building on top of the technologies 
developed by doing robotic soccer for the past decade. The @Home league is not only using 
technologies of the soccer leagues, but it is also generating new technologies. By comparing 
robot vs. robot soccer with @Home, and regarding the technologies we probably need to 
win in 2050 from humans, it becomes clear that @Home is researching technologies that can 
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be transferred back to the soccer leagues once the robots start playing against humans. At 
the RoboCup world championships in Atlanta 2007 already the first action in this direction 
was demonstrated where the RoboCup trustee board played against the robot world 
champions of the Mid-size league. It is needless to say that the humans still played a lot 
better with the robots being fooled most of the time. Though it was an important step 
towards the big goal, it showed that the robot have no understanding of the world. 

 
2. Robotics: Philosophy of Mind Using a Screwdriver 
  

The title of this section is borrowed from I. Harvey (Harvey, 2000). He describes how the 
philosophical stance of the designer is reflected in the design choices being made during the 
creation of a robotic system. The background ideas of the designer are an important aspect 
of the design process. The @Home league addresses these philosophical stances of the robot 
designers by going into the real world where it just might be that the ideas and constructs 
that hold in an artificial environment (such as a soccer game) are not true and/or do not 
work anymore. Robotic systems that act in the real world are no longer shielded from 
unwanted influences. This implies also that the designers of these systems cannot hide from 
the problems of the real world. The idea behind robots playing soccer is to go from a static 
environment into a dynamic environment (Kitano et al., 1997). The idea behind robots 
assisting humans in a real world environment is to go from a dynamic and structured 
environment into a dynamic and unstructured environment that includes humans (van der 
Zant & Wisspeintner, 2005). 
Some of the advantages of going to the real world are that researchers can work on robots 
that might be able to do something useful in human society and that it is easier to 
demonstrate that working with robots is not only about making a great toy. These two 
aspects are covered in section 3.3.  
One point of view is that the RoboCup is a practical investigation of the mind-body 
problem. Basically there are two sides on this topic. Some claim that the mind and body can 
be treated as separate entities, often referred to as GOFAI systems (Good Old Fashioned 
Artificial Intelligence) or classical Artificial Intelligence. The New Artificial Intelligence or 
embodied cognitive science paradigm on the other hand states that the mind, body and 
environment are all connected. They should not be treated as separate entities that can be 
studied apart from each other. For an excellent introduction on these topics, see (Pfeifer & 
Scheier, 1999). If this is true then it is very important to pay close attention to the 
environment where the robots are functioning in. Having the real world as the environment 
of our robotic systems could mean that a shift in theories is necessary for the creation of 
artificial devices that exhibit general intelligence.  
Usually the goal of the RoboCup federation is captured in the “Winning Soccer in 2050” 
statement. This is not the only thing that RoboCup is about. It is stated very clearly 
RoboCup website that “RoboCup is an international joint project to promote AI, robotics, 
and related fields. It is an attempt to foster AI and intelligent robotics research by providing 
a standard problem where wide range of technologies can be integrated and examined.” 
Although it is clear that robotic soccer includes very important research topics, it might not 
address al the issues involved in the creation of robots that exhibit general intelligence. Even 
the best human soccer players do not always excell in general intelligence. It is therefore a 
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legitimate question to ask if robotic soccer will lead us towards robots that show intelligence 
on a broad level. 

  
3. @Home in a Nutshell  
  
3.1 The General Idea 
RoboCup@Home is a new league inside the RoboCup competitions that focuses on real-
world applications and human-machine interaction with autonomous robots. The aim is to 
foster the development of useful, general and robust robotic technologies and applications 
that can assist humans in everyday life. The competition consists of a series of predefined 
tests, an Open Challenge and the finals where the teams are free to demonstrate new 
abilities and robot applications. While in the beginning necessary base abilities are being 
developed, tests will focus more and more on real application scenarios with a rising level of 
uncertainty, requiring a high grade of system integration.  

 
3.2 The Scenario 
At the moment the competition takes place in is a constructed living room scenario. To 
foster general solutions, the scenario is not standardized or pre-defined So shape, walls, 
floor or furniture change every time. Within a few years some of the tests should be held in 
the real world environment like a real supermarket where the robots have to assist humans 
with shopping. To foster advance in technology and to keep the competition interesting, the 
scenario and the tests will steadily increase in complexity.  

 
3.3 Social Relevance 
The applications that are being tested for should have social relevance. Through showing 
what robots can already do, people can see for themselves what robots could do for them. It 
is important to create public awareness. Robots that assist humans in every day situation are 
easy to relate to. If robots are to be accepted by humans they should also be appealing 
There are several implications with the ‘social relevance’ argument. One of them is that the 
robots should behave appropriately if they ever are to be accepted. This is called 
‘robotiquette’ in (Dautenhahn, 2007). She argues that it is important that not only the robot 
is part of the research about robots, but also how humans react to them. 
Another aspect is that robots should be social. Humans interact differently with each other 
than with non-humans, such as animals, robots and objects. Social intelligence predates 
object intelligence. Primate intelligence evolved in social situations, where it was important 
to be smarter than the other primates of the group in order to create the best chance to 
procreate. This is called the social brain hypothesis (Dunbar R., 2003). Even animals that do 
not have the possibility to manipulate objects show social intelligence. This might imply that 
in order to create robots that show general intelligence, it is important that researchers create 
robots that exhibit social intelligence, also called sociable robots (Breazeal, 2002). 
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Figure 1. The @Home robot from the Pumas team (Mexico), lead by Jesus Savage, trying to 

convey some emotions. The first steps towards sociable robots? 

 
3.4 Tests 
Tests evaluate predefined base abilities which form the core of the league. Each test consists 
of a ‘proof of concept’ and a ‘general applicability’ phase. During the proof of concept 
uncertainty and complexity is limited by allowing the team modify the environment, doing 
the set up and the execution of a test. This ensures a low entry level for new teams. In the 
second phase the setting up and execution is done by external people with restrictions on 
the use of aiding technologies (like markers or external devices). In both cases set up time is 
limited to a few minutes to foster effective and simple calibration and set up procedures. For 
example, in the ‘Follow and Guide’ test, the robot has to follow a person and guide him back 
to the start location. The setup time is limited to a maximum of one minute including 
calibration on the person. The automatic calibration procedure can be started by a single 
push of a button or by using a voice command. In other tests the following questions are 
currently being addressed: 
- Can a robot recognize and identify persons? 
- Can it open a door? 
- Can it navigate robustly in natural environments ? 
- Is the robot save to handle? 
- Does it have an appealing appearance? 
- Does it allow for cooperation with humans  
- Can it communicate with other intelligent systems and humans  
- Can the robot manipulate random objects? 
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- Does it have a basic understanding of the world?  
The investigated capabilities will change over time and highly depend of the already 
achieved skills. The combination of predefined, independent tests and the Open Challenge, 
where these and new abilities should be integrated to form new application scenarios, 
support a gradual and iterative development. On purpose, the league does not have an 
ultimate goal like the soccer leagues do. Instead it functions more as a roadmap generator, 
with the league responding flexibly to new improvements in technology and new upcoming 
application. 

 
4. Winning in 2050? 
 

To win with soccer playing robots in 2050 implies that the robots should be humanoids and 
preferably androids (MacDorman & Ishiguro, 2006), with the same or similar physical 
capabilities that humans posses. The needed capabilities are still far away from what is 
common in the present day. It is the firm believe of the authors that the @Home league is 
investigating also the technologies that are needed by the soccer playing robots of the future. 
It is very likely that a lot of the science and technology from the @Home league will be 
transferred to the soccer leagues once they start to play against humans.  
 

Technology/environment Robot-robot 
soccer 

@Home Human-
robot soccer 

Object recognition + + + 
Navigation + + + 
Dynamic environment + + + 
Autonomy + + + 
Reliability + + + 
Specialized AI + + + 
General AI - + 0 
Language understanding - + + 
Natural human-robot interaction - + + 
Reasoning capabilities 0 + 0 
Adaptive vision 0 + + 
Adaptive behaviour 0 + + 
Recognition of human intentions - + + 
Understanding of human emotions - + + 
Recognition of human behaviour - + + 
Recognition of individuals  - + + 
Localization in unstructured environments - + + 
Learning by example - + + 
Manipulation of random objects - + 0 

Table 1. Overview of research aspects for robot vs. robot games, @Home league and humans 
vs. robot games. ‘-‘ means unlikely, ‘0’ means probably and ‘+’ means very likely 
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Figure 2. Human-robot interaction. In this picture the president of the RoboCup federation, 

Minoru Asada, is playing a game with the @Home robot from the RH2-Y team 
(Switzerland), lead by Jean-daniel Dessimoz 

 
Table 1 tries to give an overview of relevant research topics and requirements for playing 
soccer with robots playing against robots, for the @Home league and those that are probably 
required by androids winning a soccer game in 2050.  
At the moment issues such as the understanding of language or recognizing certain humans 
are not tackled. Issues such as the recognition of emotion are even further down the road. It 
is already difficult enough to recognize one’s own team mates and the analysis of the 
behaviour of the opponent is so difficult that hardly any team is trying it at all. Also 
localization is not easy, especially not on large soccer fields. Could this have something to 
do with the environment? Localization is usually about recognizing the corner poles, the 
white lines and the goals. But when I, as a human, am on a soccer field then there is usually 
one tribune (always empty in my case) and on the other side there are often trees or a 
clearing. I do not have to recognize the cornet poles, or recognize the goalkeeper’s face from 
a distance, or do complex mathematics on white lines in the grass… Instead I look if I see the 
tribune or the trees and I know exactly which way to dribble with the ball. Maybe it is also 
an idea, when one is working on a soccer robot, to take the rest of the world into account.  
In the first two years of the @Home competitions it became very clear how important soccer 
research has been and still is to be able to perform decently in the @Home league. For 
example, the Allemaniacs’ team (Schiffer et al., 2006), the @Home world champion in 2006 
and 2007 has been participating in the mid-size league for years, and they even used a 
modified mid-size league robot.  
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5. Future Work 
 

What can be expected in the near future of the @Home league? In the next five years the 
plan is to introduce cooperative tasks between humans and robot. An example would be 
cooking together, where the robot can get a recipe from the internet and stir a spoon around 
in the dough. Ambient intelligence will also come into focus. The robot should be able to 
interact with house hold devices and can function as the ultimate interface.  
The grasping of unknown object is a task that people in the league are already working on. 
In 2009 we plan to have the robots go shopping in a real supermarket (not an artificial 
scenario). Humans can have simple conversations with robots by use of natural language 
and gestures. One idea is to actually involve a developmental psychologist who assesses the 
robot to get an estimation of the age it would have were it a human. An example is 
occlusion; it takes a few years before the human infant realizes that an object is not gone 
when it is out of sight. Quite often the robotic systems are not much better than toddlers. 
Since it is measurable, we will probably introduce it. It requires natural interaction and 
would give an indication of the amount of human intelligence it possesses. Perhaps this 
could be a 21st century version of the all-too-famous Turing test. 

 
6. Conclusions 
 

RoboCup@Home is a league that has its foundations in robotic soccer. Technologies 
developed in soccer are being transferred to the @Home domain and on top op these 
technologies @Home might be able to give some more back. To reach the goal of winning in 
2050 it will be necessary to use technologies developed in the @Home league. Since @Home 
focuses on general artificial intelligence in real world scenarios, theories will probably be 
developed that are not being developed in the soccer scenarios. Especially if the brain, body 
and environment are considered to be a holistic system where interactions go in all 
directions, the environment should also be paid attention to. Therefore the soccer leagues 
might also want to experiment with more than the artificial cues that are available in a 
soccer game.  
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1. Introduction 
 

The development of mobile robotic systems is a demanding task regarding its complexity, 
required resources and skills in multiple fields such as software development, artificial 
intelligence, mechanical design, electrical engineering, signal processing, sensor technology 
or control theory. This holds true particularly for soccer playing robots, where additional 
aspects like high dynamics, cooperation and high physical stress have to be dealt with. In 
robot competitions such as RoboCup, additional skills in the domains of team, project and 
knowledge management are of importance. 
Having participated in RoboCup Middle Size League since 1998, Fraunhofer IAIS and FH 
Bonn-Rhein-Sieg have developed six generations of different mobile robot platforms. Like 
many other teams we faced several difficulties. These systems were often monolithic, highly 
integrated prototypes that took a long time to develop, they were high in costs and hard to 
maintain. Also robots tend to grow old quite quickly when used frequently, put under high 
physical stress or when the robot’s hardware simply gets outdated after a few years. 
Fluctuation of people combined with long training times for new team members and loss of 
knowledge are other difficulties we frequently experienced.  
In this chapter, we present methodologies to cope with such diverse difficulties by using 
modular, component-oriented design approaches for mobile robot prototyping. The 
approach should enable developers to focus on their specific domain, still being able to have 
a clear understanding of the entire system by help of different levels of abstraction and well 
defined interfaces to hardware and software modules. Furthermore, (re-)usability should be 
maximized by having well documented system components of manageable size.  
A concrete implementation of such an approach will be presented by way of the VolksBot 
concept (Wisspeintner et al. 2005). This project was started in September 2002 with the goal 
to create a multi-purpose, cost-effective and robust robot construction kit for advanced 
research, education as well as for application oriented prototyping.  
Originally being applied to indoor scenarios like RoboCup Middle Size, since 2004 the 
concept was extended to fulfil the demands of more real-life applications like outdoor use, 
higher payload, velocity or scalability in morphology and hardware configuration of the 
platform. 
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Component-based prototyping concepts have been applied successfully in developing 
robots mainly for indoor applications or in the field of education some of them using a 
construction kit.  The advantages of using a kit are quite obvious as this usually reduces 
development time and costs by fostering reuse of existing components. On the other hand, 
universal modules are not specialized, thus one loses in performance. There is always a 
trade off between the general applicability and the performance in modular approaches.  
Significant work has been done in the field of rapid prototyping of robots in the past. (Won 
et al., 2000) have shown that rapid prototyping is a viable method to create articulated 
structures of robotic systems. (Reshko et al., 2002) have illustrated methods to quickly 
produce prototypes of desired quality in considerably small time by using ready-made 
components such as servo motors, sensors, plastics parts and Lego blocks. 
Examples for robot construction kits mainly used for education and edutainment are Lego 
Mindstorms (Ferrari et al., 2001), Fischertechnik Mobile Robots (Fischertechnik), Tetrixx 
(Enderle et al., 2000) or the CubeSystem (Birk, 2004). Though aspects of modularity are 
addressed well by these systems, they are limited in onboard computational power and 
focus on miniaturization and low-cost hardware. As a consequence the aspect of 
application-oriented rapid prototyping of fully autonomous robots is hardly provided in 
these approaches and on-board perception is limited. On the other side, several robot 
platforms with higher complexity in sensors, actuators and higher processing power are 
usually specialized for a certain field of application or a certain scenario (Evolution 
Robotics) (K-Team) (ActiveMedia). Besides, many of such systems are specific in their 
morphology, their mechanics and hardware does not follow a construction kit approach. 
One exception is presented in the MoRob project with a focus on educational robotics 
(Gerecke et al., 2004). 
This chapter structures as follows. After having motivated the use of such component-based 
construction-kit approaches, we summarize the resulting design goals. Then we derive 
concrete design criteria from these goals and show the interrelation between them.  In the 
next section we show how applying these criteria have lead to a component pool in 
hardware, software and mechanics forming the VolksBot robot construction kit. In the 
following we illustrate how we used these components for prototyping of various robot 
platforms for different applications ranging from robot soccer to autonomous 
transportation, robot rescue and service robotics. The chapter ends with a conclusion and an 
outlook on future work. 

 
2. Modular Design 
 

With the aim to develop an approach for multi-purpose robot prototyping, several design 
goals in hardware and software can be defined which are illustrated in the following. The 
goals are labeled in brackets (G1-G12) for later reference.  
One of the major goals is to reduce costs, time and resources needed to conduct mobile 
robotic projects (G1). This should motivate more research groups from various backgrounds 
to start or continue activities related to mobile robotics in education and research. Also it 
should help to generate interest and open the market for new robot applications with more 
companies being willing to invest in robot technology and prototyping projects. 
The complexity of recent robotic systems grows constantly with the complexity of the 
applications they are designed for. Modern mobile robots usually require a variety of 
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different sensors, actuators and controllers but also algorithms and methods for signal 
processing, sensor data fusion, planning, localization, navigation and control of the robot, 
especially when being used in real world environments. The approach therefore should 
support the developers to manage this constantly growing system complexity (G2).  
The system should allow the exchange and reuse of existing components in hardware and 
software (G3).  For example it should not be necessary to start a system development from 
scratch every time a new robot needs to be built.     
Also, an already existing robot platform should be easily reconfigurable and extendable by 
use of these hardware and software components (G4). 
Reconfiguration and maintenance of the platform should be efficient and should not require 
special tools or machinery (G5).  This way, developers are independent from having access 
to special facilities and experts and have more time to spend on research and development.  
Often, groups already have worked in the domain of mobile robotics in the past. Therefore 
they should be able to efficiently integrate already existing technology into the system (G6).  
The approach should help to foster the exchange and distribution of knowledge (G7). The 
design of such systems usually requires the interplay of many different individual skills 
which are distributed over a group or multiple groups of people.   
The mechanics of the kit should be robust and scalable and allow for high payloads and 
high dynamics (G8). 
To offer a wide range of possible applications, the kit should allow for diverse robot variants 
for different scenarios (G9). 
The training periods for new users should be short (G10), so that they can produce results 
more quickly.  
Synergies should be achieved by help of standardization (G11). Setting standards in mobile 
robotics projects to foster synergy between different research groups is an active research 
topic (OMG).  Recently, Microsoft has introduced Robotics Studio (Microsoft) to foster 
exchange and synergy on the software level.  The RoboCup 4-legged league has given 
excellent examples how using a standardized platform in combination with consequent 
code sharing can accelerate research and development in this domain.  
 
Here is a summarization of the design goals: 

G1. Reduce costs, time and resources in mobile robotics projects 
G2. Be able to manage system complexity 
G3. Allow exchange and reuse of existing components 
G4. Allow easy reconfiguration and extension of the systems 
G5. Allow simple and efficient maintenance 
G6. Allow efficient integration of existing technology 
G7. Foster exchange of knowledge 
G8. Robust and scalable mechanical design  
G9. Allow for a wide range of robot variants and applications 
G10. Allow for short training periods of new users 
G11. Achieve synergies by standardization 
 

 
From these goals, we derived various design criteria for the construction kit in hardware, 
software and mechanics. 
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To reduce the costs and efforts for manufacturing and design of special components, 
standardized, available industrial components should be used if applicable (D1).  
To keep the system complexity low and to be able to maintain the construction kit, the 
amount of components should be kept minimal, yet offering a high grade of 
reconfigurability.  (D2) 
Components should posses a fine granularity and should be universal to ensure reuse (D3).  
A comprehensive mechanical component library should be built up using standard CAD 
software tools (D4). Before actually building the robot, a complete design and simulation 
should be done in CAD avoiding major design errors and allowing fast iterations during the 
design phase. 
The same holds true for software development, where a software library should be built up 
using state-of-the-art software development standards regarding architecture, 
documentation and coding conventions (D5).  
Besides development of own software, existing software and frameworks should be used 
and integrated into the approach (D6).  
When developing a component in hardware or software, documentation standards for 
developers and users should be applied (D7). 
Different layers of abstraction should be provided during system integration and 
development in hardware and software (D8). This should help to reduce training times and 
allow a wide range of people from different technical background to work with the system. 
Clear interface definitions for hardware and software components have to be defined and 
maintained (D9).  
Furthermore to keep the number of possible variants high and the system complexity low, 
dependencies between components should be avoided (D10). 
 
Here is a summarization of the design criteria: 

D1.  Extensive use of standardized, industrial  components 
D2.   Small number of different components with high reconfigurability 
D3.  Fine granularity of modules to ensure reuse  
D4.  Build up mechanical component library in CAD 
D5.  Build up software library with documentation and coding standards 
D6.  Use and integrate existing software and frameworks 
D7.  Apply documentation standards for components 
D8.  Introduce multiple abstraction layers 
D9.  Clear interface definitions for hardware and software components 
D10. Avoid dependencies between components 
  

The following table gives an overview of the relations between the design goals and the 
design criteria mentioned above: 
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 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 
G1 X X X X X X    X 
G2  X      X X X 
G3 X X X  X X   X X 
G4 X X X X X   X X X 
G5 X X  X   X   X 
G6 X     X   X X 
G7     X X X X X X 
G8 X  X        
G9   X       X 

G10  X   X X X X X X 
G11 X     X     

 
Table 1. Relations between design goals and design criteria 

 

3. Component Pool 
 

Having applied the design criteria mentioned in the previous section, a set of standard 
components in mechanics, hardware and software has been developed to form the VolksBot 
construction kit. Fig. 1 shows how different components were assembled to form the first 
version of a VolksBot Indoor robot.  Here, a differential drive unit, a catadioptric vision 
system, batteries, a control notebook and a motor controller are mounted on the central base 
frame consisting of X-beams. A modular software framework is used for the robot control.  

 
Fig.1. The first VolksBot Indoor variant 

 
3.1 Mechanics 
All mechanical components are modeled in SolidWorks (SolidWorks), a commercial CAD 
software tool, building up a common component library in CAD. This library helps to 
reduce mechanical design efforts enormously as new robot variants are designed mostly by 
recombination and adaptation of existing parts.  
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3.1.1 Frame elements 
In accordance to the design criteria listed in the last chapter, we decided to use standard 
aluminum machine construction extrusions (X-beams) of 20mm width and proper 
connectors to build up the robot’s main frame. They provide high rigidity, are light weight 
and offer a variety of different connections. 
Size and shape of the robot´s main frame can be adapted individually to the needs by simple 
mechanical processing, i.e. cutting and screwing. By using pluggable t-nut-connectors, it is 
possible to establish new connections without having to decompose the frame. All sides of 
the X-beams can be used to connect to additional elements. In our design, all hardware 
components are connected to the main-frame. Therefore only geometrical dependencies 
between the component and the main-frame occur, not between the components 
themselves. All components like batteries, motor controller, drive units and sensors are 
connected to a rectangular single layered main frame. With this, the repositioning of 
components and scaling of the platform can be easily done. 

 
3.1.2 Drive system 
Fig.2 illustrates the frame construction for the first VolksBot Indoor versions with 
differential and holonomic drive.  
The differential drive unit consists of a 20W DC motor, a claw coupling and a bearing block. 
The holonomic drive consists of three units which can directly replace the differential drive 
without any further modification of the robot. The unit itself is built up the same way as the 
differential drive, except for using stronger motors for higher speed and acceleration and 
using ”Cat-Trak” Transwheels allowing a movement in X, Y and φ. A triangular aluminum 
adapter block is used to attach the two front drive-units to the main frame by simple screw 
connection, providing an angle of 120 degrees between the wheel axis. The third wheel is 
being directly attached to the main frame. 

 

   
Fig.2. Main frames for differential (left) and holonomic drive (right) of VolksBot Indoor 

 
3.1.3 Universal Drive Unit 
The indoor base platforms presented above use a single 40x40cm frame which allows a 
light-weight construction, but limits the kinds of possible applications. To account for 
increased rigidity, payload and larger size of the robots, we introduce a double layered main 
frame consisting of 2 parallel X-beams and a new Universal Drive Unit (UDU). This resulted 
in the development of VolksBot RT (cf. section 4.1)  
The wheels on each side of the VolksBot RT robot are driven by a single 150W DC motor. 
The force transmission to each wheel is achieved by using the Universal Drive Units (UDU), 
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a component to establish flexible chain-drive systems. In Fig. 5 (left), a closer view with the 
wheels removed, shows that a simple repetition of these units in an assembly can create 
drive systems with a varying number of actuated wheels.  
The UDUs (Fig. 5 right) can be mounted with screw connection at various positions along 
the double layered base frame, which makes it possible to customize the wheel distances 
easily. The steel shaft of 10mm diameter is supported by two aluminum bearing blocks 
which allow for payloads of up to 80kg. The shaft can be directly driven by a motor (direct 
drive) or driven indirectly by belt or chain via the attached sprockets. We use a chain driven 
system for compactness reasons. The entire drive unit can be encapsulated within the span 
of 20mm, i.e. the thickness of one X-beam. This allows a complete housing of the 
transmission.  
 

   
Fig.5. Double layered main frame with attached UDUs (left) and detailed view of UDU (right) 
 
Furthermore, a set of air-filled tires with various diameter and profile provide proper 
mobility, ground clearance, grip and damping of the robot. 
In order to drive the shaft, it is connected to a motor block through a claw coupling. Once 
assembled, it can be used to either drive other UDUs via chain transmission or drive the 
wheels directly. In case of different motors only the motor block needs to be modified. A 
chain transmits the possibly high torque from the 90W or 150W DC-motor which can be 
equipped with a planetary gear of various ratio ranging from 1:14 to 1:150. It can transmit 
forces of up to 3000N. The connection of the various tires, ranging from 18 to 40cm diameter, 
to the shaft requires only one standard hub connector.  

 
3.2 Hardware Components 
Also in hardware, a component library has been built up and is constantly being enlarged. 
The library holds commercially available products as well as own developments. Already 
integrated commercial components include (D)GPS, laser range finder, inertia sensors, 
industrial  and barebone PC´s, compass, stereo and regular cameras and manipulators.  
After the selection of new hardware, the component is tested and interfaces are defined. 
Providing a demo application and documentation for each component allows efficient 
testing and integration when a new platform is being built. 
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In the following an overview of hardware components developed for the construction kit is 
given.  

 
3.2.1 Motor controllers  
A specially designed motor controller TMC200 is connected via serial interface to the control 
PC. The controller offers odometric data analysis, thermal motor protection, battery voltage 
monitoring, velocity and current PID control for three DC-motors up to 200 Watts power. 
In 2006 a new version called VMC was developed with improved properties in hardware 
I/O and thermal dissipation. It can be easily exchanged with the old component, and 
neither mechanics nor software require any structural modifications. 
The component integrates also well in other robot platforms. For example, three of the four 
most successful teams in the RoboCup Middlesize League in the World Championships 
2006 in Bremen used it in diverse robots. 

 
3.2.2 AISVision 
As a requirement for the soccer robots used in RoboCup Middle Size League a catadioptric 
vision system AISVision was developed. The vision system includes an IEEE1394 CCD 
camera and a hyperbolic mirror as shown in Figure 6 (left). Before construction, the system 
was designed entirely in simulation using the ray-tracing software POV-Ray (POV-Ray). In 
an iterative process, all relevant geometry parameters of the system were optimized for the 
use on a RoboCup Middle Size field. These include height of the mirror with respect to the 
camera, height of the entire vision-system above the ground, diameter of the mirror, focal 
distance of the camera and especially the two parameters a and b of the mirrors hyperbolic 
surface equation (1) with r being the radius and z the dimension along the optical axis. 

 

1
22

=−
b
r

a
z  

(1) 

 
The criteria for this optimization were full visibility of all landmarks from any position in 
the field, including goals and corner-posts, and a good visibility of the close region. The 
rendered and the real camera image are depicted in Fig. 6 (center, right). The optimization 
can be repeated for any other scenario with the described method. Different cameras have 
been already integrated, ranging from cheap webcams to sophisticated industrial cameras. 
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Fig.6. AISVision system (left), rendered (center) and real camera image (right) 
 
3.2.3 3D Laser Scanner 
A new continuously rotating 3D laser scanner was developed by extending the concept of 
the existing tilting 3D scanner (Surmann et al., 2001). Mounted on the robot, it is used for 3D 
mapping, navigation and localization in particular being useful when applied to outdoor 
scenarios. Two industrial laser range finders rotate around the vertical axis of the system, 
acquiring depth and intensity information for a 360° field of view. 
 

 
Fig. 7. CAD drawing of the new 3D Scanner 
 
The system consists of 2 SICK LMS 291-S05 laser range finders mounted on an angular 
adjuster plate. The scanners have an apex angle of 180 and a resolution from 1 to 0.25. The 
maximum range of the scanners is 80 meters. Being able to adjust the angle of the scan 
planes allows us to increase the scan resolution or to increase the rotation speed while 
cutting off the irrelevant top and the lower part of the scanned sphere. The system is 
equipped with an RS232 and a CAN interface, inputs for the hall sensors and some general 
purpose digital inputs.  Contact rings are used to power the laser scanners and to transmit 
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the sensor data via RS485 from the scanners. The entire system is IP65 water resistant, 
weighs 13kg and has a size of  90×330×250mm. The scan resolution depends on the rotation 
speed and the angular adjustment of the scanners. At an angular adjustment of 60 and a 
rotation at 0.45Hz we obtain a vertical resolution of 0.5 and a horizontal resolution of 1.7 
with an update frequency of 0.9Hz. A separate control PC is used for post processing of the 
laser scanner data.  

 
3.2.6 Kicking device 
For participating in RoboCup, a new simple but effective pneumatic device for lift-kicking a 
ball was designed and built up within 2 days. The kicking device mainly consists of two X-
beams, the same kind already used for the main-frame of the VolksBot. The X-beams form a 
vertical, adjustable lever mechanism, actuated by a pneumatic cylinder. By adjusting the 
cylinder-lever attachment, the parabolic path of the kicked ball can be tuned. Having an 
initial angle of 45° and speed of 7 m/s, a flight over a distance of 5 m can be reached.  
In spite of the short development time, this component has been in use with only minor 
modifications for years now. A structural similar, but bigger variant has been built for the 
goalkeeper robot. 

 
3.3 Component based Software Design 
As valid for mechanics and hardware components, also in software, a clear framework 
concept with well-defined components is being used. We use ICONNECT (Sicheneder et al., 
1998) as framework for the visual composition of signal flow graphs. A main advantage of 
ICONNECT compared to similar approaches (The MathWorks, Inc.) (Kalman, 1995) is a 
unique feature that allows to execute module graphs on a PC in real-time without 
recompilation of the whole module graph and without extra hardware needed. A module in 
ICONNECT consists of a compiled DLL and has a visual black-box representation with 
input and output pins in the graph editor. For each module, relevant parameters can be 
entered in a parameter dialog or can be changed during run-time via separate input pins. In 
Fig. 3 the ICONNECT programming environment is depicted, including an example of an 
easy to build graphical user interface.  
 

 
Fig. 8. ICONNECT programming environment with graph, GUI and module library 
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The existing module library of ICONNECT already contains a lot of functionality needed for 
controlling a mobile robot including signal processing of sensor data, image processing, 
control, hardware IO, logic, neural networks, network communication, data visualization 
and GUI design. 
Except from recombining already existing modules, own modules can be written in C++ by 
use of existing module templates which can be filled with user-specific code. With this 
method, we extended the ICONNECT framework and added more robot-specific software 
modules to the library such as: the color vision library AISVision, integration of OpenCV 
(OpenCV), an interface to Matlab (The MathWorks, Inc.), a corba server (OMG), a module 
for integration of Dual Dynamics behaviors (Jäger & Christaller, 1997) or a simulator 
module based on ODE (ODE). For each new module, a HTML documentation has to be 
written, and a compact, self-explaining example graph has to be built. Combined with the 
aim to build only modules of fine granular functionality, this fosters reuse and reduces 
work-in time when new team members enter the project. With this approach, loss of 
knowledge is being reduced and even people with background other than computer science 
are able to program the robot on this abstraction level. This approach is especially beneficial 
for projects with many people of different background working together, like e.g. in 
RoboCup – as compatibility between modules is ensured by this clear interface definition 
and all people can have a clear and quite intuitive understanding of the entire robot control 
software. 
 

 
Fig. 9. A robot control graph in ICONNECT including data acquisition, signal processing, 

behavior and motor control 
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Combined with the advantages mentioned above, the use of such a framework sets some 
restrictions to the developer as it limits the choice of possible methodologies when 
developing software. Another aspect is the use of a particular operating system, such as 
Windows, which is required for the ICONNECT framework. An approach to overcome 
these limitations is the use of a more general software library which does not provide all the 
advantages of a differentiated framework like ICONNECT but may be appealing to a wider 
group of users.  
This way, we started to standardize our inhouse software developments by building a new 
C++ software library called FAIRLib (Fraunhofer Autonomous Intelligent Robot Library). 
Here various algorithms and methods in the context of robot navigation, localization 
mapping, sensor processing and also hardware I/O are being integrated to make them more 
interchangable and usable.  
The FAIRLib offers multiple abstraction levels with the low level consisting of basic I/O 
functions, data types, and a math library. Here, dependencies on specific hardware and 
operating systems are tolerated as they are unavoidable. The higher levels contain more 
sophisticated algorithms. Here the described dependencies can and should be avoided 
which allows to use the same set of methods for different hardware and operating systems.  
The integration of the FAIRLib with the ICONNECT framework was another demand which 
has been met. Now, before programming an ICONNECT module, the functionality is first 
implemented into the FAIRLib which ensures even more universal use and reuse by a larger 
group of users. 

 
4 Application oriented prototyping 
 

Using the described component pools in hardware, software and mechanics various robot 
platforms have been designed for different scenarios. To show the feasibility of the 
construction kit approach, some of them are described in the following. 

 
4.1 VolksBot variants 
After the development of the first VolksBot Indoor variant (Fig. 1) mentioned in chapter 3, 
the idea had risen to extend the VolksBot concept to fit to the needs of rough terrain 
environments and real life applications. As a consequence new demands have to be set for 
the system including high payload, mobility, ground clearance and rigidity. 
The recombination of the UDU and the double layered main frame enabled us to build 3 
different RT (Rough Terrain) variants in a very short amount of time. This is due to the fact 
that we mainly reused existing VolksBot components combined with available standard 
parts. Only four different parts had to be machined to build up the Universal Drive Unit. 
Equipped with two 150 watt DC-Motors the 6-wheeled variant (Fig. 10) is able to climb a 
slope of 43 degrees and has a maximum speed of 1.3m/s. As the motor gears can be 
exchanged as easily as for the indoor version, the maximum speed can be adjusted 
according to the demands. So with little effort different variants in size and wheel 
configuration of the VolksBot RT can be built. The 3-wheeled, 4-wheeled and 6-wheeled 
variants are depicted in Fig. 10. 
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Fig.10. 3-wheeled, 4-wheeled and 6-wheeled variant of VolksBot RT 
 
After the RT development, the original indoor version has been redesigned to take 
advantage of the improved rigidity and payload of the RT as well as to maintain 
compatibility between the systems. The redesign included the use of the double-layered 
frame and the UDU. 90W DC motors and larger wheels with 180mm diameter were 
integrated. With its compact size, and high payload this platform allows for various indoor 
tasks as e.g. the use in the RoboCup@Home domain (see section 4.2) or the use as an 
educational platform for mechatronics in vocational schools called ProfiBot (ProfiBot). 
 

 
Fig.11. New indoor variant on the basis of RT 
 
All previously described platforms still have limitations with respect to mobility due to their 
fixed body structure. An interesting approach to overcome these limitations with a wheeled 
robot platform is shown by the Shrimp Rover from EPFL (Estier et al., 2000) which uses a 
parallel bogey mechanism to passively adapt the wheel position on uneven terrain. We 
remodeled and simplified the parallel bogey as a component compatible to the RT kit. The 
direct drive for the wheels was replaced by a strand of a central hinge unit mounted to an 
upper and lower horizontal lever unit connecting two vertical leg units. Legs and levers 
build a parallelogram. Levers, hinge and legs are double bared such that they can 
accommodate an inlying chained transmission line. All in all we use four chain drives and 
eight UDUs (see Fig. 12 left). The new component offers various advantages compared to 
the original design. It only consists of standardized parts and easily allows for variation and 
expansion of the design.  
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Fig.12. CAD drawing of the parallel bogey component (left) and the complete assembly of 

VolksBot XT (right) 
 
The indirect chain drive system uses only two actuators and hence can be easily scaled 
according to motor power and payload. Furthermore, the entire drive system including the 
motors can be encapsulated and hence protected inside the robots frame. We have modeled 
an enhanced 6-wheeled variant which we called XT (Fig. 12 right), using the new parallel 
bogey component and tested its performance in ODE, a physical simulator. An increase of 
the mobility performance was achieved by use of a genetic algorithm which optimized a set 
of the robots geometrical parameters in ODE (Wisspeintner et al., 2006). Fig. 13 illustrates 
the result of this optimization with the robot being able to climb different kinds of stairs and 
moving over a random step field as used in RoboCup Rescue. 
 

 

 
Fig. 13. VolksBot XT climbing mildly inclined stairs outdoors, a steep staircase indoors and 

moving over a random step field 
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4.2 RoboCup 
Various development projects with VolksBot have been conducted in the context of the 
RoboCup competitions since 2004. We as well as other teams are using different VolksBot 
platforms and components to participate in the MiddleSize, Rescue and @Home league. 
Some of these platforms are presented in the following.  
 

     
Fig. 14. VolksBots in RoboCup Middle Size (left), Rescue (center) and @Home league (right) 

 
4.2.1 Middle Size League 
In the beginning of 2004 an international student-team (AIS/BIT) using VolksBot was built 
up to participate in RoboCup Middle Size League (MSL). The main demands on MSL robots 
are quite different from other scenarios, requiring higher dynamics, superior motion control 
and real time color vision. To meet these demands the team had to introduce only a few 
additional plug-in components to the existing system. Participation in MSL demanded 
better image quality especially in high dynamic situations. Therefor the web-cams were 
replaced by Sony DFW-500 IEEE1394 cameras with very few adjustments. 
All of these modifications in hardware required only minor software changes due to the 
component-based structure of ICONNECT. As each hardware component is directly related 
to one module, only the module itself had to be changed, without affecting the entire 
system. This also hold true for the behavior architecture itself, where we focused on the use 
of Dual Dynamics [14], an architecture based on dynamical systems. We extended the DD-
Designer tool to directly generate ICONNECT modules, which made the behavior become 
an easily interchangeable component. 
An important aspect of the development process is simulation. A module incorporating 
physical simulation of robots based on the ODE engine was developed. It has the same 
interfaces as the hardware, so the development of behaviors can be done without any 
special treatment, just by replacing the simulator with the corresponding hardware access 
modules in the graph. 
Later developments included the integration the holonomic drive unit, the new motor 
controller VMC as well as a more compact frame.  Further developments in the soccer 
domain include the design of an Outdoor soccer variant (Fraunhofer IAIS). 
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4.2.2 Rescue 
The 6-wheeled version of VolksBot RT was used as base platform at the RoboCup Rescue 
Workshop 2004 in Rome. There, within 15 hours of lab-activities, two groups of three and 
six persons - with no prior experience of the system - worked together to build a functional 
rescue robot with autonomous behavior which has been demonstrated at the end of the 
workshop. 
The task of one group was to build up the entire control system on the robot including, 
signal processing of laser-scanner data, image-processing, compression and WLAN 
transmission of the AISVision image stream, interfaces for teleoperation and manual 
override, autonomous behavior and motor-control. An obstacle-avoidance method was 
modified to achieve the desired (semi-)autonomous behaviors. 
The task of the other group, dealing with human-robot interfaces, was to build an interface 
for the operator including visualization of the robots state, camera image and laser-scanner 
data. Further on it was required to set the robots state e.g. from manual to autonomous and 
build an interface to joystick and throttle for proper tele-operation. 
The two groups worked together well, first defining the interfaces then testing the results 
iteratively. In summary it can be said that the VolksBot concept of rapid system 
development worked out resulting in a running system within very short time. 

 
4.2.3 @Home 
For the RoboCup World Championships 2007 in Atlanta a VolksBot robot was prepared to 
take part in the @Home league about 3 weeks before the tournament. Thanks to the modular 
design, it was possible to integrate two laptops and various sensors on the robot within the 
short time limit by a small team consisting of only two persons. With reuse of existing MSL 
and FAIRlib software, it was possible to participate in 3 different tests and the Open 
Challenge, almost reaching the finals. Fig. 15 shows the CAD design of a new @Home robot 
with integrated laser range finder, stereo camera, pan–tilt unit and a Katana arm from 
Neuronics. The robot construction is will be finished in autumn 2007 and will be used in 
future @Home competitions. 
  

 
Fig.15. CAD model of the @Home VolksBot with integrated laser range finder, stereo camera 

and a Katana arm 
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4.3 Real World Applications 
Besides application in RoboCup, the VolksBot construction kit has been applied to various 
other domains like autonomous transportation, surveillance or even underwater robotics. 

 
4.3.1 PeopleMover 
The PeopleMover is an extended version of the three-wheeled RT variant introduced in 
section 3. By selecting a high gear ratio, elongating the base frame, adding additional 
sensors and a few mechanical components, it is capable of autonomously transporting a 
person on a predefined track while avoiding obstacles. The reuse of software developed for 
the RoboCup Rescue workshop 2004 helped to build this prototype used for demonstration 
purposes within only 1 week. 
 

 
Fig.15. PeopleMover, a prototype of an intelligent vehicle on VolksBot basis 

 
4.3.2 MarBot 
In cooperation with the Alfred-Wegener-Institute for Polar and Marine Research (Alfred 
Wegener Institut) we are developing an autonomous underwater robot for marine seabed 
analysis on the basis of the VolksBot kit. Instead of providing a complete housing for the 
robot’s, only the robots sensitive hardware parts like the motor, the motor controller, the 
batteries or the control PC had to be shielded from the surrounding salt water.  Besides the 
underwater environment the robot was designed for, various other demands had to be met 
regarding the design of the MarBot. Payload and size of the platform had to be increased to 
allow the installation of additional sensors and actuators like a mass spectrometer for 
advanced soil analysis which is mounted on a three-axis manipulator. Therefore an 
exchangeable center frame was designed carrying the additional hardware.  Also the 
ground clearance had to be increased to 400mm to minimize the dispersion of sediments 
while driving. The resulting platform is illustrated in Fig. 16. It has six actuated wheels of 
400mm diameter, a total size of 1200x700x650mm, a maximum speed of 1m/s and it weighs 
30kg. The construction followed the design principles of the VolksBot RT series using the 
UDU with chain transmission. Only a few drive unit parts like the bearing blocks and 
bearings had to be replaced by plastic parts to avoid corrosion. 
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A Nano ITX barebone PC is used for the control of the robot. It can communicate to a base 
station via WLAN and UDP connection in shallow water allowing remote control and 
monitoring of the sensor data. 
In software, both, a cockpit for the operator and the robot control software has been 
implemented in ICONNECT by use of the existing module library. Future development will 
include autonomous operation by use of multiple sensors like GPS, IMU, compass and 
vision allowing the robot to go from shallow water into depths of up to 30m. 
 

   
Fig. 16. CAD assembly (left) and image of MarBot (right), an underwater VolksBot variant 

 
4.3.3 FuelBot 
In cooperation with the Fraunhofer Institute ISE (Fraunhofer ISE) we developed a VolksBot 
variant which uses a fuel cell as central power supply. The fuel cell provides up to 400W 
power at 24 VDC. Depending on the mode of operation and the size of the metal hydride 
tanks filled with hydrogen it allows up to 24h of continuous operation. In this case, applying 
our prototyping concept allowed us to design the robot around the existing fuel cell, which 
is another good indicator for the flexibility of the concept. A VolksBot RT3 variant was used 
as the basis for this development. The robot then was equipped with a SICK Laserscanner, 
an industrial PC and a TFT display and was presented at the Hannover fair 2007 in 
Germany. 
 

   
Fig. 17. CAD assembly (left) and image of FuelBot (right), a fuel cell powered VolksBot 
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6. Conclusion 
 

In this chapter we have presented the a concept for application oriented prototyping of 
mobile robots. After defining design goals and deriving design criteria, we presented the 
mechanical, hardware and software components which followed these criteria and form the 
VolksBot construction kit. Then, variants of robot platforms for diverse applications were 
presented, including general platforms for indoor (VolksBot Indoor) and outdoor (VolksBot 
RT) use, a platform for high mobility applications (VolksBot XT), robots for participation in  
the Robocup Middle Size, Rescue and @Home league, a demonstrator for autonomous 
transportation (PeopleMover), an underwater variant (MarBot) and finally a fuel cell 
powered VolksBot (FuelBot).  
Having successfully designed and constructed this number of robots indicates the feasibility 
and effectiveness of our design approach. Future work will include a constant enhancement 
of the construction kit allowing for even more applications. This includes the development 
of a modular, steerable drive unit, the use of tracks instead of wheels and a redesign of the 
XT variant for even higher mobility and payload. In software the FAIRlib will be further 
developed, including reusable modules for indoor and outdoor localization and navigation 
and various functionality in the @Home domain. 
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1. Introduction    
 

In this chapter, we introduce the recent progress of sharPKUngfu Team which participates 
in the RoboCup Four-Legged League since 2004. sharPKUngfu Team is a robot soccer team 
from Peking University, China. In July 2005, we got the third place in the  RoboCup China 
Open. In June 2006, our sharPKUngfu Team has participated in the technical challenge of 
RoboCup 2006. In this event, our Medal Awarding challenge got the eighth place in the Open 
Challenge. In October 2006, we got the champion in the RoboCup China Open 2006, both in 
soccer competition and technical challenge. In July 2007, we participate in the RoboCup 2007 
and got the fourth place in the technical challenge. Our research in robot soccer focuses on 
robot vision, multi-robot cooperation strategy, collaborative localization in dynamic 
environment, quadruped gaits optimization and intelligent behavior.  
We focus this chapter on localization and gait optimization which are the fundamental parts 
in soccer robotics. Recently, we successfully apply self-learning image-retrieval approach 
and collaboration in self localization in robot soccer. This improvement eliminates the 
problems of image-retrieval method and collaboration mentioned in previous research. By 
using this approach, robots can play soccer under more natural conditions towards real 
human soccer environment. We organize the localization part as follows. At first, a brief 
overview of current self-localization approaches is presented. Secondly, we introduce the 
human cognition inspired localization with self-learning experience. Specific algorithms for 
image features collection and self-learning process are described. Then, the dynamic 
reference object based method for collaborative localization is demonstrated in detail. 
Experimental results in real robot soccer are shown in the end. We also discuss current 
challenges and future works of localization in soccer robotics. 
How to get high-speed walking and running gaits is another problem in soccer robotics. 
Different to existing literature which uses Genetic Algorithms (GA) based gait optimization 
methods, we present the implementation of Particle Swarm Optimization (PSO) in 
generating high-speed gaits for a quadruped robot, specifically the Aibo, which is the 
commercial robot made in Sony. PSO has been proven to be effective in solving many global 
optimization problems and in some areas outperform many other optimization approaches 
including Genetic Algorithms. In this part, at first, we overview the basic PSO and Adaptive 
PSO (APSO) with comparison to other optimization approaches. After that, with the 
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knowledge of using higher lever parameters to represent the gait which focus on the stance 
of the body and the trajectories of the paw, the inverse kinematics model is explained. 
Moreover, the control parameters and optimization problem are proposed. In addition, how 
to implement PSO in the quadruped gaits learning is introduced in detail. The whole 
learning process is running automatically by the robot with onboard processor. In robot 
experiments, we achieved an effective gait faster than previous hand-tuned gaits, using 
Aibo as the test platform. 
Our progress of intelligent behaviors in real soccer competition is described briefly in the 
end of the chapter. All the details about real robot experiments and how to use the 
debugging tools can be found in (Wang, 2006b) or the official website of sharPKUngfu team. 

 
2. Multi-Robot Collaborative Localization 
 

In soccer robotics, for example in the RoboCup, several probabilistic methods for global self- 
localization have been implemented in various teams from different leagues (eg. Fox et al., 
2000; Röfer et al., 2003; Schmitt et al., 2002). However, most current localization approaches 
used in robot soccer depend on standard landmarks and static environment. On the move to 
real human soccer conditions, current localization approaches in robot soccer seem not 
enough. In the human soccer, there are two aspects which may inspire the self localization 
of mobile robot systems. On the one hand, the features surrounding the soccer field may be 
exploited as the sensory information in probabilistic approaches. Inspired by the features, 
some robot systems have applied image-retrieval approach in localization (Wolf et al., 2005; 
Wang et al., 2006a, 2006b). There are several limitations by using such image-retrieval 
method. First, the computational cost of this approach is expensive. Besides, the 
requirement of building a huge database is not so practical, especially in the complex 
environment. On the other hand, collaboration among the robot team, which is only used in 
the strategy modules of current robot soccer teams, may be considered as another part of the 
sensory information. Previous research in localization has proven that the cooperation in 
self-localization among multiple robots has impressive performance in real robot systems 
(see Arkin & Balch, 1998 for overview). The limitation of such robot systems is that the robot 
needs to identify other one precisely. It is quite difficult to perform collaborative localization 
for robots dealing with situations where they can detect but not identify other robots. In 
addition, taking the uncertainty of sensors into account, the result of detecting individual 
robot is not so reliable. Those limitations of the approach make it not so applicable for real 
robots localizing in complex environments. 
To apply image-retrieval approach and collaboration in self localization in robot soccer, we 
focus our work on two aspects. In the image-retrieval system, an efficient method of 
calculating image features is implemented. To simulate real human soccer conditions, 
colourful advertisement is placed around the field which is similar to the real soccer field. 
Our method divides one image into several parts to calculate features respectively. To 
construct the image feature database, the robot learns the relationship between images and 
positions autonomously. This improvement eliminates the problems of image-retrieval 
method mentioned in previous research (Wolf et al., 2005). By using the efficient approach, 
robots can play soccer under more natural conditions towards real human soccer 
environment. In addition, to introduce collaboration among team members in localization 
module, we integrate the image-retrieval approach with collaboration. In real robot soccer, it 
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may not so easy to identify the specific robot who is nearby, especially in the dynamic 
environment of soccer competitions. In human soccer, players can localize in the field by the 
distance to ball and team members. Inspired by this technique, a dynamic reference object 
based method is implemented in the real robot competition. This collaborative approach can 
improve the self localization in the field with less artificial landmarks. Positive impact on 
localization through our approach is shown in experiments using the Sony Aibo ERS-7 robot. 
 
2.1 Landmark & Experience Based Markov Localization 
To improve the probabilistic approach, we created an efficient method to construct 
environment features as experience, which is collected by the robot autonomously. By using 
such experience, robot can localize in the field with less artificial landmarks towards real 
human soccer environment. 
Most robot localization systems use landmarks as the tool to predict and correct current 
positions of mobile robots. For example, (Röfer et al., 2003) proposed and improved the 
landmark based Markov localization. In this approach, the current position of the robot is 
modelled as the density of a set of particles which are seen as the prediction of the location. 
Initially, at time t , each location l has a belief: 
 

← (0)( ) ( )t tBel l P L  (1) 
 
To update the belief of robot possible location, at first, this approach uses the new odometry 
reading to : 
 

− − −← ∫( ) ( | , ) ( )t t tBel l P l o l Bel l dl  (2) 

 
If robot receives new sensory information ts , then it updates the belief with α being the 
normalizing constant: 
 

α←( ) ( | ) ( )t t tBel l P s l Bel l  (3) 
 
Considering the mobile robot with complex motions, let the geometric centre of robot body 
as the location vector φ , which contains the x/y- global coordinates of the centre point. 
Another vector θ  is defined as the heading direction. Then every particle is updated by the 
motion model as follows when the robot moves: 
 

φ φ −= + Δ1t t t  (4) 
 
where Δt  represents the displacement in x/y coordinates and heading direction. 
To implement image retrieval system in Markov localization, we divide the sensory update 
into two parts: updating position probability by landmark perception and experience 
matching. If the robot recognizes landmarks well enough, landmark based sensor model 
will update the belief of position with the new landmark reading ts : 
 

φ β φ φ←( ) ( | ) ( )t t t t t tBel P s Bel  (5) 
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where β  is a normalizing constant. It is natural that the robot may miss some landmarks 
with real-time recognition for a period. Thus, we set 1( )N t  which is the amount of lasting 
frames of having no landmark perception from t  as a condition to activate the experience 
system. If 1( )N t  is great enough, the experience based sensor model will update the 
probability as follows with te  being the new reading experience with γ being the 
normalizing constant different from β : 
 

φ γ φ φ←( ) ( | ) ( )t t t t t tBel P e Bel  (6) 

 
2.2 Experience Construction 
The feature that is exploited from images with no landmark in the view, and represents the 
invariant character of images obtained at positions where collisions and other negative 
effects more likely occur is defined as Experience. In our system, we make the robot to collect 
the image features autonomously, which is named self-learning experience. The experience 
contains image features in divided areas and the whole image respectively. In the following 
paragraphs, we introduce our efficient method to construct experience in detail. 
(a) Image Features in Divided Areas 
In our method, we divide one image which is obtained by the robot camera into six parts. 
First, image features including average colour value ,i jf  and colour variance id  in the 
divided areas are calculated by the following equations: 
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where ,i jf  is the average value in the colour channel j  of the area i . [ ][ ][ ]M y j x  represents 
the value in the colour channel j  at the position (x, y) in the image. iN  is the number of the 
pixels in area i . Clearly, ,i jf  is in the range from 0 to 255. 
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where i=1, 2, 3, 4, 5, 6. id  is in the range from 0 to 382.5. When the value of colour variance 
in the certain area gets maximum, id is 382.5. 
(b) Image Features in The Whole Image 

After calculating features in divided areas, we collect average colour value jF  and colour 
variance D in the whole image which are calculated by the following equations: 
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where jF  represents the average value in the colour channel j of the whole image. S is the 
number of divided areas in the image. 
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(10) 

 
where D is in the range from 0 to 382.5. 
(c) Experience Construction 
In our system, the invariant features of images includes ,i jf  , id , jF , and D. All the features 
are calculated from images collected in certain places where the robot needs experience to 
help. We construct experience database embedded in robot’s memory. This database stores 
the feature along with the global coordinates of the position where the image is taken. All 
the features are calculated off-line and stored in the database as experience. When the 
experience module is activated, the feature of current image taken by camera is computed 
on-line notated as imageFeature which includes average colour value ,_ i jQ f  and colour 
invariance _ iQ d  in the divided areas, average colour value _ jQ F  and colour invariance 

_Q D  in the whole image. Meanwhile, the record notated as bestRecord whose feature is 
most similar to imageFeature is selected from the database. Fig. 1 shows the result of finding 
the best pose in database based on experience. The query image is on the left while its most 
similar image in the database is on the right. Their poses are represented by (x, y, θ ). x, y 
are calculated in millimeter, while θ  is in degree. Algorithm 1 presents how to calculate the 
difference Diff between the image for query and the image in database, where A1, A2, A3, A4, 
B, C1, C2 are control constants. 
 

       
                       (a)                                (b)                                (c)                                   (d) 
Fig. 1. Examples for finding the best pose in image database. Images in the database are 

collected in the areas of the field where the robot can not see any landmark every 
100mm in x, 100mm in y and 45  in θ . (a) is the current image taken by robot’s 
camera when its real position is (−1660, 1520, 135 ). (b) is the most similar picture to 
image (a) in the experience database which the corresponding position of the robot is 
(−1600, 1500, 135 ). The location error is 60mm in x, 20mm in y, and 0 in θ . (c) is 
the random sample image taken after (a) when the real robot position is (−1040, 1220, 
135 ). The location error in experience image (d) is 240mm in x, 120mm in y, and 
0 in θ  

 
When the experience module is activated, difference between imageFeature and the feature of 
bestRecord is calculated. If the difference is small enough, the pose of bestRecord is transferred 



Robotic Soccer 

 

554 

into bestPose notated as bestl  which is in the form of world coordinates in the robot system. 
With such bestPose, probabilities of all the sample poses are updated and new pose 
templates which are random poses near the bestPose are generated to perform the resample 
procedure in Markov localization. It is true that the more experience in database, the more 
precisely the calculation is. However, building such database is expensive in time cost and 
even unreachable in complex environments. As a part of the sensor update module, 
experience can help the Markov localization converge as soon as possible, which means the 
robot can know own position immediately. In our approach, we only need to construct the 
database in those really difficult situations. This method works well in real robot 
applications. 
(d) Self Learning in Experience Collection 
One of the difficulties in applying image-retrieval system into real robot localization is how 
to collect the experience efficiently and correctly. In our system, we create a self learning 
method for experience collection. The robot can collect images along with corresponding 
positions autonomously. When construct the experience database, we use the black-white 
stripes to adjust robot body which is similar to the one used in gait optimization mentioned 
in (Röfer, 2004). In the self learning procedure, at first, the robot adjusts its own body to the 
initial position which is preset by our control system. By using the stripes, the robot walks to 
the next position and stops to capture images in left and right view respectively as shown in 
Fig. 2. The black-white stripes help robot go to the preset position precisely. 
 

     
                             (a)                                               (b)                                             (c) 
Fig. 2. Self learning procedure in experience collection. (a) shows the Black-white stripes for 

body adjusting. The robot captures image in the left view and right view as shown in 
(b) and (c) respectively 

 
Algorithm 1. Calculate the difference between the query image and the image in database 
1: procedure Calculate the difference (query image, database) 
2:     for all images in database do 
3:         if   <A1 &&  <A2  then 
4:             NumberOfAreasBeOK=0, Diff=0 
5:             for  (i=1; i<S; i++) 
6:                 diff_f[i] =  
7:                 diff_d[i]=  
8:                 Diff+=C1*diff_f[i]+C2*diff_d[i] 
9:                 if  diff_f[i] < A3 && diff_d[i]< A4  then 
10:                    NumberOfAreasBeOK++ 
11:                end if 
12:            end for 
13:            if  NumberOfAreasBeOK > B then 
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14:                if  Diff < minDiff  then 
15:                    minDiff = Diff 
16:                    bestRecord = the current image in database 
17:                end if 
18:            end if 
19:        end if 
20:    end for 
21: end procedure 

 
2.3 Incorporating Experience in Markov Localization 

In Markov localization, every sample pose has a belief which represents the probability of 
predicted position. In our approach, the sensor module updates the probability using the 
following equation: 
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where K is the sum of sensor module types, while S is the number of all sample particles. 
Every ( )( )j

iq t  describes the position probability at time t using certain type of perception. 
Specifically, to incorporate the experience module in Markov localization, we set ( )( )j

iq t  as 
the quality for experience perception to every sample pose. The sum of the dimensionless 
distance and the dimensionless angle between bestPose and the sample pose is used as a 
criterion to update the quality with the fact that the quality is higher if the sample pose is 
nearer to bestPose. The experience quality of every sample pose is in the form of the 
following equation: 
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where η  and ξ  are constants used for tuning quality not to change too fast. Thus, the 
quality can be controlled in a certain range. The criterion v is defined as follows: 
 

σ τ− +=
2( )v e  (13) 

Here σ  is the dimensionless distance between bestPose and current sample pose, while τ  is 
the dimensionless angle. Supposing that current sample pose is cl  ( θ, ,c c cx y ) and the 
bestPose is bestl  ( θ, ,b b bx y ), then σ  and τ  are calculated in equations below: 
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where 0D  and 0A  are the constants which are used to control qualities of σ  and τ . 
Normally, σ =0.05, τ =0.1. Moreover, we set sudden increases of both σ  and τ  in order to 
reduce greatly the qualities of the sample poses that are far away from bestPose. Using such 
method, the procedure of resample can be more effective and efficient. The useless particles 
can be eliminated as soon as possible. The time cost of the Markov localization convergence 
is relatively satisfied. Incorporating experience in Markov localization makes the probability 
update procedure more robust, especially when collisions or other negative effects occur. 

 
2.4 Collaborative Localization 
(a) The Notion Of Dynamic Reference Object 
In RoboCup, static reference objects like beacon, and goal can be used to help localize in 
complex environments. However, global coordinates of such objects need to be known 
beforehand. Those static reference objects are not applicable in an unknown environment. 
To solve this problem, we propose the concept of Dynamic Reference Object. The object that 
can be detected by more than one robots among the team will be the candidate dynamic 
reference object. If the frequency of clearly recognizing the object is high enough, it may be 
set as the dynamic reference object. There is no need to know the object’s position as a 
precondition. If a robot can localize itself accurately, the position of the dynamic reference 
object calculated by this robot is reliable. Meanwhile, another robot that has seen the 
reference object can use this calculated position of the object to measure own location. This 
information is useful for decreasing the time cost of Markov localization convergence and 
improve the result of position estimate especially for multiple robots collaboration. 
There are several challenges to implement this approach in real robot systems. First of all, 
every robot that has detected the object will broadcast the calculated position to every other 
robot. Then the robot that needs help may be not able to figure out which position is correct. 
In addition, the result of the reference object position calculated by a robot may be wrong 
when another robot needs this information to measure own location. Time delay of the 
communication is another problem which may bring negative effect to the measurement. To 
solve problems mentioned above, with the assumption that robots can communicate with 
each other, our approach integrates Reference Object Position Possibility in the team message 
which will be broadcasted to every robot. The item which is relevant to the object position in 
team message includes calculated position, robot ID, time, and position possibility. This 
position possibility is due to the accuracy of the robot self localization. In our system, the 
object position possibility is notated as rP  is measured by the following equation: 
 

μ ω− −= +
2 2

r l eP e P e P  (15) 

respectively. μ  is the sum of lasting frames after detecting the latest landmark, while ω  is 
the sum of lasting frames after exploiting good experience. In real robot application, rP  will 
be normalized less than 1. If rP  is high enough, the calculated result by this robot will be the 
most reliable one among different robots perception. A robot that needs help always uses 
the most possible position of the reference object at the same time when it detects the object 
by itself. To illustrate the method, a common robot system is shown in Fig. 3 with five 
mobile robots. Object O is supposed to be the dynamic reference object. Table 1 is the real-
time information in team message of the system in Fig. 3. 
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                                                   (a)                                                     (b) 
Fig. 3. A simple system with five mobile robots and a dynamic reference object: (a) At time 

1t , robot A, B and E can see the dynamic reference object O. They all use their own 
perception to calculate the position of the object and broadcast to every robot in the 
team. If at this time robot A, for example, needs the reference object to help, A will 
use the calculated position of the object from B or E. Querying the most possible 
position in team message shown in Table 1, A will take the calculated result by B as 
the reference. (b) At time 2t , C and D have not detected any landmark or experience 
for a period. Thus their answers to the object position are relatively unreliable. 
Position possibilities of them are shown to be low in Table 1. The reference object 
position will be set as B percepts. 

 
Calculated Position Robot ID Time Position Pssibility 

(2388, 700) A 
1t  0.71 

(2264, 658) B 
1t  0.92 

(2530, 710) E 
1t  0.86 

(2368, 803) A 
2t  0.81 

(2401, 801) B 
2t  0.91 

(2103, 743) C 
2t  0.32 

(2215, 725) D 
2t  0.43 

Table 1. Team message relevant to dynamic reference object 
 
(b) Multi-Robot Markov Localization 
To illustrate how to integrate the dynamic reference object module in Markov localization, 
let us assume that robot i uses the reference object position calculated by robot j. Then robot 
i updates own position belief as follows with a normalizing constant ε : 

 
φ ε φ φ φ← ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( | ) ( )j ji i i i i

t t t t t t t tBel Bel P r Bel  (16) 

where tr  is the dynamic reference object position. The specific probability function using for 
collaborative approach is similar to the one in the experience model mentioned in equation 
(12). 
In our approach, collaboration is a part of probability update modules in Markov 
localization. There is a problem that robots should known when to activate the collaboration 
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module using the dynamic object as a reference. To improve Markov localization using our 
collaborative approach, the collaboration module will be activated in two situations. We set 

2( )N t  by using as the sum of lasting frames of having no landmark perception or experience 
as a condition to activate the collaboration system. If 2( )N t  is great enough and the robot 
has detected the dynamic reference object, the collaboration module will update the 
probability of every poses. In addition, if the robot has a perception of the object which has a 
relatively high position possibility, the robot will use this reference to improve the Markov 
localization in a collaborative way. 

 
2.5 Real robot experiments 
(a) Localization Environment 
The experience-based collaborative approach presented above has been implemented on the 
Sony Aibo ERS7 legged robot in RoboCup environment. Fig. 4(a), (b) show the environment 
in 2006 and 2007 respectively. In our localization experiment field, we use the field similar to 
the standard field in four-legged soccer field 2007. However, we remove the beacons. As 
shown in Fig. 4(d), our field is surrounded by colorful advertisement which simulates the 
real human soccer environment. 

          
                                                    (a)                                                  (b) 

          
                                                    (c)                                                   (d) 
Fig. 4. Experimental field. (a) is the figure which shows the four-legged soccer field with 

four artificial beacons in 2006. (b) is the soccer field with two colorful beacons in 2007. 
(c) shows field with no beacon which is used to test our localization approach. (d) is 
the colorful advertisement placed around our test field which simulates the real 
human soccer environment 

 
(b) Individual Robot Localization 
Go to Certain Position: In the experiment, we use one four-legged robot to perform 
localization in our test environment shown in Fig.4 (c). Initially, the robot is placed at one 
center facing out of the field. Then the robot walks to a position with certain global 
coordinates and body facing angle. On the way to the destination, we pick the legged robot 
up for a while to effect the odometry in a negative way. This procedure makes the odometry 
not so reliable to imitate real dynamic environment in soccer competitions. In the 
experiment, the certain destination position is set to be (−1450,−300, 0 ). After 42 seconds, 
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the robot walks to the position (−1380,−350, 6 ). The localization error is 70mm in x, 50mm 
in y, and 6  in body angle.  
Randomly Walking: The robot is walking on the field with no beacon. We randomly select 8 
points to test the self localization results. The robot is expected to go to the preset positions 
through localization. When it stops, we calculate the real positions on the ground. Table 2 
shows the results in detail. 
 

Point Number Expected Postion ( θ, ,x y ) Real Postion ( θ, ,x y ) Error ( θ, ,x y ) 
1 (-1290, -440, 15) (-1496, -713, 147) (206, 273, 132) 
2 (-1450, -300, 0) (-1410, -150, 0) (40, 150, 0) 
3 (-180, -670, 45) (-230, -610, 9) (50, 60, 36) 
4 (1430, -250, 55) (-1909, -1162, 132) (461, 912, 76) 
5 (-650, 170, 0) (-404, -427, 5) (246, 597, 5) 
6 (270, -480, -90) (102, -402, -48) (168, 78, 42) 
7 (-1440, -340, 10) (-1322, -332, 5) (78, 8, 5) 
8 (-2160, -390, 0) (1979, -454, 8) (181, 64, 8) 

Table 2. Results of self localization in randomly walking. x, y are calculated in millimetre, 
while θ  is in degree 

 
(c) Collaborative Localization 
In this experiment, the orange ball used in the four-legged league is considered as the 
dynamic reference object. We use three robots to perform multi-robot localization. Every 
robot uses the hybrid system tested in the individual experiment mentioned above. We set 
one of the three robots as a sample to estimate our collaborative approach. The other two 
robots move randomly to catch the ball and broadcast the ball position with position 
possibilities mentioned in section 3. We receive the calculated result from the sample robot. 
To imitate the outdoor environment, this robot stands in a certain position on the field 
where we eliminate the landmark which the robot can easily detect. Only experience and 
collaboration can help the robot localize. The localization result of the sample robot which 
has used the collaborative approach is shown in Fig. 5. The probability distribution can 
converges quickly after 3-9 seconds when the dynamic reference object is taken into account. 

           
                                 (a) t=0s                            (b) t=3s                              (c) t=9s 
Fig. 5. The localization result of applying collaborative approach with dynamic reference 

object. Solid arrows indicate MCL particles(100). The calculated robot position is 
indicated by the solid symbol. (a) is the initial uniform distribution. (b) is the 
calculated result after 3 seconds. (c) is the well localization result after 9 seconds 
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2.6 Discussion 
We have demonstrated an experience based collaborative approach that combines image 
database for experience without landmarks and real-time sensor data for vision-based 
mobile robots to estimate their positions under more natural conditions towards real human 
soccer environment. We used the team message of dynamic reference object to improve the 
Markov localization for multiple mobile robots. On the one hand, our approach presented a 
fast and feasible system for vision-based mobile robots to localize in the dynamic 
environment even if there is no artificial landmark to help. On the other hand, we showed 
the collaborative method with introduction of Dynamic Reference Object to improve the 
accuracy and robustness of self localization, even in the circumstance that the robot can not 
localize individually or has no idea of who is nearby. In real robot experiments, we have 
shown the positive result for legged robot localization using our experience-based 
collaborative approach. With limit experience, robot can perform better for localization in 
RoboCup environment. All the experience was collected by the robot autonomously 
through self learning process. In collaboration, the ball with unique colour was considered 
as the dynamic reference object. Experiments showed the reliability of our approach in 
dynamic environment with collisions and sudden position changes. Experiments will be 
continued in more complex environment with no symmetry. 
 
3. Autonomous Gaits Evolution Using Particle Swarm Optimization 
 

Over the past years, plenty of publications have been presented in the biomechanics 
literature which explained and compared the dynamics of different high-speed gaits 
including gallop, canter, bound, and fast trot (eg. Alexander et al., 1980, 1983). To study and 
implement legged locomotion, various robot systems have been created (eg. Holmes et al., 
2006; Raibert, 1986; Collins et al., 2005). However, most of the high-speed machines have 
passive mechanisms which may be not easy to perform different gaits. To understand and 
apply high-speed dynamic gaits, researchers have implemented different algorithms or 
hand-tune methods in the simulation (Krasny & Orin, 2004) and real robot applications 
(Papadopoulos & Buehler, 2000; Hornby et al., 1999; Kim & Uther, 2003). Much published 
research in learning gaits for different quadruped robot platforms used genetic algorithm 
based methods. Different from genetic algorithms, Particle Swarm Optimization (PSO) 
described in (Eberhart & Kennedy, 1995; Angeline,  1998; Naka et al., 2002) eliminated the 
crossover and mutation operations. Instead, the concept of velocity was incorporated in the 
searching procedure for each solution to follow the best solutions found so far. PSO can be 
implemented in a few lines of computer code and requires only primitive mathematical 
operators. Taking the memory and processing limitation onboard into account, PSO is more 
appropriate in gaits learning comparing with the genetic algorithm based methods for 
quadruped robots, especially those commercial robots with kinds of motors. 
Our research focused on the gait optimization of legged robot with motor-driven joints. The 
commercial available quadruped robot, namely the Sony Aibo robot, which is the standard 
hardware platform for RoboCup four-legged league, is the main platform that we analyze 
and implement algorithms. Aibo is a quadruped robot with three degrees of freedom in 
each of its legs. The locomotion is determined by a series of joint positions for the three 
joints in each of its legs. Early research in gait learning for this robot employed joint 
positions directly as parameters to define a gait, which was the case in the first attempt to 
generate learned gait for Aibo. However, being lack of consistency in representing the gaits, 
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these parameters failed to exhibit the gait in a clear way. Most of the recent research used 
higher lever parameters to symbolize the gait which focus on the stance of the body and the 
trajectories of paw. An inverse kinematics algorithm was then implemented to convert these 
higher lever parameters into joint angles. 
The general high-lever parameters used to describe the gait for Aibo can be divided into 
three groups. One group is for determining the gait patter by the relative phase for each leg. 
(Stewart, 1996) mentioned that there exist eight types of gait patters for quadruped animals 
in nature. (Hornby et al., 1999) described three of the most effective gaits for quadruped 
robot especially for Aibo, which are the crawl, trot and pace. Another group of the 
parameters is associated with the stance of robot. The last group of parameters describes the 
locus of the gait. Most of the gaits developed for Aibo based on this high lever parameter 
represent method differ in the shaped of the locus of paws or the representation of the locus, 
that is the actual parameters used to trace out the locus, eg. (Röfer et al. 2004, 2005). 
In this part, we present the implementation of Particle Swarm Optimization in generating 
high-speed gaits for the quadruped robot, specifically the Aibo. First, an overview of the 
basic PSO and Adaptive PSO (APSO) are introduced. Our gait learning method is based on 
APSO. With the knowledge of using higher lever parameters to represent the gait which 
focus on the stance of the body and the trajectories of the paw, the inverse kinematics model 
is explained. Moreover, the control parameters and optimization problem are proposed. In 
addition, how to implement PSO in the quadruped gaits learning is introduced in detail. 
The whole learning process is running automatically by the robot with onboard processor. 
In robot experiments, we achieved an effective gait faster than previous hand-tuned gaits, 
using Aibo as the test platform. 

 
3.1 Particle Swarm Optimization 
(a) Overview of the Basic PSO  
Particle Swarm Optimization (PSO) is a stochastic optimization technique, inspired by social 
behavior of bird flocking or fish schooling (Reynolds, 1987). It is created by Dr. Eberhart and 
Dr. Kennedy in 1995 (Eberhart & Kennedy, 1995). Similar with Genetic Algorithms, PSO 
method searches for optimal solutions through iterations of a population of individuals, 
which are called a swarm of particles in PSO. However, the crossover and mutation 
operation are replaced with moving inside the solution space decided by the so-called 
velocity of each particle. PSO has proved to be effective in solving many global optimization 
problems and in some areas outperform many other optimization approaches including 
Genetic Algorithms. 
PSO theory derives from imitation of social behavior of bird flocking or fish schooling. It is 
discovered that each bird, when hunting for food in a bird flock, changes its flying direction 
based on two aspects: one is the information of food found by itself; the other is information 
of flying directions of other birds. When one of the birds gets food, the whole flock has food. 
It is similar to social behavior of human being. People’s decision making is not only 
influenced by their own experience but also affected by other people’s behavior. 
For an optimization procedure, hunting food by bird flock becomes searching for an optimal 
solution to this problem. One solution of the problem corresponds to the position of one 
bird (called particle) in the searching space. Each particle remembers the best position which 
was found by itself so far, and this information together with its current position makes up 
the personal experience of that particle. Besides, every particle is informed of the best value 
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obtained so far by particles in its neighborhood. When a particle takes the whole flock as its 
topological neighbors, the best value is a global one. Each particle then changes its position 
in according to its velocity relied on this information: the personal best position, current 
position and the global best position. 
In the realization of the PSO algorithm, a swarm of N particles is constructed inside a D-
dimensional real valued solution space, where each position can be a potential solution for 
the optimization problem. The position of each particle is denoted iX  (0 < i < N), a D-
dimensional vector. Each particle has a velocity parameter iV  (0 < i < N), which is also a D-
dimensional vector. It specifies that the length and the direction of iX  should be modified 
during iteration. A fitness value attached to each location represents how well the location 
suits the optimization problem. The fitness value can be calculated by the objective function 
of the optimization problem. 
At each iteration, the personal best position pbesti (0 < i < N) and the global best position 
gbest are updated according to fitness values of the swarm. The following equation is 
employed to adjust the velocity of each particle: 
 

+ = + − + −1
1 1 2 2( ) ( )k k k k k k k k

id id d id id d d idv v c r pbest x c r gbest x  (16) 

Where k
idv  is one component of iV  (d donates the component number) at iteration k. 

Similarly, k
idx  is one component of iX  at iteration k. The velocity in equation (16) consists of 

three parts. One is its current velocity value, which can be thought as its momentum. The 
second part is the influence of the personal best. It tries to direct the particle back to the best 
place it has found. The last part associated with the global best attempts to move the particle 
toward the gbest. 1c  and 2c  are acceleration factors. They are used to tune the maximum 
length of flying in each direction. 1r  and 2r  are random numbers uniformly distributed 
between 0 and 1.  They contribute to the stochastic vibration of the algorithm. It should be 
noted that each component of the velocity has new random numbers, not that all the 
components share the same one. In order to prevent particles from flying outside the 
searching space, the amplitude of the velocity is constrained inside a spectrum [− max

dv  , 
+ max

dv ]. If max
dv  is too big, the particle may fly beyond the optimal solution. If max

dv  is too 
small, the particle will easily step into the local optimum. Usually, max

dv  is decided by the 
following equation: 
 

=max max
d dv kx  (17) 

 
where 0.1≤ k ≤ 1. Now the current position of particle i  can be updated by the following 
equation: 
 

+ += +1 1k k k
id id idx x v  (18) 

 
PSO algorithm is considerably easy to realize in computer coding and only a few primitive 
mathematical operators are involved. Furthermore, it has the advantage of multiple points 
searching at the same time. Most importantly, the speed of converging is remarkably high in 
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many learning processes. It is a critical virtue when it comes to learning gaits in a physical 
robot, because it minimizes damage to the robot. 
The basic PSO is an algorithm base on stochastic searching, so it has strong ability in global 
searching. However, in the final stage of searching procedure, it is difficult to converge to a 
local optimum because the velocity still has much momentum. To improve the local 
searching ability in the final stage of optimization process, the influence of previous velocity 
on the current velocity needs to decrease. Thus, we proposed the using of adaptive PSO 
with changing inertia weight in this study.  
(b) Adaptive PSO with Changing Inertia Weight 
In equation (16), by multiplying inertia weight to the momentum part of the velocity 
vibration can control the impact of previous velocity on the current velocity. The update 
equation for velocity with inertial weight is as follows: 

 
+ = + − + −1

1 1 2 2( ) ( )k k k k k k k k
id id d id id d d idv wv c r pbest x c r gbest x  (19) 

 
where w  is the inertia weight. PSO with larger inertial weight results in better global 
searching ability for the reason that the search area is expanded with more momentum. 
Small inertial weight limits the search area thus improving local searching ability. Empirical 
results show that PSO has faster convergent rate when w falls in the range from 0.8 to 1.2. 
With the intention of realizing both fast global search at the beginning and intensive 
searching in the final stage of iteration, the value of w should vary gradually from high to 
low. It is similar to the annealing temperature of Simulated Annealing Algorithm. In this 
way, both global searching in a broaden area at the beginning and intensive search in a 
currently effective area at the end can be realized. 

 
3.2 Optimization Problem 
(a) Inverse Kinematics Model 
The high-lever parameters that we adopt to represent the gait need to be transferred to joint 
angles of legs before they can be implemented by the robot. An inverse kinematics model 
can be used to solve this problem. For a linked structure with several straight parts 
connecting with each other, the position of the end of this structure relative to the starting 
point can be decided by all angles of linked parts and only one position results from the 
same angle values. The definition of the kinematics model is the process of calculating the 
position of the end of a linked structure when given the angles and length of all linked parts. 
In this robot Aibo case, given the angles of all the joints of the leg, the paw positions relative 
to the shoulder or the hip will be decided. Inverse kinematics does the reverse. Given the 
position of the end of the structure, inverse kinematics calculates out what angles the joints 
need to be in to reach that end point. In this study, the inverse kinematics is used to 
calculate necessary joint angles to reach the paw position determined by gait parameters. 
Fig.6 shows the inverse kinematics model and coordinates for Aibo. The shoulder or hip 
joint is the origin of the coordinate system. 1l  is the length of the upper limb, while 2l  is the 
length of the lower limb. Paw position is represented by point (x, y, z). The figures and 
equations below only give the view and algorithm to get the solution for left fore leg of 
robot. In according to the symmetrical characteristic of legs, all other legs can use the same 
equations with some signs changing. 
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                                                       (a)                                              (b) 
Fig. 6. The inverse kinematics model and coordinates for Aibo. (a) is the front view of left 

fore leg. (b) is the side view of left fore leg 
 
The following equations shows the inverse kinematics model: 
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(20) 

 
The inverse kinematics equation to get θ1 , θ2 , θ3  by the already known paw position (x, y, 
z) is as follows: 
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(21) 

 
where θ= 2 3sina l , θ θ θ= − −2 2 3 1 2cos cos cosb l l . 
One problem with the inverse kinematics is that it always has more than one solution for the 
same end point position. However, as to Aibo, only one solution is feasible due to the 
restriction on the joint structure. As a result, when using inverse kinematics to calculate joint 
angles, it is necessary to take joint structure limitation into consideration to get the right 
solution. Otherwise, it will possibly cause some physical damage to the robot platform. 
 
(b) Control Parameters 
Before we run the learning gait procedure, the control parameters representing a gait need 
to be decided. There are two rules based on which we choose our parameters: One is the 
sufficient representation of the gait that makes it possible to get a high-performance gait in 
an expanded area. The other one is the attempt to limit the number of control parameters in 
order to reduce the training time. These two rules are to some extent contradicted with each 
other. We have to find a better way to compromise these two policies manually. We have 
done some work on the robot’s gait patters and found out that trot gait is almost always the 



Collaborative Localization and Gait Optimization of SharPKUngfu Team 

 

565 

most effective pattern in terms of both stability and speediness,thus we limit the gait pattern 
to mere trot gait. 
For stance parameters, based on our observation and analyze of the motion for Aibo, we 
conclude that forwardleaning posture can speed up the walking, thus we constrain the 
range of stance parameters to keep robot in forwardleaning posture, that is the height of hip 
higher than that of chest. As to locus, we choose rectangle shape because it has proved to be 
effective in quadruped gaits and it is simple to be represented. And because of the 
symmetry of right and left side when moving straight forward, we use the same locus for 
right legs and left legs. In all, we choose our parameters of gait as shown in Table 3. 
 

Parameter Name Definition 
fore height  vertical height from paw to chest 
hind height vertical height from paw to hip 
fore width transverse distance between paw and chest 
hind width transverse distance between paw and hip 
fore length forward distance between paw and chest 
hind length forward distance between paw and hip 
step length time for one complete step in 0.008 second units 

fore step height fore height of the locus 
hind step height hind height of the locus 
fore step width fore width of the locus 
hind step width hind width of the locus 

fore ground time fore paw fraction of time spent on ground 
hind ground time hind paw fraction of time spent on ground 

fore lift time fore paw fraction of time spent on lifting 
hind lift time hind paw fraction of time spent on lifting 

fore lowing time time spent on fore paw lowing around locus 
hind lowing time time spent on hind paw lowing around locus 

Table 3. Control parameters in gaits evolution 

 
3.3 Implementation of PSO 
Given the parametrization of the walking defined above, we formulate the problem as an 
optimization problem in a continuous multi-dimensional real-value space. The goal of the 
optimization procedure is to find a possibly fastest forward gait for the robot, therefore the 
objective function of the optimization problem is simply the forward speed of the walking 
parameters. Particle Swarm Optimization is then employed to solve this problem with a 
particle corresponding to a set of parameters. A predetermined number of sets of 
parameters construct a particle swarm which will expose to learning by PSO, with the 
forward speed of each parameter being the fitness. 
(a) Initialization 
Initially, a swarm of particles are generated in the solution space, which is a set of feasible 
gait parameters. These particles can be represented by { Λ1 , , Np p } (where N=10 in this case). 
These sets of parameters are acquired by random generation within the parameter limits 
decided by the robot mechanism. A lot of previous work done on learning gaits start from a 
hand-tune set of parameters. Comparing with previous work, random generation of initial 
values has the advantage of less human intervention, and more importantly, has more 
possibility to lead to different optimal values among different experiments. Initial velocities 
for all particles are also generated randomly in the same solution space within given ranges. 
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The width of the range is chosen to be half of that of the corresponding parameters. Velocity 
calculated later is also constrained inside the spectrum. The spectrum is denoted by (− maxV , 

+ maxV ), where maxV = −max min1 ( )
4

x x , with ( max min,x x ) as the changing range of particle iP . 

The ranges we chosen turn out to be appropriate to avoid the two problems mentioned in 
Section 3.1. To expedite the search process, 1c  and 2c  are set to 2. The initial pbests are equal 
to the current particle locations. There is no need to keep track of gbest while it can be 
acquired from pbests, that is the pbest with the best fitness is gbest. 
(b) Evaluation 
The evaluation of parameters is performed using sole speed. Since the relation between gait 
parameters and speed is impossible to acquired, we do not know the true objective function. 
There is no sufficiently accurate simulator for Aibo due to the dynamics complexity. As a 
result, we have to perform the learning procedure on real robots. In order to automatically 
acquiring speed for each parameter set, the robot has to be able to localize itself. We use 
black and while bar for Aibo to localize, because given the low resolution of Aibo’s camera, 
it is faster and more accurate to detect black-while edge than other things. We put two 
pieces of boards with the same black and while bars in parallel so the robot can walk 
between them. 
During evaluation procedure, the robot walks to a fixed initial position relative to one of the 
boards, then load the parameter set needed to be evaluated, walk for a fixed time, 5s, stop 
and determine the current position. It should be noted that both before and after the walk, 
robot is in static posture, so the localization is better compare to localizing while running. 
Now the starting and ending location have been acquired from detecting the bars, speed can 
be calculated out. After that, robot turns around by 90 degree, and localizes according to the 
other board, if the position is far from the fixed position, adjust it or else go to the next step, 
loading another set of parameters and then begin another trial. The total time for testing one 
set of parameter including turning, localizing, and walking time. Because of the ease of 
localizing, usually it takes less than 3s to turn and get to the right position. As a result, the 
test time of one particle is less than 8s. 
(c) Modification 
After all particles of the swarm are evaluated, pbests are updated by comparing them with 
corresponding particles. If the performance of iP  is better than pbesti, which means the 
fitness value of iP  is higher than that of pbesti, pbesti will be replaced by the new position 
of iP . In addition, the fitness value of iP  is recorded as fitness value of pbesti for future 
comparing. Subsequently, the new gbest, the best among pbests can be acquired. It should be 
noted that the update of gbest is not done anytime a particle is evaluated but after the whole 
swarm is evaluated. The difference does not change the principle of the algorithm or 
empirically influence the converge rate. 
As mentioned in section 3.1, in order to realize global search in a broaden area at the 
beginning of the learning procedure and intensive search in a currently effective area at the 
end, we employ adaptive PSO with piecewise linearity declining inertial weight to perform 
the learning procedure. When inertial weight value ω  is around 1, it presents global search 
characteristics and results in fast converge rate. When ω  is a lot less than 1, intensive search 
is realized. 
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3.4 Real Robot Experiments 
Using the method described above, we take two separate experiences and achieve favorable 
results. In the first experience, since large inertial weight will extend the searching area, 
resulting in a long time of training, we take a conservative move and reduce inertial weight 
quickly from the start with initial value being 1. The inertial weight is determined by 
equation (22). Fig. 7(a) shows the vibration of ω  through iterations. By iteration 15, ω  has 
decreased to 0.1. The global search is diminished, while the intensive search is enhanced. Fig. 
8(a) shows the result through iterations. We can see that the learning process is converging 
quite fast from 1 to 10 iteration. After that, the result improve slowly but firmly until around 
25 iteration. Although we get a high-performance gait in a short time in this experiment, we 
think it is possible that we can have a better result when extending the search area a little by 
not reducing ω  so fast. So we tried to use another equation (23) to update ω , Fig. 7(b) 
shows the vibration of ω , and Fig. 8(b) shows the learning result. 
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                                      (a)                                                                           (b) 
Fig. 7. Vibration of inertial weight ω  through iteration in real robot experiments. (a) shows 

the vibration of inertial weight ω  through iterations in the first experiment. (b) 
shows the vibration of inertial weight ω  through iteration in the second experiment 
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                       (a)  The first experiment                               (b) The second experiment 
Fig. 8. Optimization results. (a) is the best(in the green line), average of the whole swarm(in 

the red line)and average of the best half part of the swarm(in the blue line) in real 
robot experiments. (b) the best result of every iteration in both the two experiments. 
The green is the first one, and the blue is the second one 

 
We can see that the second experiment achiever better result than the first one. It is 
interesting that they both reach their peak in the 25 iteration, when ω  becomes zero. It’s 
possible that PSO has little local optimization when current velocity is no longer influenced 
by previous velocity which is contradicted to what we assumed. 
We can also note that there are both advantage and disadvantage comparing these 
experiments with each other. For one thing, the learning curve of the first experiment is a lot 
smoother than that of the second one. It means that the second learning process has more 
undulation. In fact, during the second experiment, there are still new sets of parameters that 
perform very poor after the 10 iteration due to the extended searching area. This problem 
cause more damage to physical robot. However, the second experiment acquire better 
parameters also because of the extended searching area. Fig. 9 shows the best result of every 
iteration in both the two experiments. 
 

 
Fig. 9. The best result of every iteration in both the two experiments. The green line is the 

first one, while the blue line is the second one 
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3.5 Discussion 
In this part, we have demonstrated a novel evolutionary computation approach to optimize 
fast forward gaits using Particle Swarm Optimism. PSO has been proven to be remarkable 
effective in generating optimal gaits in the robot platform Aibo. Our method was easily 
coded and computationally inexpensive. Moreover, by using PSO, the evolution converged 
extremely fast and the training time was largely reduced. That is an essential advantage for 
physical robot learning, minimizing possible damage to the robot. Another contribution of 
our method was its initial sets of parameters are randomly generated inside the value range 
instead of mutation from a hand-tune set of parameters. It reduced the human work as well 
as generating evolutional results varied a lot in different experiences. Through experiments 
which took about 40 minutes each, we achieved several highperformance sets of gait 
parameters which differ a lot from each other. These gait parameter sets were among the 
fastest forward gaits ever developed for the same robot platform. 
In the future, we will compare different high-performance gait parameters and analyze the 
dynamics model of the robot and in an attempt to get a deeper sight into the relation 
between parameter and its performance. After that, we will be able to generate more 
effective gaits in less learning time. Through analysis, we find that the gait actually executed 
by robot differ significantly from the one we design. There are several reasons accounting 
for that. The most important one is the interaction with environment prevents the 
implement of some strokes of robot legs. Although with learning approach, factors that 
cause the difference between actual gait and planned gait do not have to be taken into 
consideration. However, we assume that if the planned gait and actual gait can conform 
with each other, Aibo will walk more stable and fast. In order to solve the problem, the 
analysis of dynamics between the robot and the environment is necessary. In this gait 
learning procedure, we only evolve fast forward gait and choose forward speed as the 
fitness. Later on, we will try to learn effective gaits in other directions, for example, gaits for 
walking backward, sideward and turning. We also consider exploring optimal 
omnidirectional gaits. With gaits working well at all directions, robots will be able to 
perform more flexibly and reliably. 

 
4. Intelligent Behaviors 
 
4.1 Obstacle Avoidance 
In robot soccer competition, we introduce time-variable limit cycle to help robot avoid 
obstacles. To show the approach, we simply describe the shape of Aibo as a cycle in the two 
dimensional plane. Considering the following nonlinear system for dynamic limit cycle 
applying in Aibo: 
 

ρ γ

ρ γ

= + − −

= − + − −

2 2 2

2 2 2

1( ( ))
4

1( ( ))
4

x y x v x y

y x y v x y
 

(24) 

 
where ρ  is the character factor of the obstacle which is set to be a positive value. γ  is the 
convergence factor. And v is the relative velocity to the obstacle which is dynamic when the 
robot moves. The size of limit cycle is changing when system (24) switches. To prove the 
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circle + =2 2 21
4

x y v  is the dynamic limit cycle of the switched system(1), we use the 

common Lyapunov function: 
 

= +2 2( , )V x y x y  (25) 
 
Such that: 
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For limit cycle, we can see that <( , ) 0V x y  when > 21( , )
4

V x y v , while >( , ) 0V x y  when 
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V x y v . This shows the following region is absorbing. 
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Since this argument above is valid for any ρ< < 2
1
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v , and ρ > 2
2

1
4

v , when ρ1 , ρ2  get 

close to 21
4

v , region B shrinks to the circle = 21( , )
4

V x y v . This shows that the circle is a 

periodic orbit as shown in Fig. 10(a) when v  = 280, ρ  = 0:01, γ  = 0:0001. This periodic 
orbit is called a limit cycle. We can see the trajectory from any point ( ,x y ) moves toward 
and converges to the limit cycle clockwise when close. The counterclockwise condition can 
be derived by the following system (shown in Fig. 10(b)): 

ρ γ

ρ γ

= − + − −

= + − −

2 2 2

2 2 2

1( ( ))
4

1( ( ))
4

x y x v x y

y x y v x y
 

(28) 

 

   
                                 (a) clockwise                                          (b) counterclockwise 
Fig. 10. Phase portrait of limit cycle 
 



Collaborative Localization and Gait Optimization of SharPKUngfu Team 

 

571 

Considering that the trajectory from any point ( ,x y ) inside the limit cycle moves outward 
the cycle, and the trajectory from any point ( ,x y ) outside the limit cycle approaches the 
cycle with distance determined by the relative speed v , the limit cycle provides a method 
for obstacle avoidance among multiple mobile robots. 
In RoboCup Four-legged League, there are many obstacles during the game. Robots can be 
considered as motive obstacles. When the robot approaches a teammate holding ball, it must 
stay out of the area where teammate handles ball, and be ready to perform cooperative 
strategies. If the robot holding ball encounters an opponent, it must control the ball and 
quickly avoid the approaching robot, especially when perform kicking ball in front of 
opponent goalie. Own penalty area is another one that can be taken for an obstacle. If the 
robot moves parallel to own ground line, it must avoid from walking into the own penalty 
area. 
When the robot is in a safe region, by the dynamic limit cycle approach, it will move away 
the obstacle toward the safe circle with a radius relevant to the speed of the obstacle. Let α  
denote the orientation of the obstacle, ( 0 0,x y ) the centre point of the obstacle. With the 
following transformation, we get the expression of system (24) in the original frame: 
 

α α
α α

= + − +
= + + +

0 0

0 0
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x x x y y
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(29) 

 
Let v  denote the translational velocity of the robot in the original frame, θ  the direction of 
the motion. The kinematic model of the robot is described by: 
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Then we can see: 
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(31) 

 
Different obstacles have their own characters, with ρ  matching to characters respectively. 
Using ρ  in different values can control the magnitude of the absolute speed. 
With the dynamic radius of the limit cycle, robot can perform more flexibly and rationally. 
Satisfactory results are obtained in robot experiments. The implementation of this method is 
introduced in (Wang, 2006b) in detail. 

 
4.2 Perform Near Border 
In real robot soccer, behaviors and strategies correlated to border line are important. Any 
inappropriate behavior near border may cause a negative impact. For example, if the ball is 
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near border in own half field, it is dangerous for the defender to handle ball inappositely to 
let it out of field. Because it may benefit the opponent striker to control the ball. To avoid 
this situation, we implement the near border behavior. 
In competition of RoboCup Four-Legged League, we define that for a player, if the distance 
to border line is less than 600mm, it enters the near border area. It is simple that if the player 
handles ball near border, it can hold ball and move it along the direction vertical to 
borderline. However, actual test shows that different gaits along with grabbing ball motion 
may not help control ball well. Therefore, we divide the circle area around player into four 
parts. Fig. 11 shows the different parts of the near border area which may activate strategies 
respectively. We define the variable robotPose.anlgle-to-border which represents the absolute 
value of angle between robot's body direction and normal line to the border. Area 1 is the 
place where the angle-to-border is in range from 120  to 180 . In area 2 and 3, the angle is 
between 80  and 120 . Area 4 means the angle is less than 80 . In area 1, the robot grabs 
ball and adjusts its body direction first. Then the robot performs a sideways walk moving 
ball into field. In area 2 and 3, the robot performs a sideways walk directly. Player walks 
forward directly to the field if enters the area 4. 
 

 
Fig. 11. Strategy field in near border area 

 
5. Conclusion 
 

We have made improvement in localization, locomotion and behavior modules. In RoboCup 
2006, we perform our technical improvement in open challenge, passing ball and new goal 
challenge. After RoboCup 2006, we participated in RoboCup China Open 2006. Advantages 
in sharPKUngfu 2006 help our team make great success in this event. We got champions 
both in soccer competition and technical challenge. After the event, we focus our research on 
further study in collaborative localization, navigation and gaits optimization. All the 
improvement is explained above in detail. We have applied experience-based collaborative 
approach for localization which is important to make robots more rational and efficient. In 
gaits optimization, we implemented PSO based approach to get relatively high-speed 
forward gaits. To perform better under the soccer rule 2006, new behaviors and relevant 
actions have been created to hold ball in the field to get better performance. Besides, we 
tried to apply new approach to percept robots and avoid dynamic obstacles. Experiments in 
our lab show positive effect by using the real-time approach. 
In the future, we plan to let robot play in the environment without any landmark towards 
real human soccer conditions. Further study should be continued to exploit enough 
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surrounding information to help self-localization. In vision module, we plan to implement 
color-edge based method to recognize beacons and goals which are newly defined in soccer 
rule. Beside of forward gaits optimization, we will implement PSO in other different 
walking types to gain optimized motion parameters. In multi-robot coordination, the 
research on formation control will continue. In addition, we will continue to get involved in 
challenges of passing ball and obstacle avoidance. The final version of our code 2006 is now 
available on our web site. 
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1. Introduction  
 

Multi-robot cooperation is a very important area in the field of robot. As we know, it is 
difficult to use a single robot to complete tasks independently. Often, people use multiple 
robots cooperation in order to compensate for the lack of individual ability. Multi-level 
robot can greatly improve the efficiency of the whole system. Compared to a single robot, a 
coordinated multi-robot system has many advantages : First, because of multi-robot 
systems’ distribution in space, resources and functions, multi-robot systems have higher 
efficiency and wider scope of the application than single robot; Second, because multi-robot 
systems have high redundancy, So multi-robot systems have more fault-tolerant capabilities 
and higher robust than single robot; Also compared with the design of a very powerful 
independent robot, construction of a number of robots which have simple structure and 
function will be economical, easy, flexible, and can greatly reduce the costs. Due to the 
advantages of the multi-robot systems, Multi-robot cooperation is drawing increasing 
attention to the people, a lot of researches on multi-robot coordination and centralization, 
Load distribution, motion planning and other issues have been done all over the world.  
By now, multi-robot cooperation achievements were mainly concentrated in the areas of 
robots on land, there has few achievements of underwater robot collaboration. The main 
reason is that the complexity and uncertainty of the underwater environment bring a lot of 
interference to the system, the efficiency and accuracy of the control are reduced to a large 
extent by these interfere. In addition, the underwater environment has a higher requirement 
that the robot should have a higher compressive strength, anti-jamming capabilities and 
more accurate and robust sensing system. In fact, along with the exploration of underwater 
resources, there are more and more underwater tasks, many underwater tasks need a 
number of robots to collaborate because of their high complexity. The research on 
underwater robot collaboration has become an urgent task.  
We propose a novel robotic soccer game called Robotic Water Polo(RWP) to promote the 
underwater robot technique and their combination, Fig.1 shows the filed of RWP, Similar to 
the popular robotic soccer games on land, the RWP is also designed as standard task for 
multiple swimming robots under a dynamic underwater environment. To play RWP, each 
team has three or two underwater robots, we called them robotic fish. They do their best to 
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push the ball to their opponent’s gate, Fig.1(b) and (c)display the procedure of the 
competition. Because the special environment of the game, the RWP also involves 
hydrodynamic analysis, underwater communications, underwater image processing, 
anti-jamming technology, and other aspects of technology which is more difficult, more 
complicated than the similar game on land. 
We focus this chapter on introducing the underwater robot cooperation involved in RWP 
and the basis of RWP, due to space limitation, we can’t elaborate on all the cooperative 
technologies involved in RWP. We only introduce collision avoidance of robotic fish and the 
multiple robot fish cooperation system of we used in RWP now, in section 2, we first 
introduce the prototype of the underwater robot called robotic fish, in section 3 we 
introduce a general task-oriented platform which provides both hardware and software 
foundations for cooperation of underwater robots, in section 4 we propose a new reactive 
collision avoidance method for robotic fish navigation in RWP, in section 5 a situation based 
action selection mechanism is proposed for pushing ball to goal in RWP, and finally in 
section 6, there will be a conclusion. 
 
   

 
 
 
 
 
 
 

 
(a) Field of RWP(Used by Peking university) 

 

  
(b)Start of RWP                    (c) Fragment of RWP 

Fig.1. Field and display of RWP 

 
2. The Prototype of Robotic Fish  
 

Before introducing the underwater robot cooperating technologies, we first present the 
robotic fish prototype developed for RWP in our laboratory, because it is the basis of RWP. 
Fig 2 shows the prototype of robot fish: 
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Fig. 2. Prototype of robot fish used in RWP 
 
This multiple-mode robot-fish is mainly used to realize the cooperative control of multiple 
robots underwater. And the advantages of the fish are low cost, small size, and good agility, 
stability and accuracy. In the environment of lab or competition, the location information of 
the robot-fish can be gotten from the global vision, so we can conveniently control the 
cooperative movements of the multiple-robot fish.  
The structure of robot-fish can mainly be divided into three parts: fish head, body,   
tail.The fish head portion is composed of the control circuit board, battery, communication 
module, power switch and pectoral fin.The fish body portion is composed of three in series 
swaying joints, and each joint is driven by the direct current servo motor, in order to 
simulate the wave curvilinear motion of the fish’s body. The fish tail is tail fin of the 
robot-fish. The mechanical structure of the robot-fish is as the Fig 2, For technical details on 
design and implementation of the robotic fish. We can’t elaborate on them here due to space 
limitation. 
 

 
Fig. 3. The mechanical structure of the robot-fish 
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This type of multiple-mode robot-fish involved in the lab presently can complete precision 
control in the mission of multiple-robot-fish cooperative control, and also can ensure both 
the stability of the robot-fish’s swimming and accuracy of the swimming performance. We 
have tested the robot-fish repeatedly through experimentation. It can satisfy the 
requirement of the RWP and other cooperative control. 

 
3. The Multiple Robotic Fish Cooperation System  
 

In recent years, underwater biomimetic robotics has emerged as a challenging new research 
topic, which combines bioscience engineering technology and underwater robotics, aiming 
at developing new classes of robots which will be substantially more compliant and stable 
than current robots. Taking advantage of new developments in materials, fabrication 
technologies, sensors and actuators, more and more biologically inspired robots have been 
developed. As one of the hot topics, robotic fish has received considerable attention during 
the last decade. Fish, after a long history’s natural selection, have evolved to become the best 
swimmers in nature. They can achieve tremendous propulsive efficiency and excellent 
maneuverability with little loss of stability by coordinating their bodies, fins and tails 
properly. Researchers believe that these remarkable abilities of fish can inspire innovative 
designs to improve the performance, especially maneuverability and stabilization of 
underwater robots. 
By now, the research on robotic fish mainly focuses on design and analysis on individual 
robot fish prototype, while seldom is concerned with the cooperation behaviors of the fish. 
As we know, fish in nature often swim in schools to strive against the atrocious 
circumstances in the sea. Similarly, in practice, the capability of a single robot fish is limited 
and it will be incompetent for achieving complex missions in dynamic environments. Thus, 
for real-world (ocean based) applications, a cooperative multiple robot fish system is 
required, which is the motivation of this work. 
In this section, we propose the development of the Multiple Robot Fish cooperation System 
(MRFS), which is built on the basis of a series of radio-controlled, multi-link biomimetic 
robot fish. There are two features in MRFS: first, this cooperative platform is general and can 
be applied to different types of cooperative tasks; second, high-level tasks are eventually 
decomposed into two reactive motion controllers, which are designed under full 
consideration on the inertia of fish and the hydrodynamic forces of surrounding water.  
The remaining of the section is organized as follows. In subsection 3.1 we present the 
establishment of the platform for MRFS. Based on the hardware and software platform, a 
four-level hierarchical control architecture is provided in subsection 3.2. 

 
3.1 Design and Implementation of MRFS Platform 
As mentioned above, a single fish is often limited both in capabilities and movement range. 
It will be incompetent for many complex tasks in dynamic environments. In this case, a 
multi-robot fish cooperative system becomes a desired solution. Inspired by the technology 
of multi-agent system and the approaches developed for cooperation of ground mobile 
robots, we establish the hardware platform of MRFS as depicted in Fig 4. The whole system 
can be decomposed into four subsystems: robot fish subsystem, image capturing subsystem, 
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decision making and control subsystem and wireless communication subsystem. 
 

 
Fig. 4. Hardware platform for MRFS 
 

 
Fig. 5. Architecture of software platform 
 
The information about fish and their surroundings are captured by an overhead camera and 
after being effectively processed, they are sent to the decision making and control subsystem 
as inputs. Then, based on input signals and specific control strategies for different tasks, the 
decision making subsystem produces corresponding control commands and transmits them 
to every robotic fish through the wireless communication subsystem. Since a global vision is 
adopted, MRFS should be basically categorized into centralized control system and so global 
planning and optimization can be obtained as a result. Based on the hardware architecture, 
we also develop a task- oriented software platform, on which we can implement various 
functions associated with cooperative task, such as task selection, environmental parameters 
setting, real-time display, image processing, control algorithm loading and commands 
executing. Fig 5 shows the schematic diagram of the software system architecture. It consists 
of GUI (Graphics User Interface), image processing module, algorithm module, 
communication module and fish module. Through GUI, users can choose different tasks, set 
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parameters of environment (goals, obstacles, etc.). In image processing module, a global 
image information is captured and processed. After that, useful information is abstracted 
and used for making decision. Algorithm module contains the algorithms and strategies, 
determining how the fished cooperate with each other. Communication module transmits 
every control command to the fish module which are the actuators of MRFS. 

 
3.2 Hierarchical Control Algorithm for Cooperative Application 
In this subsection, we propose a hierarchical control algorithm for cooperative application 
on MRFS. A four-level hierarchical architecture is developed: The first level is task planner 
level. In this level, the required task is decomposed into different roles. During the 
decomposition, it should be guaranteed that these roles are necessary and sufficient for 
achieving the task. After producing different roles we should select the most qualified 
candidate of robotic fish for each role according to some proper rules. Aiming at 
requirements of different tasks, we introduce both static and dynamic role assignments 
mechanism. In static assignments, once roles are determined at the beginning of the task, 
they will not change during the task; while in the dynamic mechanism, the robotic fish may 
exchange their roles according to the progress of the task. The third level is the action level. 
In this level, a sequence of actions are designed for each role. By action, we mean an 
intended movement of fish, such as turning, advancing, and so on. The fourth level, which 
is called the controller level, is the lowest one. In this controller level, we give a sufficient 
consideration to some unfavourable factors when control due to the speciality of fish. 

– When the robotic fish swims, the interaction between it and its surrounding water will 
result in resonance at certain frequency. Moreover, the robotic fish can’t stop immediately 
even if the oscillating frequency is set to zero. Hydrodynamic forces and the fish’s inertia 
will make it drift a short distance along its advancing direction. 

– In our design, the robotic fish’s orientation is controlled by modulating the first two 
joints’ deflection (φ1,φ2). However, it is quite difficult to adjust the deflection 
accurately, because the drag force produced by surrounding water is an unstructured 
disturbance and we can’t get its precise model. 

 

 
Fig. 6. The block diagram of the hierarchical architecture 
 
Based on the above conditions, we adopt a PID controller for piecewise speed control and a 
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fuzzy logic controller for orientation control, which are presented particularly in our 
previous work [3]. Figure 6 illustrates the block diagram of cooperative control architecture 
consisting of four levels. 
This section concentrates on the multi-robot fish cooperation problem. It describes the 
design and implementation of MRFS. It has been tested that MRFS provides a useful and 
effective platform to design and achieve cooperative tasks for multiple robot fish. Fig.7 
shows the tasks designed on the basis of MRFS: 
 

  
(a) Blasting collaboration                 (b)Muti-fish Formation 

  
(c)Pushin Box               (d)Robotic Water Polo 

Fig. 7. The cooperating tasks on MRFS 

 
4. The Collision Avoidance of Robotic Fish in RWP  
 

As we know, robot navigation is concerned with driving a robot to the destination along a 
collision free path to perform a given task. In general, the navigation methods can be 
classified into two categories: global navigation, which is based on a prior known 
environment information; reactive navigation, which is based on real-time sensory 
information. Global navigation methods include roadmap approach, cell decomposition 
approach, artificial potential field approach, electrostatic potential field and the magnetic 
field method, etc. These methods can be understood well from the theoretical aspect, but the 
computational cost is expensive, so they are not applicable in dynamic environments. In 
reactive navigation, the robot makes decision on the real time sensory information. The low 
computational cost allows this approach suitable to be used in unknown or dynamic 
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environment. Examples of this approach include: Potential Fields [9], Vector Field 
Histogram [10], behavior-based method [11], fuzzy logic [12] and the Nearness Diagram 
Navigation [13]. Reactive navigation approach is effective in many dynamic 
scenarios, but most research on this method considers the robot as a point with 
holonomic properties. For the robotic fish we used in RWP, due to the particular propulsive 
mechanism, the translational velocity and the rotational velocity are not independent but 
coupled with each other. In addition, the robotic fish cannot move reversely or stop 
immediately in the water environment due to the inertial drift. Because of the particular 
kinematic characteristics of robotic fish and the complexity of the underwater environment, 
few navigation methods in the literature can be applied to robotic fish navigation directly. 
New navigation methods are required to be exploited for the robotic fish. 
In this section, we propose a new reactive collision avoidance method for robotic fish 
navigation in the environment of RWP. Considering the nonholonomic properties and the 
inherent kinematic constraints of the robotic fish, limit cycle approach is proposed, with 
which the robotic fish can avoid one another smoothly and efficiently. Experiments 
performed by three robotic fish demonstrate the effectiveness of the proposed method. 
The section is organized as follows. In subsection 2.1, the simplified propulsive model of the 
robotic fish is presented. In subsection 2.2, we describe our collision avoidance method in 
detail. Experimental results are given in subsection 2.3. subsection 2.4 concludes this section.  
 
4.1 Simplified Propulsive Model of The Robotic Fish  
Our designed robotic fish takes carangiform movement. Barrett et al. has presented a 
relative swimming model for RoboTuna (carangiform) in [6], and the undulatory motion is 
assumed to take the form of a propulsive travelling wave which is described by: 

2yb o d y(x ; t)  =  [(c 1 x + c2 x )][s in (k x + w t)] :  (1) 

In (1), ybody is the transverse displacement of the fish body, x the displacement along the 
main axis, k the body wave number ( 2 /k π λ= �), λ  the body wave length, c1 the linear 
wave amplitude envelope, c2 the quadratic wave amplitude envelope, and ω the body 
wave frequency ( 2 fω π=  ). 

For simplification, we consider the discrete form of travelling wave (1), which is described 
by: 

2 2y b o d y (x ;  i)  =  [ (c 1 x + c 2 x )][s in (k x i ) ]
M
π±  (2) 

where i denotes the index of the sequences, M is the body wave resolution, representing the 
discrete degree of the overall travelling wave. 

 
4.2 Coordinated Collision Avoidance  
(a) Kinematic Constraints of The Robotic Fish 
Due to the particular propulsive mechanism, the translational velocity v and the rotational 
velocity of the robotic fish are not independent, but coupled with each other. Typical 
coupling relations of them under different oscillatory frequencies of the tail are shown in 
Fig. 8. We use the following equation to describe the relations: 
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w = F(v, f requency) (3) 

Equation (3) is called inherent constraints of the robotic fish. Any control input pair of (ν ω ) 
shall satisfy the inherent constraints. 
 

 
Fig. 8. Relations between the translational velocity and the rotational velocity under 

different oscillatory frequencies 
 
(b) Limit Cycle Approach for Collision Avoidance 

Next we discuss how collisions among multiple robotic fish are avoided. For 
simplification, The shape of the fish is described as an ellipse in the two dimensional plane.    
First we give one important lemma.Poincar´e-Bendixson Theory: 

If D is an annulus-shape bounded absorbing region,, 2D R⊂ , and contains no equilibria, then D 
contains at least one periodic orbit. (A bounded region D on the phase plane is absorbing if no 
trajectories leave it.) 
(c) Limit Cycle Approach 
Considering the following nonlinear system in the fish frame: 

2 2 2 2

2 2 2 2

( y x ( r x y ))
1y ( x y (r x y ))

x λ μ γ μ

λ γ μ
μ

•

•

= + − −

= − + − −

 
 
 

(4) 

where γ λ  μ  r  are positive parameters. In order to prove the ellipse 
2 2 2 2x + y  = rμ is the limit cycle of system (4), we use the following Lyapunov function: 

2 2 2V (   x ;   y )  =   x + y ;μ  (5) 
such that: 

2 2 2 2 2 2 2

2

V (x ,y )= 2 ( r x y ) ( x y )
2 ( r V ( x , y ) V ( x , y )

λ γ μ μ
λ γ

− − +
= −  

(6) 

We can see V ( x , y ) < 0
•  when 2V ( x , y ) > r , while V ( x , y ) > 0

•  when 2V ( x , y ) < r . This 
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shows the following annulus-shape region 
 

2 2B  =  { a 1 ( , ) a 2 , |0  <  a 1 < r ,a 2  >  r }V x y≤ ≤  (7) 
is absorbing. It is also bounded and free of equilibrium points, since the unique equilibrium 
point is (0;0). According to Poincar´e-Bendixson Theory, B contains at least one periodic 
orbit. Since this argument is adaptive for any 20 1a r< <  and 22a r> , when �a1, �a2 

get close to 2r , region B shrinks to the ellipse 2( , )V x y r= . Thus we get the limit cycle in 
the fish frame (shown in Fig. 9): 
 

2 2 2 2 2( , )V x y r x y rμ= ⇒ + =  (8) 

 
The convergence speed of (x, y) toward the limit cycle can be tuned by the constant γ .Fig. 9 
(a) shows the fast convergence condition withγ = 0.001, and Fig. 9 (b) shows the slow 
convergence condition withγ = 0.0001. From Fig. 9 we can see the trajectory from any point 
(x, y) moves toward and converges to the limit cycle clockwise when close. The 
counterclockwise condition can be derived by the following system (shown in Fig. 10): 
 

2 2 2 2

2 2 2 2

( y x ( r x y ) )
1y ( x y ( r x y ) )

x λ μ γ μ

λ γ μ
μ

•

•

= − + − −

= + − −

 
 

(9) 

Since the trajectory from any point (x, y) inside the limit cycle moves outward the cycle 
(thus away the center point of the cycle), and the trajectory from any point (x, y) outside the 
limit cycle approaches the cycle by aparting the center point distances (determined by the 
cycle), the limit cycle provides a method for collision avoidance among multiple robotic fish. 
Shown in Fig. 12, the shape of the obstacle fish body is described by an ellipse, and the safe 
region is defined by a concentric safe ellipse. When another fish is in the safe region, by the 
limit cycle approach, it will move away the obstacle fish toward the safe ellipse. Let 
θ denote the orientation of the fish, (x0, y0) the center point of the fish. With the following 
transformation we get the expression of system (4) in the original frame: 
 

c o s ( 0 ) s in ( 0 )
s in ( 0 ) c o s ( 0 )

x x x y y
y x x y y

θ θ
θ θ

= + − +
= + + +

 (10) 

such that: 
 

c o s s in

s in c o s

x x y

y x y

θ θ

θ θ

• • •

• • •

= −

= +

  
(11) 

 
Let v denote the translational velocity of the fish in the original frame, a the direction of the 
motion. The kinematic model of the robotic fish is described by: 
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c o s

s i n

t a n

x a

y a

y a
x

ν

ν

•

•

•

•

=

=

=

  
 

(12) 
 
 

Substituting (11) into (12) we get: 

2 2

a r c t a n

x y

ya
x

ν

θ

• •

•

•

= +

= +

 
 
 

(13) 

By tuning the value of λ , we can adjust the magnitude of v to get arbitrary speed values. 
Advantages of the limit cycle approach are listed below: 
1) Since the control inputs of the robotic fish are the translational velocity ν  and the 
orientation angle a instead of the rotational velocity ω , we elimitate the trouble of treating 
the tackled coupling betweenν andω in collision avoidance. 
2) It is an efficient reactive collsion avoidance approach, and the fish can avoid the obstacle 
with the safety distances and appropriate direction without moving far away from the 
obstacle. 
 

 
(a) Fast convergence withγ  = 0.001        (b) Slow convergence withγ = 0.0001 

Fig. 9. Phase portrait of limit cycle (clockwise) 
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Fig. 10. Phase portrait of limit cycle (counterclockwise) 
 
(d)Applying Limit Cycle Approach in Multiple Robotic Fish Collision Avoidance 
Next we employ three robotic fish for discussion. To apply the limit cycle approach in the 
coordinated collision avoidance, we employ the .situated-behavior. method (similar to the 
situated-activity paradigm (see [14])) to divide the environment into a set of exclusive and 
complete situations, and for each situation, a behavior is elaborately designed to solve the 
situation associated problem individually. The advantage of employing this method is that 
it is a .divide and conquer. strategy, which reduces the task difficulty; in addition, the 
real-time behavior coordination problem need not to be taken into consideration, since the 
situations are complete and exclusive. 
Situations Here we discuss only the situations for fish 1. The situations for other fish are 
similar. We use a decision tree to define the set of situations according to the relative 
locations of the robotic fish. The decision tree is traversed through binary decision rules 
according to several criteria. As shown in Fig. 11, the inputs of the decision tree are the goal 
location information and sensory information from the overhead camera, including the ID 
information, the location and orientation information of the fish. The current 
situation is identified according to the input information. The decision tree is traversed 
through binary decision rules according to the following four criteria.  
Criterion 1: Obstruction criterion. This criterion classifies the situations into the following 
two categories according to whether fish 1 is obstructed by another fish: 
(1) Nobs (not obstructed) situation: Fish 1 is not obstructed by any other fish; 
(2) OBS (obstructed) situation: otherwise. 
Criterion 2: Obstacle fish number criterion. This criterion divides OBS situation into the 
following two situations: 
(1) Sobs (single obstructed) situation: Fish 1 is obstructed by only one fish; 
(2) Tavoid (trap avoiding) situation: Fish 1 is obstructed by other two fish simultaneously 
(shown in Fig. 13 (d)). 
Criterion 3: Dual avoiding criterion. This criterion classifies Sobs situation into the following 
two situations according to whether fish 1 and the other fish are obstructed by each other: 
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(1) Savoid (single avoiding) situation: Fish 1 is obstructed by the other fish but not an 
obstacle for that fish (shown in Fig. 13 (a)); 
 

 
Fig. 11. Situations of coordinated collision avoidance 
 
(2) Davoid (dual avoiding) situation: Fish 1 and the other fish are obstructed by each other 
(shown in Fig. 13 (b) (c)). 
Criterion 4: Active avoiding criterion. According to whether fish 1 has the highest priority 
among fish in Tavoid situation (here the priorities of the fish are arranged according to their 
IDs), this criterion divides Tavoid situation into the following two situations: 
(1) ATavoid (active trap avoiding) situation: Fish 1 has the highest priority; 
(2) PTavoid (passive trap avoiding) situation: Otherwise. 
We only care the leaf nodes of the decision tree: Nobs, Savoid, Davoid, ATavoid, PTavoid. 
Obtained through a binary decision tree, these five situations are exclusive and complete. 
Behaviors associated with the situations  
First we define a normal behavior. 
normal behavior: If the goal direction is to the right of the obstacle direction, and the path of 
the fish to the goal location is obstructed by the safe ellipse of the obstacle fish, shown in Fig. 
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12 (a), the fish moves toward the limit cycle counterclockwise; while if the goal direction is 
to the left of the obstacle direction, and the path of the fish to the goal location is obstructed 
by an obstacle fish, the fish moves toward the limit cycle clockwise, shown in Fig. 12 (b).  
1) BNobs: Fish 1 approaches the goal location directly. 
2) BSavoid : Fish 1 avoids the obstacle fish with normal behavior (shown in Fig. 13(a)). 
 

 
(a) Avoiding fish counterclockwise  (b) Avoiding fish clockwise 

Fig. 12. Normal behaviour 
 
3) BDavoid: The two fish avoids each other with the same limit cycle direction (both 
clockwise, or both counterclockwise). If fish 1 is prior to the other fish, it avoids the other 
fish with normal behavior; otherwise it avoids the other fish with the direction opposite to 
normal behavior (shown in Fig. 13 (b) (c)). 
4) BATavoid : In Tavoid situation, it is possible for fish 1 to get stuck in a local minima with 
normal behavior. For example, in Fig. 13 (d), fish 1 is avoiding fish 2 counterclockwise; 
however, since it is also obstructed by fish 3, then it will avoid fish 3 clockwise. Thus fish 1 
will get stuck between fish 2 and fish 3. BATavoid is to avoid this situation. Let l denote the 
line from fish 1 to Goal of fish 1, and fish i (i 2 (2;3)) represent the fish with the shorter 
distance to line l. Fish 1 avoids fish i with direction opposite to normal behavior, until the local 
trap situation is eliminated (shown in Fig. 13 (d)). 
BPTavoid : Fish 1 avoids the fish in ATavoid situation with the same limit cycle direction to 
overcome confiicts. 
 

  
(a) Savoid situation example    (b) Davoid situation example 1 
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(c) Davoid situation example 2    (d) ATavoid situation example 

Fig. 13. Situations and associated behavior design 

 
4.4 Conclusion for Collision Avoidance 
We have presented a novel collision avoidance method for multiple robotic fish. 
Considering the inherent kinematic constraints of the robotic fish, we employ limit cycle 
approach for coordinated collision avoidance among the robotic fish. This approach allows 
the robotic fish to avoid one another smoothly and efficiently, and also eliminates the local 
minima problem. Experimental results demonstrate the effectiveness of the proposed 
method. 

 
5. Situation Based Action Selection and Design for Pushing Ball in RWP 
 

In this section, we will present the situation-base action selection mechanism to achieve ball 
pushing in RWP. It seems that pushing ball is quite simple, one robotic fish may be enough 
to finish it, in fact, the robotic fish's head is only 40mm wide and the ball drifts with the 
fluctuant water, it is not easy for one robotic fish to touch the ball exactly in the expected 
point and push it to the direction of the gate. Moreover, because of its inertia and 
hydrodynamic forces, the robotic fish can't stop immediately even if the oscillating 
frequency is set to zero. It will drift a short distance along its current direction and thus, 
overshot occurs. When this happens, the fish must turn back and re-adjust its relative 
position with respect to the ball, which will take a long time. In addition,when the fish 
swims back and adjusts its attitudes, it will inevitably disturb the surrounding water. As a 
result, the ball may float away before the fish approaches it, which will increase difficulty to 
the game. 
Based on the above consideration, multiple fish are used to push the ball to goal 
cooperatively. For example, we can allow two or three to push the ball in different points, 
using composition of their forces to move the ball towards the gate. Or if a fish overshoot 
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the ball, it can hit the ball by its tail and make the ball fioat to a favorable position for 
another teammate. 

 
5.1 Working Region, Situations and Rules for the Game 
To describe the situations for the game, we first introduce three working regions for the 
robotic fish. As shown in Fig. 14, l is a line connecting the center of the ball to the goal. Let us 
draw a circle at the center of the ball with a radius r and then partition it into four vectors. 
There obtain five working regions: Pushing Region, Left Assistant Pushing Region, Right 
Assistant Pushing Region and Overshot Region. Other regions out of the circle is called 
Buffer Region. 
 

 
Fig. 14. Illustration of the region division 
 

 the Pushing Region (PR): this is an effective working region, since in this region the 
fish-like robot can push the ball to the direction of the goal and so the pushing action is 
effective. 

 the Left Assistant Pushing Region (LAPR): this region is a semi-effective working 
region. The fish in this region can not directly push the ball to the desired direction, but 
it can help a fish in PR prevent the ball floating away. 

 the Right Assistant Pushing Region (RAPR): similar to LAPR, this is also a 
semi-effective working region 

 the Overshot Region (OR): this region is a forbidden working region. When the fish 
swims into this region, it will be located between the ball and the goal. In this region, 
the fish are forbidden to touch the ball because it will push the ball to the opposite 
direction to the destination. In this case, the fish should first swim around the ball and 
enter a effective working region and then select suitable actions. 

 the Buffer Region (BR): In this region, the fish is a little bit far from the ball, in will try 
to swim to an effective region (PR, LAPR or RAPR) first.  

We use multiple fish in the RWP in order to enhance the efficiency of the game. However, 
when the number of the fish increase, more problems may occur. Because the space is 
limited, these fish may collide with each other. In order to deal with such circumstance, the 
collision avoiding strategies are designed, which will debase the performance of 
cooperation.Moreover, when multiple fish swim in the same place, the surrounding water 
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will be disturbed violently. The ball will float everywhere and become more difficult to 
track and push. Additionally, waves produces by fish and ball may cause uncertainty and 
inaccuracy to the image information captured by the overhead camera..Considering the 
characteristics of the fish's dynamics and the speciality of the hydro-environments, we 
propose the following rules for this game. 
Rules 1: as shown in Fig. 15 (a), we divide the space (pond) into three parts in Y coordinates: 
Part A, Part B and Part C, representing the respective region each fish take charge of. We use 
such kind of region-responsibility strategy with main intent to avoid collisions between 
these fish. For each fish, if the ball is not in the region that it is responsible for. It will still 
swim restrictively within its region and cannot invade other regions to disturb its 
teammates. This rule is inspired by the human soccer match in which different roles take 
charge of different regions.  
Rules 2: we prefer slowness than overshoot when controlling the fish. We intent to slow 
down the fish to some extent, especially when it approaches the pushing point. In addition, 
the distance from the pushing-point to the center of the ball is defined to be a value larger 
than theoretical value. 
Rules 3: as we mentioned, the fish can't stop immediately even you send stop command. It 
will drift a short distance out of control. So, in practice, even when the fish is idle, we will let 
the fish wander or move very slowly instead of using stop command to halt it. 
Obviously, based on the above rules and according to the number of fish entering the 
Pushing Region, we can define four primary situations for the task. 
Situation 0 (S0): no fish is in the Pushing Region. In this situation, the game can not be 
implemented immediately. The fish should first swim entering the effective working region. 
Situation 1 (S1): there is only one fish-like robot in the Pushing Region. In order to 
effectively push the ball, the fish should touch the ball exactly to the direction of the goal. In 
this situation, according to the number of fish in the Assistant Pushing Regions we can 
define three sub-Situations: 

  S1----APR0: there is no fish in the Assistant Pushing Regions 
  S1----LAPR1: there is one fish in the Left Assistant Pushing Regions, so this fish will 

assist the main pusher to transport the ball. 
  S1----RAPR1: there is one fish in the Right Assistant Pushing Regions. 
  S1----APR2: two fish are in the Assistant Pushing Regions, one is left and one is right. 

Situation 2 (S2): there two fish are in the pushing region. At this circumstance, these two 
fish can push the ball cooperatively. They push the ball from different points and let the 
combination of their force move the ball to the destination. Similarly, we can define two 
sub-Situations: 

 S2----APR0: there is no fish in the Assistant Pushing Regions 
 S2----LAPR1: there is one fish in the Left Assistant Pushing Regions, so this fish act as 

an assistant in the game. 
 S2----RAPR1: there is one fish in the Right Assistant Pushing Regions. 

Situation 3 (S3): all the fish are in the pushing region. In this situation, these fish can have a 
work division. Some are responsible for pushing ball, others can assistant the pusher by 
preventing the ball from floating away with the fluctuant water. 
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Different situations will result in different task difficulty. As we mentioned above, when 
there is only one fish pushing the ball, it may easily miss the ball or push it to the wrong 
direction. While, as the pushers increase, the game will be easier due to cooperation and 
redundancy. So, in order to push the ball in a more stable and precise way, multiple fish are 
expected to help each other and work in a cooperative way, such as in S2 and S3. 

 
5.2 Situated Actions Design 
In contrast to controlling some ground mobile robots, the robotic fish's attitudes are more 
difficult to modulate, because it is very difficult to establish any precise dynamics models 
for the robotic fish. Hence, we designed the fish's primitive actions based on geometric 
approach: 
Action 0: This action is designed for the fish to swim from a non-pushing region to the 
effective working region. Basically, this is a simple Point----To----Point(PTP) control. 
Action 1: As depicted in Fig. 15 (b), the first action for the fish is to swim approaching the 
ball and hit the ball exactly along the direction from the ball to the gate. where ( Fx ，

Fy ，
α �) denotes the pose of the fish, ( Dx ; Dy ) and ( Cx ;

Cy ) stand for the center of the ball 

and the position of the gate, β is the expected direction from the ball to the gate, 1l  
indicates the expected moving direction of the ball. Considering the fish's bodylength and 
its inertia, We choose a point G ( Gx ; Gy )which located at the extended line of 1l  as the 

pushing-point. 2l  is the section connecting the fish to G, and 3l  represents the 

perpendicular of 1l  which pass through point G.  

As illustrated in Fig. 15 (b), if the pushing-point G locates between the fish and the ball, 
that's ( ) ( ) 0D F C Dx x x x− × − > , we first define the perpendicular bisector 4l  for 

section 2l . Then using r as radius, we make a circle C which is tangental to 1l  at point G. If 

the circle intersects 4l  at one point, we chose this point as a temporary goal for the fish, or 
if they are two intersections, we chose the point with small x-coordinates, namely T as the 
temporary goal. While, if the fish is far away from the ball and there is no intersection 
between C and 1l , G will be the temporary goal point for the fish. As the fish moves, a series 
of temporary goals will be obtained, which will lead the fish swim gradually to the 
pushing-point. 
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Fig. 15. (a)The experiment setting and Region division    (b)The action of pushing ball 

along the exact direction pointing the gate 
 
After simple geometrical analysis, The positions of intersection points can be calculated by 
the following equation(14): 
equation: 
 

2 2 2( c o s s in ) ( s in c o s )
1 1( ) ( ( ) )
2 2

D D

F G
G F G F

G F

x x r a y y r a r
x xy y y x x x
y y

ρ β ρ β− − − + − − + =
−− + = − +
−

  
(14) 

 
Action 2: Although when determining the pushing-point, we give sufficient consideration 
for the dynamics of the fish and the difficulty when controlling it, we still can't guarantee 
the fish will reach its destination in the expected attitudes, especially its orientation. Once it 
gets to the pushing-point with large orientation error, it may possible miss the ball. In this 
case, we design the following action which allow the fish to push the ball by swing. 
As shown in Fig. 16 (a), if the fish approaches the pushing-point (in a small neighbor region) 
and its orientation satisfies the following condition, it will take a sharp turn to the direction 
of the ball. 
 

{ }
{ }

( , ) ( , ) ( , )F F G G F Fx y x y x y δ

α α β ξ

⎧ ∈ − ≤⎪
⎨

∈ − ≥⎪⎩
 

 
 

(15) 

 
where δ and ξ are the bounds for position error and orientation error, which are 

determined empirically experiments. In our experiment, we choose δ = 5cm  andξ =
15
π  

Action 3: This action is an assistant action, which is implemented in LAPR or RAPR. In 
particular, this action takes full advantage of the agility of fish's tail. Fig. 16 (b) indicates the 
fish pat the ball by its tail. 
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Action 4: Action 4 will be implemented when the ball fioats very close to the gate and to the 
edge of the pond, and the fish is in LAPR or RAPR. This action allows the fish to move the 
ball slowly towards the goal by oscillating. As shown in Fig. 16 (c), in this action, we design 
a point outside the pond as a virtual pushing--- point. Thus the fish will always try to swim to 
that virtual destination, although it can never reach it. During moving (or struggling), its 
body, especially posterior body, oscillates continually, which disturbs the water and makes 
the ball fioat towards the gate. 

 
(a)           (b)        (c) 

Fig. 16. The fish pushes ball by (a) shaking(throwing) head, (b)pushing the ball by tail and 
(c) swimming towards a virtual pushing point respectively 

 
Next, we will investigate how the fish work cooperatively to push ball based on the above 
four basic actions. Three behaviors for cooperation are designed, two for two fish and one 
for three. 
Action 5: This action is designed for S2. As shown in Fig. 17 (a), for a given pose of the ball, 
instead of 
choosing one pushing-point, two goal points (PushPointL and PushPointR) are defined 
which locate at different sides of pushing-point with a defiection ϕ . Two fish swim 
towards different pushing points, and the combination of their pushing force will make the 
ball fioat towards the gate. 
Action 6: When in S3 we adopt the following cooperative action, as shown in Fig. 17 (b). 
That's three fish surround the ball and sent it into the gate. At this circumstance, FishC push 
the ball exactly to the direction of the goal, while FishL and FishR hit the ball from 
PushPointL and PushPointR respectively. 

  
Fig.17. (a)Cooperative action for two fish.         (b) Cooperative action for three fish 
 
Table 1 sums up the corresponding strategies for each fish individual when in different 
situations: 
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Multi-robot fish Situation 
FishL   FishC FishR 

S0 Action 0 Action 0 Action 0 
Action 1,2  
 

Action 0 Action 0 

Action 0  
 

Action 1,2 Action 0 

S1-APR0 
 

Action 0  
 

Action 0 Action 1,2 

Action 3,4  
 

Action 
1,2 

Action 0 S1-LAPR1 

Action 0  
 

Action 
3,4 

Action 1,2 

Action 0  
 

Action 
1,2 

Action3,4 S1-RAPR1 

Action 1,2 Action 
3,4 

Action 0 

S1-APR2 Action3,4 Action1 
,2 

Action 3,4 
 

Action 0  Action 
1,2 

Action 1,2 S2-APR0 

Action 1,2 Action1,2 Action 0 
S2-LAPR1  Action 3,4 Action 5 Action 5 
S2-RAPR1  Action 5 Action 5 Action 3,4 
S3  Action 6 Action 6 Action 6 

Table 1. Situation Based Action Selection 
 
Fig. 18 shows the scenarios in one of the experiments. The experiment is quite successful 
and has high efficiency, since during the pushing, FishL and FishR cooperative very well 
and neither of them overshoots the ball. Moreover, the ball is relatively stable and there is 
little disturbance when it floats. In this sense, the hydro-environment is more complicated 
than general ground environment. 
 

  
(a)  0 s after started                               (a)  6 s after started 
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(a)  18 s after started                                (a)  23 s after started 

   
(a)  24 s after started                                (a)  27 s after started 

Fig. 18. Fragment of the experiment, Sequences of overhead images, order is left to right and 
top to down. (a) The initial state of the experiment. (b) FishL is in the LAPR, FishC in 
PR attempts to push the ball directly and FishR tries to approach the ball but turns 
when swims out of its charged region. (c) FishL takes Action 2 to pat the ball and at 
the same time FishC takes Action 1 to hit the ball. FishR still tries to approach the 
object. (d) Both FishL and FishC take Action 5 to push the ball cooperatively. FishR 
takes Action 0. (e) FishL takes Action 3, FishC takes Action 1 and FishR still takes 
Action 0. (f) FishL takes Action 3, FishC takes Action 1 and FishR takes Action 4 

 
6. Conclusions and Foregrounds 
 

We focus this chapter on the RWP and the underwater robot cooperation involved in the 
game, two useful methods are introduced in this chapter for the game. These two methods 
have been certified by the experiments. 
Mankind invented the robot in the 20th century and realized the use of robots initially. In 
the 21st century, humans will coexist with robots. Robot Football is the ideal model to 
research the future sociality. 
A very wide range of fields are involved in the RWP, including machinery and electronics, 
robotics and sensor information fusion, intelligent control, communications, computer 
vision, computer graphics, artificial intelligence and so on. What is more significant is that 
the RWP makes the research and education combined. The game combined ingeniously 
with the academic research will furthermore inspire the young students interesting strongly. 
It will train young students to have rigorous scientific attitude and good skills through the 
competition of RWP. 
Though RWP has only just started, the significance of industry research and the huge 
potential has already been demonstrated: 
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(1) It provides a high-tech display of the outcome of the visualization window to promote 
scientific technology and social production and living closer integration. Soccer is not only 
one of the world's most popular sports, but also a huge industry. In the current world, the 
research on robots always consciously takes the initiative to integrate into the community's 
economic and cultural life.  
(2) The RWP provides an approach of converting research results to industry. It can be 
expected that with the development of the RWP, variety of new underwater robots will be 
developed, and the efficiency will grow rapidly. Also, with other types of robot soccer team 
and the technical aspects mature gradually, the related products will grow rapidly.  
(3) RWP provides a standard platform to research on underwater robot collaboration. Due 
to the special nature of the underwater environment, many ground collaboration theory and 
algorithms can not be applied directly in the underwater environment, there are great 
difficulties in collaborative research on underwater robot. By providing a standard platform, 
it will attract more people to conduct underwater robot for underwater robot collaborative 
research.  
RWP can also reflect comprehensive strength of a national information technology and 
automation technology and at the same time multiple underwater robots cooperation have 
broad application prospects in a large of engineering field, for example, the cooperation 
control research of multiple underwater robot fish has a broad prospect in the military, the 
detection of underwater resources, on the sea detecting and rescue, marine multi-sensor 
sampling network, and other military tasks in which the cooperation control research plays 
an important role. 
In short, the RWP not only is the high-tech competition, but also has the property of view 
and admire and entertainment like the football game. Therefore, there will surely attract a 
large number of "fans" .Currently, there are more and more schools invited to participate in 
RWP. We have the reason to believe that under the efforts of all colleges and universities, 
RWP will be promoted in the world to be the standards multi-robot competition.  
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