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Preface

Parallel manipulators are characterized as having closed-loop kinematic chains.
Compared to serial manipulators, which have open-ended structure, parallel ma-
nipulators have many advantages in terms of accuracy, rigidity and ability to ma-
nipulate heavy loads. Therefore, they have been getting many attentions in astron-
omy to flight simulators and especially in machine-tool industries.

The aim of this book is to provide an overview of the state-of-art, to present new
ideas, original results and practical experiences in parallel manipulators. This book
mainly introduces advanced kinematic and dynamic analysis methods and cutting
edge control technologies for parallel manipulators. Even though this book only
contains several samples of research activities on parallel manipulators, I believe
this book can give an idea to the reader about what has been done in the field re-
cently, and what kind of open problems are in this area.

Finally, I would like to thanks all the authors of each chapter for their contribution
to make this book possible.

Jee-Hwan Ryu

Korea University of Technology and Education
Republic of Korea

jhryu@kut.ac.kr
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On the Robust Dynamics Identification of
Parallel Manipulators: Methodology and
Experiments

Houssem Abdellatif, Bodo Heimann and Jens Kotlarski
Institute of Robotics, Hannover Center of Mechatronics, Leibniz University of Hannover
Germany

1. Introduction

The proposed chapter presents a self-contained approach for the dynamics identification of
parallel manipulators. Major feature is the consequent consideration of structural properties
of such machines in order to provide an experimentally adequate identification method.
Thereby, we aim to achieve accurate model parameterization for control, simulation or
analysis purposes. Despite the big progress made on identification of serial manipulators, it
is interesting to state the missing of systematic identification methodologies for closed-loop
and parallel kinematic manipulators (PKM’s). This is due to many factors that are discussed
and treated systematically in this chapter.

First, the issue of modelling the dynamics of PKM’s in a linear form with respect to the
parameters to be identified is addressed. As it is already established in the field of classic
serial robotics, such step is necessary to ensure model identifiability and to apply
computationally efficient linear estimation (Swevers et al., 1997; Khalil & Dombre, 2002;
Abdellatif & Heimann, 2007). The case of parallel manipulators is more complicated, since a
multitude of coupled and closed kinematic chains has to be considered (Khalil & Guegan,
2004; Abdellatif et al., 2005a). Beside the rigid-body dynamics, friction plays a central role in
modelling, since its accurate compensation yields important improvement of control
accuracy. If friction in the passive joints is regarded, the dimension of the parameter vector
grows and affects the estimation in a negative way. To cope with such problem, a method
for the reduction of the friction parameter number is proposed, which is based on the
identifiability analysis for a given manipulator structure and by considering the actual
measurement noise. The calculation procedure of a dynamics model in minimal
parametrized form is given in section 2.

Another important issue of PKM's is the appropriate design of the identification experiment,
in order to obtain reliable estimation results. Two aspects are here crucial: The choice or the
definition of the experiment framework at the one hand and its related experiment
optimization at the other hand. Regarding the first aspect, the harmonic excitation approach
proposed a couple of years ago for serial manipulators is chosen (Swevers et al., 1997). The
method provides bounded motion that can be fitted in the usually highly restricted and
small workspace of parallel robots. Thus, we propose an appropriate adaptation for PKM’s.
The experiment optimization is carried out within a statistical frame in order to account for
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the cross correlation of measurement noise and the motion dependency of the coupled
actuators (Abdellatif et al., 2005b). The Experiment design is discussed in section 3.

The typically non measurable information of the end-effector postures, velocities and
accelerations are necessary to calculate the dynamics model and therefore to obtain the
regression equation. Since in general only actuator measurements are available, there is a
need for an adequate estimation of the executed end-effector motion during the
identification experiment. However, the numerical computation of the direct and the
differential kinematics yields a spectral distortion and noise amplification in the calculated
data. Therefore, an appropriate and simple frequency-domain data processing method is
introduced in section 4. An accurate and noise-poor regression model is then provided,
which is crucial for bias-free estimation of the model parameters. Additionally, we provide
useful relationships to evaluate the resulting parameter uncertainties. Here, uncertainties of
single parameters as well as the uncertainties of entire parameter sets are discussed and
validated.

Fig. 1. Case Study: Hexapod PaLiDA; left: Presentation in the Hannover industrial fair,
Right: CAD-Model

Finally and in section 5, an important part of the chapter presents the experimental
substantiation of the theoretical methods. The effectiveness of our approach is demonstrated
on a six degrees-of-freedom (dof’s) directly actuated parallel manipulator PaLiDA (see Fig.
1). We address the important issue of exploiting the identification results for model-based
control. The impact of accurately identified models on the improvement of control accuracy
is illustrated by numerous of experimental investigations.

2. Parameterlinear formulation of the dynamics model

The objective of this section is to derive the inverse dynamics model in a linear form with
respect to a set of the parameters to be identified. Such formulation allows for using linear
techniques to provide the estimation of model parameters from measurement data. This
kind of approach is well established for serial robots (Khalil & Dombre, 2002; Abdellatif &
Heimann, 2007). Thereby, the model accounts for the rigid-body as well as for friction
dynamics. We consider the case of 6-dof’s parallel manipulator, that is constituted of a
moving platform (end-effector platform) attached with six serial and non-redundant
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actuated kinematic chains to the base platform. Fig. 2 shows a general sketch of such robotic
manipulators. Let x,v,a be the 6-dimensional vectors denoting the posture, the velocity,

and the acceleration of the end-effector, respectively. The posture vector is composed of the
cartesian coordinates of the end-effector platform (o)rg = [x y Z]T and the tilting angles

(#,0,¥) according to the Cardan or the Euler formalism. The velocity vector is defined as
v= [(O)VE (O)Q)E]T that includes the translational and angular velocities with reference to a

cartesian frame. It is known, that v x holds for systems with two or more rotational dof's
(Merlet, 2006). The 6-dimensional vector of actuated joints is denoted by q, . The passive

joint variables are grouped in q,, . The vector q contains all joint variables.

Platform

Base

Fig. 2. Scheme of a general parallel manipulator

The major difference between serial and parallel manipulators is the definition of
configuration variables or the configuration space. For classic serial manipulators, the
actuation variables q, are sufficient to determine exactly the system's configuration. This is
not the case for PKM’s, because the solution of the direct kinematics is ambiguous (Khalil &
Dombre, 2002; Merlet, 2006). It is established that the motion of the end-effector given by
x,v and a is used to derive the dynamics of high-mobility parallel robots (Tsai, 2000; Harib
& Srinivasan, 2003; Khalil & Guegan, 2004; Abdellatif et al., 2005a). The solution of inverse
kinematics is supposed to be already achieved. It means that for a given dynamic motion of
the end-effector, all necessary kinematic quantities are available. The latter include:
Velocities and accelerations of any body i with respect to a body-fixed frame! v,,a; or those

of the center of mass vg ,ag ; the angular velocities and angular accelerations ®;,®;; the

' The body-fixed frames can be defined according to the modified Denavit-Hartenberg
(MDH) notation (Khalil & Dombre, 2002).
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body Jacobians J; =0v;/0v and Jy =0w,;/0v and the inverse Jacobian of the manipulator
' =6q, /ov (see (Abdellatif et al., 2005a) and references therein for more details).

The aimed dynamics model consists of the following equation:

Qa = A(x,v,a)p = Qa = Aa,rb (x’v’a)prb +Aa,f (x,v,a)pf s (1)

with Q, being the actuator forces and where the indexes rb and f refer to the rigid-body
and friction terms, respectively.

2.1 Parameterlinear formulation of the rigid-body dynamics

Generally, it is recommended to use the Jourdain’s principle of virtual power to derive the
dynamics in an efficient manner. In analogy to the virtual work, a balance of virtual power
can be addressed:

. aq, '
ovit=6q" e , 2
9,Q, (&j Q, o)

where T is the vector of the generalized forces, defined with respect to the end-effector
generalized velocities v. Equation (2) means that the virtual power resulting in the space of
generalized velocities is equal to the actuation power. The power balance can be applied for
rigid-body forces:

oq, )
Qo = T[Eaj T =]"1,. ©)

The generalized rigid-body forces for a manipulator with N bodies are obtained by

~ o~ T
rb_Z[]T( i 1)V+z)m +(z’)mi(z’)misz’)+]Rl ((i 5)(1)"3 (i@ ((z)I () Di )+s Vi )] 4)

with the dynamic parameters of each body i, its mass m;, its statical first moment

s; = [sl- s, s ]T =m; s, ((»1, : Vector from coordinate frame to centre of mass) and its
x v z i Si

inertia tensor about the corresponding body-fixed coordinate frame (i)IEi) . New operators

() and () are defined:

mjlyé(i)lgl)(i)mi/ ©)
with
o, o o 0 0 O
=0 o 0 o o O|adI=| I L I I I/, (6)
0 0 o 0 o o
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which helps the simplification of the generalized rigid-body forces:

1°
N 1
T 1T T T T
T IZ[]T, IR, ]Qi S; :[H1 H, .. HN][P1 P> - pN]T’ ?)
=1
H, m;
Pi
with
Q - 0 HOHHD; (@ ;) V; ®)
1 ck ~ * o
() @i () @i (1) ®; “Vi 0
Equation (7) is already linear with respect to the parameter vector py, = [p¥ Py ... pIT\,]T .

The dimension of the latter has now to be reduced for an efficient calculation and to assure
the identifiability of the system. The proposed algorithm in the following is based on former
works for serial and parallel manipulators (Grotjahn & Heimann, 2000; Grotjahn et al., 2002).
The matrices H; in equation (7-8) can be grouped in single serial kinematic chains such that

a recursive calculation

H; =H;,L; +K; ©)
can be achieved. The matrices L; and K; are given in (Grotjahn et al., 2002). The first step
considers in eliminating all parameters py,; that correspond to a zero column h; of H,
since they do not contribute to the dynamics. The remaining parameters are then regrouped

to eliminate all linear dependencies by investigating H. If the contribution of a parameter

P:b,j depends linearly on the contributions of some other parameters p;,; j,...,p:b'kj, the

following equation holds:

k
h]- = I;a,jhlj . (10)

Then pj, j can be set to zero and the regrouped parameters P:b,lj,new can be obtained by

* * *
Prbjjnew = Prbjj T 4jPrb,;j - 11)

The recursive relationship given in (9) can be used for parameter reduction. If one column or
a linear combination of columns of L; is constant with respect to the joint variable and the
corresponding columns of K; are zero columns, the parameters can be regrouped. This
leads to the rules which are formulated in (Khalil & Dombre, 2002) and in (Grotjahn &
Heimann, 2000).

The rules can be directly applied to the struts or legs of the manipulator, since they are
considered as serial kinematic chains. For revolute joints the 9t, the 10th and the sum of the
Ist and 4t columns of L; and K; comply with the mentioned conditions. Thus, the

corresponding parameters I, , s;
yy

; and m; can be grouped with the parameters of the
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antecedent jointi—1. For prismatic joints however, the moments of inertia can be added to
the carrying antecedent joint, because the orientation between both links remain constant.
The end-effector platform closes the kinematic loops and further parameter reduction is
possible. The velocities of the platform joint points B; (see Fig. 2) and those of the terminal
fixed-body frames of the respective legs are the same, yielding dependencies of the
respective energy-functions. The masses of terminal bodies can be grouped to the inertial
parameter of the platform according to Steiner's laws.

After applying every possible parameter reduction the generalized rigid-body forces are
obtained from (7) with respect to a minimal set of parameters t,, = A p,, . In combination

with (3) the desired form for the rigid-body part of the actuation forces is obtained as
T
Qa,rb = ] Arbprb = Aa,rbpa,rb . (12)

2.2 Parameterlinear formulation of the friction forces
In analogy to the rigid-body dynamics, the Jourdain’s principle can be applied for friction
forces. By defining an arbitrary steady-state model at joint-level Q; =£,(q), a new power

balance can be derived:

o ) oq\"
q T[99
= =JN = ) 13
0[S o (3 (13
Equation (13) means that the friction dissipation power in all joints (passive and active) has
to be overcome by an equivalent counteracting actuation power. We notice that the case of
classic open-chain robots correspond to the special case, when the joint-Jacobian 8q/dq, is
equal to the identity matrix. In the more general case of parallel mechanisms, friction in
passive joints should not be neglected (Abdellatif & Heimann, 2006).

For identification purpose, friction in robotics is commonly modelled as superposition of
Coulomb (or dry) friction and viscous damping depending on joint velocities 4; (Abdellatif

et al., 2007; Swevers et al., 1997):

Q; = £i@) =[sign@) alln ™. (14)
Regrouping friction forces in all # joints yields to
Q -[D,@ D@l =], (15)
Dy P
with
r = [rkl,...,rk“], (16)
D, (q) = diag{sign(d,),.., sign(4, )}, (17)

D,(q) =diag{fy, .. qu - (18)
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Considering (13) and (15) the linear form of the resulting friction forces in the actuation
space is obtained:

N
Q.= []T(%] Df:lpf =A,(x,V)p;. 19)

Unlike the rigid-body dynamics, there is no uniform or standard approach for the reduction
of the parameter vector dimension. In a former publication, we proposed a method that is
highly adequate for identification purposes. Thereby, the expected correlation of the friction
parameter estimates is analyzed for a given and statistically known measurement
disturbance. Parameters whose effects are beneath the disturbance level are eliminated.
Parameters with high correlation are replaced by a common parameter. The interested
reader is here referred to (Abdellatif et al., 2005c) and (Abdellatif et al., 2007) for a deep
insight.

3. Identification experiment design for parallel manipulators

Almost all identification methods in robotics are based on the parameterlinear form that is
given by (1) in combination with (12) and (19) (Swevers et al., 1997; Khalil & Dombre, 2002;
Abdellatif & Heimann, 2007). Given experimentally collected and noise corrupted N
measurement sets, the estimation problem can be formulated according to (1) as

Q,, A(le"1 ’al) €
o= : p+ i, (20)
Q.. A(XN'VN'aN) en
SR R S A A S S S
r v n

with the measurement vector TI', the information or regression matrix W and the error
vector 1 that accounts for disturbances. The most classic and simple solution of the

overdetermined equation system (20) can be achieved by the Least-Squares (LS) approach.
However, such method assumes that the disurbances of the different actuators are not cross
correlated. The assumption does not hold for high-coupled systems like the case of parallel
manipulators (Abdellatif et al., 2005b). It is recommended to use the Gauss-Markov (GM)
approach that presents a more general case

A Ty-1 T Ty-1
pov = (wz, w) Wy I 1)

The crosscoupling is regarded by the full covariance matrix X, = E(rmT) of the
measurement disturbances n. Neglecting this fact by applying the simple LS-method will
lead to biased estimates (Abdellatif et al., 2005b).

3.1 Design of the excitation trajectory

An important step in identification is the choice of the measurement data to be collected. A
classic choice consists in the so-called excitation trajectory, which ensures that the effects of
all considered parameters are contained in the measurement data. A challenging issue with
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parallel manipulators is their restricted and highly constrained workspace. Such property
reduces the possibility of highly dynamic and variable motion that is necessary for the
excitation of all parameters to be identified. The appropriate choice should be a trajectory
that is naturally bounded to fit into a small workspace. An attractive approach is the
harmonic excitation approach originally proposed by Swevers et al. (Swevers et al., 1997)
and adapted in the following for the case of parallel manipulators.

For each posture coordinate corresponding to the i element of x a respective trajectory
with n,, harmonics is defined as

l:;f sin(ka)/t) - k‘;‘;/‘ cos(kw,t) , (22)

k=1

My
X, =X} +Z(

providing a proper trajectory parameter vector

I N T e 23)
with @; being the fundamental frequency. The difference to the implementation for serial

robots is that the excitation trajectory is now defined with respect to x (and therefore v
and a ) rather than to the actuator coordinates q, . Such modification is necessary, since the

dynamics can determined only in the configuration space defined by x . With the proposed
modification, a direct relationship between the dynamics to be excited and the trajectory is
available. If the excitation trajectory is defined with respect to the actuated coordinates q,,

the closure constraints of the parallel manipulator and the numerical calculation of the
direct kinematics have to be performed while the optimization and design of the trajectory.
First ensures a feasible trajectory and second provides the resulting dynamics in form of the
regression model. Both operations increase the solution cost and introduce additional
numerical errors.

3.2 Optimization of the excitation trajectory
The next step consists in determining the values of all trajectory parameters

==, &0 (24)

to provide a best possible excitation of the dynamics parameters. Such procedure is called
optimal input experiment design. The design is performed by using constrained nonlinear
optimization (Swevers et al., 1997; Gevers, 2005). The required constraints are expressed
with respect to the actuation variables

4" <q,(tE) <q™
qr" <q,(tE)<qr™, VE and tel0,T;] (25)

45" <4, (5E) <™



On the Robust Dynamics Identification of Parallel Manipulators: Methodology and Experiments 9

to account for actuator limitation and therefore indirectly for workspace constraints and
dynamics capabilities of the manipulator. The inverse kinematics has to be performed while
the optimization, which does not introduce any significant computational cost due to its
simplicity (Khalil & Guegan, 2004; Abdellatif et al., 2005a; Abdellatif & Heimann, 2007). Of
course, it is possible to express the constraints ad-hoc with respect to x, v and a. It
depends on the considered manipulator, whether such approach is preferable or not, since it
results in different constraints than (25), which can accelerate the convergence of the
optimization process. The optimization or the experiment design criterion should contribute
to the reduction of parameter uncertainty (Gevers, 2005). To account appropriately for
disturbances in the information matrix W it is recommended to opt for the D-optimal
design

E= argirréin(— In det(‘PTZ;}}P)) } (26)

that aims increasing the volume of the asymptotic confidence ellipsoid for the parameter
estimates, which is equivalent to the determinant of the inverse of the asymptotic parameter

covariance matrix P = (TTZ;;W)A or the Cramér-Rao bound (Gevers, 2005). Due to the

complexity of the nonlinear dynamics contained in the regressor W the optimization is
mostly a non-convex one and the obtained results will not correspond to the global
minimum. This is however not critical since for experimental identification just a sufficiently
good excitation trajectory is needed.

4. Identification procedure: Data processing, implementation and parameter
uncertainties

At this stage, the dynamics of the manipulator is available in linear form (section 2).
Additionally, the appropriate choice of an excitation experiment is proposed (section 3.1)
with a recommended method for its optimal design (section 3.2). Therefore, the experiment
can be executed and the data can be collected to achieve an estimation according to (21).
Here, the next challenge for parallel manipulators is evident. The measurements are
provided in the actuation space in form of actuation forces and actuator positions, whereas
the information matrix ¥ is built up by using x, v and a that are not directly measured.
Thus, a reconstruction of these variables from the corrupted measurement of q, is

necessary.

4.1 Data processing

The first step consists in calculating the direct kinematics to provide a first estimate of the
posture x . The terminal condition of the numerical calculation has to be set less than the
resolution of the used sensors (Merlet, 2006). The obtained estimate is of course noisy and
has to be filtered. Filtering the measurement in the time-domain (i.e. by using classic low-
pass filters) may cause lost of information, since ideal and exact filtering is not possible.
More critical is the calculation of v and a . Numerical differentiation of the posture data is
not convenient. Additionally to the measurement noise, possible oscillations of the direct
kinematic solution introduces disturbances, such that the resulting data may be not useful at
all (Abdellatif et al., 2004).
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By taking advantage of the periodic and harmonic nature of the excitation trajectory, exact
filtering in the frequency-domain can be achieved. First, it is recommended to calculate the
DFT-transform of each component i of the pre-computed posture x; — )A(i(ja)) . Afterwards
the spectrum is filtered by a frequency-domain lowpass filter. Ideal filtering can be achieved
by means of a rectangular window with a desirable cutoff-frequency f,. The latter may be
chosen (but is not limited to) to correspond the nominal fundamental frequency
fe =nyo; /27 . The windowed and filtered spectrum X (jw) is multiplied twice by jo

X;(jo) =jeX,(jo), -
X;(jo) = -0 X, (j») .

Transforming back to the time domain yields the filtered signals ;<i =DFT™ (X,(]a))) and

§i =DFT! (Xl(]a))) The posture estimate is also updated according to x; = DFT ! (Xz(]a)))
The procedure of data processing in the frequency domain is depicted in Fig. 3. The filtered
estimates of the velocities and accelerations of the end-effector are provided by using classic
kinematic transformations (Merlet, 2006).

_[ljf/ ideal lowpass, cutoff f,

5()l

X(t) orr |90 XG50 X e [ XGaL

DFT! DFT! DFT!
x(t) X(t) x(t)

Fig. 3. Frequency-domain data processing for filtering and differentiation of non-measured
signals

4.2 Parameter uncertainties

To validate the results of the identification, statements on the uncertainties of the obtained
parameters are necessary. For the given linear model structure (20) and by assuming
Gaussian disturbance vector n (see Abdellatif et al., 2005b), the covariance of the parameter

estimate resulting from (21) is

_[wTy-ly|?!
P=(wTs w]" . (28)
The confidence area of the estimated parameter set pgy, with respect to the unknown true

parameter vector p can be calculated for a given quantile a€[0...1] as a 100(1-a)%

confidence ellipsoid:
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ga:{Pemnp/ (p'fJGM)TP_l(P'f)GM)SZ§(np)}/ (29)
where 2 (np) denotes the value of the 2 distribution with n, degrees of freedom at the

quantile @ and n, is the dimension of the parameter vector (Gevers, 2005). Consequently,

the estimate of the single parameter p, is normally distributed N (pk, Pkk) with variance P2,
where p, is the true parameter value and P, is the kth diagonal element of P. A 95%
confidence interval can be determined as

" =[p 20, i +2Pk]:lf7k_2 P, ﬁk‘*sz' (30)

Equations (29) and (30) are useful to evaluate the confidence of the estimate results for the
complete parameter set or for the single parameters, respectively.

5. Experimental results for model-based control

This section is dedicated to the experimental results achieved on the hexapod PaLiDA.

5.1 Description and modelling of the hexapod

The parallel robot PaLiDA (see Fig. 1) was developed by the Institute of Production
Engineering and Machine Tools at the University of Hannover as a Stewart-Gough
platform. It is designed with electromagnetic linear direct drives used as extensible struts for
use in fast handling and light cutting machining like deburring. The actuation principle has
several advantages compared to conventional ball screw drives: Fewer mechanical
components, no backlash, low inertia with a minimized number of wear parts. Furthermore,
higher control bandwidth and extremely high accelerations can be achieved. A commercial
electromagnetic linear motor originally designed for fast lifting motions is improved for use
in the struts. Each strut of the hexapod is composed of three bodies as depicted in Fig. 4.
Thus, the system is modelled with 19 bodies: The movable platform (index E), 6 identical
movable cardan rings (index 1), 6 identical stators (index 2) and 6 identical sliders (index 3).

Fig. 4. MDH-frames and parameters of the struts
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The dynamics model in parameterlinear form results by applying the rules discussed in
section 2. The rigid-body part contains 10 base parameters (see Table 1). According to the
friction modelling approach (14) the actuated joints q, correspond to 6 different dry friction
and also 6 different viscous damping coefficients. Friction in the passive joints is modelled
only as dry friction with a common parameter for all «; and another one for all f; -joints.
The friction model contains therefore 14 different parameters. Its structure was optimized

according to the statistical analysis mentioned in section 2.2 and presented in (Abdellatif et
al., 2005c).

rigid-body friction
pr=L,, +1yy, +1,, [kgm?] pn =1, [N]
P2 =L, ¥ 1, — 1y, =1, [kgmz] P12 =T7p [N]
p3 =1y, +1 [kgmz] P13 =1, [N]
P4 =Sy, [kgm] P1a =1, [N]
ps =sy, kgm] pis=n, [N]
po=Tu +ms X0 (18 403 ) [kegm?] | pre=n, IN]
pr =1, + mSZ?:1 (rBzx] + rBZZJ [kng] py =n, [N]
Ps=1,,, +m32]71(7’52x7 +’§yj ) [kgmz] Pis =", [N]
P9 =5, 13 Z?:l Tg, [kgm] P1o =1, [Nsm'l]
P10 = Mg + 61113 [kg] P2 =12, [Nsm'l]
P =1, [Nsm'l]
Py =1, [Nsm'1]
Pz =12, [Nsm'l]
Pos =1, [Nsm'l]

Table 1. Rigid-body and friction model parameters for the parallel robot PaLiDA

5.2 Experiment design and data processing
The experiment design has been carried out according to the method given in section 3. An
example of a resulting excitation trajectory with the order n, =5 is depicted by Fig. 5. The

obtained measurements of the actuator lengths are transformed numerically by the direct
kinematics. The resulting estimation of posture elements are then filtered and differentiated
in the frequency domain as proposed in section 4.1. Fig. 6 illustrates exemplarily such
procedure for the reconstruction of the second translational degree of freedom y

corresponding to the excitation trajectory, shown in Fig. 5.

The left side of Fig. 5 depicts the frequency-discrete spectral amplitudes of the signals along
with the used selection window that corresponds to an ideal lowpass filter. The respective
signals in the time-domain are given on the right side of the picture. The effectiveness of the
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proposed filter is obvious, since the calculated signals exhibit almost no noise or disturbance
corruption. Such property is a central requirement for a robust and reliable identification of
parallel manipulators, because the necessary but non-measurable information has to be
extracted from corrupted and limited measurements of the actuator displacements.

Fig. 5. Example of a periodic excitation trajectory n, =5 ; top left: Translational coordinates,
bottom left: Rotational coordinates, right: 3-D presentation

Fig. 6. Reconstruction of the end-effector displacement, velocity, and acceleration, with
respect to the inertial y -axis by using frequency-domain filtering
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In the following three models are compared, that all result from the identification using the
same trajectory but after implementing three different data-processing techniques. The first
one results directly from rough data without any filtering. For the second, the
measurements of the actuator displacements were filtered in the time domain. The third
model has been identified according to the proposed frequency domain method. The
validation of the models on a circular bench-mark trajectory, that was not used for
identification, is depicted in Fig. 7. The frequency-domain processing yields the best

prediction quality corresponding to the smallest error variance o> . Time-domain filtering is
not accurate enough to extract all information at the relevant frequencies.

Fig. 7. Prediction accuracy of three different models for an arbitrarily chosen actuator; left:
By using rough data, middle: By using time-domain filtering, right: By using frequency-
domain filtering

5.3 Estimation results and parameter uncertainties

The filtered data resulting from the investigated trajectory (Fig. 5) are used to compute the
regressor matrix W. The corresponding actuation forces can be obtained from the
measurement of the motor currents. The case of PaLiDA reveals high noisy and cross-
correlated force measurements (Abdellatif et al., 2005b). Therefore, the Gauss-Markov
estimate has been proposed earlier (see (21)) that yields the parameter set given in Table 2. It
is important to notice, that the provided a priori values do not present the true parameters,
since they were calculated by using uncertain CAD-Data. The quality of the results is in
general very high, despite that the parameters with small values exhibit higher
uncertainties. This is however a known and general problem of experimental estimation in
practice. We refer to former publications for detailed discussions on the different aspects of
the estimation results (Abdellatif et al., 2005b; Abdellatif et al., 2005c).

The validation of the parameter estimation robustness can be provided, e.g. after repeating
the identification experiment 100 times. The resulted parameter sets are compared to the
95% confidence intervals (see eq. (30)). Such investigation is depicted for some exemplarily

chosen parameters in Fig. 8. The history of the weighted parameter estimate p;/p; are
illustrated over the measurement trials, where p, is the mean value of all estimates. The
corresponding weighted upper and lower bounds Cy; and C,, of the confidence intervals

are additionally shown. The robustness of the identification is proven, since the estimates
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remain mostly within the confidence intervals. Some exceptions are observed though, such
the very small first rigid-body parameter and the first few measurement trials. The latter is

Pk fik Pr = E C,?S% a priori
p kgm?] | -0.0447 00039 | [0.0526 -0.0369] | 0.0074
p, [kgm?] | 10892 0.0070 [10753 1.1082] | 0.9439
ps [kgm?] 1.0077 0.0045 [0.9988 1.0166] 0.9458
ps [kgm] 0.5995 0.0036 [0.5922 0.6068] 0.6201
ps [kgm] 1.2885 0.0056 [1.2998 -1.2772] | 1.2295
pe [kgm?] 0.3078 0.0061 [0.3049 0.3106] 0.2878
p, [kgm?] | 03021 0.0014 [02996 0.3045] | 0.2878
pe kem?] | 01176 0.0012 (01152 01201] | 01217
po [kgm] 1.8896 0.0012 [1.8774 1.9017] 1.9012
po kgl 16.3081 0.0460 [16.2161 16.4002] | 16.1920
r, [Nm] 0.5756 0.0158 [0.5440 0.6072] }
r5 [Nm] 0.9195 0.0179 [0.8837 0.9552] -
n, [N] 11.9772 0.2485 [11.4803 12.4742] -
n, [N] 4.8071 0.1861 [4.4350 5.1793] -
n, [N] 20.1528 0.3226 [19.5075 20.7980] ;
n, [N] 51518 01817 [4.7884 5.5151] -
n, [N] 1.5857 0.2618 [1.0620 2.1094] -
n, [N] 5.0057 0.3519 [4.3018 5.7096] -
n [Nsm?] | 168771 0.5268 [15.8235 17.9307] -
n, Nsm™] | 167406 0.3712 [15.9981 17.4830] -
n [Nsm'] | 63408 0.5720 [5.1968 7.4848] -
n, Nsm?] | 231662 0.3799 [22.4065 23.9259] -
n. [Nsm?] | 264675 0.4461 [25.5754 27.3596] -
n, [Nsm?] | 228053 05539 | [21.6974 23.9131] -

Table 2. Estimated dynamics parameters of the hexapod parameters p with corresponding

standard deviations, confidence intervals and a priori values for the rigid-body model
parameters

due to the variation of friction at the beginning of the measurement process until a nearly
stationary state is reached. Additionally to the single parameters, the confidence of the
entire parameter set can be validated. The outer bound of the 95% confidence ellipsoid &j.,
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is given by 2, (dim(p)=24)=36.42 . Its comparison with distribution z? (}31) of the vector

estimates p; over the measurement trials is given by Fig. 9. Excepting the first trial, the set

of all parameters lays clearly within the confidence ellipsoid, which demonstrates the
effectiveness and robustness of the estimation.

Fig. 8. History of parameter estimates over different measurement trials: For the sake of
uniform illustration, the parameters are given as weighted terms with respect to their
respective mean values.

Fig. 9. Comparison of the #? distribution of the estimated parameter sets with the radius

72, (24) of the 95% confidence ellipsoid
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Fig. 10. Control errors for both test trajectories at increasing end-effector velocity and by
implementing different control strategies

5.4 Identification and model-based control

The impact of identification on the control and tracking accuracy of the hexapod PaLiDA is
studied in the following. Hereby three control strategies are investigated. The first variation
passes on any model knowledge, i.e. by implementing only linear controller for the single
actuators. The second uses the inverse dynamics model to compensate for the nonlinear
dynamics by considering only nominal parameter values. The third variation uses the
identified model for the feedforward compensating control. All approaches are
substantiated experimentally on two different trajectories: The first trajectory is a circular
one and allows reaching high actuation forces, whereas the second is quadratic and is
characterized with high actuator velocities.

Both trajectories were executed at different velocities vy of the end-effector and for the three

mentioned control variations. The evolution of the rooted mean squares errors egyg of all

actuator deviations is depicted in Fig. 10 with respect to vg.

Fig. 11. Tracking accuracy of actuator 5 for the two studied trajectories at maximal velocity;
comparison between the compensation of nominal model (thin line) and identified model
(thick line)
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As expected, the use of standard linear control (variation 1) exhibits a significant decreasing
accuracy with increasing speeds, since the impact of nonlinear and coupled dynamics
increases with higher velocities and accelerations. Using model-knowledge (variation 2 and
3) improves always the tracking performance. Furthermore, the compensation of identified
model (variation 3) outperforms clearly variation 2 that just uses the nominal parameter
values. The latter statement can be proven at the level of actuator tracking accuracy like
depicted in Fig. 11. For the same arbitrarily chosen actuator, the tracking accuracy is higher
if the identified model is implemented. The same results are noticeable for the cartesian
tracking accuracy Ax, like depicted in Fig. 12. It may be concluded that only accurately
identified model allows keeping good tracking performance over a wide range of the robot
dynamics.

Fig. 12. Calculated cartesian tracking accuracy Ax for the two studied trajectories at
maximal velocity; comparison between the compensation of nominal model (thin line) and
identified model (thick line)

6. Conclusions

The present chapter discussed most significant aspects to achieve accurate and robust
dynamics identification for parallel manipulators with 6 dof's. Hereby, the adequate
consideration of structural properties of such systems has been stressed out. First, an
efficient methodology to determine the inverse dynamics in a parameterlinear form has
been presented, which enables the use of linear estimation techniques. Periodic excitation
has been proved to be a powerful method for parallel robots, since it allows for appropriate
consideration of hard workspace constraints. Due to measurement noise and cross coupling
between the actuators, the achievement of the identification in a statistical framework is
recommended. This includes the consideration of disturbance covariances in the experiment
design, the use of Gauss-Markov estimation approach as well as the frequency-domain
filtering to extract non measurable information from rough data. The robustness of the
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results has been substantiated on a direct driven hexapod. The obtained estimates have
presented high confidence in terms of single parameters, as well as in terms of the whole
parameter set. Additionally, the benefits of accurate identification on the enhancement of
control performance have been clearly and experimentally demonstrated.
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1. Introduction

There are mainly two types of the manipulators: serial manipulators and parallel
manipulators. The serial manipulators are open-ended structures consisting of several links
connected in series. Such a manipulator can be operated effectively in the whole volume of
its working space. However, as the actuator in the base has to carry and move the whole
manipulator with its links and actuators, it is very difficult to realize very fast and highly
accurate motions by using such manipulators. As a consequence, there arise the problems of
bad stiffness and reduced accuracy.

Unlike serial manipulators their counterparts, parallel manipulators, are composed of
multiple closed-loop chains driving the end-effector collectively in a parallel structure. They
can take a large variety of form. However, most common form of the parallel manipulators
is known as platform manipulators having architecture similar to that of flight simulators in
which two special links can be distinguished, namely, the base and moving platform. They
have better positioning accuracy, higher stiffness and higher load capacity, since the overall
load on the system is distributed among the actuators.

The most important advantage of parallel manipulators is certainly the possibility of
keeping all their actuators fixed to base. Consequently, the moving mass can be much
higher and this type of manipulators can perform fast movements. However, contrary to
this situation, their working spaces are considerably small, limiting the full exploitation of
these predominant features (Angeles, 2007).

Furthermore, for the fast and accurate movements of parallel manipulators it is required a
perfect control of the actuators. To minimize the tracking errors, dynamical forces need to be
compensated by the controller. In order to perform a precise compensation, the parameters
of the manipulator’s dynamic model must be known precisely.

However, the closed mechanical chains make the dynamics of parallel manipulators highly
complex and the dynamic models of them highly non-linear. So that, while some of the
parameters, such as masses, can be determined, the others, particularly the firiction
coefficients, can’t be determined exactly. Because of that, many of the control methods are
not efficient satisfactorly. In addition, it is more difficult to investigate the stability of the
control methods for such type manipulators (Fang et al., 2000).

Under these conditions of uncertainty, a way to identify the dynamic model parameters of
parallel manipulators is to use a non-linear adaptive control algorithm. Such an algorithm
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can be performed in a real-time control application so that varying parameters can
continuously be updated during the control process (Honegger et al., 2000).

Another way to identify the dynamic system parameters may be using the artificial
intelligence (AI) techniques. This approach combines the techniques from the fields of Al
with those of control engineering. In this context, both the dynamic system models and their
controller models can be created using artificial neural networks (ANN).

This chapter is mainly concerned with the possible applications of ANNs that are contained
within the Al techniques to modeling and control of parallel manipulators. In this context, a
practical implementation, using the dynamic model of a conventional platform type parallel
manipulator, namely Stewart manipulator, is completed in MATLAB simulation
environment (Www.mathworks.com).

2. ANN based modeling and control

Intelligent control systems (ICS) combine the techniques from the fields of Al with those of
control engineering to design autonomous systems. Such systems can sense, reason, plan,
learn and act in an intelligent manner, so that, they should be able to achieve sustained
desired behavior under conditions of uncertainty in plant models, unpredictable
environmental changes, incomplete, inconsistent or unreliable sensor information and
actuator malfunction.

An ICS comprises of perception, cognition and actuation subsystems. The perception
subsystem collects information from the plant and the environment, and processes it into a
form suitable for the cognition subsystem. The cognition subsystem is concerned with the
decision making process under conditions of uncertainty. The actuation subsystem drives
the plant to some desired states.

The key activities of cognition systems include reasoning, using knowledge-based systems
and fuzzy logic; strategic planning, using optimum policy evaluation, adaptive search,
genetic algorithms and path planning; learning, using supervised or unsupervised learning
in ANNS, or adaptive learning (Burns, 2001).

In this chapter it is mainly concerned with the application of ANNs that are contained
within the cognition subsystems to modeling and control of parallel manipulators.

2.1 ANN overwiev

ANN is a network of single neurons jointed together by synaptic connections. Such that they
are organized as neuronal layers. Each neuron in a particular layer is connected to neurons
in the subsequent layer with a weighted synaptic connection. They attempt to emulate their
biological counterparts.

2.1.1 Perceptrons

McCulloch and Pitts was started first study on ANN in 1943. They proposed a simple model
of neuron. In 1949 Hebb described a technique which became known as Hebbian learning.
In 1961 Rosenblatt devised a single layer of neurons, called a perceptron that was used for
optical pattern recognition (Burns, 2001)

Perceptrons are early ANN models, consisting of a single layer and simple threshold
functions. The architecture of a perceptron consisting of multiple neurons with Nx1 inputs
and Mx1 outputs is shown in Fig. 1. As seen in this figure, the output vector of the
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perceptron is calculated by summing the weighted inputs coming from its input links, so
that

u=Wp+b (1)

q = f(u) @
where p is Nx1 input vector (p1, p, ... pn), W is MxN weighting coefficients matrix (w11, w1z, ...
WIN ; Wity Wiy ooy WiN; eve; WML, WML, WMN), b is Mx1 bias factor vector, u is Nx1 vector
including the sum of the weighted inputs (i1, uo, ... um) and bias vector, q is Mx1 output
vector (g1, g2, ... gm), and £(.) is the activation function.

inputs hard limit layer outputs
p q
—» W —_—
Nx1 Mx1
MxN _|_ u > r
Mx1
1 —p b
N Mx1 M

Fig. 1. The architecture of a perceptron

In early perceptron models, the activation function was selected as hard-limiter (unit step)
given as follows:

0 f(u)<0

"1 f) o ©

where i = 1,2,...,M denotes the number of neuron in the layer, u; weighted sum of its
particular neuron, and g; its output. However, in any ANN the activation function f (1;) can
take many forms, such as, linear (ramp), hyperbolic tangent and sigmoid forms. The
equation for sigmoid function is:

flu)=1/(1+ew) 4)
The sigmoid activation function given in Equation (4) is popular for ANN applications since
it is differantiable and monolithic, both of which are a requirement for training algorithms
like as the backpropagation algorithm.
Perceptrons must include a training rule for adjusting the weighting coefficients. In the
training process, it compares the actual network outputs to the desired network outputs for
each epoch to determine the actual weighting coefficients:

e=gqi-q ©)
Wrew = Wold + ¢ pT (6)
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brew = pold + ¢ (7)

where e is Mx1 error vector, qd is Mx1 target (desired) vector, the upscripts T, old and new
denotes the transpose, the actual and previous (old) representation of the vector or matrix,
respectively (Hagan et al., 1996).

2.1.2 Network architectures

There are mainly two types of ANN architectures: feedforward and recurrent (feedback)
architectures. In the feedforward architecture, all neurons in a particular layer are fully
connected to all neurons in the subsequent layer. This generally called a fully connected
multilayer network. Recurrent networks are based on the work of Hopfield and contain
feedback paths. A recurrent network having two inputs and three outputs is shown in Fig. 2.
In Fig. 2, the inputs occur at time (kT) and the outputs are predicted at time (k+1)T, where k
is discrete time index and T is sampling time, respectively.

u q,(k+ )T
P4 (kT) D f (R A
11 b,
u Q,(k+1)T
Po(KT) 2 f e
11 b,
u, qa(k+1)T
> > f >
11 b,
q4(kT) z e
Q,(kT) z'«
Q4 (KT) z

Fig. 2. Recurrent neural network architecture
Then the network can be represented in matrix form as:

q(+1)T = £ (Wi p(KT) + W2 q(kT) + b) ®)
where b is bias vector, f(.) is activation function, Wi and W are weight matrix for inputs and
feedback paths, respectively.

2.1.3 Learning

Learning in the context of ANNSs is the process of adjusting the weights and biases in such a
manner that for given inputs, the correct responses, or outputs are achieved. Learning
algorithms include supervised learning and unsupervised learning.

In the supervised learning the network is presented with training data that represents the
range of input possibilities, together with associated desired outputs. The weights are
adjusted until the error between the actual and desired outputs meets some given minimum
value.
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Unsupervised learning is an open-loop adaption because the technique does not use
feedback information to update the network’s parameters. Applications for unsupervised
learning include speech recognition and image compression.

Important unsupervised learning include the Kohonen self-organizing map (KSOM), which
is a competitive network, and the Grossberg adaptive resonance theory (ART), which can be
for on-line learning,.

There are multitudes of different types of ANN models for control applications. The first
one of them was by Widrow and Smith (1964). They developed an Adaptive LINear Element
(ADLINE) that was taught to stabilize and control an inverted pendulum. Kohonen (1988)
and Anderson (1972) investigated similar areas, looking into associative and interactive
memory, and also competitive learning (Burns, 2001).

Some of the more popular of ANN models include the multi-layer perceptron (MLP) trained
by supervised algorithms in which backpropagation algorihm is used.

2.1.4 Backpropagation

The backpropagation algorithm was investigated by Werbos (1974) and futher developed by
Rumelhart (1986) and others, leading to the concept of the MLP. It is a training method for
multilayer feedforward networks. Such a network including N inputs, three layers of
perceptrons, each has L1, L2, and M neurons, respectively, with bias adjustment is shown in
Fig. 3.

inputs first layer second layer third layer

al
Wiia

v N Y 5l G W - 3
S/ N T N
‘{; 6’% A'A %,
L

q’°=p q'=f'(W'p +b'") q?=f(W2q'+ b?) q°=f (W3 g2+ b?)

P4

P2

P

Pn
Vvsv

3= (W3f2(W2 ' (W'p + b")+ b?)+ bd)

Fig. 3. Three-layer feedforward network

First step in backpropogation is propagating the inputs towards the forward layers through
the network. For L layer feedforward network, training process is stated from the output
layer:

qQ=p
ql+1 = fi+1 (Wl+1 ql + bl+1) , 1=0 , 1, 2,. ey L1 (9)

q=4q°
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where [ is particular layer number; f! and W! represent the activation function and weighting
coefficients matrix related to the layer I, respectively.

Second step is propagating the sensivities (s) from the last layer to the first layer through the
network: sk, st-1, sL-2,.., sl.., s2, sl. The error calculated for output neurons is propagated to
the backward through the weighting factors of the network. It can be expressed in matrix
form as follows:

SL :_2% L(uL) (qd _q) , Sl :%l(ul) (WI+1)TSI+1 , forl = L-l,‘.‘, 2, 1 (10)

where i:l(u’) is Jacobian matrix which is described as follows

Fw) 0
au?l 1,1
Fla)=| O @;S?) 0 (11)
o o .. L)
L auN J

Here N denotes the number of neurons in the layer [. The last step in backpropagation is
updating the weighting coefficients. The state of the network always changes in such a way
that the output follows the error curve of the network towards down:

W (k+1) = WE () - sl (g1)" 12)

b! (k+1) = bl (k) - o & (13)
where a represents the training rate, k represents the epoch number (k=1,2,...,K). By the

algorithmic approach known as gradient descent algorithm using approximate steepest
descent rule, the error is decreased repeatedly (Hagan, 1996).

2.2 Applications to parallel manipulators

ANN s can be used for modeling various non-linear system dynamics by learning because of

their non-linear system modelling capability. They offer highly parallel, adaptive models

that can be trained by using system input-output data.

ANNSs have the potential advantages for modeling and control of dynamic systems, such

that, they learn from experience rather than by programming, they have the ability to

generalize from given training data to unseen data, they are fast, and they can be

implemented in real-time.

Possible applications using ANN to modeling and control of parallel manipulators may

include:

¢ Modeling the manipulator dynamics,

e Inverse model of the manipulator,

e  Controller emulation by modeling an existing controller,

e  Various intelligent control applications using ANN models of the manipulator and/or
its controller. Such as, ANN based internal model control (Burns, 2001).
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2.2.1 Modeling the manipulator dynamics

Providing input/output data is available, an ANN may be used to model the dynamics of
an unknown parallel manipulator, providing that the training data covers whole envelope
of the manipulator operation (Fig. 4).

However, it is difficult to imagine a useful non-repetitive task that involves making random
motions spanning the entire control space of the manipulator system. This results an
intelligent manipulator concept, which is trained to carry out certain class of operations
rather than all virtually possible applications. Because of that, to design an ANN model of
the chosen parallel manipulator training process may be implemented on some areas of the
working volume, depending on the structure of chosen manipulator (Akbas, 2005). For this
aim, the manipulator(s) may be controlled by implementation of conventional control
algorithms for different trajectories.

Fig. 4. Modelling the forward dynamics of a parallel manipulator

If the ANN in Fig. 4 is trained using backpropagation, the algorithm will minimize the
following performance index:

N
Pr= 3 (06T )= GG7 )Y (06T )= 4 G7) a9
n=1
where q and q denote the output vector of the manipulator and ANN model, respectively.

2.2.2 Inverse model of the manipulator

The inverse model of a manipulator provides a control vector t(kT), for a given output
vector q(kT) as shown in Fig. 5. So, for a given parallel manipulator model, the inverse
model could be trained with the parameters reflecting the forward dynamic characteristics
of the manipulator, with time.
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Fig. 5. Modelling the inverse dynamics of parallel manipulator

As indicated above, the training process may be implemented using input-output data
obtained by manipulating certain class of operations on some areas of the working volume
depending on the structure of chosen manipulator.

2.2.3 Controller emulation
A simple application in control is the use of ANNs to emulate the operation of existing
controllers (Fig. 6).

Fig. 6. Training the ANN controller and its implementation to the control system

It may be require several tuned PID controllers to operate over the constrained range of
control actions. In this context, some manipulators may be required more than one emulated
controllers that can be used in parallel form to improve the reliability of the control system
by error minimization approach.

2.2.4 IMC implementation
ANN control can be implemented in various intelligent control applications using ANN

models of the manipulator and/or its controller. In this context the internal model control
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(IMC) can be implemented using ANN model of parallel manipulataor and its inverse
model (Fig. 7).

Fig. 7. IMC application using ANN models of parallel manipulator

In this implementation an ANN model model replaces the manipulator model, and an
inverse ANN model of the manipulator replaces the controller as shown in Fig. 7.

2.2.5 Adaptive ANN control

All closed-loop control systems operate by measuring the error between desired inputs and
actual outputs. This does not, in itself, generate control action errors that may be
backpropagated to train an ANN controller. However, if an ANN of the manipulator exists,
backpropagation through this network of the system error will provide the necessary
control action errors to train the ANN controller as shown in Fig.8.

Fig. 8. Control action generated by adaptive ANN controller

3. The structure of Stewart manipulator

Six degrees of freedom (6-dof) simple and practical platform type parallel manipulator,
namely Stewart manipulator, is sketched in Fig. 9. These type manipulators were first
introduced by Gough (1956-1957) for testing tires. Stewart (1965) suggested their use as
flight simulators (Angeles, 2007).
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Moving Platform

Fig. 9. A sketch of the 6-dof Stewart manipulator

In Fig. 9, the upper rigid body forming the moving platform, P, is connected to the lower
rigid body forming the fixed base platform, B, by means of six legs. Each leg in that figure
has been represented with a spherical joint at each end. Each leg has upper and lower rigid
bodies connected with a prismatic joint, which is, in fact, the only active joint of the leg. So,
the manipulator has thirteen rigid bodies all together, as denoted by 1,2.....13 in Fig. 9.

3.1 Kinematics

Motion of the moving platform is generated by actuating the prismatic joints which vary the
lengths of the legs, gL, i = 1....6. So, trajectory of the center point of moving platform is
adjusted by using these variables.

For modeling the Stewart manipulator, a base reference frame Fp (Opxpypzs) is defined as
shown in Fig. 10. A second frame Fp (Opxpypzp) is attached to the center of the moving
platform, Op, and the points linking the legs to the moving platform are noted as Q;, i =
1....6, and each leg is attached to the base platform at the point B;, i =1....6.

The pose of the center point, Op , of moving platform is represented by the vector

x=[xpyszsa py]" (15)
where xp, ¥, zp are the cartesian positions of the point Op relative to the frame Fg and 4, B, y
are the rotation angles, namely Euler angles, representing the orientation of frame Fp
relative to the frame Fp by three successive rotations about the xp, yp and zp axes, given by
the matrices R.(a), Ry(B), R(y) respectively (Spong & Vidyasagar, 1989). Thus, the rotation
matrix between the Fpand Fp frames is given as follows:

Ry =R.(a)R,(B)R.(r) (16)



Application of Neural Networks to Modeling and Control of Parallel Manipulators 31

Fig. 10. Assignments for kinematic analysis of the Stewart manipulator

Then we can analyze the inverse kinematics of Stewart manipulator by the representation of
any one of its legs. For a given pose of the center point of moving platform, Op, the defining
vectors are shown in Fig. 11.

Fig. 11. Defining the vectors for a given pose of the moving platform
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By using the rotation matrix given by equation (16), the position vector of the upper joint
position, Q;, connecting the moving platform to the leg i, q2 ; can be transformed to the
frame Fp as follows:

where pO represents the position vector of the center point of moving platform, Op, relative
to the frame Fp, d; is the position vector of the point Q;, i =1....6, relative to the frame Fp .
Then the vector g4 ; representing the leg legths between the joint points B; and Q; can be
transformed to the frame Fp as follows:

BQ =q'=-a,+q2 i=1..6 (18)

where a; represents the position vector of the point B;, i =1....6, relative to the frame Fp .
The leg lengths g4; , i = 1....6, is then obtained by Euclidean norm of the leg vector given
above. So, using equation (17) and (18) we can write (Zanganeh et al., 1997)

(") =(a,+p° +R;d) (a,+p° +R;d,) ,i=1..6 19

The leg lengths related to a given pose of moving platform can be obtained for a trajectory
defined by the pose vector, x, given in equation (15). Considering a circular motion depicted
as in Fig. 12, the trajectory of moving platform with zero rotation angles ([a § y] = [0 0 0]) is
given as follows:

Fig. 12. A circular motion trajectory of the moving platform

x = [(P9)7000]7 = A(H) x0 (20)
where p© = [x3 yp zs ]T denotes the 3x1 position vector of the center point of moving
platform, A(t) is a 6x6 matrix and x is a 6x1 coeeficient vector given as below
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Cf)s[e(t)] —sin[&(t)] 0
A(t): sm[g(t)] 005%9(1,‘)] (]) 0 1)
0 0
xo=[0rh0 0 0]T (22)

where O denotes the 3x3 zero matrix, & is the hight of the center point of moving platform
with respect to base frame, and r is the radius of the circle.

The Jacobian matrix that gives the relation between the prismatic joint velocities and the
velocity of the center point of moving platform, Op, can be derived using the partial
differentiation of the inverse geometric model of the manipulator given in equation (19).

3.2 Dynamics
As descripted in Fig. 9, Stewart manipulator has thirteen rigid bodies. The Newton-Euler
equations of the manipulator can be derived in a more compact form as described below
(Fang et al., 2000; Khan et al., 2005):
Let the 6x6 matrix M;, denoting the mass and moment of inertia properties of the rigid body
ibe

M,-:{I(; mioxJ L i=1...13 (23)

where O and 1 denote the 3x3 zero and identity matrices; I; is inertia matrix defined with
respect to the mass center, C;, of the body i ; m; is the mass of the body i. Let ¢; and ¢; denote
the position and velocity vectors of C;, and ®; denote the angular velocity vector of C;. Then
the wrench vector t; is defined in terms of the angular and linear velocities as follows:

@
=] - ,1=1...13 (24)
Ci
Let the 6x6 matrix ;, denoting the angular velocity of the rigid body i be
w; 0
Q= i=1....
; [ 0 0} ,i=1...13 (25)

where, O denotes the 3x3 zero matrix. The generalized matrices given in equation (23) and
(25) are block symmetrical, as follows:
M=diag(M1,M2, ...... ,M13),Q=diag(Ql,Qz, ...... ,913) (26)
Then, the generalized wrench matrix t can be expressed as follows
t= [t1Tt2T ...... t13T ]T (27)

For the system having constraint on velocity, the constraint of velocity can be expressed by
following equation:

Dt=0 (28)
Let T be the natural orthogonal complement (NOC) of the coefficient matrix D related to the
constraint equation (28) of velocity. Hence, employing the joint coordinates q&R® as
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generalized coordinate vector, we can get the dynamic model of system, which don’t
contain the constraint forces.

M(q)q+C(q,9)q+G(q) =T (29)
where M(q) is a symmetrical and positive definition matrix as given below;
M(q)=T'MT ER* (30)

C is the coefficient matrix of the vectors of Coriolis and centripetal force as given below;

C=C(q,q)=T'MT + T'QMT (31)

q is the generalized coordinate vector, t €R° is the generalized force (driving force) vector,
respectively. G(q) is the gravity vector as given below;

G(q)=Tt(q)= T'W*® (32)

where Ws are wrenches vector due to gravity:

we =W, W5, W, 1"=[0,m,g",...0,m,g 1" (33)

where 0 is 3x1 zero vector, g is the vector of acceleration of gravity.

4. Controller emulation by using EIman networks

In this stage, it is aimed to implement an application of ANN to emulate the operation of an
existing PID controller in a Stewart manipulator control system. This system is given as a
control system example for MATLAB applications (www.mathworks.com). The block
diagram of the control system is given in Fig. 13.

Fig. 13. Srewart manipulator control system using PID controller

As shown in this figure, trajectory generator calculates the leg lengths, which are desired leg
lengths formed as a 6x1 qP vector feeding the PID controller input, by using the inverse
kinematic model of Stewart manipulator. PID controller produces a 6x1 control vector, T,
consisting of the leg forces applied to the prismatic joint actuators of the manipulator. In
response, the dynamic model of the manipulator produces two 6x1 output vectors, g4 and
¢=q4, which include actual leg lengths and actual linear leg velocities, respectively. These
are fed back to the controller. So, the controller has 18 inputs and 6 outputs totally. PID
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controller compares the actual and desired leg lengths to generate the error vector feeding
its proportional and integral inputs. In the same time, the velocity feedback vector feeds the
derivative input of the controller.

Designing an ANN emulation of controller generalized for the whole area of working space
is more difficult task. It is also difficult to imagine a useful non-repetitive task that involves
making random motions spanning the entire control space of the manipulator system. This
results an intelligent manipulator concept, which is trained to carry out certain class of
operations rather than all virtually possible applications (Akbas, 2005).

On the other hand, since the parallel manipulators have more complex dynamic structures,
training process may be required much more data then other type plants. So, it can be
taught to design more than one ANN controller trained by different input-output data sets,
and use them in a parallelly formed controller structure instead of unique ANN controller
structure. This can improve the reliability of the controller. Because of that, three ANN
controllers are trained and they are used in parallel form in this case study.

4.1 Training

Due to its profound impact on the learning capability and networking performance, Elman
network having recurrent structure is selected for training. Three of them, each have 18
inputs and 6 outputs, are trained by using PID controller input-output data. For this aim,
input-output data are prepared during the implementation of the PID controller to the
Stewart manipulator.

During the data log phase, manipulator is operated in a constrained area of its working
space. For this aim, the manipulator is controlled by implementation of different trajectories
selected uniformly in a planar sub-space, created as given example in equations (21) and
(22) also as given in Fig. 12. Load variations are taken into consideration to generate the
training data.

Three sets of input-output data each have 5000 vectors are generated by MATLAB
simulations for each of Elman networks. MATLAB ANN toolbox is used for off-line training
of Elman networks. Conventional backpropagation algorithm, which uses a threshold with a
sigmoidal activation function and gradient descent error-learning, is used. Learning and
momentum rates are selected optimally by MATLAB program. The numbers of neurons in
the hidden layers are selected experimentally during the training. These are used as 40, 30
and 50, respectively for each network.

4.2 Implementation

After the off-line training, three of Elman networks are prepared as embedded Simulink
blocks with obtained synaptic weights. To improve the reliability of the controller by error
minimization approach, they are used in a parallel structure and embedded to the control
system block diagram (Fig. 14). In this figure, parallely-implemented Elman ANN controller
is represented in a block form. Its detailed representation is given in Fig. 15.

In this implementation, the force values generated by three Elman networks are applied to
the inputs of the corresponding manipulator’s dynamic model. Error vector is computed for
each of the ANN by using the difference between the actual leg lengths generated by
manipulator’s dynamic model and the desired leg lengths. The results are evaluated to
select the network generating the best result. Then it is assigned as the ANN controller for
actual time step, and its output is assigned as the force output of the parallely-implemented
Elman ANN controller output driving the manipulator’s dynamic model (instead of a real
manipulator, in this case).
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Elman ANN
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Fig. 14. ANN controller implementation to the manipulator control system

4.3 Simulation results
To compare the performance of the created ANN controller, the Srewart manipulator

control system is operated both by the PID controller, and the parallelly-implemented
Elman ANN controller for T=4 s. simulations. For these operations, a trajectory like as given
with equations (21) and (22) is created with the parameter assignments: 1 = 2 m, r = 0.02 m.
Also 0(t) parameter is used as follows:
2
t

6))="rt , 0UtUT (34)

During the simulations, the sampling period is chosen, as 0.001 s. So, totally 4000 steps are
included in each simulation.

Parallely-implemented Elman ANN Controller

l D,
Elman 9°(k-1)
Stewart q*,(k
ANN T, (k) Mnpl 1(k)
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Fig. 15. The structure of parallelly-implemented Elman ANN controller
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An example of the variations of the force outputs generated by both controllers is shown in
Fig. 16, for the first leg of the manipulator. Fig. 16a and Fig. 16b show the force output of the
PID controller and parallely-implemented Elman ANN controller, respectively. In these
simulations, it has been observed that, the error between the two controller outputs is a little
more at the starting phase of the simulations then the remaining times.

However, it can be said that, ANN controller emulates the PID controller successfully as a
whole for the given trajectory.

%10

Force (M)

0 500 1000 1500 2000 2500 3000 3500 4000
Time (msec)

@)

Force (M)

0 5000 1000 1500 2000 2500 3000 3500 4000
Time (msec)

(b)
Fig.16. Force outputs of the controllers applied to the first leg of the Stewart manipulator
(a)-PID controller output, (b)-ANN controller output

Similar adaptations are obtained for the control system output. For the given trajectory,
position errors obtained by averaging the sum of the square errors relative to the desired
position of the center point of moving platform both for the PID controller and ANN
controller is given in Table 1. As seen in this table obtained position error values due to the
xp, yp and zp variations have too small changes.

Table 1. The sum of the squares of the position errors obtained by PID and ANN
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During simulations, variations of the xp, ys and zp positions of the center point of moving
platform are given in Fig. 17, so that, Fig. 17a and Fig. 17b show the variation of actual xz, y3
and zp positions obtained simulations using PID controller and parallely-implemented
Elman ANN controller, respectively. As seen, the tracing error between the two control
modes is a little more at the starting phase only. This is due to instantaneous big difference
between the desired yp position and its starting value. However, tracing the desired
positions by PID controller is well emulated by parallely-implemented Elman ANN
controller, as a whole.
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Fig.16. Variation of actual position of the center point of moving platform, in simulations
(a)-Obtained by the PID controller, (b)- Obtained by the ANN controller

5. Conclusion

This chapter is mainly concerned with the application of ANNs to modeling and control of
parallel manipulators. A practical implementation is completed to emulate the operation of
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an existing PID controller in a Stewart manipulator control system. It can be said that,
excepted results has been achieved for this case study.

Since the parallel manipulators have more complex dynamic structures, depending on the
chosen type of applications training process it may be required much more data then in this
case. So, designing an ANN for applications including the whole area of working space is
more difficult task. It is also difficult to imagine a useful non-repetitive task that involves
making random motions spanning the entire control space of the manipulator system.
However, for a succesfull study, it may have an important role selecting the type and
structure of ANN by experience, depending on the requirements of the chosen application.
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Asymptotic Motions of Three-Parametric Robot
Manipulators with Parallel Rotational Axes

Jan Baksa
Technical University in Zvolen
Slovak Republic

1. Introduction

In this paper we deal with the properties of 3-parametric robot manipulators (in short
robots) with parallel rotational axes. We describe motions of the robot effector by using the
theory of Lie groups and Lie algebras which is applied to the Lie group E(3) of all

orientation preserving congruences of the Euclidean space E,. By the concept of an n -
parametric robot we will understand the map Y, :R" — E(3), see (Karger, 1988), where the
robot Y, is viewed as an immersed submanifold Y, ~of the Lie group E(3). We classify 3-

parametric robots into four classes. The classification criterion is the spherical rank of the
robot, which is the number of independent directions of revolute joints axes. Robots of the
spherical rank 1 are robots whose axes of revolute joints are mutually parallel and different.
The main aim of the paper is to introduce asymptotic robot motions. The notion of asymptotic
motions is connected with the theory of connections. On a pseudo-Riemannian manifold
(E(3) has pseudo-Riemannian structure), there is a canonical connection called the Levi-
Civita connection. As a connection on the tangent bundle, it provides a well defined method
for differentiating all kinds of tensors. The Levi-Civita connection is a torsion-free
connection on the tangent bundle and it can be used to describe many intrinsic geometric
objects. For instance, a geodesic path, a parallel transport for vector fields, a curvature and
SO On.

On the Lie group E(3) there is the Levi-Civita connection V induced by the Klein form KL .

If the restriction KL|,, is regular then there is the Levi-Civita connection VonTY 4 such

that V. y =§7;}+V , where V lies in KL-orthogonal complement to the tangent bundle
e, 1tV =0 then motions on Y a, s asymptotic, see (Karger 1993). We will introduce

asymptotic robot motions without explicit use of the Levi-Civita connection. A robot motion
is asymptotic, if the Coriolis acceleration is tangential to T.Y, . Obviously, robot motions

with zero Coriolis accelerations are asymptotic. The simple examples of the asymptotic
motions are motions when only one joint work. The properties of the acceleration operator
are important for the dynamic of the robot especially in singular positions where they can
affect the behaviour of the robot expressively. We will introduce the notion of the Coriolis
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and Klein subspaces and show that they are closely associated with asymptotic motions. In
this paper we describe all asymptotic motions by systems of differential equations for all 3-
parametric robot manipulators with parallel rotational axes. Future research: to describe all
asymptotic motions for all 3- ,4- ,5-parametric robot manipulators with revolute and
prismatic joints only, practical purposes of the asymptotic motions.

2. Basic notions of robot manipulators

Common commercial industrial robots are serial robot-manipulators consisting of a
sequence of links connected by joints, see Fig. 1. Each joint has one degree of freedom, either
prismatic or revolute. For a robot with n joints, numbered from 1 to 7, there are n+1
links, numbered from 0 to 7. The link 0 or n will be called respectively the base or the
effector of the robot. The base will be fixed (non movable). Joint i connects links i and
i+1. We view a link as a rigid body defining the relationship between two neighbouring
joints. In the concept of the Denavit-Hartenberg conventions (Denavit & Hartenberg, 1955)
the base coordinate system S is firmly connected with the base. The base axis z, is the axis

o0, of 1st joint. The effector begins in n th joint and is firmly connected to the coordinate

system S, .

Figure 1. n -parametric robot, n=4

A congruence in the Euclidean space E, is determined by the base coordinate system S,
and by the effector coordinate system S, in each position of the robot (i.e., at time t).
Therefore a motion of the effector determines a curve on the Lie group E(3). We assume a
fixed choice of the base orthonormal coordinate system S, = {O;z_'o,jo,l?o} with respect to

which we will relate all elements.
Let us recall basic facts about the Lie group E(3) and its Lie algebra e(3) . Elements of the

Lie group E(3) will be considered in the matrix form 4x4, which will be written in the

0 1

column matrix of the form 3x1 (a translation vector).
Let V, be the vector space associated with the Euclidean space E, and let y(t)=H(t) be a

A P
form [ ], where A is an orthogonal matrix of the form 3x3, detA=1 and P isa

curve on E(3) which is going through the unit element I of the group E(3);i.e., H(t)=1I,
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where [ is the unit matrix. Then the motion of the effector point L determined by the curve
7(t) can be expressed by

x(t) x
y(t)|_(A®) POy
z(t) 0 1 )|z
1

where (x, y,z,l)T are the homogeneous coordinates of the point L at t, and
(x(t),y(t),z(t)1)" are the homogeneous coordinates of the point L atany . The coordinates
of the point L are related to the base coordinate system S;. A(t) is an orthogonal matrix;
ie, A(t)AT(t)=1, where A'(t) is the transposed matrix to the matrix A(t). The inverse
AT —AT(HP(H

matrix to the matrix H(t) is Hl(t)=[ 0 1

J. We suppose A(t,)=1. The

derivative of the equation A(H)A"(f)=1 at t=t, is A(t,))=-A’(t,); i.e., A(t) is a skew-

0 - o
symmetric matrix. All skew-symmetric matrices have the form A(t))=| o, 0 -o
-w, o 0

and we can associate them with vectors o:=(w,, @, ®,)eV,. If we denote

P'(t,):=b=(B,, B, 5) , then the tangent vector

0 -0 o B

#t) = H(to>=[A“°) g “°)]=

23 0 — :Bz (1)

0 0 0, o 0 4

0 0 0 O

of the curve y(t) at t =1, can be associated with the element (E,E) =X eV, xV, and we call
it the twist. Hence the Lie algebra e(3) can be represented in the matrix form (1) or by twists

in V, xV;, where addition and the Lie bracket are defined as follows:

ky(@,,b,) + ky(@,,b,) = (k,@, + k,@,,k,b, + k;b,),

[(@,/0,), (@, 5,))= (@, x @, @, xb, ~ @, <by),
where (@,b,)eV,xV,, k,eR, i=1,2 and x denotes the vector product in V, . The line p
determined by the point C, oC = 1/ EZ)EXI; and by the direction @ will be called the

axis of the twist X = (5,5) , O # 0.If@=0 , then the axis of the element X = (6,5) is the line
at infinity of the plane in the projective space P, (P, is E, together with the points at

infinity) which is perpendicular to the vector b .
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In the algebra V, xV, we have the Klein form given by

def _  — -

KL(X,,X,)=a, b, + m, b,
where X, =(@,,b,),X, = (@,,b,) are twists from V,xV, and the dot - denotes the scalar
product in V. If KL(X,,X,)=0, then the twists X,, X, will be called KL -orthogonal. The

Klein form is a symmetric regular bilinear form.
A subspace AcV,xV, is called KL -orthogonal to a subspace Bc V,xV,, if KL(X,Y)=0

for every X e A and every Y €B. There is a unique subspace A* cV,xV, which is KL -
orthogonal to the subspace AcV,xV;; ie, if any arbitrary vector subspace B is KL -
orthogonal to A, then Bc A~

Definition 1. Let A <V, xV,. The subspace K ?:A N A* will be called the Klein subspace of

the space A.If K=A, then A is isotropic.
Let us recall that the matrix form of the exponential map from the Lie algebra ¢(3) to the Lie

group E(3), exp:e(3) > E(3), is given by exp(S) = Zw Ol'S" , where S ee(3) is the matrix of
=0

the form (1) and S” is n th power of the matrix S. The matrix exp(S) is a regular matrix,
(exp(S))™" = exp(-S), for further properties see (Helgason, 1962). For the motion determined
by the curve y(t)= exp(t(a_),z)) , where (a_),E) €e(3) and exp is exponential map, we have:
1 If o= 0 then the curve y(t) = exp(t((_),E)) determines a translation with velocity b.

() If @#0 then the curve y(t)=exp(t@,b)) determines a uniform screw motion in E,
with the axis p of the twist (E,E) , the angular velocity @ and with the translation ha ,
where I = (@ -b)/®", see Fig, 2.

Figure 2. Screw motion determined by exp(t(E,E))

If h=0 (ie., @- b=0 ) then it is a rotational motion.
From the mathematical point of view, we can define a robot by the exponential map which
is applied to the elements of the Lie algebra ¢(3) , see (Karger, 1988), as follows:

Definition 2. Let X, €¢(3),i=1,2,...,n. Then a robot with n degrees of freedom is a map

YXl,...,Xn :R" — E(3) given by
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YX]’W,Xn(ul,uz,...,u")=expu1X1 expu,X,...expu, X, .
Let us deal with the velocity and the acceleration of an effector point L. Let Y, . beany
n -parametric robot given by twists X,,X,,...,X,, respectively. Let the motion of the
effector be given by a curve y(t)=expu,(t)X, expu,(t)X,...expu,(t)X, = H(t) and let L(t,)
be the homogeneous coordinates of the effector point L at #,. Then the homogeneous
coordinates L(t) of the point L at any t are given by L(t)=H(t)L(¢,). So its velocity is
given by L(t)= H(t)H(t)L(t) . The element H(t) determines the tangent vector at H(t) and

def .

H(H)H™'(t) is a right translation by H™(t). Then Y()=H(t)H"'(t) belongs to the Lie
algebra e(3) . The velocity of the motion L(t)= H(t)L(t,) determined by H(t) at t, and the
velocity of the motion L(s)=exp(sY(f,))L(t,) determined by exp(sY(t,)) at s=0 are the
same. The twist Y(t) is called the velocity operator or shortly the velocity twist.

Remark 1. For simplicity we will use u instead u(t) .

As H =expu,X,...expu,X, we get

Y=HH" =0, +i,Y, ++1,Y, @)

see (Karger, 1989), where Y, = X,, Y, = ¢, X}, . =expu, X, ...expu,_,X,, and g is the

inverse element of g,,, i=2,...,n. Elements Y, belong to the Lie algebra e(3). The space

7 n

def
A, (u)=span(Y,,Y,,...,Y,) will be called the space of velocity twists, where (u)=(u,,u,,...,u,).
If dimA,(u)=n then we call the point (u) regular or we say that the robot is in a regular
position. If dim A, (1) <n then we call the point (1) singular or we say that the robot is in a

singular position. If every point of the curve y(t)=H(t)c Y is singular then this

Xy v X,
motion of the robot determined by the curve y(t)=H(t) will by called singular. A robot

Yy,,..,x, is of rank m if m is the maximal dimension of the velocity twists spaces; i.e.,
m= n(la}x{dim A, (u)}.

Remark 2. In what follows we confine ourselves to n =m . Without loss of generality we will
assume that A, :=span(X,,X,,...,X,) and dimA,=n=m is the rank of the robot. Then

7<% n

there is a neighborhood Q, < R" of the point O =(0,0,...,0)eR" that Y, .| =Y, isan
el .

immersed submanifold of the Lie group E(3) and (u,,u,,...,u,) is a local coordinate system
of Y, .

Let us consider the acceleration of any effector point L . The velocity of the point L at a time
t is determined by L(t)= H(t)H (t)L(t) = Y(t)L(t) . Let us differentiate the last equation. We
get the relation for the acceleration of the effector point L at the time ¢:
Lty = YL+ Y()L(E) = (Y(£)+Y()Y()L(t). The derivative of the equation (2) is

Y(t)= Z” ]i‘iY; +z” Y, , where Y, = Z:Z%uk. All elements Y; are in the matrix form,
i= i= = uk

i
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therefore we can use the Lie bracket in the matrix form: [A,B]= AB—BA. Then we get
Y, =0, Y, =[Y,, Y i, +[Y,,Y,Jit, +---+[Y.,,Ylit,,, i=2,...n. The acceleration of the point L
atany ¢ is of the form

L(t)= (Zuka,.[yk,y,,] + DY+ YY]L(t), ki=1,..n

k<i i=1

The expression ZiliiiY. represents the acceleration caused by joint accelerations ii,, the

i

expression YY represents centrifugal or centripetal components of acceleration and the

. def
expression Y, := Z« w,1,[Y,,Y;] stands for the so-called Coriolis acceleration.

Definition 3. The subspace CA‘:jlif span([Y,, Y, 1,0, Y,1,...[Y, 1,Y,]) of the space e(3) will be

called the Coriolis subspace.

Definition 4.

(1) If CAc A,(u) then the point (u) of therobot Y,  , willbe called flat.

(2) If every point of the robot is flat then the robot will be called flat.

() If Y.(u(t)) € A,(u(t,)) fora point u(t,) then the motion of the robot determined by the
curve y(t)=H(t) will by called asymptotic at the point u(t,).

) If Y.(t)e A,(u) for every t then this motion of the robot determined by the curve
y(t)=H(t) will by called asymptotic.

Examples.

I. Robot motions with the zero Coriolis acceleration are asymptotic. Then:

a) If only prismatic joints work then the robot motion is asymptotic.

b) If only one joint works then the robot motion is asymptotic.
II. If A,(u) is a subalgebra; ie., iff CAc A, (u) then (u) is flat and thus every motion is

asymptotic at (u) .

If A,(u) is a subalgebra or only translational joints work or just one joint works then these
motions will be called trivial asymptotic motions. In the next part we will deal only with
nontrivial asymptotic motions.

The base coordinate system S; is connected with the 1 st joint. Its axis z, is the axis o, of
the first joint of the robot. The axis of the twist Y; = (a_),,};,) is the axis o, of the i th joint. If
the i th joint is revolute or helical then its axis is the axis of Y;. If it is prismatic then the
direction of its axis is b,, Y, = (6,51) .

Remark 3. If X = (6,5) is translational then b is orthogonal to the plane (O,0) where O is
the origin of the coordinate system S, and o is the axis of X .

We will deal with robots which have no helical joints. The capital letter R will indicate a
revolute joint, T a translational (prismatic) joint. Then, for example, RRT denotes a 3-
parametric robot the first and second joints of which are revolute and the third is prismatic.

Definition 5. A robot Y, is the robot of spherical rank r if r is the maximal number of

linearly independent directions of revolute joint axes.
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It is obvious that 3-parametric robots have spherical rank 0, 1, 2 or 3. In the next part we will
deal with 3-parametric robots of spherical rank 1.

Remark 4. It is interesting deal with the problem whether 3-parametric robots Y A of
spherical rank 1 lie within any subgroups of the Lie group E(3) the dimension of which is
less than 6. Common knowledge is that there is only one connected 4-dimensional Lie
subgroup H, of E(3) (up to conjugacy), see (Karger 1990), (Selig, 1996). The subgroup H, is
the group generated by a one parametric rotation around straight line (SO(2)) and all
translations (R*), (i.e., H, = SO(2)x R*). Hence 3-parametric robot manipulators of spherical

rank 1 belong to 4-dimensional Lie subgroups. This fact does not affect our own work except
that we know that all Coriolis space elements of the 3-parametric robots of spherical rank 1
belong to the Lie algebra &, of the Lie group H,.

3. Three parametric robots of spherical rank 1

Now dim A, =3 and the revolute joint axes are parallel at any position u . Therefore Y; is of

i

the form Y, = (k,w,m;) where at least one of the k; is not zero. We assume ||5|| =1 and
k; €{0,1} . We can always choose twists B, = (5,51) , B,= (6,1;2) , B, = (6,53), E‘Z;l =0 in the
space A,(u)=span(Y,,Y,,Y,) such that A,(u)=span(B,,B,,B,).

Remark 5. The robot Y, is in a singular position iff dimA,(u)<3 and this occurs
b, xb,=0.

Let us determine conditions for an arbitrary twist B=tB, +t,B, +{,B, of the space A;(u),
t,,t,,t; € R to be a rotational or translational twist. A twist B is rotational or translational iff

KL(B,B)=0 and this is equivalent to f,(t,(@ -b,)+t,(@ - b,)) = 0.

A twist B is translational iff t, =0; ie., iff Bespun(Bz,Ba)d:efr. Therefore dimzr<2. In
singular positions, dimz=1.

A twist B is rotational if and only if f,(®-b,)+t,(0-b,)=0, t,#0. If @-b,=0, ®-b,=0
then there are no screw elements in A,(u);ie., A,(u)—7 is the space of all rotational twists.
If at least one number of @-b,, @-b, is not equal to 0 then there is a two-dimensional
space of rotational twists. For example, if @-b, %0 then
B= (i‘la_),t‘lgl +(E3 —(553/ 5~EZ)EZ)t3). The axes of rotational twists generate a bundle of

parallel lines with the direction @ .
The matrix of the Klein form has the form

KL, =

Az(u) -

in the basis B,,B,,B, . The rank of the Klein form is 0 or 2 ;i.e., KL is singular.

Ag(u)
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The rank is 0 if and only if @-b,=0, @-b,=0; ie., if the vector @ is perpendicular to
7, de:f span(52,53); i.e., if there are no screw elements in A,(u) . In this case the Klein space is
K=A,(u),ie., A;(u) is isotropic and the robot is planar.

The rank is 2 iff the direction of the revolute joints axes is not perpendicular to 7, ; ie., at
least one number 5-52 , 5‘173 is not equal to 0. Let us determine the Klein subspace K.
The twist B=tB +1t,B, +tB,,t,t,,t,eR is KL -orthogonal to A,(u) if and only if
KL(B,A,(1))=0 and this is equivalent to t =0, t,= k(5-53) , b= 7k(5«l;2) , keR.
Therefore the Klein subspace is determined by the element Y = (6,(553 )Ez - (552 )E;) (i.e.,
K= spun(f/) c 1), its direction is perpendicular to @ and it belongs to 7, .

Let us summarize previous considerations.
Proposition 1. Let Y, be a robot of spherical rank 1. Then

a) if the direction @ of revolute joints is perpendicular to the space 7, of translational
elements directions then the rank of KL| Ayt is 0, the Klein space K is K= A,(u);ie., A,(u)
is isotropic and the robot is planar;
b) if @ is not perpendicular to the space 7, then the rank of KL| Ax(#) is 2 and the Klein space
Kis K= span((ﬁ,(a-g3 Yo, —(@ - b, )53)), K c 7 and its direction is perpendicular to @ .
The Coriolis subspace is CA = span((B,,B,][B,,B,],[B,,B,]), where [B,,B,]=(0,@xb,),
[B,,B,]= (6,5 X Es) , [B,,B;]= (6,6) . It means that elements of CA are translational and their
directions are perpendicular to @ and dimCA <2 . The following cases are possible:
(1)dimCA <1 if and only if (@ x b,)x (@ x b,) = ((EXEZ) 53)0_1 =0 and this is equivalent to
@ - (b, xb;) = 0. We have the following cases:
a) Ez XES =0 ; i.e,, the robot is in a singular position, dimzr=1. Let 53 = kEz , keR.
Then A,(#)nCA#0 if and only if @xb,=cb, and @xb, 20, ceR. It is impossible.
Therefore A,(u) "CA = 0.
b) b, ><E3 #0 and @ e spun(gz,g_,,) ; i.e., the robot is in a regular position and the vectors
@,b,,b, are linearly dependent. We can write @ =c,b,+c,b,, c,,c;eR. Then
CA= span((ﬁ,g2 x 53)) . The wvector 52 X 53 does mnot belong to 7,, therefore
CANA,(u)=0 and dimCA=1.
(2) dimCA =2 if and only if the position of the robot is regular (i.e., b,xb,#0) and the
direction @ of the revolute joints axes is not complanar with the space 7, . It means that the

vectors @ xb,, 5><E3 are linearly independent. The twists [B,,B,], [B,,B;] determine the
basis of the Coriolis space CA . This basis will be called the canonical basis of the space CA .
In this case the space CA is the space of all translational elements, whose directions are
perpendicular to the direction of the revolute joints @ . We have following cases:
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a) CA=r . In this case, the vector @ is perpendicular to the space z,; i.e., 5'52 =0,
@ -b, =0 and the rank of the Klein form is 0. If CA=7 then CA < A,(u);ie., A,(u) isa
Lie subalgebra. A reverse assertion is also valid. If A,(u) is a subalgebra then
CAc A,(u), dimCA =2 and the elements of CA are translational, therefore CA=17 .

b) CA#7 . In this case at least one of the numbers @-b,, @-b, is not equal to 0 and
the rank of the Klein form is 2. Now

K = span((@ - b,)Bz — (@ - b,)B,) = CA N A, () .
Let us summarize the above reflections.
Proposition 2. If a robot of spherical rank 1 is in a singular position or the direction of the
revolute joint axes is complanar with the space 7z, in a regular position then dimCA =1
and CAnA,(u)= 0. There are asymptotic motions with zero Coriolis acceleration only in

these positions.
If a robot of spherical rank 1 is in a regular position and @ ¢z, then dimCA =2 and there

are two cases.

a) If CA=r1,c A,(u); ie, if @ is perpendicular to 7, ;i.e., if A;(u) is a subalgebra of e(3)
then all motions are asymptotic in this position. The point (u) is flat.

b) If CA#7, then CAnA,(u) = span(f/) = K and there are asymptotic motions with nonzero

Coriolis acceleration in this regular position.
Revolute joints axes of spherical rank 1 robots are in all positions parallel, therefore
perpendicularity of revolute joints axes and prismatic joints is preserved. Therefore if A,(u)

is a subalgebra in one regular position then it is a subalgebra in all regular positions. Then
A,(u) is a subalgebra in a regular position iff A; =span(X,,X,,X,) is a subalgebra.

3.1 Robots with 2 prismatic and 1 revolute joints
There are the following possibilities with respect to the configuration.

a,) For RTT we have Y, =(@,0), Y, =(0,m,), Y,=(0,m,). Now B =Y, [Y,Y]=[B,B],
i,j=1,23 and 7, =span(m,,m,) .

a,) For TRT we have Y, =(0,7,), Y, =(@,m,), Y,=(0,i,) and B,=Y,, B,=Y,, Y, =B,.
Therefore [Y,,Y,]=-[B,,B,], [Y,,Y;]1=1[B,,B,], [Y,,Y;]1=[B,,B,] and 7, = span(m,,m,) .

a,) For TTR we have Y, =(0,m,), Y,=(0,m,), Y,=(@,m,) and B,=Y,, B,=Y,, B,=Y,.
Now [Y,,Y,]1=-B,,B,], [Y;,Y;]1=-[B,,B;], [Y,,Y;]1=-[B,,B,] and 7, = span(mn,,m,) .

A singular position exists only in the case TRT provided there is u,(t)=1, such that
o,(t)os(ty) , ie., by(t,)xby(t,)=0. This is possible iff Z(0,,0,)=Z(0,,0,). Ay(u) is a
subalgebra iff CA=7, in a regular position is valid and this is possible iff @-b,=0,
®-b,=0ina regular position, so we have the following statements.

Proposition 3. All positions of robots RTT, TTR are regular.
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There are singular positions in the case of TRT iff £(o,,0,)= Z(0,,0,).
A,(u) is an algebra iff the axis of the revolute joint is perpendicular to the axes of the

prismatic joints in a regular position.
Remark 6. Robots RTT, TTR are homogeneous spaces. In the case TRT, this robot is a
homogeneous space if A, is a subalgebra (the planar robot).

Let us investigate asymptotic motions of robots RTT, TRT, TTR. In the case when A,(u) is a
subalgebra then all motions through the point (1) are asymptotic. We have the following
cases:

(1) In a singular position; i.e., only for TRT, when m, =cm,,ce R, the subspace CA is
defined by [Y,,Y,]=(0~@xm,), [Y,,Y,]1=(0,0), [Y,,Y,]=(0,coxm,) and the Coriolis
acceleration is Y. = Z _L'lx-L'lv[Yi,Y‘] = (-u,u, +cu2u3)(6,5xml) , Where @ xm, £0.

A motion is asymptotic at a singular point u(t,) if and only if u,(t,)(-,(t,) +cu,(¢,))=0; i.e.,
1,(t,)=0 so that the revolute joint is not working at f, or the joint velocities of the
prismatic joints satisfy the relationship u,(t,):u,(f,) =c.

If every position of the robot motion is singular (i.e., u,(f)=1,=const, #, =0) then this

motion is the trivial asymptotic motion (only prismatic joints work).
Proposition 4. A motion of the robot TRT is nontrivial asymptotic in a singular position
u(t,) iff all joints work and the joint velocities of the prismatic joints satisfy the relationship

1, (t,) : 14, (t,) = ¢ . The singular motion of the robot TRT is trivial asymptotic.
(2) Let us investigate asymptotic motions of the robot in a regular position when the
subspace CA is one-dimensional. We know that a)—czb +c3b and CAnA,(u)= 0. A

motion is asymptotic when the Coriolis acceleration Y. = ZM‘.u LYY= 0 and this occurs

a,)if amz(ﬁ,fcﬁz x1,) + 1, (0, 0,1, x1m1,) = 0 i.e., 1, (—1,c, +1,¢,) =0 in the case of RTT,
ay ) if ity (0, 0,71, x 718,) + thyity (0, ¢, x71,) = 0; i.e., 1hy (i,C, + 1h¢,) = 0 in the case of TRT,
ay)if u]a3(6,—cﬁl X 11y ) + Uyl (6,c2ﬁ1 xm,)=0;1ie., t,(it,c; —1,c,)=0 in the case of TTR.

In the cases of RTT, TTR, if the equation @ = ¢,b, +¢sb, is valid in one position then it is
valid for all positions.

In the case TRT, the equation o = CZEZ + C3E3 , €, ¢y #0 is valid only if 3rd axis turns around
the axis o, to the position complanar with axes o0,,0, (i.e., the directions of the joint axes are
linear dependent). If ¢,-c,=0; ie, 03"02 or 01"02 then the equation o = ¢,b, +csb, is valid

for all positions of the axes.
Let us recall that we are interested only in nontrivial asymptotic motions. Then the Coriolis
acceleration is zero in the case RTT if —iu,c, +u,c, =0, in the case TRT if #,c, +u,c, =0 and

in the case TTR if —u,c, +11,c, =0 . We have the following cases:
a) Let ¢, -c; #0 at (1) . Then a motion through the point (1) is nontrivial asymptotic iff

all joints work and the joint velocities of the prismatic joints satisfy the relationship
¢, : ¢, in the cases RTT, TTR and —c, : ¢, in the case TRT.
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b) Let ¢, ¢, =0 at (u) . Then a motion through the point () is nontrivial asymptotic iff

the revolute joint and only the prismatic joint whose axis is parallel to the axis of the
revolute joint, work.
Proposition 5. Let Y, be a robot of spherical rank 1 with two prismatic joints and let the

directions of the joint axes be linear dependent at u(t,);ie., o = CZEZ + 63173 . Then:

a) The zero Coriolis acceleration is a necessary condition for the motion to be asymptotic at
u(ty)-

b) In the case that no two axes of joints are parallel at () : a motion through the point (u) is

nontrivial asymptotic iff all joints work and the joint velocities of the prismatic joints satisfy
the relationship c, : ¢, in the cases RTT, TTR and —c, : ¢, in the case TRT.

¢) In the case that the axis of the revolute joint is parallel to one axis of a prismatic joint: a
motion is nontrivial asymptotic iff the revolute joint and only the prismatic joint whose axis
is parallel to the axis of the revolute joint, work.

(3) Let us investigate asymptotic robot motions in a regular position, when dimCA =2 and

A,(u) is mot a subalgebra. Then CAN A,(u)=K =span(((@ -b;)B, —(@-b,)B,)); ie. the
equation: (@ -b,)b, — (@ - b,)by = k(@ x b,) + k, (@ x b3), k,,k, € R, is valid.
In this case the motion is asymptotic at the point () if and only if
a,) for RTT iity(0,@ xm2)+ ityiiy (0,@ x711,) = A(0, ky(@ x 1, + ky(@ x111,)), AeR; ie,
u, =k, A, i, =kA,
a,) for TRT iity(0,@ x i)+ ibyit, (0,@ x11,) = 20, k, (@ x 1, ) + ky(@ x1m,)), AeR; ie.,
i, =k,A, i, =kA,
a,;) for TTR i, (0,@ x 1) + 1,11, (0,@ x11,) = A(0, k, (@ x 713, + k, (@ xm,)), A€R; ie,
uyy =k,A, iy = kA
We summarize the previous results.
Proposition 6. Let Y, be a robot of spherical rank 1 with two prismatic joints and let the
directions of the joint axes be independent at £, ;ie., ® # CZEZ + c3173 . Then:
A motion is nontrivial asymptotic at £, iff joint velocities at t, satisfy w,u, =k,A, 1, =k,A
for RTT, wu, =k,A, u,u, =k,A for TRT and for TTR wu, =k,A, u,u, =k,A, where 1R
and k,,k, are the coefficients of the linear combination of Y= (0,(@ - b,)b, —(@ - b,)b,) in the
canonical basis of the Coriolis space. If these relations are true for any admissible ¢ then the

motion is asymptotic.
In this case there are nontrivial asymptotic motions with the nonzero Coriolis acceleration.

3.2 Robots with 1 prismatic and 2 revolute joints
Let & be the plane determined by the axes of the revolute joints. There are three possibilities

with respect to the configuration.
b,) RRT: then Y, =(@,0), Y, =(@,m,), Y, =
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the vector m, is perpendicular to the plane &. We have [Y,,Y,]=[B,,B,], [Y,,Y;]=[B,,B,],
[Y,,Y;]1=[B,,B;] and 7, =span(ﬂ2,ﬁ ).

b,) RTR: then Y, = (@, 0), Y,=(0,m,), Y,=(@,i,), where m,#0 and @ -, =0. Now
B, =Y, =(@,0), B2=YZ=(0,mZ) B,=Y,-Y,=(0,b,=

to the plane ¢. We have [Y,,Y,]=[B,,B,], [Y,,Y;]1=[B,,B;], [Y,,Y;]=-B,,B,] and

7, = span(i, ;) .

m,). The vector m, is perpendicular

b,) TRR: then Y, =(6,ﬁ1), Y, =(w,m,), Y,=(o,m), my=m,, @ -m,=0, @ -m,=0.Now
B, =Y,, B,=Y,, B,=Y,-Y,. It is easy to show that the vector m, —m, is perpendicular to
the plane ¢. We have [Y,,Y,]=-[B,,B,], [Y,Y;]=-[B,,B,], [Y,,Y,]=[B,,B;] and
7, = span(m, , i, —1m,) .

So we have

Proposition 7. Let £ be the plane determined by the axes of the revolute joints. The space

7, of the directions of the translational velocity elements is generated by the direction of the
prismatic joint and the normal vector of the plane ¢ . If the axis of the prismatic joint is
perpendicular to the plane & then the robot is in the singular position. The robot has a
singular position iff A, is a subalgebra.

The subspace A,(u) is a subalgebra iff the axes of the revolute joints are perpendicular to

the axis of the prismatic joint in a regular position.
In the next part we will investigate asymptotic robot motions of RRT, RTR, TRR. If A,(u) is

a subalgebra then all motions through the point (1) are asymptotic. Let 7, be the normal

vector of the plane & . By our previous considerations we have the following cases:
(1) Let u(t)) be a singular position ( A, is a subalgebra). Then z, = span(n,) and A;(u(t,)) is

not a  subalgebra. We  have at t,: for  RRT m,=cm, 0#ceR,
for RTR m,=cm, 0#ceR,

=l
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Y = (11, + c(uyit, + 11,11,)) (0,

Y = (1, + ct 1ty —u2u3)(6 oxm,), o-m=0 and for TRR wm,-m,=cm ,0+#ceR,
Y = (o1, + 11,114 —citzit3)(6 oxm,), @-m =0. We know that a motion is asymptotic at a
singular position u(f,) only if the Coriolis acceleration is zero. A singular motion
(u,(t) = u,(t,) = const,u,(t)=0) can be only trivial asymptotic when only one joint works.
Thus we get

Proposition 8. Let Y Ay be a robot of spherical rank 1 with two revolute joints. Then a
motion is nontrivial asymptotic at the singular position u(t,) iff at £, all joints work and for
RRT, RIR, TRR we ‘have  (uu, +c(ut, +1,u,))=0, (0,5, +ciu, —i,1,)=0,
(1, + 1,11, — cti,u,) = 0 at t, respectively. The singular motion is trivial asymptotic.

(2) Let us assume that u(t,) is a regular position, @ €7, and A,(u) is not a subalgebra.

Then w =c¢m+c,n,, c¢,,c, € R,c; #0, where m is the direction of the axis of the prismatic

4



Asymptotic Motions of Three-Parametric Robot Manipulators with Parallel Rotational Axes 53

joint and 7, is the normal vector of the plane ¢ . The axis of the prismatic joint is parallel to
the axes of the revolute joints iff c, =0. This position does not vary to time. If the axis of the
prismatic joint is not parallel to the axes of the revolute joints then always u, =1,, when
® =y +Cyl, .
b,) For RRT: if @ =7, then Y, =i, (0,@xm,), @ -m,=0 for every (u).If @ =7m,
then there is the position (u, =1, ) so that the axis o, turning around the axis o, gets
into the position complanar with the space span(w,m,); ie., m,=co+c,m,. Then
Y. = (i1t + ity + Cyitytly ) (0, @ X 71, ) .
b,) For RTR: if @ =7, then Y.=i,(0,@xm,), @-m,=0 for every (u).If w=m,
then there is the position (u, =1,) so that the normal 71, of the plane & is complanar
with the space span(®,m, ) ; ie., M, =C,0 +C,M, . Then
Y. = (i1, + ¢l ity — it,11)(0, @ X 711, ) .
b,) For TRR: if 7, =@ then Y. = it,it,(0,a x (i, —m,)), for every (u).If m, #w then
there is the position (u, =1,) so that the normal m, —m, of the plane ¢ is complanar
with the space span(o,m,) ; ie, m, — 1M, =C,® +C,Mm, . Then
Y, = (it + iyl —czuzu3)(6,5xﬁl) . We know, see Proposition 2, that in the case when
o €7, the motion is asymptotic iff Y. =0.We get
Proposition 9. Let Y, be a robot of spherical rank 1 with two revolute joints and let the axis
of the prismatic joint is complanar with the space span(w,n,) at t, i.e m =c,@ +c,n, . Then
we have:
a) The zero Coriolis acceleration is a necessary condition for a motion to be asymptotic at ¢, .

b) A motion of the robot Y, is nontrivial asymptotic at the point u(f,) iff in the cases of
RRT, RTR, TRR the equalities (i1, +c,th i, +Cottyu,) =0, (U0, + U1ty —1,1,) =0,
(11, + 11,11, — cyu,11,) = 0 are valid at £, , respectively.

¢) A motion of the robot Y, , whose all axes are parallel to each other (c, =0), is nontrivial

asymptotic iff the prismatic joint and only one revolute joint work.
(3) Let dimCA=2 and A;(u) be not a subalgebra. Then CAnNA,(u)=K is the Klein

subspace, K= span(f/) , Yer and the direction of Y is perpendicular to @ . A motion is
asymptotic at the point (u) , iff i,u,[Y,, Y, ]+ w,,[Y,, Y]+ i,0,] Y, V3] = AY, 1eR.We get
b,) for RRT: [Y,,Y,]=[Y,,Y,] and [Y},Y;],[Y;,Y;] are the basis elements of the space

CA and Y= k[Y,, Y, 1+ k[Y,,Y;], k,,k;eR. Then the motion is asymptotic iff
i [Y,, Y, ]+ (it + i) [V, Y, 1= A(k[Y,, Y, 1+ k,[Y,,Y,]) and this occurs if and only if
wt, = Ak, , (U, + 1)y = Ak, .
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b, ) for RTR: [Y,,Y,]=-[Y,,Y,] and [Y,,Y,],[Y;,Y;] are the basis elements of the space
CA and Y= kY, Y, ]1+k[Y,,Y,], k,,ky;eR. Then the motion is asymptotic iff
(iytty — ,1,)[Y,, Yy 1+ 0, [ Y, Y, 1= A(K,[Y,, Y, 1+ K[, Y,]) and this occurs if and only if
1w, (0, — )= Ak, , tu, = Ak, .

b,) for TRR: [Y;,Y;]=[Y;,Y,] and [Y;,Y,],[Y,,Y;] are the basis elements of the space

CA and Y= kY, Y]+ k[Y,,Y,], k,,ky;eR. Then the motion is asymptotic iff
(iytty + 10,0,)[Y,, Yy 1+ [ Y, Yo 1 = Ak, [Yy, Y, 1+ k5[ Yy, Y,]) and this occurs if and only if
(11, +1y) = Ak, , U1y = Ak,
So we have
Proposition 10. Let Y, be a robot of spherical rank 1 with two revolute joints and let the
axis of the prismatic joint be not complanar with the space span(w,n,) at f, ie
m#c,@+c,n, . Then a motion is asymptotic at f, iff the joint velocities at t, satisfy
i, = Ak, , (t, +1,)u, = Ak, for RRT, u,(u, —u,)=2k,, i, =71k, for RTR and for TRR:
w, (i, +u,)=Ak,, u,u,=1k,, where 1e€R and k,k, are the coefficients of the linear
combination of Y = (0,(@ -b,)b, — (@ -b,)b,) in the canonical basis of the Coriolis space CA .

If these relations are true for any admissible ¢ then the motion is asymptotic.
In this case there are nontrivial asymptotic motions with nonzero Coriolis acceleration.

3.3 Robots with 3 revolute joints

These robots have the axes of the joints parallel and different from each other (the robots are
planar). The elements Y, satisfy Y, = (5,6) , Y,=(o,m,), Y,=(o,m), o -m=0,
o-my,=0, m, #m, #0. Let us denote planes &, =(o0,,0,) and & =(0,,0;). Then m, is the
normal vector to the plane &, and i, is the normal vector to the plane &, . For the elements

B, we have B, =Y,, B,=Y,-Y,= (6,52 =m,), B,=Y,-Y, = (6,53 =m,). Because
r, =span(m,;m,),  ®-1,=0  and  [Y,Y,]=(0,@xm), [Y,,Y,]=0@xm,),
[Y,,Y,]1=(0,@ x i, — @ xm,) we conclude that A,(u) is a subalgebra in a regular position. If
the plane ¢, turning around the axis o0, coincides with the plane &, then the robot is in a
singular position at t, ;i.e., m, =cm,,c € R . Inregular positions we have dimCA =2 and all
motions are asymptotic while dimCA =1 in singular positions and the Coriolis acceleration
satisfies: Y. = i, (il, +ci13)(6,5><ﬁ2) .

Proposition 11. Let RRR be a robot the revolute joint axes of which are parallel. Then its
position u(t,) is singular if all axes of the joints lie in a plane. A,(u) is a subalgebra in the
regular position and K= A,(u). A,(u) is not a subalgebra in the singular position. A motion
through the singular position u,(t,) =1, is asymptotic at u,(t,) = i,

a) if 1 st joint does not work or
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b) the ratio of the joint velocities of the 2 nd and 3 rd joints at ¢, is —c .

A singular motion (u,(t) =1,) can be only trivial asymptotic.

Let us present a survey of all nontrivial asymptotic motion of the robots of spherical rank

one.

1. The robots with one revolute joint (RTT, TRT, TTR).
a) Let the directions of the joint axes be dependent (i.e., @ = 6252 + C3E3 )and c,c, #0 in
the cases RTT, TTR. Then a robot motion is nontrivial asymptotic iff all joints work and
the ratio of the joint velocities of the prismatic joints is c, : c, .
b) Let the axis of the revolute joint be paralel to one axis of the prismatic joint (i.e.,
¢,c; =0). Then a robot motion is nontrivial asymptotic iff the revolute joint and only
the prismatic joint whose axis is parallel to the revolute joint axis work.
c) Let the directions of the joint axes be independent (i.e., @ # 02172 + C3173 ). Then a robot
motion is nontrivial asymptotic iff the joint velocities satisfy for any admissible ¢:
i, =k,A, uu, =kA for RTT, uu, =k,A, u,u, =kA for TRT, uu, =k,A, i, =kA
for TTR, where k,,k, are the coefficients of the linear combination of the Klein direction
in the canonical basis of the Coriolis space.

2. The robots with two revolute joints (RRT, RTR, TRR).
a) Let the joint axes be parallel. Then a robot motion is nontrivial asymptotic iff one
revolute joint does not work.
b) Let the axis of the prismatic joint be not complanar with the space span(w,n,). Then
a robot motion is nontrivial asymptotic iff for the joint velocities and any admissible ¢
we have: w1, = Ak,, (1, +u,)u, = Ak, for RRT, u,(u, —u,) = Ak, , u,u, = Ak, for RTR and
w,(u, +u,)=Ak,, u,u, =21k, for TRR, where k, k, are coefficients of the linear

combination of Y = O,(@- b, )Ez —(o- b, )53) in the canonical basis of the Coriolis space.

3. The robots with three revolute joints (RRR).
In this case, there are only trivial asymptotic motions.
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Topology and Geometry of Serial and Parallel
Manipulators

Xiaoyu Wang and Luc Baron
Polytechnique of Montreal
Canada

1. Introduction

The evolution of requirements for mechanical products toward higher performances,
coupled with never ending demands for shorter product design cycle, has intensified the
need for exploring new architectures and better design methodologies in order to search the
optimal solutions in a larger design space including those with greater complexity which are
usually not addressed by available design methods. In the mechanism design of serial and
parallel manipulators, this is reflected by the need for integrating topological and geometric
synthesis to evaluate as many potential designs as possible in an effective way.

In the context of kinematics, a mechanism is a kinematic chain with one of its links
identified as the base and another as the end-effector (EE). A manipulator is a mechanism
with all or some of its joints actuated. Driven by the actuated joints, the EE and all links
undergo constrained motions with respect to the base (Tsai, 2001). A serial manipulator
(SM) is a mechanism of open kinematic chain while a parallel manipulator (PM) is a
mechanism whose EE is connected to its base by at least two independent kinematic chains
(Merlet, 1997). The early works in the manipulator research mostly dealt with a particular
design; each design was described in a particular way. With the number of designs
increasing, the consistency, preciseness and conciseness of manipulator kinematic
description become more and more problematic. To describe how a manipulator is
kinematically constructed, no normalized term and definition have been proposed. The
words architecture (Hunt, 1982a), structure (Hunt, 1982b), topology (Powell, 1982), and type
(Freudenstein & Maki, 1965; Yang & Lee, 1984) all found their way into the literature,
describing kinematic chains without reference to dimensions. However, some kinematic
properties of spatial manipulators are sensitive to certain kinematic details. The problem is
that with the conventional description, e.g. the topology (the term topology is preferred here
to other terms), manipulators of the same topology might be too different to even be
classified in the same category. The implementation of the kinematic synthesis shows that
the traditional way of defining a manipulator’s kinematics greatly limits both the qualitative
and quantitative designs of spatial mechanisms and new method should be proposed to
solve the problem. From one hand, the dimension-independent aspect of topology does not
pose a considerable problem to planar manipulators, but makes it no longer appropriate to
describe spatial manipulators especially spatial PMs, because such properties as the degree
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of freedom (DOF) of a manipulator and the degree of mobility (DOM) of its EE as well as the
mobility nature are highly dependent on some geometric elements. On the other hand,
when performing geometric synthesis, some dimensional and geometric constraints should
be imposed in order for the design space to have a good correspondence with the set of
manipulators which can satisfy the basic design requirements (the DOF, DOM and the
mobility nature), otherwise, a large proportion of the design space may have nothing to do
with the design problem in hand. As for the kinematic representation of PMs, one can
hardly find a method which is adequate for a wide range of manipulators and commonly
accepted and used in the literature. However, in the classification (Balkan et al., 2001; Su et
al., 2002), comparison studies (Gosselin et al., 1995; Tsai & Joshi, 2001) (equivalence,
isomorphism, similarity, difference, etc.) and manipulator kinematic synthesis, an effective
kinematic representation is essential. The first part of this work will be focused on the
topology issue.

Manipulators of the same topology are then distinguished by their kinematic details.
Parameter (Denavit & Hartenberg, 1954), dimension (Chen & Roth, 1969; Chedmail, 1998),
and geometry (Park & Bobrow, 1995) are among the terms used to this end and the ways of
defining a particular manipulator are even more diversified. When performing kinematic
synthesis, which parameters should be put under what constraints are usually dictated by
the convenience of the mathematic formulation and the synthesis algorithm implementation
instead of by a good delimitation of the searching space. Another problematic is the numeric
representation of the topology and the geometry which is suitable for the implementation of
global optimization methods, e.g. genetic algorithms and the simulated annealing. This will
be the focus of the second part of this work.

2. Preliminary

Some basic concepts and definitions about kinematic chains are necessary to review as a
starting point of our discussion on topology and geometry. A kinematic chain is a set of
rigid bodies, also called links, coupled by kinematic pairs. A kinematic pair is, then, the
coupling of two rigid bodies so as to constrain their relative motion. We distinguish upper
pairs and lower pairs. An upper kinematic pair constrains two rigid bodies such that they
keep a line or point contact; a lower kinematic pair constrains two rigid bodies such that a
surface contact is maintained (Angeles, 2003). A joint is a particular mechanical
implementation of a kinematic pair (IFToMM, 2003). As shown in Fig. 1, there are six types
of joints corresponding to the lower kinematic pairs - spherical (S), cylindrical (C), planar
(E), helical (H), revolute (R) and prismatic (P) (Angeles, 1982). Since all these joints can be
obtained by combining the revolute and prismatic ones, it is possible to deal only with
revolute and prismatic joints in kinematic modelling. Moreover, all these joints can be
represented by elementary geometric elements, i.e., point and line. To characterize links, the
notions of simple link, binary link, ternary link, quaternary link and n-link were introduced
to indicate how many other links a link is connected to. Similarly, binary joint, ternary joint
and n-joint indicate how many links are connected to a joint. A similar notion is the
connectivity of a link or a joint (Baron, 1997). These basic concepts constitute a basis for
kinematic analysis and kinematic synthesis.
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Figure 1: Lower Kinematic Pairs

3. Topology

For kinematic studies, the kinematic description of a mechanism consists of two parts, one is
qualitative and the other quantitative. The qualitative part indicates which link is connected
to which other links by what types of joints. This basic information is referred to as
structure, architecture, topology, or type, respectively, by different authors. When dealing
with complex spatial mechanisms, the qualitative description alone is of little interest,
because the kinematic properties of the corresponding mechanisms can vary too much to
characterize a mechanism. This can be demonstrated by the single-loop 4-bar mechanisms
shown in Fig. 2. Without reference to dimensions, all mechanisms shown in Fig. 2 are of the
same kinematic structure but have very distinctive kinematic properties and therefore are
used for different applications— mechanism a) generates planar motion, mechanism b)
generates spherical motion, mechanism c) is a Bennett mechanism (Bennett, 1903), while
mechanism d) permits no relative motion at any joints. Fig. 3 shows an example of parallel
mechanisms having the same kinematic structure — mechanism a) has 3 DOFs whose EE has
no mobility, mechanism b) has 3 DOFs whose EE has 3 DOMs in translation, mechanism c)
permits no relative motion at any joints.

Figure 2: 4-bar mechanisms of different geometries
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a) b) ©)
Figure 3: 3-PRRR parallel mechanisms

A particular mechanism is thus described, in addition to the basic information, by a set of
parameters which define the relative position and orientation of each joint with respect to its
neighbors. For complex closed-loop mechanisms, an often ignored problem is that certain
parameters must take particular values or be under certain constraints in order for the
mechanism to be functional and have the intended kinematic properties. In absence of these
special conditions, the mechanisms may not even be assembled. More attention should be
payed to these particular conditions which play a qualitative role in determining some
important kinematic properties of the mechanism. For kinematic synthesis, not only do the
eligible mechanisms have particular kinematic structures, but also they feature some
particular relative positions and orientations between certain joints. If this particularity is
not taken into account when formulating the synthesis model, a great number of
mechanisms generated with the model will not have the required kinematic properties and
have to be discarded. This is why the topology and geometry issue should be revisited, the
special joint dispositions be investigated and an adapted definition be proposed.

Since the 1960s, a very large number of manipulator designs have been proposed in the
literature or disclosed in patent files. The kinematic properties of these designs were studied
mostly on a case by case basis; characteristics of their kinematic structure were often not
investigated explicitly; the constraints on the relative joint locations which are essential for a
manipulator to meet the kinematic requirements were rarely treated in a topology
perspective.

Constraints are introduced mainly to meet the functional requirements, to simplify the
kinematic model, to optimize the kinematic performances, or from manufacturing
considerations. These constraints can be revealed by investigating the underlying design
ideas.

For a serial manipulator to generate planar motion, all its revolute joints need to be parallel
and all its prismatic joints should be perpendicular to the revolute joints. For a serial
manipulator to generate spherical motion, the axes of all its revolute joints must be
concurrent (McCarthy, 1990). For a parallel manipulator with three identical legs to produce
only translational motion, the revolute joints of the same leg must be arranged in one or two
directions (Wang, 2003).

A typical example of simplifying the kinematic model is the decoupling of the position and
orientation of the EE of a 6-joint serial manipulator. This is realized by having three
consecutive revolute joint axes concurrent. A comprehensive study was presented in
(Ozgoren, 2002) on the inverse kinematic solutions of 6-joint serial manipulators. The study
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reveals how the inverse kinematic problem is simplified by making joint axes parallel,

perpendicular or intersect.

Based on the analysis of the existing kinematic design, the definition of the manipulator

topology and geometry is proposed as the following:

o the kinematic composition of a manipulator is the essential information about the number
of its links, which link is connected to which other links by what types of joints and
which joints are actuated;

o the characteristic constraints are the minimum conditions for a manipulator of given
kinematic composition to have the required kinematic properties, e.g. the DOF, the
DOM;

o the fopology of a manipulator is its kinematic composition plus the characteristic
constraints;

o The geometry of a manipulator is a set of constraints on the relative locations of its joints
which are unique to each of the manipulators of the same topology.

Hence, topology also has a geometric aspect such as parallelism, perpendicularity, coplanar,
and even numeric values and functions on the relative joint locations which used to be
considered as geometry. By definition, geometry no longer includes relative joint locations
which are common to all manipulators of the same topology because the later are the
characteristic constraints and belong to the topology category. A manipulator can thus be
much better characterized by its topology.
Taking the basic ideas of graph representation (Crossley, 1962; Crossley, 1965) and layout
graph representation (Pierrot, 1991), we propose that the kinematic composition be
represented by a diagram having the graph structure so as to be eventually adapted for
automatic synthesis. The joint type is designated as an upper case letter, i.e., R for revolute,
P for prismatic, H for helical, C for cylindrical, S for spherical and E for planar. Actuated
joints are identified by a line under the corresponding joint. The letters denoting joint types
are placed at the vertices of the diagram, while the links are represented by edges. Fig. 4 and
Fig. 5 are two examples of representation of kinematic composition. Each joint has two joint
elements, to which element a link is connected is indicated by the presence or absence of the
arrow. Any link connected to the same joint element is actually rigidly attached and no
relative motion is possible. The most left column represents the base carrying three actuated
revolute joints while the most right column the EE. The EE is connected to the base by three
identical kinematic chains composed of three revolute joints respectively. It is noteworthy
that the two different manipulators have exactly the same kinematic composition. The
diagram must bear additional information in order to appropriately represent the topology.

a) Physical manipulator b) Diagram

Figure 4: Kinematic Composition of a Planar 3-RRR parallel manipulator
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a) Physical manipulator b) Diagram

Figure 5: Kinematic Composition of a Spherical 3-RRR parallel manipulator

When dealing with manipulators composed of only lower kinematic pairs, the characteristic
constraints are the relative locations between lines. Constraints on relative joint axis
locations can be summarized as the following six and only six possible situations shown in
Fig.6. Superimposing the characteristic constraint symbols on the kinematic composition
diagrams shown in Fig. 4 and 5, we get the diagrams shown in Fig. 7 and 8.

Figure 6: Graphic symbols for characteristic constraints

a) Physical manipulator b) Topological diagram
Figure 7: Diagram of a planar parallel manipulator with characteristic constraints

When implementing the automatic topology generation of a SM composed of only revolute

and prismatic joints, the topology is represented by 6 integers, i.e.

e m:number of joints.

e xo: kinematic composition. Its bits 0 to n — 1 represent respectively the joint type of
joints 1 to n with 1 for revolute and 0 for prismatic.
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e x: bits 0 to n — 2 indicate respectively whether the axes of joints 2 to n — 1 intersect the
immediate preceding joint axis.

e xy each two consecutive bits characterize the orientation of the corresponding joint
relative to the immediate preceding joint with 00 for parallel, 01 for perpendicular, and
10 for the general case.

e  x3: supplementary constraint identifying joints whose axes are concurrent. All joint axes
whose corresponding bits are set to 1 are concurrent.

e x4 supplementary constraint identifying joints whose axes are parallel. All joint axes
whose corresponding bits are set to 1 are parallel.

a) Physical manipulator b) Diagram
Figure 8: Diagram of a spherical parallel manipulator with characteristic constraints

With this numerical representation, topological constraint can be imposed on a general
kinematic model to carry out geometric synthesis to ensure that the search is performed in
designs with the intended kinematic properties. The binary form makes the representation
very compact. No serial kinematic chain should have more than 3 prismatic joints, so all
values for xo of 6 joint kinematic chains take only 42B (byte) storage. Those for x; take 31B
while those for x> 243B. Without supplementary constraints which are applied between non
adjacent joints, the maximum number of topologies is 316386 (some topologies, those with
two consecutive parallel prismatic joints for example, will not be considered for topological
synthesis purpose). All topologies without supplementary constraint can be stored in a list,
making the walk through quite straightforward. Applying supplementary constraints while
walking through the list provides a systematic way for automatic topology generation.

4. Geometry

In the kinematic synthesis of SMs, the most successively employed geometric representation
is the Denavit-Hartenberg notation (Denavit & Hartenberg, 1954). For PMs, the Denavit-
Hartenberg notation is more or less adapted to suit the particularity of the manipulator
being studied, especially for reducing the number of parameters and simplifying the
formulation and solution of the kinematic model (Baron et al., 2002). One major problem of
the later in implementing computer aided geometric synthesis is the computation of the
initial configuration. Once a new set of parameters are generated, the assembly of each
design take too much computation and sometimes the computation don’t converge at all.
This may be du to the complexity of the kinematic model or that the set of parameters
correspond to no manipulator in the real domain. It also arrives that only within a subspace
of the entire workspace, a particular design possesses the desired kinematic properties,
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making the computation useless outside the subspace. A PM (Fig. 9) presented in (Zlatanov
et al., 2002) is a good example of this kind. Depending on the initial configuration, the
manipulation can be a translational one or spherical one. Another problem encountered
when performing computer aided synthesis is that the entire set of equations is
underdetermined, while a subset of the set is overdetermined. It seems that the set of
parameters correspond to no functional manipulator. But manipulators having such
mathematic equations do exist. The PM shown in Fig. 10 has 8 DOF for the system on the
whole and its EE has 3 DOM. The two PRRR legs form an overdetermined system, but the
system on the whole is underdetermined.

Figure 9: 3-RRRRR [28]

To improve the efficiency of the computation algorithms, an initial configuration seems to
be an effective solution. So, for PMs, we proposed that the geometry definition be always
accompanied by an initial configuration to start with and the evaluation computation is
carried out mainly in certain neighborhood of the initial configuration.

The most challenging part of the kinematic synthesis is the integration of the topological
synthesis and geometric synthesis. From the best of knowledge of the authors, the most
systematic study in this regard is that presented in (Ramstein, 1999). In (Ramstein, 1999), the
synthesis problem is formulated as an global optimization problem with genetic algorithms
as solution tools. The joint type is represented by boolean numbers with 1 for prismatic and
0 for revolute. The synthesis results are far from what were expected. The problem is that
the population does not migrate as much as expected from one topology region to another,
making the synthesis concentrate on a very few topologies.

Since the joint type is represented by discrete numbers, a joint can only be either prismatic
or revolute, nothing in between, which greatly limites the diversity and the migration of the
solution population. With the simulated annealing techniques, similar situations have been
observed by the authors.

Inspired by this observation, the basic concept of fuzzy logic and the fact that a prismatic
joint is actually a revolute joint at infinity, we introduce the concept: joint nature which is a
non negative real number to characterize the level of the “revoluteness” of a joint. This
allows us to deal with the prismatic joints and the revolute ones in the same way and permit
a joint to evolve between revolute and prismatic. Although a joint in between is meaningless
in real application, this increases the migration channels for the solution populations and
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probability of finding the global optima. Before proposing the joint nature definition, it
should be inspected how a revolute joint mathematically evolves toward prismatic joint.

Figure 10: An overconstrained mechanism with redundant joints

Nomenclature

b : subscript to identify the base;

e : subscript to identify the end-effector;

F;: reference frame attached to link i;

G;: 3 x 3 orientation matrix of F; with respect to Fi-1 at the initial configuration;
Gni: 4 x 4 homogeneous orientation matrix of F; with respect to Fi-1 at the
initial configuration;

d p .:3 x 1 position vector of the origin of F.in Fg;

P i:3 x 1 position vector of the origin of F;in Fi-y;

pi: 3 x 1 position vector of the origin of Fiin Fy,

Aj: 3 x 3 orientation matrix of F; with respect to Fi-1;

dQ.: 3 x 3 orientation matrix of F. with respect to Fg;

Qc: 3 x 3 orientation matrix of F. with respect to F;

R, (6 ) :3 x 3 rotation matrix about z axis with @ being the rotation angle:

cos(9) —sin(@) 0
R.(0)=|sin(8) cos(@) O|;
0 0 1

Ri. (0) : 4 x 4 homogeneous rotation matrix about z axis with @ being the rotation
angle;

B, (1) : 4 X 4 homogeneous translation matrix along x axis with r being the translation
distance;

C;i: 4 x 4 homogeneous transformation matrix of F;in Fi-y;

H;: 4 x 4 homogeneous transformation matrix of F;in F;

dH.: 4 x 4 homogeneous transformation matrix of F.in Fg;

e : the ks canonical vector which is defined as
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T

ey =10..010..0
—— =
k-1 n—k

whose dimension is implicit and depends on the context;
e dT.: tangent operator of F.in Fyexpressed in Fy;
e  fdT.: tangent operator of F.in Fqexpressed in Fy;
e  dt.: tangent vector of F.in Fqexpressed in Fy;
e fdf.: tangent vector of F.in Fqexpressed in F¢;
e t.:tangent vector of F.in F, expressed in F,.
Suppose two links coupled by a revolute joint and a reference frame is attached to each of
them; at an initial configuration, the origins of the two reference frames F;-1 and F; coincide;
the joint axis is parallel to the z-axis of Fi-; and intersects the negative side of the x-axis of
Fi-1 at right angle (Fig. 11).
The relative orientation and position are given as

Al‘ = RZ( 0 ,‘)Gi (1)
pi=—rier+ 1R, ( 0 er 2
ricos(@;)—r| | -2rsin?(6;/2)
pi=| r s1n(9 ) = 7; sin(o9,—) )
0

Instead of taking @ ; as joint variable, we define

qi=ri 0, )
to measure the relative pose of the two links and q; is referred to as normalized joint
variable. In addition, we define

w; =— 6)

Figure 11: Two links coupled by a revolute joint
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Then from equations (3), (4), and (5), we have

- 2sin2(w,-q,- /2)/ w;

Pi= Sin(Wi‘Ii)/ Wi ©)
0
It is evident that
0 7
lim pi =| 4; @)
w;—0 0

lim 4; = lim [R. (w1¢,)G,;]= G,

w;—0 w;—0
Equation (7) is just the relative pose of the two links when they are coupled by a prismatic
joint. With the above formulation, revolute joints and prismatic ones can be treated in a
unified way and the normalization of the joint variable is the key to achieve this.
Definition: the nature of a joint in a kinematic chain is represented by a pair (k,w) where k is a
natural number identifying its orientation from other joints, while w is a non negative number
characterizing its membership to revolute joint.
In fact, w characterizes the distance of a revolute joint with respect to the origin of the global
reference and represent a prismatic joint when it is equal to 0.
The topology of a fully parallel mechanism of #n-DOF is represented by n matrices with each
matrix representing a subchain from the base to the end-effector:

kiv kjn o ki Kjm

! ,i=1,2, .., 8
W j n ®)

.l Wj,Z Wj,mj—l Wj,m/—l

where m jis the total number of joints of j th subchain.

This numerical representation is aimed at simultaneous synthesis of both topology and
geometry.

For geometric representation, instead of describing separately the geometry of each link, we
describe an initial configuration. This is done by giving the coordinates of all joint axes with
respect to the global reference frame.

Definition: the location of a joint axis at an initial configuration is represented by a triple ( 1,
m ,w) where R is a unit vector defining the orientation of the joint axis, M is a unit vector

indicating the direction of the moment of R with respect to the origin of the global reference frame, w
is the nature of the joint.

It is here that the topology information is integrated into the geometric definition.

The Pliicker coordinates of the joint axis is simply

/- [W”} )
m

With this representation, it should be avoided to position the joint such that its axis is too
close to the origin of the global reference frame, because this will lead to parameter
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singularity, that is w will approach infinity. This does not limit the representation method,
because it is the relative location of the joints that defines the geometry, changing the
reference frame does not change the geometry.

The topology and geometry of a fully parallel mechanism of n-DOF is represented by n
matrices with each matrix representing a subchain from the base to the EE:

nijp n;s Njm—1  Mjm,
mjal m_]-’z m_j,mj_,l mj,m/ = 1,2, ..,n (10)
Wj,l Wj,Z Wj,mj—l Wj,m‘,

where my; is the total number of joints of jth subchain.
Those are the design parameters, they are continuous and suffer from no parameter
singularity problem.

5. Kinematic modelling of general PMs

The reference frames for all links are defined at the initial configuration and this is done by

following the rules given below:

1. Locate the reference frame for the EE such that no joint axis passes through its origin
(Fig. 12);

Figure 12: Frame assignment for the EE
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2. Change the reference frame of the topological and geometric parameters to the EE
frame: recall that ® p . and Q. denote respectively the position and the orientation of

the EE frame in the base frame. For every joint (the subscript is dropped off for
simplicity), if bw = 0 then

e ﬁ = ebeﬁ

ew =0 (11)
otherwise, let P be a point on the axis, br and ¢r denote its positions in the base frame and in
the EE frame respectively, we then have

(12)
Let [b p . x] denote the cross product matrix associated with b p ¢, since

(13)
by substituting equation (13) into (12), we have

(14)
then, the Pliicker coordinates of the axis in the EE frame can be computed as

(15)

Finally, ‘w=1/

3. Links of subchain j from the base to the EE are identified by link(j, 0) to link(j,m; ), the
base being link(j, 0) and the EE being link(j,m;); joint coupling link(j, i-1) and link(j, i) is
identified by joint(j, i); frame g; is attached to link(j, i)(Fig. 13); the base and the EE have
multiple rigidly attached frames with each of them corresponding to an individual
subchain;

4. The reference frame for link(j, i) is defined such that

em“z and “m=m/°w.

(16)

*Pji =0 (17)
the z-axis of Fj; being parallel to the axis of joint(j, i + 1) and the x-axis intersecting the
the axis of joint(j, i + 1) and pointing from the intersecting point to the origin of the EE
frame (Fig. 14). The y-axis is determined as usual by the right-hand rule.
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Figure 13: Link reference frames

Figure 14: Reference frame definition for link(i, j)

5. The normalized joint variable of joint(j, i) is denoted by gj; the rotation angle with
respect to the initial configuration is denoted by € j;and

0ji=wjiqj (18)
6. Compute the link geometry matrices from bQe, ¢Qjo, - - 7 and eQjmj:
for Gm to Gj,mj—1
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Gij=11QeeQji (19)
G;o, Gjmj, and Gj.are treated differently, i.e.
Gjo0="2QecQjo (20)
Gjm =1 (21)
Gje = im Q. (22)

The sequence of links in each subchain has a corresponding sequence of homogeneous
transformations that defines the pose of each link relative to its neighbor in the chain. The
pose of the EE is therefore constrained by the product of these transformations through
every subchain. With the above frame assignment, the pose of link(j, i) with respect to link(j, i
- 1) is given as

(23)
The corresponding 3 x 3 orientation matrix is given as

(24)
The corresponding position is given as

(25)
This leads to

(26)
When w;;approaches 0, we have

(27)

(28)
This corresponds to the situation of a prismatic joint.
The pose of the EE under the structure constraint of subchain j is

(29)

In terms of orientation and position, equation (29) can be written as
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(30)

(33)

Equations (31) and (32) are used to compute the orientation and position of links other than
the base and the EE.

For a PM of n degree of freedom, the n subchains are closed by rigidly attaching together
their fist link frames and last link frames respectively. The structure equations are obtained
by equating the transformation products defined by equation (29) of all subchains, i.e., Vj, k
=12 ---,nandj # k

(34)

It is obvious that this kinematic formulation is not aimed at simplifying the forward or
inverse kinematic solutions, but for the simultaneous topological and geometric synthesis
with numeric method, genetic algorithms in particular. The initial population will be
generated using the numeric topological representation proposed in Section 3 and the
reproduction performed while respecting the characteristic constraints. The implementation
of the synthesis for translational PMs is being carried out in our laboratory.

6. Conclusion

By introducing characteristic constraints, kinematic chains of serial and parallel
manipulators can be better characterized. This is essential for both topology synthesis and
geometry synthesis. On the one hand, topology synthesis of spatial manipulator is no longer
dimension-independent; most of the topology syntheses are actually the search for some
special geometric constraints which play a key role in determining the fundamental
kinematic properties. On the other hand, it is necessary to identify the characteristic
constraints when performing geometry synthesis in order for the design space to correspond
appropriately to the manipulators having the intended kinematic properties. The graph
structure of the proposed topological representation makes it possible to implement
computer algorithms in order to perform systematic enumeration, comparison and
classification of serial and parallel manipulators. The geometric representation is well
adapted for computer aided simultaneous topological and geometric synthesis by
introducing the concepts of initial configuration and the joint nature, making it possible to
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represent revolute joints and prismatic joints in a unified way. Then a singularity-free
parametrization of both topology and geometry was proposed. After that, joint variables
were normalized, which enables the joint type to be seamlessly incorporated into kinematic
model, it is no longer necessary to reformulate the kinematic model when a revolute joint is
replaced by a prismatic one or vice versa. The effectiveness of the propose kinematic
modelling remains to be evaluated.
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1. Introduction

The present work deals with the development of time stepping schemes for the dynamics of
parallel manipulators. In particular, we aim at energy and momentum conserving
algorithms for a robust time integration of the differential algebraic equations (DAEs) which
govern the motion of closed-loop multibody systems. It is shown that a rotationless
formulation of multibody dynamics is especially well-suited for the design of energy-
momentum schemes. Joint coordinates and associated forces can still be used by applying a
specific augmentation technique which retains the advantageous algorithmic conservation
properties. It is further shown that the motion of a manipulator can be partially controlled
by appending additional servo constraints to the DAEs.

Starting with the pioneering works by Simo and co-workers [SW91, STW92, ST92], energy-
momentum conserving schemes and energy-decaying variants thereof have been developed
primarily in the context of nonlinear finite element methods. In this connection,
representative works are due to Brank et al. [BBTD98], Bauchau & Bottasso [BB99], Crisfield
& Jeleni¢ [CJ00], Ibrahimbegovi¢ et al. [IMTC00], Romero & Armero [RA02], Betsch &
Steinmann [BS01a], Puso [Pus02], Laursen & Love [LL02] and Armero [Arm06], see also the
references cited in these works.

Problems of nonlinear elastodynamics and nonlinear structural dynamics can be
characterized as stiff systems possessing high frequency contents. In the conservative case,
the corresponding semi-discrete systems can be classified as finite-dimensional Hamiltonian
systems with symmetry. The time integration of the associated nonlinear ODEs by means of
energy-momentum schemes has several advantages. In addition to their appealing
algorithmic conservation properties energy-momentum schemes are known to possess
enhanced numerical stability properties (see Gonzalez & Simo [GS96]). Due to these
advantageous properties energy-momentum schemes have even been successfully applied
to penalty formulations of multibody dynamics, see Goicolea & Garcia Orden [GGOO00].
Indeed, the enforcement of holonomic constraints by means of penalty methods again yields
stiff systems possessing high frequency contents. The associated equations of motion are
characterized by ODEs containing strong constraining forces. In the limit of infinitely large
penalty parameters these ODEs replicate Lagrange’s equations of motion of the first kind
(see Rubin & Ungar [RU57]), which can be identified as index-3 differential-algebraic
equations (DAEs). This observation strongly supports the expectation that energy-
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momentum methods are also beneficial to the discretization of index-3 DAEs (see G eradin
& Cardona [GCO01, Chapter 12] and Leyendecker et al. [LBS04]).

The specific formulation of the equations of motion strongly affects the subsequent time
discretization. In the context of multibody systems the main distinguishing feature of
alternative formulations is the choice of coordinates for the description of the orientation of
the individual rigid bodies. For this purpose some kind of rotational variables (e.g. joint-
angles, Euler angles or other 3-parameter representations of finite rotations) are often
employed. In general, the equations of motion in terms of rotational variables are quite
cumbersome. In the case of systems with tree structure one is typically confronted with
highly-nonlinear ODEs. Further challenges arise in the case of closed-loop systems due to
the presence of algebraic loop-closure constraints leading to index-3 DAEs. As a
consequence of their inherent complexity, the design of energy-momentum conserving
schemes is hardly conceivable for formulations of general multibody systems involving
rotations.

In the present work the use of rotational variables is completely circumvented in the
formulation of the equations of motion. Our formulation turns out to be especially well-
suited for the energy-momentum conserving integration of both open-loop and closed-loop
multibody systems. In our approach the orientation of each rigid body is characterized by
the elements of the rotation matrix (or the direction cosine matrix). This leads to a set of
redundant coordinates which are subject to holonomic constraints. In this connection two
types of constraints may be distinguished (see also Betsch & Steinmann [BS02b]): (i) Internal
constraints which are intimately connected to the assumption of rigidity and, (ii) external
constraints due to the interconnection of the bodies constituting the multibody system. Item
(ii) implies that loop-closure constraints can be taken into account without any additional
difficulty. The resulting DAEs exhibit a comparatively simple structure which makes
possible the design of energy-momentum conserving schemes. Another advantage of the
present rotationless formulation of multibody systems lies in the fact that planar motions as
well as spatial motions can be treated without any conceptual differences. That is, the
extension from the planar case to the full three-dimensional case can be accomplished in a
straightforward way, which is in severe contrast to formulations employing rotations, due
to their non-commutative nature in the three-dimensional setting. It is worth mentioning
that the present rotationless approach resembles to some degree the natural coordinates
formulation advocated by Garcia de Jalon et al. [JUAS86].

As pointed out above the rotationless formulation of multibody systems benefits the design
of energy-momentum schemes. On the other hand, the advantages for the discretization
come at the expense of a comparatively large number of unknowns. In addition to that,
joint-angles and associated torques are often required in practical applications, for example,
if a joint is actuated. The size of the algebraic system to be solved can be systematically
reduced by applying the discrete null space method developed in [BetO5a]. Indeed, the
present treatment of planar multibody dynamics fits into the framework proposed in
[BLO6,LBS]. The main new contributions presented herein are (i) a coordinate augmentation
technique which facilitates to incorporate rotational degrees of freedom along with
associated torques and, (ii) the incorporation of control constraints in order to perform a
controled movement of fully and underactuated multibody systems.

An outline of the rest of the paper is as follows: In Section 2 the formulation of constrained
mechanical systems is outlined and the energy-momentum conserving discretization is
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introduced. Section 3 contains the advocated description of rigid bodies in terms of
redundant coordinates. Section 4 deals with two basic kinematic pairs, i.e. the revolute and
prismatic pair as building blocks of multibody systems. In addition to that, the
newlyproposed coordinate augmentation technique for the incorporation of joint
coordinates and associated torques or forces is presented. The application of the above
mentioned features will be carried out with the example of a planar parallel manipulator of
RPR type (Section 5). Conclusions are drawn in Section 6.

2. Dynamics of constrained mechanical systems

In the present work we focus on discrete mechanical systems subject to constraints which
are holonomic and scleronomic. Due to the specific formulation of rigid bodies (see Section
3) the equations of motion for multibody systems can be written in the form

1)

where q(f) € R "specifies the configuration of the mechanical system at time ¢, and v() €
R 7is the velocity vector. Together (q, v) form the vector of state space coordinates (see, for
example, Rosenberg [Ros77]). A superposed dot denotes differentiation with respect to time
and M € R™"is a constant and symmetric mass matrix, so that the kinetic energy can be
written as

2)
Moreover, F € R "is a load vector which in the present work is decomposed according to

®)

Here, V (q) € R is a potential energy function and Q € R ™accounts for loads which can
not be derived from a potential. Moreover, ¢(q) € R ™is a vector of geometric constraint
functions, G = D ¢(q) € R ™" is the constraint Jacobian and A € R ™ is a vector of
multipliers which specify the relative magnitude of the constraint forces. In the above
description it is tacitly assumed that the m constraints are independent.

Due to the presence of holonomic (or geometric) constraints (1), the configuration space of
the system is given by

)

The equations of motion (1) form a set of index-3 differential-algebraic equations (DAEs)
(see, for example, Kunkel & Mehrmann [KMO06]). They can be directly derived from the
classical Lagrange’s equations.
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2.1 Energy-momentum discretization
‘Experience indicates that the best results can generally be obtained using a direct
discretization of the equations of motion.” Leimkuhler & Reich [LR04, Sec. 7.2.1]

2.1.1 The basic energy-momentum scheme

For the direct discretization of the DAEs (1), we employ the methodology developed by
Gonzalez [Gon99]. Consider a representative time interval [t t.1] with time step At =
tn+1—tn, and given state space coordinates qn € Q, v, € R ™at t,. The discretized version of
(1) is given by

with

(6)

In the sequel, the algorithm (5) will be called the basic energy-momentum (BEM) scheme.
The advantageous algorithmic conservation properties (see Remark 2.1 below) of the BEM
scheme are linked to the notion of a discrete gradient (or derivative) of a function f: R —

R. In the present work v f (gn qn+1) denotes the discrete gradient of f. It is worth
mentioning that if f is at most quadratic then the discrete gradient coincides with the
standard gradient evaluated in the mid-point configuration qn+1/2 = (qntqn+1)/2, that is, in

this case V f(@n qn+1) = V£ (qn+1/2)- In (5)2 the discrete gradient is applied to the potential
energy function V as well as to the constraint functions ¢;. In particular, the discrete
constraint Jacobian is given by

)

Concerning (6), for the present purposes it suffices to set Q (qn, qn+1) = Q (qn+1/2 ). The BEM
scheme can be used to determine qn+1 € Q, vns1 € Rnand A € R ™ To this end, one may
substitute for vn+1 from (5); into (5)2 and then solve the remaining system of nonlinear
algebraic equations for the n + m unknowns (qn+1, A). We refer to [Bet05a] for further details
of the implementation.

Remark 2.1 The algorithm (5) inherits fundamental mechanical properties from the underlying
continuous formulation such as (i) conservation of energy, and (ii) conservation of momentum maps
that are at most quadratic in (q, v). While algorithmic conservation of linear momentum is a trivial
matter, algorithmic conservation of angular momentum and total energy is made possible by the
specific formulation of rigid bodies and multibody systems proposed in the present work.
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3. The planar rigid body

In the present work we make use of six redundant coordinates for the description of the
placement of the planar rigid body. In particular, the vector of redundant coordinates is
given by

®)

where @ € R 2is the position vector of the center of mass and d a€ R 2 a € {1, 2}, are two

directors which specify the orientation of the rigid body (Fig. 1). In the sequel, all of the
coordinates in (8) are referred to a right-handed orthonormal basis {ej, e;}, which plays the
role of an inertial frame. The directors are assumed to constitute a right-handed body frame
which coincides with the principal axis of the rigid body. Since the directors are fixed in the
body and moving with it, they have to stay orthonormal for all times t € R *. This gives rise

to three independent geometric (or holonomic) constraints ¢, (q) = 0, which may be termed
internal constraints since they are intimately connected with the assumption of rigidity. The
: R® — R may be arranged in the vector of internal constraint functions

i
int

functions ¢

Figure 1: The planar rigid body.
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With regard to the internal constraints the configuration space of the free rigid body may
now be written in the form

(10)

Note that the director frame {d;, d2} can be connected with a rotation matrix R€ SO(2),
through the relationship d , =Re, . In this connection,

11
is the special orthogonal group of R 2. Accordingly, R, p = €q d pg,such that the

directors coincide with the columns of the rotation matrix. Alternatively, the configuration
space of the free rigid body may be written as

The motion of the free rigid body can now be described by means of the DAEs (1). To this
end, we have to provide the mass matrix M € R %6, which is given by

(12)

Here, M is the total mass of the rigid body and Ei, E; are the principal values of the Euler
tensor relative to the center of mass. With respect to a reference configuration [ with

material points X = (X3, X2) € [ these quantities are given by

(13)
where p (X) is the local mass density. Note that E;, E> can be related to the classical polar
momentum of inertia about the center of mass, J, via the relationship

(14)

Furthermore, in view of the constraint functions (9), the constraint Jacobian pertaining to the
free rigid body is given by G i:= D ¢ iui(q). Thus

(15)
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To summarize, the motion of the planar free rigid body is governed by the DAEs (1), with n
= 6 and m = 3. This rigid body formulation is the cornerstone of the present approach to the
energy-momentum integration of arbitrary multibody systems. Additional details about the
present rigid body formulation may be found in [BS01b,BLO06].

4. Kinematic pairs

This section deals with basic kinematic pairs which are fundamental for building complex
multibody systems. Here we will present the revolute and the prismatic pair which
represent the basic pairs necessary to model common planar parallel manipulators. Within
this chapter we will also introduce a specific coordinate augmentation technique for both
pairs in order to incorporate joint variables into the present rigid body formulation.

4.1 The planar revolute pair

Each rigid body of the multibody system depicted in Fig. 2 is modelled as constrained
mechanical system as described in Section 3. Accordingly, body A is characterized by 6
redundant coordinates

(16)

along with internal constraints ¢/, (q2) € R ®of the form (9), associated constraint Jacobian
G (q4) € R *of the form (15), and mass matrix MA € R ®*¢of the form (12).

Figure 2: The planar revolute pair.
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The description of the whole multibody system relies on the assembly of the individual
bodies. The assembly procedure consists of the following steps. (i) The contributions of each
individual body are collected in appropriate system vectors/matrices. For example, in the
case of the present 2-body system (Fig. 2) we get the vector of redundant coordinates

17)

along with the mass matrix

(18)

which, in view of (12), is diagonal and constant. Moreover, the constraints of rigidity are
collected in the vector

(19)

with corresponding constraint Jacobian

(20)

(ii) The interconnection between the rigid bodies in a multibody system is accounted for by
external constraints.
For the revolute pair we get two additional constraint functions of the form

(1)

where the vector

(22)

specifies the position of the joint on body A. The constraints (21) give rise to the Jacobian
(23)

Accordingly, the present 2-body system is characterized by a total of m = 8 independent
constraints
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(24)

with corresponding 8 X 12 constraint Jacobian

(25)

To summarize, the present description of the revolute pair makes use of n = 12 redundant
coordinates subject to m = 8 constraints. This complies with the fact that the system at hand
has n — m = 4 degrees of freedom. Obviously, the configuration space of the revolute pair,
Qrevolutes can be written in the form (4).

4.1.1 Discrete constraint Jacobian
Since the constraint functions in (24) are at most quadratic, the associated discrete derivative
coincides with the mid-point evaluation of the continuous constraint Jacobian (25), i.e.

(26)

4.1.2 Coordinate augmentation

In many practical applications rotational variables along with associated torques are
required for the description of a multibody system. Although the present approach
circumvents the use of rotational variables throughout the discretization procedure,
rotations can be easily incorporated into the present method. To this end, we next propose a
coordinate augmentation technique. The idea is to incorporate a joint torque into the
revolute pair (Fig. 2). Therefore we extend the original configuration vector

(27)

The new coordinate ® is connected with the original ones by introducing an additional
constraint function of the form

(28)

In anticipation of the subsequent treatment of the discretization we write (28) in partitioned
form

(29)
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with the original coordinates

(30)
and

(31)
Additionally, we get the Jacobian

(30)
With regard to (29), we decompose (32) according to

(33)
with

(34)

To summarize, we now have n = 13 coordinates subject to m = 9 geometric constraints. In
order to completely specify the DAEs (1) for the augmented system at hand one simply has
to extend the relevant matrices of the revolute pair in Section 4.1. Accordingly, the mass
matrix of the augmented system is given by

(35)

In view of (28), the augmentation gives rise to an extended vector of constraint functions of
the form

(36)

where ¢ori stands for the original constraints given by (24). The augmented constraint
Jacobian assumes the form
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(37)
where G represents the original constraint Jacobian given by (25).
4.1.3 Discrete constraint Jacobian
The discrete version of (37) can be written as

(38)

Since the constraint functions §ori(gori) and ¢ ,,, (gori) (cf. (24) and (31)1, respectively) are at

most quadratic, the associated discrete gradient coincides with the mid-point evaluation of
the respective continuous constraint Jacobians. This is in contrast to the constraint function
¢ 2. (), see (31),. In this case we choose

aug

(39)

If

Remark 4.1 Formula (39) can be interpreted as G-equivariant discrete derivative of the
corresponding constraint function in the sense of Gonzalez [Gon96]. In this connection G represents
the group acting by translations and rotations, respectively. In the present case (39) coincides with
Greenspan’s formula [Gre84].

4.1.4 Numerical example

To demonstrate the numerical performance of the present formulation we investigate the
free flight of our institute logo NM (Numerical Mechanics?). Both letters are modelled as
rigid bodies which are connected by a revolute joint. (Fig. 3).

The inertial parameters for the numerical example are summarized in Table 1. The location
of the joint relative to each body is specified by (22) with

The inertial parameters for the numerical example are summarized in Table 1. The location
of the joint relative to each body is specified by (22) with

(40)

1 http:/ /www.uni-siegen.de/fb11/nm
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Figure 3: The NM-logo as 2-body system. Arbitrary configuration of both connected letters.

The initial configuration of the system is given by the following generalized coordinates (see
Fig. 3)

(41)

Initial generalized velocities can be written as

(42)
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In the present example the system is initially at rest, i.e. v o= 0. Since it is a free flight, we
neglect the gravitational forces, having no potential energy in the system. To initialize the
motion, external loads Q € R are acting on the system. Specifically,

(43)

This means that we only apply an external joint torque, which is directly acting on the newly
introduced rotational component ® . The torque itself is applied in the form of a hat
function over time (cf. Fig. 4), where t; = 0.25, t , = 0.5, m = 5. Accordingly, for t > #, no
external forces act on the system anymore. The system can thus be classified as an
autonomous Hamiltonian system with symmetry. Consequently, the Hamiltonian (or the
total energy) represents a conserved quantity for t > f,. The angular momentum remains
equal for all times, since it is an internal joint torque acting on the system. The present
energy-momentum scheme does indeed satisfy these conservation properties for any time
step At, see Fig. 5. The simulated motion is illustrated with some snapshots at discrete
times in Fig. 6. Moreover, the evolution of the angle ® (#), calculated with different time
steps At € {0.1,0.05, 0.01},is depicted in Fig. 7.

Figure 4: Magnitude of the torque during the initial load period.
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Table 1: Inertial parameters for the 2-body system.

Figure 5: Algorithmic conservation of energy and angular momentum, A t = 0.05.

Figure 6: Snapshots of the free flying NM-logo. The two curves correspond to the trajectories
of the mass centers of the individual bodies constituting the present multibody system (t €
{0, 1, 2}s).
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Figure 7: Angle © (¢) over time.

4.2 The planar prismatic pair

Analogous to the previously presented revolute pair, we now focus on the prismatic pair.
The procedure is similar to the prismatic pair, we will present the necessary constraints and
their Jacobians. A coordinate augmentation for the prismatic pair will measure the distance
between both rigid bodies. The example will deal with a planar linear motion guide.

The prismatic pair (Fig. 8) will again be considered as a constrained mechanical systems.
Since the number of bodies and their internal description corresponds to the revolute pair,
the configuration vector (17), the mass matrix (18) and the internal constraints as well as
their Jacobians (19), (20) have the same structure as already presented for the revolute pair.
The interconnection between both bodies characterizes the prismatic joint and can be
written as:

(44)

with the vectors

(45)

The vector p'has already been defined in eq. (22). The value of 77 in (44) needs to be
prescribed initially. The corresponding constraint Jacobian yields:
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(46)

with

(47)

This leads again to m = 8 independent constraints, the global constraint Jacobian has the
form of eq. (25). The number of unknowns is the same as for the revolute pair, since we only
have one relative coordinate between both bodies (u).

Figure 8: The planar prismatic pair.

4.2.1 Discrete constraint Jacobian

A closer investigation of (44) reveals that the constraint functions are quadratic, which
means that the discrete derivative coincides with the mid-point evaluation of the constraint
Jacobian (46). Therefore the discrete version of the constraint Jacobian is given by:



Conserving Integrators for Parallel Manipulators 91

4.2.2 Coordinate augmentation

As already outlined for the revolute pair, for practical issues it is vital to incorporate
augmented values into our rotationless formulation for multibody systems. Similar to the
introduction of a relative angle for the revolute pair, we now account for the translational
displacement between both rigid bodies. This time we will augment the system by the
variable u which represents a generalized coordinate measuring the distance between the
center of masses of both bodies.

Accordingly we start with the extension of our configuration vector by the new coordinate:

(49)

The incorporation of a new redundant coordinate needs also a corresponding constraint. In
this case we can write:

(50)

As outlined before, n represents the axis of sliding and can also be described as

(1)

Again we decompose the constraint vector in two parts. One depending on the original
coordinates and a second one depending on the newly introduced coordinate u

(52)
The same will be done with its corresponding constraint Jacobian:

(53)
For both parts we obtain:

(54)

As already presented in section (4.1.2), extending the configuration vector means also to
expand the mass matrix (35) and the global constraint Jacobian (37). These steps are
equivalent to the revolute pair.
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4.2.3 Discrete constraint Jacobian
The discrete version of (37) for the prismatic pair can be written as

(55)

Since the augmented constraint is at most quadratic, a simple mid-point evaluation is
sufficient.

Table 2: Inertial parameters for the prismatic 2-body system.

4.2.4 Numerical example

In order to demonstrate the performance of the prismatic pair, we consider a linear motion
guide (Fig. 9). It consists of two rigid bodies connected via a prismatic joint. The pair moves
freely with given initial velocities in space.

Figure 9: The linear motion guide as a 2 body system.
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The inertial parameters for the numerical example are summarized in Table 2. The initial
configuration of the system is given by (cf. Section 4.2 and Fig. 8):

(56)

Initial velocities can again be set in a generalized form:

(57)

Since there are no loads applied on the system, the total energy (Hamiltonian) and the
angular momentum shall be conserved quantities. Once again the present energy-

momentum scheme does indeed satisfy these conservation properties for any time step A ¢,
see Fig. 10. Some specific positions of the motion are displayed in Fig. 11. The evolution of

the augmented coordinate u for different time steps At € {0.1, 0.05, 0.01}, is depicted in Fig.
12.

Figure 10: Algorithmic conservation of energy and angular momentum, A t=0.1.
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Figure 11: Snapshots of the free flight of the prismatic pair. Trajectories mark the movement
of the center of masses (t € {0, 0.8, 1.5}s).

Figure 12: Translational displacement u over time.
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5. Planar parallel manipulator

In this section we will combine all previous features in the example of a planar parallel
manipulator. Since we have presented the revolute and prismatic pair, we will build a
model of a RPR-manipulator, where the letters mark the kind of joints the mechanism
consists of (Revolute-Prismatic-Revolute). The Figure below shows the configuration of the
RPR-manipulator:

Figure 13: Schematics of the RPR-manipulator.

The goal in this example is to perform a controlled motion (vector qcin upper Figure) of the
inner triangle (body 7). Therefore we need to augment our original BEM-scheme (1) by
control constraints and their corresponding constraint Jacobian. The enhanced continuous
DAE structure yields to:

(58)

Here ¢ c(q) accounts for the newly introduced control constraints. Their corresponding
Jacobian is B, while its product with m represents the necessary control forces.
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A direct discretization of the equations above leads to an enhanced BEM-scheme for the
presented underactuated system:

59

5.1 Rotationless formulation for the RPR manipulator

Here we will present the rotationless formulation for the RPR manipulator. The
incorporation of rotational redundant coordinates plays a crucial role for the desired control
problem. Additionally, as already presented in the sections before, we will also introduce
translational redundant coordinates which measure the movement of the prismatic pairs.
The mechanism presented herein consists of 8 rigid bodies. Bodies 1, 2 and 3 are connect via
revolute joints to the free floating platform (body 8). The connection between body 1, 2, 3
and 4, 5, 6 is established by prismatic pairs. Finally 4, 5 and 6 are connected to the small
triangle (body 7) via revolute joints. This structure consists of two closed loops, which
means to formulate corresponding loop-closure constraints. The system at hand can then be
characterized by the following configuration vector:

(60)

The upper vector has a size of 48, having eight rigid bodies means to invoke another mjn =
18 internal constraints and having nine joints at hand leads to .« = 24 external constraints.
The difference 71 - Mint - Mext = 6 means that the system at hand has a total of 6 DOF, since the
platform (body 8) moves completely free and the inner triangle has another three DOF.

The necessary constraints for building the individual joints can be directly derived from
chapter 4.1 and 4.2. This leads automatically to the closure of both loops. Here we neglect a
detailed description of each individual joint and their constraint Jacobians, and only refer to
the two previous chapters.

5.2 Coordinate augmentation
We now focus on the augmentation technique which is vital for the present application. As
already outlined for both pairs (4.1 and 4.2), we incorporate rotational DOF (relative angles
in-between body 8 and body 1, 2, 3) as well as translational DOF (distance between center of
mass of body 1, 2, 3 and 4, 5, 6).
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5.2.1 Rotational DOF

As indicated in Fig. 13, the first three joints of the parallel manipulator (with corresponding
joint-rates ©1, @2and O 3) are actuated. To incorporate into the underlying rotationless
formulation the possibility of imposing joint-torques (1, m o, M 3), we apply the
coordinate augmentation technique proposed in Section 4.1.2. Indeed, the application of the
coordinate augmentation technique to the present closed-loop system follows from a
straight-forward extension of the treatment of the revolute pair in Section 4.1.

Similar to (27), we augment the originally used redundant coordinates qori € R * with the
joint-angles

(61)
such that the augmented configuration vector reads

(62)

Accordingly, we now have n = 51 redundant coordinates. The three additional coordinates
(61) are linked to the original ones through the introduction of three additional constraint
functions. Similar to (36), the extended vector of constraint functions reads

(63)
where, similar to (29), the additional constraints are specified by
(64)
where
(65)
and
with (66)

We thus have a total of m = 45 constraints. Consequently, the BEM scheme relies on n + m =
96 unknowns. Similar to (37), the augmented constraint Jacobian is given by
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(67)
The 3 X 48 matrix G :,ug (qori) has the same structure as (34)1, and G Z,g (©®) s given by

(68)
Similar to (55) the discrete counterpart of (67) can be written in the form

(69)
Here, the discrete version of (68) assumes the form

(70)
with

1)

5.2.2 Translational DOF

As already outlined for the prismatic pair in section 4.2.2, we apply the coordinate
augmentation technique to incorporate translational DOF in the prismatic connection for the
RPR manipulator. This means that additionally to the angle augmentation, we again
augment the configuration vector by another three redundant coordinates:

(72)

taking into account the augmented part from section 5.2.1 such that the new augmented
configuration vector reads
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(73)

Thus the number of redundant coordinates raises to n = 54. Once again, the new redundant
coordinates require additional constraint functions. Similar to (64), the constraint functions
are specified by

(74)
where
with (75)
and
with (76)

The corresponding augmented constraint Jacobian in a decomposed fashion (67) is given by

(77)

For the sake of simplicity G f,ug (9) will not be treated detailed, because its structure has

already been presented in 4.2, (46).
The discrete counterpart of the equation above equals the expression itself.

5.3 Numerical example

As mentioned before our intention is to let body number 7 move upon a prescribed
trajectory and calculate the necessary driving torques (input values) acting in the revolute
joints. The desired trajectory shall follow a figure-8 pattern as similarly proposed in [MRO06]:

(78)

while o(t) describes the angular velocity which for this example is defined as a 9th order
polynomial. The polynomial was proposed in [BK04] and is well suited for control problems
due to its continuous and steady character. In this example it is defined as followed:
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(79)
where

(80)
Specifically we choose here

(81)

Since during this motion the inner triangle (body 7) shall not rotate we also have to
implement another constraint suppressing the rotation

(82)
The whole control constraint for the desired motion can then be written as:

(83)
The corresponding constraint Jacobian for the new control constraints yields:

(84)

Since no external forces act on the system, its center of mass does not have to move.
Moreover, since no external torques act on the system, the total angular momentum shall be
a conserved quantity. The necessary driving torques to perform the desired motion are
computed directly.

Table 3: Inertial and geometric properties pertaining to the six legs of the manipulator.
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Table 4: Inertial and geometric properties pertaining to the two platforms of the
manipulator.

Inertial and geometric properties of the rigid bodies constituting the parallel manipulator
are summarized in Tables 3 and 4. In this connection, the two platforms (bodies 7 and 8)
coincide with isosceles triangles of side-length L (Table 4).

The initial configuration of the closed-loop system can completely be specified by its
generalized coordinates, accordingly

where the value of the initial posture of the small triangle (body 7) has been rounded for
simplicity of exposition. As expected, the present energy-momentum schemes does indeed
satisfy the above-mentioned conservation properties for any time step A ¢, see Fig. 14. The
simulated motion of the manipulator is illustrated in Fig. 16 by showing snapshots of the
multibody system at subsequent points of time. The conservation of the total angular
momentum also indicates that the position of the center of mass does not move for all times.
The red glowing path in Fig. 16 corresponds to the trajectory of the center of mass of the
small platform (body 7), representing the prescribed trajectory. Moreover, the evolution of
the joint-angles ®1(#), ®2(t) and O 3(#), the translational displacements of the prismatic

pairs u1(f), ua(f) and us(t) calculated with a time step of A t = 0.02, are depicted in Fig. 15 and
Fig. 17. The necessary driving torques to perform the prescribed motion are displayed in
Fig. 18.
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Figure 14: Total energy, conservation of angular and linear momentum (A t = 0.02).

Figure 15: Joint-angles over time (A t = 0.02).
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Figure 16: Snapshots of the motion of the free floating parallel manipulator for t € {1, 1.5, 2,
3}s.
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Figure 17: Augmented translational displacement over time (A t = 0.02).

Figure 18: Driven joint-torques over time (A t = 0.02).
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6. Conclusions

We have shown that the proposed rotationless formulation of multibody dynamics is well-
suited for the energymomentum conserving integration of both open-loop and closed-loop
multibody systems. Although the use of rotations has been completely circumvented
throughout the whole discretization, joint-forces can still be applied to a specific multibody
system by resorting to the proposed coordinate augmentation technique.

The present developments have been restricted to the planar case. However, it is important
to note, that the extension to the three-dimensional setting can be performed without any
conceptual differences. Similarly, alternative types of joints belonging to the class of lower
kinematic pairs such as cylindric joints can be easily incorporated into the present approach.
Both aforementioned issues have been addressed in [BLO06].

The numerical examples presented herein have been specifically designed to check the
algorithmic conservation properties. Within computational accuracy, the present approach
facilitates the algorithmic conservation of energy as well as linear and angular momentum.
Energy-momentum preserving schemes meet the specific demands on the stable numerical
integration of the underlying index-3 DAEs. While the BEM scheme employed herein (cf.
Section 2.1.1) is second-order accurate in the state space coordinates, higher-order energy-
momentum schemes may be designed as set forth in [BS02a,GBS05]. The ostensible
disadvantage of using redundant coordinates can be remedied by applying the size
reduction techniques proposed in [BU07,BL06]. Specifically, it is shown in [BU07] that these
techniques can be systematically applied to closed loop systems. Accordingly, they can be
directly used in the example of the parallel manipulator dealt with in Section 5.

We have also presented the incorporation of servo / control constraints into our BEM
scheme. This makes possible to perform a direct discretization for fully or underactuated
systems and computing directly the necessary input values in order to control a system,
without solving the standard inverse dynamics problem. Similar work has also been
published in [BUQ)].

It is further worth mentioning that semi-discrete formulations of flexible bodies such as
nonlinear continua, beams and shells perfectly fit into the present framework provided by
the DAEs (1). Accordingly, the present approach can be directly extended to flexible
multibody dynamics (see [Bet06,Bet05b,LBS,SB]).
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1. Introduction

One drawback of classical parallel robots is their limited workspace, mainly due to the
limitation of the stroke of linear actuators. Parallel wire robots (also known as Tendon-based
Steward platforms or cable robots) face this problem through substitution of the actuators
by wires (or tendons, cables, . . .). Tendon-based Steward platforms have been proposed in
(Landsberger & Sheridan, 1985). Although these robots share the basic concepts of classical
parallel robots, there are some major differences:

Fig. 1(a) Conventional parallel manipulator Fig. 1(b) Parallel Wire Robot

e The flexibility of wires allows large changes in the length of the kinematic chain, for
example by coiling the tendons onto a drum. This allows to overcome the purely
geometric workspace limitation factor of classical robots.
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e  Wires can be coiled by very fast drums while the moving mass of the robot is extremely
low, which allows the robot to reach very high end effector speeds and accelerations.

e  Wires are modeled as unilateral constraints, i.e. wires can only transmit pulling forces.

e The number of wires m can be increased to modify the workspace, to carry higher loads
or to increase safety due to redundancy. Thus, having an end effector (in the following
called platform) with n degrees-of-freedom (d.o.f.), more than n parallel links are used
to connect the platform to the base frame.

This contribution is organized as follows: In section 2 the classification of wire robots, based

on several approaches is presented. Furthermore, the kinematic calculations for wire robots

are described which is followed by the description of the force equilibrium in section 3.

Based on the force equilibrium, methods for workspace analysis and robot design are

proposed in section 4 and 5, respectively. This contribution is extended in Part 2

(Bruckmann et al., 2008a) by the description of dynamics, control methods and application

examples. Within this and the next chapter, the following abbreviations are used:

B, vector r denoted in coordinate system Tﬁ._
T i-th component of vector r
A matrix A
BRp transformation matrix from coordinate system mto m
AT shorthand for the transpose of A
AT shorthand for (A-1)T
T derivation of x with resprect to time, 4 = @
dt

2. Kinematics

2.1 Classification

For wire robots, different classifications based on the difference between the number of

wires m and the number d.o.f. n have been proposed. Further on, this difference is called the

redundancy r = m — n. According to (Ming & Higuchi, 1994) wire robots can be categorized
based on the redundancy as follows:

¢ CRPM (Completely Restrained Parallel Manipulator): The pose of the robot is
completely determined by the unilateral kinematic constraints defined by the tensed
wires. For a CRPM at least m = n + 1 wires are needed.

e IRPM (Incompletely Restrained Parallel Manipulator): In addition to the unilateral
constraints induced by the tensed wires at least one dynamical equation is required to
describe the pose of the end effector.

In (Verhoeven, 2004) the category of CRPMs is further divided into two categories. The class

of the CRPMs is restricted to robots with m = n+1 wires. Wire robots with m > n + 1 are

called RRPMs (Redundantly Restrained Parallel Manipulator). Note that within this
definition CRPM and RRPM robots can convert into IRPM robots if they are used at poses
where external wrenches (inertia and generalized forces and torques applied onto the
platform) are necessary to find completely positive wire forces. Therefore in (Verhoeven,

2004) another classification is proposed based on the number of controlled d.o.f. which is

listed below.
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e 1T: linear motion of a point

e 2T: planar motion of a point
1R2T: planar motion of a body
3T: spatial motion of a point

e  2R3T: spatial motion of a beam
e 3R3T: spatial motion of a body

Fig. 2(a) class 1T Fig. 2(b) class 2T Fig. 2(c) class 1R2T

Fig. 2(d) class 3T Fig. 2(e) class 2R3T Fig. 2(f) class 3R3T

Here T stands for translational and R for rotational d.o.f.. It is notable that this definition is
complete and covers all wire robots. The classification of (Fang, 2005) is similar to
Verhoeven's approach. Here, three classes are defined as:

¢ IKRM (Incompletely Kinematic Restrained Manipulators), where m <n

e CKRM (Completely Kinematic Restrained Manipulators), where m =n

¢ RAMP (Redundantly Actuated Manipulators), wherem =2n +1

This chapter as well as the next one focuses on CRPM and RRPM robots. For IRPM see e.g.
(Maier (2004)).

2.2 Inverse kinematics

Inverse kinematics refers to the problem of calculating the joint variables for a given end-
effector pose. For the class of robots under consideration those are the lengths of the wires,
comparable to the strokes of linear actuators. Therefore, the kinematical description of a
wire robot resembles the kinematic structure of a Stewart-Gough platform, presuming the
wires are always tensed and can thus be treated as line segments representing bilateral
constraints. Modeling a wire robot as a platform, which is connected to m points on the base
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by m bilateral constraints, it is reasonable to denote the platform pose z=[BrT @ Sy ]

and the base points 8b;, ;=1 <i < m, referenced in the inertial frame [B_. Besides that, the

platform connection points pi are referenced in the platform-fixed coordinate frame [P,_.The
orientation of the platform in the base frame is represented by the rotation matrix 8Rp. Note
that throughout this chapter roll-pitch-yaw angles are used. Assuming the wires are led by
point-shaped guidances (e.g. small ceramic eyes) from the winches to the platform, the base
vectors Bb; are constant. Now the vector chain pictured in fig. 3 delivers

©)
immediately. Hence, the length of the iy, wire can be calculated by

)

Fig. 3: Kinematics of a wire robot

Based on the relatively simple inverse kinematics, a position control in joint space can be
designed for a wire robot which already may deliver satisfying results. Note, this simple
calculation only holds for the described simple guidance. While it may be sufficient for
simple prototypes, it suffers from a very high wear and abrasion. Thus it is not feasible for
practical applications. An alternative concept is the roller-based guidance which is e.g.
widely used in theatre and stage technology, see fig. 4. As a drawback, the kinematical
description becomes more difficult due to the pose dependent exit points points 8s ; of the
wires. The roller with radius p is mounted onto a pivot arm. To calculate the exit points s ;,
two angles have to be known: the pivoting angle 8 ;and the wrap angle « i(see fig. 4). The
pivoting angle can be calculated using a projection onto the plane D whose normal vector is
the rotation axis (without loss of generality the z-axis of the inertial frame) of the pivoting
angle as:
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®)

Here Bb; denotes the vector to the point, at which the wire enters the roller. With this
knowledge the vector Bm; to the midpoint of the i—th roller can be constructed

(4)
Where R . o is a rotation matrix for angle © ;jaround the z-axis of the inertial frame. Note

that without loss of generality the projection of 8b; — Bm; onto the x — z-plane of Tﬁ» is parallel
to the x-axis in the reference orientation of the roller. Then the wrap angle « ; is according
to fig. 4 given by

®)

where

Fig. 4: Roller-based guidance

In a projection onto the plane D, « i1 describes the angle between the x-y-plane of the
inertial frame and the vector g from Bm; to the platform connection point Bp;. The angle « i»
is the angle between the vector from Bm; to the exit point and vector q. Furthermore the exit
point Bs; of the i-th wire can be found as

)
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Therefore the wire length can be calculated by

®)

Analog to the Stewart-Gough platform, the forward kinematics is much more complicated,
in particular for the case of roller guidances.

2.3 Forward kinematics

In opposite to the inverse kinematics, where the equations are decoupled and therefore
straight forward to solve, the forward kinematics problem is more involved. In general the
forward kinematics are not analytically solveable. However, in some cases a geometrical
approach allows a closed solution. To be more precise, a setup with three base points
connected to one platform connection points leads to the task of finding the intersection
points of three spheres where the radii of the spheres represent the measured lengths of the
wires and the centers of the spheres are the base points b;. Hence, the spheres represent
possible positions of the endpoints of the wires. Note, that a point-shaped wire guidance is
presumed. More details can be found in (Williams et al., 2004). Nevertheless, in general no
analytical solution is at hand. Thus, numerical approaches have to be employed to find the
solution, which is disadvantageous in terms of computation time, especially when the
computation has to be done in real-time. The forward kinematics problem is generally
described by m nonlinear equations in 7 unknown variables.

©)

If point-shaped wire guidances are used, p becomes zero. In case of m = n, (Fang, 2005)
proposes to apply a Newton-Raphson solver while for CRPMs and RRPMs, one has to
consider an overdetermined system. A standard approach to this class of problems is the use
of a least square method which minimizes the influence of measurement errors. However,
the Newton-Raphson approach can also be used for the case of m = n + 1 as shown in the
following, denoting the vector of wire lengths I=[1... I,]T (Fang, 2005):

(10)

Since in kinematics positive wire tensions are assumed, the wires are modeled as bilateral
constraints, already six constraints fix the platform, i.e. » rows of the inverse Jacobian J i

can be removed, resulting in J ino. Assuming J ;, having full rank, in case of a CRPM, any

arbitrary choice of a row leads to full ranked J . In case of a RRPM, this does not hold in
general. Thus, one has to test for a feasible choice of » rows which allows to calculate the
reduced Jacobian of the forward kinematics J forw =jl.;llv. Without loss of generality, let n
wire lengths I, . . ., I, be chosen. Thus,
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holds. The position at the time # can be calculated by forward integration in time

(12)
Taylor expansion of the second term around t delivers

(13)
Neglecting terms of second order and higher leads to

(14)
Approximating the differential quotient by the difference quotient gives

(15)
where

(16)
Using these simplified expressions, the platform pose x can be approximated by @,

17)

For @y, (#), the inverse kinematics and the pose estimation error A z (£) can be calculated,

delivering the wire lengths I, for the approximated pose. Now the difference A I(f)
between the measured and approximated wire lengths can be calculated, giving a measure
for the pose error:

(18)
Once again using the approximations
(19)

it follows
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where I,(t) is calculated by the inverse kinematics for a,(f). Noteworthy, this approach
works only for small pose displacements. When displacements become larger, an iteration
can improve the precision of the calculated pose by using x (t) as the estimate a,(f) for the

next step (Merlet, 2000). In (Williams et al., 2004), the authors show an iterative algorithm
for a roller-based wire guidance neglecting the pivoting angle.

3. Force equilibirum

The end effector of wire robots is guided along desired trajectories by tensed wires. This
design is superior to classical parallel kinematic designs in terms of workspace size - due to
the practically unlimited actuator stroke creating potentially large workspaces - and
mechanical simplicity. On the other hand and caused by the unilateral constraints of the
wires, the workspace of wire robots is primarily limited by the forces which may be exerted
by the wires. The unilateral constraints necessitate positive forces. Practically, long wires
will sag at low tensions which makes kinematical computations more complicated and may
lead to vibration problems. Hence, the minimum allowed forces in the wires should never
fall below a predefined positive value. Against, high forces lead to increased wear and
elastic deformations. Therefore the working load of wires is bounded between predefined

values fmin € R™ and finax € R” and wire forces must remain between these limits. Thus, a
description of the force distribution in the wires for given end effector poses and wrenches
is needed. Here a convenient description of the force distribution will be presented, while in

(Bruckmann et al., 2008a) three different methods for the force calculation are shown. The
force and torque equilibrium at the end effector gives according to figure 5

Fig. 5: Forces for a wire robot
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The force vectors f;can be written as

(22)

since the forces act along the wires. Hence, the force and torque equilibrium can be written
in matrix form

(23)
with

(24)
or in a more compact form as

(25

(26)

In the following the matrix AT is called structure matrix. It is noteworthy that the structure
matrix can also be derived as the transpose of the Jacobian of the inverse kinematics, but
generally, it is easier to construct it based on the force approach (Verhoeven, 2004).

4. Workspace analysis

In practical applications knowledge of the workspace of the robot under consideration is
essential. In contrast to conventional parallel manipulators using rigid links, the workspace
of a wire robot is not mainly limited by the actuator strokes, since the length of the wires is
not the main limiting factor, just restricted by the drum capacity. In fact, the workspace of a

wire robot is limited anyway by the wire force limits fininand fimax. A pose ris said to be part

of the workspace if a wire force distribution f exists, such that funin < f < finax holds.

Additionally further criteria, like stiffness or wire collisions, can be taken into account.
Different methods to calculate the workspace of a wire robot are available. Here discrete
methods as well as a continuous method using interval analysis are discussed. Further
methods exist as for example presented in (Bosscher & Ebert-Uphoff, 2004), where the
workspace boundaries are computed.
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4.1 Discrete analysis

In order to perform a discrete workspace analysis at first an assumed superset of the

workspace is discretized. Mostly an equidistant discretization is desired. This leads to a set

of points, which is then tested with respect to the chosen workspace requirements. This is a

widely used approach, but nevertheless, some considerations should be taken into account:

e  The calculation of the workspace conditions for the grid points generally requires the
verification of a valid wire force distribution. Since it is sufficient to identify any valid
distribution, fast calculation methods as presented in section (Bruckmann et al., 2008a)
can be employed.

e For some parallel kinematic mechanisms, typically symmetrical configurations are
singular, leading to uncontrollable d.o.f. of the end effector. Thus, it is recommended to
explicitly test at symmetrical poses of the end effector.

e  Generally, it is desired to rule out gaps in the workspace. Using a discrete approach,
this is intrinsically impossible, but for practical usage, one may try to increase the grid
resolution. Clearly this leads to a dramatical increase of the number of points to be
checked and thus to extremely long computation times. To come up against this,
parallelisation of the calculation by partitioning the workspace and allocation to
different processing units is helpful and especially for this problem very efficient due to
the independency of the workspace parts. Nevertheless, up from a specific resolution,
continuous methods as presented in the next section should be considered.

4.2 Continuous analysis

In this section a method to compute the workspace of a wire robot, formulating this task as a
constraint satisfaction problem (CSP), is shown. The CSP can be solved using interval
analysis. However, other solving algorithms are also conceivable. The presented
formulation can also be used for design just by interchanging the roles of the variables
(Bruckmann et al., 2007), (Bruckmann et al., 2008b). This fact simplifies the generally
complicated and complex task of robot design. For details see section 5. In (Gouttefarde et
al., 2007) also interval analysis is used to determine the workspace of a wire robot. A criteria
for the solvability of the interval formulation of eqn. 24 is given. In particular, the interval
formulation is reduced to 2n n x m systems of linear inequalities in the form of eqn. 24. The
solvability of those 2n systems of linear inequalities guarantees the existance of at least one
valid wire force distribution. Based on this criteria a bisection algorithm is presented. This
approach is beneficial in terms of the number of variables on which bisections are
performed since no verification or existance variables are required. Here, however the CSP
approach is presented due to its straight forward transferability to robot design.

4.2.1 Constraint satisfaction problems (CSP)
A constraint satisfaction problem (CSP) is the problem of determining all ¢ € &’ such that

(27)
where @ is a system of real functions defined on a real domain representing the constraints.

It will be shown later that for a description of the workspace, this problem can to be
extended to
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(28)
Within this definition
e (is the vector of the calculation variables,
e v is the vector of the verification and,
e ¢is the vector of the existance variables.
The solution set for calculaton variables of a CSP is called X’si.e.
(29)

where X, is the so-called search domain, i.e. the range of the calculation variables wherein
for solutions is searched.

4.2.2 Workspace analysis as CSP
Examining eqn. 25, the structure matrix AT needs to be inverted to calculate the wire forces f

from a given platform pose and given external forces w. Since AT has a non-squared shape,
this is usually done using the Moore-Penrose pseudo inverse. Thus, the calculated forces
will be a least squares solution. In fact, not a least squares result but a force distribution
within predefined tensions is demanded. To overcome this problem, the structure matrix is

. . AT AT
divided into a squared n x n matrix A },;and a second matrix A i with 7= m - n columns.

Now, the resulting force distribution can be calculated as
(30)

In this equation, fs.cis unknown. Every point and wrench satisfying

Fig. 6: Force equilibrium workspace of plain manipulator, 2 translational d.o.f., wT= (0, O)N,
fmin =10N, fmax = 90N
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and leading to primary wire forces
(32)

belongs to the workspace. Hence eqns. 31 and 32 represent a CSP of the form of eqn. 28 with
f sec @s existence an variable. To calculate a workspace for a specific robot, the following
variable set for the CSP is used:

e  The platform coordinates are the calculation variables.

o  The wire forces f.are the existence variables.

e Optionally, the exerted external wrench w and desired platform orientations can be set
as verification variables. The workspace for a fix orientation of the platform is called
constant orientation workspace according to (Merlet, 2000). On the other hand, sometimes
free orientation of the platform within given ranges must be possible within the whole
workspace. The resulting workspace is called the fotal orientation workspace.

In fig. 6, the workspace of a simple plain manipulator is shown, based on the force

equilibrium condition. In fig. 7, the workspace under a possible external load range is

shown. Fig. 8(b) shows an example of the workspace of a spatial CRPM robot prototype
while fig. 9(b) is the same protoype in a RRPM configuration with 8 wires. Additionally, the

RRPM workspace was calculated with a verification range of #3°for @ and@, i.e.

@ =6 =[-373]°.

Fig. 7: Force equilibrium workspace of plain manipulator, 2 translational d.o.f., wT = ([-20,
20]N, [-20, 20]N), fmin= 10N, fmax= 90N

4.2.3 Interval analysis
Interval Analysis is a powerful tool to solve CSPs. Therefore a short introduction is given in
the following section. For two real numbers 4, b an interval I = [4, b] is defined as follows

(33)
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where

a<b (34
Fig. 8(a) SEGESTA prototype with 7 wires Fig. 8(b)Workspace of the SEGESTA
prototype with 7 wires

Then b is called the supremum and a the infimum of I. A n-tupel of intervals is called box or
interval vector. It is possible to define every operation con Ron the set of intervals

I={[a,b] | abe R,a < b}, such that the following holds:
Let Iy, I, € I be two intervals. Then

(35)
where

(36)
Hence

(37)

where < occurs if one variable appears more than once. This phenomenon is called
overestimation and causes additional numerical effort to get sharp boundaries. For sure the
same holds for min and Inf. Thus for input intervals Iy, . . . , I, interval analysis delivers
evaluations for the domain Ip x I X . . . x I,. This evaluation is guaranteed to include all
possible solutions, e.g.

[1,3]+[1,3] -[-2,1] =[-5, 6] (38)
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while
[1,3] -(1+[-21])=[-3,6]. (39)

As shown in detail in (Pott, 2007), a CSP can be solved using interval analysis which
guarantees reliable solutions (Hansen, 1992),(Merlet, 2004b),(Merlet, 2001). Solving the CSP
with interval analysis delivers a list of boxes Lsrepresenting an inner approximation of X’s.
According to eqn. 29, the solutions in Ls hold for total &y and a subset of &.. Additionally,
available implementations for interval analysis computations are robust against rounding
effects. The following CSP solving algorithms have been proposed in (Pott, 2007) and
(Bruckmann et al., 2008b). To use it for the special problem of analyzing wire robots, they
have been extended. Details are described in the next sections.

Fig. 9(a) SEGESTA prototype with 8 wires Fig. 9(b)Workspace of the SEGESTA
prototype with 8 wires

Algorithm Verify

Verify is called with a box € and checks whether

(40)

is valid for the given box €. Here the domain Xv is represented by the list of boxes £ %..

Thus, the result can be valid, invalid, undefined or finite. If at least one box is invalid, the
whole search domain does not fulfill the required properties and is therefore invalid.
Algorithm Verify

1. Define a search domain in the list £ % . In the simplest case, £ % contains one search box.
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2. If LY is empty, the algorithm is finished with valid.

3.  Take the next box ® from the list £7..

4.  If the diameter of the box ® is smaller than a predefined value e, return with finite.

5. If existence variables are present, call Existence with ¢and . If the result is valid, goto
(2). If the box is invalid, return with invalid. If the box is finite, goto (10).

6. Evaluate h= @ (¢, v).

7. If Inf f;, > 0, the infimum of f;, is greater than 0 in all its components. Thus, the box is
valid. Goto (2).

8. If Sup h< 0, the supremum of h is smaller than 0 in at least one component. Thus, the
box is invalid. Return with invalid.

9. Ifinf h<0< Sup h , R is rated as undefined.
10. Divide the box on a verification variable and add the parts to £ % . Goto (2).

Algorithm Existence
Existence is a modification of Verify. It is called with the boxes ¢, U and checks whether

(41)

is valid. Here the domain X is represented by the list of boxes L 7 The result can be valid,

invalid or finite. If at least one box is valid, the whole search domain fulfills the required
properties and is therefore valid. Algorithm Existernce

1. Define a search domain in the list £ % . In the simplest case, £ 7 contains one search box.

2. If L% is empty, the algorithm is finished with invalid.

3. Take the next box € from the list £ .

4.  If the diameter of the box € is smaller than a predefined value &, return with finite.

5. Evaluate b= @ (¢,v,e).

6. If Inf l;, > (, the infimum of fAL greater than 0 in all its components. Thus, the box is
valid. Return with valid.

7. IfSup h< 0, the supremum of R smaller than 0 in at least one component. Goto (2).
If Inf h<0< Sup i;,, his rated as undefined. Divide the box on an existence variable
and add the parts to £ 7. Goto (2).

Algorithm Calculate

Calculate is called with a search domain for ¢ represented by a list of boxes £ 7. It uses

Existence or Verify to identify valid boxes within the search domain. Thus, the result is a list
Ls of valid boxes (and optionally the lists £; for invalid boxes and Lr for finite boxes,
respectively). Algorithm Calculate

1. Define a search domain in the list £ 7. In the simplest case, £ ; contains one search box.
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2. Create the lists
(a) Ls for solution boxes,
(b) L for invalid boxes,
(c) Lr for finite boxes.

3. If L is empty, the algorithm is finished.
4. Take the next box € from the list £ ..

5. If the diameter of the box € is smaller than a predefined value &, the box is treated as
finite and thus moved to the list Lr . Goto (3).

6. If verification variables are present, call Verify with ¢ . Otherwise call Existence with

¢ and an empty box for ¥ .
7. If the result of Verify is valid, move the box to the solution list Ls. Goto (3).
8.  If the result of Verify is invalid, move the box to the invalid list £; . Goto (3).
9.  If the result of Verify is finite, move the box to the finite list Lr . Goto (3).
Calling Sequence

Let X, X,, X, #0 be given and represented as lists of boxes £%,£%,L%. In order to

determine Ls, Calculate is called with the search domain £ 7. Within Calculate, Verify is

called. Since existence variables are present, Existence is called in order to validate the
current calculation box (Otherwise in Verify the CSP would be directly evaluated). In the
Existence algorithm the CSP is evaluated and the result is rated. In case that the result is
undefined, the current box is divided on an existence variable. In case that the Existence
algorithm returns with finite, the calling algorithm divides on its own variables and calls
Existence again. If the result is valid or invalid, the result is directly returned to the calling

algorithm. If valid is returned, the result is valid for all values within ¢and ¥ . The same
calling sequence and return behaviour is used in Calculate calling Verify. For an effective CSP
solver the return scheme should be more advanced in the way that not one variable is
bisected until the box under consideration is finite, but a more sophisticated bisection
distribution is used. It is noteworthy that the calculation time increases considerably with
the number of variables and decreasing &, i € {c, v, e].

Preliminary Checks

Since solving the force equilibrium is a computationally expensive task, favorable prechecks
are demanded to reduce computation time. An effective check is to examine the interval

evaluation of 7 gieck := AT fiek + W for fie« being the box with infimum fiin and supremum

ﬁ"ﬂEIX. If

Jiel,.,m0 & T checki, (42)

one can conclude that the poses under consideration do not belong to the workspace under
the given load w due to the non-existance of valid wire force distributions. The resulting
preliminary workspace is an outer estimate and excludes poses which are not treated
furthermore. Another possibility to reduce the computation time is to take symmetries into
account. If symmetry axes as well as a symmectrical load range are present it is sufficient to
compute only one part of the workspace and to complete the workspace by proper
mirroring.
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4.3 Further criteria

4.3.1 Stiffness

Besides the force equilibrium, additional workspace conditions can be applied. Due to the
high elasticity of the wires (using plastic material, e.g. polyethylene), the stiffness may be
low in parts of the workspace. Thus, for practical applications, especially if a predefined
precision is required, it may be necessary to guarantee a given stiffness for the whole
workspace. Otherwise, the compensation of elasticity effects by control may be required.
Generally, this should be avoided as far as possible by an appropriate design. As shown in
(Verhoeven, 2004), the so-called passive stiffness can be described as the reaction of a
mechanical system onto a small pertubation, described by a linear equation:

(43)

where
(44)

Here, L is the diagonal matrix of the wire lengths and %' is the proportionality factor (force

per relative elongation), treating the wires as linear springs. For the calculation, the inverse
problem

(45)
is solved and evaluated where only domains having a position pertubation within the

predefined limits 6amin and Oamex under predefined loads between &wmin and dwmx are

considered as workspace. This equation can again be treated as a CSP. However, stiffness
can also be checked performing a discrete workspace analysis. The stiffness workspace for a

simple plain manipulator with 2 translational d.o.f. is shown in fig. 10(a). The parameters &'
= 1000N, finin="10N and fnx= 90N were set. For a given load of dw = ([-20, 20]N, [-20, 20]N)

the platform was allowed to sag elastically in the ranges éx = ([-0.015, 0.015]N, [-0.015,
0.015]N).

Fig. 10(a) Stiffness workspace of plain Fig. 10(b) Combined force equilibrium and
manipulator stiffness workspace of plain manipulator
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4.3.2 Singularities
A pose of a wire robot is said to be singular if and only if

(46)

Therefore all wire robots with pure translational d.o.f. are singularity free except those,
which are always singular (Verhoeven, 2004). For a wire robot with rotational and
translational d.o.f. the workspace certainly has be to checked for singularities. Since within
the workspace analysis (discrete or continuous) typically a system of linear equations is
solved, the singularity criteria eqn.46 can be checked implicitly. Mechanically, at singular
poses certain d.o.f. become uncontrollable (overmobility). Often this happens in symmetrical
configurations.

4.3.3 Wire collision

In analogy to the problem of link collisions for conventional parallel manipulators, wire
collisions have to be avoided. Due to their normally small diameter one possibility is to
consider the wires as lines. In (Merlet, 2004a) an algorithm is proposed to determine the
regions in which collisions between wires as well as the collisions between wires and the
end-effector occur. Practically, wires have certain diameter and thus, a predefined minimum
distance (at least the wire diameter) should be always ensured. Therefore, the well-known
problem of determining the smallest distance between two lines arises. Since the lines are
known after solving the inverse kinematics this is a very basic task but may be
computational expensive. Clearly, the distance condition has to be formulated as a
inequality. Hence, this criteria can be easily included in the CSP formulation.

5. Robot design

While workspace analysis examines the properties of already parametrized manipulators
which allows to determine the applicable use cases, robot design describes the opposite task
of finding the optimal robot for a given task. Generally, the task is abstracted e.g. as a
desired workspace or a desired path or trajectory. To identify the optimal robot, usually
different designs have to be compared with respect to the desired properties which makes
the design process generally a computationally expensive task. Finally, one or more designs
turn out as most favourable. In parallel to the analysis methods, again both discrete as well
as continuous methods are available and show differences in the analysis quality and the
calculation effort. For the continuous approach the CSP formulation can be used again
which is amongst others advantageous in terms of implementation effort. The interchanging
of the roles of the variables turns the workspace analysis just into a design task. According
to (Merlet, 2005), the design (or synthesis) task can be divided into two separated subtasks:

e structure synthesis: This step includes the determination of the topology of the
mechanical structure. In particular, the number and type of d.o.f. of the joints and their
interconnection is identified.

e dimensional synthesis: Here position and orientation of the joints as well as the length
of the links is specified.

For the special case of a wire robot, the structure synthesis covers different aspects: While

the link topology itself is fixed, one has to choose the number of wires wisely.
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Additionally, the concurrence of at least two (in the planar case) or three (in the spatial case)

platform connection points may be prudential:

e Forward kinematic calculations become much easier (see section 2.3).

e The number of design parameters is reduced, which is beneficial in terms of
computation time.

e  The occurence of wire collisions is reduced since wires can intersect in at most one
point.

e  The workspace is comparably large (Fang, 2005).

After completion of the structure synthesis a dimensional synthesis can be performed. For a

wire robot this is nothing but the identification of feasible base points. This section is

addressed to dimensional synthesis mainly.

5.1 Discrete synthesis

Discrete methods are widely used for wire robot design. In (Fattah & Agrawal, 2005) and

(Pusey et al., 2004) both the parameter set and an assumed superset of the workspace are

discretized. Then for every point on the resulting parameter grid the discretized workspace

is computed and its volume is determined by counting the points on the grid fulfilling all

workspace conditions. The approaches share the same concept:

1. Build up an equidistant Grid of the design variables and loop through all parameter
sets.

2. For every parameter set, specify a superset of the workspace and discretize it by an
equidistant grid.

3. Loop through all grid points of step 2. For every point, determine if a valid wire force
distribution according to eqn. 25 and 26 exists.

4. Count all points belonging to the workspace and store the number for every parameter
set.

5. Obtain the maximum volume workspace, i.e., the maximum of all workspace volumes
that are counted in step 4, and the associated optimized design variables.

Instead of the volume of the workspace a different optimization criterion can be employed.

To increase the practical usability and the robustness of the design, a dexterity criterion is

proposed, which uses the condition number of the structure matrix AT . These approaches

have two drawbacks. Since the design variables are discretized, every combination of

parameters is checked. Hence, this method is computationally intensive. Furthermore, no

desired workspace can be guaranteed by the obtained design. Hay and Snyman use a

special optimizer instead of a grid of the design variables (Hay & Snyman, 2004), (Hay &

Snyman, 2005). Again, in this approach a desired workspace is not guaranteed by the

obtained optimal design.

5.2 Continuous synthesis (Design-To-Workspace)

Examining eqn.28, eqn.31 and eqn.32, the roles of the variables can arbitrary be assigned. An

imaginable choice is

e The winch poses and platform fixation points are the calculation variables. Thus, the
calculation delivers robot designs solving the CSP.

e  The platform coordinates are verification variables. Hence, the workspaces of all resulting
robot designs will cover the set given in X, for the platform coordinates for sure.
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¢  Optionally, the exerted external wrench w and desired platform orientations can be set
as verification variables to extend the applicability of the emerged designs for certain
process wrenches and tasks.

o The wire forces fi.care the existence variables.

The suggested choice of variables leads to a CSP, whose solutions are robot designs.

Furthermore, each obtained robot can reach every point given in A, for the platform

coordinates with every orientation and wrench given in X’,. Generally, the design task is

deemed to be more complicated than the analysis. Here, the methods and formulations are

inherited and just adapted to the design problem. Nevertheless, robot design is a

computationally intensive task. The use of parallel computations is strongly advised.

Solving the CSP is advantageous due to the following reasons:

o The workspaces of the resulting designs are guaranteed to have no holes or
singularities.

e  The design process can be extended by a global optimization step.

e  The interval CSP solver can be effectively parallelized.

5.3 Continuous optimization
Optimization is always performed with respect to a cost function. In industrial application
usually the term optimal is used with respect to economic aspects, i.e. costs. In the case of
wire robots, the most cost-driving factor are the wire winch units. However, optimizing the
number of winches is part of the structure synthesis. Thus, here another cost function has to
be chosen. This choice is generally arbitrary. Nevertheless, a reasonable choice is the volume
expansion. On one hand, reducing the expansion of the robot saves space within a
production facility which reduces costs, on the other hand, the required wire lengths are
minimized. In literature, usually the optimization is performed with respect to the size (or
volume) of the workspace or the integral of workspace indices over the workspace. This
gives finally the robot with optimal (e.g. largest) workspace with respect to some criterion,
but it says nothing about its shape and its usability for applications. Thus, here another
approach is used (Pott, 2007): Not a maximum size of the workspace is demanded, but the
guaranteed enclosure of a predefined domain is desired. The optimization is performed
using interval analysis. Let a list £ of n boxes of robot designs, e.g. a solution of the
according CSP be given. The following algorithm performs the required steps for a
minimization (maximization is performed analogously):
1. Seti=0and F= [o0,].

Set i =i+ 1. If i > n the algorithm finishes.

2
3. Take the i-th element [;of £ and compute its cost function F(1;).
4. If Sup(F(l;))) < Sup(Fop), set Fopr = F(I;).

o If Sup(F(l})) < Inf(F,y) delete all elements of the solution list and initialize it with I;.

Goto 2.

e  Store l;in the solution list. Goto 2.
5. If Inf(F(l;)) < Sup(Fop) store ;in the solution list.
6. Discard [;and goto 2
For performance reasons the optimization can be included in the CSP Solver. This will
reduce computation time drastically since non-optimal designs are discarded at an early
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stage. An example for the optimization of an 1R2T robot is shown in fig. 11(b). For the upper
winches, y-positions are free, for the lower ones, the x-positions are the free optimization
parameters.

Fig. 11(a) 1R2T example Fig. 11(b) 1R2T robot optimized for shown
desired quadratic workspace.

5.4 Design-To-Task

The Design-to-Workspace method results in manipulators, guaranteed to have a desired

workspace. Thus, the manipulator is able to perform every task within this workspace.

Nevertheless, from the economic point of view, there is a need for manipulators which

perform a specific task in minimum time, with minimum energy consumption or with

lowest possible power. A typical industrial application is e.g. the pick-and-place task,
moving a load from one point to another. Usually, this task is performed within series
production, i.e. it is repeated many times. In such an application the optimal manipulator
for sure finishes the job in minimal time with respect to the technical constraints (here, the
term optimal is used with respect to minimal time without loss of generality). Thus, the set-
up of a specialized (i.e. taskoptimized) manipulator can be profitable. When using classical
industrial robots, the freedom to modify the mechanical setup of the robot is very limited.

Thus, only the trajectories can be modified and optimized with respect to the task. Due to

the modular design of a wire robot, the task-specific optimization can be seperated into two

tasks:

e  Optimization of the robot: within all suitable designs, the robot which performs the task
in shortest time is chosen.

e Optimization of the trajectory: within all possible trajectories, the trajectory which
connects the points in shortest time is chosen. The concepts needed for this step are
partly explained in (Bianco & Piazzi, 2001b),(Bianco & Piazzi, 2001a) and (Merlet, 1994).

By treating this task as a CSP, both claims can be optimized at the same time. In particular,

the final result contains the robot which is able to perform the task quickest and the

corresponding trajectory description. To perform an optimization of the wire robot and the
trajectory simultaneously, the latter is planned first. Afterwards it is checked whether the
complete trajectory belongs to the workspace. The robot designer may provide a predefined
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trajectory or leave this up to the optimizer. The parameters of the trajectory are therefore
either fixed or calculation variables. Hence, the CSP looks the same as in eqn.31 and eqn.32
except the previous trajectory generation. For integrated optimization, the variables are
assigned as follows. Note, that also a separate optimization of robot and trajectory is
possible:

e  Robot optimization

e  The robot base is described by the positions of the winches. To optimize the robot,
the winches can be moved. Therefore, b; are calculation variables

e The end effector is described by the positions of the platform anchor points p;. To
optimize the robot, these points can be moved on the platform. Therefore, p; are
calculation variables

e  Trajectory optimization

e The path is described by a polynomial of fourth order without loss of generality.
Besides the start and end poses, also the velocities are predefined. This leaves one
free parameter, e.g. the start acceleration for translational d.o.f. or the orientation at
half travel time for rotational d.o.f.. These can be set as calculation variables.

e To describe the trajectory, additionally the travel time T has to be defined. To
calculate the minimum time, T is a calculation variable.

e For the whole trajectory, a path parameter f is assigned. Usually, it is normalized
between zero and one. Since the whole trajectory shall betraced for validity, ¢ is a
verification variable

Optionally, the exerted external wrenches w can be set as verification variables. Note, that
within the trajectory verification the dynamics of the robot are taken into account by adding
the inertia loads resulting from the calculated accelerations to the platform loads w. The
example in fig. 12(b) shows the result of an optimization for a point-to-point (PTP)
movement. A n = 3 d.o.f. wire robot with m = 4 wires is considered (see 12(a)). It consists of a
bar-shaped platform of 0.1m length, connected by four winches to the base frame. Free
optimization parameters were the y-position of the upper right winch, the travel time and
the intermediate acceleration of the rotation angle at T=0.5s.

Fig. 12(a) 1R2T example Fig. 12(b) 1R2T robot optimized for shown
desired PTP trajectory
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6. Conclusion

In this chapter, the analysis and design of wire robots was discussed. The required basics
like kinematics and the force equilibrium - which is the one of the main workspace criteria -
were introduced as well as serveral classification approaches. The analysis of wire robots
was described as a CSP task which can be solved by interval analysis. Besides reliable
results, the same CSP can be used for robot design by a variable exchange, which is
generally a challenging problem. In addition to this continuous approach, also the more
straightforward discrete methods are shortly introduced. The next chapter is dedicated to
the application and control of wire robots. Therefore, the dynamical description as well as
different methods to calculate a force distribution for a given pose and platform wrench are
presented. Based on this, some control concepts are described. The use of wire robots for
several fields of application is demonstrated by a number of examples.
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1. Introduction

In (Bruckmann et al., 2008) the kinematics, analysis and design of wire robots were
presented. This chapter focuses on control and applications of wire robots. Wire robots are a
very recent area of research. Nevertheless, they are well studied and already in application
(see section 5). Due to their possible lightweight structure, wire robots can operate at very
high velocities. Hence, as can be seen by experiment, only positioning control using the
inverse kinematics is not sufficient. In particular, slackness in the wires can be observed at
highly dynamic motions. To overcome this problem, force control can be employed. In
section 4 different control schemes are proposed. The required dynamical model is obtained
in section 2, while for the calculation of feasible wire force distributions are proposed in
section 3. Since wire robots are kinematically redundant the latter is not straightforward, but
requires advanced approaches. The same holds for the control schemes, since a CRPM as
well as a RRPM is a non-linear, coupled, redundant system (Ming & Higuchi, 1994).

2. Dynamics

According to figure 1 a wire robot can be considered as a multibody system with m
unilateral constraints. In contrast to the generally complicated forward kinematics
(Bruckmann et al., 2008) the dynamical equations of motion are comparably easy to

formulate with respect to the base frameLB._. The wrench wWwire of the wires acting on the
platform can be written as (see Fig. 2)

1)
Since the forces act along the wires

)
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holds. It follows

®)
Fig. 1: Topological structure of a CRPM with n = 6.
The Newton-Euler equations lead to
“)
®)
with
Mp: the mass of platform,
e R33: inertia tensor defined with respect to the inertial system w, which is an

expression of rotation angles,
Q=[ ¢ 8 y]T:orientation of the platform in Tﬁ._ ,
fe: vector of external forces,

Tp: vector of external torques.
The equations eqn. 4 can be rewritten by



Wire Robots Part Il Dynamics, Control & Application 135

with

M, : mass matrix of platform,

E : identity matrix,

gc € R™?: Cartesian space vector of Coriolis and centrifugal forces and torques,

ge € R™!: vector of the generalized applied forces and torques, not including the
resultants of wire tensions.

Fig. 2: Forces for a wire robot

Taking wire force limits fininand finax (see (Bruckmann et al., 2008)) into account it follows

@)
®)

3. Wire force calculation
In section 2 a description of the force equilibrium was presented. Here methods for the
calculation of a feasible force distribution f, i.e. a force distribution fwhich satisfies eqn. 7

and the constraints in eqn. 8, are presented. Obviously eqn. 7 represents an
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underdetermined system of linear equations. Its solution space is r-dimensional. Hence

isolating the force distribution f leads to
©)

where A*T denotes the Moore-Penrose Pseudo-Inverse of AT . Thus the task of finding a
feasible wire force distribution has been transformed to the task of finding A € R "such
that f> 0 holds. Note that H is the nullspace or kernel of AT defined as

(10)
where
11)

In other words, a linear combination of the columns of H describes force distributions
creating an inner tension in the system without applying wrenches wwie onto the end
effector. In case of an homogenious problem, i.e. w = 0, it describes the possible solutions of
eqn. 7 for f. Now the problem of satisfying the constraints of eqn. 8 arises, i.e. the force limits

also have to be considered. Thus plugging eqn. 9 into eqn. 8 leads to
(12)

Therefore the task of identifying a feasible force distribution is equivalent to the problem of
identifying A € R " such that eqn. 12 holds. In other words, the boundaries of the wire
forces form a m-dimensional hypercube C = R ™. All force distributions satisfying eqn. 9
obviously form a r-dimensional subspace & — R ™ spanned by the kernel of the structure
matrix (see fig. 3). Hence, if the intersection F of the hypercube C and the subspace S is
non-empty, feasible solutions f exist, ie. F= C MS %0, where F is a r-dimensional

manifold in the R ™. A more detailed introduction is given in (Oh & Agrawal, 2005) and
(Mikelsons et al., 2008). Noteworthy, the r-dimensional solution space generally allows to
compute force distributions with different characteristics: While for fast motion, smallest
possible forces are demanded, for applications requiring a high stiffness, high forces are
advantageous (Kawamura et al., 2000), (Fang, 2005).

3.1 Linear optimization

Looking at the geometric interpretation of finding feasible force distributions, the most
intuitive way is to search for a convenient characterization of the manifold F. Since F is
completely determined by its vertices, the computation of those seems to be a promising
way. In this work, two approaches following this idea are shown: In section 3.3, a method

using the kernel as a transformation is presented. This leads to (“-) r -dimensional linear
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systems of equations. Alternatively, the approach presented in this section presumes no
knowledge of the kernel but solves (“-) n dimensional linear systems of equations. Hence,
the method to be applied has to be chosen depending on m and n.

Fig. 3: The subset & intersecting the hypercube C in the case of n =1 and m = 3.

Examining eqn. 7, one needs to set r forces in the wire force distribution to get a quadratic
system. Obviously the desired points are located on the faces of the cube C. It can be shown
that a point belongs to the workspace if and only if a valid wire force distribution f that

satisfies 1

3AC {1.,m}, | Al =1, such that || £]| = fuax v | £]| =fin Vie A (13)

exists2. Therefore, r wire forces can be set to their minimum or maximum value,
respectively. It is unknown in advance which wire forces have to be preset to get a feasible
distribution. Thus, in the worst case all combinations of r wires have to be tested, leaving
mxm systems of linear equations to be solved for every combination. For sure every vertex
represents a valid wire force distribution. Choosing the vertex, which minimizes the 1-norm

1 For a set A, |A| denotes the cardinal number of A

2 Using the kernel as a transformation from the R” into the R"™ (see section 3.3), the
feasible force distribution form a polyhedron bounded by the force limits. r force limits
determine a vertex. This finishes the proof.
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could be an appropriate procedure. The resulting procedure can formally be expressed as a
Linear Optimization Problem

In (Oh & Agrawal, 2005) a Linear Programming approach is presented to solve the problem

in the R". Note that for control purposes, the Linear Optimization approach may deliver
inadequate results since along a trajectory through the workspace, the result may be
discontinuous.

3.2 Nonlinear optimization

Due to the formulation of the cost function, the Linear Programming method may deliver
discontinuous solutions along a continuous trajectory. This leads to jumps in the time
history of the wire forces, causing stability problems and additional mechanical wear. In
(Verhoeven, 2004) it is proven that cost functions using a p-norm (1 < p < ), lead to
guaranteed continuous wire forces along a continuous trajectory. The resulting formulation
of the optimization problem is as follows:

In (Verhoeven, 2004), also an effective algorithm is presented which solves the problem
employing the knowledge of the solution structure, based on an iterative approximation of
the optimal solution. However, this algorithm has the drawback to fail in specific
configurations, i.e. solutions might be not found although they exist. To obtain the lowest
possible force distribution (according to a p-norm), the unbounded polyhedron P, is
introduced, which is limited by the lower wire force limits:

(14)

Furthermore, the wire force distribution fi is introduced, which has minimal p-norm:

(15)

It should be mentioned that for 1 <p < f,,is unique, which is essential for the continuity

of finw. The algorithm works as follows

1. Compute an initial guess f 1o for fiow.

2. If fiw is not contained in P, move f low towards Py, until it is placed on the
polyhedron.

3. Minimize the p-norm of f low-

The initial guess is obtained by the orthogonal projection f 10w Of f min onto the manifold of

feasible force distributions F. Note that f ;. is not always contained in Py, The second step
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of the algorithm is performed by moving along the negative gradient of the distance
between the polyhedron P, and f 1. The distance is measured in the squared 2-norm.
Finally, the minimization of f low is done using a gradient based method again. Analogously,
a vector f g representing the highest possible solution in the chosen p-norm can be

obtained. Hence, choosing a wire force distribution on the line between f 1, and frig; allows

either fast motions due to low wire forces or high stiffness due to high wire forces. This
approach is very effective in terms of computation time since the initial guess is often
already a feasible solution, but suffers from the fact that a solution is not always found.

3.3 Barycentric force calculation

The shown approaches require the usage of an optimizer to deliver continuous results as
shown in ((Verhoeven, 2004),(Nahon & Angeles, 1991), (Bruckmann et al., 2006),
(Voglewede & Ebert-Uphoff, 2004) and (Bosscher & Ebert-Uphoff, 2004)). Standard
optimizer implementations as LAPACK or the NAG® library require iterative
computations, which may not be used within a realtime control system due to their
normally non-predictable worst-case runtime. In this section, a non-iterative algorithm is
shown, which provides continuous force distributions furthermost from the force limits. The
algorithm provides a force distribution, which lies in the center of gravity (CoG or
barycenter) of the intersection manifold F.

The structure matrix AT has the dimension n x m. Hence, within the workspace, the kernel
can be computed as H = (h;. .. h:) € R ™. Here, the kernel is used to define a map from the
R"to SC R™ ie for all A€ A, eqn. 12 must hold, where A is the (convex)

polyhedron-shaped preimage of the manifold F under the mappingy :R*™ — R,
A — -A*Tw+H A .In other words, since ¥ maps the R "onto the solution subspace S, it

maps the polyhedron A © R " onto the solution manifold F. Since there is no explicit
expression for A, a convenient representation is sought. As mentioned above A is a
polyhedron. Thus, its vertices determine A completely. Componentwise evaluation of both
sides of eqn. 12 gives 2m hyperplanes in R ™. The vertices of A are intersection points of r
hyperplanes. Hence, all those intersection points are calculated and examined with respect

to their compatibility with all inequalities. Obviously a vertex of the polyhedron A has to
satisfy all inequalities of eqn. 12. In order to compute the center of gravity of the obtained
polyhedron, A is triangulated, i.e. splitted into r-simplexes. In the case of r = 2 this just
means dividing into triangles. Advanced techniques as shown in (Cignoni et al., 1998) are
required in the case of higher dimensions. Triangulation delivers a list of ns simplexes Px
with each having r + 1 vertices s withk=1...nsandj=1...r+ 1. The volumes Vi of the
simplexes can be determined by integration (Hammer et al., 1956). Furthermore their CoG
A ,, are computed by the equation

(16)

which is used to calculate the CoG A s of the polyhedron via
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(17)

Finally, the solution is transformed back using the mapping y

18)

where fsis the center of gravity of the manifold F.

Fig. 4: Visualisation of the map H in the case of m =3 and n=1

3.3.1 Proof-of-Concept

In this section we prove that the CoG of the manifold F can be computed by calculating the
CoG of the convex polyhedron. Without loss of generality w = 0 is assumed. The CoG of the
manifold F can be computed componentwise as
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(19)

The theorem for integration on manifolds states
(20)

where H*: A — F, 1 — HA is amap from A to F and (DH)" is the Jacobian of H* which
is equal to H itself since it is linear. Furthermore, \/det(H"H) is independent from A and

can hence be canceled in the next step. Additionally splitting A into the simplexes gives:

@1
Since H is independent from A, it can be moved out of the integral:

)
Using eqn. 19 and eqn. 17 this can be rewritten as

(23)

Therefore fs= HAsholds where As denotes the CoGof A in R".

3.3.2 Continuity of solution
In this section the continuity of of the solution of the developed algorithm in the p-norm

HI, (P #1,0) is proven, i.e. the function [':R™ " — R ", which maps a matrix A€ R ™"

(considered as a vector in R™ ") onto the center of gravity as described before, is
continuous on the set of points of the workspace.



142 Parallel Manipulators New Developments

Proof

Again without loss of generality w =0 is assumed. First I'is splitted into two mappings
Ker :R™" — R""and Grav€: R"" — R " The latter maps a vector p from R " "onto the
center of gravity of the manifold F spanned by the r n-dimensional downwards listed
vectors in p. Ker :R ™" — R " "maps a matrix A on its kernel H represented as a vector p in
R """, In calculations the kernel is still denoted with H for simplicity. Continuity of Ker and
GravCimplies continuity of I', since I' = GravC © Ker.

First the continuity of GravC will be proven. Therefore A # 0 is assumed (i.e. the intersection
of hypercube C and subspace S is non-empty and thus also the CoG exists), since continuity

inside of C is to be proven. The CoG A sis considered:
(24)

Let ﬂ; be the CoG of A , where A is the preimage of 2 , which is obtained from H = H +E.

The matrices H = [h1 . . . i,]T € R™ and E = [e; . . . &]T € R™" are considered as
vectors in R """. Then the p-norm of H is . It follows
(25)
(26)

Since the vertices of the polyhedron A are obtained from the inequality

(27)

(28)
and the vertices of the polyhedron A are obtained from (12), it is obvious that

(29)

(30)
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Hence

(31)

holds, because A and A are bounded. This yields together with eqn. (18)

(32)

(33)

This implies the continuity of GravC.
The continuity of Ker follows from the fact that the solution of a full ranked linear system of
equations depends continuously on the coefficient matrix.

4. Control

Wire robots allow for very high velocities and accelerations when handling lightweight
goods. In this case, wire robots benefit from their lightweight structure and low moved
masses. Contrariwise, wire-based mechanisms like cranes, winches or lifting blocks are used
widely to move extremely heavy loads. Thus, the wide range of application demands for a
robust and responsive control. To move the platform along a trajectory precisely, position
control is mandatory. On the other hand, the usage of wires claims for a careful observation
and control of the applied tensions to guarantee a safe and accurate operation. Pure force
control suffers from the drawbacks of model based control, e.g. model mismatch and
parameter uncertainties. Thus force control is not sufficient and a combined force and
position control is advised. Beside this, the relatively high elasticity of the wires may
demand for a compensation by control. (Fang, 2005) shows more details of the shown
concepts.

4.1 Elastic wire compensation

Compared to a conventional parallel kinematic machine (e.g. Stewart platform), a wire robot
has generally a higher elasticity in the kinematic chains connecting the base and the
platform. This is both due to the stiffness of the wire material as well as due to the wire
construction (e.g. laid/twisted, braided or plaited)(Feyrer, 2000). Approximating the
dynamical characteristics of the wires by a linear spring-damper model and considering the
unilateral constraint, the wire model can be described as

(34)

with 1 <i <m, c;and d; denoting the stiffness and damping coefficients, respectively and A I;
denoting the length change due to elasticity. Assuming the untensed wire length is l;o, A I;
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can be computed as A I; = I; - I;, 0. The stiffness coefficient ¢; depends on the actual wire
length. Using the wire cross section A and Young’'s modulus E, c;can be calculated as

(35)

with
(36)

Note that this is only a linear approach. Taking into account long and heavy wires, a specific
wire composition and applied tensions close to the admittible work load, advanced non-
linear models have to be utilized. Especially the damping coefficient d; may be hard to
estimate (Wehking et al., 1999) and thus, experiments have to be carried out (Vogel &
Gotzelmann, 2002).

4.2 Motion control in joint space

The idea of motion control in joint space is to use a feedback position control and a
feedforward force controller. The feedforward control employs an inverse dynamics model
to calculate the winch torques necessary for the accelerations belonging to the desired
trajectory. Since the used dynamic model usually will not cover all mechanical influences
(e.g. friction), the remaining position errors can be compensated by the position control
which employs the inverse kinematics. Noteworthy, the inverse dynamics is calculated for
the desired platform position. Optionally, one may think of tracking control to guide the
platform along the desired trajectory for the price of additional calculations. Referring to
eqn. 6, the inverse system dynamics (i.e. the wire force distribution) can be computed by
methods shown in section 3 (where the loads w include the inertia and gravity loads).
Assuming the winch drives are adressable by desired torques (which is normally the case
for DC/EC motors, preferably with digital current control), the motor dynamics can be
modeled as

(37)

where My € R ™™ is the inertial matrix of the drive units, 7 is the radius of the drums and

De R ™™ depends on the structure of the motors. Combining the feedforward force control
and the feedback position control leads to the following controller output:

(38)

denoting the feedback gain matrices K, € R ™™ and Ky € R ™™ and the actual and desired
motor angles ® and O g4, respectively. Due to the decoupled position controllers, these may
be designed as decentralized, simple and high control rate devices. To compensate for
elastic tendons, the following correction may be applied:
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where © 4 corresponds to the uncompensated drum angle (1 < i < m).

4.3 Motion control in operational space

Observing the sections above, independent linear PD controllers are applied. Practical
experiences show that this is possible even though the system dynamics are described by a
nonlinear, coupled system of equations due to the parallel topology of the robot,
represented by the pose dependent structure matrix. Nevertheless, it is difficult to
determine stable or even optimal controller parameters since the usual tools of the linear
control theory may only be applied for locally linearized configurations of the robot. For
predefined trajectories, this may be possible (e.g. by defining a cost function accumulating
the control errors in simulation and applying a nonlinear optimizer to obain values for K,
and Kj), but is is desirable to have a globally linear system to avoid this only locally valid
approach. From literature (Schwarz, 1991) (Woernle, 1995), exact linearization approaches
are known which eliminate the nonlinear system characteristics by feedback. Using this as
an inner loop, an outer linear controller may now be applied to the resulting linear system.
Eqns. 37 and 6 deliver

(40)

Fig. 5: Block scheme of motion control in joint space (Fang, 2005)
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Since the final control law is formulated in the operational space, this equation is
transformed into cartesian coordinates using the inverse kinematics relations
(41)

(42)

In cartesian coordinates the dynamical equations are then given by

(43)

Instead of using the motor torques u as the system input, the resulting forces and torques
acting onto the platform F, are chosen to represent the actuator torques. Now a global
linearization is desired. Setting F,, = Meqv +N delivers

(44)

and is therefore a proper choice. This linear system is now controlled by a PD controller for
the position. Thus, the new system input is extended by

(45)
Substituting eqn. 45 into eqn. 43, F,, can be found as
(46)

which describes the required wrench onto the platform w which allows to calculate the
desired wire forces by the methods shown in section 3. Optionally, the desired forces can be
controlled by an outer feedback loop to enhance the control precision.

Fig. 6: Block scheme of motion control in operational space
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5. Applications

Fig. 7(a) Early wire manipulation Fig. 7(b) Arecibo telescope

As already mentioned before, wire-based manipulation and construction is used since
millenia, mostly taking advantage from the principle of the lifting block. In ancient
civilisations like the Egypt of the Pharaos, probably wires and winches were applied to
build the pyramids - wether using ramps or lifting mechanisms (see fig. 7(a)). Crane
technology was only possible due to the usage of wires and especially the old Romans
deleloped this technology to a remarkable state - they already lifted loads around 7 tons
with cranes driven by 4 workers. With industrialisation, the transport and manipulation of
heavy goods became very important, and hence, cranes using steel cables completed the
transport chain for cargo handling. In the last few years, the automatisation of crane
technology was subject to extensive research, e.g. in the project RoboCrane ® by the
National Institute of Standards and Technology (NIST) (Bostelman et al., 2000). At the
University of Rostock, the prototype CABLEV (Cable Levitation) (Maier, 2004),(Heyden,
2006) was build up, see fig. 8. It uses a gantry crane and three wires to guide the load along
a trajectory. Thew load is stabilized by a tracking control for IRPM systems which eliminates

Fig. 8: CABLEV protoype

oscillations. In Japan, the Tadokoro Laboratory of the Tohoku University in Japan proposes
the application of wires for rescue robots (Takemura et al., 2005) (Maeda et al., 1999). A
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problem solved very smart by usage of wires is the positioning of a large telescope. Several
projects, e.g. the world’s largest telescope at Arecibo (fig. 7(b)), deal with the usage of wires
to place the receiver module. The Arecibo project (900t receiver, approximately 300m
satellite dish diameter) uses three wires guided by three mast heads while other projects use
an inverse configuration, lifting the receiver by balloons (see (Su et al., 2001), (Taghirad &
Nahon, 2007a), (Taghirad & Nahon, 2007b)). Another popular application of wire robots is
the usage as a manipulator for aerodynamical models in wind tunnels as proposed in
(Lafourcade et al., 2002), (Zheng, 2006) and (Yaqing et al., 2007). Here, the experiments take
advantage from the very thin wires since undisturbed air flow is mandatory. On the other
hand, the wire robot can perform high dynamical motion as for example the FALCON (Fast
Load Conveyance) robot (Kawamura et al., 1995). In the past few years at the Chair for
Mechatronics at the University of Duisburg-Essen the testbed for wire robots SEGESTA
(Seilgetriebene Stewart-Plattformen in Theorie und Anwendung) (Hiller et al., 2005b) has
been developed. It is currently operated with seven (see fig. 9) wires in an CRPM
configuration or eight wires for a RRPM setup. Focus of research is the development of fast
and reliable methods for workspace calculation (Verhoeven & Hiller, 2000) and robot
design. Another focus is the development of robust and realtime-capable control concepts
(Mikelsons et al., 2008). Since the teststand is available, the theoretical results can be tested
and verified (Hiller et al., 2005a). The system performs accelerations up to 10g and velocities
around 10my/s.

Fig. 9: SEGESTA protoype

Another very recent application area has been created by Visual Act AB®. As pictured in fig.
10. a snowboard simulator was built up. The snowboarder is connected to four wires
leading to three translational d.o.f.. Hence, the snowboarder can be guided along a trajectory
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in a setting consisting of ramps to grind on while he is moving freely in the air. (Visualact
AB, 2006). A completely different field is the application of wire robots for rehabilitation
which was demonstrated by the system String Man by the Fraunhofer-Institut fiir
Produktionsanlagen und Konstruktionstechnik (IPK) in Berlin, Germany (Surdilovic et al.,
2007). Another prototype for rehabilitation is described in (Frey et al., 2006). The application
of wire robots as a tracking device was proposed in (Ottaviano & Ceccarelli, 2006), (Thomas
et al.,, 2003) and (Ottaviano et al., 2005). Here, the wire robot is not actively supporting a
load but attached to an object which is tracked by the robot.

Fig. 10: Snowboard Simulator
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1. Introduction

There are some main goals in parallel robot scheduling. Those are total completion time,
maximum earliness, and maximum tardiness. According to the theoretical viewpoint,
parallel robot scheduling is a generalization of the single robot scheduling and a special
study of the flow shop. From the practical viewpoint, solution techniques are useful in the
real-world problems. Parallel robot scheduling has to deal with balancing the load in
practice. Scheduling parallel robot may be considered as a double-step. First, which jobs are
allocated to which Robot. Second, allocated jobs sequence. Also, preemption plays a more
important role in parallel robot scheduling. Robots may be identical or not. Jobs have a
precedence constraint. For all problem structures may be applied different solution
techniques for instance algorithms, search algorithms or artificial intelligence techniques. In
this chapter we interest in different solution techniques for parallel robot scheduling.

In this chapter, first, a genetic algorithm is used to schedule jobs that have precedence
constraints minimizing the total earliness and tardiness cost and maximum flow time on n-
number of job and m-number of identical parallel robots. The second one is without
precedence constraint. There are many algorithms and heuristics related to the scheduling
problem of parallel machines and robots. In this study, a genetic algorithm has been used to
find the job schedule, which minimizes maximum flow time. We know that this problem is
in the class of NP-hard combinatorial problem.

(Kanjo & Ase, 2003) studied about scheduling in a multi robot welding system. (Sun & Zhu,
2002) applied a genetic algorithm for scheduling dual resources with robots. (Zacharia &
Asparagatos, 2005) proposed a method on GAs for optimal robot task scheduling. In this
study, the job with n-number of precedence constraints is assigned minimizing mean
tardiness on m-number of parallel robot using genetic algorithms.

(Koulamas,1997) developed a heuristic noted hybrid simulated annealing (HAS) based on
simulated annealing. (Chen et al.,1997) has developed highes priority job first (HPJF)
method, which is based on extension of the WI method extended with various priority rules
such as minimum processing time first (priority = 1/processing time), maximum processing
time first (priority=processing time), minimum deadline first (priority=1/due date) and
maximum deadline first (priority = Due date). (Alidaee & Rosa, 1997) proposed a heuristic
which is based on extending the modified due date (MDD) method belonging (Baker &
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Bertrand, 1982). Their method is quite effective for parallel machine problem according to
their reports. (Azizoglu & Kirca, 1998) proposed a branch and bound (BAB) approach to
solve the same problem mentioned in this paper. Another example can be given by
considering identical due dates and processing times, (Elmaghraby & Park, 1974),
developed an algorithm based on a branch and bound to minimize a function of penalties
belonging to tardiness. (Barnes & Brennan,1977) evaluated and improved their method
again.

In addition to these previous studies, there are a few more studies, which deal with parallel
machine scheduling problem. But these studies are interested in alternatives. A few
examples are given in the following for the minimization of the total weighted tardiness:
(Emmons & Pinedo, 1990), (Arkin & Roundy, 1991); for uniform or unspecified parallel
machines scheduling, the example studies are: (Emmons, 1987) or (Guinet, 1995). (Karp,
1972) has shown that even the total tardiness minimization in two identical machine
scheduling problem was NP-hard. A branch and bound algorithm to minimize maximum
lateness considering due dates, family setup times and release dates have been presented by
(Shutten & Leussink, 1996). A genetic algorithm was used to find a scheduling policy for
identical parallel machine with setup times in (Tamimi & Rajan, 1997). (Armento Yamashita
, 2000) applied tabu search into parallel machine scheduling. A scheduling problem for
unrelated parallel machine with sequence dependent setup times was studied by (Kim et al.
, 2002) using simulated annealing. SA was used to determine a scheduling policy to
minimize total tardiness. (Min & Cheng, 1995) proposed an algorithm for identical parallel
machine problem. Their algorithm is based on using GA and SA to minimize makespan.
According to their studies, it is seen that GA proposed is efficient and fit for larger scale
identical machine scheduling problem to minimize the makespan.

(Kashara and Narita, 1985) developed a heuristic algorithm and optimization algorithm for
parallel processing of robot arm control computation on a multiprocessor system. (Chen et
al., 1988) developed a state-space search algorithm coupled with a heuristic for robot inverse
dynamics computation on a multiprocessor system. An assignment rule noted traffic
priority index (TPI) was built in 1991 by (Ho & Chang, 1991). In this method, SPT and EDD
rules are combined using by using a new measurement named as traffic congestion ratio
(TCR). Then, for the cases with one or identical machine they built heuristics. Their
heuristics consist of building a first solution by scheduling jobs in increasing order of their
priority index. Then they improved this solution using permutation technique of WI
method, which was developed previously by (Wilkerson & Irwin, 1971).

2. Definition of the problems

In this study, the job with n-number of precedence constraints is scheduled minimizing total
earliness and tardiness cost and maximum flow time on m-number of parallel robots. There
are process time and due date for each job. There is not any ready time that belongs to jobs.
A robot can do just one job at the same time. The processing is non-preemptive. The target
function, which will be minimized, is given below in Eq. (1).

Total earlines tardines cost=w, Z e, +wy Z T 1)
j=1 i=1
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Here, Tj = max {0, ; - dj} is the tardiness of job j. e; = max {0, dj - Cj} is the earliness of job j.
C; being the completion time and d;j being due date for job j. R(i,j), represents processing or
unprocessing of j job on i robot. we is unit earliness cost, wr is unit tardiness cost. If j job is
being processed on i robot, R(i,j)=1, otherwise (if not being processed) R(i,j)=0. Fmax is
maxsimum flow time. Pj is processing time.

m n
Fmax =max (F;= ZZR(i,j)pj ) 2
i=l j=1
PREPARE THE
INITIAL
POPULATION
DEFINE FOR GENETIC
THE PROBLEM ALGORITHM
TYPE
SPT, LPT,
WITH HU's RUN
PRECEDENCE > ALGORITHM, THE SOLUTION
CONSTRAINTS SIMULATED | ™ cpngrie P FOR
ANNEALING ALGORITH PROBLEM
WITHOUT
PRECEDENCE SPT, LPT,
CONSTRAINT » McNAUGHTON
ALGORITHM,
SIMULATED
ANNEALING

Figure 1. Proposed solution system for the parallel machine scheduling problem.

3. Genetic algorithm

The advantages of the genetic algorithms have been mentioned in the previous section. In
this section, the modeling and the application of the GA are explained. From the view point
of the working principle, genetic algorithms firstly needs the coding of the problem with the
condition that it should be fitting with the GA. After coding process, GA operators are
applied on chromosomes. It is not guaranteed that the obtained new offsprings are good
solutions by the working of crossover and mutation operators. Feasible solutions are
evaluated, and others are left out of evaluation. The feasible ones of the obtained offsprings
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are taken and new populations are formed by reproduction process using these offsprings.
Crossover, mutation and reproduction processes go on until an optimal solution is found.
The modeling of the defined problem using genetic algorithm has been presented below
with its details.

3.1 Coding for problem statement

The scheduling of the jobs on each robot forms the chromosomes. Here, the chromosomes
give the number of robots too. The gene code are ci, ¢, ¢3,.., Gj,... , Cn, Where ¢j € [1,m]. ¢j is
positive integer number. Here, each parallel robot represents a chromosome; and gene in
chromosome, represents ordered jobs on a robot. The assigned of jobs on robots when
forming initial population is done randomly, and while this ordering is done, precedence
constraints are taken under care. For instance, let us suppose that there are 8 jobs and 2
robots, and their precedence constraints are given in Figure 3. Sample list representation of
the schedule of the jobs on M1 and M2 robots has been given in figure 3. The sample
schedule gives also a sample gene code.

0302108
OOy

Level 1 Level 2 Level 3 Level 4 Level 5

Figure 2. The jobs with precedence constraints

o DA~

Figure 3. List representation of the schedule

Here, the scheduling of the jobs on robots also shows chromosomes code. M job can be
scheduled on N robots in different combinations. But, because of the fact that some of the
obtained schedules will be precedence constraints in problem definition, they will not be
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possible solution. For example, the solution given in figure 4 is not a feasible solution for the
precedence constraints in Figure 4. Because the precedence constraints have not been taken

under care.

Figure 4. Infeasible solution sample according to the given precedence constraints

3.2 Preparing initial population

Initial population is not produced randomly, fully. In initial population, the solutions for
problem with precedence constraints, which are obtained from SPT and EDD heuristics,
Simulated Annealing, Hu's algorithm (Baker, 1974) exist and the other. In initial population,
the solutions for problem without precedence constraints, which are obtained from SPT and
EDD heuristics, Simulated Annealing, McNaughton’s algorithm (Baker, 1974) exists. The
chromosomes out of these are generated randomly. The jobs are randomly let (determined
or given) on robots. However, because of the precedence constraints, in other words, there
are some situations like that some jobs may be done before others; some of obtained
solutions will not be feasible. These solutions, which are not feasible, will be thrown and the
new solutions will be tried to be obtained, randomly.

3.3 Applying crossover operator for the problem

The crossover process is crossing obliquely from cut points of randomly determined two
chromosomes. At the end of this operation, two new chromosomes are obtained. In this
problem when chromosomes are crossed with, cross is taken care to the chromosomes in the
same robots. For instance, number 1 robot in the first chromosomes and number 1 robot in
the second chromosomes are crossed. Then, the second robot in the first chromosomes and
the second robot in the second chromosomes are crossed. Let us explain this with an
example;

By taking care of the given precedence constraints given in Figure 2, let us crossover the
given two chromosomes in figureb.

M1 13578 Ml 24678
CHROMOSOME #1 , CHROMOSOME #2
M2 246 M2 135

Figure 5. Two different chromosomes for crossover process

As it is seen above, the jobs in the first chromosomes on the first robot have been scheduled
as 1-3-5-7-8 and in the second robot they have been scheduled as 2-4-6. The schedule in the
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second chromosomes on the first robot is as 2-4-6-7-8, and on the second robot as 1-3-5.
When crossover process is applied to these chromosomes, the first robot in the first
chromosome and the first robot in the second chromosome and the second robot in the first
chromosome and the second robot in the second chromosome gene will be crossed from
randomly determined points. The result of the crossover operation has been given in figure
6.

CHROMOSOME CHROMOSOME OFFSPRING OFFSPRING
#1 #2 #1 #2
13578 241678 13678 24578
X = ,
2416 1315 245 136

Figure 6. Crossover process and obtained offsprings

Here, the sign “|” refers to randomly selected crossover point. On the other hand, the sign
“X” represents the crossover operation. At the end of crossover operation, two new
chromosomes are obtained. The selected crossover point is the same on the parts
representing M1 and M2 parallel robots of chromosomes in the example given in figure 5,
and it is after than second gene. But, for instance, the point after than second gene for M1
part may be crossover point, likewise the point after than the first gene may be crossover
point for M2 part. Here, there is the possibility of obtaining unfeasible solutions when there
are precedence constraints between jobs.

3.4 Applying mutation operator for the problem

In the mutation operation, a gene is randomly selected from inside of the chromosomes in
the population according to the given mutation rate. This gene will represent a job. This job
will be swapped with any other job, which has the same precedence constraint on another
robot or on the same robot with it. If there is more than one job, which is on the same level
with it, one of them will be selected randomly. At the end of the mutation operation, a new
chromosome will be obtained. For example, let us apply mutation operation to the
chromosome given in figure 7;

SELECTED

CHROMOSOME MUTATION
AND GEN OFFSPRING
13578 The job, which is on the same level with 13678

number 5 job, will be replaced with
number 6 job so two jobs will be swapped.
246 245

Figure 7. Mutation process and obtained offspring

3.5 Reproduction

A copy of each gene is made by the reproduction operator in the population and it is added
to the list of candidate genes. Fundamentally, this warrants that each chromosome in the
current population remains a candidate to be selected for the next population. In this
problem, the aim is to find the solution that minimizes the given fitness function. As it is
known the fitness function is a tardiness value function. Here, the obtained chromosomes
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are scheduled from low tardiness value to high tardiness value in every population. GA
may have better chances to survive chromosomes with quite higher fitness. The living good
chromosomes stay in the population. This process will be kept going until an optimal
solution is found in each population.

4. Simulated annealing

In this study, two operators have been used in the application of SA. The first operator is
that a randomly selected job has been swapped with another job, which is on the same level,
and then, a new offspring has been obtained. The second operator is that a randomly
selected job has been again swapped with another job and then, a new solution alternative
has been obtained. If these obtained solution alternatives are valid, they are taken into
consideration. Used first operator does the same operation with the mutation operation in
GA. The working mechanism of these used operators has been revealed in figure 8 and 9.

SA begins with an initial solution (A), and initial temperature (B), and an iteration number
(C). The duty of temperature (T) is controlling the possibility of the acceptance of a
disturbing solution, and an iteration number (C) is used in the decision of the number of
repetitions until a solution has a stable state under the temperature. The T may have the
following implicit meaning of flexibility index. At high temperature situation, namely, early
in the search, there is some flexibility to move to a worse solution situations, on the other
hand, at lower temperature, in other words later in the search, less of this flexibility exists. A
new neighborhood solution (N) is generated based on these B, C through a heuristic
perturbation on the existing solutions. If the change of an objective function is improved, the
neighborhood solution (N) becomes a good solution. Even though it is not improved, the
neighborhood solution will be a new solution with a convenient probability which is based
on e*/T. This situation leaves the possibility of finding a global optimal solution out of a
local optimum. The algorithm will be stopped when there is no change after C iterations.
Otherwise, the algorithm will be continuing with a new temperature value (T).

4.1. Simulated annealing algorithm
Begin;
INITIALIZE (A,B,C);
Repeat
For I=1 to C do
N=PERTURB (A); {generate new neighborhood solution}
D= C(N)-C(A)

If((C(N)<=C(A) or (exp(-D/T)>RANDOM(0,1))

Then A=N; {Accept the movement)
Endif
Endfor;
UPDATE (T, C);

Until (Stop-Criterion)

End

In order to apply SA to practical problems, there are several factors to be decided initially.
Firstly, the definition of a procedure to generate neighborhood solutions from a current
solution is necessary. To generate these solutions efficiently, some parameters should be
decided appropriately. Some examples to these parameters can be given as an initial
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temperature, the number of repetitions, conditions for completion and the ratio of
temperature change. The combination of these parameters should be adjusted according to
the problem to obtain a good solution.

SA has some weak points such as long running time and difficulty in selecting cooling
parameter when the problem size becomes larger. A geometric ratio was used in SA as
Ti+1 = aTk, where Tx and Ty+1 are the temperature values for k and k+1 steps, respectively.
Geometric ratio is used more commonly in practice. In this study, the initial temperature
was taken 10000 and 0.95 was used for cooling ratio (a).

OLD SOLUTION SA OPERATOR-1 NEW SOLUTION

13578 Only number 6 work is on the same 136738
level with number 5 work that is
selected randomly; so two works will
246 be exchanged. 245

Figure 8. The first new solution generation operator used in SA

OLD SOLUTION SA OPERATOR-2 NEW SOLUTION
13578 Randomly selected number 1 work 43678
will be swapped with again randomly
246 selected number 4 work 215

Figure 9. The second new solution generation operator used in SA

5. Comparison of GA and SA

GA and SA are not much different algorithms; theoretically, both of them are quite relative
algorithms. However, their formulations are done using very different terminology. In a
problem solution with SA, the costs, neighbors and moves of the solutions are talked
(discussed), however, in a problem solution with GA, one discusses about chromosomes,
their crossover, fitness and mutation. Another difference; a chromosome is considered as a
genotype, which only indicates a solution. This is a traditional feature of GA and there is not
any reason about that why a resembling approach could not be used in SA in the same way.
Fundamentally, for the situation of that the population size is only one, SA can be
considered as GA. Because there is only chromosome, and there is not any crossover, but
only mutation. Indeed, this the most important difference between GA and SA. SA
generates a new solution by modifying only one solution with a local move; however, GA
generates solutions by using the different solutions in a combination. It is not exactly
known that if this actually makes the algorithm better or worse, however, it is clear that it
depends on the problem and the representation. The principles of these two algorithms are
based on the same basic supposition that convenient solutions are mode probably found
“near” already known convenient solutions than by randomly selecting from the whole
solution space. If this were not the case with a particular problem or representation, they
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would not perform better than random sampling. The difference in the action of the GA is
treating combinations of two existing solutions as being “near”, supposing that such
combinations (children) significantly share the properties of their parents, so that a child of
two suitable solutions is more probably good solution than a random one. It should us
significantly emphasized that this is just valid for a particular problem or representation;
otherwise GA will not have an advantage over SA.

6. Example problem-|

Seven jobs and two parallel machines problem is given as an example below. The process
and due dates belongs the works in table 1 and additionally, the precedence constraints in
figure 9 were given. The solution, which minimizes maximum flow time, was obtained by
considering these data. The problem was solved by using three different methods, which are
SPT heuristic, SA and GA. The data and the results were given below.

Jobi Processing time Due date
1 3 9
2 2 8
3 4 3
4 6 7
5 7 4
6 5 5
7 8 6

Table 1. Processing time and Due date of every job

O-+0O-

2

Q

D0

Level 1 Level 2 Level 3 Level 4

Figure 10. Precedence constraints of every job for example problem

The result of the implementation of GA and SA to the problem stated above has been given
in Table 2. Furthermore, in figure 10, the view of the obtained solution from GA on Gannt
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Chart has been given. The complementing (finishing) time of each job has been shown on
Gannt chart. For example, the finishing time of the number 5 job and number 7 job are 14
and 22, respectively. 7x2 refers to 7 jobs and 2 machines.

Heuristic Schedule Maximum Flow Time
ST | w2 1as =
| MW :
A | Npiraes 2
| wiries -

Table 2. The result of calculation for 7 X 2 problem size

3 7 14

M1 1 3 5

M2 2 4 6 7

Figure 11. A schedule for two machines displayed as Gannt Chart

7. Example problem-l|

As another example, a parallel machine problem with 12 jobs and 2 parallel machines was
taken under consideration below. The process times, delivery times and precedence
constraints of jobs were given. The solution, which minimizes the total earliness and
tardiness cost, was obtained by considering these data. The problem was solved by using
SPT, EDD, SA and GA. The data and the results were given below. In Table 3, the jobs with
process and due dates belonging to them were given. The precedence constraints of the jobs
were given in Figure 11. In Table 4, the solutions obtained from GA, SA, SPT and EDD were
given. Tardiness cost and earliness cost have been taken as 1 and 0.5, respectively.

| Jobi ‘ Processing time Due date
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1 2 1
2 4 3
3 5 2
4 3 8
5 8 7
6 7 4
7 10 12
8 12 14
9 9 11

10 3 8

11 5

12 9 15

Table 3. Processing time and Due date of every job for example problem-II

O+

P g

O—O—0 u

OO

Level 1 Level 2 Level 3 Level 4 Level 5

Figure 12. Precedence constraints of every job for example problem-II
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Heuristic Schedule Total Earliness and Tardiness Cost
M1: 1-4-5-7-10-8
SPT M2: 2-3-6-9-11-12 1485

M1: 1-2-5-9-11-8-12

EDD M2: 3-6-4-7-10 153
M1: 1-4-7-10-9-11
cA M2: 3-2-6-5-8-12 144,5
M1: 1-4-5-7-10-8-12
SA M2: 3-2-6-9-11 169,5

Table 4. The result of calculation for 12 X 2 problem size

8. Computational experimentation for scheduling with precedence
constraints

The number of jobs used in the problems in this study were given in Table 5. In this table, i
denotes the jobs and p; is an integer processing time and w; is an integer weight, which were
generated from two uniform distributions. The function of [1, 10] and [1, 100] are to create
low or high variations, respectively. TF, which is the relative range of due dates, RDD and
Average tardiness factor, were selected from the set [0.1, 0.3, 0.5, 0.7, 0.9]. Here, d; is an
integer due date from the uniform distribution [P (1-TF-RDD/2), [P(1-TF+RDD/2)] and it
was generated for each job i. In these expressions, P denotes total processing time. As
summarized in Table 5, 1700 examples set were considered, totally. The problems were
considered in 17 different sizes and for each size 100 different samples were examined. The
parameters of the GA were given below. These parameters are firstly tried with different

Population size : 20, Crossover rate :%100,
Max generation : 100, Mutation rate  :0.05.
Factors Settings
- [10],[20],[30],[40],[50],[60],[70],[80],[90],[100]
Number of jobs [120],[150],[170],[200],[220],[250],[300]
Processing time variability [1-10] [1-100]
Weight variability [1-10] [1-100]

Relative range of due dates 0.1,0.3,0.5,0.7,0.9

Average tardiness factor 0.1,0.3,0.5,0.7, 0.9

Table 5. Experimental design

values and according the results of these experimental studies these parameters were
determined as the best ones. In different studies, these parameters are determined like the
ones obtained in this study. The obtained optimal solutions for different population sizes
were given below in Figure 12 for the problem defined with 100x8 sizes. In Figure 13, the
cost values for initial population, generation 50 and generation 100 were presented. These
figures give clearly information about the selected parameters of GA. As seen in Figure 12,
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to obtain optimal solution, the different population size values were applied. When the
population size is selected as 20, the obtained optimal solution is found better than ones
examined with other population sizes.

total earliness and tardiness cost

Figure 13.

totat earliness and tardiness cost

7000

6000

5000 -

4000 -

3000

2000 -

1000 +

0 T T T T T
0 20 40 60 80 100 120

Number of Generation

------ pop size=5 pop size=10 pop size=20

The obtained near optimal solutions according to the different population sizes

7000 -
6000 | ® o
00...
5000 - ”0.,.
4000 Xy *

N
X X X
X
3000—AAAAAAAAA XXX x X x

AAAA
2000 | AAAAAAA
1000
0 T T T T 1
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population size

@ Initial population X Generation 50 A Generation 100

Figure 14. The obtained cost values for initial population, generation 50-100
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The results have shown that GA has given better results than SA in large-size problems. SA
has some weak points such as long running time and difficulty in selecting cooling
parameter when the problem size becomes larger. A geometric ratio was used in SA as Tx+
= aTy, where Ty, and Ti+1 are the temperature values for k and k+1 steps, respectively.
Geometric ratio is used more commonly in practice. In this study, the initial temperature
was taken 10000 and 0.95 was used for cooling ratio (o). In Table 6 and Table 8, the obtained
solutions for different problem sizes were given

Average A
value of GA Vv lverafgg A CPU time |CPU time for
. |Number of| for total aiueo for GA for SA for t
Problem size . for total L.
example |earliness and . an example| an example | statistics
. earliness and
tardiness . (s) (s)
tardiness cost
cost
60X 7 100 756.4 921.2 28.07 34.15 11.30
70X 7 100 890.0 1056.7 32.71 4419 12.47
80X8 100 1018.1 1263.6 39.03 48.22 15.21
90X8 100 1293.0 1512.8 43.35 5417 16.23
100 X 8 100 1650.8 2004.2 62.28 73.05 17.46
120X 8 100 1926.2 2137.9 78.05 91.33 19.33
150 X 8 100 2184.4 2410.5 92.17 102.09 21.96
170X 8 100 24327 2985.0 100.02 114.43 22.07
200X 8 100 3257.3 3863.3 118.34 136.57 24.97
220X 8 100 3469.2 41124 127.28 151.48 25.35
250 X 8 100 3966.4 4698.9 139.11 178.12 29.46
300 X 8 100 5469.6 7282.7 152.22 196.47 31.45

Table 6. The results of the problems in different sizes for total earliness and tardiness cost

In Table 7 and Table 9, the 100 samples given for each problem size were evaluated and how
many of the obtained results by using GA are better or equal to SA.. For each problem size,
100 different samples were used. GA and SA were applied to these samples. The average
value of the obtained optimal solutions was revealed in the table. According to the average
value, it is clearly seen that GA has given the better result. From the viewpoint of evaluating
CPU time, the obtained result with GA is again better. All algorithms were coded in C++
and implemented on a Pentium IV 2.4 GHz computer.
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. Number of Number of examples for
Problem size Number of examples ex?mples for that that GA is equal to SA
GA is better than SA
60 X 8 100 91 9
70X7 100 95 5
80 X8 100 98 2
90X 8 100 100 0
100 X 8 100 100 0
120X 8 100 100 0
150 X 8 100 100 0
170X 8 100 100 0
200X 8 100 100 0
220X 8 100 100 0
250 X 8 100 100 0
300X 8 100 100 0

Table 7. Comparison of the results of the examples according to the optimal values for total

earliness and tardiness cost

Average | Average .
value of GA| Value of |CPU time for CPU time for
.| Number of SA for t
Problem size for SA for GA for an .
example . . an example | statistics
maximum | maximum | example (s) (©)
flow time | flow time
60X7 100 72 78 18.03 2221 13.45
70X7 100 85 93 26.07 30.18 15.68
80X 8 100 96 108 32.09 39.43 17.13
90X 8 100 119 134 39.01 51.19 19.86
100X 8 100 132 142 45.15 63.05 18.94
120X 8 100 148 161 54.45 71.45 19.73
150 X 8 100 176 183 62.22 76.39 2212
170X 8 100 189 202 70.56 83.55 24.28
200X 8 100 217 230 81.30 90.57 24.88
220X 8 100 239 255 92.12 103.49 27.35
250X 8 100 264 292 102.37 114.42 29.49
300X 8 100 286 305 129.21 142.47 33.57

Table 8. The results of the problems in different sizes for maximum flow time




168 Parallel Manipulators, New Developments

. Number of Number of examples for
Problem size Number of examples ex?mples for that that GA is equal to SA
GA is better than SA
60X 8 100 94 6
70X7 100 95 5
80X 8 100 100 0
90 X8 100 100 0
100 X 8 100 100 0
120X 8 100 100 0
150 X 8 100 100 0
170X 8 100 100 0
200X 8 100 100 0
220X 8 100 100 0
250 X 8 100 100 0
300X 8 100 100 0

Table 9. Comparison of the results of the examples according to the optimal values for
maximum flow time

9. Conclusions

The genetic algorithms (GA) have the great advantage and success in the solution of NP
problems. There are various important applications on this way. In this study, the job with
n-number of precedence constraints is assigned minimizing total earliness and tardiness and
maximum flow time on m-number of parallel machine. Genetic algorithms and simulated
annealing methods were used to find the solutions, which minimizes the total earliness and
tardiness costs. In GA, the solution alternatives, which were obtained by using genetic
operators, were investigated to understand that if they are feasible or not and the feasible
ones according to precedence constraints were considered. The way, trying to make
infeasible solutions feasible, was not selected. Likewise, obtained infeasible solutions were
not evaluated. Again any study about making these infeasible solutions feasible was not
done. According to the results obtained by using GA and SA methods, it was evidently
observed that GA algorithm is more successful. Especially for larger problem sizes, it is seen
that GA gives results better than SA.
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1. Introduction

Parallel kinematics machines, PKMs, are known to be characterised by many advantages
like a lightweight construction and a high stiffness but also present some drawbacks, like
the limited workspace, the great number of joints of the mechanical structure and the
complex kinematics, especially for 6-dof machines. Therefore Callegari et al. (2007) proposed
to decompose full-mobility operations into elemental sub-tasks, to be performed by separate
minor mobility machines, like done already in conventional machining operations. They
envisaged the architecture of a mechatronic system where two parallel robots cooperate in
order to perform a complex assembly task: the kinematics of both machines is based upon
the 3-CPU topology but the joints are differently assembled so as to obtain a translating
parallel machines (TPM) with one mechanism and a spherical parallel machine (SPM) with
the other.

In one case, joints” axes are set in space so that the mobile platform can freely translate
(without rotating) inside its 3D workspace: this is easily obtained by arranging the universal
joint of each limb so that the axis of the outer revolute joint is parallel to the base cylindrical
joint; such three directions are mutually orthogonal to maximise the workspace and grant
optimal manipulability. With a different setting of the joints, three degrees of freedom of
pure rotation are obtained at the terminal of the spherical wrist: in this case the axes of the
cylindrical joints and those of the outer revolute pairs in the universal joints all intersect at a
common point, which is the centre of the spherical motion.

This solution, at the cost of a more sophisticated controller, would lead to the design of
simpler machines that could be used also stand-alone for 3-dof tasks and would increase the
modularity and reconfigurability of the robotised industrial process. The two robots have
been developed till the prototypal stage by means of a virtual prototyping environment and
a sketch of the whole system is shown in Fig. 1: while the translating machine has been
presented already elsewhere (Callegari & Palpacelli, 2008), the present article describes the
design process of the orienting device and the outcoming prototype.
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1ded di

Fig. 1. Architecture of the assembly system based on two cooperating parallel robots

2. Kinematic synthesis

The design of parallel kinematics machines able to perform motions of pure rotation, also
called Spherical Parallel Machines, SPM’s, is a quite recent research topics: besides the
pioneering researches by Asada and Granito (1985), the most important mechanism of this
type is the agile eye by Gosselin and Angeles (1989), upon which many prototype machines
have been designed since then. Few other studies on the subject are available during the
90’s, among which the work of Lee and Chang (1992), Innocenti and Parenti-Castelli (1993)
and Alizade et al. (1994). In the new millennium, however, a growing interest on spherical
parallel wrists produced many interesting results, as new kinematic architectures or
powerful design tools. The use of synthesis methods based on or screw theory, for instance,
has been exploited by Kong and Gosselin (2004a and 2004b) that provide comprehensive
listings of both overconstrained and non-overconstrained SPM’s; Hervé and Karouia, on the
other hand, use the theory of Lie group of displacements to generate novel architectures, as
the four main families in (Karouia & Herve, 2002) or the 3-RCC, 3-CCR, 3-CRC kinematics
specifically treated in (Karouia & Herve, 2005); Fang and Tsai (2004) use the theory of
reciprocal screws to present a systematic methodology for the structural synthesis of a class
of 3-DOF rotational parallel manipulators. More interesting architectures, as the 3-URC, the
3-RUU or the 3-RRS, have been studied by Di Gregorio (2001a, 2001b and 2004) and also by
other researchers.

Following the approach outlined in (Karouia & Herve, 2000), Callegari et al. (2004) proposed
a new wrist architecture, based on the 3-CPU structure; it is noted also that the 3-CRU
variant is characterised by a much more complex kinematics but can be useful in view of a
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possible prototyping at a mini- or micro- scale, as shown by Callegari et al. (2008). The main
synthesis steps of the 3-CPU parallel wrist are outlined in the following paragraphs.

First of all, it is noted that only non-overconstrained mechanisms have been searched in
order to avoid the strict dimensional and geometric tolerances needed by overconstrained
machines during manufacturing and assembly phases. Moreover, the use of passive
spherical pairs directly joining the platform to the base has been avoided as well and for
economic reasons only modular solutions characterised by three identical legs have been
considered. It must be said that these advantages are usually paid with a more complex
structure and the possible presence of singular configurations (translation singularities) in
which the spherical constraint between platform and base fails.

/e

Fig. 2. Limb of connectivity 5 able to generate a spherical motion of the platform

Aiming at this kind of spherical machines, a simple mobility analysis shows that a parallel
mechanism able to generate 3-dof motions must be composed by three limbs of connectivity
5. Without losing generality, it is supposed that each single limb consists of 4 links and 5
revolute (R) or prismatic (P) joints that connect the links among them and the limb itself to
the fixed frame and to the mobile platform. If each limb’s kinematic chain has 3 revolute
pairs whose axes intersect at a common point, that is the centre O of the SPM, therefore the
moving platform can rotate around the fixed point O: in this way, each limb generates a 5-
dimensional manifold that must contain the 3-dimensional group of spherical motions
around the point O. If the other two lower pairs are locked, the kinematic chain of the
overconstrained Gosselin and Angeles wrist (1989) is obtained, see Fig. 2.

Fig. 3. Limb with subgroup RRR able to generate the subgroup of planar displacements
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By analysing the described configuration, it is seen that the spherical motion can be obtained
also by using 5 revolute pairs Ri-Rs where the axes of the joints Ry, R3 and Rs still intersect at
a common point while the axes of pairs R, and Ry are parallel to the direction of Rs. In such a
way, the 3 joints Ry, R; and Ry will generate the 3-dimensional subgroup of planar
displacements G(II), i.e. the set of translations lying in IT and rotations around axes
perpendicular to IT. The same subgroup G(II) is generated also in case the axis of revolute
joint Rj is still perpendicular to plane IT but does not cross the rotation centre O, as shown in
Fig. 3, therefore also with this limb kinematics a spherical wrist can be obtained.

On the other hand, by following the same line of reasoning, the same subgroup of planar
displacements G(IT) can be generated by substituting one or two revolute joints among the
R, R3, Ry set with prismatic pairs whose axes lie in the plane I1, thus obtaining limbs whose
central joints are characterised by one of the sequences PRR, RPR, PPR, PRP, RRP, RPP. Of
course, two adjacent joints in limbs kinematics can be merged to yield simpler architectures
with fewer links: for instance two revolute joints with orthogonal axes can be superimposed
to give a universal (U) joint, while the set of one revolute joint and one prismatic pair with
the same axes are equivalent to a cylindrical (C) joint, as shown in Fig. 4.

.

S oal

(@) (b)
Fig. 4. Merge of two adjacent joints able to yield universal (a) or cylindrical (b) pairs

The kinematic chains described above prevent the ith limb’s end from translating in the
direction normal to the plane ITj, i=1,2,3; therefore, if three such chains are used for the limbs
and the three normals to the planes IT;, are linearly independent, all the possible translations
in space are locked and the mobile platform, attached to the three limbs, can only rotate
around a fixed point.

In this way, seven alternative design concepts have been considered, which are: 3-URU, 3-
CRU, 3-URC, 3-UPU, 3-CPU, 3-UPC, 3-CRC. Figures 5-9 show the mentioned synthesis steps
leading to the specific limb topology (a) and sketch a first guess arrangement of the
introduced joints (b). In particular, the second picture in each one of these figures, labelled
(b), shows the simplest possible setting of the limbs, that all lie within vertical planes:
unfortunately in this case the 3 normals to limbs’ planes are all parallel to the horizontal
plane and therefore result linearly dependent, allowing the platform to translate along the
vertical direction, see Fig. 10a. Among all the possible setting of these normal axes in space
that grant them to be linearly independent, it has been chosen to tilt the limbs” planes so that
they are mutually orthogonal in the initial configuration (or “home” position of the wrist),
Fig. 10b, thus greatly simplifying the kinematics relations that will be worked out later on;
moreover, even if this arrangement changes during operation of the machine, this
configuration is the most far from the singular setting previously outlined, therefore
granting a better kinematic manipulability of the wrist. The sketch of the outcoming
mechanisms are drawn in Fig. 11-13.
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(b)

(b)
Fig. 6. Synthesis of CRU and URC limbs (a) and sketch of the 3-CRU mechanism (b)

@) (b)
Fig. 7. Synthesis of UPU limbs (a) and sketch of the 3- UPU mechanism (b)
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Fig. 8. Synthesis of CPU and UPC limbs (a) and sketch of the 3- CPU mechanism (b)
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(@) (b)
Fig. 9. Synthesis of CRC limbs (a) and sketch of the 3- CRC mechanism (b)

(@) (b)

Fig. 10. Setting of the 3 axes normal to limbs’ planes: coplanar (a) and orthogonal (b)
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(@) (b)
Fig. 11. Concept of a 3-URU (a) and 3-CRU (b) spherical parallel machine (home pose)

@) (b)
Fig. 12. Concept of a 3-UPU (a) and 3-CPU (b) spherical parallel machine (home pose)

Fig. 13. Concept of a 3-CRC spherical parallel machine (home pose)
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The kinematics of such machines has been investigated and in view of the design of a
physical prototype the 3-CPU concept has been retained, see Fig. 14: this has been mainly
due to the relative simplicity of the kinematics relations that will be worked out in next
section, to the compactness of the concept, that allows an easy actuation and finally to the
novelty of the kinematics, that has been proposed by Olivieri first (2003) and then studied
by Callegari et al. (2004). Before studying the kinematics of the 3-CPU SPM it is marginally
noted that the same limb’s topology, with a different joints arrangement, is able to provide
motions of pure translation (Callegari et al., 2005); moreover, the 3-CRU mechanism is
extensively studied in (Callegari et. al., 2008) in view of the realisation of a SPM for
miniaturized assembly tasks.

3. Kinematic analysis

3.1 Description of geometry and frames setting

@) (b)
Fig. 14. Placement of reference frames (home pose) (a) and geometry of a single limb (b)

Making reference to Fig. 14, the axes of cylindrical joints A; i=1,2,3 intersect at point O
(centre of the motion) and are aligned to the axes x, y, z respectively of a (fixed) Cartesian
frame located in O. The first member of each link (1) is perpendicular to A; and has a
variable length b; due to the presence of the prismatic joint D;: the second link (2) of the leg is
set parallel the said cylindrical pair. The universal joint B; is composed by two revolute pairs
with orthogonal axes: one is perpendicular to leg’s plane while the other intersects at a
common point P with the corresponding joints of the other limbs; such directions, for the
legs i=1,2,3 orderly, are aligned to the axes u, v, w respectively of a (mobile) Cartesian frame,
located in P and attached to the rotating platform. For a successful functioning of the
mechanism, such manufacturing conditions must be accompanied by a proper mounting
condition: assembly should be operated in such a way that the two frames O(x,y,z) and
P(u,v,w) come to coincide. Finally, it is assumed an initial configuration such that the linear
displacements g; of the cylindrical joints are equal to the constant length c (that is the same
for all the legs): in this case also the linear displacements b; of the prismatic joints are equal
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to the constant length d. It is also evident that, for practical design considerations, SPM’s
based on the 3-CPU concept are efficiently actuated by driving the linear displacements of
the cylindrical pairs coupling the limbs with the frame: therefore in the following kinematic
analysis it will be made reference to this case (i.e. joint variables a;, i=1,2,3 will be considered
the actuation parameters).

3.2 Analysis of mobility

From the discussion of previous section, it is now evident that in case the recalled

manufacturing and assembly conditions are satisfied, the mobile platform is characterised

by motions of pure rotation; the mentioned conditions can be geometrically expressed by:
iow, and w a incident in P;

i Wy, perpendicular to the plane < W, W, > le W, oW, = oand W, W, =0;
ii. W, lying on the plane < W, W, >, le W, W, =0; due to condition (ii) must
also hold: W, =W, XW,,;

iv. w,, not parallel to W, and therefore: W, XW,, 20 (for simplicity, the condition
W, -W,, =0 has been posed).

Making reference to Fig. 14b, if the point P is considered belonging to the it leg, its velocity
can be written in three different ways as follows:

P= le_ + P”_ for i=1,2,3 1)
where le_ is the velocity of point P if considered fixed to link 2:
PZi:Bi+m2iX(P_Bi):Bi+m2i><dw4i @)
and P, is the velocity of point P relative to a frame fixed to link 2 and with origin in B;:
Pri = ‘9.3,"?"31' X (P - Bi): ‘9.3,"?"3:' xdW,; ©)
In (2), @i is the angular velocity of link 2:
Wy = e.liv’\vli “)
In the same way, with obvious meaning of the symbols, the vector B, can be expressed as:
B,- = ]'3” +]'3m, for i=1,2,3 )
where:
Bli =a,W,; + 0, x(B, - 4)=a,W, + e.liv’\vli x(a,Wy; —dW,;) = a,W,, — e.liv’\vli xdw, ©)
Bri = biwzi )

If (2)-(7) are substituted back in (1), it is found:

P = bz‘wzl’ + diwli + 93iw3i x dVAVM for i=l’2’3 (8)
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By dot-multiplying (8) by w,, and by taking into account the conditions (i)-(iv), it is finally
obtained:
W, P=0 )
that can be differentiated to yield:
Wy P+, P=0 (10)

Equations (9-10), written for the 3 legs, build up a system of 6 linear algebraic equations in 6

unknowns, the scalar components of P and P. Such a system can be written in matrix form
as follows:

Y () (11)
P
where the 6x6 matrix M can be partitioned as:
H O
M=| . 12)
H H
with:
AT
Wi, Wi Wi Wiy 13)
H= VAV3Tz = Wi Wiy Wiy
VAV; Wisi Wiz Wiy

and O being the 3x3 null matrix.
If the matrix M is not singular, the system (11) only admits the trivial null solution:
P=P=0 (14-15)

which means that the point P does not move in space, i.e. the moving platform only rotates
around P. The singular configurations, on the other hand, can be identified by posing:

det(M)=[det(H)]* =0 (16)

that leads to:

det(H)= W, -W,, xW,, =0 17)

Equation (17) is satisfied only when the three unit vectors W, Wy, W, are linearly

dependent; therefore the platform incurs in a translation singularity if and only if:

e the planes containing the three legs are simultaneously perpendicular to the base plane;
¢ such planes are coincident with the base plane (configuration not reachable);

e  atleast two out of the three aforementioned planes admit parallel normal unit vectors.
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This justifies the choice previously operated of having the legs laid on mutual orthogonal
planes: in fact this configuration is the most far from singularities.

3.3 Orientation kinematics

Orientation kinematics is based on the definition of the relative rotation between fixed frame
O(x,y,z) and the mobile frame P(u,v,w), where is always P=0, see Fig. 14; to this aim the
following set of Cardan angles is used:

cpcy —cfisy sp
“R(a.f.7)=R,(a) R,(§)R.(y)=| saspey+casy —saspsy+cacy —sacp| 1)
—casfcy +sasy caspsy+sacy  cacf
Moreover, a local frame Oi(x;, yi, zi), i=1,2,3 is defined for each leg, as shown in Fig. 15: the x;
axis is aligned with cylindrical joint’s axis and the y; axis is chosen parallel to limb’s first

link, when it is laid in the initial configuration.
One loop-closure equation can be written for each leg as follows:

(4, - P)+(D,— 4,)+(B,-D,)+(P-B,)=0 fori=1,23 (19)
Equation (19) can be easily expressed in the local frame Oi(x;, y;, zi), i=1,2,3:

a; 0 -c

0|+|=b-cO,|+| 0 +'(P-B)=0
0 —b,-s6, 0

for i=1,2,3 (20)

Fig. 15. Setting of local limb frames

The last term in (20) is actually evaluated in the global frame O(x,y,z), then it is transported
to limb’s frame Oj(x;, yi, zi):
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(P=B /R (P-B - RER(P-5,) fori=123 @

where the introduced terms assume the following values:

1 00 010 0 0 1
JR=10 1 0 JR=[0 0 1 oR=[1 0 0 (22-24)
00 1 100 010

"(P-B)=d-0 1 0] “(P-B,)=d-Jo 0 1] "(P-B,)=d-[1 0 0] (2527)

In inverse kinematics the values of ¢, f, y Cardan angles (or equivalently the elements r;; of
the rotation matrix YR) are know and the joint variables a; must be found; loop closure
equations (21) for i=1,2,3 represent three decoupled systems of non linear algebraic
equations in the unknowns a;, ;; and b;, that can be solved to find the single solution:

a,=c—d-n, a,=c—d-r, a,=c—d-r,

6, =atan 2(r,,7,) 6, =atan 2(r;;, ;) 0, =atan 2(r,,. 7, ) (28-30)
b:d'rzz b :d~r33 b :d-r”

] c, ’ b, ’ b,

The direct kinematic problem, on the other hand, assumes the knowledge of joint variables
a;, i=1,2,3 and aims at finding the corresponding attitudes of the platform in the space. The
analysis is performed by means of simple trigonometric manipulations: by substituting in
(28-30) the expression of r; given in (18), it is obtained:

c—a
cPsy = y L=k,

c—a (31)
sacf = y =k,
cozsﬂc;/—somj/:C:ja3 =k,

where the k;, i=1,2,3 are known values. The 3 equations in (31) can be solved to find up to 4
admissible values for sy.

kk, 5 k) 2 g2 g2 2 2 32
2=k 1S s y+(ki -k -l =1)s’y +k7 =0 (32)

1 1

For each angle ythat solves (32), 2 different values can be found for angles fand o:

p=tu sa=Fgy (33-34)

sy k,
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therefore system (31) admits up to 16 different solutions: direct kinematics of the
mechanism, however, is characterised by a maximum number of 8 different configurations,
since angle f can be restricted in the range [-7/2, 7/2] without any loss of information.

3.4 Differential kinematics
By direct differentiation of the first 3 equations in (28-30), the expression of the analytic
Jacobian Ja is directly derived:

a, 0 —spsy cpey a o
4, |=d- cacp —sasp 0 1pl=3 |5 (35)
a, —sasfcy —casy cacfcy —caspPsy—sacy| |y 14

The geometric Jacobian Jc can be worked out by expressing the relation between the
derivatives of Cardan angles and the components of angular velocity w:

o, 1 0 sp a
o, |=|0 ca —sacf| B (36)
. 0 sa cocf 14
a, 0 —casfsy —sacy cocy—saspsy || o, o,
a, |=d- cacf 0 —-sp o, |=J| o, 7
a, —sasfcy —casy cpecy 0 . o,

It is noted that the geometric Jacobian J¢ is not a function of geometric parameters, therefore
machine’s manipulability cannot be optimised by a proper selection of functional
dimensions.

3.5 Analysis of singular poses
Limbs’ structure does not allow for inverse kinematics singularities, while direct kinematics
singularities can be found by letting the determinant of J¢ vanish:

det(J ;)= d3[sﬂ2 —(cacy—sas,b’sy)z] (38)

The zeros of (38) all lie on closed surfaces in the 3-dimensional space a,f, y: their
intersections with the coordinate planes are straight lines (see also Fig. 16), as given by:

a=0—>ﬁi7/=i%
B=0—>a=+7), y=+7/

- — 47
y—O—)diﬂ—ié

(39)

The analysis of singular configurations has been performed also by means of numerical
simulations. Figure 17 shows the value of the determinant of the geometric Jacobian matrix,
normalised within the range [-1, +1] after division by the constant d: the black regions are
characterised by determinant values in the range [-0,05, +0,05]. All the singularity maps are
plot against the fand yangles, o being a parameter of the representation; the configuration
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of the mechanism for f=)=0 is represented aside. Figure 18a plots the singularity surface in
the o,f,y space but it is a hardly readable graph. In Fig. 18b, on other hand, the workspace
volumes whose determinant assumes values in the range [-0,05, +0,05] have been taken out
of the representation, while the colour map still represents the local determinant value: it is
now more appreciable the extent of singularity-free regions inside the workspace, Fig. 18¢c,
where the planning of a motion could be performed: e.g. for the mechanism under design a
sphere with a radius of about 50° can be internally inscribed.

© d)

@) ()
Fig. 16. Projection of direct kinematics singularity surface on several coordinate planes:
a=0° (a), a=40° (b), a=80° (c), p=0° (d), p=45° (e), 5=89° (f)
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Fig. 17. Determinant of the geometric Jacobian matrix on the planes a=0° (a), a=40° (b),
a=80° (c) and representation of manipulator configurations.

The sphere representation of singularity-free regions given in Fig. 18c is suggestive but it is
expressed in a space (the o4y Cardan angles) whose geometrical meaning is rather
obscure. For many industrial tasks, on the other hand, it may be useful to use the spherical
parallel machine for orienting a device or a part within a possibly large 2-dimensional space,
identified by the axis of finite rotation, while the need for a further twist around the axis
itself may not be urgent or at least only limited rotations may be required. In this case, the
geometric Jacobian may be readily represented by a colour map on the surface of a unit
sphere. Figure 19, for instance, uses lighter colours to render higher determinant values
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while black regions represent almost singular configurations; in this figure the orientation of
the platform can be easily read through its elevation and azimuth, with the twist around the
central axis is taken as a parameter of the representation: it is noted that in this case, at the
expense of reduced twist rotations, greater pointing motions can be accomplished in the
other 2 space directions.

@) (b) ©
Fig. 18. Singularity surface in the &, 4,y space (a); colour map representing local determinant
values (b) and close-up view of a connected singularity-free region.

@) (b)
Fig. 20. Singularity-free regions inside workspace for twist angle equal to 20° (a) and 60° (b)

Turning to translation singularities, the singular configurations found in (17) can be easily
expressed as a function of articular coordinates 6;;:

56,5056, = c0,,c0,,c6,; (40)

and taking into consideration inverse kinematics (28-30) it is obtained:
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Fplisly = I'plsshy (41)

Equation (41) is a useful expression of translation singularities in task space, where the
elements of the rotation matrix are used; by using the definition of the rotation matrix in (18)
and after some trigonometric manipulation, an alternative expression can be obtained in
function of Cardan angles ¢, 3, :

sp* —(cacy —sasfsy)’ =0 (42)

It is noted that (42) vanishes in the same configurations of (38), therefore translation
singularities coincide with direct kinematics singularities, i.e. no additional singular surfaces
are present inside workspace.

3.5 Analysis of static loads

The static analysis is useful in the first phases of machine design for the selection of
machine’s motors and for a first design of the links, with the related connecting bearings.
The base relation is provided as usual by the well known duality between kinematics and
statics, which allows a straightforward assessment of the actuation efforts T needed to
balance a moment np; applied at the mobile platform:

(43)

It must be noted that the application of a force fy at the centre of the spherical motion does
not require balancing forces by the actuators but it is entirely born by frame bearings: the
internal reactions at the bearings caused by the application of the mentioned external
wrench have been evaluated as well and used during structural design.

4. Dynamics

4.1 Inverse dynamics model

In this section an inverse dynamics model of the 3-CPU mechanism is worked out by using
the virtual work principle: it is assumed that frictional forces at the joints are negligible,
therefore the work produced by the constraint forces at the joints is zero and only active
forces (including the gravitational effects) must be accounted in the developments.

In the derivation of the model, the notation is based on Fig. 14b and the second subscript i
(i=1,2,3) indicates the i" limb while the first subscript j (j=1,2) refers to the first or second
link respectively. Namely, mj; and I; are the mass and (central) inertia tensor of the jt
member of the it limb; w; is its angular velocity and vj;; is the linear velocity of its centre of
mass; 11, Iy, @y, vy are the same quantities referred to the mobile platform.

The total wrench of active and inertial effects acting on the centre of mass of j member of

the it" limb is written as:
o L (@4
" n; _Iji(bji_wjix(lji(oji)
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In the same manner, the total wrench acting on the centre of mass of the mobile platform is:

F, = fpl _ mpl(g_vp|)+fe (45)
P n, —Ip,d)p, -0, ><(Ip1(;)pl)+ne

where f. and n. are the external force and moment applied to its centre of mass; it is
accidentally noted that the centre of mass of the platform does not coincide with the fixed
point O. If 1 is the vector of the actuation forces and q are the corresponding displacements,
the principle of virtual work can be written for the present case:

(6a) =+ (ox, ) K, + 2[i((axﬁ Y, )} ~0 (46)

j=1

where the vector x; gathers the position of the centre of mass of j# member of the it limb
and the orientation of the same link and x; expresses the position of the centre of mass of
the mobile platform and its orientation. It is noted that all the infinitesimal rotations
appearing in (46) must be expressed as functions of the angular velocity of the respective
link, e.g. for the platform:

X, = [v v v o, ]T Ot (47)

w w

plx ply plz plx ply

Since all the virtual displacements in (47) must be compatible with the constraints, they are
not independent but can rather be expressed as functions of an independent set of
Lagrangian coordinates; if the Cardan angles @=[c, £, 7|7 of the mobile platform are chosen
for this purpose, the following relations hold between the introduced virtual displacements:

dq=J-8¢ 8x; =J;-5¢ 8x, =J,-5¢ (48-50)

where J, J;i and Jp1 are proper Jacobian matrices that can be found through the usual velocity
analysis of the mechanism. Equation (46) can be written again as:

3 2
59" -{J’ t+J7-F, +Z(ZJ; .Fj,.ﬂ:o (51)
i=1 \_j=1

Since (51) is valid for any virtual displacement d¢ of the platform, in non-singular
configurations it is:

3 2
‘r=—JT~[J:]-FPI+Z(ZJ;-FﬁB (52)
=1 \_j=1

Equation (52) completely describes manipulator’s dynamics; all the elements in it have been
worked out and the resulting model has been proofed by comparison with commercial
packages’ output, see (Callegari & Marzetti, 2006).
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4.2 Dynamic analysis in the task space

The dynamic expression (52) is usefully re-worked in order to explicit the dependency on a
proper set of Lagrangian coordinates and its derivatives. In the case of parallel kinematics
machines, the dynamic model results quite naturally written in the task space, due to the
(usually) difficult expression of DKP; therefore in the present case, after some cumbersome
manipulation, it is obtained:

7;0_ngh:M¢((P)(.'.’+C¢((Pa¢)¢+G¢((P) (53)
with: T,=J "1, moments acting at the end-effector and corresponding to actual forces t at
actuated joints; M, ((P), Cartesian mass matrix of the manipulator; C, ((P,(i)), vector of
centrifugal and Coriolis terms; GgD ((P), vector of gravity moments; h, vector of external

forces and moments acting at the centre of mass of the mobile platform.
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Fig. 21. Values of mass matrix’ elements for null roll angle, i.e. =0 (note the different scales
of the plots)
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Fig. 22. Plots of mass matrix’ elements, normalised by determinant value, for null roll angle,
i.e. =0 (note that all the scales of the graphs are multiplied by 106 but M(1,2) and M(2,3)
which are multiplied by 107)

In view of the realisation of possible control schemes based on the inversion of
manipulator’s dynamics, it is useful to study the variability of mass matrix throughout the
workspace. In fact, a major simplification of the model would be yielded by neglecting the 6
non-diagonal terms of the mass matrix, whether actually allowed by their comparative
magnitude; otherwise, all the elements in M, and C, could be considered constant. First
simulation results show that in this case both simplifying assumptions could be taken into
consideration, even if the validity of the reduced models weakens when the operating
trajectories get closer to singularity surfaces, as expected.

Figure 21, for instance, shows the values of mass matrix’ elements in different workspace
configurations characterised by null roll angle, i.e. y=0: for robot’s parameters it has been
made reference to the virtual prototype, whose mass properties, presented in the following
Tab. 2, are very similar to physical prototype. In Fig. 22 the same plots have been
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normalised by dividing the matrix element by the (local) value of matrix determinant, to
allow a relative comparison among elements that have very different magnitudes. It can be
seen that near the isotropic point (a=f=y=0) the diagonal elements are dominant and matrix
variability is limited, while off-diagonal elements show a stronger influence when getting
closer to workspace boundaries; moreover, element M(3,1) is generally an order of
magnitude greater than M(2,1) and M(2,3). Such behaviour gets even more evident if one
moves away from the plane y=0. The plots have been traced for pitch and yaw angles
varying between -50° and +50° because the sphere of 50° radius in the Cardan angles space
is completely free of singularities, as shown already in Fig. 18.

Other kinds of tests have been performed, aiming at identifying the relative contribute of
various dynamic terms: for instance it seems that, even for high dynamics manoeuvres, the
contribute of gravity is never negligible, while Coriolis and centrifugal forces account for
10%-16% maximum; on the other hand, the mass and inertia of the mobile platform affect
very slightly the overall dynamic behaviour of the machine, possibly allowing for a major
simplification of system’s model.

4.3 Dynamic manipulability

The dynamic manipulability ellipsoids introduced by Yoshikawa (1985, 2000) are a useful
means to study the dynamic properties of a mechanism: they express graphically the
capability of a given device to yield accelerations in all the directions stemming from one
attitude of its workspace. As a matter of fact, many other measures of manipulability have
been proposed by different researchers since that pioneering work but very few applications
dealt with orienting devices.

Let us consider all the actuation forces t with unit norm:

=1 (54)
By manipulating (53) in order to work out 1, it is obtained:
T=I M6+ ) (55)
having defined:
$e =M, (C,0+G, +I'h) (56)

A meaningful formulation of dynamic manipulability must be expressed as a direct function
of the angular acceleration @, therefore the mapping between the rate of change of the
Cardan angles ¢ and the angular velocity ® must be made explicit:

@, 1 0 sp|a
o, =10 ca -sacf Bl > o=E() (57)
o, 0 sa sacp ||y

&=k +0,(0.0) -

If ¢ is taken out of (58) and substituted in (55) it is then obtained:
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1= "M ,E'(0+0,,) (59)
having defined:
Oy = —0, +EM,'JM'(C,¢+G, +Ih) (60)

The constraint expressed by (54) can be finally written in the following quadratic form:

QT.F((p).Q:l (61)
with obvious meaning of the introduced terms:
Q=6+, —0-0,+EM,J'M,'(C,¢+G, +JI"h) (62)
-T Ty-ly-T -1
I(e)=E "M J'J "M E (63)

The inspection of (62-64) shows that gravity merely induces a translation of the dynamic
manipulability ellipsoid while in general velocity has a complex, non-negligible effect on
manipulability. Making reference to the remarkable case of a fixed platform (¢ = 0) with no

external or gravity action applied (h=G4=0), (61) provides:

o T(p)o=1 (64)

The quadratic form (64) represents an ellipsoid in the Cartesian space of the angular
accelerations: its eigenvalues express the square root of the maximum and minimum
accelerations that can be developed with unit actuator forces while the eigenvectors
represent the associated directions in the orientation space. Figure 23 represents graphically
some dynamic manipulability ellipsoids of the robot in the poses sketched aside.

(© (d)
Fig. 23. Dynamic manipulability ellipsoids at different poses (,5,7): (0°,0°,0°) (a),
(20°,20°,-5°) (b), (40°,40°,10°) (c), (54°,53°,10°) (d)
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5. Prototype design

The design of a first prototype has been developed, aiming at obtaining high dynamics
performances; as reference figures, the following requirements have been posed:

e orientation range (elevation and azimuth): 150°

¢  maximum angular velocity: 500 °/s

¢  maximum angular acceleration: 5 000 °/s2

e  spatial resolution: 0.01 °

e overall dimensions of the machine: maximum volume of 1 m3.

The particular form of the Jacobian matrix (35) does not allow for a mechanical design based
on the optimisation of kinematic properties, since J¢ is not function of robot’s geometry,
therefore heuristic considerations have been made in a first phase, in order to limit wrist’s
overall dimensions. By looking at Fig. 24 and taking into consideration (31), it is noted that
the value of length ¢ does not affect actuators” stroke but only their initial position. The
value of length d, instead, is directly proportional to the motors” run needed to attain an
assigned configuration in space and by decreasing its value a more compact design is
obtained: on the other hand, a lower limit is provided by the need to accommodate the
universal joints on the mobile platform and to grant a limit positioning accuracy in the task
space. By means of computer simulation, all the geometrical parameters represented in Fig.
24 have been made to change, in order to take into account the above considerations and to
assess the resulting geometry; in the end, it has been decided to refine the mechanical design
by taking into account the concept of dynamic optimisation, enabled by the availability of
the inverse dynamics model.

Fig. 24. Main geometrical parameters

Two dynamic figures have been used to drive the design of the machine. The measure of the
dynamic manipulability, w, defined as:

w=./det((9)) (65)
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results proportional to the volume of the manipulation ellipsoid and therefore yields an
overall information on the global manipulation capabilities, but fails to capture the closeness
to singular configurations or even the anisotropy of local dynamics. On the other hand, the
index of dynamic manipulability, i, can be defined as:

| — ﬂ‘min 66
= Amax ( )

With Auin, Amex minimum and maximum eigenvalues of the matrix I'(¢): the index (66) is

independent from the volume of the ellipsoid and vanishes close to singular configurations.

(@) (b) (©)

Fig. 25. Plots of the index of dynamic manipulability as a function of actuators strokes on the
three coordinate planes a;=0 (a), a,=0 (b), a3=0 (c)

Figure 25 shows sample plots of the index of dynamic manipulability as a function of
actuators strokes a; on the three coordinate planes for the final design. With specific Matlab
routines, a dynamic optimisation of the design has been performed, trying to maximise the
global dynamic manipulability of the wrist while still guaranteeing a minimum threshold of
the local features. For instance, in the configurations shown in Fig. 23a-23d the indexes
assume the values: 0.7755, 0.1374, 0.3571, 0.0341 respectively, while it has been obtained a
mean value of iz=0.502 over the central +30° span of the workspace. Table 1 summarises the
final geometrical values used for the design, with I being the total length of the lower part
of the three limbs. It must be said that, as a general rule, in this case the optimisation
routines tend to concentrate all the masses in the centre of the spherical motion, that is only
too natural.

Figure 26 on the left shows a sketch of the design of final prototype meeting the posed
requirements; on the right side, a picture of the machine is presented. The limbs are made of
avional (an aluminium-copper alloy) in order to join good mechanical properties with a
lightweight construction. The mobile platform is made of bronze, therefore allowing the
precise machining in a single placement of the 3 journal bearings that have to meet
orthogonally in a single point: in this way it has been a high stiffness together with precise
geometrical alignments. It must be noted that such revolute joints are idle, since no rotation
occurs at all if all the manufacturing and mounting conditions are correctly satisfied. In
order to allow the precise mounting of the robot in the initial (home) configuration, the
special fixture shown in Fig. 27 has been realised.
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(@) (b)
Fig. 26. CAD model of spherical wrist (a) and picture of first laboratory prototype (b)

Fig. 27. Sketch of the fixture for axes alignment during machine assembly

The actuation is based on 3 induction linear motors Phase WVS 20.6.3, able to provide a
maximum thrust of 184 N at the speed of 6 m/s, with a maximum acceleration of 14.3 g and
is controlled by Nation Instrument hardware (Flexmotion/PXI architecture). The first tests
of motion are currently under development, while wrist’s controller is under design.

Aimin dimax bimjn bimax
d [mm] ¢ [mm] h [mm] e (o - ()
210 490 280 319 661 130 210
Tab. 1. Main geometrical data of spherical wrist design
- 111 122 I33
link s, 3 (x-x moment of  (y-y moment of  (z-z moment of
' K8 inertia, kg m2) inertia, kg m2) inertia, kg m2)
upper limb 2.50 0.016 0.016 0.0013
lower limb 7.50 0.070 0.070 0.0014
platform 5.35 0.030 0.030 0.060

Tab. 2. Mass properties of spherical wrist design
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6. Conclusions

The article has described an innovative spherical parallel wrist developed at the Polytechnic
University of Marche in Ancona, revisiting all the main design steps, from kinematic
synthesis up to physical prototyping.

Machine kinematics has been worked out in closed form and all the singularity surfaces
have been analysed: it has been pointed out that the mechanism does not possess inverse
kinematics singularities, while direct kinematics singularities and translation singularities
lie on the same closed surface. The inner space, where motion paths can be safely planned,
has been identified and unfortunately it cannot be enlarged by kinematics optimisation
because machine’s Jacobian does not depend on geometrical parameters.

For this reason, it was decided to drive machine design by dynamic optimisation concepts
and an inverse dynamics model has been developed: the study of machine’s dynamic
manipulability, by means of different algebraic tools, led to the final design of the wrist, that
has been also verified with structural analysis packages. The availability of the dynamic
model, on the other hand, will be useful for the development of model based control
systems, able to exploit the high potentials of direct drive actuation: a first dynamic analysis,
moreover, shows that simplified models could be used, since the non-diagonal terms of
mass matrix are much smaller than diagonal terms and platform’s inertia could be
neglected, at least when manipulator is far from singular configurations.

All design steps have been performed in a virtual prototyping environment, that allowed to
take into consideration simultaneously the constraints of the mechanics and the problems of
the controller, allowing to assess the performances of the closed-loop system. The physical
prototyping of the machine, however, allowed to validate the good properties envisaged
during the design phase but also to experience the disadvantages of the concept itself: they
are mainly due to the scarce accessibility of the centre of the spherical motion, which is
common to most parallel wrists, and to the difficult assembly, which requires a precise
alignment of joints axes: this problem has been partially overcome by the manufacturing of
specific fixtures that are characterised by very high accuracy and are used while assembling
the machine.

The machine has been moved so far only through motors drives and a conventional PID
position controller is actually being developed: more advanced control systems, able to
exploit the high dynamics of the design and the power of direct actuation, will be studied
soon.
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Quantitative Dexterous Workspace Comparison
of Serial and Parallel Planar Mechanisms

Geoff T. Pond and Juan A. Carretero
University of New Brunswick
Canada

1. Introduction

The dexterity analysis of complex degree of freedom (DOF) mechanisms has thus far been
problematic. A well accepted method of measuring the dexterity of spherical or translational
manipulators has been the Jacobian matrix condition number as in (Gosselin & Angeles,
1989) and (Badescu & Mavroidis, 2004). Unfortunately, the inconsistent units between
elements within the Jacobian of a complex-DOF parallel manipulator do not allow such a
measure to be generally made as discussed in (Tsai, 1999) and (Angeles, 2003). In the
following section, the mathematical meaning of singular values and the condition number of
a matrix are reviewed. Their application to studying robotic dexterity follows next. Later in
this chapter, these principles are applied to the study and comparison of the dexterous
workspace of both serial and parallel manipulators.

1.1 Mathematical background

The condition number of a matrix is defined as the ratio of the maximum and minimum
singular values of the matrix. A brief explanation of the significance of the matrix’s singular
values is important and is therefore provided here. Strang (Strang, 2003) shows that any
matrix or transform, e.g., J, may be broken into three components through singular value
decomposition:

1)

where V contains the eigenvectors of JTJ, U contains the eigenvectors of JJT (u; and ux for the
two dimensional case shown) and X is a diagonal matrix containing the singular values of J.
Both the matrices V and U are composed of unit vectors which are mutually perpendicular
within each matrix. Figure 1 is adapted from Strang (2003), and graphically depicts the
transform described in equation (1) for the two dimensional case.

In terms of dexterity, the most interesting of the three component matrices of J is
X consisting of the singular values of J each denoted by . Consider the conventional
relation q =Jx, where in more general terms, X corresponds to some unit system output
depicted in the furthest left side of Figure 1, q, the system input depicted in the furthest
right of Figure 1, and J, the system transform between them. Generally, the maximum and
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minimum singular values of J indicate a range within which the magnitude of vector ¢

must lie, for any unit output in x, i.e.,

x| =1. The condition number « is then the ratio of the

largest and smallest singular values:

)

Figure 1: The three steps in any matrix transformation: rotation, scaling, rotation (or
reflection).

Now, let the system output x correspond to the velocity vector of a manipulator’s end
effector and q, the vector of actuator velocities. ‘Ideal dexterity’ occurs at isotropic
conditions, that is at the lowest possible Jacobian condition number, i.e., 1 (Angeles, 2003).
At such positions, a unit velocity in any feasible direction for the manipulator requires the
same total effort in the actuators, i.e., the resolution of end effector pose is the same in each
DOF. On the other hand, a condition number of o corresponds to a rank deficiency within
the Jacobian matrix. At such configurations, some level of control over the system is lost.

1.2 Application to robotics

In robotics, the Jacobian, and hence its singular values and condition number, are dependant
on the architecture of the manipulator as well as the position and orientation, together
referred to as pose, of the manipulator’s end effector. As a result, the manipulator’s level of
dexterity changes as it travels through its reachable workspace. A manipulator’s dexterous
workspace is often defined as poses resulting in a Jacobian matrix condition number below a
specified threshold. The higher level of dexterity required, or as conventionally defined, the
lower the condition number, the smaller the dextrous workspace will be. This is due to an
increasing Jacobian matrix condition number as the reachable workspace boundary is
approached. Manipulator singularities exist when the Jacobian condition number becomes
infinite, that is, either a) an instantaneously infinite actuator input velocity results in no
change in the end effector pose, or b) the end effector pose may be altered without having
changed the actuator inputs.
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However, using the Jacobian condition number alone may provide misleading results,
particularly when comparing multiple manipulators, as this chapter will later do. Consider
two 2-DOF manipulators, of the same architecture but of different scale, and in the same
pose. The first having Jacobian matrix singular values of 1 and 2, the second being 100 times
larger having singular values of 100 and 200. Both result in the same condition number as
they both require twice the effort in the second direction as they do to move in the first. That
is, the magnitude of the vector q required to perform the motion in the second direction is
twice as large in magnitude as the magnitude required to perform the motion in the first
direction. In the case of the first system, the end effector pose is far more sensitive to the
system inputs (recall that the sensitivity is indicated by the singular values, the condition
number only indicates the ratio of this sensitivity for the fastest and slowest directions in the
task space). For this reason, the entries of the Jacobian matrix must all share the same units,
e.g., distances may be measured in m but not by a mix of m, cm, mm, etc.

Larger singular values correspond to a better resolution over the pose of the end effector,
hence better position control over the mechanism end effector pose is achieved. However,
having small singular values also has a benefit. Having smaller singular values suggests that
the same system outputs are achieved at lower system inputs when compared to a system
with large singular values. This corresponds to higher end effector velocities for the same
actuator input magnitude. Therefore, there is a trade-off between high end effector velocities
(a Jacobian having small singular values), and fine resolution over the end effector pose
which provides better stiffness and accuracy (a Jacobian having large singular values).

In terms of dexterity, higher end effector velocities are generally of greater concern. In terms
of either accuracy or stiffness / compliance, a finer resolution over the end effector pose is of
greater importance. Therefore, examination of the Jacobian matrix condition number alone,
does not fully describe the capabilities of a manipulator in the studied pose.

1.3 Issues with using the Jacobian matrix condition number

It is well known that the use of the condition number of a manipulator’s Jacobian matrix to
measure dexterity may only be made when all the entries that constitute such a Jacobian
matrix share the same units (Tsai, 1999; Angeles, 2003; Doty et al., 1995). This limits the use
of the Jacobian condition number to manipulators that have only one type of actuator (i.e.,
either revolute or prismatic, but not a combination of both). Furthermore, use of the Jacobian
condition number is restricted to manipulators having only degrees of freedom (DOF) in
either Cartesian or rotational directions only, but not combinations of both. The only
mechanisms that fall into this category are 3-DOF (or less) rotational and 3-DOF (or less)
translational manipulators. Otherwise, if the manipulator has a mix of revolute and
prismatic actuators, or has complex degrees of freedom, their associated Jacobian matrix is
dimensionally inconsistent.

As stated earlier, the Jacobian condition number has been a popular measure of dexterity in
many works for either of these types of rotational or translational mechanisms (Gosselin &
Angeles, 1989; Tsai & Joshi, 2000; Badescu & Mavroidis, 2004). For manipulators outside of
this category, the condition number of conventional Jacobian matrices developed by
methods such as screw theory or by partial derivatives, is not suitable for dexterity
measurement due to their inherent mixture of units between the different columns of J (Tsai,
1999; Angeles, 2003; Doty et al., 1995). This leaves no method for the general algebraic
formulation of dimensionally homogeneous Jacobian matrices. Therefore, no method is left
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for reliably measuring or quantifying the dexterity of a vast majority of mechanisms
introduced in the literature that have mobility in both translational and rotational DOF, i.e.,
complex DOF mechanisms (e.g., Stewart, 1965; Lee & Shah, 1988; Siciliano, 1999; Carretero et
al., 2000).

Gosselin (1992) introduced a method for formulating a dimensionally-homogeneous
Jacobian matrix for both planar and some spatial mechanisms. Planar mechanisms have two
translational and one rotational DOF. For the planar case, this Jacobian matrix relates the
actuator velocities to the x and y components of the velocities of two points on the end
effector platform. Kim and Ryu (2003) furthered this work by developing a general method
using the x, y and z velocity components of three points (as opposed to two in (Gosselin,
1992)) on the end effector platform (A1, A2 and As) to formulate a Jacobian matrix which
maps m actuator velocities (where m denotes the number of actuators) to the nine Cartesian
velocity components of the three points A; (i.e., three for each point A;). Assuming all
actuators are of the same type, this mx9 Jacobian is dimensionally-homogeneous, regardless
of the conventionally defined independent end effector variables (i.e., translational and/or
angular velocities). However, of the total nine x, y and z velocity components (three for each
point), at most only n are independent for a mechanism whose task space is n-DOF, where n
< 6. This suggests that (9 — n) terms of the end effector velocity vector may be defined as
dependent variables. As this velocity vector and therefore the associated Jacobian includes
dependent motions, it is not evident what physical significance the singular values of such a
Jacobian matrix might have (Kim & Ryu, 2003). Therefore, using the ratio of maximum and
minimum singular values (i.e., the condition number) of the Jacobian matrix seems ill-
advised.

In (Pond & Carretero, 2006), the authors present a methodology for obtaining a constrained
and dimensionally homogeneous Jacobian based on an extension of the work in (Kim &
Ryu, 2003). The singular values of such Jacobians may be used in dexterity analyses as their
physical interpretation is typically clear. In the following section, the development of this
type of Jacobian matrix is presented for the 3-RRR planar parallel manipulator.

2. The 3-RRR planar parallel manipulator

The symmetrical 3-RRR manipulator depicted in Figure 2 has been the subject of many
studies. For example, inverse kinematics including velocity and acceleration, as well as
singularity analysis, are provided by (Gosselin, 1988). It is a relatively simple, planar parallel
manipulator, as described in the following section.

2.1 Mechanism architecture

As seen in Figure 2, the symmetrical 3-RRR manipulator consists of three identical limbs.
Each limb is connected to the base at point G; by an actuated revolute joint. This is followed
by a proximal link of length |b;| which connects to the distal link of length |¢;| through a
passive revolute joint at B;. Finally, a second passive revolute joint connects each limb to the
end effector platform at point A;. For the symmetric case, points G;and A; may each be used
to form the corners of equilateral triangles.

For the planar 3-RRR manipulator, all joint axes are parallel and normal to the xy-plane. It
can be easily demonstrated using the Griibler-Kutzbach mobility criterion that the mobility
of the 3-RRR equals 3.
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Figure 2: Basic architecture of the 3-RRR parallel manipulator.

The degrees of freedom at the end effector are translations in the x and y directions and a
rotation ¢, around an axis normal to the xy-plane. Note that the base frame’s origin is
placed coincident with the centre of a circle intersecting each of the three points G;located at
the base of each branch. The x-axis of the base frame is oriented such that point G; lies on
that axis.

As the inverse displacement solution of this manipulator are previously published, no
further discussion on the subject will be provided here. The Jacobian formulation provided
for this manipulator in (Gosselin, 1988) and (Arsenault & Boudreau, 2004) is developed by
differentiating the various inverse displacement equations, with respect to time. In (Tsai,
1999), the Jacobian matrix was obtained through the method of cross-products. In what
follows, the conventional inverse and direct Jacobian matrices will instead, be obtained
through screw theory.

2.2 Jacobian analysis using screw theory
The Jacobian developed here will relate the Cartesian velocities of the end effector in x,

yand ¢ (or e in conventional screw coordinate notation) to the actuator velocities.

Three screws $1,;, $2,,and $3,;,with directions normal to the xy-plane, represent the three joints
of each limb i for i =1, 2, 3 (depicted in Figure 2 for i = 1):

®)

)
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®)

Each screw is represented with respect to a frame whose origin is coincident with that of the
moving frame, i.e., at point P, but whose axes are parallel to those of the fixed frame. The
direction of all screws (s;; ) is the same for all of them as all are aligned with the z-axis.
Therefore, the screw corresponding to the platform’s motion is:

©)

where angle ; corresponds to the rotation around the j-th revolute joint (j = 1, 2, 3) of the
i-th limb (i =1, 2, 3).

A screw must now be identified that is reciprocal to all screws representing the passive
joints of limb i, i.e., the revolute joints at points A;and B;. Such a screw may be zero pitch and
oriented anywhere on the plane containing vectors ¢; and s, (or s3; corresponding to screws
$and $3,;in Figure 2). Such a reciprocal screw is:

)

®)

where ¢;is a unit vector in the direction of ¢;. Taking the orthogonal product (here denoted
by ®) of $,; with both sides of equation (6), yields:

©)

where $, = [ax @y @ x y 2 ]T. Since an orthogonal product involving screw $;;is on both
sides of equation (9), the coefficient 1/ |c;| shown in equation (8) may be dropped. To
simplify notation, recognising that @x = @, = z = 0 (since motion only occurs on xy-plane),
$;and $, may be reduced to three dimensional vectors, i.e., $,;= [ cix Ciy (@ixCiy — diy cix ) ]Tand $,
=le:x j "

Examining the right side of equation (9), and reducing $1, in equation (3), the orthogonal
product $,;® $1; may be expressed as:

(10)

Therefore, writing equation (9) three times corresponding to each of the mechanism’s limbs
yields the following direct (J) and inverse (J;) Jacobians expressed as:
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(11)

(12)

The results of J, and J, correspond exactly with those obtained by (Tsai, 1999) through the
cross product method and by (Arsenault & Boudreau, 2004) through calculus. The resulting
overall Jacobian matrix J = J;71J.is a square 3 x 3 matrix. The relation between end effector
and actuator velocities is q = Jx where q=[611 612 012]Tand x =[w, x 7.

In the following section, the Jacobian matrix J will be used as a verification tool to evaluate
whether the Jacobian matrices formulated the more novel introduced in (Pond & Carretero,
2006) methods are correct.

2.3 Constrained dimensionally-homogeneous Jacobian matrix formulation

As mentioned, the Jacobian matrix J developed in the previous section is dimensionally
inconsistent. In (Tsai, 1999) and (Angeles, 2003), the authors have outlined the importance in
having a dimensionally-homogeneous Jacobian matrix in dexterity analyses.

In (Kim & Ryu, 2003), the following velocity relation was developed:

(13)

Where, letting l—( = [0 0 1]T, q = [0 1,1 9.1,2 0 1,2]Tand X'= [A 1x A 1y A 2x A 2y A 3x A 3y]T:

(14)

(15)

Parameters k;j (for i =1, 2, 3 and j = 1, 2, 3) are dimensionless parameters defining the
parametric equation of a plane containing the three points on the end effector platform and
constrained by ki1 +ki2 +ki3 = 1. It can be shown (Pond, 2006) that when using the Jacobian
formulation as presented in this section, k;j=1 when i = j and k;; = 0 otherwise.
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The multiplication of (J';)1J'x using the dimensionally homogeneous Jacobian matrices
above produces the overall Jacobian matrix J' which is equivalent to:

(16)

It is important to only map a set of independent end effector velocities to the actuator
velocities. The mapping being done in equation (13) maps six end effector velocities of
which only three are independent (for the 3-DOF mechanism) to the three actuator
velocities. Similar to what is presented in (Pond & Carretero, 2006), a constraining matrix
mapping the independent end effector velocities to the full set of both independent and
dependent end effector velocities may be obtained.

If a constraining matrix P that maps the Cartesian velocities AH, /'lh, /'13), , to all velocities in

x' was obtainable, it could be expressed in terms of partial derivatives, as follows:

17)

The resulting multiplication of J' in equation (16) with the constraining matrix P in equation
(17) yields:

(18)

This matrix J'P is square and dimensionally homogeneous. The singular values of this
matrix have a clear physical interpretation and therefore may be used in the dexterity
analysis of the corresponding mechanism.

2.3.1 Identification of independent parameters

To obtain equation (18), the set A Azx, 4) was chosen as the set of independent Cartesian

1o
components. Clearly, six unique sets of independent parameters may be used to define the
end effector velocity x". That is, any subset consisting of three elements from the six
elements of x'which includes at least one x component and at least one y component may be
used. These subsets are:



Quantitative Dexterous Workspace Comparison of Serial and Parallel Planar Mechanism 207

In the following formulation of the constraint equations and alternative inverse
displacement solution, the independent end effector parameters will be arbitrarily chosen as

Casel (i.e., Alx , /.IZX , Ah )- The solutions using any of the potential six cases listed above have

a similar form.

2.3.2 Constraint equations
It can in fact be shown that a relationship between [Ah R AZX R f.ljy ] to X', ie., the matrix P in

equation (18), can be obtained. Consider Figure 3 representing the end effector platform. The
point D lies on the bisection of the line segment A;A; so:

(19)

Figure 3: End effector notation for the planar 3-RRR parallel manipulator.

The angle { made between line segment A;1A> with the negative y-axis is:

(20)

where k12 is the length of the line segment between points Ajand A».

Consider the case where the variables A1, A and Az, are known. Therefore, the vertices of
the triangle representing the end effector platform lie somewhere on the three dashed lines
shown in Figure 3. When these three dashed lines are used to constrain the vertices of the
end effector platform, there are two possible solutions for the unit vector s1:
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@)

The vector sp3 may be obtained by cross multiplying the vector si» with + k (recalling that
k =[0 0 1]7):

(22)

As a result, there are four possible solutions for vector sps each corresponding to one of the
four unique solutions in Figure 4.

Figure 4: Four possible solutions where a single Cartesian coordinate of each of three points
on the end effector platform are known.

Letting e represent the magnitude of the line segment DP:

(23)

where ki can be obtained from the platform radius 7, and the angle between lines
P_Aland PA, . Letting vector D represent a vector from the origin of the base frame to point

D (see Figure 3), a solution for the vector A3 locating point A3 with respect to the origin is:
(24)
From which the first component is
(25)

The same method may then be reversed to find Dy= Az, % (e + 1) 5.
Similarly, solutions are found for Ay, and Ay, as:
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(26)

(27)

To obtain a single solution for the direction of vector sps instead of the four possible
solutions in equation (22), the true position and orientation of the platform in conventional
variables, i.e., x, y and ¢, are required. Since in workspace volume determination or path
planning, these are in fact known, the following decision rules may be used to obtain a
unique solution in the coordinates A1y, A1y, Aoy, Az, Asyand Asy, . If x > D,, then all terms
associated with #c; are in fact +c, and vice versa. Similarly, if As, > y, then all terms
associated with * s, are in fact + sc and vice versa.

2.3.3 Alternative inverse displacement solution

In the preceding section, the remaining three Cartesian coordinates of the three points A;
were determined based on one of the Cartesian coordinates being given for each point. This
provides full knowledge as to the position of the end effector platform and points A;. The
solution for each limb’s pose may be obtained by completing the inverse displacement
solution provided in (Tsai, 1999) or (Arsenault & Boudreau, 2004) where points A; are
known. The solution leads to two solutions for each limb. In (Arsenault & Boudreau, 2004),
these are referred to as working modes. The different solutions correspond to either elbow up
or elbow down configurations of each limb. As there are two solutions for each limb, and
three limbs, there are therefore a total of 23 = 8 possible solutions to the inverse displacement
problem.

2.3.4 Constraining Jacobian
The first derivative with respect to time of equations (25) through (27) yields the various
elements of the matrix P in equation (17). As previously mentioned, six unique sets of
independent end effector variables may be used to obtain the square dimensionally-
homogeneous Jacobian matrix.

2.4 Singularity analysis

Singularity analysis of the 3-RRR manipulator has been explored extensively in (Tsai, 1999;
Bonev & Gosselin, 2001; Arsenault & Boudreau, 2004). Essentially two singularities exist for
this manipulator. An inverse singular configuration occurs whenever one of the three limbs
is fully stretched out, or when the distal link overlaps the proximal link of any limb. At such
configurations, instantaneous rotations of the actuated revolute joint do not alter the end
effector pose.

A direct singular configuration exists whenever the lines collinear with the distal links have
a common intersection for all three limbs. In Figure 2, the direction of these lines is
represented for limb 2 by vector c;. At these singular configurations, an instantaneous
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rotation around the point of intersection of the above mentioned lines, may be obtained
without any displacement of the actuators.

Singular configurations are also mathematically introduced by the constraining matrix P
which do not correspond to physical singular configurations of the manipulator. First, recall
the equilateral triangle A1A2A3 used to model the end effector (Figure 5). The mechanism’s
degrees of freedom include a translational ability in x and y and a rotational ability in the
plane, i.e., angle ¢. These three points were used in the formulation of the 3x6 dimensionally
homogeneous Jacobian matrix J'.

For each of the six sets of potential independent end effector variables for the planar
mechanisms described in Section 2.3.1, the poses listed in Table 1 are observed to yield a
rank deficient constrained and dimensionally homogeneous Jacobian matrix J'P.

It is also observed that these singular configurations occur at all x and y positions tested. For
the first three cases, where two of the three x-coordinates are considered independent, these
singular configurations are introduced when the line made between the two points, whose
x-coordinates are independent, is parallel with the x-axis. Similarly, for the last three cases
where two of the three y coordinates are considered independent, these singular
configurations occur when the line made between the two points, whose y-coordinates are
independent, is parallel with the y-axis.

Figure 5: The end effector of a planar mechanism modelled as a triangle. End effector is at a
mathematically-introduced singularity if independent variables in Case VI are chosen.

Table 1: Observed mathematically-introduced singularities for the 3-RRR planar parallel
manipulator.

The source of this issue is a function of the constraints being imposed by the manipulator’s
limbs.
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The points A1, A> and Aj are constrained to lie in the xy-plane. Recall that the constraining
matrix P is formulated based on the implicit constraints imposed on the end effector by the
manipulator’s limbs, but not explicitly on the architecture itself.

The following is a purely mathematical examination of the terms within the constraining
matrix P which create the rank deficiencies not inherent to the mechanism.

Consider Case VI as listed in Section 2.3.1, where the independent parameters are identified
as A1, Azy and Az, . The following is a symbolic representation of the resulting constraint
matrix:

(28)

Given the independent parameters associated with Case VI, the equivalent angle ¢ of Figure
3 is defined as:

(29)

where ko3 is the length of the line segment between points A2 and As. The angle £ is defined
differently depending on the identified independent parameters. The partial derivative
0C taken with respect to the various independent parameters, appears in the formulation of
many of the entries of equation (28). As a result, when the line between points A; and A3 is
parallel with the y-axis (as depicted in Figure 5), the magnitude of the projection of line
segment (A»A3) onto the y-axis will instantaneously undergo no change for any change in
angle C. Therefore, the partial derivative 0/ 0|As, - Azl is equal to infinity. For instance, for
a pose where ¢ = 0°, the constraining matrix P may be expressed numerically as:

(30)

As discussed, Jacobian matrices obtained for the other five cases at the same pose, are not
rank deficient and therefore may still be used to obtain a measurement of dexterity.
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3. Dexterity measurement

One of the objectives of performing dexterity analyses on parallel manipulators is to obtain
an understanding of how sensitive the end effector pose is relative to the actuator
displacement. As discussed, for some cases, this has historically been achieved through
observation of the Jacobian matrix condition number.

The condition number of the screw based Jacobian matrix J and dimensionally
homogeneous Jacobian matrix J' throughout a chosen path are depicted in Figure 6. Clearly,
the planned trajectory either passes through or very near a singular configuration as
evidenced by the rapidly increasing condition number of the screw-based Jacobian matrix at
approximately t = 0.9 sec. In fact, it can be shown that for the defined path, the manipulator
passes through a direct singular configuration where the three vectors c; depicted in Figure 2
intersect at a single point.

Figure 6: The condition number of each of the formulated Jacobian matrices throughout the
planned trajectory.

However, J', the 3 x 6 dimensionally homogeneous Jacobian matrix developed by (Kim &
Ryu, 2003), does not suggest the same. Instead, its condition number gives the impression
that the manipulator is relatively near isotropic condition throughout the defined path.
Obviously then, the 3 x 6 dimensionally homogenous Jacobian matrix is not suitable as a
dexterity measure. Because three of the six columns of J' are dependent on the other three
columns, the eigenvalues of J' could correspond to velocity directions in the task space
which are not obtainable. Therefore, the eigenvalues and singular values of that matrix are
essentially meaningless.

Figure 6 also depicts the results obtained by observing the condition number of each of the
six constrained dimensionally homogeneous Jacobian matrices. Each of the constrained
Jacobian matrices clearly agree that the arbitrarily chosen trajectory has the manipulator
passing near a singular configuration. The six matrices J'P are constrained based on the
manipulator’s motion capabilities and therefore accurately predict singular configurations,



Quantitative Dexterous Workspace Comparison of Serial and Parallel Planar Mechanism 213

as shown. Furthermore, their terms are dimensionally homogeneous. Therefore, their
condition numbers allow a suitable means of measuring dexterity.

3.1 Reachable workspace

The reachable workspace of the 3-RRR planar parallel manipulator is depicted in Figure 7a).
For the workspace plots presented in this section, the values of the architectural parameters
are r,= 1, r,= 0.4, b = 0.5 and c = 0.4. Here, architectural parameter values are arbitrarily
chosen such that results obtained in workspace analysis are comparable, in this case, with
the serial RRR planar manipulator to be studied later in this chapter.

3.2 Dexterous workspace

In Section 2.3.1, six potential sets of independent end effector velocities were identified to
lead to the formulation of six unique constrained and dimensionally-homogeneous Jacobian
matrices. Using only one of these matrices as a dexterity measure could lead to potential
bias.

To cope with having six constrained and dimensionally-homogeneous Jacobian matrices
from which to measure dexterity, and the issues which arise by introducing the artificial
singularity conditions discussed in Section 2.4, the minimum condition number of all six
Jacobian matrices is proposed as a dexterity measure. This measure is essentially the
minimum ratio between the largest actuator effort required to move in a direction in one of
the six defined task-space variable sets, with the effort required to move in the easiest
direction using the same task space variables. This avoids the issue of introduced
singularities by the constraining matrix as the lowest condition number of the six matrices
will only be high when the manipulator is near a true singular configuration.

It is also suggested that measures using the singular values also be included. By doing so,
both the velocity or accuracy characteristics of the manipulator are obtained, in addition to
an indication of how ‘near-isotropic” the architecture is at the studied pose. In this section,
the singular values of all six Jacobian matrices (provided the corresponding constraining
matrix has not introduced a singularity), must lie within imposed limits.

3.2.1 Dexterity defined by the Jacobian matrix condition number

Figure 7b) depicts the dexterous workspace of the 3-RRR manipulator when the condition
number of J'P; (where the sub-index i refers to Case i fori =1. .. 6), is arbitrarily limited to a
maximum of 60.

It can be shown that the region of the workspace removed from that of the manipulator’s
reachable workspace corresponds to the vicinity of a singular configuration where the three
vectors ¢;intersect at a common point, as discussed in Section 2.4.

Figure 8 depicts the cross section of both the reachable workspace in Figure 7a) and
dexterous workspace in Figure 7b) at ¢ = 0. At this value of ¢, the reachable workspace
border at y = 0 and x ~ 0.42 corresponds to a configuration where both limbs two and three
are in the fully stretched position. However, this region of the workspace also corresponds
to an architectural pose near the direct singular configuration where the three vectors c;
intersect. Therefore, in the vicinity of the reachable workspace border at y = 0, the
manipulator is near both inverse and direct singular configurations. It should be expected
that this region of the workspace has poor dexterity which is confirmed by Figure 8.



214 Parallel Manipulators, New Developments

@) (b)
Figure 7: a) Reachable and b) dexterous workspace of the 3-RRR parallel manipulator when
defined using a maximum allowable Jacobian matrix condition number of 60. Angle ¢is
expressed in radians.

Figure 8: Cross section of both reachable and dexterous workspaces (when defined by a
limit on the Jacobian matrix condition number of 60) of the 3-RRR parallel planar
manipulator at ¢=0.

3.2.2 Dexterity defined by the Jacobian matrix condition number and minimum
singular value

The singular values within the workspace depicted in Figure 7b) vary within the range
0.0056366 < o < 5.7377. The dexterous workspace for this manipulator when also restricted
to a minimum limit on the singular value of o > 0.1 for any of the six Jacobian matrices is
depicted in Figure 9a). An exception is made for the singular values of any of the six
Jacobian matrices should that matrix falsely represent a singular configuration.

The workspace in Figure 7b) has only marginally decreased in volume when compared to
the dexterous workspace obtained when limiting only the Jacobian matrix condition
number. The necking of the workspace at ¢ =~ —0.65 occurs because at this pose, the
manipulator is near a singular configuration where the three vectors ¢;intersect at a common
point.
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3.2.3 Dexterity defined by the Jacobian matrix condition number and maximum
singular value

Similarly, a limit of o < 2.0 is imposed on the six Jacobian matrices, with the exception
noted earlier, to obtain the dexterous workspace for the 3-RRR manipulator depicted. The
resulting workspace obtained using this upper limit is shown in Figure 9b).

Although nearly 10% greater in volume than the dexterous workspace depicted in Figure
9a), both depictions clearly indicate the same singular configuration as discussed earlier
when the distal and proximal links of one of the three kinematic branches overlap.

4. The serial RRR planar manipulator

The serial RRR planar manipulator is one of the most trivial of all manipulators. For that
reason, it is frequently used as a demonstration example in many texts in robot kinematics,
e.., (Tsai, 1999; Craig, 2003). Through these texts, the majority of necessary work for
workspace determination has been presented. Therefore only a brief summary of the
required details will be presented here.

4.1 Mechanism architecture

The RRR serial planar architecture is depicted in Figure 10. It consists of three links and
three actuated revolute joints. The first actuated revolute joint connects the first limb
represented by vector b to the base and may rotate b around point O by angle 6. The second
actuated revolute joint at B connects the first link to the second, represented by vector c. This
second joint rotates ¢ with respect to b by angle 6. Finally, the third actuated revolute joint
at C may rotate the end effector (vector d) by angle 6 with respect to c. Here, the end
effector is represented as triangle A1A>As. Similar to the 3-RRR planar parallel architecture,
the serial RRR planar architecture is confined to two translational DOF and one rotational
DOF, all in the xy-plane.

4.2 Kinematics
As depicted in Figure 10, there are also two solutions to the inverse displacement problem

for this manipulator. These correspond to an elbow up and elbow down configuration of the
manipulator. The inverse displacement solution is provided in (Tsai, 1999; Craig, 2003).
Instead of using an alternative form of the inverse displacement solution to aid in the
formulation of a dimensionally-homogeneous Jacobian matrix, it is greatly simplified in the
case of serial manipulators, if the forward displacement solution is used instead. First,
consider Figure 11, depicting the notation used to relate the three points on the end effector.
The lengths of sides a; and a3 may be found by using the cosine law:

(31)
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@) (b)
Figure 9: Dexterous workspace of the 3-RRR parallel manipulator when defined using a
maximum allowable Jacobian matrix condition number and a) a minimum singular value of
0.1 or b) maximum singular value of 2. Angle ¢is expressed in radians.

If the joint displacements were known, points B, C, A1, A2and A3z could be determined as:

(33)

(34)

(35)

(36)

(37)

where 6 + 6, + 63 = ¢. The first derivative of these equations may be used to formulate the
various elements of a dimensionally-homogeneous Jacobian matrix.

As discussed in (Tsai, 1999), this manipulator is in a singular configuration whenever the
manipulator is either fully extended, i.e., whenever 6 = & = 0°, or when the second link
overlaps the first, i.e., whenever 6= 0° or 6= 180°.
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Figure 10: Architecture of the serial RRR planar manipulator.

4.3 Reachable workspace
For the serial manipulator used in the following numerical examples, architectural
parameters are arbitrarily chosen to be b = ¢ = d = 1. The end effector is represented as an

equilateral triangle with vertices A;. The length of each of the three line segments AP is
equal to 1. Theoretically, infinite rotation of the end effector is obtainable in the plane;
however, in order to obtain a result which may be compared to the parallel case (where for
the architectural variables used, only a finite rotation was achievable), workspace envelopes
obtained in the following sections will be limited to a minimum and maximum rotation of
-7 < ¢ < x ). The reachable workspace for this manipulator, when using the
aforementioned limits, is depicted in Figure 12a). The x and y translations refer to the
displacement of point P on the end effector platform depicted in Figure 10.

It is immediately clear the tremendous advantage the serial manipulator has over its parallel
counterpart in terms of reachable workspace volume.

4.4 Dexterous workspace

As previously discussed, special consideration must be given to the six potential constrained
and dimensionally-homogeneous Jacobian matrices that may be used to measure dexterity
and the potential singularities introduced by the constraining matrix P; (for the parallel
case). For the serial case, the six possible Jacobian matrices are denoted by J; corresponding
to case i as noted in Section 2.3.1.

Similar to the parallel case, never will more than one of the six Jacobian matrices falsely
represent a singular configuration at the same pose. However, it can be demonstrated that
the condition number of all six matrices simultaneously and rapidly increase in the vicinity
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of true singular configurations. Therefore, using the minimum condition number of the six
Jacobian matrices remains a plausible index for dexterity.

Figure 11: End effector notation for the RRR serial manipulator.

4.4.1 Dexterity measured by the Jacobian matrix condition number

Figure 12b) depicts the RRR serial manipulator’s dexterous workspace when restricted to a
maximum limit of 60 on the minimum condition number of any of the six Jacobian matrices
(with the exception noted earlier for Jacobian matrices which falsely represent singular
configurations). The portion of the workspace removed from that of the reachable
workspace in Figure 12a) corresponds to the singular configuration where b and ¢ in Figure
10 are collinear. Therefore, using a limit on the minimum Jacobian matrix condition number
remains a potential index for dexterity as it is expected that the manipulator should have
poor dexterity in this region. Figure 13 is a cross sectional view of the dexterous workspace
depicted in Figure 12b) at ¢ = 0. For the architectural variables used, at ¢ = 0, the serial RRR
manipulator is in an interior singular configuration (Tsai, 1999) at x = 1 and y = 0. At this
pose, vectors b and ¢ overlap. This is depicted in Figure 14.

4.4.2 Dexterity measured by the Jacobian matrix condition number and maximum
singular value

It is important to note that the Jacobian matrix developed for the serial RRR manipulator
maps qto xinstead of x to q as for the 3-RRR parallel manipulator. Therefore, if a
meaningful comparison is to be made, limits on the singular values of J-! should be
imposed, rather than J for the serial manipulator. This is of no consequence in the
comparison of the two manipulators when the condition number limit is imposed as the
condition number of J-1is equal to the condition number of J.

The singular values of J-1 within the workspace depicted in Figure 12b) vary within the
range 0.4309 < o < oo. It can be shown that when the singular values J-! are limited to o <
2.0, to provide comparison to the corresponding result for the 3-RRR planar parallel
manipulator, no workspace volume is obtained. Instead, for illustration purposes, Figure
15a) depicts the workspace volume where singular values are limited to o < 50. Even at the
relatively large allowed value for the singular values, the workspace is significantly reduced
from that of Figure 12b) and is highly segmented.
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@) (b)

Figure 12: a) Reachable and b) dexterous workspace of the planar RRR serial manipulator
when defined using a maximum allowable Jacobian matrix condition number. Angle ¢is
expressed in radians.

4.4.3 Dexterity measured by the Jacobian matrix condition number and minimum
singular value

Similarly, a limit may be imposed on the minimum allowable singular value of any of the
six Jacobian matrices with the exception noted earlier. When the singular values are limited
to o > 0.1, the dexterous workspace depicted in Figure 15b) is obtained.

Figure 13: Cross section of the dexterous workspace when defined by a limit on the Jacobian
matrix condition number of the serial RRR planar manipulator at ¢ = 0.

Recall that the workspace corresponding to the parallel manipulator in Figure 9b) had only
slightly decreased in volume when compared to that of Figure 7b). However, the workspace
of the serial manipulator has not decreased at all.

Again, it should be emphasised that if architectural parameters were optimised to obtain the
largest workspace volume possible, different results would be obtained.
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Figure 14: Singular configuration of the serial RRR manipulator.

Recall that the workspace corresponding to the parallel manipulator in Figure 9b) had only
slightly decreased in volume when compared to that of Figure 7b). However, the workspace
of the serial manipulator has not decreased at all.

Again, it should be emphasised that if architectural parameters were optimised to obtain the
largest workspace volume possible, different results would be obtained.

5. Dexterous workspace comparison of parallel and serial planar
manipulators

In (Pond, 2006; Pond & Carretero, 2007), different parallel manipulators were quantitatively
compared in terms of dexterity using the formulation describer earlier for the dimensionally
homogeneous constrained Jacobian matrix. This section will study the effect of the
arbitrarily chosen limits on the condition number and singular values on the results
obtained for comparison between the serial and parallel manipulators discussed in this
chapter. This is the first time such quantitative study has been made for such dissimilar
architectures.

For each of the following three subsections, a set of curves will be provided depicting the
difference in workspace volume between the serial and parallel manipulators as the limits
used to obtain them are varied. In order to better illustrate the changes, the plots are
presented on suitable scales.

@) (b)
Figure 15: Dexterous workspace of the planar RRR serial manipulator when defined using a
maximum allowable Jacobian matrix condition number and a) maximum singular value of
50 or b) minimum allowable singular value of 0.1. Angle ¢is expressed in radians.
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5.1 Dexterity measured by Jacobian matrix condition number

Figure 16a) depicts the dexterous workspace size as a function of the limiting value as the
maximum allowable Jacobian matrix condition number. This set of curves emphasises the
difference in size between the workspace of the two manipulators at limits of high condition
numbers. Note that the y-axis of the graph is on a log scale.

5.2 Dexterity measured by Jacobian matrix condition number and minimum singular
value

As noted earlier, the range of singular values within the serial manipulator’s workspace is
fairly large (0.4309 < o < ). However, as Figure 16b) suggests, singular values are far
denser in the lower end of this range.

In the previous section, when the singular values were limited to a minimum of o > 0.1, the
serial manipulator had not decreased in volume yet that of the parallel manipulator had. It
is important to recall that when the limit is imposed on the lowest allowable singular value,
an empbhasis is being placed on obtaining high degrees of accuracy and stiffness. Figure 16b)
clearly shows, however, that the volume of the serial manipulator’s workspace rapidly
decreases through the approximate range 0.25 < omin < 0.4. Above this range, the parallel
manipulator provides the largest workspace volume.

Therefore, these results suggest that, of the two manipulators, for the architectural variables
used, the parallel manipulator outperforms the serial manipulator within the range of
approximately omin > 0.4. Naturally, this conclusion can only be made for the specific
architectural variables used in this study.

@) (b) ©

Figure 16: Dexterous workspace comparison based on a) a limit on the condition number, b)
a limitation on the minimum allowable singular value, and c) a limitation on the maximum
allowable singular value.

5.3 Dexterity measured by Jacobian matrix condition number and maximum singular
value

Figure 16c) compares the dexterous workspace volumes of both the serial and parallel
planar manipulators when limited by the condition number and a maximum singular value.
Recall that the range of singular values within the serial manipulator’s workspace is much
larger than the corresponding range for the parallel manipulator. The workspace volume of
the serial manipulator only begins to significantly increase in volume at a relatively higher
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limit of approximately omax > 2. Conversely, at this limit, the workspace corresponding to
the parallel manipulator has obtained its full volume as depicted in Figure 16c).

This is an interesting result as lower singular values correspond to higher end effector
velocities. This suggests that the parallel architecture studied also provides the largest
workspace volume when high end effector velocities are required, to a limit of
approximately omax > 4 where the serial manipulator then provides the largest workspace
volume.

6. Conclusions

Through either method of obtaining a constrained dimensionally homogeneous Jacobian
matrix (proposed by (Gosselin, 1992) or by (Pond & Carretero, 2006)) for planar
mechanisms, a choice exists on which of the potential six Cartesian velocity components on
the end effector be used to define the task space velocity variables. The choice has an
influence on the resulting Jacobian matrix and therefore its condition number and singular
values. Without constraining the Jacobian matrix, the condition number was demonstrated
to be essentially meaningless, as in (Kim & Ryu, 2003).

In terms of measuring dexterity, the constrained dimensionally homogeneous Jacobian
matrices (J'P) are superior to the screw based Jacobian matrix (J) in that they are
dimensionally consistent. Furthermore, the six matrices (J'P) are superior to the 3 x 6
dimensionally homogeneous matrix (J') in that they are constrained, and therefore provide
true dexterous information.

The condition number and singular values of each of the six matrices (J'P) are different for
any given pose. Therefore, dexterity measures involving only one of the six (J'P) matrices
are potentially bias. Four potential strategies for dexterity measurement have been proposed
based on the condition number and/or singular values of the Jacobian matrices obtained in
all six cases. Each measure has a distinct physical meaning, as discussed.

In sum, the Jacobian matrix formulation presented in this chapter allows, for the first time,
to quantitatively compare different mechanism architectures with complex degrees of
freedom in terms of dexterity. Moreover, as illustrated in this chapter, the formulation is not
limited to parallel manipulators as it can also be used to quantitatively compare the
dexterity of different architectures as long as the end effector is represented by an equivalent
set of points. Quantitative dexterity comparisons will allow robot designers to better select
proper mechanisms for specific tasks.
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1. Introduction

Parallel kinematic machines (PKM) are commonly claimed as appealing solutions in many
industrial applications due to their inherent structural rigidity, good payload-to-weight
ratio, high dynamic capacities and high accuracy (Tlusty et al., 1999; Tsai, 1999; Merlet, 2000;
Wenger et al., 2001). However, while PKM usually exhibit a much better repeatability
compared to serial mechanisms, they may not necessarily possess a better accuracy that is
limited by manufacturing/assembling errors in numerous links and passive joints (Wang &
Masory, 1993). Thus, the PKM accuracy highly relies on an accurate kinematic model, which
must be carefully tuned (calibrated) for each manipulator individually.

Similar to serial manipulators, PKM calibration techniques are based on the minimization of
a parameter-dependent error function, which incorporates residuals of the kinematic
equations (Schrder et al., 1995; Wampler et al., 1995; Fassi et al., 2007; Legnani et al., 2007).
For parallel manipulators, the inverse kinematic equations are considered computationally
more efficient, contrary to the direct kinematics, which is usually analytically unsolvable for
PKM. But the main difficulty with this technique is the full-pose measurement requirement,
which is very hard to implement (Innocenti, 1995; Iurascu & Park, 2003; Daney, 2003; Jeong
et al., 2004; Huang et al., 2005). Hence, a number of studies have been directed at using the
subset of the pose measurement data, which however creates another problem, the
identifiability of the model parameters (Khalil & Besnard, 1999; Daney & Emiris, 2001;
Besnard & Khalil, 2001; Rauf et al., 2004, 2006).

Popular approaches in parallel robot calibration deal with one-dimensional pose errors
using a double-ball-bar system or other measuring devices as well as imposing mechanical
constraints on some elements of the manipulator (Zhuang et al., 1999; Thomas et al., 2003;
Daney, 1999). However, in spite of hypothetical simplicity, it is hard to implement in
practice since an accurate extra mechanism is required to impose these constraints.
Additionally, such methods reduce the workspace size and the identification efficiency.
Another category of calibration methods, the self- or autonomous calibration, is
implemented by minimizing the residuals between the computed and measured values of
the active and/or redundant joint sensors (Hesselbach et al., 2005). Adding extra sensors at
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usually unmeasured joints is very attractive from a computational point of view, since it
allows getting the data in the whole workspace and potentially reduces impact of the
measurement noise. However, only a partial set of the parameters may be identified in this
way, since the internal sensing is unable to provide sufficient information for the robot end-
effector absolute location (Zhuang, 1997; Williams et al., 2006).

More recently, several hybrid calibration methods were proposed that utilize intrinsic
properties of a particular parallel machine allowing extracting the full set of the model
parameters (or the most essential of them) from a minimum set of measurements. It worth
mentioning an innovative approach developed by Renaud et al. (2004 - 2006) who applied
the vision-based measurement technique for the parallel manipulators calibration from the
leg observations. In this approach, the source data are extracted from the leg images,
without any strict assumptions on the end-effector poses. The only assumption is related to
the manipulator architecture (the mechanism is actuated by linear drives located on the
base). However, current accuracy of the camera-based measurements is not high enough yet
to apply this method in industrial environment.

This chapter summarises the authors’ results in the area of parallel robotics (Pashkevich et
al., 2005, 2006) and focuses on the calibration of the Orthoglide-type mechanisms, which is
also actuated by linear drives located on the manipulator base and admits technique of
Renaud et al. (2004, 2005). But, in contrast to the known works, our approach assumes that
the leg location is observed for specific manipulator postures, when the tool centre point
(TCP) moves along the Cartesian axes. For these postures and for the nominal Orthoglide
geometry, the legs are strictly parallel to the corresponding Cartesian planes. So, the
deviations of the manipulator geometry influence on the leg parallelism that gives the
source data for the parameter identification. The main advantage of this approach is the
simplicity of the measuring system that can avoid using computer vision and is composed
of standard comparator indicators, which are common in industry.

2. Orthoglide mechanism

2.1 Manipulator architecture

The Orthoglide is a three d.o.f. parallel manipulator actuated by linear drives with mutually
orthogonal axes. Its kinematic architecture is presented in Fig. 1 and includes three identical
parallel chains that will be further referred to as “legs”. Each manipulator leg is formally
described as PRPaR - chain, where P, R and Pa denote the prismatic, revolute, and
parallelogram joints respectively. The output machinery (with a tool mounting flange) is
connected to the legs in such a manner that the tool moves in the Cartesian space with fixed
orientation (i.e. restricted to translational motions). The Orthoglide workspace has a regular,
quasi-cubic shape. The input/output equations are simple and the velocity transmission
factors are equal to one along the X, y and z direction at the isotropic configuration, like in a
conventional serial PPP machine. The latter is an essential advantage for machining
applications (Wenger & Chablat, 2000; Chablat & Wenger, 2003).

Another specific feature of the Orthoglide mechanism, which will be further used for
calibration, is displayed during the end-effector motions along the Cartesian axes. For
example, for the x-axis motion, the sides of the x-leg parallelogram must retain strictly
parallel to the x-axis. Hence, the observed deviation may be a data source for calibration.
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Fig.1. The architecture of Orthoglide manipulator (a) and kinematics of its leg (b)
(© CNRS Phototheque / CARLSON Leif)

For a small-scale Orthoglide prototype used for the calibration experiments, the workspace
size is approximately equal to 200x200x200 mm3 with the velocity transmission factors
bounded between 1/2 and 2 (Chablat & Wenger, 2003). The legs nominal geometry is
defined by the following parameters: L = 310.25 mm, d = 80 mm, r = 31 mm where L, d are
the parallelogram length and width, and r is the distance between the points C; and the tool
centre point P (see Fig. 1b).

2.2 Modelling assumptions
Following previous studies on the PKM accuracy (Wang & Massory, 1993; Renaud et al,;
2004, Caro et al., 2006), the influence of the joint defects is assumed negligible compared to
the encoder offsets and the link length deviations. This validates the following modelling
assumptions:
i.  the manipulator parts are supposed to be rigid bodies connected by perfect joints;
ii. the manipulator legs (composed of a prismatic joint, a parallelogram, and two
revolute joints) generate a four degrees-of-freedom motions;
iii. the articulated parallelograms are assumed to be perfect but non-identical;
iv. the linear actuator axes are mutually orthogonal and are intersected in a single
point to ensure a translational movement of the end-effector;
v. the actuator encoders are perfect but located with some errors (offsets).
Using these assumptions, calibration equations will be derived based on the observation of
the parallel motions of the manipulator legs.

2.3 Kinematic model

Since the kinematic parallelograms are admitted to be non-identical, the kinematic model
developed in our previous works (Pashkevich et al., 2005, 2006) should be extended to
describe the manipulator with different length leg parameters.

Under the adopted assumptions, similar to the equal-leg case, the articulated parallelograms
may be replaced by the kinematically equivalent bar links. Besides, a simple transformation
of the Cartesian coordinates (shifted by the vector (r, r, r)7, see Fig. 1b) allows us to eliminate
the tool offset. Hence, the Orthoglide geometry can be described by a simplified model,
which consists of three rigid links connected by spherical joints to the tool centre point at
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one side and to the allied prismatic joints at another side (Fig. 2). Corresponding formal
definition of each leg can be presented as PSS, where P and S denote the actuated prismatic
joint and the passive spherical joint respectively.

z

(O’ 0’ pz) pz = L

(Dx> Dy» P2)

0,
%—) o]l —
0,p,00 ¥ =
0, py=L
(px, 0,0)
X
(@) (b)

Fig. 2. Orthoglide simplified model (a) and its ““zero” configuration (b)

Thus, if the origin of a reference frame is located at the intersection of the prismatic joint
axes and the x, y, z-axes are directed along them (see Fig. 2), the manipulator kinematics
may be described by the following equations

(p, +Ap,)+cosb.cos L. +r

p= sin@, cos B.L, (1a)
—sin f,L,
-sinB L,
p=|(p,+Ap,)+cosO cos B L, +r (1b)

sind, cos B,L,

sind, cos B.L,
(p, +Ap,)+cosB,cos B.L, +r

where p = (py, py, pz)T is the output vector of the TCP position, p = (o, py, ;)T is the input
vector of the prismatic joints variables, Ap = (Apy, Ap,, Ap:)T is the encoder offset vector, 6;, B;,
ie{x, y, z} are the parallelogram orientation angles (internal variables), and L; are the length
of the corresponding leg.

After elimination of the internal variables 6;, B; , the kinematic model (1) can be reduced to
three equations

(pi = (i +Ap)) +p5 +pi =L} )
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which includes components of the input and output vectors p and p only. Here, the
subscriptsi, j,k € {x,y,z}, i # j # k are used in all combinations, and the joint variables p;

are obeyed the prescribed limits p, ., < p; < P defined in the control software (for the

Orthoglide prototype, pmin=-100 mm and pmax = +60 mm).
It should be noted that, for the case Ap,=Ap,=Ap,=0 and L =L =L =L, the nominal

“mechanical-zero” posture of the manipulator corresponds to the Cartesian coordinates
po= (0,0, 0)T and to the joints variables py = (L, L, L). Moreover, in this posture, the x-, y- and
z-legs are oriented strictly parallel to the corresponding Cartesian axes. But the joint offsets
and the leg length differences cause the deviation of the “zero” TCP location and
corresponding deviation of the leg parallelism, which may be measured and used for the
calibration. Hence, six parameters (Apy, Apy, Ap., Ly, Ly, L) define the manipulator geometry
and are in the focus of the proposed calibration technique.

2.4 Inverse and direct kinematics
The inverse kinematic relations are derived from the equations (2) in a straightforward way
and only slightly differ from the “nominal” case:

Pi:l’i"'si\/L?_P?_P/% -Ap; ®)

where s,, sy, s, €{ £1} are the configuration indices defined for the “nominal” geometry as
the signs of px - px, Py - Py, Pz — Pz respectively. It is obvious that expressions (3) give eight
different solutions, however the Orthoglide prototype assembling mode and the joint limits
reduce this set to a single case corresponding to sy =sy =s, =1.

For the direct kinematics, equations (2) can be subtracted pair-to-pair that gives linear
relations between the unknowns py, py, p-, which may be expressed in the parametric form
as

2
= pitdp  t L ’ (4)
2 pi+Ap; 2(p;+Ap;)

where ¢ is an auxiliary scalar variable. This reduces the direct kinematics to the solution of a

quadratic equation At* + Bt +C =0 with the coefficients

A=Y (o280 (o480 B=[[oi+ap)" = D Lo+ Ap)) (o4 + Apy)s
i

i#] i#j#k

c=[1(p+2p) -(Z(p,- +Ap,)’ /4—ZL?/2j+ D Li(p,+Ap,) (o +Ap,) 14

i#j#k
where i, j,k €{x,y,z}. From two possible solutions that give the quadratic formula, the

Orthoglide prototype (see Fig.1) admits a single one ¢=(-B++B>—44C)/(24)
corresponding to the selected manipulator assembling mode.
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2.4 Differential relations
To obtain the calibration equations, let us derive first the differential relations for the TCP

deviation for three types of the Orthoglide postures:

i.  “maximum displacement” postures for the directions x, y, z (Fig. 3a);

ii. “mechanical zero” or the isotropic posture (Fig. 3b);

iii. “minimum displacement” postures for the directions x, y, z (Fig. 3c);
These postures are of particular interest for the calibration since, in the “nominal” case, a
corresponding leg is parallel to the relevant pair of the Cartesian planes.

N

p.=Lcosa

py=L+Lsino
(a) : XMax posture (b) : Zero posture (c) : XMin posture

Fig. 3. Specific postures of the Orthoglide (for the x-leg motion along the Cartesian axis X)

The manipulator Jacobian with respect to the parameters Ap =(Apy, Apy, Ap;) and L = (L,
Ly, L;) can be derived by straightforward differentiating of the kinematic equations (2),

which yields

p—p. P, D o p—p. O 0 p—pP. P, D > L 00

p. p~p, P. |'=-=| 0 p-p, O || p. p-p, p. |'=—=[0L 0
op JL

p. P, D.mp. 0 0 p.-p. D P, P.P. 00L

Thus, after the matrix inversions and multiplications, the desired Jacobian can be written as

I.0) =17, @.0): I, @.p)] )
where
- -1 r -1
1 P, p: Pizpy Py P
Di=Pc  P.— P L, L, L,
X z X p p z
LO=[-P— 1 B 0= 2 S 8
PP, P, =P, Y y
b P 1 Py Py P: =P
| p.—p. DP.—p. ] | L L L |

It should be noted that, for the sake of computing convenience, the above expression
includes both the Cartesian coordinates p, py, p. and the joint coordinates p, p,, p., but only
one of these sets may be treated as independent taking into account the kinematic equations.
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For the “Zero” posture, the differential relations are derived in the neighbourhood of the
point {po = (0, 0, 0) ; po = (L, L, L)}, which after substitution to (5) gives the Jacobian matrix

1 0 0!-10 0
|
Jo=l 0 1 0'0 -1 0 (6)
0 0 110 0 -1

Hence, in this case, the TCP displacement is related to the joint offsets and the leg lengths
variations AL; by trivial equations
Api:Api_ALi; ie{xayaz} (7)

For the “XMax” posture, the Jacobian is computed in the neighbourhood of the point
{p=(LS,,0,0); p=(L+LS,,LC,, LC,)}, where a is the angle between the y-, z-legs and the

X-axes: o = asin (pmax/L); S,=sin(e), C,=cos(a).This gives the Jacobian

10 0i-1 0 0
o= 1, 1 0 i-T,-¢c; 0 ®)
7, 0 1 i-T, 0 -C}

where 7, =tan(e) . Hence, the differential equations for the TCP displacement may be

written as Ap,. =Ap, —AL

X

Ap, =T, Ap, +Ap, ~T,AL ~C,'AL,

©)
Ap, =T, Ap, +Ap, —T,AL_—C, AL,

It can be proved that similar results are valid for the YMax and ZMax postures (differing by
the indices only), and also for the XMin, YMin, ZMin postures. In the latter case, the angle a
should be computed as a =asin(p,,,/L) -

3. Calibration method

3.1 Measurement technique

To identify the Orthoglide kinematic parameters specified in the previous section, two
approaches can be used, which employ different measurement techniques to evaluate the
leg-to-surface parallelism. The first of them (Fig. 4a) assumes two measurements for the
same leg posture (to assess distances from both leg ends to the base surface). The second
technique (Fig. 4b) assumes a fixed location of the measuring device but two distinct leg
postures, which are assumed to be parallel to each other in the nominal case.

It is obvious that, for the perfectly calibrated manipulator, both methods give zero
differences for each measurement pair. In contrasts, the non-zero differences contain source
information for the parameter identification. However, the first method involves absolute
measurements that require essential implementation efforts; besides it allows evaluating
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parallelism only for the X- and Y-legs with respect to the XY-plane. So, the second method
will be used here.

Posture #1

Manigulator legs

Manipulator legs

" Base plane :

Posture #2
d>
Manipulator legs

v v
Base plane O A=d,-d,
o*
(@) (b)
single-posture / double-sensor method double-posture / single-sensor method

Fig. 4. Measuring the leg parallelism with respect to the base plane

For this method, which employs the relative measurements and allows assessing the leg
parallelism with respect to both relevant planes (XY- and XZ-planes for the X-leg, for
instance), the calibration experiment may be arranged in the following way:

Step 1. Move the manipulator to the Zero posture; locate two gauges in the middle of the X-
leg (orthogonal to the leg and parallel to the axes Y and Z); get their readings.

Step 2. Move the manipulator sequentially to the XMax and XMin postures, get the gauge
readings, and compute the differences Ay, Az, Ay, , Az, with respect to the “Zero”

posture values.
Step 3+. Repeat steps 1, 2 for the Y- and Z-legs and compute the differences Ax;, Az: , Ax)
Az;,and Ax!, Ay., Ax, Ay, corresponding to these legs.

In the above description, the variable following the symbol A denotes the measurement
direction (x, y or z), the subscript defines the manipulator leg, and the superscript indicates
the manipulator posture (‘+" for XMax and ‘- for XMin). For example, Az] denotes the z-

coordinate deviation of the X-leg for the XMax posture with respect to Zero location.

3.2 Calibration equations

The system of calibration equations can be derived in two steps. First, it is required to define
the gauges’ initial locations that are assumed to be positioned at the leg middle at the Zero
posture, i.e. at the points (p+r,)/2, ie{x,y,z} where the vectors r; define the prismatic
joints centres: r,=(L+Ap,;0;0)"; r,=(0;L+Ap,;0)"; r.=(0; 0; L+Ap,)". Hence, using the

equation (7), the gauge initial locations can be expressed as
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g0 =[ (L-AL)/2+Ap;  (Ap,—AL)/2  (Ap,—AL)/2]"
gl =[ (Ap,-AL)/2  (L-AL)/2+Ap;: (Ap.—AL)/2]" (10)

gl =[ (Ap,—AL)/2  (Ap,—AL)/2 (L-AL)/2+Ap,]"

Afterwards, for the XMax, YMax, ZMax postures, the leg spatial location is also defined by
two points, namely, (i) the tool centre point p, and (ii) the centre of the prismatic joint r;. For
example, for the XMax posture, the TCP position is p™ =(LS, +Ap —AL; *; *), the

prismatic joint position is r™ =(L+LS, +Ap,; 0; 0). So, the leg is located along the line

s.(1)=pp™ + (- ™ pue01]

Since the x-coordinate of the gauge is kept constant (for X-leg measurements), the parameter
u may be obtained from the equation [s_(x)], =[g’],, which yields:

u=05+S,-S AL /L
Hence, after some transformations, the deviations of the X-leg measurements (between the
XMax and Zero postures) may be expressed as

Av: =(0.5+5,)T, Ap, +5, Ap, —(0.5+5,)T, AL, ~((0.5+5,)C,' —0.5)AL,

Azt =(0.5+8,)T, Ap, +S, Ap. —(0.5+S,)T, AL, —((0.5+5,)C,' —0.5) AL,

A similar approach may be applied to the XMin posture, as well as to the corresponding

postures for the Y- and Z-legs. This gives the system of twelve linear equations in six
unknowns:

_ T
a b 0 —¢ -b 0 Av?
b 0 -p - 0 )

(I (I Ax;

a b, 0 —¢ -b, 0 i

by a 0 —b, —c; 0 [[ap,] |2

0 a b 0 —¢ —b ||, | [N
0 b a 0 -b —¢ ||Ap, Az} 11)

a, b2 0 - C — b2 ALX Ay;

by ag 0 -b, —c;||AL, Az

aq 0 b -¢ 0 -p AL,

AX+

b 0 aq -b 0 —¢ z

N

a 0 b, —c, 0 =b Az,

b, 0 a —by 0 -c, Ax;

[Az, |
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where g, =sin(o,); b, =(0.5+sin(e,)) tan(e,); ¢, =(0.5+sin(a,))/cos(a,)—0.5; ie{l,2}, and
o, = asin(p,,,./L) > 0; o,=asin(p,,,/L)<0. This system can be solved using the
pseudoinverse of Moore-Penrose, which ensures the minimum of the residual square sum

for corresponding linear approximation of the kinematic equations that is valid for small
values of Ap ,Ap,,...AL , AL, . Otherwise, it is prudent to apply straightforward numerical

optimisation, which fits the experimental data to the manipulator kinematic model (1).

3.4 Calibration accuracy

Because of the measurement noise, the developed technique may produce some errors in
estimates of the model parameters. Thus, for practical applications, it is worth to evaluate
the statistical properties of the calibration errors.

Within the linear calibration equations (11), the impact of the measurement noise may be
evaluated using general techniques from the identification theory, under the standard

assumptions concerning the primary measurement errors &£(.) (zero-mean independent and

identically distributed Gaussian random variables with the standard deviation c). For these
assumptions, the covariance matrix of the estimated parameters is written as (Ljung, 1999)

V(Ap, ALY = (371" - 37 -E(As-AsT)-J- (37T 12)

where E(.) denotes the mathematical expectation, J is the identification Jacobian, and As is
the vector of the measurement errors in the right-hand side of the system (11). However, in
contrast to the standard technique, the vector As includes some statistically-dependent
components because the same measurement values, corresponding to the Zero position, are
subtracted from those corresponding to the Max and Min postures. In particular,

As=[E())—E(D), £ =GN EED-EED] (13)

where the index sequence strictly corresponds to (11). Thus, the covariance E(As-As”) is the

12x12 non-identity matrix that after relevant transformations may be expressed as

(14)

G 0 0 (2)
E(As~Asr)=0'z~ 0 G 0 : G=|
0 0 G 0

—_— o N O
(=R R
N O = O

12x12

Hence, using expressions (12), (14) it is possible to evaluate the identification accuracy (via
AL_} provided the

measurement error parameter ¢ is known. For instance, for the Orthoglide prototype
described in sub-section 2.1 and the Max/Min posture characteristic angles ¢, =11.0° and

the covariance matrix (12)) for the set of parameters {Ap,, Ap,,...AL,

a, =—18.7°, the measurement noise with ¢ = 107 mm causes the mean-square errors for the
Ap,., Ap,,...AL , AL, of about 0.07 mm.
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4. Experimental results

4.1 Experimental setup

For experimental verification of the developed technique, we used the measuring system
composed of standard comparator indicators with resolution of 10.0 pm. The indicators
were attached to universal magnetic stands that allow fixing them on the manipulator base.
This system is sequentially used for measuring the X-, Y-, and Z-leg parallelism while the
manipulator moves between the Max, Min and Zero postures. (It is obvious that for
industrial applications it is worth using more sophisticated digital indicators with the
resolution of 1.0 pm or less, which yield more accurate calibration results.)

Fig. 5. Experimental setup for calibration experiments

For each measurement, the indicators are located on the mechanism base in such a manner
that a corresponding leg is admissible for the gauge contact for all intermediate postures
(Fig. 5). The Min and Max postures are constrained by the software limits and defined as
Puin =—100.00 mm and p,, =+60.00 mm respectively. Initial position of the indicator

corresponds to the leg middle point at the manipulator Zero posture.

During experiments, the legs were moved sequentially via the following postures:
Zero > Max - Min —» Zero— ... . To reduce the measurement errors, the measurements
were repeated three times for each leg. Then, the results were averaged and used for the
parameter identification. It should be noted that the measurements demonstrated very high
repeatability compared to the encoder resolution (dissimilarity was less than 20.0 pm).

4.2 Calibration results and their analysis

The experimental study included three types of experiments targeted to the following
objectives: (#1) validation of modelling assumptions; (#2) obtaining source data for the
parameter identification; and (#3) verification of the calibration results.

Experiment #1. The first calibration experiment demonstrated rather high parallelism
deviation for the legs at the Max and Min postures, up to 2.37 mm as shown in Tablel. This
indicated low accuracy of the nominal kinematic model and motivated necessity of the
calibration. On the other hand, the milling accuracy evaluated in separate tests was quite
good. However, this is not an indicator of high absolute accuracy but just a proof of the
Orthoglide architecture advantages (the milling tests were perfect just because of the high
homogeneity of the manipulator workspace in the neighbourhood of the isotropic location).
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The straightforward application of the proposed calibration algorithm to the data set #1 was
not optimistic: in the frames of the adopted kinematic model the root-mean-square (r.m.s.)
deviation for the legs can be reduced down from 1.19 mm to 0.74 mm only (see Table 1
where Ax, = Ax) -Ax,, Ax, = Ax! —Ax;, etc.). Besides, the statistical estimation of the

measurement noise parameter ¢ (based on the residual analysis) also yielded unrealistic
result compared to the encoder resolutions (0.01 mm). This impelled to conclude that some
modelling assumptions are not valid and the manipulator mechanics required more careful
tuning, especially orientation of the linear actuator axes (that are assumed to be mutually
orthogonal and to intersect in a single point). Thus, the manipulator mechanics was re-
tuned, in particular spatial locations of the actuator axes were adjusted.

Data Source ‘ Axy ‘ Ax; | Ayx ‘ Ay; ‘ Az, | Azy ‘ r.m.s.
Experiment #1 (before mechanical tuning and before calibration)
Measurements #1 +0.52 | +1.58 | +237 | 025 | -057 | -0.04 1.19
_ Expected 094 | +063 | +1.07 | -084 | -0.27 | +035 0.74

Improvement

Experiment #2 (after mechanical tuning, before calibration)

Measurements #2 -0.43 -0.37 +0.42 -0.18 -1.14 -0.70 0.62
_ Expected 028 | +025 | +0.21 | -0.14 | -0.13 | +0.09 0.20
improvement

Experiment #3 (after calibration and adjusting of Ap)

Measurements #3 -0.23 +0.27 +0.34 -0.10 -0.09 +0.11 0.21
_ Expected 2029 | +023 | +025 | -017 | -0.10 | +0.08 0.20
improvement

Table 1. Experimental data and expected improvements of accuracy via calibration [mm]

Experiment #2. The second calibration experiment (after mechanical tuning) yielded lower
parallelism deviations, less than 0.62 mm in terms of the deviations Ax , Ax_, ... (see Table

1), which is about twice better than in the first experiment. Besides, the expected residual
reduction was also essential (0.20 mm) that justified validity of the modelling assumptions.
For these data, the developed calibration algorithm was applied for three sets of the model
parameters: for the full set {Ap, AL} and for the reduced sets {Ap}, {AL}. As follows from the
identification results (Tables 2, 3), the calibration algorithm is able to identify
simultaneously both the joint offsets and Ap and the link lengths AL. However, both Ap and
AL (separately) demonstrate roughly the same influence on the residual reduction, from
0.32 mm to 0.14 mm (in terms of the deviations Ax;, Ax, Ax], Ax_ ,...), while the full set {Ap,

AL} gives further residual reduction down to 0.12 mm only. This motivates considering Ap
as the most essential parameters to be calibrated. Accordingly, the identified vales of joint
offsets Apx, Apy, Ap, were incorporated in the Orthoglide control software.

Experiment #3. The third experiment was targeted to the validation of the calibration
results, i.e. assessing the leg parallelism while using the kinematic model with the
parameters identified from the data set #2. This experiment demonstrated very good
agreement with the expected values of Ax;, Ax, Ax], Ax_,.... In particular, the maximum

deviation reduced down from 0.62mm to 0.24 mm, and the root-mean-square value
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decreased down from 0.32 mm to 0.15 mm (expected value is 0.14 mm). On the other hand,
further fitting of the kinematic model to the third data set gives both negligible
improvement in the deviations and very small alteration of the model parameters. It is
evident that further reduction of the parallelism deviation is bounded by the manufacturing
errors and, by non-geometric reasons.

Experiment 2 Experiment 3
Residuals Exper. Expected improvement Exper. Expected improvement

date | (ap ALY| (Ap} | (AL} | M7 |jap AL} fapl | (AL}

Ax; -0.19 -0.09 -0.03 -0.03 -0.07 0.02 0.04 0.04
Ay? 0.08 0.12 0.03 0.04 0.02 0.04 0.02 0.02
Ax; 0.22 0.09 0.13 0.12 0.10 -0.07 -0.06 -0.06
Ay -0.34 -0.10 -0.13 -0.13 -0.24 0.01 0.00 0.00
Ax; -0.29 -0.41 -0.32 -0.33 0.01 -0.02 -0.01 0.00
Az! -0.52 -0.45 -0.39 0.42 0.11 -0.02 -0.03 0.04
Ax] 0.08 0.23 0.26 0.26 -0.19 -0.05 -0.04 -0.04
Az, 0.62 0.55 0.57 0.56 -0.03 0.10 0.09 0.09
Ay? 0.02 -0.04 -0.13 -0.12 0.07 -0.03 -0.05 -0.05
Az} -0.24 0.29 -0.26 -0.27 -0.21 -0.05 -0.07 -0.07
Ay’ 0.20 -0.03 0.06 -0.06 0.17 0.04 0.03 0.03
Az, 0.45 0.48 0.51 0.50 0.27 0.11 0.10 0.10
Average 0.32 0.12 0.14 0.14 0.15 0.13 0.14 0.14

Table 2. Residual compensation using different sets of kinematic parameters [mm]

Set of Identified values [mm] Residuals
parameters Apx Apy Ap- AL, AL, AL,
{Ap, AL} 4.66 -5.36 1.46 5.20 -5.96 3.16 0.12
{Ap} -0.48 0.49 -1.67 - - - 0.14
{AL} - - - 0.50 -0.52 1.69 0.14

Table3. Calibration results for parameters Apand AL
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Resume. Hence, the calibration results confirm validity of the proposed identification
technique and its ability to tune the joint offsets and link lengths from observations of the
leg parallelism. However, for these partucular experiments, combined influence of the
parameters {Ap, AL} may be roughly decribed by the diffrence {Ap - AL} that allows us to
simplify modifications of the kinematic model included in the control software. Another
conclusion is related to the modelling assumption: for further accuracy improvement it is
prudent to generalize the manipulator model by including parameters describing
orientation of the prismatic joint axes, which is equavalet to relaxing some modelling
assumption.

5. Conclusions

Recent advances in parallel robot architectures encourage related research on kinematic
calibration of parallel mechanisms. This paper proposes a novel calibration approach based
on observations of manipulator leg parallelism with respect to the Cartesian planes.
Presented for the Orthoglide-type mechanisms, this approach may be also applied to other
manipulator architectures that admit parallel leg motions (along the Cartesian axes) or, in
more general case, allow locating the leg in several postures with a common intersection
point.

The proposed calibration technique employs a simple and low-cost measuring system
composed of standard comparator indicators attached to the universal magnetic stands.
They are sequentially used for measuring the deviation of the relevant leg location while the
manipulator moves the tool-center-point in the directions x, y and z. From the measured
differences, the calibration algorithm estimates the joint offsets and link lengths that are
treated as the most essential parameters that are difficult to identify by other methods.

The presented theoretical derivations deal with the sensitivity analysis of the proposed
measurement method and also with the calibration accuracy. The validity of the proposed
approach and efficiency of the developed numerical algorithm were confirmed by the
calibration experiments with the Orthoglide prototype, which allowed dividing the residual
root-mean-square by three.

To increase the calibration precision, future work will focus on the development of the
specific assembling fixture ensuring proper location of the linear actuators and also on the
expanding the set of the identified model parameters and compensation of the non-
geometric errors that are not identified within the frames of the adopted model.
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1. Introduction

Parallel manipulators have the advantage of high speed and high precision in the theory of
mechanisms. This has opened up broad possibilities for the use of parallel manipulators in
many fields. But in real applications, due to the inevitable manufacturing tolerances and
assembling errors, the actual kinematic parameters of parallel manipulators are always
unequal to the nominal values and calibration procedures have to be implemented to
compensate the kinematic parameter errors between them.

According to the metrology devices adopted, calibration methods of parallel manipulators
can be classified into two categories, the external calibration methods and the auto-
calibration methods. External calibration methods rely on the precise external 3D measuring
devices, such as laser tracking systems (Koseki et al., 1998; Vincze et al., 1994), mechanical
devices (Jeong et al., 1999) and camera systems (Zou & Notash, 2001; Renaud et al., 2006).
With these external devices, one can measure the end-effector position of parallel
manipulators and calibrate the kinematic parameters by minimizing either the errors
between the measured end-effector positions and the estimated end-effector positions
(Masory et al., 1993), or the errors between the measured joint positions and the estimated
joint positions (Zhuang et al., 1995; Zhuang et al., 1998). The auto-calibration methods rely
on the redundant joint sensors of parallel manipulators, which can be achieved by adding
extra sensors to the uninstrumented joints (Baron & Angeles, 1998; Zhuang, 1997; Wampler
et al., 1995; Patel & Ehmann, 2000), or by constraining the motion of end-effector or some
joints (Khalil & Besnard, 1999; Wang & Masory, 1993). With the redundant joint sensors,
extra information can be obtained for the sampled configurations without employing any
external measuring devices (Hollerbach & Wampler, 1996; Yiu et al., 2003c; Chiu & Perng,
2004), and the auto-calibration procedure is usually implemented by minimizing a function
of closed-loop constraint errors. Obviously, it is more convenient to measure the sampled
configurations by the redundant joint sensors than the external 3D measuring devices.
especially for the parallel manipulator with inherent redundant joint sensors. But it is
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usually difficult to minimize the closed-loop constraint error function, and the calibration
results of the auto-calibration methods are usually dependent on the error function adopted
in the calibration.

In this chapter, we will calibrate the kinematic parameters of a planar 2-dof parallel
manipulator. In the literatures, this type of parallel manipulator has been studied from
different aspects. Yiu and Zhang studied the kinematics of the parallel manipulator (Yiu &
Li, 2003b; Zhang, 2006). Liu studied the singularities of the parallel manipulator with a
geometric method (Liu et al, 2001a; Liu et al.,, 2003). Furthermore, the dynamics and
controller design problem of the parallel manipulator were studied by Liu (Liu et al., 2001a;
Liu et al., 2001b; Liu & Li, 2002), Kock (Kock & Schumacher, 2000a; Kock & Schumacher,
2000Db), Yiu (Yiu & Li, 2001; Yiu & Li, 2003a), Cheng (Cheng et al., 2003), Shen (Shen et al.,
2003) and Zhang (Zhang & Cong, 2005). In this chapter, we will study the calibration and
solve three problems. In the second part of the chapter, based on the study of the
relationship between the projected tracking error of the joint angles and the error of the
sensor zero positions, we propose a projected tracking error function for the calibration of
the sensor zero positions of a planar 2-dof parallel manipulator with a redundant joint
sensor. With a simple searching strategy for the minimal value of the error function, an
auto-calibration procedure is designed, and the validity of the calibration procedure is
verified through actual experiments on a real redundant planar 2-dof parallel manipulator.
In the third part of the chapter, by eliminating the passive joint positions, we derive another
type of error function with only the variables of the active joint positions. Moreover, by
decoupling the products items of the kinematic parameters in the error function into the
linear combinations of a group of new variables, the error function minimization process is
simplified and the calibration precision can be improved further. Based on two error
functions proposed in this section, an auto-calibration method and design procedure is
given, and the validity of the auto-calibration method is studied with stepwise simulations.
Under the assumption that only one coordinate is known accurately forehand, the other 11
kinematic parameters of the parallel manipulator including 3 sensor zero positions, 6 link
lengths and 2 base coordinates can be calibrated precisely. In order to obtain the global
optimum and auto-calibrate all parameters of the parallel manipulator, in the fourth part of
the chapter, three stochastic optimization algorithms including genetic algorithm (Holland,
1975), particle swarm optimization (Kennedy & Eberhart, 1995) and differential evolution
(Storn & Price, 1995) are applied to minimize the error functions proposed in the third part
of the chapter, respectively. In the applications, the performances of the applied algorithms
on the problem are compared under the different methods. Finally, actual calibration is
carried out based on differential evolution algorithms, and the results demonstrate that all
of the 12 parameters of the parallel manipulator are calibrated with high accuracy. We'll end
the chapter with the conclusions.

2. Auto-calibration of sensor zero positions based on the projected tracking
Error

2.1 Calibration problem of the sensor zero positions

The structure of the planar 2-dof parallel manipulator to be calibrated is shown in Fig. 1, in
which the parallel manipulator consists of 6 links with the same lengths, and 3 active joints
located at Ay, Az, A3, and 3 passive joints located at By, By, Bs. The end-effector of the parallel
manipulator coincides with O. According to Fig. 1, a reference frame is established in the
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workspace of the parallel manipulator. The zero positions of the joint angles are all defined
as the positive direction of the X axis of the reference frame, and the positive directions of
the angles are all defined as the anticlockwise direction.

400f

Y(mm)

200§

0

0 200 400
X(mm)

Fig. 1 Structure of the planar 2-dof parallel manipulator

The kinematics of the parallel manipulator has been studied by Yiu and Zhang (Yiu & Li,
2003b; Zhang, 2006), and the end-effector coordinate can be calculated from the active joint
angles through the kinematics. For the active joints located at A1, As, As, each is attached
with a position sensor, through which the active joint angles can be measured. But due to
the assembly errors, there is always some bias angle between each sensor zero position and
the zero position of the active joint. So active joint angles can be formulated as the sum of
the sensors readings and the sensor zero positions.

0.=0,+6,i=123 (1)

in which symbols 6,, i = 1,2,3 refer to the active joint angles, symbols 6,, i = 1,2,3 refer to the
sensor readings and symbols 8., i =1,2,3 refer to the estimations of the sensor zero positions.
Obviously the precision of 8., i = 1,2,3 determines the precision of the parallel manipulator
in real applications. But it is difficult to measure the sensor zero positions directly. So
calibration procedure has to be implemented to estimate their actual values.

Usually, the sensor zero positions are estimated through the following manual procedure.
First move the end-effector to a predefined position in the workspace manually, for which
the corresponding active joint angles 0;, i = 1,2,3 have been known accurately. Then record
the sensor readings 6,, i = 1,2,3 and one can get the estimations of the sensor zero positions
6., i =1,2,3 by subtracting the sensor readings from the active joint angles.

The calibration procedure mentioned above is convenient to be implemented, but the
precision of the calibration results of the sensor zero positions is usually limited, since it is
difficult to move the end-effector to the predefined position precisely, there is always
several millimeter error between the real position of the end-effector and the predefined
position. To solve this problem, Yiu proposed two iterative algorithms to calibrate the
parallel manipulator (Yiu et al., 2003c), but the robustness of Yiu's method was not proved.
Here we propose a new calibration method based on the projected tracking error of the
active joint angles of the parallel manipulator.
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2. 2 Error function based on the projected tracking error
To formulate the tracking error of the parallel manipulator, we define the tracking error of
the end-effector dx, dy and the tracking error of the joint angles d0,, de;, i=1,2,3 as follows:

dx=x-X,dy=y-y )
46 =6 -G, a6 =661, =1,2,3 @

in which symbols (32, y) , é,i,i =1,2,3 and éﬁ,i =1,2,3 refer to the end-effector coordinate,

active joint angles and passive joint angles of the desired path respectively, while symbols
(xy), 6,,i=1,23 and 6, i = 1,2,3 are the counterparts of the real path respectively.

According to (1), the tracking error of the active joint angles d0,, i = 1,2,3 can be formulated
as the sum of the tracking error of the sensor readings df,, i = 1,2,3 and the error of the
sensor zero positions df, i = 1,2,3. So one can have:

o, =4d0,+do,i=1,2,3 3)
in which symbols d6,, , d6., i =1, 2, 3 are defined by

dol = -6
memeTm i1=1,2,3 4)
46 =i -6

where symbols é,;,i =1,2,3 and 8,, i =1, 2,3 refer to the desired sensor readings and real

sensor readings respectively, symbols é;,i =1,2,3 and 6., i = 1,2,3 refer to the actual value
and estimated value of the sensor zero positions respectively. According to (4), the tracking
error of the sensor readings d0,, is defined as the difference between the actual value and the
desired value of the sensor readings, and the error of the sensor zero positions 4@ is defined
as the difference between the estimated value and the actual value of the sensor zero
positions.

Denote the link length of the parallel manipulator by symbol I, and the coordinates of the
three bases by (x,, ), i = 1,2,3. Then according to the kinematics of the parallel manipulator,
one can express end-effector coordinate of the desired path (%,§) through following

equations:

Gl l-cOS(é;) + l-cos(éé) =123 )

N

y= yi, + l-sin(éé) + l-sin(@é)
As a result of trajectory tracking, the real path of the end-effector (x, y) can be expressed as
follows:
x=x, + lecos(0,) + 1*cos(6})
y =y, +1esin(f) + l*sin(@,) i=1,2,3 (6)
Suppose that the estimated values of the sensor zero positions 0., i = 1,2,3 are accurate and

equal to the actual values HAZi,i =1,2,3 exactly, so one can have
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6i=6!,i=1,2,3 @)

According to (7) and (1), the active joint angles can be measured accurately, and both of the
desired path and the real path lie in the configuration space of the paralle] manipulator
accurately. By subtracting (5) from (6), one can formulate the tracking error of the parallel
manipulator as following equations:

xX-X= l-cos(&é) + l-cos(&é) - l-cos(éﬁ) - l-cos(éﬁ)
‘ , . o i=1,2,3 8)
y-7= l-sin(@é) + l-sin(&é) - l-sin(&ﬁ, ) - l-sin(é’é)

Implement the Taylor series expansion on (8) and ignore the high-order items of the
tracking errors, one can have:

dy

{dx}_ -l-sin(?%) -l-sin(:é) [dlgﬂli—l,l?) ©
l-cos(g,;) l.cos(ﬂé) ae;

Solve (9), one can express the tracking error of the joint angles d6; , d6, , i =1, 2, 3 by the
tracking error of the end-effector dx, dy as following equations:

[dﬂ 1 -Cos(éé) —sin(élf) {dx} ‘
N e T . . ,121,2,3 (10)
d} | 1-sin(6;-6})| cos(di) sin(di) L

And the tracking error of the active joint angles dei,i=1,2,3 can be expressed by the tracking
error of the end-effector as follows:

Cos(ébl) sin(él})
l-sin(ég1 - ébl) l-sin(é; - é;})

1
ZZ; _ cos(ébz) sin(ébz) {dx} a1
d&} - l-sin(éu2 - ébz) l-sin(éu2 - ébz) dy

Cos(ég’) sin(ébg’)
_l-sin(él,3 - éf) l-sin(é; - éf)_

Define the tracking error vector of the active joint angles by d6, = [df, df; d6;]T and the
tracking error vector of the end-effector by dxy = [dx dy]T. Then one can express (11) by:

do, = Jedxy (12)

where the symbol | refers to the Jacobian matrix of the active joint angles with the end-
effector coordinate.

With the assumption expressed in (7), one can have df, = df, ,i=1, 2, 3. So (12) can be
formulated as follows:
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d0,, = Jedxy (13)

where the symbol d6,, is defined by d6,, = [d6,, d6;, d6]T.

Define the image space of the Jacobian matrix | as the feasible subspace, and the orthogonal
complement of the feasible subspace as the infeasible subspace. According to (13), the
tracking error vector of the sensor readings df,, lies in the feasible subspace and the
projection of d6y, into the infeasible subspace is zero, which can be formulated by

Pd6,, =0 (14)

where symbol P is the linear projection that can project the vector into the infeasible
subspace. The matrix representation of P can be formulated as

P=I-J(grpt]r (15)
where symbol [ is the identity matrix and symbol ] is the Jacobian matrix of the active joint

angles with the end-effector coordinate. Obviously, the matrix P is symmetric and
idempotent, so one can have following equations:

p=pT

P=p2 (16)

With the linear projection P, one can project the vector of the tracking error df, into the
infeasible subspace, and define the projected tracking error of the active joint angles by

d6, = Pde, 17)

where the symbol df. = [d6, d6; df.]T refers to the projected tracking error of the active joint
angles and equals to the infeasible component of d0,.

Let df, = [d6: d&’ d6’ ]T be the vector of the error of the sensor zero positions. With (3), one
can have that df, equals to the sum of d0,, and d0.. So the infeasible component of df, equals
to the sum of the infeasible component of df,, and d8,. According to (14), the tracking error
vector of the sensor readings df,, can be viewed as a feasible component of df,, and its
infeasible component always vanishes. Then for the error of the sensor zero positions df;,
which usually has nonvanishing feasible component and infeasible component
simultaneously, its infeasible component equals to the infeasible component of df,. At last
through (3) and (14) one can have following equation for the projected tracking error d0.:

db, = PdB, = P(d0,, + db.) = Pdb,, + Pd0.= Pdo, (18)

According to (18), the projected tracking error of the active joint angles df. equals to the
projection of the vector df, into the infeasible subspace. So by minimizing the following
function of the projected tracking error d0,, the value of 40, can be minimized and the sensor
zero positions can be calibrated:

n
E-1Y a0] +do, (19)
ni3

in which the symbol df,; is the jth sampled projected tracking errors and the symbol n refers
to the number of the sampled projected tracking errors.
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2.3 Analysis of robustness of the error function

In real application, the readings of sensor are usually inaccurate, so the precision of the
calibration results may be limited by the accuracy of the sensor readings. In this section, we
will prove that the error function expressed in (19) is robust to the measurement error of the
sensor readings, so accurate calibration results can be obtained by minimizing the error
function.

Suppose that the number of the sampled sensor readings is 1, and denote the measurements

1

error of the jth sensor readings by the symbol 6,,=[6,. o L According to (3), the tracking
error of the active joint can be formulated by

6, =6, + dO,; + d6.,j=1, ... ,n (20)

where symbols d0,j, j = 1,...,n is the tracking error of the active joint angles and db,;,j =1, ...
M is the tracking error of the sensor readings. Then following two propositions can be
proved for the robustness of the error function to the measurement error 6,,j, j =1, ... ,n.
Proposition 1: Suppose that the measurements error vector 0,;j, j =1, ... ,n lies in the feasible
subspace. The value of the error function E will not be affected by the measurement error
and accurate calibration results of the sensor zero positions can be obtained by minimizing
the error function E.

Proof: For the assumption that the measurement error 0,, j = 1, ... ,n lies in the feasible
subspace, one can have

P]‘(Sm]' = O,j = 1, o n (21)

where the symbol P; refer to the linear projection of the jth desired configuration. Then
following equation can be obtained for the projected tracking error of the active joint angles
e, j=1,...,n:

dHej =de9gj=P]'(6mj + dg'”i +db, )= Pjﬁmj +Pj de,,,j +P]' do, = Pj do,, ] =1,...,n (22)

According to (22), although the sensor readings are not accurate, the projected tracking error
of the active joint angles db,;, j =1, ... ,n still equals to the projection of the vector 40, into the
infeasible subspace. Substitute (22) into (19), one can find that the value of the error function
E will not be affected by the measure error 0, j =1, ... ,n. By minimizing the error function,
the error vector df, can be minimized, and accurate calibration results can be obtained for
the sensor zero positions. So the robustness of the error function is proved.

Proposition 2: Suppose that the measurement error vector 04, j = 1, ... ,n lies in the

infeasible subspace. Denote the mean value of §,j,j =1, ... ,n. by J,,, the variance of 5, j =
1, ... ,n. By o2 If the mean value gm equals to zero, then accurate calibration results of the

sensor zero positions still can be obtained by minimizing the error function E.
Proof: For the assumption that the measurement error 0,j, j = 1, ... ,n lies in the infeasible
subspace, one can have

P](Sm] = 5mj /j =1,..n (23)

Then following equations can be obtained for the projected tracking error of the active joint
angles d,;,j=1, ... n

dGe]- =P]-d9u]-=P]-(6m]- + dgmj +db, )= P]‘(Sm]' +P]‘ d@m] +P]' do, = 6mj +P]‘ do, ,j =1,...n (24)
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Substitute (24) into (19), one can calculate the value of the error function £ as follows:
1& 7 18
- > do% « dg,; = - > (8 + deaz) (8, + Pidey)
j=1 j=1

1 (5T Oj + 8Py, + AOLP] 5,y + dof Pl Prdo, ) (25)
1’l

mjmj T Cmjtj

m](sm]+ ZdHTPTé . Zd@ZTPTP]-dHZ
] =1

With (16) and (23), equation (25) can be simplified as follows:
Z 0 97 Z i+ Z do] P! p,do, (26)
] =1

Consider the assumption of the mean value and variance of the measurement error, one can
have

1 n
T
(27)
Z m]
Then with (27), the value of the error function E can be formulated as follows:
E=c?+= Z do; P! p;do, (28)

] 1

One can see that, with the measurement error lie in the infeasible subspace, the value of the
error function E equals to the norm of the projected tracking error plus the variance of the
measurement error, which is a constant. So by minimizing the error function E, accurate
calibration results of the sensor zero positions still can be obtained, and the robustness of the
error function is proved.

2.4 Auto-calibration procedure based on the error function

In this subsection, with a simple searching strategy for the minimal value of error function

proposed above, we will design an auto-calibration procedure for the sensor zero positions

of the parallel manipulator. The auto-calibration procedure based on the simple searching
strategy is proposed as follows:

Step 1: Move the end-effector manually to a predefined reference point O, for which the
active joint angles have been known accurately forehand. Denote the coordinate of O
by symbol (x, y,), and denote the actual coordinate of the end-effector position by
symbol (x,, y,). Here we call (x,, y,) as the initial estimation of the reference point O
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Step 2: Denote the current real position of the end-effector by symbol R. Take R as the
estimation of O, and record the sensor readings corresponding to R. One can get the
estimation of the sensor zero positions by subtracting the sensor readings of R from
the active joint angles of O.

Step 3: Drive the end-effector of the parallel manipulator to track a predefined circular
trajectory, for example, the circular trajectory with center O. Record the sensor
readings of the real trajectory corresponding to the interpolation point of the desired
trajectory. Then calculate the tracking errors of the active joint angles d0,
corresponding to each interpolation point of the desired trajectory by subtracting the
estimated sensor zero positions and the sensor readings from the desired active joint
angles.

Step 4: Calculate the projected tracking errors df, through (18) and the value of the error
function E through (19).

Step 5: Take the initial estimation (x;, y,) of O as the center of the searching region, and the
predefined value d as the scope of the searching region. Then drive the end-effector
to the points with coordinates (x+d, v;), (x/+d, y,+d), (x,, yrtd), (xrd, y+d), (xd, y7),
(xrd, y-d), (x, yrd), (x-+d, y-d) in order. Take these points as estimations of the
reference point O and repeat the operations described in step 2 to step 4 for each of
these points. Then one can get an estimation of the sensor zero positions and a value
of the error function E for each of these points.

Step 6: Find out the coordinate of the end-effector corresponding to the minimal E among
the 9 estimations of the reference point O, and denote it by symbol (x,, yum). If the
coordinate (x, ¥m) equals to the initial estimation (x;, y,), then go to step 7. If not, take
the coordinate (x, y) as a new initial estimation of the reference point O, and go to
step 2.

Step 7: If the value of d is smaller than the predefined lower limit, then the calibration
procedure comes to the end and the sensor zero positions corresponding to the point
(xxr, y) is the calibration result. If not, divide the variable d by 2 and go to step 2.

2.5 Experiments on a real planar parallel manipulator

With the calibration procedure proposed above, we will calibrate the sensor zero positions
of Googol Tech Ltd’s GPM2002, which is a planar 2-dof parallel manipulator with a
redundant joint sensor. The mechanisms of the parallel manipulator GPM2002 is shown in
Fig.2, in which GPM2002 is composed of 6 links and 6 joints. Similar to Fig.1, a reference
frame is established in the workspace of GPM2002. Under the reference frame, the
coordinate of the 3 bases are (0,250), (433,0) and (433,500) respectively, and the coordinate of
the home position of the end-effector is (216.5,250). The lengths of all the 6 links equal to
244mm. The 3 joints located at the bases are actuated by an AC servo motor respectively,
while the other 3 joints are unactuated. Each of the AC servo motor is embedded with an
internal absolute encoder, with which the active joint angles can be measured.

Based on the auto-calibration procedure proposed in subsection 2.4, an auto-calibration
program is realized with VC++. The reference point O of the auto-calibration procedure is
defined as home position of the end-effector (216.5,250), and the desired trajectory to be
tracked is defined as a circle with center (216.5,250). The initial value of d is defined as 4mm
and the lower limit of d 0.125mm. Then calibration experiments are implemented and the
bias angels between the sensor zero positions and the active joint zero positions of GPM2002
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are calibrated. The calibration experiments were implemented for 3 times, each time with a
different initial estimation of the reference point (216.5, 250), and so different initial
estimation of the sensor zero positions. Experiment results are shown in Table 1.

Fig. 2. Structure of GPM2002

Initial Estimation (rad) Calibration Results (rad)

Active Active Active Active Active Active
Jointl  Joint2 Joint3 Jointl Joint2  Joint3

Experimentl 1.0325 3.1045 4.8055 1.0661 3.0797 4.7974
Experiment2 1.0362 3.0796 4.8413 1.0652 3.0798 4.7971
Experiment3 1.0888 3.0651 4.7880 1.0663 3.0800 4.7966

Table 1. Calibration results of the sensor zero positions

As shown in Table 1, from different initial estimated values, the calibrated sensor zero
positions will converge to an identical value with the decrease of the projected tracking
errors in the end.

3. Kinematic parameters calibration of redundant planar 2-dof parallel
manipulator with a new error function

In the former section, the three sensor zero positions have been calibrated by optimizing the
error function we proposed. In this section, we will further calibrate the other parameters of
the parallel manipulator. Based on the minimization of the closed-loop constraint errors, Yiu
proposed an auto-calibration procedure for the planar 2-dof parallel manipulator (Yiu et al.,
2003c). But for the parallel manipulator, the difficulty of minimizing the closed-loop
constraint error function increases as the number of kinematic parameters to be calibrated
increases. Among the 12 independent kinematic parameters, only 3 sensor zero positions
were calibrated successfully in Yiu’s paper and also in the second section of present chapter,
while the other 9 parameters were supposed to be known beforehand. By eliminating the
passive joint variables of the closed-loop constraint equations, we will simplify the



Kinematic Parameters Auto-Calibration of Redundant Planar 2 Dof Parallel Manipulator 251

formulation of the closed-loop constraint equations, and propose a new error function to
calibrate not only the sensor zero positions but also other kinematic parameters of the
parallel manipulator. Compared to Yiu's error function, which involves both active joint
positions and passive joint positions as variables, our error function involves only the active
joint positions as variables. Besides, by decoupling the product item of the kinematic
parameters of the error function into linear combinations of a group of new variables, we
simplify the minimization process and improve the calibration precision further.

3.1 A new error function
To formulate the kinematics of GPM2002, we denote the coordinate of the end-effector O by
(x, y), the active joint angles by g ,i=1273, the passive joint angles by 0, , i = 1,2,3, the
lengths of the links connected to the active joints by [,, i = 1,2,3, the lengths of the links
connected to the passive joints by I, i=1,2,3, and the coordinates of A1, As, A3 by (x., y.), i =
1,2,3. While the nominal values of the link lengths I, I;, i = 1,2,3 are all 244mm, the nominal
values of the base coordinates (x,, y,), i = 1,2,3 are (0, 250), (433,0), (433,500) respectively.
Then from the joint angles, the coordinate of the end-effector can be calculated through
following equations:
x=x, + Lecos(8,) + I,*cos(6};)
y =y, + Lesin(®,) + l,*sin(6;) i=123 (29)
Define x;, v, i =1,2,3 as follows:
x, = x, + I,*cos(6,)
Yo=Y, + Lesin@) i=123 (30)
Substitute (30) into (29), one can reformulate (29) into the following quadratic equations:
(x- %)+ (y-y,)?= 1,2, i=1,2,3 (1)
From (29), (30) and (31), we can have the following equation:

2(x; -2, )x+2(y -y )y = do-di

2(x,-x,)x+2(yo -y, )y = ds-di (32)

with d;, i =1,2,3 defined as d; = x,2+y,2- ,2,i =1,2,3.
Then the coordinates of the end-effector (x,y) can be solved from (32), and expressed as
following equations:

x = [di(ye-yi )+ do(ya-yi )+ da(ye-yi )V 21, (v -y )+, (e -y )+ (v )]
y = [di(xi-x; )+ da(xi-x0)+ ds(xi-x,)V2[x, (vo -y )+, (ve -y )+ (vi-yi )] (33)

Furthermore, the passive joint angles corresponding to the coordinates of the end-effector
can be calculated as follows:

0, = arctg((y-y,) (x-x,)) E(-m, ], i=1,2,3 (34)
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Besides the 6 link lengths [, I,, i = 1,2,3 and the 6 base coordinates (x,, v,), i = 1,2,3, 3 more
parameters are included in the kinematics to compensate the undetermined bias angles
between the actual zero positions of the joint sensors and the predefined zero positions of
the joint angles. Here, home position of the end-effector (216.5,250) is defined as zero
positions. Denote the bias angles by Af,, i = 1,2,3, and the readings of the encoders by

é;,i =1,2,3, then one can express the active joint angles as follows:

0l =0} +A0,i=1,2,3 (35)

Among the 6 base coordinates, 3 of them must be set to their nominal values to establish the
coordinate frame before calibration. If not, the manipulator can move freely in the plane,
and infinite solutions can be obtained through calibration and from these solutions, it is
impossible to tell which solution is the actual one. With 3 coordinates being predefined,
there are altogether 12 kinematic parameters to be calibrated. Without losing generality, we
would suppose that the base coordinates x., 1, y. are equal to their nominal values, and
regard them as constants for the calibration of GPM2002. Thus the kinematic parameters to
be calibrated for GPM2002 include 3 sensor zero positions A8,, i = 1,2,3, 6 link lengths [, L,i
=1,2,3 and 3 base coordinates x, x, .. For the calibration of the parallel manipulator, the
kinematic parameter errors can be represented by the closed-loop constrained equations
(Yiu et al., 2003c):

x-x5 -l -cos( ] + A6} ) -1 -cos(6} )
y-ya-li-sin(0; +A6; )-1j -sin (6
x-x2 - 12 -cos(0F + A6F )12 -cos(B7
hs y-y2-12s niezwe,%; ~sin((9bz)) - (%)
x-x22-13 ¢ s(93+A92) -cos(9b3)
y-ya-13-sin 67 + 063 )- I -sin (67

Then for n sampled configurations él}].,é’fj,é%, j=1,---,n, 6n equations and 5n+12 variables

can be obtained based on the closed-loop constrained equation (34). Among the variables, 2n
Variables are end effector coordinates (x/, i), j =1, ... ,n, 3n variables are passive joint angles
6y, 6y, 6, 1, ... ,n, and the remaining 12 variables are kinematic parameters to be
calibrated. Obv1ously, if 12 sampled configurations are chosen, then 72 equations and 72
variables can be obtained, and the kinematic parameters can be calculated by solving the
equations. If more configurations are sampled, then the number of the equations will
exceeds the number of the variables, and the parallel manipulator can be calibrated by
minimizing the norm of the vector E; corresponding to the sampled configurations. For
example, for n sampled configurations, one can implement the calibration by minimizing
the following function J; (Yiu et al., 2003c):

Ji= i E|E1j = iHEuHZ (37)
j=1 j=1
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By eliminating the items involving passive joint angles, the closed-loop constrained
equations can also be expressed as follows:

(x—x% —l% -cos(é,z1 +A6,}))2 +(y—y,% —l,} »sin(éal +AH,}))2 —(ll})2
Ey = (x—xl% -12 .cos(éa2 +A6,12))2 +(y—y,% -12 -sin(éa2 +A6’§))2 —(15)2 =0 (38)
(-3 13 -cos( a3 + 063 )|+ (y-v3 - 3 -sim (43 + 03 - 32

Based on (38), 3n equations and 2n+12 variable can be obtained with n sampled
configurations. 2n variables are end-effector coordinates (x/, v), j = 1, ... ,n, and the
remaining other 12 variables are kinematic parameters of the parallel manipulator. And
also, with enough sampled configurations, one can calibrate the unknown kinematic
parameters of the parallel manipulator by minimizing the following function J»:

n n 2
=% ey e )
j=1 j=1

Therefore, the calibration problem can be converted into a minimization problem, in which
either error function J; in (37) or our new proposed the error function > in (39) can be used
as the error function.

3.2 Calibration procedure based on the new error function

The calibration procedure based on the minimization of the error function J> proposed in

(39) are as follows:

1. Choose the kinematic parameters to be calibrated from the set of the 12 kinematic
parameters mentioned above. Evaluate other kinematic parameters by other means and
take them as constants for the calibration. Then choose n sampled configurations of the

parallel manipulator and record the readings of the encoders 9;]-,5%,53, j=1,---,n. Make

sure that the number of the sampled configurations exceeds the number of calibrated
kinematic parameters.

2. Choose J> in (39) as error function.

3. Choose suitable initial values for variables. For the geometric parameters, the nominal
value of the parameter can be used as the initial value. For the sensor zero positions,
suitable initial value can be obtained through following procedures: move the end-
effector manually to a reference point, e.g. the home position (216.5, 250), and record

the readings of the absolute encoder éﬁ’;o,i=1,2,3 , then the initial value of the sensor
zero positions can be calculated through equation Ad: = 9;0 -é;o. Here symbols

9;0,1‘:1,2,3 refer to the active joint angles of the reference point, which can be

calculated through inverse kinematic transformation.
4. Calculate the estimations of joint angles and end-effector coordinates of the sampled
configurations. With the estimated value of the sensor zero positions, the estimated

active joint angles can be calculated through é;j = ééj +Aéa]-,i =1,2,3,j=1,---,n. Then the
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estimations of the end-effector coordinates %;,§;,j=1,--,n and the estimations of the
passive joint angles ééj,i =1,2,3,j=1,---,n can be calculated through (33) and (34)

respectively.

5. Solve the minimizing problem with the initial values of the variables obtained in step 3.
For the minimization, the estimations of joint angles and end-effector coordinates can
be calculated as in step 4, and the values of the variables corresponding to the minimal
value of the error function can be regarded as calibration results.

3.3 Experimental results

To verify the validity of the calibration procedure and the error function proposed in
subsection 3.1, simulation experiments are implemented in this subsection. In the
experiments, a predefined ‘actual value’ is set for every kinematic parameter, and the
encoder readings of the sampled configurations are calculated from the sampled end-
effector coordinates with these ‘actual values’. Then according to the calibration procedure
proposed in 3.2, we can calibrate the parameters involved. We implement the simulation
experiments by Matlab™ program, and adopt its optimizing function ‘finincon’ to solve the
problems. Furthermore, we adopt a stepwise strategy for the experiments, and in each step
we calibrate only a part of the kinematic parameters with the assumption that the remaining
other parameters have been known accurately. Then by decreasing the number of
parameters supposed to be known and increasing the number of parameters to be calibrated
step by step, we try to calibrate as many parameters as possible with the calibration
procedure. For the purpose of the calibration accuracy comparson, we do each experiment
by using of both error functions Jiand J>.

The results of experiments can be examined by two means. The first one is to compare the
calibrated results of the kinematic parameters with the predefined ‘actual value’. The other

one is to compare the calibrated end-effector coordinates (fc]-, 7 j)' j=1,---,n with the ‘actual

end-effector coordinates” (xj, y;), j = 1, ... ,n of the sampled configurations, through the
following ‘kinematics model root mean square error’ (Yiu et al., 2003c):

1< 2 \2 L2
kmrmse= |= " (x]-—xj) +(yj—yj) (40)
n iz
A. Calibration of Sensor Zero Positions

Suppose that all of the link lengths and the base coordinates have been measured accurately,
and take the 3 unknown sensor zero positions Af,, i = 1,2,3 as variables, we can calibrate the
variables by solving these problems:

min J1(AB), AG;, AG])

min Jo(AB), AG:, AG])

The point (210,245) is taken as the estimation of the home point, and the initial estimations
of AB;, AB., AB, are calculated by subtracting the encoder readings corresponding to point
(210,245) from the active joint angles corresponding to the home point (216.5,250). 3 sampled
configurations and 9 sampled configurations are chosen respectively for the simulations.
Results are shown in Table 2, from which we can see that the precision of calibration results
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can be improved by increasing the number of the sampled configurations, as well as that
more precise calibration results can be obtained by adopting J> as the error function.

Calibrated | Actual Initial Results calibrated with J; | Results calibrated with J»
variable value | estimation 3 samples | 9samples | 3samples 9 samples
A6, (rad) | 1.00000 | 1.00913 1.00078 1.00000 0.99999 1.00000
AB; (rad) | 1.00000 | 0.97689 0.99948 1.00000 1.00001 1.00000
AB; (rad) | 1.00000 | 1.02748 0.99976 1.00000 1.00000 1.00000

kmrmse of samples(mm) 1.47188e-1 | 7.85886e-4 | 1.49488e-3 1.26624e-5
Number of iterations 12 9 14 13

Table 2. Calibration results of sensor zero positions

B. Calibration of Sensor Zero Positions and Link Lengths

In this subsection, only the base coordinates are supposed to be known, while all of the
sensor zero positions and the link lengths are chosen as variables. Then the calibration
problem can be converted into the following problems:

min Il(AHZ/ AHE/ Agi/ l;/ [17/ li/ i/ Zi/ ZZ)

min Jo(A0,, A0;, A6;, L., I, I;, I, I, 1;)
As we'll demonstrate that error function J; is easier than J; and more precise results can be

obtained through minimizing J>. Before we move on, take a look at ], one can find that there
are 2 product items of the variables in ], which can be expressed as follows:

l;-cos(€~;~ +A9;):(l;-cos(AH;))-cos(éil)-(lé-sin(A@é))-sin(éi)
Y a q (41)

i cinld/ AT . i 5i i i\ocin (i
lu-sm(ﬁm- + AB,Z) = (lu-sm(At?,Z ))-cos(&aj)+(lu-cos(AHu ))-sm(&u]-)
in which the product items lf;-cos(é;j +A6,§) and l,’;-sin(é;j +A6[’;) are decoupled into linear

combinations of I,*cos(Af,) and I, *sin(A8;). So the product items in the error function can be
eliminated by choosing I,*cos(Af,) and I,*sin(A8.) as calibrated variables. Let [=I,*cos(Af,), L
= [,*sin(A0,), i = 1,2,3, then we have:



256 Parallel Manipulators, New Developments

Thus we can also calibrate through another new error function that:

min J3(L, Ly L Ly L Lo 1, 1, 1)

When the calibration results are obtained by minimizing J3, we can calculate the parameters
of the manipulator by following equations:

L= (L2+12)05

A, = arctg(lL1) i=1,23 (44)

Now we have three error functions. We take the same initial estimations of A6}, A%, AG. as
used in the calibration of the sensor zero positions. The initial estimations for [, [,, i = 1,2,3
are taken as the nominal values. 21 sampled configurations are taken. The sensor zero
positions and the link lengths of the parallel manipulator are calibrated by solving the
minimizing problems. Results are shown in Table 3, from which one can find that, with the
same sampled configurations and the same initial estimations of the kinematic parameters,
the precision of the calibration results are improved by adopting I, [, i = 1,2,3 as calibrated
variables. And also, with J; as the error function, iterations cost gets lower to find the
solution.

Calibrated | Actual Initial  |Results calibrated|Results calibrated | Results calibrated
variable | value |estimation| with function J; | with function ], | with function J3
A6, (rad) |1.00000 | 1.01052 0.99996 1.00001 1.00000
AB; (rad) |1.00000 | 0.97614 1.00004 1.00000 1.00000
AB; (rad) |1.00000 | 1.02659 1.00008 1.00001 1.00000

I, (mm) 2441 244 244.08300 244.10012 244.09994
L (mm) 244.2 244 24419647 24419818 24419999
L (mm) 243.5 244 244.49562 244.50038 244.49998
I, (mm) 243.8 244 243.78108 243.80393 243.79992
s (mm) 2442 244 24421085 24419883 244.20004
I, (mm) 2442 244 244.22065 244.20262 244.20006

kmrmse of samples(mm) 3.21669e-3 1.56383e-3 1.33563e-5

Number of iterations 46 47 33

Table 3. Calibration results of sensor zero positions and link lengths

C. Calibration of Sensor Zero Positions, Link Lengths and Base Coordinates

The sensor zero positions and link lengths have been calibrated successfully in last
subsection, next we will calibrate all of the kinematic parameters. Since the superiority of the
error function J3 has been demonstrated in the last subsection, we use only J3 as the error
function to calibrate the parameters here. Choose I, I, I i=1,2,3 and the base coordinates x
2, x., vy, as variables. Minimize the following function J3:
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min J3(L, L, L, L, By By L, B, 1, 22, %2, )
31 sample configurations are taken and calibration results are shown in Table 4, from which
one can see that there are several millimeter errors between the calibrated results and the
predefined ‘actual values’ of the kinematic parameters. Further research reveals that, if we
assume that the base coordinate x; is known accurately before calibration, precise calibration
results still can be obtained for the other 11 kinematic parameters by solving the problem:

min J3(lu L Ly L L L 1, 1, 1, %2, 2)
The same sampled configurations and the same initial estimations of the kinematic
parameters are employed with that of the 12 parameter experiment, except that the base
coordinates x; is supposed to be known beforehand. Calibration results are shown in last
column of the Table 4, from which one can see that all 11 kinematic parameters, including 3
sensor zero positions and 8 geometric parameters, can be calibrated accurately.

Calibrated variable| Actual value | Initial estimation Calil}i:]eaclllii?th I calibi*i::clluvii th Js
AB; (rad) 1.00000 1.01052 1.0072 1.00000
AG; (rad) 1.00000 0.97612 1.0072 1.00000
AG; (rad) 1.00000 1.02678 1.0072 1.00000
I, (mm) 2441 244 244.0998 244.0999
I (mm) 2442 244 247.1998 2442000
L (mm) 243.5 244 247.3005 244.4999
I, (mm) 243.8 244 246.8959 243.7999
I; (mm) 2442 244 2443009 2441999
I (mm) 2442 244 2443005 244.2001
x) (mm) 433.05 433 436.7084 433.0502
vy, (mm) 499.96 500 506.2960 499.9598
x; (mm) 433.04 433 440.3557
kmrmse of samples(mm) 3.3521 1.0211e-4

Number of iterations 34 70

Table 4. Calibration results of 12 parameters

4. Complete kinematic parameters auto-calibration using stochastic
optimization algorithms

We have already selected and defined some error functions in the former section and
optimized them using Matlab™ function. But, as we know, the Matlab™ function we used
is a local optimization method. As a real-world optimization problem, the corresponding
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error functions are very complex both on the number of variables and their multimodal
features, thus it is very hard to converge to a global minimum using non-global
optimization methods. According to No Free Lunch Theorems (NFLT, Wolper & Macready,
1997), no algorithm is perfect on all the problems. Although there have been a lot of tests on
benchmark functions to evaluate different algorithms on different performances, for a
specific optimization problem, an optimization algorithm has to be chosen appropriately to
the structure of the problem itself.

There are mainly two classes of optimization algorithms. The first ones are the deterministic
algorithms, including gradient-based algorithms etc. In this class, one must have some
information about the objective function, such as gradients, and this information is used to
determine the search direction in a deterministic manner at every step of the algorithm. If a
problem is linear or nonlinear but convex, deterministic algorithms are readily applied to
solve the problem and can perform very well. But, generally speaking, real-world problems
are hardly such easy class. Most real-world problems are nonlinear, non-convex, multi-
dimensional and have a lot of local minima. For these real-world problems, deterministic
algorithms are inappropriate or bear very poor performances, because the objective function
information is not available in many cases or the algorithms run very big risk to be trapped
in local minimum and cannot escape. Due to these drawbacks, the use of deterministic
algorithms in real-world applications is very limited. To address the problem of
convergence to local optima, stochastic optimization algorithms are proposed and have been
playing a rapidly growing role in the past few decades. Different from deterministic
optimization algorithms, stochastic optimization algorithms deliberately introduce
randomness into the search process and inherently accept weak candidate solutions, thus
the search propcess could escape from local optima to local the global optimum. Moreover,
the algorithms are less sensitive to noises and modeling errors. These algorithms mainly
include genetic algorithms (GA, Holland, 1975; Goldberg, 1989), differential evolution (DE,
Storn & Price, 1995) and particle swarm optimization (PSO, Kennedy & Eberhart, 1995) etc.
Most of these algorithms are also inherently parallel, which makes the algorithms more
efficient in searching for global solutions.

As for our calibration problem, it is not hard to find that the error functions in (37), (39) and
(43) mentioned above are in continuous spaces, nonlinear, non-convex, multi-dimensional
and have a lot of local minima. GA, PSO and DE are then the very natural choices. We
designed auto-calibration based on GA, PSO and DE for simulation experiments and actual
system calibration.

4.1 Auto-calibration based on GA

GA is a population-based optimization algorithm, in which a candidate solution is called an
individual and individuals constitute population. The quality of the individuals is termed as
their fitness, the higher quality an individual has, the higher fitness it owns. The individuals
evolve mainly through reproduction, crossover and mutation operations. In our auto-
calibration work based on GA, individuals are represented as binary string. If the search
range of a parameter is [Xmin, Xmax] and the precision requirement is p, then the length of the

string to present this parameter is L = [1og2((xmax = Xmin)/ p)—| . The individual length is the

sum of the 12 parameters’ string length. The population size is N. The initial population is
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initialized randomly. Then by decoding, the real values of the parameters to be calibrated
are obtained. Use the expression of the base coordinates (30) and the equations (32) and (33)
to estimate the positions of the end-effector. When the positions of the end-effector are
estimated, using error functions Ji, J> or J3 given in (37), (39) or (43) as the fitness functions,
respectively, we can evaluate the fitness of the individuals. In the reproduction stage, we
use tournament selection (Goldberg & Deb, 1991), which can make a lower selection
pressure compared with roulette wheel selection. Copy the winner of the tournaments into
the population. After reproduction, crossover operation is to be carried out with probability
PCrossover. In our experiments, we apply single bit crossover, in which one bit is selected as
the crossover point. With probability PMutation, we employ two bits mutation, in which two
bits are mutated to produce a new individual. The process of reproduction, crossover and
mutation iterates until the stop criteria that is defined later. In order to maintain the
diversity of the population, half of the individuals are reinitialized when the population
fitness does not improve for a number of generations NR. Both in the reproduction and
reinitializing, the best individual is maintained.

4.2 Auto-calibration based on PSO

PSO is a new population-based optimization algorithm. Different from GA, searching is
carried out straightforward in the search space of PSO and no genetic operation is needed.
Every solution in the PSO algorithm is called a particle. A particle has its location and flying
velocity. Define a particle’s location and velocity of the kth iteration as X* and V%, and the
state of this particle in the next iteration can be calculated as follows:

Vktl=qpk Vi+ CIRI (Phesf'Xk) + CZRZ (Gbest'Xk)

Xk+1=Xk+Vk+1 (45)

in which w is inertia weight (Shi & Eberhart, 1998), C; and C; are predefined acceleration
constants, R; and R, are random numbers generated in the range of [0,1]. Py is the best
location obtained ever by the particle itself, and Gy is the best location ever detected by the
whole population.

In auto-calibration experiments based on PSO, suppose the population size is N and the N
particles fly in a 12 dimensional search space. The location of the particle is represented as
X=(x1, X2, ..., X12), corresponding to the solution of the 12 parameters. The velocity of the
particles is represented as V=(vy, vy, ..., V12), corresponding to the flying over distance of the
particle. The locations and velocities of the particles are initialized randomly. In the
iterations, estimate the positions of the end-effector and evaluate the quality of the particles
in the same way as it does in the auto-calibration based on GA. If a particle beats its Ppes,
update its Ppest. And if it beats Gpest, then update Gpest correspondingly. Then according to
(45), update every particle’s location and velocity. In order to level up the search efficiency,
search space [Xmin, Xmax] is set to constrain the particles” movement. If a particle outpaces the
border, it is placed on the border of the space. Also, in order to maintain the diversity of the
population, half of the particles are reinitialized except the best when the population does
not improve for NR generations.
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4.3 Auto-calibration based on DE

DE is a new population-based optimization algorithm. Its operations are the same as GA in
name, but very different in nature. The concepts of individual and population are the same
as those of GA. In an n variable problem, the individual in DE is represented by a vector
X=(x1, X2, ..., Xn). And the population for each generation G can be represented as Xig, i =
1,2,..., N, in which N is the population size. In mutation,

Vi, 6+1= Xr1,6HF* (Xe2, 6 - X3, 6) (46)
where there are random indexes 11, r2, r3€{j | j#,j€[1,N]} and FE[0,2]. And in crossover,
Ui G+1 = U1i,6+1-U2i,G+1+ Uni,G+1)

Viji,G+1 if (randb(j) < CR)or j = rnbr(i)
TG X i if (randb(j) > CR) or j # rmbr(i)

47
}j=1,2,-~~,n i=1,2,--N (47)

in which randb(j)€[0,1] is the jth evaluation of a norm random number. CRE[0,1] is the

crossover constant set by the user. Rnbr(i) is a randomly chosen index from n dimensions to
ensure that at least one dimension parameter from V; g+ can be attained by U; c+1. In
selection stage,

U; G+1,if Uj g1 8 better than X; g

Xi G+1 ={ (48)

Xi,G, otherwise
In our simulation based on DE, n=12.The initial population is randomly generated. In every
generation, according to (46), we employ mutation. And then according to (47), crossover
operation is implemented. After mutation and crossover, we check the individuals whether
they are still in the search range of [Xmin, Xmax]- If any parameter is out of this range, this
parameter is randomly regenerated. When this checking is finished, in the same way as the
evaluation of individuals in GA and PSO, we evaluate X; ¢ and U; c+1. Based on the quality
of X; ¢ and U; c+1, selection operation is carried out according to (48) and the individuals
that are selected constitute the new population of next generation.

4.4 Simulation experiments
In the simulation experiments, we supposed that the base coordinates x;, v, x. are equal to
their nominal values. We sampled 50 configurations arbitrarily in the workspace of the

manipulator, and recorded the encoder readings as é;j, j=1,2,3i=1,2,---50.

The values of the kinematic parameters, including their nominal values provided by the
producer, ‘actual values” we predefined, and their ranges in the search space are set as in
Table.5.

The control variable settings for each algorithm are described as follows.

In GA, we define population N=100, precision requirement p=1.0e-4, crossover probability
PCrossover=0.85 and mutation probability PMutation=0.15, tournament scale is 4. Reinitialize
half individuals when the error function value keeps still over NR=50 iterations. For PSO,
we define population N=100, C;=C>=2 and the inertia weight w decreased from 0.9 to 0.1



Kinematic Parameters Auto-Calibration of Redundant Planar 2 Dof Parallel Manipulator 261

with the iterations. Reinitialize half particles when the error function value keeps still over
NR=50 iterations. In DE, N=150, F=0.5 and CR=0.8 .

Our main task in simulation experiments is to test the convergence performances of each
algorithm under error functions i, J> and J3. Since the population of DE is not equal to that of
GA and PSO, and also there are differences in the nature of algorithms, it is meaningless to
compare the convergence performances with the generations. Instead, we can compare their
convergences with the evaluations of the error functions. Thus, in order to make this
uniform comparing criterion, we define that search process of each algorithm stops when
the error functions evaluation times reach 5.0e7. The simulation experimental results are
shown in Fig.3, Fig.4 and Fig.5, respectively. For clarity, the errors are presented as logio(J;), i
= 1,2,3, and this error is defined as the convergence performance. One can see from Fig.3
that under function J;, GA performs worst. It converges to 1.3477e3. DE performs best. It
converges to 2.5351e-3 and its converging speed is also very fast. Between them is PSO,
which converges to 2.6869¢2. From Fig.4 one can see that due to using error function J,, the
errors get lower compared with Ji. DE is still the best one. It converges to 5.5626e-14 at a fast
speed. With the product items decoupled, the search process would become easy, which is
also verified by simulation results shown in Fig. 5, from which one can see that under J;, the
search results improve to different extents for different algorithms. Among them, DE
improves most. By means of DE, Jsreaches 3.5946e-20 in Fig. 4, while in Fig. 4, J> only gets to
5.5626e-14.

v (mm)  x) (mm) vy, (mm) I, (mm) I} (mm) I (mm)
Nominal Values 0 433 500 244 244 244
Actual Values 0.3 433.5 4994 2441 2442 243.5
Xmin -5 428 495 239 239 239
Xinax 5 438 505 249 249 249

Iy (mm) I (mm) L (mm) A6 (rad) A6 (rad) A8 (rad)

Nominal Values 244 244 244 0 0 0
Actual Values 243.8 2442 244.6 0.01 -0.01 0.01
Xmin 239 239 239 -0.2 -0.2 -0.2
Xinax 249 249 249 0.2 0.2 0.2

Table 5. Value settings for the simulation experiments

All the results of the auto-calibration simulation experiments can also been seen in Table 6.
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GA PSO DE
J5 1.3447e3 2.6869e2 2.5351e-3
JE 8.9451e2 1.0079e2 5.5626e-14
J5 1.0344e2 8.9561e0 3.5946e-20

Table 6. All the results of the simulation experiments

From the simulation experimental results given above, we can obtain the conclusions that: 1)
Error function J> is simpler than J; by eliminating the items involving passive joint angles,
and Error function J; is simpler than ], owing to decoupling the products items; 2) The DE
has the best performances under all the three error functions both in convergence accuracy
and speed. The algorithms on this calibration problem go from worst to best is: GA, PSO
and DE, and 3) Since DE converges to 3.5946e-20 under J;, very close to zero, the solution

might be very close to the ‘actual values’.

[ GA
— — PSO
DE
5"‘ L
=l T
Sh—— oo
o0
=
0
-5 . .
0 2000 4000 600

function evalutions(X10')

Fig. 3. The performances of the algorithms under function J;
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Fig. 4. The performances of the algorithms under function J>
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Fig.5 The performances of the algorithms under function J3

In order to find whether DE’s calibration solution under J3 is really close to the ‘actual
values’, we compare the solution’s values to the ‘actual values” and calculate the kmrmse of
the solution, which is presented in Table 7.

parameters actual values  DE calibration solution

ye (mm) 0.3000 0.3076
x) (mm) 433.5000 433.1470
vl (mm)  499.4000 499.6045
I, (mm) 244.1000 244.0004
I (mm) 244.2000 244.1004
L (mm) 243.5000 243.4006
I, (mm) 243.8000 243.7005
I; (mm) 244.2000 244.1004
L (mm) 244.6000 244.5002
AB; (rad) 0.01000 0.0107
AG: (rad) -0.01000 -0.0092
AB; (rad) 0.01000 0.0107
kmrmse of samples(mm) 0.0371

Table 7. Calibration results of DE under J5

One can see from Table 7 that the largest error between DE calibration solution and ‘actual
values’ is 0.3530mm, most of the errors are less than 0.1mm, and the errors of the three sensor
zero positions are all less than 0.001rad. Also, the kmrmse of the solution is only 0.0371mm,
demonstrating that the calibration solution is very close to the “actual values” indeed.
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4.5 Actual calibration

In the simulation experiments above, the results demonstrate that J3 is the best error
function and DE is the most efficient algorithm for our calibration problem. Based on this
conclusion, we applied DE calibration with error function J3 on actual parallel manipulator.
The nominal parameter values of the manipulator have been mentioned before. The search
ranges are the same as presented in Table 5.

First we sampled 50 configurations all in a line in the work space of the manipulator. But we
came across great difficulties in calibrating a rational result. A rather long time had passed
when we found that the problem was in the sampled configurations. If the sampled
configurations are in a line, the movements of the links are not sufficient, some of the links
move widely, but others move little. Thus not all the components of the manipulator are
excited sufficiently. Besides, due to the inherent error in sensors, if the sampled
configurations are in a line, the errors in the three sensors are not balanced. On considering
these factors, we sampled 50 configurations in a circle around the geometrical center of the
work space. By doing so, all the components of the manipulator can be excited sufficiently
and the sensor errors can be balanced completely. The calibration results based on these
sampled configurations proved that our analysis was right.

Using the 50 sampled configurations in a circle around the geometrical center of the work
space and through DE method, whose parameter settings are the same as those in the
simulation experiments, we obtained the all the 12 parameters. Because of the inevitable
inaccuracy of the sensors, the error J; in actual experiment cannot get down to the level of
the simulation. After about 1le6 evaluations of the error function of J;, the error does not
improve any more. We stopped the optimization procedure then, and regarded the best
solution found ever as the calibration results. The results are reported in Table 8.

. values through
parameters nominal values

calibration
Y2 (mm) 0.0000 2.7571
x, (mm) 433.0000 436.2436
Y. (mm) 500.0000 501.9123
I; (mm) 244.0000 243.6527
I (mm) 244.0000 242.5634
I (mm) 244.0000 242.4579
Iy (mm) 244.0000 243.8194
I; (mm) 244.0000 243.4168
I; (mm) 244.0000 246.8952
AB; (rad) 0.0000 6.2385e-3
AG; (rad) 0.0000 1.0623e-2
AB; (rad) 0.0000 2.8643e-3

Table 8. The results of the actual calibration
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For the purpose of comparison, we calculated the [3 error under the two sets of parameters.
Under the nominal values, the J; error is 2.1517e5, while under the calibrated values, |5 gets
down to 3.1841e2, which demonstrates that the accuracy of calibrated parameters is much
higher than that of the nominal values.

5. Conclusion

In this chapter, we implemented the kinematic auto-calibration of a redundant planar 2-dof
parallel manipulator. In this process, we first calibrated the error of the sensor zero positions
by optimizing an projected tracking error function, and also the robustness of this method
has been proved. Furthermore, in order to calibrate the other parameters of this parallel
manipulator, we gave another error function based on the closed-loop constraint equations.
By decoupling the product items in the error function, we simplified the optimization and
more precise result was obtained. But, at most 11 out 12 parameters could be calibrated
using only local optimization method. In order to calibrate all of the parameters, global
optimization methods including GA, PSO and DE were applied. In simulation experiments,
differential evolution was proved to be the most approriate algorithm for the calibration
problem. Finally, all the parameters of an real-world redundant planar 2-dof parallel
manipulator were calibrated successfully by applying differential evolution to optimize the
decoupled error function.
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Error Modeling and Accuracy of TAU Robot

Hongliang Cui, Zhenqi Zhu,
Zhongxue Gan and
Torgny Brogardh

1. Introduction

The TAU parallel configuration is rooted in a series of inventions and was masterminded by
Torgny Brogardh [1][2][3][4]. The configuration of the robot simulates the shape of “7 ”

like the name of the Delta after the “ V ” shape configuration of another parallel robot.

As shown in Fig. 1, the basic TAU configuration consists of 3 driving axes, 3 arms, 6
linkages, 12 joints and a moving (tool) plate. There are 6 chains connecting the main column
to the end-effector in TAU configuration. The TAU robot is a typical 3/2/1 configuration.
There are 3 parallel and identical links and another 2 parallel and identical links. Six chains
will be used to derive all kinematic equations. Table 1 highlights the features of the TAU
configuration.

On the subject of D-H modeling, Tasi [5], Raghavan [6], Abderrahim and Whittaker[12] have
applied the method and studied the limitations of various modeling methods. On the
subject of forward kinematics, focus has been on finding closed form solutions based on
various robotic configurations, and numerical solutions for difficult configurations of robots.
It can be found in the work done by Dhingra [8], Shi [14], Didrit [16], Zhang [17], Nanua
[18], Sreenivasan [19], Griffis and Duffy [20], Lin [21]. On the subject of error analysis,
Wang and Masory [7], Gong [11], Patel and Ehmann [13] used forward solutions to obtain
errors. Jacobian matrix was also used in obtaining errors. On the subject of the variation of
parallel configurations, from the work done by Dhingra [9][ 10], Geng and Haynes [15], the
influence of the configurations on the methods of finding closed form solutions can be
found.

In this paper, the D-H model is used to define the TAU robot, a complete set of parameters
is included in the modeling process. Kinematic modeling and error modeling are
established with all errors using Jacobian matrix method for the TAU robot. Meanwhile, a
very effective Jacobian Approximation Method is introduced to calculate the forward
kinematic problem instead of Newton-Raphson method. It denotes that a closed form
solution can be obtained instead of a numerical solution. A full size Jacobian matrix is used
in carrying out error analysis, error budget, and model parameter estimation and
identification. Simulation results indicate that both Jacobian matrix and Jacobian
Approximation Method are correct and have an accuracy of micron meters. ADAMS
simulation results are used in verifying the established models.
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Serial Robot Stewart Platform Tau configuration
Stiffness Low High High (simulation)
Accuracy Low High High (simulation)
Workspace Large Small Large
Footprint Small Large Small
Inverse solution in general Easy Easy Difficult
Analytical inverse solution Easy Easy Difficult
Forward solution in general Easy Difficult Easy
Analytical forward solution Easy Difficult Easy

Table 1. Comparison of kinematic properties of TAU and other robots.

Link 1 of lower arm 3

Upper arm 3

Upper arm 1
Link 1 of lower arm 1

Link 3 of lower arm 1

Link 2 of lower arm 1

e
Yy

ink 1 of lower arm 2

Moving (tool) plate

Fig. 1 TAU robot configuration
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Zi1 Zi

Jointi+1

Xi

Fig. 2 Parameter definition of D-H model

2. Kinematic modeling

2.2 The D-H model of TAU robot
For the TAU robot, the D-H model is used for the following purposes:
(1) Fully describing the kinematic positional relationship among all the links and
joints.
(2) Accurately and easily integrating the error model into a full parameter model.
(3) Standardizing and parameterizing the TAU model to establish dynamic coupling
control model.
With the parameters defined in Fig. 2, the D-H model transformation matrix can be obtained
as follows

cosd, sind, 0 —-a,
4| 708 sinf, —cosq,sinf, sina, -—d,sing,
sing,sind, —cosq,;sinf, cosa;, -—d, cosq,

0 0 0 1
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2.3 Inverse kinematics and forward kinematics

For the TAU robot, the inverse kinematic and forward kinematic are relatively simple. The
six equations of kinematic chains remain 3, as shown in Fig. 3, based on the condition of
parallel and identical links.

Fig. 3 Tau parallel mechanism

Coordinates of D1 are obtained as,

d,. =a, cos((6, +6,)/2)cosb,
d,, =a, cos((6, +0,)/2)sinb,

d,, =-a,sinf, +d,
Cly = Py
Cly = Py
Cl; =D

Where P,, Py, and P, are the coordinates of C1.

dist(d, —¢,) = ay, @
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Coordinates of D2 are obtained as,
d,, = a, cos(d,)
dzy =a,, sin(6,)
d22 = d21 + d23

x = Px
€2y =Py
z:pz_d23

dist(d, —c,)=a,,
Coordinates of D3 are obtained as,
d,, =a; cos(0,)—ay; cos(120 +6,)
d;, = ay sin(0,) —ay; sin(120+ 6,)
d3z = d31

dist(d, —c,) = a,

For inverse kinematics, simplify the Equation 2 and assume next expressions,

cos(0) = sin(9) =

P, P,
Jpi+pt NVSEK

The new equation 5a can be obtained from Equation 2.

@)

Zaznll’x +py( /—00501 +—/%Sin91) =a221 +(Pf +p; +pzz)_a222 (5a)

Then substitute the equation 4a into equation 5a to get

2 2 2 2 2
a, +(p; +p, +p.)—ay

2a21\/pf + pi

cos(f, —0) =

Thus,

2 2 2 2 2
ay +(p; +p, +pl)—ay

2a21\/ pf + Pi

0, =cos'[ 1+0

(6)
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p

where 0 = l‘gil( )

Assume next expressions as,

' COS(j/) - -2p - 2
Py =P, — 0y cos(6, +120) pPx+py
, e , (7a)
= - Sin +
py p}’ a33 ( 1 ) Sln(}/) — 'f y —
Px+py

Substitute the Equation 7a into Equation 3, the equation 8a can be obtained as,

5 5 2 2 2 5
L@y —ap+(pxt+tpy+p:)—as,

I+r (8a)
2 2
2a,\\px+py

6, = cos

where y = tg_l (px )
y
Also the Equation 9a can be obtained by substituting the equation 6a, 8a into equation 1.

2 2 2 2 2
a,+p,tp, +(p.—d,)" —a;

0, =cos'[

0 +0 0.+0 1=¢ ¢
2\/[6111 COS(%) t+a, Sin(%)]z +(p.—d, )2

—d
where ¢ = l‘g_l[ & =

]
+ .0, +0
a, cos(sz) +a, s1n(‘T2

)

For forward kinematics, it is relatively easy. Subtractig equation 2 from Equation 1 for
eliminating the square items ( p i R pi , P 22 ), then do the same procedure to Equation 2 and

3, finally three linear equations can be obtained. The three length equations are applied to
solve inverse and forward problems. A closed form solution can be obtained from the three
equations for both inverse and forward problems.

3. Jacobian matrix of TAU robot with all error parameters

In error analysis, error sensitivity is represented by the Jacobian matrix. Derivation of the
Jacobian matrix can be carried out after all the D-H models are established. For the TAU
robot, the 3-DOF kinematic problem will become a 6-DOF kinematic problem. The
kinematic problem becomes more complicated.
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oy 0z

X
In fact, the error sensitivity is formulated through , , where x, y, z
g, 0g, 0og

represent the position of the tool plate and dg; is the error source for each component. So

the following equations can be obtained:

Mo o)
dszﬁdgi dy = Z—dgl dz=2§dgi

i 1 i

The error model is actually a 6-DOF model since all error sources have been considered. It
includes both the position variables X, Y, Z and also rotational angles &, 3,7 .

From the six kinematic chains, equations established based on D-H models are

ji :ﬁ(xoyazbaaﬂ,y,g) :0
f2 zfz(xay,zaa,ﬂ,]/,g)=0

f() = fé(xayazaa,ﬂ,y,g) :0

Differentiating all the equations against all the variables X, V,Z,&, 5,7 and g, where g is
a vector including all geometric parameters:

8f’ sdx+— 9, -dy +af’ f’ -da +6f’ dﬂ+%-d7+z %-dg,:O(@
i oy & % oa op oy ~ og,
Rewrite it in matrix as

EAN A A A B Y=
& & o oa OB Or J gf
G A 1S B ) S

ox oy oz oa o oy | |¥| |T %%,
O %o o U | | Y| |y gy
& O & oa OF oy | |dz 7 0g;
9 9 Yy U O 9| |da 5 i gy
ox 0y 0z Oa Of Oy dp og /

A A A A S é—afsd‘

ox & @z da OB Oy| 7 0g;
I Us Fs Fs Fs Yo ~of,
ox oy oz oa 0f oy 2 dg,

L J ag/
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In a compact form, it becomes

J,dX = dG ©)
Where
2 il dg,
7 og; _
vy | [B& &) o
T og, | |%& % g dg,
—of ) . dg
dG= Z ag;dj . . Lo . i -2 @
-,
A N A A B
z _af‘S dg _6g1 agz 5gNJ6X1v L gN_le
J agj !
Z B afﬁ d }
L/ agj ‘ i
From Eq. (7) above, we have
dG = J,dg 8)
Substitute Eq.(6) into Eq.(8) to obtain
JdX =J,dg )
dX =(J,"J,)dg (10)
The Jacobian matrix is obtained as J 171 -J )

A
x ¥ & oa OB Oy

9 9% o & 9 N\ [ & o & |

& & & oda Of or| | ag g oy

9 o o, o, 9 9 .
J=J" D=l & & oa OB o ()

9 9 9 9 I 9,

x & & da OB oy . . .

P inaty e &
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For a prototype of the TAU robotic design, the dimension of the Jacobian matrix is 6 by 71.
An analytical solution can be obtained and is used in our analysis.

4. Kinematic modeling with all error parameters (application 1 of the
Jacobian matrix)

4.1 Newton-Raphson numerical method

Because of the number of parameters involved as well as the number of error sources
involved, the kinematic problem becomes very complicated. No analytical solution can be
obtained but numerical solution. The TAU configuration, as a special case of parallel robots,
its forward kinematic problem is, therefore, very complicated. The Newton-Raphson
method as an effective numerical method can be applied to calculate the forward problem of
the TAU robot, with an accurate Jacobian matrix obtained.

Newton-Raphson method is represented by

X=X, -[F (X)) F(X,)

With the six chain equations obtained before, the following can be obtained

o o o U A
x O oz da OB Oy
9 9% o 9 o O
ox Oy 0z Oa Of Oy
F ) =mv| % @ o of, o s
x O ¢z da O Oy
¥ ¥ U U U U
ox Oy 0z Oa Of Oy
x & o oa 9B Or
Yo s Y Yo Yo Us
| Ox oy 0z Oda Of Oy |

This equation is used later to calculate the forward kinematic problem, and it is also
compared with the method described in the next section.

4.2 Jacobian approximation method

A quick and efficient analytical solution is still necessary even though an accurate result has
been obtained by the N-R method. The N-R result is produced based on iteration of
numerical calculation, instead of from an analytical closed form solution. The N-R method
is too slow in calculation to be used in on-line real time control. No certain solution is
guaranteed in the N-R method. So a Jacobian approximation method is needed.

The Jacobian approximation method is established. Using this method, error analysis,
calibration, compensation, and on-line control model can be established. As the TAU robot
is based on a 3-DOF configuration, instead of a general Stewart platform, the Jacobian
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approximate modification can be obtained based the 3-DOF analytical solution without any
errors. The mathematical description of the Jacobian approximation method can be
described as follows.

For forward kinematics,

X =F(0,¢)
X =F(0,0)+J porparpdé

Where J 1 orpirp = F (0,€) and € represents error.

Thus, the analytical solution F (9,0) and F (X ,0), is obtained. Therefore, the Jacobian

Approximation as an analytical solution is obtained and solving nonlinear equations using
N-R method is not necessary in this case.

5. Determination of independent design variables using SVD method
(application 2 of Jacobian matrix )

With the reality that all the parts of a robot have manufacturing errors and misalignment
errors as well as thermal errors, errors should be considered for any of the components in
order to accurately model the accuracy of the robot. Error budget is carried out in the study
and error sensitivity of robot kinematics with respect to any of the parameters can be
obtained from the error modeling. This is realized through the established Jacobian matrix.
To find those parameters in the error model that are linearly dependent and those
parameters that are difficult to observe, the Jacobian matrix is analyzed. SVD method
(Singular Value Decomposition) is used in such an analysis.

A methodical way of determining which parameters are redundant is to investigate the
singular vectors. An investigation of the last column of the V vector will reveal that some
elements are dominant in order of magnitude. This implies that corresponding columns in
the Jacobian matrix are linearly dependent. The work of reducing the number of error
parameters must continue until no singularities exist and the condition number has reached
an acceptable value.

A total of 40 redundant design variables of the 71 design parameters are eliminated by
observing the numerical Jacobian matrix obtained. Table 2 in Appendix A lists the
remaining calibration parameters.

6. Error budget and results (application 3 of Jacobian matrix)

When the SVD is completed and a linearly independent set of error model parameters
determined, the Error Budget can be determined. The mathematical description of the error
budget is as follows:

J=UeSel)"
dX=Jedg=UeSeV "  edg
U'edX=SeV" odg
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Assume UT odX = dA_/ and VT Odg = dg So we have d§ = d)?/Sii,finally,

dg=eU" edX)/S, (12)

Thus if the dX is given as the accuracy of the Tau robot, the error budget dg can be

determined. Given the D-H parameters for all three upper arms and the main column, the

locations of the joints located at each of the three upper arms are known accurately. The six
chain equations are created for the six link lengths, as follows:

[ fl(upperarm _ points,TCP _points) |
f2(upperarm _points, TCP _points)
f3(upperarm _points,TCP _points)
f4(upperarm _points,TCP _points)
fS(upperarm _points,TCP _points)

| f6(upperarm _ points,TCP _ points) |
Where TCP _ point = f(px, py, pz,a, 5,7)

Upperarm _point = f(¢)

and ¢ is a collection of all the design parameters. Thus,

Fl(e, px, py, pz,a, B, 7)

£2(¢, px, py, pz,a, ,y)
ol 3 pxpy.pz.a. B.y)
F4(e, px, py, pz,a, f.y)
£5(e, px, py, pz,, B, 7)
| F6(e, px, py, pz,a, B, 7) |
An error model is developed based on the system of equations as described above. A total of
71 parameters are defined to represent the entire system, the 71 parameters include all the

D-H parameters for the 3 upper arms, as well as the coordinates (x, y, z) of the 6 points at
both ends of the 6 links, respectively. Appendix B (Table 3) presents the error budget.

7. Simulation results

The Jacobian approximation method is verified by the following two different approaches:
(1) 6-DOF forward kinematic analysis (Newton-Raphson method), and (2) ADAMS
simulation results.

Fig. 4 shows the error between Jacobian approximation method and ADAMS simulation
results, and Fig. 5 gives the error between the N-R method and ADAMS simulation results.
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In Fig. 4, the maximum error is 1.53um with an input error of 1 mm. The Jacobian
approximation method has a very high accuracy compared with simulation results.

0.0020

0.0015

0.0010

0.0005

0.0000

-0.0005

-0.0010

-0.0015

Error between J and Adams simulation results

Fig. 4 Error between Jacobian approximation method and ADAMS simulation results

0.00006

Error results between N-R and Adams simulation

0.00004 -
0.00002 -

0
-0.00002 j
-0.00004 -

-0.00006 -

-0.00008

Fig. 5 Error between N-R method and ADAMS simulation results

Based on the D-H model of TAU with all error parameters, inverse and forward kinematic
models have been established. From the point of view of mathematics, the TAU kinematic
problem is to solve 6 nonlinear equations using Newton-Raphson method with Jacobian
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matrix as the searching direction and accurate results have been obtained up to 0.06 um
compared with ADAMS simulation results as shown in Fig. 5. Appendix C (Table 4) gives
the comparison between Jacobian Matrix and N-R method.

8. Conclusions

It can be observed from the results, that Jacobian Matrix is effective with an accuracy up to
1.53 um with an input error of 1 mm (Link 1 of lower arm 1). This was verified using
ADAMS simulation results. Results from N-R method match very well with ADAMS
simulation with a difference of only 0.06 um.

Based on the D-H model and an accurate Jacobian matrix, a series of results have been
presented including error analysis, forward kinematic, redundant variable determination,
error budget, and Jacobian approximation method. The Jacobian approximation method
can be used in on-line control of the robot. For the TAU robot, a closed form solution of a
forward kinematic problem is reached with a high accuracy instead of N-R numerical
solution. The simulation results are almost perfect compared with that from ADAMS.
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Appendix A
Parameter Number |Parameter Definition Parameter
16(height of the TCP a
22|joint 3 a6
23|arm3 a7
24ljoint 1 & arm 1 d1
25|short arm 1 d3
28|joint3 d6
31]joint_link11_arm1 y1
34]joint_link21_arm1 y2
37]joint_link31_arm1 y3
40|joint_link12_arm2 y4
43|joint_link22_arm2 y5
46|joint_link13_arm3 y6
48|joint_link11p x11
49|joint_link11p y11
51]joint_link31p x22
52]joint_link31p y22
541joint_link21p x33
55]joint_link21p y33
56|joint_link21p z33
57]joint_link12p x44
58]joint_link12p y44
59]joint_link12p z44
60]joint_link22p x55
61]joint_link22p y55
62|joint_link22p z55
63|joint_link13p X66
64|joint_link13p y66
67|link11 L1
68|link31 L2
69|link21 L3
70|link22 L4
Table. 2 List of the independent design variables
Appendix B
Error Budget
Variable No. Description Name Budget
1 drive 1 Joint 1 32 arcsec
2 drive 2 Joint 2 1.17 arcsec
3 drive 3 Joint 3 1.2 arcsec
17 joint1and arm 1 al 1.62 um
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24 di1 363 um
4 sitl 10.4 arcsec
10 afal 110 arcsec
18 joint_link11_arm 1 a2 373 um
19 a3 174 um
25 d3 449 um
5 shortarm 1 sit3 9.24 arcsec
11 afa3 9.45 arcsec
20 a4 1.9 mm
26 .. d4 485 um
6 joint 2 and arm 2 sit4 1.22 arcsec
12 afad 38.5 arcsec
21 ab 430 um
27 d5 D

7 short arm 2 sit5 11.2 arcsec
13 afab D

22 a6 0

28 .. dé D

8 joint3 sit6 4.64 arcsec
14 afa6 D

23 a7 0

29 arm 3 d7 D

9 sit7 6.14 arcsec
15 afa7 D

30 x1 D

31 joint_link11_arm1 yl 43 um
32 z1 123 um
33 x2 D

34 joint_link21_arm1 y2 49.4 um
35 z2 D

36 x3 115 um
37 joint_link31_arm1 y3 108 um
38 z3 D

39 x4 D

40 joint_link12_arm?2 y4 1.28 mm
41 z4 D

42 x5 2.6 mm
43 joint_link22_arm?2 y5 68.2 um
44 z5 D

45 x6 D

46 joint_link13_arm3 y6 21.6 um
47 76 213 um
48 joint_link11_platform x11 50 um
49 y11 50 um
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50 z11 D

51 x22 50 um
52 joint_link31_platform y22 50 um
53 722 D

54 x33 50 um
55 joint_link21_platform y33 50 um
56 733 13.3 um
57 x44 50 um
58 joint_link12_platform y44 50 um
59 744 37.9 um
60 x55 50 um
61 joint_link22_platform y55 50 um
62 755 398 um
63 x66 50 um
64 joint-link13_platform y66 50 um
65 766 50 um
16 height of the TCP a 436 um
66 link 13 LO 0

67 link 11 L1 88 um
68 link 31 L2 151 um
69 link 21 L3 54.3 um
70 link 22 L4 213 um
71 link 12 L5 1.47 mm

Table 3 Error budget

Appendix C
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Table 4 Results of the comparison between Jacobian Matrix and N-R method
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Specific Parameters of the Perturbation Profile
Differentially Influence the Vertical and
Horizontal Head Accelerations During Human
Whiplash Testing

Loriann M. Hynes, Natalie S. Sacher and James P. Dickey
Human Health and Nutr. Sci., University of Guelph
Canada

1. Introduction

Whiplash experiments using human subjects are important tools for evaluating biological
response during collisions and can provide key insights into mechanisms of injury
(Muhlbauer et al., 1999). Human experimentation, including whiplash-like perturbation
testing, is essential to evaluate the kinematic, kinetic and electromyographic responses to
enable mathematical models to predict the loads within neck structures (Choi & Vanderby,
1999). Although some experimentation has been performed with staged collisions between
actual automobiles (Welcher & Szabo, 2001; Severy et al., 1955; Castro et al., 2001; Brault et
al., 1998), more typically, human testing has been performed using experimental sleds
(Dehner et al., 2007; Kumar et al.,, 2005b; Kumar et al., 2002; Muhlbauer et al., 1999;
Siegmund et al., 2003; Kaneoka et al., 1999).

One limitation of sled testing is that the perturbation pulse varies from trial to trial due to
the varying inertia between subjects, and the varying effective inertia as subjects respond
differently to the perturbation. This is an important issue since certain properties of the
crash pulse influence the risk of injury (Kullgren et al., 2000; Hynes & Dickey, 2008). In
order to address this limitation, some researchers have developed advanced test sleds that
incorporate feedback-controlled linear motors to enable them to precisely control the
properties of the perturbation pulse (Siegmund et al., 2005; Siegmund et al., 2004). This
approach offers considerable advantage over spring (Magnusson et al., 1999), gravity
(Kaneoka et al., 1999) and pneumatic (Kumar et al., 2002; Hernandez et al., 2005) driven
sleds, yet it is still limited to simulating the anterior-posterior motion of vehicles. In contrast,
research from experimental automobile collision studies that have used real vehicles has
shown that the vehicle accelerations include substantial vertical accelerations (Severy et al.,
1955; Welcher & Szabo, 2001) due to factors such as the vehicle suspension and bumper
height mismatch (Siegel et al., 2001).

Peak head acceleration is thought to be a key variable in whiplash, and typical and
reproducible head/neck motion patterns have been observed in experiments with male
(Muhlbauer et al., 1999) and female (Dehner et al.,, 2007) volunteers; however, various
published studies have observed different responses which cloud the interpretation of this
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body of research. For example, Kumar and colleagues (2005b; 2002; 2005a) consistently
report that the peak magnitude of the head accelerations is less than the sled peak
acceleration while others (Severy et al., 1955; Magnusson et al., 1999; Siegmund et al., 2003;
Mubhlbauer et al., 1999) report peak head accelerations that exceed the sled acceleration.
Many human studies of whiplash-like perturbations have evaluated the horizontal
component of the head acceleration response and have not fully appreciated the vertical
component, although these two loading directions have different biological implications
(Nightingale et al., 2000; Siegmund et al., 2001) and presumably different thresholds for
injury. As notable exceptions, Siegmund et al. (2004) performed an in-depth analysis of the
vertical and horizontal head accelerations in response to a series of increasing intensity
perturbations, Welcher et al. (2001) evaluated the vertical and horizontal head accelerations
of a single female subject exposed to 5 in-car collisions of differing severity, and Hernandez
et al (2005) evaluated the displacement and acceleration responses of both female and male
subjects exposed to two levels of perturbation. Siegmund et al. (2004) observed that high
acceleration, high velocity perturbations consistently produced the largest muscle
activations, head horizontal and vertical accelerations, head angular accelerations and
velocities, and head angles compared to low acceleration, low velocity perturbations.
Siegmund et al., (2004) and Welcher et al., (2001) both reported that the horizontal and
vertical accelerations were highly correlated. Hernandez et al., (2005) observed that the
angular head displacements as well as the rearward and forward angular head accelerations
were somewhat increased in the fast case compared to the slow case. In addition, they noted
that the males presented two times higher upward linear head acceleration than females in
the unexpected condition. The purpose of this study was to investigate the relationship
between the vertical and horizontal head accelerations during low velocity horizontal
whiplash-like perturbations. Information about the relationship between the vertical and
horizontal head accelerations during low velocity perturbations is essential to enable
extrapolation of research findings from low velocity (non-injurious) perturbations to higher
severity situations. We have used a commercial parallel robot as a feedback-controlled
motion platform to provide the different perturbation pulses.

2. Methods

Permission for this study was obtained from the University of Guelph Research Ethics
Board and written consent was obtained from all subjects. Seventeen subjects underwent a
cervical spine orthopaedic examination performed by a Certified Athletic Therapist, as well
as questionnaire screening, to ensure they were free of any neck pain and/or obvious neck
pathology. We excluded subjects who reported being involved in a car accident in the
previous five years.

A robotic platform (R2000, PRSCo, New Hampshire, USA) was used to apply the low-
velocity whiplash-like perturbations. The accuracy of the robot is £0.001mm +0.001 degrees
in Cartesian space, permitting precisely controlled and repeatable perturbations. All robot
motion was restricted to the posterior-anterior direction. Two specific robotic displacement
profiles were generated (Figure 1). One profile reflected the kinematics of a spring-powered
experimental sled with a peak velocity of 2.14 kph and peak acceleration of 0.41g termed
“mild”, which was generated by integrating the published acceleration pulse (Figure 3,
Magnusson et al., 1999). The second profile had a higher peak acceleration (0.94g), peak
velocity (3.06 kph), and a shorter time to peak acceleration, and was termed “moderate”.
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— — — mild perturbation

moderate perturbation
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4
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Time (s)

Fig. 1. Time course of platform accelerations for the mild and moderate rear-end
perturbations. The mild profile reflects the perturbation from Magnusson et al., 1999; the
moderate profile has a larger magnitude and shorter time-to-peak acceleration.

Subjects were seated in a fully functional 1991 Honda Accord front passenger car seat
mounted to the robot’s platform (Fig. 2). Two triaxial accelerometers (Crossbow
CSL04LP3+4g Module) were used; one was fixed to the subjects’ foreheads to measure head
accelerations, as in previous studies (Kumar et al., 2002; Kumar et al., 2004a) while the
second accelerometer was mounted on the robotic platform to determine the initial onset of
the platform movement. Each subject was exposed to 10 perturbation trials; 5 moderate and
5 mild, presented in random order. Subjects were provided notice of the impending
perturbation using a countdown; however, subjects were unaware of the magnitude of the
oncoming perturbation.

Accelerometer data were collected at a sampling frequency of 1000Hz and processed using
LabVIEW 7.0 (National Instruments). Data collection was initiated one second before each
perturbation.

The peak vertical and anterior-posterior (A-P) head accelerations were extracted for the first
moderate and mild perturbations. Statistical analysis was performed using Graphpad
Software Inc., Version 4.03. Non-parametric statistics were used since the variance was not
homogenous. As there is no non-parametric equivalent to two-way ANOVAs, pair-wise
comparisons with paired Wilcoxon t tests were used and significance was set at the 0.05
level.
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Fig. 2. Experimental setup showing a subject sitting on the automobile seat mounted to the
top platform of the parallel robot. Surface EMG and head accelerometer data was collected
during the perturbations with the subject secured in the car seat using the standard safety
seat belt and head restraint.

3. Results

All subjects successfully completed the entire experimental protocol; no subjects complained
of neck pain during or after the experiment. The magnitude of the head accelerations were
significantly greater in the moderate perturbations compared to the mild perturbations
(p=0.0003 for vertical, effect size =0.92, p=0.0003 for horizontal head accelerations, effect size
= 1.13; Figure 2). In the mild perturbations, the magnitude of the vertical and horizontal
head accelerations were not significantly different (p>0.05). However, in the moderate
perturbations, the magnitude of the horizontal head accelerations were significantly larger
than the vertical accelerations (p=0.0007; effect size = 0.445). Both the horizontal and vertical
head acceleration magnitudes were larger than the platform accelerations in all cases (refer
to the horizontal lines in Figure 3).
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Fig. 3. Bar graph demonstrating the peak head accelerations (mean and one standard
deviation) in the vertical and horizontal directions during the mild (0.41 g) and moderate
(0.94 g) rear-end whiplash-like horizontal perturbations. The horizontal lines reflect the
magnitude of the horizontal robotic platform accelerations.

4. Discussion

This study directly compared two different perturbation profiles, using repeated measures,
to evaluate vertical and horizontal head accelerations during whiplash-like perturbations.
We observed that the magnitude of the vertical head accelerations depended on the specific
perturbation parameters; the horizontal and vertical acceleration magnitudes were not
significantly different in the mild perturbation, but the horizontal head accelerations were
significantly larger than the vertical accelerations during the moderate perturbations. These
findings illustrate that human subjects have different responses to whiplash-like
perturbations depending on the specific acceleration profile parameters, including peak
acceleration. This finding is in contrast to one study that found that the vertical and
horizontal head accelerations were highly correlated for seven different perturbation
profiles (Siegmund et al., 2004), but somewhat supported by a different study that observed
differences in the magnitude of the vertical head acceleration between female and male
subjects (Hernandez et al., 2005). Our finding supports a recent in vitro experiment that
observed that the crash pulse shape influences the peak loading and the injury tolerance
levels of the neck in simulated low-speed side-collisions (Kettler et al., 2006).
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Several recent studies have reported typical and reproducible head/neck motion and
acceleration patterns during perturbation testing (Dehner et al., 2007, Muhlbauer et al.,
1999). It is essential to appreciate that these patterns are modulated by the specific
perturbation profile. Parameters such as the time to peak acceleration, in addition to the
magnitude of the acceleration and velocity, appear to influence the resulting head/neck
motion. We document that the relationship between the vertical and horizontal head
accelerations depend on the specific perturbation pulse; we recommend that all studies
should publish their perturbation pulses to aid in comparisons between studies.

We observed that horizontal platform perturbations led to both vertical and horizontal head
accelerations. However, our accelerometer measurements were influenced by the location of
the accelerometer (forehead in this experiment, similar to other research studies c.f. Kumar
et al. (2002) and (2004a)). We have subsequently performed testing to evaluate the
differences in accelerometer measurements between mounting the accelerometer on the
forehead and temple, since the temple location is closer to the center of mass of the head
(Muhlbauer et al., 1999). These tests revealed that the peak horizontal forehead accelerations
were approximately 16% less, and the vertical forehead accelerations 38% greater, than the
peak temple accelerations. These differences arise since the forehead accelerations are also
sensitive to rotational accelerations of the head, and are similar to the 16% changes in peak
acceleration between mounting accelerometers on the top of the head compared to the
forehead (Mills & Carty, 2004). Nevertheless, the fact that we observed systematic
differences in forehead accelerations with different perturbation profiles remains and
indicates that differences would also be present for temple or head center of mass linear
and/or angular accelerations; the specific features of the perturbation profile, such as the
peak acceleration, influence the head acceleration responses. Another limitation of this
study was that the peak acceleration of the perturbation profile was comparatively quite
low. However, it is important to note that these perturbation profiles produced head
accelerations and neck muscle activation patterns similar to previous experiments
investigating human responses to whiplash-like perturbations (Severy et al, 1955;
Magnusson et al., 1999; Siegmund et al., 2003) and that the use of a parallel robot permitted
more precise control over the motion patterns than alternative testing approaches.

Clearly there is additional potential for parallel robots in this area; although some
researchers have used linear sleds to simulate offset collisions by orienting the subject at an
angle to the direction of sled travel (Kumar et al., 2004b), as 6 df mechanisms, parallel robots
could be programmed to move in three-dimensional space to reflect offset collisions more
realistically. We are currently undertaking research projects in which we are applying
concurrent vertical and horizontal perturbations, and a second study in which we are
evaluating different perturbation directions.

5. Conclusions

The level of the perturbation acceleration influences the resulting acceleration of the head, in
both the vertical and horizontal directions. A parallel robotic platform facilitated this
research by enabling feedback-controlled motion for the perturbations.
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1. Introduction

Forward kinematics problem of parallel robots is a very difficult problem to solve in
comparison to the serial manipulators due to their highly nonlinear relations between joint
variables and position and orientation of the end effector. This problem is almost impossible
to be solved analytically. Numerical methods are the most common approaches to solve
this problem. Nevertheless, the possible lack of convergence of these methods is the main
drawback. In this chapter, two types of neural networks - multilayer perceptron (MLP) and
wavelet based neural network (wave-net) - are used to solve the forward kinematics
problem of the HEXA parallel manipulator. This problem is solved in a typical workspace of
this robot. Simulation results show the advantages of employing neural networks, and in
particular wavelet based neural networks, to solve this problem.

2. Review of forward kinematics problem of parallel robot

The idea of designing parallel robots started in 1947 when D. Stewart constructed a flight
simulator based on his parallel design (Stewart, 1965). Then, other types of parallel robots
were introduced (Merlet, 1996). Parallel manipulators have received increasing attention
because of their high stiffness, high speed, high accuracy and high carrying capability
(Merlet, 2002). However, parallel manipulators are structurally more complex, and also
require a more complicated control scheme; in addition, they have a limited workspace in
compare to serial robots. Therefore, parallel manipulators are the best alternative of serial
robots for tasks that require high load capacity in a limited workspace.

A parallel robot is made up of an end-effector that is placed on a mobile platform, with n
degrees of freedom, and a fixed base linked together by at least two independent kinematic
chains (Tsai, 1999). Actuation takes place through m simple actuators, (see Fig. 1).

Similar to serial robots, kinematic analysis of parallel manipulators contains two problems:
forward kinematics problem (FKP) and inverse kinematics problem (IKP). In parallel robots
unlike serial robots, solution to IKP is usually straightforward but their FKP is complicated.
FKP involves a system of nonlinear equations that usually has no closed form solution
(Merlet, 2001).

Traditional methods to solve FKP of parallel robots have focused on using algebraic
formulations to generate a high degree polynomial or a set of nonlinear equations. Then,
methods such as interval analysis Merlet, 2004), algebraic elimination (Lee, 2002), Groebner
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basis approach Merlet, 2004) and continuation (Raghavan, 1991) are used to find the roots of
the polynomials or to solve nonlinear equations. The FKP is not fully solved just by finding
all the possible solutions. Further schemes are needed to find a unique actual position of the
platform among all the possible solutions. Use of iterative numerical procedures (Merlet,
2007), (Wang, 2007) and auxiliary sensors (Baronet et al., 2000) are the two commonly
adopted schemes to further lead to a unique solution. Numerical iteration is usually
sensitive to the choice of initial values and nature of the resulting constraint equations. The
auxiliary sensors approach has practical limitations, such as cost and measurement errors.
No matter how the forward kinematics problem may be solved, direct determination of a
unique solution is still a challenging problem.

Artificial neural networks (ANNSs) are computational models comprising numerous
nonlinear processing elements arranged in patterns similar to biological neural networks.
These computational models have now become exciting alternatives to conventional
approaches in solving a variety of engineering and scientific problems. Traditional neural
networks are back propagation networks that are trained with supervision, using gradient-
descent training technique which minimizes the squared error between the actual outputs of
the network and the desired outputs. Two common types of them are multilayer perceptron
(MLP) and radial basis function (RBF) are used in modeling of different problems. Recently
wavelet neural networks have been presented by Zhang et al. in 1992 based on wavelet
decomposition (Zhang et al., 1992). The proposed wavelet neural network (WNN) inspired
by feed forward neural networks and wavelet decompositions is an efficient alternative to
multilayer perceptron (MLP) and redial basis function (RBF) neural networks for process
modeling and classifying problems. The structure of proposed WNN is similar to that of the
radial basis function (RBF) networks, except that their main activation function is replaced
by orthogonal basis functions with simple network topology (Zhang, 1995). The WNN can
further result in a convex cost index to which simple iterative solutions such as gradient
descent rules are justifiable and are not in danger of being trapped in local minima when
choosing the orthogonal wavelets as the activation functions in the nodes (Zhang et al.,
1992). Wave-nets are a class of wavelet-based neural networks with hierarchical
multiresolution learning. Wave-nets were introduced by Bakshi and Stephanopoulos
(Bakshi & Sephanopolus, 1993). Then, their nature and applications were thoroughly
investigated by Safavi (Safavi & Romagnoli, 1997). There have also been other attempts at
using wavelets for NNs, with the learning algorithms that are different from wave-nets (Szu
et al., 1992).

Some researchers have tried using neural networks for solving the FKP of parallel robots
(Geng et al., 1992), (Yee, 1997). Almost all of prior researches have focused on using ANNs
approach to solve FKP of Stewart platform. Few of them have also applied this method to
solve FKP of other parallel robot (Ghobakhlo et al., 2005), (Sadjadian ef al., 2005). In this
chapter, we focus on HEXA parallel robot, first presented by Pierrot (Pierrrot et al., 1990),
whose platform is coupled to the base by 6 RUS-limbs, where R stands for revolute joint, U
stands for universal joint and S stands for spherical joint (see Fig. 2). Complete description
of HEXA robot is presented in Section 2.

The solution of IKP of HEXA was first presented in (Pierrrot et al., 1990) by F. Pierrrot who
solved the system of nonlinear equations and obtained a unique solution for the problem. A
numerical solution for FKP of HEXA parallel robot was presented by J.P. Merlet in (Merlet,
2001). FKP of this robot has no closed form solution and at most 40 assembly modes
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(assembly modes are different configurations of the end-effecter with given values of joint
variables) exist for this problem. He suggested iterative methods for solving HEXA FKP.
But, these methods have some drawbacks, such as being lengthy procedures and giving
incorrect answers (Merlet, 2001). Utilization of the passive joint sensors; however, enables
one to find closed form solutions. In (Last et al., 2005) it has been shown that a minimum
number of three passive joint sensors are needed for solving the FKP analytically.

In this chapter, two neural network approaches are used to solve FKP of HEXA robot. To
carry out this task, we first estimate the IKP in some positions and orientations -posses- of
the workspace of the robot. Then a multilayer perceptron (MLP) network and a wave-net
are trained with data obtained by solving IKP. We test the networks in the other positions
and orientations of the workspace. Finally the simulation results will be presented and these
two networks will be compared.

/ mobile platfarm

kinematic chain

—

base platform

actuatur/

Fig. 1. A typical RUS parallel robot (Bonev et al., 2000)

The rest of the chapter is organized as follows: Section 2 contains HEXA mechanism
description. Kinematic modeling of the manipulator is discussed in Section 3 where inverse
and forward kinematics are studied and the need for appropriate method to solve forward
kinematics is justified. MLP network and wave-net method to solve FKP are discussed in
section 4. In section 5 the results of solving FKP for HEXA parallel manipulator robot by
these networks are presented. Comparison of these networks and conclusion are discussed
in section 6.

3. Mechanism description

There are different classes of parallel robots. Undoubtedly, the most popular member of the
6-RUS class is the HEXA robot (Pierrrot et al., 1990), of which an improved version is already
available. The first to propose this architecture, however, was Hunt in 1983 (Hunt, 1983).
Some other prototypes have been constructed by Sarkissian in 1990 (Sarkissian et al., 1990),
by Zamanov (Zamanov ef al. 1992) and by Mimura in 1995 (Mimura, 1995). The latter has
even performed a detailed set of analyses on this type of manipulator. Two other designs
are also commercially available by Servos & Simulation Inc. as motion simulation systems
(Merlet, 2001). Finally, a more recent and more peculiar design has been introduced by
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Hexel Corp., dubbed as the “Rotary Hexapod” (Merlet, 2001). Among these different
versions, Pierrrot’s HEXA robot is considered in this chapter (see Fig. 2).

oy base

N M - -

active revolute// //
Joint

passive Hooke'/ /
Joint i

W 77 passive spherical
St A Joint

_end-effector

Fig. 2. Pierrrot’'s HEXA robot (Pierrrot et al., 1990)

All types of HEXA robots are 6-DOF parallel manipulators that have the following
characteristics:

a) With multiple closed chains, it can realize a greater structural stiffness.

b) To prevent the angular error of each motor from accumulating, it can realize a higher
accuracy of the end-effecter position.

c) As all the actuators can be placed collectively on the base, it can realize a very light
mechanism.

Consequently, HEXA enjoys the advantages of faster motions, better accuracy, higher
stiffness and greater loading capacities over the serial manipulators (Uchiyama et al., 1992).

4. Kinematic modeling

As in the case of conventional serial robots, kinematics analysis of parallel manipulators is
also performed in two phases. In forward or direct kinematics the position and orientation
of the mobile platform is determined given the leg lengths. This is done with respect to a
base reference frame. In inverse kinematics we use position and orientation of the mobile
platform to determine actuator lengths. For all types of parallel robots, IKP is easily solved.
For HEXA parallel robot this problem was solved by Pierrrot (Pierrrot et al., 1990). Brief
solution of IKP is presented by Bruyninckx in (Bruyninckx, 1997). Fig. 3 shows one
mechanical chain in HEXA design. In each chain, M specifies the length of the crank which
is the mechanical link between the revolute and universal joints, and L gives the length of
the rod which connects universal and spherical joints. Other parameters, H, h and a, are
introduced as shown in Fig. 4 The relationship between the joint angles 6 ;; (i=1,2,3 and
j=1,2), robot parameters and position and orientation of the end-effector can be obtained
from the following procedure. The joint angle 6 ;; moves the end point of crank of ith leg to
the position p; given by
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pi =b; +RibiR(X19i,j)[0 o MJf @

In this equation, the joint angle 6;; is the only unknown variable. The positions p; are
connected to a mobile platform pivot point t; by links of known length L. Matrix be is the
rotation matrix between the base frame {bs} and a reference frame constructed in the
actuated R joint, with X-axis along the joint axis and the Z-axis along the direction of the first
link corresponding to a zero joint angle 6;; (see Fig. 3). Matrix R(X, 8)) is the rotation matrix
corresponding to a rotation about the X axis by the angle 6;; :

1 0 0
R(X, 01‘,]‘) =0 COS(QZ*,]') —Sil’l(gi,]') (2)
0 sin(@i/j) cos(@i/]-)

In each chain, a loop closure formulation can be adopted as follows (see Fig. 3):

tib; =t;p; +p;b; 3
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It is possible to solve (3), (4), (5), for 6;; :
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And i pi i opi 1]T is the position vector of the pivot point t; in the reference frame

constructed in the actuated R joint (Pierrrot et al., 1990). The same equations can be used to
derive the HEXA forward kinematic model, but the closed form solution to FKP can not be
found. So, we propose to use numerical schemes by neural network approach for solving
FKP in the workspace of the robot.
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5. Artificial neural networks

The inspiration for neural networks comes from researches in biological neural networks of
the human brains. Artificial neural network (ANN) is one of those approaches that permit
imitating of the mechanisms of learning and problem solving functions of the human brain
which are flexible, highly parallel, robust, and fault tolerant. In artificial neural networks
implementation, knowledge is represented as numeric weights, which are used to gather the
relationships between data that are difficult to realise analytically, and this iteratively
adjusts the network parameters to minimize the sum of the squared approximation errors
using a gradient descent method. Neural networks can be used to model complex
relationship without using simplifying assumptions, which are commonly used in linear
approaches. One category of the neural networks is the back propagation network which is
trained with supervision, using gradient-descent training technique and minimizes the
squared error between the actual outputs of the network and the desired outputs.

Traveling platform

Base platform

X

Fig. 3. A typical chain of the HEXA design. The joint angle 6;; is variable and measured; the
lengths L and M of the “base” and “top” limbs of each chain are constant; the angles of all
other joints are variable but not measured. Note that the joint between L and M is two
degrees of freedom universal joint, so that the link L does not necessarily lie in the plane of
the figure.

5.1 Multilayer perceptron (MLP)
The MLP is one of the typical back propagation ANNs and consists of an input layer, some
hidden layers and an output layer, as shown in Fig. 5.
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MLP is trained by back propagation of errors between desired values and outputs of the
network using gradient descent or conjugate gradient algorithms. The network starts
training after the weight factors are initialized randomly. Valid data consisting of the input
vector and the corresponding desired output vector is fed to the network and the difference
between the output layer result and the corresponding desired output result is used to
adjust the weights by back propagation of the errors. This procedure continues until errors
are small enough or no more weight changes occur. A first challenge in training the back
propagation neural network is the choice of the appropriate network architecture, i.e.
number of hidden layers and number of nodes of each layer. There is no available
theoretical result which such choice may rely on. This can only be determined by user’s
experience (Medsker et al., 1994).

Top view

Xt

Mobile platform Base platform

Fig. 4. Top views of the base and mobile platforms
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Fig. 5. Schematic of the MLP network (Geng et al., 1992)
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5.2 Wavelet based neural network (wave-net)

The hierarchical multiresolution wavelet based network, namely wave-net, was first
introduced by Bakhshi (Bakshi and Sephanopolus, 1993) and was further investigated by
Safavi (Safavi and Romagnoli, 1997). There has been another approach to develop wavelet
based neural network with almost an MLP structure presented by Zhang (Zhang et al.,
1992). However, the latter type of neural network lacks an efficient use of the capabilities of
wavelets and multiresolution analysis and therefore is not considered in this chapter.

5.2.1 Wavelets and multiresolution analysis (MRA)

Wavelets are a new family of localized basis functions and have found many applications in
quite a large area of science and engineering (Daubechies, 1992). These basis functions can
be used to express and approximate other functions. They are functions with a combination
of powerful features, such as orthonormality, locality in time and frequency domains,
different degrees of smoothness, fast implementations, and in some cases compact support.
Wavelets are usually introduced in a multiresolution framework developed by Mallat
(Mallat, 1989). These are shortly explained in the following. Consider a function F(X) in
L2(R), where L2(R) denotes the vector space of all measurable, square integrable one-
dimensional functions. The function can be expressed as

m=0 k=+o0

FX)=Fy(X)+ D D du i (X)
m=—o0 k=—00 (11)
where
k=+o0
Fy(X) = zﬂo,k%,k(x)
k= (12)

Here, the function @mx (not to be confused with the orientation angle ¢)is called a scaling
function of the multiresolution analysis (MRA) and a family of scaling functions of the MRA
is expressed as;

_n-m/2 —myr _
P,k (X) =2 ¢7(2 X k) mkeZ (13)

Where 27" and k correspond respectively to the dilation and translation factors of the

-m/2
scaling function, and 27" s an energy normalization factor. The wavelets, denoted by .«
(not to be confused with the orientation angle ), can easily be obtained from @mx. A family
of wavelets may be represented as:

_Ah-m/2 -myr

To gain a thorough understanding of the role of scaling functions and wavelets within the
multiresolution approximation framework see (Daubechies, 1992).
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5.2.2 Wave-net learning

Equation (11) describes the basic framework of a wave-net in that it explains how each
wavelet co-operates in the whole approximation scheme. It also shows that the scaling
functions are only used at the earliest stage of approximation to produce Fo, after which the
approximation scheme uses only wavelets. Fig. 6 depicts a typical wave-net structure. The
hierarchical nature of the scheme is also obvious. Once the first approximation to a function
F is obtained, that is Fo, one can get a better approximation, namely F, by including
wavelets of the same dilation factor as the scaling function, here m=0. Adding wavelets of
the next highest resolution, here m= -1, leads to an approximation F, , finer than the
previous one F.. This process is continued until the original function is reconstructed or an
arbitrary degree of accuracy for the approximation is obtained.

In the above hierarchical approach, wavelets with different dilations and translations are
incorporated.

The approaches to find the network coefficients, amx and dmx are presented by Safavi (Safavi
and Romagnoli, 1997).

Wyt wavelels

Fig. 6. The wave-net structure

6. Neural network solution for FKP

In order to model HEXA FKP with neural networks, first, a typical workspace for the robot
is determined. Then, IKP is solved in some points of the workspace and finally the MLP and
wave-net are trained with the data of IK solution in the typical robot workspace.

6.1 The workspace analysis

It is well known that parallel manipulators have a rather limited and complex workspace.
Six parameters consisting of three coordinates of position of center of mass for mobile
platform in the base frame (X, Y, Z) and three RPY orientation angles of mobile platform
with respect to the base frame (three angles of mobile platform orientation in space consist
of ¢, y and 6 angles, see Fig. 3) vary in the HEXA workspace.
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Complete analysis of HEXA workspace is presented in (Bonev et al., 2000) by A. Bonev. We
use a typical workspace shown in Fig. 7. In this workspace, end-effector can move 300
millimeters in both directions of X and Y axes; also it can move 600 millimeters in positive Z
direction. In all positions of the workspace, mobile platform can rotate in the range of [-11/3,
/3] for @, y and 0 angles. Fig. 7 shows the typical workspace which is used in this chapter.
The geometric parameters of the robot are given in Table 1.

H h M L a

360mm 5Imm 220mm 280mm 5Imm

Tablel. Geometric parameters of HEXA parallel robot

Fig. 7. A typical workspace for the HEXA parallel robot

6.2 Neural network solution for FKP

Now a MLP network can be trained with the data generated by the solution of IKP. In order
to model the FKP in terms of 6 variables of positions and orientations of the mobile
platform, a MLP network with a configuration of 6X13X13X13X13X13X6 has been

developed with the smallest error and has been used to model FKP. In other words, the
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ANN model has 6 inputs consisting of 6 joint angles, 5 hidden layers with 13 neurons in
each layer, and 6 neurons in the output layer. The activation functions used in the hidden
layers and the output layer are logarithmic and pure linear, respectively. The number of
patterns used for training and test are 17500 and 35000, respectively. The network is trained
over 1200 epochs with error back propagation training. Each network is evaluated by
comparing the predictions and the true outputs, resulting in a prediction error for each
orientation angle. The autocorrelation coefficients are also computed for the predicted error
of each orientation angle.

6.3 Wave-net solution for FKP

In order to model the FKP with wave-net, MRA framework is used to approximate this
process in different resolutions. Inputs, outputs and the number of patterns used for
training and test are similar to the MLP network. The network is trained in resolutions
m=0,-1 and -2 and the best results of modeling are reached at resolution -2. Figure 10 shows
the training results for the successive resolutions zero, -1 and -2 for the X, Y, Z positions. For
¢, y and 6 angles the results are not represented due to the similarity and also to save space.

6.4 Modeling results

In this section the result of modeling FKP are presented. Error parameters in the tables are:
mse ; maximum squared error performance function

mae ; maximum absolute error performance function

nrmse ; normalized root minimum square error

Figures 8-11 show the modelling error and the correlations between the outputs of networks
and the target outputs.

6.4.1 Modeling results with the MLP network

Table 2 and Figs. 8 and 9 show the results of FKP solution by MLP; Table 2 shows the
resulted errors of FKP modeling.

It is apparent from Table 2 that mse , mae and nrmse in all joints are less than 2*¥10-5, 0.01
and 0.01 respectively, in test data. mae indicates maximum absolute error of modeling;
therefore, maximum error of position and orientation of mobile platform is not bigger than 1
millimeter in position and 0.1 degrees in orientation in the worst case. mse shows the
maximum of the average of errors in all points and so the average error of FKP solution in
the typical workspace is less than 2*105. R in Table 2 indicates linear regression between
output of the network and the target data. The closer regression to 1, the better the modeling
is. The linear regression of all joints is more than 0.99 which shows very good quality
modeling results. Fig. 9 shows the error of modeling in 1000 sample test points of typical
workspace. For these sample posses the errors of modeling in position and orientation are
very small and can be neglected.

6.4.2 Modeling results with wave-net
Figures 10 and 11 show the results of FKP solution by wave-net. Table 3 shows the resulted

errors of FKP modeling. In Table 3 mse and mae in all joints are less than 10+, 1072,
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respectively, for test data. Therefore, maximum error orientation of mobile platform is not
greater than 102 degrees in orientation for the worst case. Besides, the average error of FKP
solution in the typical workspace is less than e-6. R (linear regression) in Table 3 of all joints
is more than 0.999 which shows good modeling results. So, comparing the results of the
MLP network and wave-net, wave-net model has smaller prediction error for FKP modeling
of HEXA robot.

7. Comparison of MLP and wave-net results

In section 6 two approaches were used to model the FKP of HEXA robot - MLP network
and wavelet based neural network. Though both neural network approaches showed great
potential for this study, some comparison between these two approached are presented
here. It is apparent from the results that errors of modelling by wave-net is less than MLP
network, also the required time for modeling by wave-net is smaller than MLP; therefore,
the wave-net modeling shows superior results in comparison to the MLP. Table 4 shows the
results of modeling with these networks.

Figure 11 shows the linear regression between target X and Y positions and wave-net
outputs. The same regressions can be obtained for ¢, 6 and y angles and Z position which
are omitted here because of the similarity.

Variable mse mae nrmse R
X 1.3232e-005 0.0089 0.01 0.999
Y 5.76992e-006 0.0076 0.0094 0.999
Z 1.79034e-005 0.0091 0.0045 0.999
o] 5.77768e-006 0.01 0.0073 0.988
7 1.20364e-006 0.009 0.0034 0.988
() 2.1676e-006 0.0087 0.0045 0.999

Table 2. The resulted errors of FKP modeling by test data with MLP network
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Fig. 8. The results of HEXA parallel robot modeling with ANN for X,Y,Z axes and ¢, y, 6
angles, from 8-a to 8-f, respectively.
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Fig. 9. The error of HEXA parallel robot modeling with ANN for X,Y,Z axes and ¢, y,

0 angles, from 9-a to 9-f, respectively.
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respectively
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Fig. 11 - Modeling results of X and Y positions with the wave-net, a is X model and bis Y

model.
Variable mse mae R
L4 8.2568e-010 2.5947e-004 1
Y 2.6346e-013 4.6090e-006 1
Z 1.2103e-006 4.7103e-002 0.9999
) 1.1402e-09 2.9911e-004 0.9999
o 8.2568e-09 2.5947e-003 1
X 1.8501e-015 3.1252e-008 1

Table 3. The resulted errors of FKP modeling by test data with wave-net
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___________ Wave-net oo MEP
Training time 33 min Training time 123 min
Variable mse mae R mse mae R
v 8.26e-010 | 2.60e-004 1 1.33e-005 0.0089 1
Y 2.64e-013 | 4.61e-006 1 5.77e-006 0.0076 1
Z 1.21e-006 | 4.71e-002  |0.999 1.79e-005 0.0091 0.999
) 1.15e-09 2.99e-004  |0.999 5.78e-006 0.01 0.999
o 8.26e-09 2.60e-003 1 1.20e-006 0.009 1
X 1.85e-015 3.13e-008 1 1.85e-015 3.13e-008 1

Table 4. The comparison between results of modeling by wave-net and MLP

8. Conclusion

In this chapter, we proposed to use neural networks for FK solution of HEXA robot, which
can be elaborated to generate the best estimation of forward kinematics of the robot. The
research results in this chapter are quite important as they solve a problem for which there is
no known closed form solution. Besides, the presented solution in this research has the
better prediction and obtains smaller error in compare to the other works which have
studied FKP of HEXA robot to the best of our knowledge.
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1. Introduction

According to the notation proposed by the International Federation for the Theory of
Mechanisms and Machines IFToMM (lonescu, 2003); a parallel manipulator is a mechanism
where the motion of the end-effector, namely the moving or movable platform, is controlled
by means of at least two kinematic chains. If each kinematic chain, also known popularly as
limb or leg, has a single active joint, then the mechanism is called a fully-parallel
mechanism, in which clearly the nominal degree of freedom equates the number of limbs.
Tire-testing machines (Gough & Whitehall, 1962) and flight simulators (Stewart, 1965),
appear to be the first transcendental applications of these complex mechanisms. Parallel
manipulators, and in general mechanisms with parallel kinematic architectures, due to
benefits --over their serial counterparts-- such as higher stiffness and accuracy, have found
interesting applications such as walking machines, pointing devices, multi-axis machine
tools, micro manipulators, and so on. The pioneering contributions of Gough and Stewart,
mainly the theoretical paper of Stewart (1965), influenced strongly the development of
parallel manipulators giving birth to an intensive research field. In that way, recently several
parallel mechanisms for industrial purposes have been constructed using the, now, classical
hexapod as a base mechanism: Octahedral Hexapod HOH-600 (Ingersoll), HEXAPODE
CMW 300 (CMW), Cosmo Center PM-600 (Okuma), F-200i (FANUC) and so on. On the
other hand one cannot ignore that this kind of parallel kinematic structures have a limited
and complex-shaped workspace. Furthermore, their rotation and position capabilities are
highly coupled and therefore the control and calibration of them are rather complicated.

It is well known that many industrial applications do not require the six degrees of freedom
of a parallel manipulator. Thus in order to simplify the kinematics, mechanical assembly
and control of parallel manipulators, an interesting trend is the development of the so called
defective parallel manipulators, in other words, spatial parallel manipulators with fewer
than six degrees of freedom. Special mention deserves the Delta robot, invented by Clavel
(1991); which proved that parallel robotic manipulators are an excellent option for industrial
applications where the accuracy and stiffness are fundamental characteristics. Consider for
instance that the Adept Quattro robot, an application of the Delta robot, developed by
Francois Pierrot in collaboration with Fatronik (Int. patent appl. WO/2006/087399), has a
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2.0 kilograms payload capacity and can execute 4 cycles per second. The Adept Quattro
robot is considered at this moment the industry's fastest pick-and-place robot.

Defective parallel manipulators can be classified in two main groups: Purely translational
(Romdhane et al, 2002; Parenti-Castelli et al, 2000; Carricato & Parenti-Castelli, 2003; Di
Gregorio & Parenti-Castelli, 2002; Ji & Wu, 2003; Kong & Gosselin, 2004a; Kong & Gosselin,
2002) or purely spherical (Alizade et al, 1994; Di Gregorio, 2002; Gosselin & Angeles, 1989;
Kong & Gosselin, 2004b; Liu & Gao 2000). A third class is composed by parallel
manipulators in which the moving platform can undergo mixed motions (Parenti-Castelli &
Innocenti, 1992; Gallardo-Alvarado et al, 2006; Gallardo-Alvarado et al, 2007). The 3-RPS,
Revolute + Prismatic +Spherical, parallel manipulator belongs to the last class and is
perhaps the most studied type of defective parallel manipulator.

The 3-RPS parallel manipulator was introduced by Hunt (1983) and has been the motive of
an exhaustive research field where a great number of contributions, approaching a wide
range of topics, kinematic and dynamic analyses, synthesis, singularity analysis, extensions
to hyper-redundant manipulators, etc; have been reported in the literature, see for instance
Lee & Shah (1987), Kim & Tsai (2003), Liu & Cheng (2004), Lu & Leinonen (2005). In
particular, screw theory has been proved to be an efficient mathematical resource for
determining the kinematic characteristics of 3-RPS parallel manipulators, see for instance
Fang & Huang (1997), Huang and his co-workers (1996, 2000, 2001, 2002); including the
instantaneous motion analysis of the mechanism at the level of velocity analysis (Agrawal,
1991).

This paper addresses the kinematics of 3-RPS parallel manipulators, including position,
velocity and acceleration analyses. Firstly the forward position analysis is carried out in
analytic form solution using the Sylvester dialytic elimination method. Secondly the velocity
and acceleration analyses are approached by means of the theory of screws. To this end, the
velocity and reduced acceleration states of the moving platform, with respect to the fixed
platform, are written in screw form through each one of the limbs of the mechanism. Finally,
the systematic application of the Klein form to these expressions allows obtaining simple
and compact expressions for computing the velocity and acceleration analyses. A case study
is included.

2. Description of the mechanism

A 3-RPS parallel manipulator, see Fig. 1, is a mechanism where the moving platform is
connected to the fixed platform by means of three extendible limbs. Each limb is composed
by a lower body and an upper body connected each other by means of an active prismatic
joint. The moving platform is connected at the upper bodies via three distinct spherical
joints while the lower bodies are connected to the fixed platform by means of three distinct
revolute joints.

An effective general formula for determining the degrees of freedom of closed chains still in
our days is an open problem. An exhaustive review of formulae addressing this topic is
reported in Gogu (2005). Regarding to the existing methods of computation, these formulae
are valid under specific conducted considerations. For the parallel manipulator at hand, the
mobility is determined using the well-known Kutzbach-Grtibler formula

F:6(n—j—1)+Zj)fi @



Acceleration Analysis of 3-RPS Parallel Manipulators by Means of Screw Theory 317

Moving platform
S P1 ans P3
an az;
P a CE
P2
R B1 B3
s q2 N .
./_\ Y
o Jex
B2 12 Z
Fixed platform

Fig. 1. The 3-RPS parallel manipulator and its geometric scheme.
Where n is the number of links, j is the number of kinematic pairs and f; is the number of
freedoms of the i-th pair. Thus, taking into account that for the mechanism at hand n=8, j=9

j
and X f; =15; then the degrees of freedom of it are equal to 3, an expected result.
i=1

2. Position analysis

In this section the forward finite kinematics of the 3-RPS parallel manipulator is approached
using analytic procedures. The inverse position analysis is considered here a trivial task and
therefore it is omitted.

The geometric scheme of the spatial mechanism is shown in the right side of Fig. 1.
Accordingly with this figure; B;, q;and P, denotes, respectively, the nominal position of
the revolute joint, the length of the limb and the center of the spherical joint in the same

limb. While u; denotes the direction of the axis associated to the revolute joint. On the other

hand a_  represents the distance between the centers of two spherical joints.

In this work, the forward position analysis of the 3-RPS parallel manipulator consists of
finding the pose, position and orientation, of the moving platform with respect to the fixed
platform given the three limb lengths or generalized coordinatesq;of the parallel

manipulator. To this end, it is necessary to compute the coordinates of the three spherical
joints expressed in the reference frame XYZ.

When the limbs of the parallel manipulator are locked, the mechanism becomes a 3-RS
structure. In order to simplify the analysis, the reference frame XYZ, attached at the fixed

platform, is chosen in such a way that the points B, lie on the XZ plane. Under this

consideration the axes of the revolute joints are coplanar and three constraints are imposed
by these joints as follows



318 Parallel Manipulators, New Developments

(P, -B,)eu; =0 ie{123} )

where the dot denotes the usual inner product operation of the three dimensional vectorial
algebra. It is worth to mention that expressions (2) were not considered, in the form
derived, by Tsai (1999), and therefore the analysis reported in that contribution requires a
particular arrangement of the positions of the revolute joints over the fixed platform
accordingly to the reference frame XYZ. Furthermore, clearly expressions (2) are applicable
not only to tangential 3-RPS parallel manipulators, like the mechanism of Fig. 1, but also to
the so-called concurrent 3-RPS parallel manipulators.

On the other hand, clearly the limb lengths are restricted to

(Pi -B; )e (Pi -B; )= qiz ie{1,23] ®)

Finally, three compatibility constraints can be obtained as follows

(Py ~P3)e (P, - P3) =235
(P ~P3)e (P ~P3)=ai3 @
(P Py )e (P, ~Py)=ad,

Expressions (2)-(4) form a system of nine equations in the nine

unknowns {Xl,Yl,Zl,X2,Y2,Zz,X3,Y3,Z3}. In what follows, expressions (2-4) are

reduced systematically into a highly non linear system of three equations in three
unknowns. Afterwards, a sixteenth-order polynomial in one unknown is derived using the
Sylvester dialytic elimination method.

It follows from Egs. (2) that

X;=f(z;) ief1,23} )

On the other hand with the substitution of (5) into expressions (3), the reduction of terms
leads to

Y2=p; ie{123} (6)

where p; are second-degree polynomials in Z; . Finally, the substitution of Egs. (6) into Egs.
(4) results in the following highly non-linear system of three equations in the three

unknowns Z,, Z,and Z,

d,Z3 +d,723 +d3Z3Z, +d, 2,75 +dsZ,Z5 +dgZ) +d,Z5 +dg =0 @)
e, 22 +e,2% + ;727 +e,7,2% +e57,Z, +ecZ, +e,Z, +eg =0

therein ¢, d and e are coefficients that are calculated accordingly to the parameters and
generalized coordinates, namely the length limbs of the parallel manipulator.
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Expressions (7) are similar to those introduced in Tsai (1999); however their derivation is
simpler due to the inclusion, in this contribution, of Egs. (2).
Please note that only two of the unknowns are present in each one of Egs. (7) and therefore

their solutions appear to be an easy task. For example, Z,and Zj;can be obtained as
functions of Z, from the last two quadratic equations; afterwards the substitution of these

variables into the first quadratic yields a highly non-linear equation in Z, . The handling of

such an expression is a formidable an unpractical task. Thus, an appropriated strategy is

required for solving the system of equations at hand. Some options are

¢ A numerical technique such as the Newton-Raphson method. It is an effective option,
however only one and imperfect solution can be computed, and there are not guarantee
that all the solutions will be calculated.

e Using computer algebra like Maple©. An absolutely viable option that guarantee the
computation of all the possible solutions.

e The application of the Sylvester dialytic elimination method. An elegant option that
allows to compute all the possible solutions.

In this contribution the last option was selected and in what follows the results will be

presented.

With the purpose to eliminate Z, , the first two quadratics of (7) are rewritten as follows

2
P123 +P2Z3 +p3 =0 ®)
2
P423 +P523 +pg =0
where p;, p,and pjare second-degree polynomials in Z,while p,, psand pgare

second-degree polynomials in Z; . After a few operations, the term Z;is eliminated from

(8). With this action, two linear equations in two unknowns, the variable Z5 and the scalar 1,

are obtained. Casting in matrix form such expressions it follows that
V4 0
M| 3= 9

M. =| P1P5 ~P2P4 P1P6 ~P3P4
P3P4 ~P1P¢ P3P5 ~P2Pg

where

It is evident that expression (9) is valid if, and only if, de’c(M1 ) = 0. Thus clearly one can
obtain

4 3 2
P7Zp +PgZn +P9Zy +P19Zp + P11 =0 (10)
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where p;, pg, Py, P1gand pq; are fourth-degree polynomials in Z, ; and the first step of

the Sylvester dialytic elimination method finishes with the computation of this eliminant.
Please note that Eq. (10) and the last quadratic of Egs. (7) represents a non-linear

system of two equations in the unknowns Z, and Z,, and in what follows it is reduced into
an univariate polynomial equation. As an initial step, that last quadratic of (7) is rewritten as

2
P1227 +P13Z42 P14 =0, (11)

where p;,, pjzand p,,are second-degree polynomials in Z;. It is very tempting to
assume that the non-linear system of two equations formed by (10) and (11) can be easily
solved obtaining first Z,in terms of Z; from Eq. (11) and later substituting it into Eq. (10).

However, when one realize this apparent evident action with the aid of computer algebra,
an excessively long expression is derived, and its handling is a hazardous task. Thus, the
application of the Sylvester dialytic elimination method is a more viable option.

In order to avoid extraneous roots, it is strongly advisable the deduction of a minimum of

linear equations. For example, the term Zg is eliminated multiplying Eq. (10) by p;, and Eq.

(11) by p7Z§ . The substraction of the obtained expressions leads to

3 2
(P13P7 —P12P8)Z2 + (P14P7 ~P12P9)Z3 ~P1oPpZs ~P12P11 =0 (12)
Expressions (11) and (12) can be considered as a linear system of two equations in the four
unknowns Zz, Z;, Z,and 1. Therefore it is necessary the search of two additional linear
equations.

An equation is easily obtained multiplying Eq. (11) by Z,

3 2
P12Z3 +P13Z2 +P14Zp =0. (13)
The search of the fourth equation is more elusive, for details the reader is referred to Tsai
(1999). To this end, multiplicate Eq. (10) by (p1,Z, + py3) and Eq. (11) by (p,Z3 + pgZa) -

The subtraction of the resulting expressions leads to

3 2
(P12P9 ~ P7P14)Z2 + (P12P10 + P13P9 ~ PoP14)Z2 (14

+(P12P11 + P13P10)22 + P13P11 =0

Casting in matrix form expressions (11)-(14) it follows that

3

Z,

Z,
1

M,

o O O ©
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where
0 P12 P13 P14
M. — | P13P7 ~P12P8 P14P7 ~P12P9 ~P12P10 ~P12P11
2 0
P12 P13 P14

P12P9 ~P7P14 P12P10 * P13P9 ~P8P14 P12P11 *P13P10 P13P11
Clearly expression (15) is valid if, and only if, det(M, ) = 0. Therefore, this eliminant yields a

sixteenth-order polynomial in the unknown Z .

It is worth to mention that expressions (10) and (11) have the same structure of those
derived by Innocenti & Parenti-Castelli (1990) for solving the forward position analysis of
the Stewart platform mechanism. However, this work differs from that contribution in that,
while in this contribution the application of the Sylvester Dialytic elimination method
finishes with the computation of the determinant of a 4x4 matrix, the contribution of
Innocenti & Parenti-Castelli (1990), a more general method than the presented in this
section, finishes with the computation of the determinant of a 6x6 matrix.

Once Z,is calculated, Z,and Z, are calculated, respectively, from expressions (11) and the

second quadratic of (8) while the remaining components of the coordinates, X; andY;, are
computed directly from expressions (5) and (6), respectively. It is important to mention that

in order to determine the feasible values of the coordinates of the points P, the signs of the

corresponding discriminants of Z,, Zjand Y, must be taken into proper account. Of

course, one can ignore this last recommendation if the non-linear system (3) is solved by
means of computer algebra like Maple©.

Finally, once the coordinates of the centers of the spherical joints are calculated, the well-
known 4 x 4 transformation matrix T results in

R
T= /o, (16)
01x3 1

where, 1,6 = (Pl +P, +P; )/ 3 is the geometric center of the moving platform, and R is the

rotation matrix.

3. Velocity analysis

In this section the velocity analysis of the 3-RPS parallel manipulator is carried out using the
theory of screws which is isomorphic to the Lie algebra e(3). This section applies well
known screw theory; for readers unfamiliar with this mathematical resource, some
appropriated references are provided at the end of this work (Sugimoto, 1987; Rico and
Duffy, 1996; Rico et al, 1999).
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The mechanism under study is a spatial mechanism, and therefore the kinematic analysis
requires a six-dimensional Lie algebra. In order to satisfy the dimension of the subspace
spanned by the screw system generated in each limb, the 3-RPS parallel manipulator can be
modelled as a 3-R*RPS parallel manipulator, see Huang and Wang (2000), in which the
revolute joints R* are fictitious kinematic pairs. In this contribution, see Fig. 2, each limb is
modelled as a Cylindrical + Prismatic + Spherical kinematic chain, CPS for brevity. It is
straightforward to demonstrate that this option is simpler than the proposed in Huang and
Wang (2000). Naturally, this model requires that the joint rate associated to the translational
displacement of the cylindrical joint be equal to zero.

fe

o /1O\X

1$§ / i Z

Fig. 2. A limb with its infinitesimal screws
Let o = (wy,wy,0,)be the angular velocity of the moving platform, with respect to the

fixed platform, and let V; = (VOX Voy ,VOZ) be the translational velocity of the point O,
see Fig. 2; where both three-dimensional vectors are expressed in the reference frame XYZ.
Then, the velocity state V5 = [03 Vo ], also known as the twist about a screw, of the

moving platform with respect to the fixed platform, can be written, see Sugimoto (1987),
through the j-th limb as follows

5 L
j igi+l .
0 i®ie 5, =Vo j€ {1,2,3}, (17)
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where, the joint rate, 0313 =q; is the active joint associated to the prismatic joint in the j-th

limb, while 00)]1 = 01is the joint rate of the prismatic joint associated to the cylindrical joint.

With these considerations in mind, the inverse and forward velocity analyses of the
mechanism under study are easily solved using the theory of screws.

The inverse velocity analysis consists of finding the joint rate velocities of the parallel
manipulator, given the velocity state of the moving platform with respect to the fixed
platform. Accordingly to expression (17), this analysis is solved by means of the expression

Q =1V, . (18)

Therein

® ]j :[0$

1 1

i : j j i > $j6] is the Jacobian of the j-th limb, and

. Qj = [0 o) 10) ,0) 30, s0k 50)]6]ris the matrix of joint velocity rates of the j-

th limb.
On the other hand, the forward velocity analysis consists of finding the velocity state of the

moving platform, with respect to the fixed platform, given the active joint rates q]. . In this
analysis the Klein form of the Lie algebra e (3) plays a central role.

Given two elements $, = [s1 s01]and $, = [s2 soz]of the Lie algebra e (3), the Klein

form, {*,*} , is defined as follows

{818} =51 0505 +5; 050, (19)
Furthermore, it is said that the screws $; and $, are reciprocal if {$1 $ 2} =0.
4.5, . . .
Please note that the screw $f is reciprocal to all the screws associated to the revolute joints

in the same limb. Thus, applying the Klein form of the screw ! Sf to both sides of expression

(17), the reduction of terms leads to
o ts2)=a, iefi2a). (20)
Following this trend, choosing the screw > $? as the cancellator screw it follows that

Wolsel=0  ief123). (21)

Casting in a matrix-vector form expression (20) and (21), the velocity state of the moving
platform is calculated from the expression

J'A Vo =Q, (22)



324 Parallel Manipulators, New Developments

wherein

5 54,6 5

I

$, 5$g] is the Jacobian of the parallel manipulator,

0 I
e A= |: 3 73 i| is an operator of polarity, and
13 03x3
) L T
« Q-=la, 4 4 0 0 0.
Finally, once the angular velocity of the moving platform and the translational velocity of

the point O are obtained, respectively, as the primal part and the dual part of the velocity

state Vg = [o) VO], the translational velocity of the center of the moving platform,

vector v, is calculated using classical kinematics. Indeed

Ve =Vo + @ X1 (23)

Naturally, in order to apply Eq. (22) it is imperative that the Jacobian ] be invertible.
Otherwise, the parallel manipulator is at a singular configuration, with regards to Eq. (18).

4. Acceleration analysis

Following the trend of Section 3, in this section the acceleration analysis of the parallel
manipulator is carried out by means of the theory of screws.

Let & = (&y,®y ,d,) be the angular acceleration of the moving platform, with respect to the

fixed platform, and let a5 = (aOX sAgy ,aoz) be the translational acceleration of the point
O; where both three-dimensional vectors are expressed in the reference frame XYZ. Then the
reduced acceleration state A = [co ag —®x VO], or accelerator for brevity, of the moving

platform with respect to the fixed platform can be written, for details see Rico & Duffy
(1996), through each one of the limbs as follows

L igitl .
3ol '8 s = A je {123}, (24)

5
i=0

where $Lie_]- is the Lie screw of the j-th limb, which is calculated as follows

4 . 5 .
_ ] kgk+1 ] rqr+l
S e _kzo{kmm $; Zk:lrmHl %] }
r=k+|

and the brackets [* *] denote the Lie product.
Equation (24) is the basis of the inverse and forward acceleration analyses.
The inverse acceleration analysis, or in other words the computation of the joint acceleration

rates of the parallel manipulator given the accelerator of the moving platform with respect
to the fixed platform, can be calculated, accordingly to expression (24), as follows



Acceleration Analysis of 3-RPS Parallel Manipulators by Means of Screw Theory 325

Q=17 (Ao ~$rie )/ (25)

where Qj = [0 D) 10y 08 sa) 4oL sdl ]T is the matrix of joint acceleration rates.

On the other hand, the forward acceleration analysis, or in other words the computation of
the accelerator of the moving platform with respect to the fixed platform given the active

joint rate accelerations qj of the parallel manipulator; is carried out, applying the Klein form

of the reciprocal screws to Eq. (24), using the expression

I'A Aq =Q, (26)

where

q; + { $1 SLie- 1}
2 F $2 $Lie- 2}
ds + { $3’$Lie—3}
{87 8100
I
8850

Once the accelerator A, = [m ag — X VO] is calculated, the angular acceleration of the

moving platform is obtained as the primal part of A, whereas the translational acceleration
of the point O is calculated upon the dual part of the accelerator. With these vectors, the
translational acceleration of the center of the moving platform, vectora -, is computed using

classical kinematics. Indeed

ac =ag + O XIp/o + O X (@X1Ie,0). (27)

Finally, it is interesting to mention that Eq. (26) does not require the values of the passive
joint acceleration rates of the parallel manipulator.

5. Case study. Numerical example

In order to exemplify the proposed methodology of kinematic analysis, in this section a
numerical example, using SI units, is solved with the aid of computer codes.
The parameters and generalized coordinates of the example are provided in Table 1.
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B, = (1246762518, 0,.4842063942)
B, =(.3569969122, 0, - .3500759985)
B = (-4816731640, 0, - .1341303959)
uy = (.9684127885, 0, - .2493525036)
u, = (-.7001519970, 0, - .7139938243)
u, = (-.2682607918, 0,.9633463279)
a1p =813 = a3 = 372

qq = —O.5sin2(t)cos(t)

q, = 0.35sin[tsin(t)cos(t)]

g5 = —0.35sin(t)cos|[tsin(t/2)]

0<t<2m

Table 1. Parameters and instantaneous length of each limb of the parallel manipulator

According with the data provided in Table 1, at the time t=0 the sixteenth polynomial in Z;
results in

490873788e09 + .627748325e1021 + .246379238e112§ - .82281001e102i’ -

.2811607588122;1 - .4441133118122? + .964036155e122$ + .2739680775e13ZZ -
8 9 10 11
.108993550e13Z1 - .672039554e1321 +.3921344e1121 + .786657045e13Z1 -

3 15

.64783709e12212 - .373666459e1321 + .195532604e13214 - .3787349072e12Z1 +

.261153294e11216 =0.

The solution of this univariate polynomial equation, in combination with expressions (5)
and (6), yields the 16 solutions of the forward position analysis, which are listed in Table 2.
Taking solution 3 of Table 2 as the initial configuration of the parallel manipulator, the most
representative numerical results obtained for the forward velocity and acceleration analyses
are shown in Fig. 3.
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Solution

Py P Ps
1,2 (-086,£0.307,- 335)  |(432,£.994,- 424)  |(-364,+1.093, - .101)
3,4 (121,%.899, .471) (361,%.999,- 354) |(-468,21.099,-130)
5,6 (161, * 888, .625) (:236,£.985, - 231) (544,£.273, 151)
7,8 (-099,+.054,- 385)  |(-091,+.778,.089) (.558,4.209, .155)
9,10 (193,+.857,.749) (-321,+.312, 314) (.528,+.333,.147)
11,12 (.182,£.869,.709) (-.326,+.287,.320) (-.185,+1.056,-.051)
13,14 (-104,+.194i,-.407) (-628,£.9501, .615)  |(.578,+.004i,.160)
15,16 (-104,+.195i,-.407) (-657,£1.009i,.644)  |(.578,.004i,.160)

Table 2. The sixteen solution of the forward position analysis

Angular velocity

0.3

Mass center velogily

2-  rad/S 06" m/S R
0.4° "
0.2 .
HQ. 2 )
0,4 - :
0.6 iz
15 Angular acceleration Mass center acceleration
L Z 3 by
rad/8"2 SE
3 m/8"2

10-

Fig. 3. Forward kinematics of the numerical example using screw theory

Furthermore, the numerical results obtained via screw theory are verified with the help of
special software like ADAMSO. A summary of these numerical results is reported in Fig. 4.
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Fig. 4. Forward kinematics of the numerical example using ADAMSO

Finally, please note how the results obtained via the theory of screws are in excellent
agreement with those obtained using ADAMS®O.

6. Conclusions

In this work the kinematics, including the acceleration analysis, of 3-RPS parallel
manipulators has been successfully approached by means of screw theory. Firstly, the
forward position analysis was carried out using recursively the Sylvester dialytic
elimination method, such a procedure yields a 16-th polynomial expression in one
unknown, and therefore all the possible solutions of this initial analysis are systematically
calculated. Afterwards, the velocity and acceleration analyses are addressed using screw
theory. To this end, the velocity and reduced acceleration states of the moving platform,
with respect to the fixed platform are written in screw form through each one of the three
limbs of the manipulator. Simple and compact expressions were derived in this contribution
for solving the forward kinematics of the spatial mechanism by taking advantage of the
concept of reciprocal screws via the Klein form of the Lie algebra e (3). The obtained
expressions are simple, compact and can be easily translated into computer codes. Finally, in
order to exemplify the versatility of the chosen methodology, a case study was included in
this work.
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