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The term magnetic bearing refers to devices that provide stable suspension of a rotor. Because 
of the contact-less motion of the rotor, magnetic bearings offer many advantages for various 
applications. Commercial applications include compressors, centrifuges, high-speed turbines, 
energy-storage flywheels, high-precision machine tools, etc. 
Magnetic bearings are a typical mechatronic product. Thus,  a great deal of knowledge is 
necessary for its design, construction and operation. This book is a collection of writings on 
magnetic bearings, presented in fragments and divided into six chapters. 
First two chapters discuss the so called “classical” magnetic bearing systems, which are 
composed of two radial active magnetic bearings, one axial bearing, and an independent 
driving motor. In Chapter 1, different control design approaches are applied to an 
experimental magnetic bearing system MBC500. The proposed interpolation design approach 
and fuzzy logic design are compared with the classical control design. Chapter 2 deals with 
non-linearities of magnetic bearing radial force characteristic. The optimisation of the bearing 
geometry is proposed, where the aim is to find such design, where a radial force characteristic 
is linear, as much as possible, over the entire operating range.
The following chapters present special magnetic suspension systems. Chapter 3 discusses 
magnetic suspension for vibration insulation systems, where a novel zero-power control 
is proposed. Self-bearing motors are discussed in Chapter 4. A structure of axial-gap self-
bearing motor is studied, whereas a vector control is discussed in details. Chapter 5 presents 
different structures of passive permanent magnet bearings. Analytical formulations are given 
for each case of axial, radial or perpendicular polarisation of permanent magnets. In Chapter 
6, an experimental rotor model is presented with two gradient static field shafts and a high-
temperature superconducting bulk.
Hopefully, this book will provide not only an introduction but also a number of key aspects 
of magnetic bearings theory and applications. Last but not least, the presented content is free, 
which is of  great importance, especially for young researchers and engineers in the field.

Editor

Boštjan Polajžer 
University of Maribor, Faculty of Electrical Engineering and Computer Science

Slovenia
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1. Introduction     

Active magnetic bearings (AMBs) employ electromagnets to support machine components. 
The magnetic forces are generated by feedback controllers to suspend the machine 
components within the magnetic field and to control the system dynamics during machine 
operation. AMBs have many advantages over mechanical and hydrostatic bearings. These 
include zero frictional wear and efficient operation at extremely high speed. They are also 
ideal for clean environments because no lubrication is required. Hence, as a result of 
minimal mechanical wears and losses, system maintenance costs of AMBs are low. AMBs 
are used in a number of applications such as energy storage flywheels, high-speed turbines 
and compressors, pumps and jet engines (Williams et al., 1990), (Lee et al., 2006). AMBs are 
inherently unstable and it is necessary to use feedback control system for stabilization 
(Williams et al., 1990), (Bleuler et al., 1994). This can be achieved by sensing the position of 
the rotor and using feedback controllers to control the currents of the electromagnets. 
 
This chapter will present our experience in different design approaches of stabilizing 
magnetic bearing systems. By using these approaches, feedback controllers will be designed 
and implemented for an experimental magnetic bearing system - the MBC500 magnetic 
bearing system (Magnetic Moments, 1995). 
 
As most of the design methods to be presented are model based, a plant model is required. 
Since the magnetic bearing system is open-loop unstable, a closed-loop system identification 
procedure is required to identify its model. For this purpose, we adopted a two step closed-
loop system identification procedure in the frequency domain. After various model 
structures were attempted, an 8th-order model of the MBC500 magnetic bearing system was 
identified by applying the System ID toolbox of MatLab to the collected frequency response 
data.  In the following, this 8th-order unstable model will be treated as the full-order model 
of the open-loop plant. 
 
In the first approach, a model based conventional controller is designed on the basis of a 
reduced 2nd-order unstable model of the MBC500 magnetic bearing system. In this 
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approach, notch filters are necessary to cancel the resonant modes of the active magnetic 
bearing system (Shi & Revell, 2002).  
 
In the second approach, a model based controller is designed via interpolation of units on 
the complex s-plane. This is an analytical design method. Among various approaches for 
feedback control design, analytical design methods offer advantages over trial and error 
design techniques. These include the conditions for the existence of a solution and the algorithms 
that are guaranteed to find the solutions, when these exist (Dorato, 1999). A limitation of the 
analytical methods is, however, that they tend to generate more complex controllers. One of 
the analytical feedback controller design methods is the interpolation approach we employed, 
where units in the algebra of bounded-input bounded-output (BIBO) stable proper rational 
functions are used to interpolate specified values at some given points in the complex s-
domain (Dorato, 1999), (Dorato,1989). When applying this approach to stabilize the MBC500 
magnetic bearing system, the controller is designed on the basis of the reduced 2nd-order 
unstable model. Since there are resonant modes that can threaten the stability of the closed 
loop system, notch filters are employed to help secure stability (Shi and Lee, 2009). 
 
The third approach in this chapter involves the design of a Fuzzy Logic Controller (FLC). 
The FLC uses error and rate of change of error in the position of the rotor as inputs and 
produces output voltages to control the currents of the amplifiers that driving the magnetic 
bearing system. This approach does not require any analytical model of the MBC500 
magnetic bearing system. This can greatly simplify the controller design process. 
Furthermore, it will be demonstrated that the FLC can stabilize the magnetic bearing system 
without the use of any notch filter (Shi et al., 2008) (Shi & Lee, 2009). Instead of applying the 
output of a FLC directly to the input of a magnetic bearing system (like what we have done 
here), the output of a FLC can also be used to tune the gains of controllers. For example, 
Habib and Inayat-Hussain (2003) reported a dual active magnetic bearing system in which 
the output of a FLC was used to tune the gains of a linear PD controller. 
 
The performance of each of the controllers described above will be tested first via 
simulation. They will be compared critically in terms closed-loop step responses (steady-
state error, peak overshoot, and settling time), disturbance rejection, and the size of control 
signal. The controllers designed will then be coded in C and implemented in real time on a 
Digital Signal Processor (DSP) card. The implementation results will also be compared with 
the simulation results. 

 
2. Description of the MBC500 Magnetic Bearing System  

The MBC500 magnetic bearing system consists of two active radial magnetic bearings which 
support a rotor. It is mounted on top of an anodized aluminium case as shown in Figure 1 
(Magnetic Moments, 1995).  The rotor shaft is actively positioned in the radial directions at 
the shaft ends (four degrees of freedom). It is passively centred in the axial direction and can 
freely rotate about its axial axis.  The system employs four linear current-amplifier pairs 
(one pair for each radial bearing axis) and four internal analogue lead compensators to 
independently control the radial bearing axes. In this chapter, we shall present design 
examples where all the four on-board analogue controllers will be replaced by digital 
controllers designed through different approaches. 
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3. System Identification 

3.1 System Identification and reduced order model 
Since the magnetic bearing system is open-loop unstable, a closed-loop system identification 
procedure was required to identify its model. For this purpose, we adopted a two-step 
closed-loop system identification procedure (Morse 1996), (Van den Hof & Schrama 1993). 
The procedure employs frequency response data. The details of the frequency response 
experiment and the system identification procedure were described in (Shi & Revell, 2002).  
 
Various model structures were attempted before an 8th-order final model was found. The 
transfer function of the 8th-order model is shown as follows:  
 

���� � �����2��� � 2������� � ����� � ��2�� � ������� � ������� � 2���� � ������� � ������ � ����� � ��� �
�� � ������ � 2�2������ � �2���� � 2���� � ��� ���� � ����� � ���2 � ������� � 2����� � ���� � ��� �    ��� 

 

Note that the pole at s=292.7 of the above transfer function indicates the instability of the 
open-loop MBC500 magnetic bearing system. Furthermore, it should be noted that when the 
model is employed for model-based controller design, closed-loop performance limitations 
will also be imposed by the right-half plane zero at s=2854 (Freudenberg & Looze, 1985).  
It can be seen from equation (1) that the MBC500 magnetic bearing model includes two 
resonant modes. They are located at approximately 780 Hz and 2055 Hz. Each of these two 
modes causes an increase in magnitude and a large change in phase in the frequency 
response. These characteristics of the resonant modes can threaten the stability of the closed-
loop system. Consequently, two notch filters are designed to eliminate these unwanted 
resonances. Since the notch filters must cancel out the resonant modes, the resonant 
frequencies of the experimental model must be obtained accurately. Two elliptic notch filters 
have been designed to notch out the resonant modes. As a result, controllers can be 
designed on the basis of a reduced order unstable system model where the resonant modes 
are absent. This reduced order model of the plant can be obtained by eliminating the 
resonant modes and preserving the DC gain of the 8th-order magnetic bearing system 
model. The resulting reduced order model has a transfer function of 
 

                                                              ���� � �������� � 2����
�� � ������ � 2�2���                                                            �2� 

 
4. Conventional Controller Design  

A single-loop unity-feedback control system shown in Figure 3 is considered in the 
controller design in this chapter. In this Figure, P(s) is the transfer function of the magnetic 
bearing system and C(s) is the transfer function of the controller.  
 

 
Fig. 3. A single-loop unity-feedback control system 

 

On the basis of the reduced order model described by equation (2), a conventional lead 
compensator was designed by using root locus method (Shi & Revell, 2002). Although the 
lead compensator has been designed to stabilize the MBC500 magnetic bearing system, its 
frequency response has a magnitude which remains large in the high frequency region. This 
will affect the stability robustness of the closed-loop system. Thus an additional high 
frequency pole at 7000 Hz (or 43982 rad/s) was incorporated to reduce the gain at high 
frequency. As a result, the final controller employed in (Shi & Revell, 2002) was a second 
order controller (lead with low pass filter with cut off frequency of 7000 Hz) and the transfer 
function of the controller is as follows: 
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Figure 4 illustrates the root locus of the magnetic bearing system represented by the reduced 
order model shown in equation (2) with the designed lead compensator shown in equation 
(3). The closed-loop poles are at -4.43×104, -2.73×103, and -167±392j respectively. Figure 5 
shows the Bode plot of the closed-loop system with and without the added low pass filter. It 
can be seen from the Bode plot that the added low pass filter improves the system 
robustness by reducing system sensitivity to uncertain high frequency dynamics. 
 

 
Fig. 4. Root locus of the magnetic bearing system (a reduced 2nd-order model is used here) 
with the designed lead compensator 
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Fig. 5. Bode plot of the magnetic bearing system (a reduced 2nd-order model is used here) 
with the designed lead compensator 

 
5. Controller Design via Interpolation Approach 

5.1 Controller Design via Interpolation Approach 
A single-loop unity-feedback control system shown in Figure 3 is considered in the 
controller design via the interpolation approach described in (Dorato, 1999). It was shown in 
(Dorato, 1999) that any rational transfer function, 
 

                                                                                 ���� � �����
�����                                                                        ��� 

 
where np(s) and dp(s) are arbitrary polynomials, can always be written as a ratio of two 
coprime stable proper transfer functions, 
 

                                                                                 ���� � �����
�����                                                                       ��� 

 
where 

                                                                            ����� � �����
����                                                                           ��� 

 

 

and 

                                                                             ����� � �����
����                                                                          ��� 

 
with h(s) a Hurwitz polynomial of appropriate degree. Let U(s) be a unit in the algebra of 
BIBO stable proper transfer functions, then following (Dorato, 1999) a stable stabilizing 
controller can be calculated as: 
 
                                                                    ���� � ����������

�����                                                                      ��� 

 
when P(s) satisfies the parity-interlacing property (p.i.p.) condition (Youla, 1974) and U(s) 
satisfies certain interpolation conditions. Specifically, let bi denotes the zeros of the plant in 
the RHP, the closed-loop system will be internally stable, and the controller will be stable, if 
and only if U(s) interpolates to U(bi) = Dp(bi) (Dorato, 1999). 

 
5.2 Controller Design for the Magnetic Bearing System 
Firstly we note that the reduced order model of the plant described by equation (2) has a 
zero at s =2854 and a zero at s =∞. Since the pole at s = 292.7 is not between these two zeros, 
the parity-interlacing property (p.i.p.) condition (Youla, 1974) is satisfied and a stable 
stabilizing controller is known to exist. 
 
In the following, we assume that the design must satisfy the following specifications: 
 

 The sensitivity function is to have all its poles at s =-511, 
 A steady-state error magnitude (subjected to a unit step input) of ess = 0.1. 

 
Since the closed-loop transfer functions are: 
 

����
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1 � �������� � �����
����                                                             ��� 

 
����
���� � ����
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By choosing h(s) = (s + 511)2, the requirement of the closed-loop poles specification will be 
satisfied. As a result,  

                                                               ����� � �������� � �����
�� � �11��                                                           �1�� 

and 
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The interpolation conditions are: 
 
U(2854) = Dp(2854) = 0.7612, and U(∞) = Dp(∞) = 1. 
 
Let the steady-state error magnitude be ess = 0.1, then: 
 
                                                                              ��� � ������

���� �                                                                            �14�  
 
Let the interpolating unit U(s) take of the following form: 
 

                                                                        ���� � ����
�� � �� � �                                                                  �1�� 

 
with a > 0 and b > 0, then after some simple calculations, the controller is found to be: 
 

                                                         ���� � 6.8046�� � �11��� � 99.�9�
�� � ������� � 19.7��                                                  �16� 

 
Controllers with other values of steady-state error magnitude can also be found by 
following similar procedures. For example, the following controllers C1(s) and C2(s) were 
computed on the basis of error magnitude ess = 0.01 and ess = 1, respectively. 
 

                                                          ����� � 6.9978�� � �11��� � 88.9��
�� � ������� � 1.946�                                               �17� 

 

                                                          ����� � 4.914�� � �11��� � ��0.7�
�� � 1967��� � ��1.8�                                                  �18� 

 
It can be seen that each of these controllers is of second order and is in the form of a lead-lag 
compensator.  

 
6. Fuzzy logic controller design 

A fuzzy logic controller (FLC) consists of four elements. These are a fuzzification interface, a 
rule base, an inference mechanism, and a defuzzification interface (Passino & Yurkovich, 
1998). A FLC has to be designed for each of the four channels of the MBC500 magnetic 
system. The design of the FLC for channel x2 is described in detail in this section. The design 
of the remaining FLCs will follow the same procedure.  The FLC designed for the MBC500 
magnetic bearing system in this section has two inputs and one output. The “Error” and 
“Rate of Change of Error” variables derived from the output from the MBC500 on-board 
hall-effect sensor will be used as the inputs. A voltage for controlling the current amplifiers 
on the MBC500 magnetic bearing system will be produced as the output. The shaft’s 
schematic (top view) showing the electromagnets and the Hall-effect sensors is provided in 
Figure 6. 

 

  
 

Fig. 6. Shaft schematic showing electromagnets and Hall-effect sensors (Magnetic Moments, 
1995) 
 
Figure 7 shows the single channel block diagram of the magnetic bearing system with the 
proposed FLC. A PD-Like FLC was designed to improve system damping as closed-loop 
stability is the major concern of the magnetic bearing system. As the MBC500 is a small 
magnetic bearing system, it has extremely fast dynamic responses which include the 
vibrations at 770 Hz and 2050 Hz. Therefore, a sampling frequency of 20kHz (or a sample 
period of 50 microseconds) was deemed necessary. 
 

 
Fig. 7. FLC for MBC500 magnetic bearing system 
 
Figure 8 illustrates the horizontal orientation (top view) of the MBC500 magnetic bearing 
shaft with the corresponding centre reference line, and its output and input at the right hand 
side (that is, channel 2).  
 

 
Fig. 8. MBC500 magnetic bearing control at the right hand side for channel x2 
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The displacement output x2 is sensed by the Hall-effect sensor as the voltage Vsense2. Hence 
the error signal is defined for channel x2 as:  
 

 
 
For the magnetic bearing stabilization problem, the reference input is r(t) = 0. As a result,  
 

  
and 

 
 
The linguistic variables which describe the FLC inputs and outputs are:  
 
“Error” denotes e(t) 
“Rate of change of error” denotes   
“Control voltage” denotes Vcontrol2 

 
The above linguistic variables “error”, “rate of change of error,” and “control voltage” will 
take on the following linguistic values:   
 
“NB” = Negative Big  
“NS” = Negative Small 
“ZO” = Zero 
“PS” = Positive Small 
“PB” = Positive Big 
 
Drawing on the design concept of the FLC for an inverted pendulum on a cart described in 
(Passino & Yurkovich, 1998) the following statements can be developed to illustrate the 
linguistic quantification of the different conditions of the magnetic bearing: 
 

 The statement “error is PB” represents the situation where the magnetic bearing 
shaft is significantly below the reference line. 

 The statement “error is NS” represents the situation where the magnetic bearing 
shaft is just slightly above the reference line. However, it is neither too close to the 
centre reference position to be quantified as “ZO” nor it is too far away to be 
quantified as “NB”. 

 The statement “error is ZO” represents the situation where the magnetic bearing 
shaft is sufficiently close to the centre reference position. As a linguistic 
quantification is not precise, any value of the error around e(t) = 0 will be accepted 
as “ZO” as long as this can be considered as a better quantification than “PS” or 
”NS”. 

 The statement “error is PB and rate of change of error is PS” represents the 
situation where the magnetic bearing shaft is significantly below the centre 
reference line and, since , the magnetic bearing shaft is moving slowly 
away from the centre position.  

 

 The statement “error is NS and rate of change of error is PS” represents the 
situation where the magnetic bearing shaft is slightly above the centre reference 
line and, since , the magnetic bearing shaft is moving slowly towards 
the centre position.  
 

We shall use the above linguistic quantification to specify a set of rules or a rule-base.  The 
following three situations will demonstrate how the rule-base is developed. 
 
1. If error is NB and rate of change of error is NB Then force is NB. 
 

Figure 9 shows that the magnetic bearing shaft at the right end is significantly above the 
centre reference line and is moving away from it quickly. Therefore, it is clear that a strong 
negative force should be applied so that the shaft will move to the centre reference position. 
 

 
Fig. 9. Magnetic bearing shaft at the right end with a positive displacement 
 
2. If error is ZO and rate of change of error is PS Then force is PS. 

 

Figure 10 shows that the bearing shaft at the right end has a displacement of nearly zero 
from the centre reference position (a linguistic quantification of zero does not imply that 
e(t)=0 exactly) and is moving away (downwards) from the centre reference line. Therefore, a 
small positive force should be applied to counteract the movement so that it will move 
towards the centre reference position. 
 

 
 
Fig. 10. Magnetic bearing shaft at the right end with zero displacement 
 
3. If error is PB and rate of change of error is NS Then force is PS. 

 

Figure 11 shows that the bearing shaft at the right end is far below the centre reference line 
and is moving towards the centre reference position. Therefore, a small positive force should 
be applied to assist the movement. However, it should not be too large a force since the 
bearing shaft at the right end is already moving in the correct direction. 
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Fig. 11. Magnetic bearing shaft at the right end with a negative displacement 
 
Following a similar analysis, the rules of the FLC for controlling the magnetic bearing shaft 
can be developed.  For the FLC with two inputs and five linguistic values for each input, 
there are 52=25 possible rules with all combination for the inputs. A set of possible linguistic 
output values are NB, NS, ZO, PS and PB. The tabular representation of the FLC rule base 
(with 25 rules) of the magnetic bearing fuzzy control system is shown in Table 1. 
 

“control voltage” “rate of change of error”  
V NB NS ZO PS PB 

“error”e 

NB NB NB NB NS ZO 
NS NB NB NS ZO PS 
ZO NB NS ZO PS PM 
PS NS ZO PS PB PB 
PB ZO PS PB PB PB 

Table 1. Rule table with 25 rules 
 
The membership functions to be employed are of the triangular type where, for any given 
input, there are only two membership functions premises to be calculated. This is in contrast 
to Gaussian membership functions where each requires more than two premise outputs and 
can generate a large amount of calculations per final output. The triangular membership 
functions used is shown in Figure 12: 
 

Fig. 12. Triangular Membership Function 
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The membership functions shown in Figure 12 represent the linguistic values NB, NS, ZO, 
PS, PB (from left to right).  
 
The inference method used for the designed FLC is Takagi-Sugeno Method (Passino & 
Yurkovich, 1998) and the centre average method is used in the defuzzification process 
(Passino & Yurkovich, 1998).  

 
7. Simulation Results 

By using the designed conventional controller Clead(s), the controllers C(s), C1(s), and C2(s) 
designed via the analytical interpolation method, and the FLC designed in Section 6, the 
closed-loop responses to a unit-step reference (applied at t = 0) and a unit-step disturbance 
(applied at t = 0.05 seconds) and the corresponding control signals are shown in Figure 13 
and Figure 14, respectively. In all of the simulations, the full 8th-order plant model described 
by equation (1) was employed. 
 
It is important to note that the DC gain designed into each of C(s) and C1(s) via interpolation 
has forced the steady-state error to be the small value specified. It is also important to note 
that while the closed-loop unit step responses with Clead(s) and C2(s) have comparable 
steady-state errors (approximately -1), the closed-loop unit-step response with C2(s) has a 
much better transient responses than that with Clead(s). (Similar comment also applies to their 
disturbance rejection behaviours). Furthermore, it is apparent that trade-off between steady- 
state error and transient response can be easily achieved with controllers designed via the 
interpolation approach presented in Section 5. 
 

 
Fig. 13. Closed-loop responses of the MBC500 magnetic bearing system to step reference and 
step disturbance with controllers Clead(s), C(s), C1(s), and C2(s), and the designed FLC. 
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Fig. 14. Closed-loop responses of the MBC500 magnetic bearing system to step reference and 
step disturbance with controllers Clead(s), C(s), C1(s), and C2(s), and the designed FLC. 
 
It can also be observed that the closed-loop unit step responses obtained with the designed 
FLC exhibits more oscillations. However, it must be pointed out that two elliptic notch 
filters to notch out the resonant modes of the MBC500 magnetic bearing system located at 
approximately 770 Hz and 2050 Hz were employed with both the conventional controller 
and the controllers designed via analytical interpolation approach to ensure system stability. 
For the designed FLC, system stability is achieved without the need of using the two notch 
filters.  
 
From Figures 13 and 14 it can be seen that the system is stable and reasonably well 
compensated by all the controllers designed. These controllers are now ready to be coded in 
C language and implemented in real-time. 

 
8. Implementation of the designed Controllers 

In order to implement the designed notch filters and controllers, a dSPACE DS1102 
processor board, MatLab, Simulink and dSPACE Control Desk are used. The controllers 
Clead(s) and C2(s) are represented as a block diagram via a Simulink file, which allows it to be 
connected to the ADC and the DAC of the DS1102 processor board. The DS1102 DSP board 
can then execute the designed controllers (discretized via the bilinear-transformation 
method) through MatLab’s Real-Time Workshop. 
 

 

In this magnetic bearing system, for the model based controllers the notch filters act to 
provide damping to the rotor resonances near 770 Hz and 2050 Hz. The sampling frequency 
was originally chosen to be 25 kHz to avoid aliasing of frequencies within the normal 
operating frequency range (Shi & Revell, 2002). The maximum possible sampling frequency 
with the FLC was 20 kHz (Shi & Lee, 2008) due to the longer C code implementation 
requirement of the FLC. In order to have a fair comparison of the system responses, the 
sampling frequencies of the model based controllers and the FLC were both set at 20kHz. 
 
In the following, we shall present and compare the experimental results. Preliminary 
observation has revealed that the performance of the controller C2(s) designed via analytical 
interpolation approach is most similar to Clead(s) and the FLC. As a result, the performance of  
C2(s) will be investigated in detail in the implementation. We shall first compare the results 
for the model based controllers and the FLC under steady-state conditions. We shall then 
compare the disturbance rejection results of the closed-loop system employing each of these 
controllers. 

 
8.1 Comparison of Steady-state Responses  
Figure 15 shows the steady-state responses of the magnetic bearing system when it is under 
the control of the model based controllers and the FLC, respectively. 
 

 
Fig. 15. Steady-state responses with the model based controllers and FLC 
 
It can be seen in Figure 15 that the displacement sensor outputs were noisy when the 
magnetic bearing system is controlled by either the model based controller or the FLC. 
However, the response with the FLC has a smaller steady-state error (i.e. closer to zero). 
Investigation via analysis and simulation has revealed that the source of the noise in the 
outputs was measurement noise. 
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8.2 Comparison of Step and Disturbance Rejection Responses  
Figure 16 and Figure 17 show the displacement sensor output and the controller output, 
respectively, when a step disturbance of 0.05V is applied to the channel 1 input of the 
magnetic bearing system when it is controlled with the model based conventional controller 
Clead(s). Note that the displacement sensor output is multiplied by a factor of 10 when it is 
transmitted through the DAC.  
 

 
Fig. 16. Displacement output of the MBC500 magnetic bearing system with the model based 
controller Clead(s). 
 

 
Fig. 17. Control signal of the MBC500 magnetic bearing system with the model based 
controller Clead(s). 

 

Figure 18 and Figure 19 show the displacement sensor output and the controller output, 
respectively, when a step change in disturbance of 0.1V is applied to the channel 1 input of 
the magnetic bearing system when it is controlled with the model based controller. 
 

 
Fig. 18. Step response of the MBC500 magnetic bearing system with the model based 
controller Clead(s). 
 

 
Fig. 19. Control signal of the MBC500 magnetic bearing system with the model based 
controller Clead(s). 
 



Design and implementation of conventional  
and advanced controllers for magnetic bearing system stabilization 17

 

8.2 Comparison of Step and Disturbance Rejection Responses  
Figure 16 and Figure 17 show the displacement sensor output and the controller output, 
respectively, when a step disturbance of 0.05V is applied to the channel 1 input of the 
magnetic bearing system when it is controlled with the model based conventional controller 
Clead(s). Note that the displacement sensor output is multiplied by a factor of 10 when it is 
transmitted through the DAC.  
 

 
Fig. 16. Displacement output of the MBC500 magnetic bearing system with the model based 
controller Clead(s). 
 

 
Fig. 17. Control signal of the MBC500 magnetic bearing system with the model based 
controller Clead(s). 

 

Figure 18 and Figure 19 show the displacement sensor output and the controller output, 
respectively, when a step change in disturbance of 0.1V is applied to the channel 1 input of 
the magnetic bearing system when it is controlled with the model based controller. 
 

 
Fig. 18. Step response of the MBC500 magnetic bearing system with the model based 
controller Clead(s). 
 

 
Fig. 19. Control signal of the MBC500 magnetic bearing system with the model based 
controller Clead(s). 
 



Magnetic Bearings, Theory and Applications18

 

Figure 20 and Figure 21 show the displacement sensor output and the controller output, 
respectively, when a step change in disturbance of 0.5V is applied to the channel 1 input of 
the magnetic bearing system when it is controlled with the conventional controller Clead(s). 
 

 
Fig. 20. Step response of the MBC500 magnetic bearing system with the model based 
controller Clead(s). 
 

 
Fig. 21. Control signal of the MBC500 magnetic bearing system with the model based 
controller Clead(s). 

 

It can be seen from the above figures that the magnetic bearing system remain stable under 
the control of the model based conventional controller when a step change in disturbance of 
is applied to its channel 1 input. Similar results were also obtained from other channels.  
 
Figure 22 and Figure 23 show the displacement sensor output and the controller output, 
respectively, when a step change in disturbance of 0.05V is applied to the channel 1 input of 
the magnetic bearing system when it is controlled with the analytical controller C2(s). 
 

 
Fig. 22. Displacement output of the MBC500 magnetic bearing system with the analytical 
controller C2(s). 
 

 
Fig. 23. Control signal of the MBC500 magnetic bearing system with the analytical controller 
C2(s). 
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controller Clead(s). 

 

It can be seen from the above figures that the magnetic bearing system remain stable under 
the control of the model based conventional controller when a step change in disturbance of 
is applied to its channel 1 input. Similar results were also obtained from other channels.  
 
Figure 22 and Figure 23 show the displacement sensor output and the controller output, 
respectively, when a step change in disturbance of 0.05V is applied to the channel 1 input of 
the magnetic bearing system when it is controlled with the analytical controller C2(s). 
 

 
Fig. 22. Displacement output of the MBC500 magnetic bearing system with the analytical 
controller C2(s). 
 

 
Fig. 23. Control signal of the MBC500 magnetic bearing system with the analytical controller 
C2(s). 
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Figure 24 and Figure 25 show the displacement sensor output and the controller output, 
respectively, when a step change in disturbance of 0.1V is applied to the channel 1 input of 
the magnetic bearing system when it is controlled with the analytical controller C2(s). 
 

 
Fig. 24. Displacement output  of the MBC500 magnetic bearing system with the analytical 
controller C2(s). 
 

 
Fig. 25. Control signal of the MBC500 magnetic bearing system with the analytical controller 
C2(s). 

 

Figure 26 and Figure 27 show the displacement sensor output and the controller output, 
respectively, when a step change in disturbance of 0.5V is applied to the channel 1 input of 
the magnetic bearing system when it is controlled with the analytical controller C2(s). 
 

 
Fig. 26. Displacement output of the MBC500 magnetic bearing system with the analytical 
controller C2(s). 
 

 
Fig. 27. Control signal of the MBC500 magnetic bearing system with the analytical controller 
C2(s). 
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Figure 26 and Figure 27 show the displacement sensor output and the controller output, 
respectively, when a step change in disturbance of 0.5V is applied to the channel 1 input of 
the magnetic bearing system when it is controlled with the analytical controller C2(s). 
 

 
Fig. 26. Displacement output of the MBC500 magnetic bearing system with the analytical 
controller C2(s). 
 

 
Fig. 27. Control signal of the MBC500 magnetic bearing system with the analytical controller 
C2(s). 
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Figure 28 and Figure 29 show the displacement sensor output voltage and the controller 
output voltage, respectively, when a step of 0.05V is applied to channel 1 of the magnetic 
bearing system, when it is controlled with the FLC.   
 

 
Fig. 28. Step response of the MBC500 magnetic bearing system with the FLC. 
 

 
Fig. 29. Control signal of the MBC500 magnetic bearing system with the FLC. 

 

Figure 30 and Figure 31 show the displacement sensor output voltage and the controller 
output voltage, respectively, when a step of 0.1V is applied to channel 1 of the magnetic 
bearing system, when it is controlled with the FLC.   
 

 
Fig. 30. Step response of the MBC500 magnetic bearing system with the FLC. 
 

 
Fig. 31. Control signal of the MBC500 magnetic bearing system with the FLC. 
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Figure 30 and Figure 31 show the displacement sensor output voltage and the controller 
output voltage, respectively, when a step of 0.1V is applied to channel 1 of the magnetic 
bearing system, when it is controlled with the FLC.   
 

 
Fig. 30. Step response of the MBC500 magnetic bearing system with the FLC. 
 

 
Fig. 31. Control signal of the MBC500 magnetic bearing system with the FLC. 
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Figure 32 and Figure 33 show the displacement sensor output and the controller output, 
respectively, when a step change in disturbance of 0.5V is applied to the channel 1 input of 
the magnetic bearing system when it is controlled with the FLC. 
 

 
Fig. 32. Step response of the MBC500 magnetic bearing system with the FLC. 
 

 
Fig. 33. Control signal of the MBC500 magnetic bearing system with the FLC. 

 

The FLC was tested extensively to ensure that it can operate in a wide range of conditions.  
These include testing its tolerance to the resonances of the MBC500 system by tapping the 
rotor with screwdrivers.  The system remained stable throughout the whole regime of 
testing.  The MBC500 magnetic bearing system has four different channels; three of the 
channels were successfully stabilized with the single FLC designed without any 
modifications or further adjustments. For the channel that failed to be robustly stabilized, 
the difficulty could be attributed to the strong resonances in that particular channel which 
have very large magnitude. After some tuning to the input and output scaling values of the 
FLC, robust stabilization was also achieved for this difficult channel.  
 
Comparing Figures 16 and 22, 18 and 24, 20 and 26, it can be seen that the system step 
responses with the controller designed via analytical interpolation approach exhibit smaller 
overshoot and shorter settling time with similar control effort as shown in Figures 17 and 23, 
19 and 25, 21 and 27. The step and step disturbance rejection responses with the designed 
FLC exhibit smaller steady-state error and overshoot as shown in Figures 28, 30 and 32 with 
much bigger control signal displayed in Figures 29, 31 and 33. However, it must be pointed 
out that the system stability is achieved with the designed FLC without using the two notch 
filters to eliminate the unwanted resonant modes. 

 
9. Conclusion and future work 

In this chapter, the controller structure and performance of a conventional controller and an 
analytical feedback controller have been compared with those of a fuzzy logic controller 
(FLC) when they are applied to the MBC500 magnetic bearing system stabilization problem. 
 
The conventional and the analytical feedback controller were designed on the basis of a 
reduced order model obtained from an identified 8th-order model of the MBC500 magnetic 
bearing system. Since there are resonant modes that can threaten the stability of the closed-
loop system, notch filters were employed to help secure stability. 
 
The FLC uses error and rate of change of error in the position of the rotor as inputs and 
produces an output voltage to control the current of the amplifier in the magnetic bearing 
system. Since a model is not required in this approach, this greatly simplified the design 
process.  In addition, the FLC can stabilize the magnetic bearing system without the use of 
any notch filters. Despite the simplicity of FLC, experimental results have shown that it 
produces less steady-state error and has less overshoot than its model based counterpart. 
 
While the model based controllers are linear systems, it is not a surprise that their stability 
condition depends on the level of the disturbance. This is because the magnetic bearing 
system is a nonlinear system. However, although the FLC exhibits some of the common 
characteristics of high authority linear controllers (small steady-state error and amplification 
of measurement noise), it does not have the low stability robustness property usually 
associated with such high gain controllers that we would have expected. 
 
Future work will include finding some explanations for the above unusual observation on 
FLC. We believe the understanding achieved through attempting to address the above issue 
would lead to better controller design methods for active magnetic bearing systems. 
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1. Introduction 
 

Active magnetic bearings (AMBs) are used to provide contact-less suspension of a rotor 
(Schweitzer et al., 1994). No friction, no lubrication, precise position control, and vibration 
damping make AMBs appropriate for different applications. In-depth debate about the 
research and development has been taken place the last two decades throughout the 
magnetic bearings community (ISMB12, 2010). However, in the future it is likely to be 
focused towards the superconducting applications of magnetic bearings (Rosner, 2001). 
Nevertheless, the discussion in this work is restricted to the design and analysis of 
“classical” AMBs, which are indispensable elements for high-speed, high-precision machine 
tools (Larsonneur, 1994). Two radial AMBs, which control the vertical and horizontal rotor 
displacements in four degrees of freedom (DOFs) are placed at the each end of the rotor, 
whereas an axial AMB is used to control the fifth DOF, as it is shown in Fig. 1. Rotation (the 
sixth DOF) is controlled by an independent driving motor. Because AMBs constitute an 
inherently unstable system, a closed-loop control is required to stabilize the rotor position. 
Different control techniques (Knospe & Collins, 1996) are employed to achieve advanced 
features of AMB systems, such as higher operating speeds or control of the unbalance 
response. However, a decentralized PID feedback is, even nowadays, normally used in 
AMB industrial applications, whereas prior to a decade ago, more than 90% of the AMB 
systems were based on PID decentralized control (Bleuer et al., 1994). 
 

 
Fig. 1. Typical AMB system 

2
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The development and design of AMBs is a complex process, where possible 
interdependencies of requirements and constrains should be considered. This can be done 
either by trials using analytical approach (Maslen, 1997), or by applying numerical 
optimization methods (Meeker, 1996; Carlson-Skalak et al., 1999; Štumberger et al., 2000). 
AMBs are a typical non-linear electro-magneto-mechanical coupled system. A combination 
of stochastic search methods and analysis based on the finite element method (FEM) is 
recommended for the optimization of such constrained, non-linear electromagnetic systems 
(Hameyer & Belmans, 1999). 
In this work the numerical optimization of radial AMBs is performed using differential 
evolution (DE) – a direct search algorithm (Price et al., 2005) – and the FEM (Pahner et al., 
1998). The objective of the optimization is to linearize current and position dependent radial 
force characteristic over the entire operating range. The objective function is evaluated by 
two dimensional FEM-based magnetostatic computations, whereas the radial force is 
determined using Maxwell’s stress tensor method. Furthermore, through the comparison of 
the non-optimized and optimized radial AMB, the impact of non-linearities of the radial 
force characteristic, on static and dynamic properties of the overall system is evaluated over 
the entire operating range. 

 
2. Radial Force Characteristic of Active Magnetic Bearings 
 

An eight-pole radial AMB is discussed, as it is shown in Fig. 2. The windings of all 
electromagnets are supplied in such a way, that a NS-SN-NS-SN pole arrangement is 
achieved. Four independent magnetic circuits – electromagnets are obtained in such way. 
The electromagnets in the same axis generate the attraction forces acting on the rotor in 
opposite directions. The resultant radial force of such a pair of electromagnets is a non-linear 
function of the currents, rotor position, and magnetization of the iron core. The differential 
driving mode of currents is introduced by the following definitions: i1 = I0 + ix, i2 = I0  ix, 
i3 = I0 + iy, and i4 = I0  iy, where I0 is the constant bias current, ix and iy are the control 
currents in the x and y axis, where | ix | ≤ I0, and | iy | ≤ I0.  
 

 
Fig. 2. Eight-pole radial AMB 

 

2.1 Linearized AMB model for one axis 
When the magnetic non-linearities and cross-coupling effects are neglected, the force 
generated by a pair of electromagnets in the x axis can be expressed by (1). 0 is the nominal 
air gap for the rotor central position (x = y = 0), 0 is permeability of vacuum, N is the 
number of turns of each coil, and A is the area of one pole. Note that the force generated by 
a pair of electromagnets in the y axis is defined in the same way as in (1). 
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Non-linear equation (1) can be linearized at a nominal operating point (x = 0, ix = 0). The 
obtained linear equation (2) is valid only in the vicinity of the point of linearization. In such 
way two parameters are introduced at a nominal operating point; the current gain hx,nom 
by (3) and the position stiffness cx,nom by (4). 
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The motion of the rotor between two electromagnets in the x axis is described by (5), where 
m is the mass of the rotor. When the equation (2) is used then the linearized AMB model for 
one axis is described by (6). 
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The dynamic model (6) is used for determining the controller settings, where the nominal 
values of the model parameters are used (hx,nom and cy,nom). However, due to the magnetic 
non-linearities, the current gain and position stiffness vary according to the operating point. 
Consequently, a damping and stiffness of the closed-loop system might be deteriorated in 
the cases of high signal amplitudes, such as heavy load unbalanced operation.  

 
2.2 Magnetic field distribution and radial force computation using FEM 
The magnetostatic problem is formulated by Poisson's equation (7), where A denotes the 
magnetic vector potential,  is the magnetic reluctivity, J is the current density,  denotes the 
dot product and  is the Hamilton's differential operator.  
 

    A J  (7) 
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The motion of the rotor between two electromagnets in the x axis is described by (5), where 
m is the mass of the rotor. When the equation (2) is used then the linearized AMB model for 
one axis is described by (6). 
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The dynamic model (6) is used for determining the controller settings, where the nominal 
values of the model parameters are used (hx,nom and cy,nom). However, due to the magnetic 
non-linearities, the current gain and position stiffness vary according to the operating point. 
Consequently, a damping and stiffness of the closed-loop system might be deteriorated in 
the cases of high signal amplitudes, such as heavy load unbalanced operation.  

 
2.2 Magnetic field distribution and radial force computation using FEM 
The magnetostatic problem is formulated by Poisson's equation (7), where A denotes the 
magnetic vector potential,  is the magnetic reluctivity, J is the current density,  denotes the 
dot product and  is the Hamilton's differential operator.  
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Fig. 3. B-H characteristic for laminated ferromagnetic material 330-35-A5 
 
The Poisson's equation (7) is solved numerically using the two dimensional FEM. The stator 
and rotor are constructed of laminated steel sheets  lamination thickness is 0.35 mm. 
Ferromagnetic material 330-35-A5, whose magnetization characteristic is shown in Fig. 3 is 
used. The discretization of the model is shown in Fig. 4a), where standard triangular 
elements are applied. The non-linear solution of the magnetic vector potential (7) is 
computed by a conjugate gradient and the Newton-Raphson method. During the analysis of 
errors, adaptive mesh refinement is applied until the solution error is smaller than a 
predefined value. Note that the initial mesh is composed of 9973 nodes and 19824 elements, 
whereas 16442 nodes and 32762 elements are used for the refined mesh. In Fig. 4b) the 
refined mesh is shown for the air gap region. Example of the magnetic field distribution is 
shown in Fig. 5. The radial force is computed by Maxwell’s stress tensor method (8), where 
 is Maxwell’s stress tensor, n is the unit vector normal to the integration surface S and B is 
the magnetic flux density. The integration is performed over a contour placed along a 
middle layer of the three-layer mesh in the air gap, as it is shown in Fig. 4b). 
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a)   b)   
Fig. 4. Discretization of the model (a), and refined mesh in the air gap with integration 
contour for radial force computation (b) 

 

a)     b)   
Fig. 5. Magnetic field distribution for the case ix = 0 A, iy = 3 A, I0 = 5 A, and x = y = 0 mm; 
equipotential plot for the whole geometry (a), and in the air gap and the pole (b) 

 
2.3 Impact of magnetic non-linearities on radial force characteristic 
The flux density plot and the equipotential plot is given in Figs. 5 and 6 for a heavy load 
condition in the y axis (ix = 0 A, iy = 3 A) at the rotor central position (x = y = 0). Note that for 
this case only the radial force in the y axis is generated, whereas the component in the x axis 
is zero. In Fig. 6 the iron core saturation in the region of the upper electromagnet is 
observed; an average value of the flux density in the iron core is 1.31 T, whereas at the 
corners the maximum value of even 1.86 T is reached. However, value of the flux density in 
the air gap of the upper electromagnet is 1.09 T, as it is marked in Fig. 6. Due to the iron core 
saturation in the upper electromagnet the radial force generated by a pair of electromagnets 
in the y axis is reduced. Moreover, the flux lines of the upper electromagnet also link with all 
other electromagnets, as it is shown in Figs. 5 and 6. Due to these magnetic cross-couplings 
the asymmetrical air gap flux density is generated in both electromagnets in the x axis, i.e. 
0.67 T and 0.70 T (Figure 6). Consequently, electromagnets in the x axis generate a negative 
radial force component in the y axis, as it is shown by the vector analysis in Fig. 6. In such 
way, the resultant radial force in the y axis is additionally reduced. 
 

 
Fig. 6. Magnetic field distribution for the case ix = 0 A, iy = 3 A, I0 = 5 A, and x = y = 0 mm 
with air gap values of the flux density and vector analysis of a radial force of a pair of 
electromagnets in the x axis 
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Fig. 3. B-H characteristic for laminated ferromagnetic material 330-35-A5 
 
The Poisson's equation (7) is solved numerically using the two dimensional FEM. The stator 
and rotor are constructed of laminated steel sheets  lamination thickness is 0.35 mm. 
Ferromagnetic material 330-35-A5, whose magnetization characteristic is shown in Fig. 3 is 
used. The discretization of the model is shown in Fig. 4a), where standard triangular 
elements are applied. The non-linear solution of the magnetic vector potential (7) is 
computed by a conjugate gradient and the Newton-Raphson method. During the analysis of 
errors, adaptive mesh refinement is applied until the solution error is smaller than a 
predefined value. Note that the initial mesh is composed of 9973 nodes and 19824 elements, 
whereas 16442 nodes and 32762 elements are used for the refined mesh. In Fig. 4b) the 
refined mesh is shown for the air gap region. Example of the magnetic field distribution is 
shown in Fig. 5. The radial force is computed by Maxwell’s stress tensor method (8), where 
 is Maxwell’s stress tensor, n is the unit vector normal to the integration surface S and B is 
the magnetic flux density. The integration is performed over a contour placed along a 
middle layer of the three-layer mesh in the air gap, as it is shown in Fig. 4b). 
 

 
0 0

21 1
2( )

S S

dS dS     F σ B n B B n  (8) 

 

a)   b)   
Fig. 4. Discretization of the model (a), and refined mesh in the air gap with integration 
contour for radial force computation (b) 

 

a)     b)   
Fig. 5. Magnetic field distribution for the case ix = 0 A, iy = 3 A, I0 = 5 A, and x = y = 0 mm; 
equipotential plot for the whole geometry (a), and in the air gap and the pole (b) 

 
2.3 Impact of magnetic non-linearities on radial force characteristic 
The flux density plot and the equipotential plot is given in Figs. 5 and 6 for a heavy load 
condition in the y axis (ix = 0 A, iy = 3 A) at the rotor central position (x = y = 0). Note that for 
this case only the radial force in the y axis is generated, whereas the component in the x axis 
is zero. In Fig. 6 the iron core saturation in the region of the upper electromagnet is 
observed; an average value of the flux density in the iron core is 1.31 T, whereas at the 
corners the maximum value of even 1.86 T is reached. However, value of the flux density in 
the air gap of the upper electromagnet is 1.09 T, as it is marked in Fig. 6. Due to the iron core 
saturation in the upper electromagnet the radial force generated by a pair of electromagnets 
in the y axis is reduced. Moreover, the flux lines of the upper electromagnet also link with all 
other electromagnets, as it is shown in Figs. 5 and 6. Due to these magnetic cross-couplings 
the asymmetrical air gap flux density is generated in both electromagnets in the x axis, i.e. 
0.67 T and 0.70 T (Figure 6). Consequently, electromagnets in the x axis generate a negative 
radial force component in the y axis, as it is shown by the vector analysis in Fig. 6. In such 
way, the resultant radial force in the y axis is additionally reduced. 
 

 
Fig. 6. Magnetic field distribution for the case ix = 0 A, iy = 3 A, I0 = 5 A, and x = y = 0 mm 
with air gap values of the flux density and vector analysis of a radial force of a pair of 
electromagnets in the x axis 



Magnetic Bearings, Theory and Applications32

 

a) 

-0.1 -0.05 0 0.05 0.10.1 -5
-2.5

0
2.5

55-500

-250

0

250

500500

 ix [A]
 x [mm]

 F
x [N

]

b)

-0.1 -0.05 0 0.05 0.1 -5
-2.5

0
2.5

5-500

-250

0

250

500

 ix [A]
 x [mm]

 F
x [N

]

 
Fig. 7. Radial force characteristic Fx(ix,x): FEM-computed (a), and measured (b) 
 
The radial force characteristic Fx(ix,iy,x,y) has been calculated over the entire operating range 
(ix  [-5 A, 5 A], iy  [-5 A, 5 A], x  [-0.1 mm, 0.1 mm], y  [-0.1 mm, 0.1 mm]). The radial 
force characteristic Fx(ix,x) is shown in Fig. 7. A good agreement is obtained between the 
FEM-computed and measured characteristic. Note that the air gap has been increased in 
FEM computations from 0.4 to 0.45 mm because the magnetic air gap is larger than the 
geometric one due to the manufacturing process of the rotor steel sheets. The increase of 
0.05 mm in the air gap can be compared with the findings in (Antila et al., 1998). 
Furthermore, the radial force characteristic Fx(ix,x) obtained by (1) and (2) are shown in 
Fig. 8 for the discussed radial AMB. Through the comparison between the FEM-computed 
and analytical results obtained by a non-linear equation (1) (Figs. 7a and 8a), the 
considerable radial force reduction is determined. However, in the vicinity of the nominal 
operating point, the radial force characteristic is surprisingly linear, which is verified 
through the comparison among the FEM-computed and analytical results obtained by a 
linearized equation (2) (Figs. 7a and 8b). As it has been already mentioned, the radial force is 
reduced due to the impact of magnetic non-linearities and cross-coupling effects, especially 
near the operating range margin (|ix| > 2 A, |x| > 0.05 mm), which is reached in the cases 
of a heavy load unbalanced operation. A more detailed analysis is performed in the section 4 
through evaluation of variations of the current gain hx and position stiffness cx over the 
entire operating range. 
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Fig. 8. Radial force characteristic Fx(ix,x): obtained by non-linear equation (1) – (a), and by 
linearized equation (2) – (b) 

 

3. Design of Radial Active Magnetic Bearings by DE and the FEM 
 

The goal is to design a radial AMB whose radial force characteristic is linear as much as 
possible over the entire operating range. An experimental radial AMB, shown in Fig. 9 
(Polajžer, 2002), is considered for the initial design. 
In the author’s opinion, DE in combination with the FEM-based analysis is at present still 
one of the most powerful tools for optimization of such a problem class, where the 
dependency of the objective function on the design parameters is unknown. According to 
(Pahner et al., 1998), for optimization of electromagnetic devices in combination with the 
FEM, DE converges faster and is more stable when compared to other stochastic direct 
search algorithms such as simulated annealing and self-adaptive evolution strategies. In this 
work a DE/FEM-based design procedure for radial AMBs is applied, similar to the 
procedure proposed in our earlier work (Polajžer et al., 2008). 
 

 
Fig. 9. Experimental radial AMB – initial design: A – stator, B – rotor, C – housing 

 
3.1 Objective function and design parameters 
The objective function should be formulated in such a way, that contradictory partial aims 
are avoided. Otherwise it is possible for the algorithm to stick in a local minimum. This can 
be prevented by choosing appropriate constraints for the optimization problem. As it is 
mentioned earlier, the aim is to linearize the radial force characteristic of AMBs over the 
entire operating range. The non-linearity of a radial force characteristic Fx(ix,iy,x,y) is 
described by the current gain hx = Fx/ix and position stiffness cx = Fx/x, which are 
approximated with differential quotients between two points of the numerically expressed 
function Fx(ix,iy,x,y). The aim of the optimization is thus formulated as a minimization of 
variations of the linearized AMB model parameters. 
The objective function q and penalties p1, p2 are found empirically and are defined by (9)–
(11). The discussed parameter variations are determined by differences between the nominal 
and maximal parameter values hx = (hx,nom  hx,max) and cx = (cx,nom  cx,max). The nominal 
parameter values refer to the nominal operating point where the rotor is in the central 
position (x = y = 0), while both control currents equal zero (ix = iy = 0). The maximal 
parameter values refer to the maximal rotor eccentricity (x = y = Emax) and maximal control 
currents (ix = iy = I0), which is expected for a heavy load unbalanced operation. Note that the 
differences hx0 := (hx0,nom  hx0,max) and cx0 := (cx0,nom  cx0,max) are defined for the initial 
AMB design. 
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Fig. 7. Radial force characteristic Fx(ix,x): FEM-computed (a), and measured (b) 
 
The radial force characteristic Fx(ix,iy,x,y) has been calculated over the entire operating range 
(ix  [-5 A, 5 A], iy  [-5 A, 5 A], x  [-0.1 mm, 0.1 mm], y  [-0.1 mm, 0.1 mm]). The radial 
force characteristic Fx(ix,x) is shown in Fig. 7. A good agreement is obtained between the 
FEM-computed and measured characteristic. Note that the air gap has been increased in 
FEM computations from 0.4 to 0.45 mm because the magnetic air gap is larger than the 
geometric one due to the manufacturing process of the rotor steel sheets. The increase of 
0.05 mm in the air gap can be compared with the findings in (Antila et al., 1998). 
Furthermore, the radial force characteristic Fx(ix,x) obtained by (1) and (2) are shown in 
Fig. 8 for the discussed radial AMB. Through the comparison between the FEM-computed 
and analytical results obtained by a non-linear equation (1) (Figs. 7a and 8a), the 
considerable radial force reduction is determined. However, in the vicinity of the nominal 
operating point, the radial force characteristic is surprisingly linear, which is verified 
through the comparison among the FEM-computed and analytical results obtained by a 
linearized equation (2) (Figs. 7a and 8b). As it has been already mentioned, the radial force is 
reduced due to the impact of magnetic non-linearities and cross-coupling effects, especially 
near the operating range margin (|ix| > 2 A, |x| > 0.05 mm), which is reached in the cases 
of a heavy load unbalanced operation. A more detailed analysis is performed in the section 4 
through evaluation of variations of the current gain hx and position stiffness cx over the 
entire operating range. 
 

a) 

-0.1 -0.05 0 0.05 0.10.1 -5
-2.5

0
2.5

55-750

-500

-250

0

250

500

750750

 ix [A]
 x [mm]

 F
x [N

]

b) 

-0.1 -0.05 0 0.05 0.10.1 -5
-2.5

0
2.5

55-750

-500

-250

0

250

500

750750

 ix [A]
 x [mm]

 F
x [N

]

 
Fig. 8. Radial force characteristic Fx(ix,x): obtained by non-linear equation (1) – (a), and by 
linearized equation (2) – (b) 

 

3. Design of Radial Active Magnetic Bearings by DE and the FEM 
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3.1 Objective function and design parameters 
The objective function should be formulated in such a way, that contradictory partial aims 
are avoided. Otherwise it is possible for the algorithm to stick in a local minimum. This can 
be prevented by choosing appropriate constraints for the optimization problem. As it is 
mentioned earlier, the aim is to linearize the radial force characteristic of AMBs over the 
entire operating range. The non-linearity of a radial force characteristic Fx(ix,iy,x,y) is 
described by the current gain hx = Fx/ix and position stiffness cx = Fx/x, which are 
approximated with differential quotients between two points of the numerically expressed 
function Fx(ix,iy,x,y). The aim of the optimization is thus formulated as a minimization of 
variations of the linearized AMB model parameters. 
The objective function q and penalties p1, p2 are found empirically and are defined by (9)–
(11). The discussed parameter variations are determined by differences between the nominal 
and maximal parameter values hx = (hx,nom  hx,max) and cx = (cx,nom  cx,max). The nominal 
parameter values refer to the nominal operating point where the rotor is in the central 
position (x = y = 0), while both control currents equal zero (ix = iy = 0). The maximal 
parameter values refer to the maximal rotor eccentricity (x = y = Emax) and maximal control 
currents (ix = iy = I0), which is expected for a heavy load unbalanced operation. Note that the 
differences hx0 := (hx0,nom  hx0,max) and cx0 := (cx0,nom  cx0,max) are defined for the initial 
AMB design. 
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The design parameters (x1, x2, x3, x4) are the rotor yoke width wry, stator yoke width wsy, pole 
width wp (all shown in Fig. 10) and axial length of the bearing l, respectively. The design 
constraints are fixed mainly by the mounting conditions, which are given by the shaft radius 
rsh = 17.5 mm and stator outer radius rs = 52.8 mm (Fig. 10). Two additional constraints are 
given by the nominal air gap 0 = 0.45 mm and the bias current I0 = 5 A in order to achieve 
the maximum force slew rate |dF/dt|max = 5106 N/s. Furthermore, the maximum 
eccentricity of the rotor Emax = 0.1 mm is determined in order to prevent the rotor 
touchdown. 
 

 
Fig. 10. Geometry of the discussed radial AMB – design parameters are denoted by x1, x2, x3 

 
3.2 Optimization procedure 
Optimization of the discussed radial AMBs has been carried out in a special programming 
environment tuned for FEM-based numerical optimizations (Pahner et al., 1998). The 
procedure is described by the following steps: 

 Step 1) The geometry of the initial AMB is described parametrically. 
 Step 2) The new values for the design parameters are determined by the DE (Price et 

al., 2005), where strategy “DE/best/1/exp” is used with the population size NP = 25, 
the DE step size F = 0.5 and for the crossover probability constant CR = 0.75. 

 Step 3) The geometry, the materials, the current densities, and the boundary 
conditions are defined. The procedure continues with Step 2) if the parameters of the 
bearing are outside the design constraints. 

 

 Step 4) The radial force is computed by the FEM, as it is described in the previous 
section. Computations are performed for eight different cases: near the nominal 
operating point for ix = 00.1I0 and x = 00.1Emax, as well as near the maximal operating 
point for ix = 0.9I00.1I0 and x = Emax0.1Emax. Note that the control current iy and the 
rotor position in the y axis are both zero during these computations. 

 Step 5) The current gain values hx,nom and hx,max, as well as the position stiffness values 
cx,nom and cx,max are calculated with differential quotients, whereas values of the radial 
force are obtained from Step 4). 

 Step 6) The value of the objective function (9) is calculated. The optimization proceeds 
with Step 2) until a minimal optimization parameter variation step or a maximal 
number of evolutionary iterations are reached. 

 
3.3 Results of the optimization 
The objective function has been minimized from 1 to even 0.46, while the minimal value has 
been reached after 41 iterations. The data and parameters for the initial – non-optimized 
radial AMB and for the optimized radial AMB are given in Table 1. All design parameters 
are rounded off to one tenth of a millimetre. Nominal values for the current gain and 
position stiffness, i.e. at the nominal operating point (ix = 0, x = 0), as well as the mass of the 
rotor of the optimized bearing are, indeed, slightly lower. Consequently, the controller 
settings need to be recalculated for the new nominal parameter values. In such way the 
closed-loop system dynamics is not changed. Furthermore, the maximal force at the rotor 
central position (x = y = 0) is increased within the optimized design. 
 

Parameter Non-optimized Optimized 
Rotor yoke width wry [mm] 7.7 5.1 
Stator yoke width wsy [mm] 7.8 9.1 
Pole width wp [mm] 9.4 5.3 
Axial length l [mm] 38 45.6 
Current gain hx,nom [N/A] 100.8 95.6 
Position stiffness cx,nom [N/mm] 1161 967 
Maximal force Fx,max [N] 411 435 
Rotor mass m [kg] 0.596 0.576 

Table 1. Data and parameters for the non-optimized and optimized radial AMB 

 
4. Evaluation of static and dynamic properties of non-optimized  
and optimized radial AMB 
 

4.1 Current gain and position stiffness characteristics 
The current gain and position stiffness characteristics hx(ix,iy,x,y) and ix(ix,iy,x,y) are 
determined by approximations with differential quotients over the entire operating range 
(ix  [-5 A, 5 A], iy  [-5 A, 5 A], x  [-0.1 mm, 0.1 mm], y  [-0.1 mm, 0.1 mm]). The obtained 
results are shown in Figs. 11–14, where characteristics are normalized to the nominal 
parameter values, which are defined at the nominal operating point (x = y = 0, ix = iy = 0) and 
are given in Table 1. In Figs. 11 and 13 the current gain and position stiffness characteristics 
are shown for the non-optimized radial AMB. The current gain and position stiffness 
characteristics for the optimized radial AMB are shown in Figs. 12 and 14. 
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The design parameters (x1, x2, x3, x4) are the rotor yoke width wry, stator yoke width wsy, pole 
width wp (all shown in Fig. 10) and axial length of the bearing l, respectively. The design 
constraints are fixed mainly by the mounting conditions, which are given by the shaft radius 
rsh = 17.5 mm and stator outer radius rs = 52.8 mm (Fig. 10). Two additional constraints are 
given by the nominal air gap 0 = 0.45 mm and the bias current I0 = 5 A in order to achieve 
the maximum force slew rate |dF/dt|max = 5106 N/s. Furthermore, the maximum 
eccentricity of the rotor Emax = 0.1 mm is determined in order to prevent the rotor 
touchdown. 
 

 
Fig. 10. Geometry of the discussed radial AMB – design parameters are denoted by x1, x2, x3 
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environment tuned for FEM-based numerical optimizations (Pahner et al., 1998). The 
procedure is described by the following steps: 
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al., 2005), where strategy “DE/best/1/exp” is used with the population size NP = 25, 
the DE step size F = 0.5 and for the crossover probability constant CR = 0.75. 

 Step 3) The geometry, the materials, the current densities, and the boundary 
conditions are defined. The procedure continues with Step 2) if the parameters of the 
bearing are outside the design constraints. 

 

 Step 4) The radial force is computed by the FEM, as it is described in the previous 
section. Computations are performed for eight different cases: near the nominal 
operating point for ix = 00.1I0 and x = 00.1Emax, as well as near the maximal operating 
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cx,nom and cx,max are calculated with differential quotients, whereas values of the radial 
force are obtained from Step 4). 

 Step 6) The value of the objective function (9) is calculated. The optimization proceeds 
with Step 2) until a minimal optimization parameter variation step or a maximal 
number of evolutionary iterations are reached. 

 
3.3 Results of the optimization 
The objective function has been minimized from 1 to even 0.46, while the minimal value has 
been reached after 41 iterations. The data and parameters for the initial – non-optimized 
radial AMB and for the optimized radial AMB are given in Table 1. All design parameters 
are rounded off to one tenth of a millimetre. Nominal values for the current gain and 
position stiffness, i.e. at the nominal operating point (ix = 0, x = 0), as well as the mass of the 
rotor of the optimized bearing are, indeed, slightly lower. Consequently, the controller 
settings need to be recalculated for the new nominal parameter values. In such way the 
closed-loop system dynamics is not changed. Furthermore, the maximal force at the rotor 
central position (x = y = 0) is increased within the optimized design. 
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4.1 Current gain and position stiffness characteristics 
The current gain and position stiffness characteristics hx(ix,iy,x,y) and ix(ix,iy,x,y) are 
determined by approximations with differential quotients over the entire operating range 
(ix  [-5 A, 5 A], iy  [-5 A, 5 A], x  [-0.1 mm, 0.1 mm], y  [-0.1 mm, 0.1 mm]). The obtained 
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Fig. 11. Current gain characteristic hx(ix,iy,x,y) normalized to the nominal value 100.8 N/A – 
non-optimized AMB  
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Fig. 12. Current gain characteristic hx(ix,iy,x,y) normalized to the nominal value 95.6 N/A – 
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In order to evaluate the obtained results, maximal and average variations are determined 
over the entire operating range (ix  [-5 A, 5 A], iy  [-5 A, 5 A], x  [-0.1 mm, 0.1 mm], y  [-
0.1 mm, 0.1 mm]), and for the high signal amplitudes (|ix| > 2 A, |iy| > 2 A, |x| > 0.05 mm, 
|y| > 0.05 mm). Note that all variations are given relatively with respect to the nominal 
parameter values. 
Let us first observe maximal variations of the current gain and the position stiffness. The 
obtained maximal variation of the current gain is 59% for the non-optimized design and 46% 
for the optimized design, whereas the obtained maximal variation of the position stiffness is 
40% for the non-optimized design and 32% for the optimized design. Average parameter 
variations are determined next. When observed over the entire operating range, average 
variation of the current gain is 27% for the non-optimized design and 20% for the optimized 
design, whereas average variation of the position stiffness is 14% for the non-optimized 
design and 13% for the optimized design. However, when the margin of the operating range 
is observed (high signal case), average variation of the current gain is 43% for the non-
optimized design and 28% for the optimized design, whereas average variation of the 
position stiffness is 21% for the non-optimized design and 13% for the optimized design. 
Based on the performed evaluation of the obtained results, it can be concluded that the 
impact of magnetic non-linearities on variations of the linearized AMB model parameters is 
considerably lower for the optimized AMB, particularly for high signal amplitudes. 
However, the impact of magnetic cross-couplings slightly increases. Furthermore, 
normalized values of the current gain and position stiffness are higher for the optimized 
AMB. Consequently higher load forces are possible for the optimized AMB, as it is shown in 
the following section. 
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Fig. 13. Position stiffness characteristic cx(ix,iy,x,y) normalized to the nominal value 
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4.2 Dynamic behaviour of a closed-loop controlled system 
In order to evaluate the robustness of the closed-loop controlled system, two radial AMBs 
that control the unbalanced rigid shaft are modeled. A dynamic model is tested for the non-
optimized and for the optimized radial AMBs, where calculated radial force characteristics 
Fx(ix,iy,x,y) and Fy(ix,iy,x,y) are incorporated. The AMB coils are supplied with ideal current 
sources, whereas the impact of electromotive forces is not taken into account. The structure 
of the closed-loop system used in numerical simulations is shown in Fig. 15, where 
i = [ix, iy]T, F = [Fx, Fy]T and y = [x, y]T denote current, force and position vectors, respectively. 
The reference position vector is denoted as yr = [xr, yr]T, whereas d = [Fdx, Fdy+ mg]T is the 
disturbance vector. In order to evaluate the impact of non-linearities of the radial force 
characteristic on the closed-loop system, a decentralized control feedback is employed. 
Position control loops are realized by two independent PID controllers in the x and y axis. 
 

 
 

Fig. 15. Structure of the closed-loop AMB system 
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Fig. 11. Current gain characteristic hx(ix,iy,x,y) normalized to the nominal value 100.8 N/A – 
non-optimized AMB  
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In order to evaluate the obtained results, maximal and average variations are determined 
over the entire operating range (ix  [-5 A, 5 A], iy  [-5 A, 5 A], x  [-0.1 mm, 0.1 mm], y  [-
0.1 mm, 0.1 mm]), and for the high signal amplitudes (|ix| > 2 A, |iy| > 2 A, |x| > 0.05 mm, 
|y| > 0.05 mm). Note that all variations are given relatively with respect to the nominal 
parameter values. 
Let us first observe maximal variations of the current gain and the position stiffness. The 
obtained maximal variation of the current gain is 59% for the non-optimized design and 46% 
for the optimized design, whereas the obtained maximal variation of the position stiffness is 
40% for the non-optimized design and 32% for the optimized design. Average parameter 
variations are determined next. When observed over the entire operating range, average 
variation of the current gain is 27% for the non-optimized design and 20% for the optimized 
design, whereas average variation of the position stiffness is 14% for the non-optimized 
design and 13% for the optimized design. However, when the margin of the operating range 
is observed (high signal case), average variation of the current gain is 43% for the non-
optimized design and 28% for the optimized design, whereas average variation of the 
position stiffness is 21% for the non-optimized design and 13% for the optimized design. 
Based on the performed evaluation of the obtained results, it can be concluded that the 
impact of magnetic non-linearities on variations of the linearized AMB model parameters is 
considerably lower for the optimized AMB, particularly for high signal amplitudes. 
However, the impact of magnetic cross-couplings slightly increases. Furthermore, 
normalized values of the current gain and position stiffness are higher for the optimized 
AMB. Consequently higher load forces are possible for the optimized AMB, as it is shown in 
the following section. 
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4.2 Dynamic behaviour of a closed-loop controlled system 
In order to evaluate the robustness of the closed-loop controlled system, two radial AMBs 
that control the unbalanced rigid shaft are modeled. A dynamic model is tested for the non-
optimized and for the optimized radial AMBs, where calculated radial force characteristics 
Fx(ix,iy,x,y) and Fy(ix,iy,x,y) are incorporated. The AMB coils are supplied with ideal current 
sources, whereas the impact of electromotive forces is not taken into account. The structure 
of the closed-loop system used in numerical simulations is shown in Fig. 15, where 
i = [ix, iy]T, F = [Fx, Fy]T and y = [x, y]T denote current, force and position vectors, respectively. 
The reference position vector is denoted as yr = [xr, yr]T, whereas d = [Fdx, Fdy+ mg]T is the 
disturbance vector. In order to evaluate the impact of non-linearities of the radial force 
characteristic on the closed-loop system, a decentralized control feedback is employed. 
Position control loops are realized by two independent PID controllers in the x and y axis. 
 

 
 

Fig. 15. Structure of the closed-loop AMB system 



Magnetic Bearings, Theory and Applications38

 

Responses for the rotor position in the x and y axis and for the control currents ix and iy are 
calculated with Matlab/Simulink®. Fig. 16 shows results of the no rotation test, where the 
reference rotor position and the disturbance forces are changed in the following sequence: 
Fdy(0.1) = 250 N, yr(0.3) = 0.09 mm, Fdx(0.5) = 100 N and xr(0.7) = 0.1 mm. In the obtained 
results, it can be noticed that for the case of a reference position change, a considerably 
higher closed-loop damping is achieved within optimized AMBs, whereas for the heavy 
load case considerably higher closed-loop stiffness is achieved again within the optimized 
AMBs. The impact of cross-coupling effects can also be noticed, since changes in the x axis 
variables are reflected in the y axis variables. Furthermore, from the results shown in Fig. 16, 
it can be concluded that the control current is much higher for the non-optimized AMBs. 
Consequently, an operation with the considerably higher load forces can be achieved within 
the optimized AMBs. 
These conclusions are completely confirmed with the results of a simulation unbalance test, 
which are shown in Figs. 17 and 18. A rotation with 6000 rpm of a highly unbalanced rigid 
shaft is simulated. Consequently, the unbalanced responses are obtained, which is shown by 
trajectories of the rotor position and control currents. The trajectories for the unbalanced no 
load condition are shown together with the trajectories during the 180 N load impact in the y 
axis. From the obtained results it can be noticed that during the no load condition the rotor 
eccentricity is slightly larger for the optimized AMBs. Note that this is mostly due to the 
lower current gain and position stiffness in the linear region. However, during the heavy 
load operation a current limit is reached (5 A) in the case of the non-optimized AMBs 
(Fig. 17), whereas the rotor eccentricity is critical (>0.1 mm). On the contrary, the unbalanced 
response of the optimized design is much less severe, which is mostly due to lower 
variations of the current gain and position stiffness. The rotor eccentricity stays within the 
safety boundaries (0.1 mm), as it is shown in Fig. 18, whereas for the same load condition 
considerably lower control currents are applied.  
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Fig. 16. Simulation-based time responses of the non-optimized and optimized radial AMBs 
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Fig. 17. Simulation-based unbalance responses for rotation test at 6000 rmp and 180 N load 
impact in the y axis – non-optimized AMBs 
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Fig. 18. Simulation-based unbalance responses for rotation test at 6000 rmp and 180 N load 
impact in the y axis – optimized AMBs 

 
5. Conclusion 
 

This work deals with non-linearities of radial force characteristic of AMBs. A linearized 
AMB model for one axis is presented first. It is used to define the current gain and position 
stiffness, parameters that are used for calculation of the controller settings. Next, FEM-based 
computations of the radial force are described. Based on the obtained results, a considerable 
radial force reduction is determined. It is caused by the magnetic non-linearities and cross-
coupling effects. Therefore, the optimization of a radial AMB is proposed, where the aim is 
to find a such design, where a radial force characteristic is linear as much as possible over 
the entire operating range. A combination of differential evolution and FEM-based analysis 
is used, whereas the objective function is minimized by even 54%. Static and dynamic 
properties of the non-optimized and optimized AMB are evaluated in final section. The 
results presented here show that considerably lower variations of the current gain and 
position stiffness are achieved for the optimized AMB over the entire operating range, 
especially on its margins that are reached during heavy load unbalanced operation. 
Furthermore, a closed-loop damping and stiffness of an overall system are considerably 
higher with the optimized AMBs. Moreover, the operation with the higher load forces is also 
expected for the optimized radial AMB. 
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Responses for the rotor position in the x and y axis and for the control currents ix and iy are 
calculated with Matlab/Simulink®. Fig. 16 shows results of the no rotation test, where the 
reference rotor position and the disturbance forces are changed in the following sequence: 
Fdy(0.1) = 250 N, yr(0.3) = 0.09 mm, Fdx(0.5) = 100 N and xr(0.7) = 0.1 mm. In the obtained 
results, it can be noticed that for the case of a reference position change, a considerably 
higher closed-loop damping is achieved within optimized AMBs, whereas for the heavy 
load case considerably higher closed-loop stiffness is achieved again within the optimized 
AMBs. The impact of cross-coupling effects can also be noticed, since changes in the x axis 
variables are reflected in the y axis variables. Furthermore, from the results shown in Fig. 16, 
it can be concluded that the control current is much higher for the non-optimized AMBs. 
Consequently, an operation with the considerably higher load forces can be achieved within 
the optimized AMBs. 
These conclusions are completely confirmed with the results of a simulation unbalance test, 
which are shown in Figs. 17 and 18. A rotation with 6000 rpm of a highly unbalanced rigid 
shaft is simulated. Consequently, the unbalanced responses are obtained, which is shown by 
trajectories of the rotor position and control currents. The trajectories for the unbalanced no 
load condition are shown together with the trajectories during the 180 N load impact in the y 
axis. From the obtained results it can be noticed that during the no load condition the rotor 
eccentricity is slightly larger for the optimized AMBs. Note that this is mostly due to the 
lower current gain and position stiffness in the linear region. However, during the heavy 
load operation a current limit is reached (5 A) in the case of the non-optimized AMBs 
(Fig. 17), whereas the rotor eccentricity is critical (>0.1 mm). On the contrary, the unbalanced 
response of the optimized design is much less severe, which is mostly due to lower 
variations of the current gain and position stiffness. The rotor eccentricity stays within the 
safety boundaries (0.1 mm), as it is shown in Fig. 18, whereas for the same load condition 
considerably lower control currents are applied.  
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.1

-0.075

-0.05

-0.025

0

y 
[m

m
]

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

time [s]

i y [A
]

nonoptimized
optimized

yr= -0.09 mmFdy= 250 N Fdx= 100 N xr= -0.1 mm

 
Fig. 16. Simulation-based time responses of the non-optimized and optimized radial AMBs 

 

-0.1 -0.05 0 0.05 0.1

-0.1

-0.05

0

0.05

0.1

x [mm]

y 
[m

m
]

No-Load

Heavy-Load

  
-5 -2.5 0 2.5 5
-5

-2.5

0

2.5

5

ix [A]

i y [A
]

Heavy-Load

No-Load

 
Fig. 17. Simulation-based unbalance responses for rotation test at 6000 rmp and 180 N load 
impact in the y axis – non-optimized AMBs 
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5. Conclusion 
 

This work deals with non-linearities of radial force characteristic of AMBs. A linearized 
AMB model for one axis is presented first. It is used to define the current gain and position 
stiffness, parameters that are used for calculation of the controller settings. Next, FEM-based 
computations of the radial force are described. Based on the obtained results, a considerable 
radial force reduction is determined. It is caused by the magnetic non-linearities and cross-
coupling effects. Therefore, the optimization of a radial AMB is proposed, where the aim is 
to find a such design, where a radial force characteristic is linear as much as possible over 
the entire operating range. A combination of differential evolution and FEM-based analysis 
is used, whereas the objective function is minimized by even 54%. Static and dynamic 
properties of the non-optimized and optimized AMB are evaluated in final section. The 
results presented here show that considerably lower variations of the current gain and 
position stiffness are achieved for the optimized AMB over the entire operating range, 
especially on its margins that are reached during heavy load unbalanced operation. 
Furthermore, a closed-loop damping and stiffness of an overall system are considerably 
higher with the optimized AMBs. Moreover, the operation with the higher load forces is also 
expected for the optimized radial AMB. 
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1. Introduction     
 

This chapter presents an application of zero-power controlled magnetic levitation for active 
vibration control. Vibration isolation are strongly required in the field of high-resolution 
measurement and micromanufacturing, for instance, in the submicron semiconductor chip 
manufacturing, scanning probe microscopy, holographic interferometry, cofocal optical 
imaging, etc. to obtain precise and repeatable results. The growing demand for tighter 
production tolerance and higher resolution leads to the stringent requirements in these 
research and industry environments. The microvibrations resulted from the tabletop and/or 
the ground vibration should be carefully eliminated from such sophisticated systems. The 
vibration control research has been advanced with passive and active techniques. 
Conventional passive technique uses spring and damper as isolator. They are widely used 
to support the investigated part to protect it from the severe ground vibration or from direct 
disturbance on the table by using soft and stiff suspensions, respectively (Haris & Piersol, 
2002; Rivin, 2003). Soft suspensions can be used because they provide low resonance 
frequency of the isolation system and thus reduce the frequency band of vibration 
amplification. However, it leads to potential problem with static stability due to direct 
disturbance on the table, which can be solved by using stiff suspension. On the other hand, 
passive systems offer good high frequency vibration isolation with low isolator damping at 
the cost of vibration amplification at the fundamental resonance frequency. It can be solved 
by using high value of isolator damping. Therefore, the performance of passive isolators are 
limited, because various trade-offs are necessary when excitations with a wide frequency 
range are involved.  
Active control technique can be introduced to resolve these drawbacks. Active control 
system has enhanced performances because it can adapt to changing environment (Fuller et 
al., 1997; Preumont, 2002; Karnopp, 1995). Although conventional active control system 
achieves high performance, it requires large amount of energy source to drive the actuators 
to produce active damping force (Benassi et al., 2004a & 2004b; Yoshioka et al., 2001; 
Preumont et al., 2002; Daley et al., 2006; Zhu et al., 2006; Sato & Trumper, 2002). Apart from 
this, most of the researches use high-performance sensors, such as servo-type accelerometer 
for detecting vibration signal, which are rather expensive. These are the difficulties to 
expand the application fields of active control technique. 
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The development and maintenance cost of vibration isolation system should be lowered in 
order to expand the application fields of active control. Considering the point of view, a 
vibration isolation system have been developed using an actively zero-power controlled 
magnetic levitation system (Hoque et al., 2006; Mizuno et al., 2007a; Hoque et al., 2010a). In 
the proposed system, eddy-current relative displacement sensors were used for 
displacement feedback. Moreover, the control current converges to zero for the zero-power 
control system. Therefore, the developed system becomes rather inexpensive than the 
conventional active systems.  
An active zero-power controlled magnetic suspension is used in this chapter to realize 
negative stiffness by using a hybrid magnet consists of electromagnet and permanent 
magnets. Moreover, it can be noted that realizing negative stiffness can also be generalized 
by using linear actuator (voice coil motor) instead of hybrid magnet (Mizuno et al., 2007b). 
This control achieves the steady state in which the attractive force produced by the 
permanent magnets balances the weight of the suspended object, and the control current 
converges to zero. However, the conventional zero-power controller generates constant 
negative stiffness, which depends on the capacity of the permanent magnets. This is one of 
the bottlenecks in the field of application of zero-power control where the adjustment of 
stiffness is necessary. Therefore, this chapter will investigate on an improved zero-power 
controller that has capability to adjust negative stiffness. Apart from this, zero-power 
control has inherently nonlinear characteristics. However, compensation to zero-power 
control can solve such problems (Hoque et al., 2010b). Since there is no steady energy 
consumption for achieving stable levitation, it has been applied to space vehicles (Sabnis et 
al., 1975), to the magnetically levitated carrier system in clean rooms (Morishita et al., 1989) 
and to the vibration isolator (Mizuno et al., 2007a). Six-axis vibration isolation system can be 
developed as well using this technique (Hoque et al., 2010a).  
In this chapter, an active vibration isolation system is developed using zero-power 
controlled magnetic levitation technology. The isolation system is fabricated by connecting a 
mechanical spring in series with a suspension of negative stiffness (see Section 4 for details). 
Middle tables are introduced in between the base and the isolation table.  
In this context, the nomenclature on the vibration disturbances, compliance and 
transmissibility are discussed for better understanding. The underlying concept on vibration 
isolation using magnetic levitation technique, realization of zero-power, stiffness 
adjustment, nonlinear compensation of the maglev system are presented in detail. Some 
experimental results are presented for typical vibration isolation systems to demonstrate 
that the maglev technique can be implemented to develop vibration isolation system. 

 
2. Vibration Suppression Terminology 
 

2.1 Vibration Disturbances 
The vibration disturbance sources are categorized into two groups. One is direct disturbance 
or tabletop vibration and another is ground or floor vibration. 
Direct disturbance is defined by the vibrations that applies to the tabletop  and generates 
deflection or deformation of the system. Ground vibration is defined by the detrimental 
vibrations that transmit from floor to the system through the suspension. It is worth noting 
that zero or low compliance for tabletop vibration and low transmissibility (less than unity) 
are ideal for designing a vibration isolation system. 

 

Almost in every environment, from laboratory to industry, vibrational disturbance sources are 
common. In modern research or application arena, it is certainly necessary to conduct 
experiments or make measurements in a vibration-free environment. Think about a industry or 
laboratory where a number of energy sources exist simultaneously. Consider the silicon wafer 
photolithography system, a principal equipment in the semiconductor manufacturing process. It 
has a stage which moves in steps and causes disturbance on the table. It supports electric motors, 
that generates periodic disturbance. The floor also holds some rotating machines. Moreover, 
earthquake, movement of employees with trolley transmit seismic disturbance to the stage. 
Assume a laboratory measurement table in another case. The table supports some machine tools, 
and change in load on the table is a common phenomena. In addition, air compressor, vacuum 
pump, oscilloscope and dynamic signal analyzer with cooling fan rest on the floor. Some more 
potential energy souces are elevator mechanisms, air conditioning, rail and road transport, heat 
pumps that contribute to the vibrational background noise and that are coupled to the 
foundations and floors of the surrounding buildings. All the above sources of vibrations affect 
the system either directly on the table or transmit from the floor. 

 
2.2 Compliance 
Compliance is defined as the ratio of the linear or angular displacement to the magnitude of the 
applied static or constant force. Moreover, in case of a varying dynamic force or vibration, it can 
be defined as the ratio of the excited vibrational amplitude in any form of angular or translational 
displacement to the magnitude of the forcing vibration. It is the most extensively used transfer 
function for the vibrational response of an isolation table. Any deflection of the isolation table is 
demonstrated by the change in relative position of the components mounted on the table surface. 
Hence, if the isolation system has virtually zero or lower compliance (infinite stiffness) values, by 
definition , it is a better-quality table because the deflection of the surface on which fabricated 
parts are mounted is reduced. Compliance is measured in units of displacement per unit force, 
i.e., meters/Newton (m/N) and used to measure deflection at different frequencies.  
The deformation of a body or structure in response to external payloads or forces is a 
common problem in engineering fields. These external disturbance forces may be static or 
dynamic. The development of an isolation table is a good example of this problem where 
such static and dynamic forces may exist. A static laod, such as that caused by a large, 
concentrated mass loaded or unloaded on the table, can cause the table to deform. A 
dynamic force, such as the periodic disturbance of a rotating motor placed on top of the 
table, or vibration induced from the building into the isolation table through its mounting 
points, can cause the table to oscillate and deform. 
Assume the simplest model of conventional mass-spring-damper system as shown in Fig. 
1(a), to understand compliance with only one degree-of-freedom system. Consider that a 
single frequency sinusoidal vibration applied to the system. From Newton’s laws, the 
general equation of motion is given by 
 
 tFkxxcxm sin0  , (1) 
 
where m : the mass of the isolated object, x : the displacement of the mass, c : the damping,  
k : the stiffness, F0 : the maximum amplitude of the disturbance, ω : the rotational frequency 
of disturbance, and t : the time. 
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The development and maintenance cost of vibration isolation system should be lowered in 
order to expand the application fields of active control. Considering the point of view, a 
vibration isolation system have been developed using an actively zero-power controlled 
magnetic levitation system (Hoque et al., 2006; Mizuno et al., 2007a; Hoque et al., 2010a). In 
the proposed system, eddy-current relative displacement sensors were used for 
displacement feedback. Moreover, the control current converges to zero for the zero-power 
control system. Therefore, the developed system becomes rather inexpensive than the 
conventional active systems.  
An active zero-power controlled magnetic suspension is used in this chapter to realize 
negative stiffness by using a hybrid magnet consists of electromagnet and permanent 
magnets. Moreover, it can be noted that realizing negative stiffness can also be generalized 
by using linear actuator (voice coil motor) instead of hybrid magnet (Mizuno et al., 2007b). 
This control achieves the steady state in which the attractive force produced by the 
permanent magnets balances the weight of the suspended object, and the control current 
converges to zero. However, the conventional zero-power controller generates constant 
negative stiffness, which depends on the capacity of the permanent magnets. This is one of 
the bottlenecks in the field of application of zero-power control where the adjustment of 
stiffness is necessary. Therefore, this chapter will investigate on an improved zero-power 
controller that has capability to adjust negative stiffness. Apart from this, zero-power 
control has inherently nonlinear characteristics. However, compensation to zero-power 
control can solve such problems (Hoque et al., 2010b). Since there is no steady energy 
consumption for achieving stable levitation, it has been applied to space vehicles (Sabnis et 
al., 1975), to the magnetically levitated carrier system in clean rooms (Morishita et al., 1989) 
and to the vibration isolator (Mizuno et al., 2007a). Six-axis vibration isolation system can be 
developed as well using this technique (Hoque et al., 2010a).  
In this chapter, an active vibration isolation system is developed using zero-power 
controlled magnetic levitation technology. The isolation system is fabricated by connecting a 
mechanical spring in series with a suspension of negative stiffness (see Section 4 for details). 
Middle tables are introduced in between the base and the isolation table.  
In this context, the nomenclature on the vibration disturbances, compliance and 
transmissibility are discussed for better understanding. The underlying concept on vibration 
isolation using magnetic levitation technique, realization of zero-power, stiffness 
adjustment, nonlinear compensation of the maglev system are presented in detail. Some 
experimental results are presented for typical vibration isolation systems to demonstrate 
that the maglev technique can be implemented to develop vibration isolation system. 

 
2. Vibration Suppression Terminology 
 

2.1 Vibration Disturbances 
The vibration disturbance sources are categorized into two groups. One is direct disturbance 
or tabletop vibration and another is ground or floor vibration. 
Direct disturbance is defined by the vibrations that applies to the tabletop  and generates 
deflection or deformation of the system. Ground vibration is defined by the detrimental 
vibrations that transmit from floor to the system through the suspension. It is worth noting 
that zero or low compliance for tabletop vibration and low transmissibility (less than unity) 
are ideal for designing a vibration isolation system. 

 

Almost in every environment, from laboratory to industry, vibrational disturbance sources are 
common. In modern research or application arena, it is certainly necessary to conduct 
experiments or make measurements in a vibration-free environment. Think about a industry or 
laboratory where a number of energy sources exist simultaneously. Consider the silicon wafer 
photolithography system, a principal equipment in the semiconductor manufacturing process. It 
has a stage which moves in steps and causes disturbance on the table. It supports electric motors, 
that generates periodic disturbance. The floor also holds some rotating machines. Moreover, 
earthquake, movement of employees with trolley transmit seismic disturbance to the stage. 
Assume a laboratory measurement table in another case. The table supports some machine tools, 
and change in load on the table is a common phenomena. In addition, air compressor, vacuum 
pump, oscilloscope and dynamic signal analyzer with cooling fan rest on the floor. Some more 
potential energy souces are elevator mechanisms, air conditioning, rail and road transport, heat 
pumps that contribute to the vibrational background noise and that are coupled to the 
foundations and floors of the surrounding buildings. All the above sources of vibrations affect 
the system either directly on the table or transmit from the floor. 

 
2.2 Compliance 
Compliance is defined as the ratio of the linear or angular displacement to the magnitude of the 
applied static or constant force. Moreover, in case of a varying dynamic force or vibration, it can 
be defined as the ratio of the excited vibrational amplitude in any form of angular or translational 
displacement to the magnitude of the forcing vibration. It is the most extensively used transfer 
function for the vibrational response of an isolation table. Any deflection of the isolation table is 
demonstrated by the change in relative position of the components mounted on the table surface. 
Hence, if the isolation system has virtually zero or lower compliance (infinite stiffness) values, by 
definition , it is a better-quality table because the deflection of the surface on which fabricated 
parts are mounted is reduced. Compliance is measured in units of displacement per unit force, 
i.e., meters/Newton (m/N) and used to measure deflection at different frequencies.  
The deformation of a body or structure in response to external payloads or forces is a 
common problem in engineering fields. These external disturbance forces may be static or 
dynamic. The development of an isolation table is a good example of this problem where 
such static and dynamic forces may exist. A static laod, such as that caused by a large, 
concentrated mass loaded or unloaded on the table, can cause the table to deform. A 
dynamic force, such as the periodic disturbance of a rotating motor placed on top of the 
table, or vibration induced from the building into the isolation table through its mounting 
points, can cause the table to oscillate and deform. 
Assume the simplest model of conventional mass-spring-damper system as shown in Fig. 
1(a), to understand compliance with only one degree-of-freedom system. Consider that a 
single frequency sinusoidal vibration applied to the system. From Newton’s laws, the 
general equation of motion is given by 
 
 tFkxxcxm sin0  , (1) 
 
where m : the mass of the isolated object, x : the displacement of the mass, c : the damping,  
k : the stiffness, F0 : the maximum amplitude of the disturbance, ω : the rotational frequency 
of disturbance, and t : the time. 
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The general expression for compliance of a system presented in Eq. (1) is given by 

 
222 )()(

1Compliance
 cmkF

x


 . (2) 

 
The compliance in Eq. (2) can be represented as 

 
2222 )/(4))/(1(

/1Compliance
nn

k
F
x

 
 , (3) 

 
where n : the natural frequency of the system and   : the damping ratio. 

 
2.3 Transmissibility 
Transmissibility is defined as the ratio of the dynamic output to the dynamic input, or in 
other words, the ratio of the amplitude of the transmitted vibration (or transmitted force) to 
that of the forcing vibration (or exciting force).  
Vibration isolation or elimination of a system is a two-part problem. As discussed in Section 
2.1, the tabletop of an isolation system is designed to have zero or minimal response to a 
disturbing force or vibration. This is itself not sufficient to ensure a vibration free working 
surface. Typically, the entire table system is subjected continually to vibrational impulses 
from the laboratory floor. These vibrations may be caused by large machinery within the 
building as discussed in Section 2.1 or even by wind or traffic-excited building resonances or 
earthquake.  
 
 
 

 
 
 

                            
 

 
                         (a)                                                                   (b)                                                       
Fig. 1. Conventional mass-spring-damper vibration isolator under (a) direct disturbance  
(b) ground vibration. 
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The model shown in Fig. 1(a) is modified by applying ground vibration, as shown in  
Fig. 1(b). The absolute transmissibility, T of the system, in terms of vibrational displacement, 
is given by 
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Similarly, the transmissibility can also be defined in terms of force. It can be defined as the 
ratio of the amplitude of force tranmitted (F) to the amplitude of exciting force (F0). 
Mathematically, the transmissibility in terms of force is given by 
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3. Zero-Power Controlled Magnetic Levitation  
 

3.1 Magnetic Suspension System 
Since last few decades, an active magnetic levitation has been a viable choice for many 
industrial machines and devices as a non-contact, lubrication-free support (Schweitzer et al., 
1994; Kim & Lee, 2006; Schweitzer & Maslen, 2009). It has become an essential machine 
element from high-speed rotating machines to the development of precision vibration 
isolation system. Magnetic suspension can be achieved by using electromagnet and/or 
permanent magnet. Electromagnet or permanent magnet in the magnetic suspension system 
causes flux to circulate in a magnetic circuit, and magnetic fields can be generated by 
moving charges or current. The attractive force of an electromagnet, F can be expressed 
approximately as (Schweitzer et al., 1994) 
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where K : attractive force coefficient for electromagnet, I : coil current,  : mean gap 
between electromagnet and the suspended object. 
Each variable is given by the sum of a fixed component, which determines its operating 
point and a variable component, such as 

 iII  0 , (6)  

 xD  0 , (7) 
 
where 0I : bias current, i : coil current in the electromagnet, 0D : nominal gap, x : 
displacement of the suspended object from the equilibrium position. 
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The general expression for compliance of a system presented in Eq. (1) is given by 
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where n : the natural frequency of the system and   : the damping ratio. 

 
2.3 Transmissibility 
Transmissibility is defined as the ratio of the dynamic output to the dynamic input, or in 
other words, the ratio of the amplitude of the transmitted vibration (or transmitted force) to 
that of the forcing vibration (or exciting force).  
Vibration isolation or elimination of a system is a two-part problem. As discussed in Section 
2.1, the tabletop of an isolation system is designed to have zero or minimal response to a 
disturbing force or vibration. This is itself not sufficient to ensure a vibration free working 
surface. Typically, the entire table system is subjected continually to vibrational impulses 
from the laboratory floor. These vibrations may be caused by large machinery within the 
building as discussed in Section 2.1 or even by wind or traffic-excited building resonances or 
earthquake.  
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Fig. 1. Conventional mass-spring-damper vibration isolator under (a) direct disturbance  
(b) ground vibration. 
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The model shown in Fig. 1(a) is modified by applying ground vibration, as shown in  
Fig. 1(b). The absolute transmissibility, T of the system, in terms of vibrational displacement, 
is given by 
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Similarly, the transmissibility can also be defined in terms of force. It can be defined as the 
ratio of the amplitude of force tranmitted (F) to the amplitude of exciting force (F0). 
Mathematically, the transmissibility in terms of force is given by 
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3. Zero-Power Controlled Magnetic Levitation  
 

3.1 Magnetic Suspension System 
Since last few decades, an active magnetic levitation has been a viable choice for many 
industrial machines and devices as a non-contact, lubrication-free support (Schweitzer et al., 
1994; Kim & Lee, 2006; Schweitzer & Maslen, 2009). It has become an essential machine 
element from high-speed rotating machines to the development of precision vibration 
isolation system. Magnetic suspension can be achieved by using electromagnet and/or 
permanent magnet. Electromagnet or permanent magnet in the magnetic suspension system 
causes flux to circulate in a magnetic circuit, and magnetic fields can be generated by 
moving charges or current. The attractive force of an electromagnet, F can be expressed 
approximately as (Schweitzer et al., 1994) 

 
2

2


IKF  , (5) 

 
where K : attractive force coefficient for electromagnet, I : coil current,  : mean gap 
between electromagnet and the suspended object. 
Each variable is given by the sum of a fixed component, which determines its operating 
point and a variable component, such as 

 iII  0 , (6)  

 xD  0 , (7) 
 
where 0I : bias current, i : coil current in the electromagnet, 0D : nominal gap, x : 
displacement of the suspended object from the equilibrium position. 
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3.2 Magnetic Suspension System with Hybrid Magnet 
In order to reduce power consumption and continuous power supply, permanent magnets 
are employed in the suspension system to avoid providing bias current. The suspension 
system by using hybrid magnet, which consists of electromagnet and permanent magnet is 
shown in Fig. 2. The permanent magnet is used for the purpose of providing bias flux 
(Mizuno & Takemori, 2002). This control realizes the steady states in which the 
electromagnet coil current converges to zero and the attractive force produced by the 
permanent magnet balances the weight of the suspended object.  
 

It is assumed that the permanent magnet is modeled as a constant-current (bias current) and 
a constant-gap electromagnet in the magnetic circuit for simplification in the following 
analysis. Attractive force of the electromagnet, F can be written as 
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where bias current, 0I  is modified to equivalent current in the steady state condition 
provided by the permanent magnet and nominal gap, 0D  is modified to the nominal air gap 
in the steady state condition including the height of the permanent magnet. Equation (8) can 
be transformed as 
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Using Taylor principle, Eq. (9) can be expanded as 
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Fig. 2. Model of a zero-power controlled magnetic levitation 
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For zero-power control system, control current is very small, especially, in the phase 
approaches to steady-state condition and therefore, the higher-order terms are not 
considered. Equation (10) can then be written as 
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For zero-power control system, the control current of the electromagnet is converged to zero 
to satisfy the following equilibrium condition 

 mgFe  , (17) 
 
and the equation of motion of the suspension system can be written as 

 mgFxm  . (18) 
From Eqs. (11), (17) and (18), 
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This is the fundamental equation for describing the motion of the suspended object. 

 
3.3 Design of Zero-Power Controller 
Negative stiffness is generated by actively controlled zero-power magnetic suspension. The 
basic model, controller and the characteristic of the zero-power control system is described 
below. 

 
3.3.1 Model 
A basic zero-power controller is designed for simplicity based on linearized equation of 
motions. It is assumed that the displacement of the suspended mass is very small and the 
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3.2 Magnetic Suspension System with Hybrid Magnet 
In order to reduce power consumption and continuous power supply, permanent magnets 
are employed in the suspension system to avoid providing bias current. The suspension 
system by using hybrid magnet, which consists of electromagnet and permanent magnet is 
shown in Fig. 2. The permanent magnet is used for the purpose of providing bias flux 
(Mizuno & Takemori, 2002). This control realizes the steady states in which the 
electromagnet coil current converges to zero and the attractive force produced by the 
permanent magnet balances the weight of the suspended object.  
 

It is assumed that the permanent magnet is modeled as a constant-current (bias current) and 
a constant-gap electromagnet in the magnetic circuit for simplification in the following 
analysis. Attractive force of the electromagnet, F can be written as 
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where bias current, 0I  is modified to equivalent current in the steady state condition 
provided by the permanent magnet and nominal gap, 0D  is modified to the nominal air gap 
in the steady state condition including the height of the permanent magnet. Equation (8) can 
be transformed as 
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Fig. 2. Model of a zero-power controlled magnetic levitation 
 

df

 

For zero-power control system, control current is very small, especially, in the phase 
approaches to steady-state condition and therefore, the higher-order terms are not 
considered. Equation (10) can then be written as 
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For zero-power control system, the control current of the electromagnet is converged to zero 
to satisfy the following equilibrium condition 

 mgFe  , (17) 
 
and the equation of motion of the suspension system can be written as 

 mgFxm  . (18) 
From Eqs. (11), (17) and (18), 
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This is the fundamental equation for describing the motion of the suspended object. 

 
3.3 Design of Zero-Power Controller 
Negative stiffness is generated by actively controlled zero-power magnetic suspension. The 
basic model, controller and the characteristic of the zero-power control system is described 
below. 

 
3.3.1 Model 
A basic zero-power controller is designed for simplicity based on linearized equation of 
motions. It is assumed that the displacement of the suspended mass is very small and the 
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nonlinear terms are neglected. Hence the linearized motion equation from Eq. (19) can be 
written as 

 xkikxm si  . (20) 
 
The suspended object with mass of m  is assumed to move only in the vertical translational 
direction as shown by Fig. 2. The equation of motion is given by 
 

 dis fikxkxm  , (21) 
 

where x : displacement of the suspended object, sk : gap-force coefficient of the hybrid 
magnet,  ik : current-force coefficient of the hybrid magnet, i : control current, df : 
disturbance acting on the suspended object. The coefficients sk and ik are positive. When 
each Laplace-transform variable is denoted by its capital, and the initial values are assumed 
to be zero for simplicity, the transfer function representation of the dynamics described by 
Eq. (21) becomes 
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3.3.2 Suspension with Negative Stiffness 
Zero-power can be achieved either by feeding back the velocity of the suspended object or 
by introducing a minor feedback of the integral of current in the PD (proportional-
derivative) control system (Mizuno & Takemori, 2002). Since PD control is a fundamental 
control law in magnetic suspension, zero-power control is realized from PD control in this 
work using the second approach. In the current controlled magnetic suspension system, PD 
control can be represented as 
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where dp : proportional feedback gain, vp : derivative feedback gain. Figure 3 shows the 
block diagram of a current-controlled zero-power controller where a minor integral 
feedback of current is added to the proportional feedback of displacement.  
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levitation system 

 

The control current of zero-power controller is given by 
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where zp : integral feedback in the minor current loop. From Eqs. (22) to (24), it can be 
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To estimate the stiffness for direct disturbance, the direct disturbance, )(sW on the isolation 
table is considered to be stepwise, that is  
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The steady displacement of the suspension, from Eqs. (25) and (27), is given by 
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The negative sign in the right-hand side illustrates that the new equilibrium position is in 
the direction opposite to the applied force. It means that the system realizes negative 
stiffness. Assume that stiffness of any suspension is denoted by k. The stiffness of the zero-
power controlled magnetic suspension is, therefore, negative and given by  
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3.3.3 Realization of Zero-Power 
From Eqs. (26) and (27) 
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It indicates that control current, all the time, converges to zero in the zero-power control 
system for any load. 
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nonlinear terms are neglected. Hence the linearized motion equation from Eq. (19) can be 
written as 

 xkikxm si  . (20) 
 
The suspended object with mass of m  is assumed to move only in the vertical translational 
direction as shown by Fig. 2. The equation of motion is given by 
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where x : displacement of the suspended object, sk : gap-force coefficient of the hybrid 
magnet,  ik : current-force coefficient of the hybrid magnet, i : control current, df : 
disturbance acting on the suspended object. The coefficients sk and ik are positive. When 
each Laplace-transform variable is denoted by its capital, and the initial values are assumed 
to be zero for simplicity, the transfer function representation of the dynamics described by 
Eq. (21) becomes 
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It indicates that control current, all the time, converges to zero in the zero-power control 
system for any load. 
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3.4 Stiffness Adjustment  
The stiffness realized by zero-power control is constant, as shown in Eq. (29). However, it is 
necessary to adjust the stiffness of the magnetic levitation system in many applications, such 
as vibration isolation systems. There are two approaches to adjust stiffness of the zero-
power control system. The first one is by adding a minor displacement feedback to the zero-
power control current, and the other one is by adding a proportional feedback in the minor 
current feedback loop (Ishino et al., 2009).  In this research, stiffness adjustment capability of 
zero-power control is realized by the first approach. Figure 4 shows the block diagram of the 
modified zero-power controller that is capable to adjust stiffness. The control current of the 
modified zero-power controller is given by 
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where sp : proportional displacement feedback gain across the zero-power controller. 
 

  
The transfer-function representation of the dynamics shown in Fig. 4 is given by  
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From Eqs. (27) and (32),  the steady displacement becomes 
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Therefore, the stiffness of the modified system becomes 
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It indicates that the stiffness can be increased or decreased by changing the feedback 
gain sp . 
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Fig. 4. Block diagram of the modified zero-power controller that can adjust stiffness 
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Fig. 5. Block diagram of the nonlinear compensator of the zero-power controlled magnetic 
levitation 
 

It is shown that the zero-power control can generate negative stiffness. The control current 
of the zero-power controlled magnetic suspension system is converged to zero for any 
added mass. To counterbalance the added force due to the mass, the stable position of the 
suspended object is changed. Due to the air gap change between permanent magnet and the 
object, the magnetic force is also changed, and hence, the negative stiffness generated by this 
system varies as well according to the gap (see Eq. (14)). To compensate the nonlinearity of 
the basic zero-power control system, the first nonlinear terms of Eq. (19) is considered and 
added to the basic system.  From Eq. (19), the control current can be expressed as 
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where  2d : the nonlinear control gain and, zpi : the current in the zero-power controller, sk , 

ik  and 0D  are constant for the system. The square of the displacement )( 2x is fed back to 
the normal zero-power controller. The block diagram of the nonlinear controller 
arrangement is shown in Fig. 5. The air gap between the permanent magnet and the 
suspended object can be changed in order to choose a suitable operating point. 
It is worth noting that the nonlinear compensator and the stiffness adjustment controller can 
be used simultaneously without instability. Moreover, performance of the nonlinear 
compensation could be improved furthermore if the second and third nonlinear terms and 
so on are considered together. 
 
4. Vibration Suppression Using Zero-Power Controlled Magnetic Levitation 
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where sp : proportional displacement feedback gain across the zero-power controller. 
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From Eqs. (27) and (32),  the steady displacement becomes 
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Therefore, the stiffness of the modified system becomes 
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It indicates that the stiffness can be increased or decreased by changing the feedback 
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The vibration isolation system is developed using magnetic levitation technique in such a way 
that it can behave as a suspension of virtually zero compliance or infinite stiffness for direct 
disturbing forces and a suspension with low stiffness for floor vibration. Infinite stiffness can 
be realized by connecting a mechanical spring in series with a magnetic spring that has 
negative stiffness (Mizuno, 2001; Mizuno et al., 2007a & Hoque et al., 2006). When two springs 
with spring constants of 1k  and 2k  are connected in series, the total stiffness ck  is given by  
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The above basic system has been modified by introducing a secondary suspension to avoid 
some limitations for system design and supporting heavy payloads (Mizuno, et al., 2007a & 
Hoque, et al., 2010a). The concept is demonstrated in Fig. 6. A passive suspension ( 3k , 3c ) is 
added in parallel with the serial connection of positive and negative springs. The total 
stiffness ck

~
 is given by 
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However, if one of the springs has negative stiffness that satisfies  
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the resultant stiffness becomes infinite for both the case in Eqs. (36) and (37) for any finite 
value of 3k , that is  
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Equation (39) shows that the system may have infinite stiffness against direct disturbance to 
the system. Therefore, the system in Fig. 6 shows virtually zero compliance when Eq. (38) is 
satisfied. On the other hand, if low stiffness of mechanical springs for system ( 1k , 3k ) are 
used, it can maintain good ground vibration isolation performance as well. 
 
4.2 Typical Applications of Vibration Suppression 
In this section, typical vibration isolation systems using zero-power controlled magnetic 
levitation are presented, which were developed based on the principle discussed in Eq. (37).  
The isolation system consists mainly of two suspensions with three platforms- base, middle 
table and isolation table. The lower suspension between base and middle table is of positive 
stiffness and the upper suspension between middle table and base is of negative stiffness 
realized by zero-power control. A passive suspension directly between base and isolation 
table acts as weight support mechanism. 
A typical single-axis and a typical six-axis vibration isolation apparatuses are demonstrated 
in Fig. 7. The single-axis apparatus (Fig. 7(a)) consisted of a circular base, a circular middle 
table and a circular isolation table. The height, diameter and weight of the system were 
300mm, 200mm and 20 kg, respectively. The positive stiffness in the lower part was realized 
by three mechanical springs and an electromagnet. To reduce coil current in the 
electromagnet, four permanent magnets (15mm×2mm) were used. The permanent magnets 
are made of Neodymium-Iron-Boron (NdFeB). The stiffness of each coil springs was 3.9 

 

N/mm. The electromagnet coil had 180-turns and 1.3Ω resistance. The wire diameter of the 
coil was 0.6 mm. The relative displacement of the base to middle table was measured by an 
eddy-current displacement sensor, provided by Swiss-made Baumer electric. The negative 
stiffness suspension in the upper part was achieved by a hybrid magnet consisted of an 
electromagnet that was fixed to the middle table, and six permanent magnets attached to the 
electromagnet target on the isolation table. Another displacement sensor was used to 
measure the relative displacement between middle table to isolation table. The isolation 
table was also supported by three coil springs as weight support mechanism, and the 
stiffness of the each spring was 2.35 N/mm.  
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Fig. 7. Typical applications of zero-power controlled magnetic levitation for active vibration 
control (a) single-degree-of-freedom system (b) six-degree-of-freedom system 
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Fig. 7. Typical applications of zero-power controlled magnetic levitation for active vibration 
control (a) single-degree-of-freedom system (b) six-degree-of-freedom system 
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The six-axis vibration isolation system with magnetic levitation technology is shown in Fig. 
7(b) (Hoque, et al., 2010a). It consisted of a rectangular isolation table, a middle table and 
base. A positive stiffness suspension realized by electromagnet and normal springs was 
used between the base and the middle table. On the other hand, a negative stiffness 
suspension generated by hybrid magnets was used between the middle table and the 
isolation table. The height, length, width and mass of the apparatus were 300 mm, 740 mm, 
590 mm and 400 kg, respectively. The isolation and middle tables weighed 88 kg and 158 kg, 
respectively. The isolation table had six-degree-of-freedom motions in the x, y, z, roll, pitch 
and yaw directions.  
The base was equipped with four pairs of coil springs and electromagnets to support the 
middle table in the vertical direction and six pairs of coil springs and electromagnets (two 
pairs in the x-direction and four pairs in the y-direction) in the horizontal directions. The 
middle table was equipped with four sets of hybrid magnets to levitate and control the 
motions of the isolation table in the vertical direction and six sets of hybrid magnets (two 
sets in the x-direction and four sets in the y-direction) to control the motions of the table in 
the horizontal directions. The isolation table was also supported by four coil springs in the 
vertical direction and six coil springs (two in the x-direction and four in the y-direction) in 
the horizontal directions as weight support mechanism. Each set of hybrid magnet for zero-
power suspension consisted of five square-shaped permanent magnets (20 mm×20 mm×2 
mm) and five 585-turn electromagnets. The spring constant of each normal spring was 12.1 
N/mm and that of weight support spring was 25.5 N/mm. There was flexibility to change 
the position of the weight support springs both in the vertical and horizontal directions to 
make it compatible for designing stable magnetic suspension system using zero-power 
control. The relative displacements of the isolation table to the middle table and those of the 
middle table to the base were detected by eight eddy-current displacement sensors attached 
to the corners of the isolation table and the base.  
A DSP-based digital controller (DS1103) was used for the implementation of the designed 
control algorithms by simulink in Matlab. The sampling rate was 10 kHz. 
 
4.3 Experimental Demonstrations 
Several experiments have been conducted to verify the aforesaid theoretical analysis. The 
nonlinear compensation of zero-power controlled magnetic levitation, stiffness adjustment 
of the levitation system are confirmed initially.  Then the characteristics of the developed 
isolation systems are measured in terms of compliance and transmissibility.  
 
4.3.1 Nonlinear Compensation of Magnetic Levitation System 
First of all, zero-power control was realized between the isolation table and the middle table 
for stable levitation. Static characteristic of the zero-power controlled magnetic levitation 
was measured as shown in Fig. 8 when the payloads were increased to produce static direct 
disturbances on the table in the vertical direction.  
In this case, the middle table was fixed and the table was levitated by zero-power control. The 
result presents the load-stiffness characteristic of the zero-power control system. The figure 
without nonlinear compensation indicates that there was a wide variation of stiffness when the 
downward load force changed. For the uniform load increment, the change of gap was not 
equal due to the nonlinear magnetic force. Therefore, the negative stiffness generated from 
zero-power control was nonlinear which may severely affect the vibration isolation system. 

 

To overcome the above problem, the nonlinear compensator was introduced in parallel with 
the zero-power control system. The nonlinear control gain (d2) was chosen by trial and error 
method. The gap (D0) between the table and the electromagnet was 5.1 mm after stable 
levitation by zero-power control. The value of sk and ik  were determined from the system 
characteristics. The load-stiffness characteristic using nonlinear compensation is also shown 
in the figure. It is obvious from the figure that the linearity error was reduced when control 
gain (d2) was increased. For 552 d , the linearity error was very low and the stiffness 
generated from the system was approximately constant. This result shows the potential to 
improve the static response performance of the isolation table to direct disturbance.  
 

 
 
 
 
 
4.3.2 Stiffness Adjustment of Zero-Power Controlled Magnetic Levitation 
The experiments have been carried out to measure the performances of the modified zero-
power controller. Figure 9 shows the load-displacement characteristics of the system with 
the improved zero-power controller (Fig. 4). When the proportional feedback gain, ,0sp it 
can be considered as a conventional zero-power controller (Fig. 3). The result shows that 
when the payloads were put on the suspended object, the table moved in the direction 
opposite to the applied load, and the gap was widened. It indicates that the zero-power 
control realized negative displacement, and hence its stiffness is negative, as described by 
Eqs. (28) and (29). The conventional zero-power controller ( 0sp ) realized fixed negative 
stiffness of magnitude -9.2 N/mm. When the proportional feedback gain, sp  was changed, 
the stiffness also gradually increased. When 40sp A/m, negative stiffness was increased 
to -21.5 N/mm. It confirms that proportional feedback gain, sp can change the stiffness of 
the zero-power controller, as explained in Eq. (34). 
 
4.3.3 Experimental Results with Vibration Isolation System 
Further experiments were conducted with the linearized zero-power controller with the 
vibration isolation system, as shown in Fig. 10. In this case, the positive and negative 
stiffness springs were, then, adjusted to satisfy Eq. (38). The stiffness could either be 
adjusted in the positive or negative stiffness part. In the former, PD control could be used in 
the electromagnets that were employed in parallel with the coil springs. The latter technique 
was presented in Section 4.3.2. For better performance, the latter was adopted in this work. 

Fig. 8. Nonlinear compensation of the
conventional zero-power controlled magnetic
levitation system 

Fig. 9. Load-displacement characteristics of the 
modified zero-power controlled magnetic 
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The six-axis vibration isolation system with magnetic levitation technology is shown in Fig. 
7(b) (Hoque, et al., 2010a). It consisted of a rectangular isolation table, a middle table and 
base. A positive stiffness suspension realized by electromagnet and normal springs was 
used between the base and the middle table. On the other hand, a negative stiffness 
suspension generated by hybrid magnets was used between the middle table and the 
isolation table. The height, length, width and mass of the apparatus were 300 mm, 740 mm, 
590 mm and 400 kg, respectively. The isolation and middle tables weighed 88 kg and 158 kg, 
respectively. The isolation table had six-degree-of-freedom motions in the x, y, z, roll, pitch 
and yaw directions.  
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middle table in the vertical direction and six pairs of coil springs and electromagnets (two 
pairs in the x-direction and four pairs in the y-direction) in the horizontal directions. The 
middle table was equipped with four sets of hybrid magnets to levitate and control the 
motions of the isolation table in the vertical direction and six sets of hybrid magnets (two 
sets in the x-direction and four sets in the y-direction) to control the motions of the table in 
the horizontal directions. The isolation table was also supported by four coil springs in the 
vertical direction and six coil springs (two in the x-direction and four in the y-direction) in 
the horizontal directions as weight support mechanism. Each set of hybrid magnet for zero-
power suspension consisted of five square-shaped permanent magnets (20 mm×20 mm×2 
mm) and five 585-turn electromagnets. The spring constant of each normal spring was 12.1 
N/mm and that of weight support spring was 25.5 N/mm. There was flexibility to change 
the position of the weight support springs both in the vertical and horizontal directions to 
make it compatible for designing stable magnetic suspension system using zero-power 
control. The relative displacements of the isolation table to the middle table and those of the 
middle table to the base were detected by eight eddy-current displacement sensors attached 
to the corners of the isolation table and the base.  
A DSP-based digital controller (DS1103) was used for the implementation of the designed 
control algorithms by simulink in Matlab. The sampling rate was 10 kHz. 
 
4.3 Experimental Demonstrations 
Several experiments have been conducted to verify the aforesaid theoretical analysis. The 
nonlinear compensation of zero-power controlled magnetic levitation, stiffness adjustment 
of the levitation system are confirmed initially.  Then the characteristics of the developed 
isolation systems are measured in terms of compliance and transmissibility.  
 
4.3.1 Nonlinear Compensation of Magnetic Levitation System 
First of all, zero-power control was realized between the isolation table and the middle table 
for stable levitation. Static characteristic of the zero-power controlled magnetic levitation 
was measured as shown in Fig. 8 when the payloads were increased to produce static direct 
disturbances on the table in the vertical direction.  
In this case, the middle table was fixed and the table was levitated by zero-power control. The 
result presents the load-stiffness characteristic of the zero-power control system. The figure 
without nonlinear compensation indicates that there was a wide variation of stiffness when the 
downward load force changed. For the uniform load increment, the change of gap was not 
equal due to the nonlinear magnetic force. Therefore, the negative stiffness generated from 
zero-power control was nonlinear which may severely affect the vibration isolation system. 

 

To overcome the above problem, the nonlinear compensator was introduced in parallel with 
the zero-power control system. The nonlinear control gain (d2) was chosen by trial and error 
method. The gap (D0) between the table and the electromagnet was 5.1 mm after stable 
levitation by zero-power control. The value of sk and ik  were determined from the system 
characteristics. The load-stiffness characteristic using nonlinear compensation is also shown 
in the figure. It is obvious from the figure that the linearity error was reduced when control 
gain (d2) was increased. For 552 d , the linearity error was very low and the stiffness 
generated from the system was approximately constant. This result shows the potential to 
improve the static response performance of the isolation table to direct disturbance.  
 

 
 
 
 
 
4.3.2 Stiffness Adjustment of Zero-Power Controlled Magnetic Levitation 
The experiments have been carried out to measure the performances of the modified zero-
power controller. Figure 9 shows the load-displacement characteristics of the system with 
the improved zero-power controller (Fig. 4). When the proportional feedback gain, ,0sp it 
can be considered as a conventional zero-power controller (Fig. 3). The result shows that 
when the payloads were put on the suspended object, the table moved in the direction 
opposite to the applied load, and the gap was widened. It indicates that the zero-power 
control realized negative displacement, and hence its stiffness is negative, as described by 
Eqs. (28) and (29). The conventional zero-power controller ( 0sp ) realized fixed negative 
stiffness of magnitude -9.2 N/mm. When the proportional feedback gain, sp  was changed, 
the stiffness also gradually increased. When 40sp A/m, negative stiffness was increased 
to -21.5 N/mm. It confirms that proportional feedback gain, sp can change the stiffness of 
the zero-power controller, as explained in Eq. (34). 
 
4.3.3 Experimental Results with Vibration Isolation System 
Further experiments were conducted with the linearized zero-power controller with the 
vibration isolation system, as shown in Fig. 10. In this case, the positive and negative 
stiffness springs were, then, adjusted to satisfy Eq. (38). The stiffness could either be 
adjusted in the positive or negative stiffness part. In the former, PD control could be used in 
the electromagnets that were employed in parallel with the coil springs. The latter technique 
was presented in Section 4.3.2. For better performance, the latter was adopted in this work. 

Fig. 8. Nonlinear compensation of the
conventional zero-power controlled magnetic
levitation system 

Fig. 9. Load-displacement characteristics of the 
modified zero-power controlled magnetic 
levitation system 

ps 

ps 

ps 



Magnetic Bearings, Theory and Applications56

 

 
Fig. 10. Static characteristics of the isolation    Fig. 11. Dynamic characteristics of the isolation 
table with and without nonlinear control        table in the vertical direction 
 
Figure 10 demonstrates the performance improvement of the controller for static response to 
direct disturbance. The displacements of the isolation table and middle table were plotted 
against disturbing forces produced by payload in the vertical direction. It is clear that zero-
compliance to direct disturbance was realized up to 100 N payloads with nonlinear 
controller (d2=55). The stiffness of the isolation system was increased to 960 N/mm which 
was approximately 2.8 times more than that of without nonlinear control. The figure 
illustrates significant improvement in rejecting on-board-generated disturbances. 
 
The dynamic performance of the isolation table was measured in the vertical direction as 
shown in Fig. 11. In this case, the isolation table was excited to produce sinusoidal 
disturbance force by two voice coil motors which were attached to the base and can generate 
force in the Z-direction. The displacement of the table was measured by gap sensors and the 
data was captured by a dynamic signal analyzer. It is found from the figure that high 
stiffness, that means virtually zero-compliance, was realized at low frequency region (-66 
dB[mm/N] at 0.015 Hz). It also demonstrates that direct disturbance rejection performance 
was not worsened even nonlinear zero-power control was introduced.  
Finally a comparative study of the disturbance suppression performance was conducted 
with zero-compliance control and conventional passive suspension technique as shown in 
the figure. The experiment was carried out with same lower suspension for ground 
vibration isolation. First, the isolation table was suspended by positive suspension 
(conventional spring-damper) and frequency response to direct disturbance was measured. 
The stiffness dominated region is marked in the figure, and it is seen from the figure that the 
displacement of the isolation table was almost same below 1 Hz (approximately -46 dB). 
However, when the isolation table was suspended by zero-compliance control satisfying 
Eqs. (38) and (39), displacement of the table was abruptly reduced at the low frequency 
region below 1 Hz (-66 dB at 0.015 Hz). It is confirmed from the figure that the developed 
zero-compliance system had better direct disturbance rejection performance over the 
conventional passive suspension even both the systems used similar vibration isolation 
performances.  
 

Stiffness dominated region 

 

 
Fig. 12. Dynamic characteristics of the isolation table in the vertical direction.  
 
The characteristics of the isolation table were further investigated by measuring the 
response of the table to direct disturbance in the horizontal directions as shown in Fig. 12. In 
this case, four voice coil motors were used to excite the isolation table along the horizontal 
direction. The results show the dynamic response of the isolation table when the table was 
excited along yaw mode. The response of the table to direct dynamic disturbance was 
captured by dynamic signal analyzer. The results justify that the displacements of the table 
to direct disturbance in the horizontal rotational motions were also low at the low frequency 
regions. The results confirmed that the isolation table was realized high stiffness against 
disturbing forces in the motion associated with horizontal direction.  
 

 
Fig. 13. Step response of the isolation table with magnetic levitation technology  
 
The step response of the isolation table is shown in Fig. 13. In this experiment, a stepwise 
disturbance was generated by suddenly removing a certain amount of load from the table 
and the response was measured. The results showed that the table moved upward in the 
direction of load removal and returned to the original position (steady-state) after certain 
period. However, there was a reverse action in case of step wise disturbance. Therefore, a 
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peak was appeared due to the response of the step load. This unpleasant response might 
hamper the objective function of many advanced systems. It can be noted that a feedforward 
controller can be added in combination with zero-power control to overcome this problem. 
 

 
Fig. 14. Transmissibility characteristics of the isolation table.  
 
Figure 14 shows the absolute transmissibility of the isolation table from the base of the developed 
system. In this case, the base of the system was sinusoidally excited in the vertical direction by a 
high-powered pneumatic actuator attached to the base, and the displacement transfer function 
(transmissibility) of the isolation table was measured from the base. The base displacement in the 
vertical direction was considered as input, and the output signal was the displacement of the 
isolation table. The damping coefficient (cp) between the base and the middle table played 
important role to suppress the resonance peak. The figure shows that the resonant peak was 
almost suppressed when cp was chosen as 0.9. It is clear from the figure that the developed 
system can effectively isolate the floor vibration that transmitted through the suspensions, such 
as active-passive positive suspensions and active zero-power controlled magnetic levitation. 
 
5. Conclusions 
 

A zero-power controlled magnetic levitation system has been presented in this chapter. The 
unique characteristic of the zero-power control system is that it can generate negative 
stiffness with zero control current in the steady-state which is realized in this chapter. The 
detail characteristics of the levitation system are investigated. Moreover, two major 
contributions, the stiffness adjustment and nonlinear compensation of the suspension 
system have been introduced elaborately. Often, there is a challenge for the vibration 
isolator designer to tackle both direct disturbance and ground vibration simultaneously with 
minimum system development and maintenance costs. Taking account of the point of view, 
typical applications of active vibration isolation using zero-power controlled magnetic 
levitation has been presented. The vibration isolation system is capable to suppress the effect 
of tabletop vibration as well as to isolate ground vibration. Some experimental 
demonstrations are presented that verifies the feasibility of its application in many 
industries and space related instruments. Moreover, it can be noted that a feedforward 
controller in combination with the zero-power controller can be used to improve the 
performance of the isolator to suppress direct disturbances. 

 

6. Acknowledgment 
 

The authors gratefully acknowledge the financial support made available from the Japan 
Society for the Promotion of Science as a Grant-in-Aid for scientific research (Grant no. 
20.08380) for the foreign researchers and the Ministry of Education, Culture, Sports, Science 
and Technology of Japan, as a Grant-in-Aid for Scientific Research (B). 
 
7. References 
 

Benassi, L. ; Elliot, S. J. & Gardonio, P. (2004a). Active vibration isolation using an inertial actuator 
with local force feedback control, Journal of Sound and Vibration, Vol. 276, No. 3, pp. 157-179 

Benassi, L. & Elliot, S. J. (2004b). Active vibration isolation using an inertial actuator with local 
displacement feedback control, Journal of Sound and Vibration, Vol. 278, No. 4-5, pp. 705-724 

Daley, S. ; Hatonen, J. & Owens, D. H. (2006). Active vibration isolation in a “smart spring” mount 
using a repetitive control approach, Control Engineering Practice, Vol. 14, pp. 991-997. 

Fuller, C. R. ;  Elliott, S. J. & Nelson, P. A. (1997). Active Control of Vibration, Academic Press, 
ISBN 0-12-269440-6, New York, USA  

Harris, C. M. & Piersol, A. G. (2002). Shock and Vibration Handbook, McGraw Hill, Fifth Ed., 
ISBN 0-07-137081-1, New York, USA 

Hoque, M. E. ; Takasaki, M. ; Ishino, Y. & Mizuno, T. (2006). Development of a three-axis 
active vibration isolator using zero-power control, IEEE/ASME Transactions on 
Mechatronics, Vol. 11, No. 4, pp. 462-470 

Hoque, M. E. ; Mizuno, T. ; Ishino, Y. & Takasaki, M. (2010a), A six-axis hybrid vibration 
isolation system using active zero-power control supported by passive support 
mechanism, Journal of Sound and Vibration, Vol. 329, No. 17, pp. 3417-3430 

Hoque, M. E. ; Mizuno, T. ; Kishita, D. ; Takasaki, M. & Ishino, Y. (2010b). Development of an 
Active Vibration Isolation System Using Linearized Zero-Power Control with Weight 
Support Springs, ASME Journal of Vibration and Acoustics, Vol. 132, No. 4, pp. 041006-1/9 

Ishino, Y. ; Mizuno, T. & Takasaki, M. (2009). Stiffness Control of Magnetic Suspension by 
Local Feedback, Proceedings of the European Control Conference 2009, pp. 3881-
3886, Budapest, Hungary, 23-26 August, 2009 

Karnopp, D. (1995). Active and semi-active vibration isolation, ASME Journal of Mechanical 
Design, Vol. 117, pp. 177-185 

Kim, H. Y. & Lee, C. W. (2006). Design and control of Active Magnetic Bearing System With 
Lorentz Force-Type Axial Actuator, Mechatronics, vol. 16, pp. 13–20 

Mizuno, T. (2001). Proposal of a Vibration Isolation System Using Zero-Power Magnetic 
Suspension, Proceedings of the Asia Pacific Vibration Conference 2001, pp. 423-427, 
Hangzhau, China  

Mizuno, T. & Takemori, Y. (2002). A transfer-function approach to the analysis and design 
of zero-power controllers for magnetic suspension system, Electrical Engineering in 
Japan, Vol. 141, No. 2, pp. 933-940 

Mizuno, T. ; Takasaki, M. ; Kishita, D. & Hirakawa, K. (2007a). Vibration isolation system 
combining zero-power magnetic suspension with springs, Control Engineering 
Practice, Vol. 15, No. 2, pp. 187-196 

Mizuno, T. ; Furushima, T. ; Ishino, Y. & Takasaki, M. (2007b). General Forms of Controller 
Realizing Negative Stiffness, Proceedings of the SICE Annual Conference 2007, pp. 
2995-3000, Kagawa University, Japan, 17-20 September, 2007 



Magnetic levitation technique for active vibration control 59

 

peak was appeared due to the response of the step load. This unpleasant response might 
hamper the objective function of many advanced systems. It can be noted that a feedforward 
controller can be added in combination with zero-power control to overcome this problem. 
 

 
Fig. 14. Transmissibility characteristics of the isolation table.  
 
Figure 14 shows the absolute transmissibility of the isolation table from the base of the developed 
system. In this case, the base of the system was sinusoidally excited in the vertical direction by a 
high-powered pneumatic actuator attached to the base, and the displacement transfer function 
(transmissibility) of the isolation table was measured from the base. The base displacement in the 
vertical direction was considered as input, and the output signal was the displacement of the 
isolation table. The damping coefficient (cp) between the base and the middle table played 
important role to suppress the resonance peak. The figure shows that the resonant peak was 
almost suppressed when cp was chosen as 0.9. It is clear from the figure that the developed 
system can effectively isolate the floor vibration that transmitted through the suspensions, such 
as active-passive positive suspensions and active zero-power controlled magnetic levitation. 
 
5. Conclusions 
 

A zero-power controlled magnetic levitation system has been presented in this chapter. The 
unique characteristic of the zero-power control system is that it can generate negative 
stiffness with zero control current in the steady-state which is realized in this chapter. The 
detail characteristics of the levitation system are investigated. Moreover, two major 
contributions, the stiffness adjustment and nonlinear compensation of the suspension 
system have been introduced elaborately. Often, there is a challenge for the vibration 
isolator designer to tackle both direct disturbance and ground vibration simultaneously with 
minimum system development and maintenance costs. Taking account of the point of view, 
typical applications of active vibration isolation using zero-power controlled magnetic 
levitation has been presented. The vibration isolation system is capable to suppress the effect 
of tabletop vibration as well as to isolate ground vibration. Some experimental 
demonstrations are presented that verifies the feasibility of its application in many 
industries and space related instruments. Moreover, it can be noted that a feedforward 
controller in combination with the zero-power controller can be used to improve the 
performance of the isolator to suppress direct disturbances. 

 

6. Acknowledgment 
 

The authors gratefully acknowledge the financial support made available from the Japan 
Society for the Promotion of Science as a Grant-in-Aid for scientific research (Grant no. 
20.08380) for the foreign researchers and the Ministry of Education, Culture, Sports, Science 
and Technology of Japan, as a Grant-in-Aid for Scientific Research (B). 
 
7. References 
 

Benassi, L. ; Elliot, S. J. & Gardonio, P. (2004a). Active vibration isolation using an inertial actuator 
with local force feedback control, Journal of Sound and Vibration, Vol. 276, No. 3, pp. 157-179 

Benassi, L. & Elliot, S. J. (2004b). Active vibration isolation using an inertial actuator with local 
displacement feedback control, Journal of Sound and Vibration, Vol. 278, No. 4-5, pp. 705-724 

Daley, S. ; Hatonen, J. & Owens, D. H. (2006). Active vibration isolation in a “smart spring” mount 
using a repetitive control approach, Control Engineering Practice, Vol. 14, pp. 991-997. 

Fuller, C. R. ;  Elliott, S. J. & Nelson, P. A. (1997). Active Control of Vibration, Academic Press, 
ISBN 0-12-269440-6, New York, USA  

Harris, C. M. & Piersol, A. G. (2002). Shock and Vibration Handbook, McGraw Hill, Fifth Ed., 
ISBN 0-07-137081-1, New York, USA 

Hoque, M. E. ; Takasaki, M. ; Ishino, Y. & Mizuno, T. (2006). Development of a three-axis 
active vibration isolator using zero-power control, IEEE/ASME Transactions on 
Mechatronics, Vol. 11, No. 4, pp. 462-470 

Hoque, M. E. ; Mizuno, T. ; Ishino, Y. & Takasaki, M. (2010a), A six-axis hybrid vibration 
isolation system using active zero-power control supported by passive support 
mechanism, Journal of Sound and Vibration, Vol. 329, No. 17, pp. 3417-3430 

Hoque, M. E. ; Mizuno, T. ; Kishita, D. ; Takasaki, M. & Ishino, Y. (2010b). Development of an 
Active Vibration Isolation System Using Linearized Zero-Power Control with Weight 
Support Springs, ASME Journal of Vibration and Acoustics, Vol. 132, No. 4, pp. 041006-1/9 

Ishino, Y. ; Mizuno, T. & Takasaki, M. (2009). Stiffness Control of Magnetic Suspension by 
Local Feedback, Proceedings of the European Control Conference 2009, pp. 3881-
3886, Budapest, Hungary, 23-26 August, 2009 

Karnopp, D. (1995). Active and semi-active vibration isolation, ASME Journal of Mechanical 
Design, Vol. 117, pp. 177-185 

Kim, H. Y. & Lee, C. W. (2006). Design and control of Active Magnetic Bearing System With 
Lorentz Force-Type Axial Actuator, Mechatronics, vol. 16, pp. 13–20 

Mizuno, T. (2001). Proposal of a Vibration Isolation System Using Zero-Power Magnetic 
Suspension, Proceedings of the Asia Pacific Vibration Conference 2001, pp. 423-427, 
Hangzhau, China  

Mizuno, T. & Takemori, Y. (2002). A transfer-function approach to the analysis and design 
of zero-power controllers for magnetic suspension system, Electrical Engineering in 
Japan, Vol. 141, No. 2, pp. 933-940 

Mizuno, T. ; Takasaki, M. ; Kishita, D. & Hirakawa, K. (2007a). Vibration isolation system 
combining zero-power magnetic suspension with springs, Control Engineering 
Practice, Vol. 15, No. 2, pp. 187-196 

Mizuno, T. ; Furushima, T. ; Ishino, Y. & Takasaki, M. (2007b). General Forms of Controller 
Realizing Negative Stiffness, Proceedings of the SICE Annual Conference 2007, pp. 
2995-3000, Kagawa University, Japan, 17-20 September, 2007 



Magnetic Bearings, Theory and Applications60

 

Morishita, M. ; Azukizawa, T. ; Kanda, S. ; Tamura, N. & Yokoyama, T. (1989). A new 
maglev system for magnetically levitated carrier system, IEEE Transaction on 
Vehicular Technology, Vol. 38, No. 4, pp. 230-236 

Platus, D. L. (1991). Negative-stiffness-mechanism vibration isolation system, Proceedings of the 
SPIE, Vibration  Control in Microelectronics, Optics, and Metrology, Vol. 1619, pp. 44-54 

Preumont, A. (2002). Vibration Control of Active Structures, An Introduction, Kluwer, Second 
ed., ISBN 1-4020-0496-6, Dordrecht 

Preumont, A. ; Francois, A. ; Bossens, F. & Hanieh, A. A. (2002). Force feedback versus 
acceleration feedback in active vibration isolation, Journal of Sound and Vibration, 
Vol. 257, No. 4, pp. 605-613 

Rivin, E. I. (2003). Passive Vibration Isolation, ASME Press, ISBN: 0-7918-0187-X, New York, USA 
Sabnis, A. V. ; Dendy, J. B. & Schmitt, F. M. (1975). Magnetically suspended large 

momentum wheel, Journal of Spacecraft and Rockets, Vol. 12, pp. 420-427 
Sato, T. & Trumper, D. L. (2002). A novel single degree-of-freedom active vibration isolation 

system, Proceedings of the 8th International Symposium on Magnetic Bearing, pp. 
193-198, Japan, August 26-28, 2002 

Schweitzer, G. ; Bleuler, H. & Traxler, A. (1994). Active Magnetic Bearings, vdf 
Hochschulverlag AG an der ETH Zurich, Zurich, Switzerlannd 

Schweitzer, G. & Maslen, E. H. (2009). Magnetic Bearings- Theory, Design, and Application to 
Rotating Machinery, ISBN : 978-3-642-00496-4, Springer, Germany 

Yoshioka, H. ; Takahashi, Y. ; Katayama, K. ; Imazawa, T. & Murai, N. (2001). An active 
microvibration isolation system for hi-tech manufacturing facilities, ASME Journal 
of Vibration and Acoustics, Vol. 123, pp. 269-275 

Zhu, W. H. ; Tryggvason, B. & Piedboeuf, J. C. (2006). On active acceleration control of 
vibration isolation systems, Control Engineering Practice, Vol. 14, No. 8, pp. 863-873 



Salient pole permanent magnet axial-gap self-bearing motor 61

Salient pole permanent magnet axial-gap self-bearing motor

Quang-Dich Nguyen and Satoshi Ueno

X 
 

Salient pole permanent magnet  
axial-gap self-bearing motor 

 
Quang-Dich Nguyen and Satoshi Ueno 

Ritsumeikan University 
Japan 

 
1. Introduction      

Recently, active magnetic-bearing motors have been designed to overcome the limitations of 
the conventional mechanical-bearing motors. Magnetic-bearing motors can work in all 
environments without lubrication and do not cause contamination; further, they can run at 
very high speeds. Therefore, they are very valuable machines with a number of novel 
features, and with a vast range of diverse applications (Dussaux, 1990). 
The conventional magnetic-bearing motor usually has a rotary motor installed between two 
radial magnetic bearings, or a mechanical combination of a rotary motor and a radial 
magnetic bearing (The mechanically combined magnetic bearing motor usually has n-pole 
motor windings and n±2-pole suspension windings), as shown in Figs. 1 and 2 (Okada et al., 
1996), (Oshima et al., 1996 a,b), (Zhaohui & Stephens, 2005), (Chiba et al., 2005). The radial 
magnetic bearings create radial levitation forces for rotor, while an axial magnetic bearing 
produces a thrust force to keep the rotor in the correct axial position relative to the stator. 
However, these magnetic-bearing motors are large, heavy, and complex in control and 
structure, which cause problems in applications that have limit space. Thus, a simpler and 
smaller construction and a less complex control system are desirable.  
An axial magnetic bearing is composed of a rotary disc fixed on a rotary shaft and 
electromagnets arranged on both sides of the disc at a proper minute distance. This structure 
is similar to that of an axial-flux AC motor (Aydin et al., 2006), (Marignetti et al., 2008). 
Based on this, Satoshi Ueno has introduced an electrically combined motor-bearing which is 
shown in Fig. 3, in which the stator has only three-phase windings; however it can 
simultaneously provide non-contact levitation and rotation (Ueno & Okada, 1999), (Ueno & 
Okada, 2000). This motor is then called an axial-gap self-bearing motor (AGBM) to imply 
that the motor has self levitation function. Obviously, it is simpler in structure and control 
since hardware components can be reduced.   
The AGBM can be realized as an induction motor (IM) (Ueno & Okada, 1999), or a 
permanent magnet (PM) motor (Ueno & Okada, 2000), (Okada et al., 2005), (Horz et al., 
2006), (Nguyen & Ueno, 2009 a,b). The PM motor is given special attention, because of its 
high power factor, high efficiency, and simplicity in production.  
In this chapter, the mathematical model of the salient 2-pole AGBM with double stators is 
introduced and analyzed (sandwich type). A closed loop vector control method for the axial 
position and the speed is developed in the way of eliminating the influence of the reluctance 
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torque. The vector control method for the AGBM drive is based on the reference frame 
theory, where the direct axis current id is used for controlling the axial force and the 
quadrate axis current iq is used for controlling the rotating torque. The proposed control 
method is initially utilized for the  salient AGBM (Lsd < Lsq), however it can be used for non-
salient AGBM (Lsd = Lsq), too.  

 
2. Mathematical Model 

Per-phase equivalent circuits have been widely used in steady-state analysis of the AC 
machines. However, they are not appropriate to predict the dynamic performance of the 
motor. For vector control, a dynamic model of the motor is necessary. The analysis of three-
phase motor is based on the reference frame theory. Using this technique, the dynamic 
equations of the AC motor are simplified and become similar to those of the DC motor. 
The structure of an axial gap self-bearing motor is illustrated in Fig. 4. It consists of a disc 
rotor and two stators, which is arranged in sandwich type. The radial motions x, y, θx, and θy 
of the rotor are constrained by two radial magnetic bearings such as the repulsive bearing 

 
Fig. 1.  Structure of conventional magnetic-bearing motor 

 
Fig. 2.  Structure of radial-combined magnetic-bearing motor 

 
Fig. 3.  Structure of axial-gap self-bearing motor 

 

shown. Only rotational motion and translation along the z axis are considered. The motor 
has two degrees of freedom (2 DOFs). 
 

 
Fig. 4. Detail structure and coordinates of the AGBM 

 

 
      Salient pole rotor 

 

The rotor is a flat disc with PMs inserted on both faces of the disc to create a salient-pole 
rotor. Two stators, one in each rotor side, have three-phase windings that generate rotating 
magnetic fluxes in the air gap. These produce motoring torques T1 and T2 on the rotor and 
generate attractive forces F1 and F2 between the rotor and the stators. The total motoring 
torque T is the sum of these torques, and the axial force F is the difference of the two 
attractive forces. 

 
Fig. 5. Define of coordinates 
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To obtain a mathematical model of the AGBM, the axial force Fs and motoring torque Ts are 
first calculated for one stator. Similar to the non-salient AGBM, the mathematical model of 
the salient AGBM is presented in a rotor-field-oriented reference frame or so-called d, q 
coordinates, as indicated in Fig. 5. The d axis is aligned with the center lines of the 
permanent magnets and the q axis between the magnets. The axes u, v, and w indicate the 
direction of the flux produced by the corresponding phase windings. The phase difference 
between the u axis and the d axis is the electrical angular position θe of the rotor flux vector.   
 

 
Fig. 6. Relation between phase inductance and rotor position 
 

 
Fig. 7. Relation between phase inductance and air gap 

 

Since the PM with unity permeability is used, the rotor is a salience; therefore the self-phase 
inductance of the stator is dependent on the rotor angular position, which means that the d-
axis inductance is different from q-axis inductance. Furthermore, the self-phase inductance 
is a function of the air gap g between the rotor and the stator. The relation between self-
phase inductance and rotor position as well as air gap is illustrated in Fig. 6 and 7. 
Obviously, the self-phase inductance is inversely proportional to the air gap, so the d- and q-
axis phase inductance of the stator windings can be derived as  (Fitzgerald, 1992) 
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where, 0 0sd sqL ,L   are the d- and q-axis magnetizing inductances multiplied by the air gap 
length. They can be determined by calculating the motor parameters or measuring the phase 
inductance. Lsl is the leakage inductance. It can be estimated from the analysis of the 
measured phase inductance. By using the power invariant transformation method, the 
components of the stator voltage and the flux of the AGBM in the d,q coordinates can be 
expressed in the following equations: 
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where m m fL i  is the flux linkage caused by PM. For simplicity, the magnetic flux of the 
rotor is replaced by an equivalent winding with a DC current if and an inductance Lf. The 
rotor flux can be expressed only in d axis as follows:  
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From (2) to (5), the magnetic co-energy in the air gap for a stator is calculated as follows: 
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Therefore, the attractive force of one stator is received by the derivative of the magnetic co-
energy with respect to the axial displacement: 
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and the motoring torque for one stator is calculated as follows:  
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From (9), the output torque of the AGBM is a combination of an excitation torque and a 
reluctance torque. That means, in every operation mode, the motor has to produce an 
additional torque to compensate the reluctance torque. In the non-salient pole rotor, this 
reluctance torque can be ignored to make control system simpler. However, in the salient-
pole rotor when the reluctance torque can reach the relative high amplitude, the neglect of 
this torque component will reduce the quality of system, especially in operation mode with 
axial load (id ≠ 0). 
From (8) and (9) 1F  and 1T  are calculated by substituting 0g g z  , 1sd di i  , and 

1sq qi i , and 2F  and 2T  are calculated by substituting 0g g z  , 2sd di i  , and 2sq qi i . 
Thus, the total axial force F and torque T are given by: 
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where 0g  is the axial gap at the equilibrium point and z is the displacement.  
For linearization at the equilibrium point (z = 0), (10) and (11) are expanded into a Maclaurin 
series and the first-order term is taken, yielding: 
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To increase the total moment twice the component moment created by one stator, the 
moment-generated currents for both stators must be same direction and value. To keep the 
rotor in right position between two stators, the forces acting on rotor from both sides must 
be same value but inverse, i.e. under the effect of the axial load, if the force-generated 
current of one side increases, then correspondingly, that current of other side has to 
decrease the same amount. The rotating torque can be controlled effectively by using the 
quadrate-axis current, and the axial force can be controlled by changing the direct-axis 
current. It is supposed that:  
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where id0 is an offset current, and the value can be zero or a small value around zero. 
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From (2) to (5), the magnetic co-energy in the air gap for a stator is calculated as follows: 
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and the motoring torque for one stator is calculated as follows:  
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where 0g  is the axial gap at the equilibrium point and z is the displacement.  
For linearization at the equilibrium point (z = 0), (10) and (11) are expanded into a Maclaurin 
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To increase the total moment twice the component moment created by one stator, the 
moment-generated currents for both stators must be same direction and value. To keep the 
rotor in right position between two stators, the forces acting on rotor from both sides must 
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where id0 is an offset current, and the value can be zero or a small value around zero. 
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Inserting (14) into (12) and (13) yields:  
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From (15), the total torque consists of three components. 

1) The first component, 2eff T qT K i , is the efficient torque of the AGBM, this is main 
component of the output torque, which is caused by the interaction between PM flux 
and stator flux. 

2) The second one, 0 02rl R d qT K i i , is the reluctance torque caused by current id0. 

Therefore, assuming that 1 2d d di i i     i.e. 0 0di  then this reluctance torque is 
eliminated.  

3) The last one, 02 /rlz R d qT K i i z g , is reluctance torque caused by current id under the 
effect of the displacement z. When the displacement is well controlled to be zero, or 
very small in comparison with air gap at the equilibrium point g0, the influence of this 
component can be neglected. 

As the result, the total torque becomes as follows: 
 
 2 T qT K i   (17) 
 
Obviously, the effect of the inductance difference to the total torque is vanished.  
Using the control law (14), the total axial force is received from (16) when 0 0di  as  
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When the displacement is zero or very small in comparison with air gap at the equilibrium 
point g0, the total torque becomes 
 
 4 Fd f dF K i i   (19) 
 
From (17) and (19), it is easy to see that the total torque is proportional with the quadrate 
axis current and the axial force is proportional with the direct axis current. Although the 
axial force depends lightly on the quadrature axis current, its main component is 
proportional to the direct axis current, so a decoupled d- and q-axis current control system 
can be implemented to control the axial force and motoring torque independently. 

 

 

 
Fig. 8. Relation between axial force and d-axis current 

 
Fig. 9. Relation between rotational torque and q-axis current 
 
From (2), (3), (17) and (19), the mathematical model of the AGBM is completely constructed 
with voltage, force, and torque equations. It can be seen that these are simple linear 
equations, so the control system can be easily implemented with conventional controllers. 
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Inserting (14) into (12) and (13) yields:  
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eliminated.  

3) The last one, 02 /rlz R d qT K i i z g , is reluctance torque caused by current id under the 
effect of the displacement z. When the displacement is well controlled to be zero, or 
very small in comparison with air gap at the equilibrium point g0, the influence of this 
component can be neglected. 

As the result, the total torque becomes as follows: 
 
 2 T qT K i   (17) 
 
Obviously, the effect of the inductance difference to the total torque is vanished.  
Using the control law (14), the total axial force is received from (16) when 0 0di  as  
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When the displacement is zero or very small in comparison with air gap at the equilibrium 
point g0, the total torque becomes 
 
 4 Fd f dF K i i   (19) 
 
From (17) and (19), it is easy to see that the total torque is proportional with the quadrate 
axis current and the axial force is proportional with the direct axis current. Although the 
axial force depends lightly on the quadrature axis current, its main component is 
proportional to the direct axis current, so a decoupled d- and q-axis current control system 
can be implemented to control the axial force and motoring torque independently. 

 

 

 
Fig. 8. Relation between axial force and d-axis current 

 
Fig. 9. Relation between rotational torque and q-axis current 
 
From (2), (3), (17) and (19), the mathematical model of the AGBM is completely constructed 
with voltage, force, and torque equations. It can be seen that these are simple linear 
equations, so the control system can be easily implemented with conventional controllers. 
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3. Vector Control Structure 
 

3.1 Generality  
Vector control of the AGBM is based on decomposition of the instantaneous stator current 
into two components: axial force-producing current id (also flux current) and torque-
producing current iq. By this way the control structure of the AGBM becomes similar to that 
of the DC motor. 
As stated above, the motoring torque of the AGBM can be controlled by the q-axis current (iq), 
while the axial force can be controlled by the d-axis current (id). Fig. 10 shows the control 
scheme proposed for the AGBM drive with decoupled current controller.  
The axial displacement from the equilibrium point along the z-axis, z, can be detected by the 
gap sensor. The detected axial position is compared with the axial position command zref  and 
the difference is input to the axial position controller Rz. The position command zref  is always 
set to zero to ensure the rotor is at the midpoint between the two stators. The output of the 
axial position controller is used to calculate the d-axis reference current idref. The d-axis 
reference currents for the two stator windings id1ref and id2ref can be generated by using the 
offset current id0 and respectively subtracting or adding idref. The value of the offset current 
can be zero or a small value around zero.  
 

 
Fig. 10. Control structure for the AGBM. 
 
The rotor speed detected from the encoder is compared with the reference speed and the 
difference is input to the speed controller Rω. The output of the speed controller is used to 
calculate the q-axis reference current iqref. The q-axis reference currents for the two stator 
windings iq1ref and iq2ref are then set the same as the calculated current iqref. 
The motor currents in the two-phase stator reference frame α,β are calculated by measuring 
two actual phase currents. Consequently, the d,q components are obtained using the rotor 

 

position from the encoder. The quadrature components are controlled by the reference value 
that is given by the speed controller, while the direct components are controlled by the 
reference value that is given by the axial position controller. The outputs of the current 
controllers, representing the voltage references, are subsequently directed to the motor 
using the pulse width modulation (PWM) technique, once an inverse transformation from 
the rotating frame to the three-phase stator reference frame has been performed. All the 
controllers are PI controller except that the axial position controller is PID.  

 
3.2 Current Control 
Most of the modern AC motor drives have a control structure comprising an internal 
current control loop. Consequently, the performance of the drive system largely depends on 
the quality of applied current control strategy. 
The main task of the current control loop is to force the current in a three-phase motor to 
follow the reference signals. By comparing the reference currents and measured currents, 
the current control loop generates the switching states for the inverter which decrease the 
current errors. Hence, in general the current control loop implements two tasks: error 
compensation (decrease current error) and modulation (determine switching states). 
The design of the current controllers in the simplest cases of so-called parametric synthesis 
of linear controllers is limited to the selection of a controller type such as P, PI or PID and 
the definition of optimal setting of its parameters according to the criterion adopted. This 
design is normally done with complete knowledge of the controlled object and is described 
in many literatures (Kazmierkowski & Melasani, 1998), (Gerd, 2004). 
From equation (2), the stator voltage equations are rewritten in a slightly different form as 
follows: 
 

 
 
 

sd s sd sd sd

sq s sq sq sq

u R sL i u

u R sL i u

   


   
  (20) 

 
with s is laplace operator and 
 

 
sd e sq sq

sq e sd sd e m

u L i
u L i

  
    

  (21) 

 
Equations (20) and (21) describe a coupled system. In actual, the current control loop is 
much faster than a change of the rotor speed and rotor flux, therefore decoupling of the two 
current controllers can be achieved by adding voltages usd and usq at the output of the 
current controllers compensating the cross coupling in the motor.  
The structure of the current control loop is shown in Fig. 11. 
 



Salient pole permanent magnet axial-gap self-bearing motor 71

 

3. Vector Control Structure 
 

3.1 Generality  
Vector control of the AGBM is based on decomposition of the instantaneous stator current 
into two components: axial force-producing current id (also flux current) and torque-
producing current iq. By this way the control structure of the AGBM becomes similar to that 
of the DC motor. 
As stated above, the motoring torque of the AGBM can be controlled by the q-axis current (iq), 
while the axial force can be controlled by the d-axis current (id). Fig. 10 shows the control 
scheme proposed for the AGBM drive with decoupled current controller.  
The axial displacement from the equilibrium point along the z-axis, z, can be detected by the 
gap sensor. The detected axial position is compared with the axial position command zref  and 
the difference is input to the axial position controller Rz. The position command zref  is always 
set to zero to ensure the rotor is at the midpoint between the two stators. The output of the 
axial position controller is used to calculate the d-axis reference current idref. The d-axis 
reference currents for the two stator windings id1ref and id2ref can be generated by using the 
offset current id0 and respectively subtracting or adding idref. The value of the offset current 
can be zero or a small value around zero.  
 

 
Fig. 10. Control structure for the AGBM. 
 
The rotor speed detected from the encoder is compared with the reference speed and the 
difference is input to the speed controller Rω. The output of the speed controller is used to 
calculate the q-axis reference current iqref. The q-axis reference currents for the two stator 
windings iq1ref and iq2ref are then set the same as the calculated current iqref. 
The motor currents in the two-phase stator reference frame α,β are calculated by measuring 
two actual phase currents. Consequently, the d,q components are obtained using the rotor 

 

position from the encoder. The quadrature components are controlled by the reference value 
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Equations (20) and (21) describe a coupled system. In actual, the current control loop is 
much faster than a change of the rotor speed and rotor flux, therefore decoupling of the two 
current controllers can be achieved by adding voltages usd and usq at the output of the 
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Fig. 11. Decoupled current control loop 
 
Due to the difference between the d- and q-axis inductance, the current control design for id 
and iq is performed separately. 
The decoupled current control loop of the d-axis current contains a dominant stator time 
constant Ts = Lsd/Rs and an inverter time constant Ti. The latter is the time required for the 
conversion of the reference voltage to the inverter output voltage, mainly depending on the 
constant sample time s and PWM frequency fPWM = 1/TPWM: 
 

 i s PWMT T     (22) 
 
Due to the similarity of the control structure, the design of current controller is only made 
for one current control loop, the other current control loops are obtained similarly. 
Considering that the PI controller is utilized for current control, the open-loop transfer 
function of both d-axis and q-axis is: 
 

  0
1 1 1

1 1
id i

i pd
id i sd s

T s KG s K
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


 

  (23) 

 
According to optimal modulus criterion, the time constant Tid of the PI controller within 
such system is optimally chosen to neutralize the largest time constant in the loop: 
 

 id sdT T  (24) 
 
The optimum value of the controller gain is chosen as follows: 
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Consequently, the closed-loop transfer function of the d-axis current control loop becomes: 
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2 2
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si
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For the overlaid axial displacement control loop, the closed-loop transfer function is often 
simplified to a first order system with an equivalent time constant 2 2eq iT T : 
 

   1
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  (27) 

 
By the same way, the parameters of the q-axis current controller are as follows 
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and the closed-loop transfer function of the q-axis current control loop used for overlaid 
speed control loop becomes: 
 

    1
1

q
si

qref eq

i
G s

i T s
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
  (29) 

 
3.3 Axial Displacement Control 
For simplicity, it is assumed that the radial motion of the rotor is restricted by two ideal 
radial bearings. Therefore, the axial motion is independent of the radial motion and can be 
expressed as follows: 
 
  LF F mz     (30) 
 
where m is the mass of the moving parts and F is the axial force. Then substituting (18) into 
(30) yields 

   2 2 2

0

4 4L Fd f d Fd f d Fq q
zmz F K i i K i i K i
g
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This can be summarized as  
 L z m dmz F K z K i      (32) 
where  

  2 2 2
04 /z Fd f d Fq qK K i i K i g     is the stiffness of the motor, and  

4m Fd fK K i
 
is the force gain.  
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According to optimal modulus criterion, the time constant Tid of the PI controller within 
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3.3 Axial Displacement Control 
For simplicity, it is assumed that the radial motion of the rotor is restricted by two ideal 
radial bearings. Therefore, the axial motion is independent of the radial motion and can be 
expressed as follows: 
 
  LF F mz     (30) 
 
where m is the mass of the moving parts and F is the axial force. Then substituting (18) into 
(30) yields 
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This can be summarized as  
 L z m dmz F K z K i      (32) 
where  
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is the force gain.  
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It is easy to see that Kz is negative, which means that this system is unstable. To stabilize the 
system, a controller with the derivative component must be used. The axial displacement 
control loop is shown in Fig. 12. 
The axial displacement control loop contains the closed-loop transfer function of the inner d-
axis current control loop and axial motion function. Since the axial load is usually unknown, 
it is handled in a first step as an external system disturbance. 
Assuming that the proportional derivative controller (PD) is used, the output of the axial 
position controller will represent the direct axis reference current, i.e., 
 
 d P Di K z K z      (33) 
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Fig. 12. Axial displacement control loop 

 
where Kp is the proportional constant and Kd is the derivative constant of the axial position 
controller. Substituting (33) into (32) gives 
 
   0m D z m Pmz K K z K K K z     .  (34) 
 
The system becomes stable only when all the constant coefficients of the polynomial 
function have the same sign. Therefore, if Kd > 0, the system will be stable if the proportional 
constant satisfies the condition 
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Steady-state error occurs when only the PD controller is used, and to remove this, a PID 
controller should be used. The transfer function of the PID controller is expressed as follows: 
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By the same way as stated above, the system will be stable when the controller parameters 
satisfy: 
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In practice, the output of an ideal derivative element unfortunately includes considerable 
noise. High frequency noise at the input terminals results in significant amplification at the 
output terminals, therefore the ideal derivative element should be avoided in practical 
implementation. The practical controller function is expressed as follows: 
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 (38) 

 
The denominator determines the high frequency limit with the cut-off frequency as 1/Tf and 
the numerator acts as a derivative function in the angular frequency range higher than 
1/KD; therefore, the practical PID controller executes as a derivative function in a frequency 
range from 1/KD to 1/Tf. The low frequency gain is 0 dB and the high frequency gain is 
limited to KD /Tf, hence Tf can be chosen from the actual signal condition. 
 
In discrete time, equation (31) can be expressed as: 
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  (39)  

when the bilinear transform method is utilized. 

 
3.4 Speed Control 
For all motor types, the difference of electromagnetic torque T and load torque TL causes 
acceleration of the rotor according to the mechanical property of the motor drives. The 
rotational motion equation can be written as: 
 

 L
dT T J
dt

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or in fixed transfer function: 
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Fig. 12. Axial displacement control loop 
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Torque can be controlled by the q-axis current as shown in equation (16); therefore, the 
speed control loop is shown in Fig. 13. 

1
1eqT s

ref 1
Js

 
Fig. 13. Speed control loop 
 
Like the axial displacement control loop, the speed control loop also contains the inner q-
axis current control loop and rotational motion function. Since the rotational load is 
unknown, it is handled in a first step as an external system disturbance. The influence of the 
speed measurement is usually combined with the equivalent time constant of the current 
control.  
Consequently, the resulting speed loop to be controlled is: 
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The simplest speed controller is a proportional controller (P), converting the speed error in 
the q-axis current command iqref. Assuming no load (TL=0), a positive speed error creates 
positive electromagnetic torque accelerating the drive until the error vanishes, and a 
negative speed error gives negative electromagnetic torque decelerating the drive until the 
error vanishes (braking mode). Thus, the steady-state error is zero in the no-load case. When 
the P-controller  is used, the closed-loop transfer function is: 
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with: 
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From these equations, it can be seen that the speed response to the external torque is 
determined by the natural angular frequency. Faster response is obtained at higher n, while 
strong damper is achieved at higher . For arriving at a compromise, the optimum gain of 
the current control is chosen as: 
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However, a simple P controller yields a steady-state error in the presence of rotational load 
torque, this error can be estimated as: 
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The most common approach to overcome this problem is applying an integral-acting part 
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Then the open-loop transfer function of speed loop is: 
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Similar to the current control, the calculation of the controller parameters K1 and T1 
depend on the system to be controlled. For optimum speed response, parameter calculation 
is done according to symmetrical optimization criterion. The time constant T1 of the speed 
controller is chosen bigger than the largest time constant in the loop, and the gain is chosen 
so that the cut-off frequency is at maximum phase. The results can be expressed as: 
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4. Experimental Results 
 

4.1 Hardware 
To demonstrate the proposed control method for a PM-type AGBM, an experimental setup 
was constructed; it is shown schematically in Fig. 14. The rotor disc, shown in Fig. 15, has a 
diameter of 50mm. Four neodymium magnets with a thickness of 1mm for each side are 
mounted to the disc’s surfaces to create two pole pairs. In this paper, only rotational motion of 
the rotor and translation of the stator along the z axis are considered, hence for a more simple 
experiment, the rotor is supported by two radial ball bearings that restrict the radial motion. 
The stator, shown in Fig. 16, has a core diameter 50 mm and six concentrated wound poles, 
each with 200 coil turns. The stators can slide on the linear guide to ensure a desired air gap 
between the rotor and the two stators. A DC generator (Sanyo T402) is installed to give the 
load torque. A rotary encoder (Copal RE30D) measures the rotor angle and an eddy-current-
type displacement sensor (Shinkawa VC-202N) measures the axial position. 
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Torque can be controlled by the q-axis current as shown in equation (16); therefore, the 
speed control loop is shown in Fig. 13. 
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Fig. 13. Speed control loop 
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The control hardware of the AGBM drive is based on a dSPACE DS1104 board dedicated to 
the control of electrical drives. It includes PWM units, general purpose input/output units 
(8 ADC and 8 DAC), and an encoder interface. The DS1104 reads the displacement signal 
from the displacement sensor via an A/D converter, and the rotor angle position and speed 
from the encoder via an encoder interface. Two motor phase currents are sensed, rescaled, 
and converted to digital values via the A/D converters. The DS1104 then calculates 
reference currents using the rotation control and axial position control algorithms and sends 
its commands to the three-phase inverter boards. The AGBM is supplied by two three-phase 
PWM inverters with a switching frequency of 20 kHz. 
 

Stator phase resistance Rs 2.6  
Effective inductance per unit gap in d axis 0sdL  8.2e-6 Hm 

Effective inductance per unit gap in q axis 0sqL  9.6e-6 Hm 

Leakage inductance Lsl 6e-3 H 
Inertial moment of rotor J 0.00086 kgm2 

Number of pole pairs P 1 
Permanent magnet flux mλ  0.0126 Wb 

Table 1. Parameters of salient pole AGBM 
 

 
Fig. 14. Picture of the experimental setup 
 

                          
Fig. 15. Picture of the rotor of the AGBM                  Fig. 16. Picture of the stator of the AGBM 

 

4.2 Response of Speed and Axial Displacement 
Fig. 17 shows the axial displacement at 0 rpm. The original displacement is set to 0.32 mm, 
and at the time of 0.45 s, the axial position controller starts to work. In transient state, the 
maximum error is 0.05 mm, much smaller than the air gap at the equilibrium point (g0 = 
1.7mm) and the settling time is about 0.05 s. After that, the displacement is almost zero in a 
steady state, i.e. the air gaps between stators and rotor are equal ( 1 2 0g g g  ). The rotor 
now stands in the middle of two stators. 
 

 
Fig. 17. Response of axial displacement at zero speed 
 
Fig. 18 describes the change in the speed from zero to 6000 rpm and vice versa when the 
displacement is zero and the limited current is ±5A. The AGBM does not bear any load. 
With small starting time (about 0.7s) and stopping time (about 0.4s) the AGBM drive shows 
its good dynamic response. 
 

 
Fig. 18. Response of speed at zero displacement 
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Figs. 19 and 20 show response of the axial displacement and the speed when the AGBM starts 
to work. Initial displacement error is adjusted to 0.32mm, and the reference speed is 1500 rpm. 
When the AGBM operates, the displacement jumps immediately to zero. At the same time, the 
rotor speed increases and reaches 1500 rpm after 0.5s without influence of each other.  
From above experimental results, it is obvious that the axial displacement and the speed are 
controlled independently with each other. 
Fig. 21 illustrates the change of the direct axis current id, the quadrate axis current iq, and the 
displacement when the motor speed changes from 1000 rpm to 1500 rpm and vice versa. The 
limited currents are set to ±3A. The AGBM drive works with rotational load. The rotational 
load is created by closing the terminals of a DC generator using a 1 Ω resistor. When the 
reference speed is changed from 1000 rpm to 1500 rpm, the q-axis current increases to the 
limited current.  At the speed of 1500 rpm, the q-axis current is about 2.5A. Due to the 
influence of the q-axis current as shown in equation (18), there is little higher vibration in the 
displacement and the d-axis current at 1500 rpm. However, the displacement error is far 
smaller than the equilibrium air gap g0, therefore the influence can be neglected.  
 

 
Fig. 19. Response of speed at start 
 

 
Fig. 20. Response of axial displacement at start 

 

     

        

 
Fig. 21. Currents and displacement when rotor speed was changed 
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Fig. 21. Currents and displacement when rotor speed was changed 



Magnetic Bearings, Theory and Applications82

 

5. Conclusion 

This chapter introduces and explains a vector control of the salient two-pole AGBM drives 
as required for high-performance motion control in many industrial applications. 
Firstly, a general dynamic model of the AGBM used for vector control is developed, in 
which the saliency of the rotor is considered. The model development is based on the 
reference frame theory, in which all the motor electrical variables is transformed to a rotor 
field-oriented reference frame (d,q reference frame). As seen from the d,q reference frame 
rotating with synchronous speed, all stator and rotor variables become constant in steady 
state. Thus, dc values, very practical regarding DC motor control strategies, are obtained. 
Furthermore, by using this transformation, the mutual magnetic coupling between d- and q-
axes is eliminated. The stator current in d-axis is only active in the affiliated windings of the 
d-axis, and the same applies for the q-axis. 
Secondly, the vector control technique for the AGBM drives is presented in detail. In spite of 
many different control structures available, the cascaded structure, inner closed-loop current 
control and overlaid closed-loop speed and axial position control, is chosen. This choice 
guarantees that the AGBM drive is closed to the modern drives, which were developed for 
the conventional motors.  Furthermore, the closed-loop vector control method for the axial 
position and the speed is developed in the way of eliminating the influence of the reluctance 
torque. The selection of suitable controller types and the calculation of the controller 
parameters, both depending on the electrical and mechanical behavior of the controlled 
objects, are explicitly evaluated. 
Finally, the AGBM was fabricated with an inset PM type rotor, and the vector control with 
decoupled d- and q-axis current controllers was implemented based on dSpace DS1104 and 
Simukink/Matlab. The results confirm that the motor can perform both functions of motor 
and axial bearing without any additional windings. The reluctance torque and its influence 
are rejected entirely. Although, there is very little interference between the axial position 
control and speed control in high speed range and high rotational load, the proposed AGBM 
drive can be used for many kind of applications, which require small air gap, high speed 
and levitation force. 
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1. Introduction

Magnetic bearings are contactless suspension devices, which are mainly used for rotating ap-
plications but also exist for translational ones. Their major interest lies of course in the fact that
there is no contact and therefore no friction at all between the rotating part and its support.
As a consequence, these bearings allow very high rotational speeds. Such devices have been
investigated for eighty years. Let’s remind the works of F. Holmes and J. Beams (Holmes &
Beams, 1937) for centrifuges.
The appearing of modern rare earth permanent magnets allowed the developments of passive
devices, in which magnets work in repulsion (Meeks, 1974)(Yonnet, 1978).
Furthermore, as passive magnetic bearings don’t require any lubricant they can be used in
vacuum and in very clean environments.
Their main applications are high speed systems such as turbo-molecular pumps, turbo-
compressors, energy storage flywheels, high-speed machine tool spindles, ultra-centrifuges
and they are used in watt-hour meters and other systems in which a very low friction is
required too (Hussien et al., 2005)(Filatov & Maslen, 2001).

The magnetic levitation of a rotor requires the control of five degrees of freedom. The
sixth degree of freedom corresponds to the principal rotation about the motor axis. As a
consequence of the Earnshaw’s theorem, at least one of the axes has to be controlled actively.
For example, in the case of a discoidal wheel, three axes can be controlled by passive bearings
and two axes have to be controlled actively (Lemarquand & Yonnet, 1998). Moreover, in some
cases the motor itself can be designed to fulfil the function of an active bearing (Barthod &
Lemarquand, 1995). Passive magnetic bearings are simple contactless suspension devices but
it must be emphazised that one bearing controls a single degree of freedom. Moreover, it
exerts only a stiffness on this degree of freedom and no damping.
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Permanent magnet bearings for rotating shafts are constituted of ring permanent magnets.
The simplest structure consists either of two concentric rings separated by a cylindrical air
gap or of two rings of same dimensions separated by a plane air gap. Depending on the
magnet magnetization directions, the devices work as axial or radial bearings and thus control
the position along an axis or the centering of an axis. The several possible configurations
are discussed throughout this chapter. The point is that in each case the basic part is a ring
magnet. Therefore, the values of importance are the magnetic field created by such a ring
magnet, the force exerted between two ring magnets and the stiffness associated.

The first author who carried out analytical calculations of the magnetic field created by ring
permanent magnets is Durand (Durand, 1968). More recently, many authors proposed sim-
plified and robust formulations of the three components of the magnetic field created by ring
permanent magnets (Ravaud et al., 2008)(Ravaud, Lemarquand, Lemarquand & Depollier,
2009)(Babic & Akyel, 2008a)(Babic & Akyel, 2008b)(Azzerboni & Cardelli, 1993).
Moreover, the evaluation of the magnetic field created by ring magnets is only a helpful step
in the process of the force calculation. Indeed, the force and the stiffness are the values of
importance for the design and optimization of a bearing. So, authors have tried to work out
analytical expressions of the force exerted between two ring permanent magnets (Kim et al.,
1997)(Lang, 2002)(Samanta & Hirani, 2008)(Janssen et al., 2010)(Azukizawa et al., 2008).
This chapter intends to give a detailed description of the modelling and approach used to cal-
culate analytically the force and the stiffness between two ring permanent magnets with axial
or radial polarizations (Ravaud, Lemarquand & Lemarquand, 2009a)(Ravaud, Lemarquand
& Lemarquand, 2009b). Then, these formulations will be used to study magnetic bearings
structures and their properties.

2. Analytical determination of the force transmitted between two axially polarized
ring permanent magnets.

2.1 Preliminary remark
The first structure considered is shown on Fig.1. It is constituted of two concentric axially
magnetized ring permanent magnets. When the polarization directions of the rings are an-
tiparallel, as on the figure, the bearing controls the axial position of the rotor and works as a
so called axial bearing. When the polarization directions are the same, then the device con-
trols the centering around the axis and works as a so called radial bearing. Only one of the
two configurations will be studied thoroughly in this chapter because the results of the second
one are easily deducted from the first one. Indeed, the difference between the configurations
consists in the change of one of the polarization direction into its opposite. The consequence
is a simple change of sign in all the results for the axial force and for the axial stiffness which
are the values that will be calculated.
Furthermore, the stiffness in the controlled direction is often considered to be the most inter-
esting value in a bearing. So, for an axial bearing, the axial stiffness is the point. Nevertheless,
both stiffnesses are linked. Indeed, when the rings are in their centered position, for symmetry
reasons, the axial stiffeness, Kz, and the radial one, Kr, verify:

2Kr + Kz = 0 (1)

So, either the axial or the radial force may be calculated and is sufficient to deduct both stiff-
nesses. Thus, the choice was made for this chapter to present only the axial force and stiffness
in the sections dealing with axially polarized magnets.
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Fig. 1. Axial bearing constituted of two axially magnetized ring permanent magnets. J1 and
J2 are the magnet polarizations

2.2 Notations
The parameters which describe the geometry of Fig.1 and its properties are listed below:
J1: outer ring polarization [T].
J2: inner ring polarization [T].
r1, r2: radial coordinates of the outer ring [m].
r3, r4: radial coordinates of the inner ring [m].
z1, z2: axial coordinates of the outer ring [m].
z3, z4: axial coordinates of the inner ring [m].
h1 = z2 − z1: outer ring height [m].
h2 = z4 − z3: inner ring height [m].
The rings are radially centered and their polarizations are supposed to be uniform.

2.3 Magnet modelling
The axially polarized ring magnet has to be modelled and two approaches are available to
do so. Indeed, the magnet can have a coulombian representation, with fictitious magnetic
charges or an amperian one, with current densities. In the latter, the magnet is modelled
by two cylindrical surface current densities k1 and k2 located on the inner and outer lateral
surfaces of the ring whereas in the former the magnet is modelled by two surface charge
densities located on the plane top and bottom faces of the ring.
As a remark, the choice of the model doesn’t depend on the nature of the real magnetic
source, but is done to obtain an analytical formulation. Indeed, the authors have demontrated
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Fig. 2. Model of a ring magnet: amperian equivalence.

that depending on the polarization direction of the source only one of the model generally
yields an analytical formulation. So, the choice rather depends on the considered problem.

2.4 Force calculation
The force transmitted between two axially polarized ring permanent magnets is determined
by using the amperian approach. Thus, each ring is replaced by two coils of N1 and N2 turns
in which two currents, I1 and I2, flow. Indeed, a ring magnet whose polarization is axial and
points up, with an inner radius r1 and an outer one r2, can be modelled by a coil of radius
r2 with a current I2 flowing anticlockwise and a coil of radius r1 with a current I1 flowing
clockwise (Fig.2).
The equivalent surface current densities related to the coil heights h1 and h2 are defined as
follows for the calculations:
k1 = N1 I1/h1: equivalent surface current density for the coils of radii r1 and r2.
k2 = N2 I2/h2: equivalent surface current density for the coils of radii r3 and r4.

The axial force, Fz, created between the two ring magnets is given by:

Fz =
µ0k1k2
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Table 1. Parameters in the analytical expression of the force exerted between two axially po-
larized ring magnets.

The current densities are linked to the magnet polarizations by:
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Then the axial force becomes:
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The special functions used are defined as follows:
K [m] is the complete elliptic integral of the first kind.
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F [φ, m] is the incomplete elliptic integral of the first kind.
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3. Exact analytical formulation of the axial stiffness between two axially polarized
ring magnets.

The axial stiffness, Kz existing between two axially polarized ring magnets can be calculated
by deriving the axial force transmitted between the two rings, Fz, with regard to the axial
displacement, z:

Kz = − d
dz

Fz (14)

Fz is replaced by the integral formulation of Eq.5 and after some mathematical manipulations
the axial stiffness can be written:
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4. Study and characteristics of axial bearings with axially polarized ring magnets
and a cylindrical air gap.

4.1 Structures with two ring magnets
This section considers devices constituted of two ring magnets with antiparallel polarization
directions. So, the devices work as axial bearings. The influence of the different parameters
of the geometry on both the axial force and stiffness is studied.

4.1.1 Geometry
The device geometry is shown on Fig.1. The radii remain the same as previously defined. Both
ring magnets have the same axial dimension, the height h1 = h2 = h. The axial coordinate,
z, characterizes the axial displacement of the inner ring with regard to the outer one. The
polarization of the magnets is equal to 1T.
The initial set of dimensions for each study is the following:
r1 = 25mm, r2 = 28mm, r3 = 21mm, r4 = 24mm, h = 3mm
Thus the initial air gap is 1mm wide and the ring magnets have an initial square cross section
of 3 × 3mm2.

4.1.2 Air gap influence
The ring cross section is kept constant and the radial dimension of the air gap, r1 − r3, is varied
by modifying the radii of the inner ring. Fig.3 and 4 show how the axial force and stiffness are
modified when the axial inner ring position changes for different values of the air gap.
Naturally, when the air gap decreases, the modulus of the axial force for a given axial position
of the inner ring increases (except for large displacements) and so does the modulus of the
axial stiffness. Furthermore, it has to be noted that a positive stiffness corresponds to a stable
configuration in which the force is a pull-back one, whereas a negative stiffness corresponds
to an unstable position: the inner ring gets ejected!
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Fig. 3. Axial force for several air gap radial dimensions. Blue: r1 = 25mm, r2 = 28mm, r3 =
21mm, r4 = 24mm, h = 3mm Air gap 1mm, Green: Air gap 0.5mm , Red: Air gap 0.1mm

4.1.3 Ring height influence
The air gap is kept constant as well as the ring radii and the height of the rings is varied.
Fig.5 and 6 show how the axial force and stiffness are modified. When the magnet height
decreases, the modulus of the axial force for a given axial position of the inner ring decreases.
This is normal, as the magnet volume also decreases.
The study of the stiffness is carried out for decreasing ring heights (Fig.6) but also for
increasing ones (Fig.7). As a result, the stiffness doesn’t go on increasing in a significant way
above a given ring height. This means that increasing the magnet height, and consequently
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4.1.3 Ring height influence
The air gap is kept constant as well as the ring radii and the height of the rings is varied.
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decreases, the modulus of the axial force for a given axial position of the inner ring decreases.
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Fig. 4. Axial stiffness for several air gap radial dimensions. Blue: r1 = 25mm, r2 = 28mm, r3 =
21mm, r4 = 24mm, h = 3mm Air gap 1mm, Green: Air gap 0.5mm , Red: Air gap 0.1mm

the magnet volume, above a given value isn’t interesting to increase the stiffness. Moreover,
it has to be noted that when the height is reduced by half, from 3mm to 1.5mm, the stiffness
is only reduced by a third. This points out that in this configuration, the loss on the stiffness
isn’t that bad whereas the gain in volume is really interesting. This result will be useful for
other kinds of bearing structures -stacked structures- in a further section. Besides, the magnet
height shouln’t become smaller than the half of its radial thickness unless the demagnetizing
field inside the magnet becomes too strong and demagnetizes it.

�4 �2 0 2 4

�30
�20
�10

0
10
20
30

z �mm�

A
xi
al

Fo
rc
e
�N
�

Fig. 5. Axial force for ring small heights. Blue: r1 = 25mm, r2 = 28mm, r3 = 21mm, r4 = 24mm,
air gap 1mm h = 3mm, Green: h = 2mm , Red: h = 1.5mm.

4.1.4 Ring radial thickness influence
Now, the radial thickness of the ring magnets is varied. The ring height, h = 3mm, and the air
gap length, 1mm, are kept constant and the outer radius of the outer ring, r2, is increased of

�4 �2 0 2 4

�10

0

10

20

30

z �mm�

A
xi
al
St
ifn
es
s�
N
�m
m
�

Fig. 6. Axial stiffness for ring small heights. Blue: r1 = 25mm, r2 = 28mm, r3 = 21mm, r4 =
24mm, air gap 1mm h = 3mm, Green: h = 2mm , Red: h = 1.5mm.
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Fig. 7. Axial stiffness for ring large heights. Blue: r1 = 25mm, r2 = 28mm, r3 = 21mm, r4 =
24mm, air gap 1mm h = 3mm, Green: h = 6mm , Red: h = 9mm.

the same quantity as the inner radius of the inner ring, r3, is decreased. So, the inner ring has
always the same radial thickness as the outer one.
When the radial thickness increases, the modulus of the axial force for a given axial dis-
placement of the inner ring also increases (Fig.8). This behavior is expected as once again
the magnet volume increases. However, the ring thickness doesn’t seem a very sensitive
parameter. Indeed, the variation isn’t as dramatic as with the previous studied parameters.

4.1.5 Ring mean perimeter influence
The outer ring perimeter is varied and all the radii are varied to keep the ring cross section
and the air gap constant. As a result, when the device perimeter -or the air gap perimeter-
increases, the modulus of the axial force for a given axial displacement of the inner ring also
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21mm, r4 = 24mm, h = 3mm Air gap 1mm, Green: Air gap 0.5mm , Red: Air gap 0.1mm

the magnet volume, above a given value isn’t interesting to increase the stiffness. Moreover,
it has to be noted that when the height is reduced by half, from 3mm to 1.5mm, the stiffness
is only reduced by a third. This points out that in this configuration, the loss on the stiffness
isn’t that bad whereas the gain in volume is really interesting. This result will be useful for
other kinds of bearing structures -stacked structures- in a further section. Besides, the magnet
height shouln’t become smaller than the half of its radial thickness unless the demagnetizing
field inside the magnet becomes too strong and demagnetizes it.
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Fig. 5. Axial force for ring small heights. Blue: r1 = 25mm, r2 = 28mm, r3 = 21mm, r4 = 24mm,
air gap 1mm h = 3mm, Green: h = 2mm , Red: h = 1.5mm.

4.1.4 Ring radial thickness influence
Now, the radial thickness of the ring magnets is varied. The ring height, h = 3mm, and the air
gap length, 1mm, are kept constant and the outer radius of the outer ring, r2, is increased of
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24mm, air gap 1mm h = 3mm, Green: h = 2mm , Red: h = 1.5mm.
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Fig. 7. Axial stiffness for ring large heights. Blue: r1 = 25mm, r2 = 28mm, r3 = 21mm, r4 =
24mm, air gap 1mm h = 3mm, Green: h = 6mm , Red: h = 9mm.

the same quantity as the inner radius of the inner ring, r3, is decreased. So, the inner ring has
always the same radial thickness as the outer one.
When the radial thickness increases, the modulus of the axial force for a given axial dis-
placement of the inner ring also increases (Fig.8). This behavior is expected as once again
the magnet volume increases. However, the ring thickness doesn’t seem a very sensitive
parameter. Indeed, the variation isn’t as dramatic as with the previous studied parameters.

4.1.5 Ring mean perimeter influence
The outer ring perimeter is varied and all the radii are varied to keep the ring cross section
and the air gap constant. As a result, when the device perimeter -or the air gap perimeter-
increases, the modulus of the axial force for a given axial displacement of the inner ring also



Magnetic Bearings, Theory and Applications94

�4 �2 0 2 4

�40

�20

0

20

40

z �mm�

A
xi
al

Fo
rc
e
�N
�

Fig. 8. Axial force for several radial thicknesses. Blue: r1 = 25mm, r2 = 28mm, r3 =
21mm, r4 = 24mm, h = 3mm, air gap 1mm, Radial thickness r2 − r1 = r4 − r3 = 3mm, Green:
4mm , Red: 5mm.

increases (Fig.9). This result is expected as the magnet volume also increases.
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Fig. 9. Axial force for several air gap perimeters. h = 3mm, air gap 1mm. Blue: r1 =
25mm, r2 = 28mm, r3 = 21mm, r4 = 24mm. Green: r1 = 37mm, r2 = 40mm, r3 = 33mm, r4 =
36mm. Red: r1 = 50mm, r2 = 53mm, r3 = 46mm, r4 = 49mm.

4.1.6 Maximum axial force
Previous results are interesting as they show the shape of the axial force and stiffness when
different dimensional parameters are varied. Nevertheless, it is necessary to complete these
results with additional studies, such as the study of the maximum force for example, in or-
der to compare them. Indeed, a general conclusion is that the axial force increases when the
magnet volume increases, but the way it increases depends on the parameter which makes
the volume increase.

So, the blue line on Fig.10 shows that the maximum force varies linearly with the air gap
diameter. Furthermore, this variation is also linear for radially thicker ring magnets (green
and red lines on Fig.10).
As a conclusion, the maximum axial force, and the axial stiffness too, is proportional to the air
gap diameter, as long as this diameter isn’t too small (which means above 5mm).
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Fig. 10. Maximum axial force versus the air gap perimeter for several ring radial thicknesses.
Air gap 1mm, h = 3mm. Blue: r1 = 25mm, r2 = 28mm, r3 = 21mm, r4 = 24mm Radial
thickness r2 − r1 = r4 − r3 = 3mm, Green: Radial thickness 4mm , Red: Radial thickness 5mm.

Moreover, the blue line on Fig.11 shows that the maximum force varies inversely to the square
of the air gap radial dimension. Thus, the maximum axial force is very sensitive to the air
gap radial dimension, which should be as small as possible to have large forces but which is
generally set by the mechanical constraints of the device. As a remark, for ring magnets of
3 × 3mm2 cross section, if the radial mechanical air gap has to be 2mm, the axial force exerted
is rather negligible!

4.2 Multiple ring structures: stacked structures
A remark of the previous section will be exploited now. Indeed, the study of the ring height
shew that diminishing the magnet height, and thus its volume, could be done without a dra-
matical decrease of the force. Hence the idea of using rather short rings but of stacking them
with alternate polarization directions to achieve larger forces.
For example, let’s consider a stack of elementary devices of same dimensions as the previously
considered devices: r1 = 25mm, r2 = 28mm, r3 = 21mm, r4 = 24mm, h = 3mm, cross section
3 × 3mm2. The bottom of the first device is located at z = 0, the bottom of the second one at
z = 3 and so on (Fig. 12).
Fig.13 shows the axial stiffness for the elementary device (blue), for a stack of two elementary
devices (green) and for a stack of three elementary devices (red). The consequence of stacking
is that the different axial stiffnesses are additive, as they all act in the same way. So, the total
axial stiffness of the device increases more rapidly than the number of stacked devices (Yonnet
et al., 1991). Indeed, the maximal stiffness for one ring pair with a square section of 3 × 3mm2

is 30.8 N/mm, for two pairs 87.9 N/mm and for three pairs 140 N/mm. If n is the number of
pairs, the stiffness of a stack is approximately 2n − 1 times greater than the stiffness of a pair.
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Fig. 8. Axial force for several radial thicknesses. Blue: r1 = 25mm, r2 = 28mm, r3 =
21mm, r4 = 24mm, h = 3mm, air gap 1mm, Radial thickness r2 − r1 = r4 − r3 = 3mm, Green:
4mm , Red: 5mm.

increases (Fig.9). This result is expected as the magnet volume also increases.
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Fig. 9. Axial force for several air gap perimeters. h = 3mm, air gap 1mm. Blue: r1 =
25mm, r2 = 28mm, r3 = 21mm, r4 = 24mm. Green: r1 = 37mm, r2 = 40mm, r3 = 33mm, r4 =
36mm. Red: r1 = 50mm, r2 = 53mm, r3 = 46mm, r4 = 49mm.

4.1.6 Maximum axial force
Previous results are interesting as they show the shape of the axial force and stiffness when
different dimensional parameters are varied. Nevertheless, it is necessary to complete these
results with additional studies, such as the study of the maximum force for example, in or-
der to compare them. Indeed, a general conclusion is that the axial force increases when the
magnet volume increases, but the way it increases depends on the parameter which makes
the volume increase.

So, the blue line on Fig.10 shows that the maximum force varies linearly with the air gap
diameter. Furthermore, this variation is also linear for radially thicker ring magnets (green
and red lines on Fig.10).
As a conclusion, the maximum axial force, and the axial stiffness too, is proportional to the air
gap diameter, as long as this diameter isn’t too small (which means above 5mm).
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Fig. 10. Maximum axial force versus the air gap perimeter for several ring radial thicknesses.
Air gap 1mm, h = 3mm. Blue: r1 = 25mm, r2 = 28mm, r3 = 21mm, r4 = 24mm Radial
thickness r2 − r1 = r4 − r3 = 3mm, Green: Radial thickness 4mm , Red: Radial thickness 5mm.

Moreover, the blue line on Fig.11 shows that the maximum force varies inversely to the square
of the air gap radial dimension. Thus, the maximum axial force is very sensitive to the air
gap radial dimension, which should be as small as possible to have large forces but which is
generally set by the mechanical constraints of the device. As a remark, for ring magnets of
3 × 3mm2 cross section, if the radial mechanical air gap has to be 2mm, the axial force exerted
is rather negligible!

4.2 Multiple ring structures: stacked structures
A remark of the previous section will be exploited now. Indeed, the study of the ring height
shew that diminishing the magnet height, and thus its volume, could be done without a dra-
matical decrease of the force. Hence the idea of using rather short rings but of stacking them
with alternate polarization directions to achieve larger forces.
For example, let’s consider a stack of elementary devices of same dimensions as the previously
considered devices: r1 = 25mm, r2 = 28mm, r3 = 21mm, r4 = 24mm, h = 3mm, cross section
3 × 3mm2. The bottom of the first device is located at z = 0, the bottom of the second one at
z = 3 and so on (Fig. 12).
Fig.13 shows the axial stiffness for the elementary device (blue), for a stack of two elementary
devices (green) and for a stack of three elementary devices (red). The consequence of stacking
is that the different axial stiffnesses are additive, as they all act in the same way. So, the total
axial stiffness of the device increases more rapidly than the number of stacked devices (Yonnet
et al., 1991). Indeed, the maximal stiffness for one ring pair with a square section of 3 × 3mm2

is 30.8 N/mm, for two pairs 87.9 N/mm and for three pairs 140 N/mm. If n is the number of
pairs, the stiffness of a stack is approximately 2n − 1 times greater than the stiffness of a pair.
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Fig. 11. Maximum axial force versus the air gap radial dimension for several ring radial thick-
nesses. h = 3mm. Blue: r1 = 25mm, r2 = 28mm, r3 = 21mm, r4 = 24mm Radial thickness
r2 − r1 = r4 − r3 = 3mm, Green: Radial thickness 4mm , Red: Radial thickness 5mm.

Fig. 12. Cross-section of a stack of three elementary devices with alternate axial polarizations.

Besides, the stiffness obtained for a ring pair of same total dimensions as the stack of three
pairs is 34.7 N/mm. This example emphazises the advantage, for a given volume and a suf-
ficient axial height, of splitting the ring into several rings of smaller heights and opposite
polarizations: making three pairs increases the stiffness fourfold. The splitting is interesting
as long as the height of each ring magnet is large enough (see section 4.1.3).

5. Study and characteristics of axial bearings with axially polarized ring magnets
and a plane air gap.

This section considers devices with two axially polarized ring magnets of exactly the
same dimensions. They are positioned so as to have the same rotation axis and thus are
separated by a plane air gap. In this configuration, if the rings have the same polarization
direction, the device works as a radial bearing, if the polarizations are opposite, it works
as an axial bearing. It is noticeable that for axial polarizations, parallel polarizations yield
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Fig. 13. Axial stiffness for one elementary device (blue), for a stack of two elementary devices
(green) and three elementary devices (red).

radial bearings whereas antiparallel polarizations yield axial ones, whatever the air gap shape.

For these structures, the axial displacement of one ring corresponds to an air gap variation.
Of course, the maximal axial force between the rings occurs when they are axially in contact
with each other. When the air gap, z, increases, the axial force decreases, as show on Fig.15.
As the variation is monotonous, the axial stiffness has always the same sign (Fig. 16) and the
force the same nature (restoring, here).

0

z

Fig. 14. Cross-section of a bearing with a plane air gap

Moreover, the axial force depends on the size of surfaces which are facing each other. There-
fore, it is obvious that when the ring radial thickness increases, the force increases in the same
way. The only other interesting parameter is the ring axial height. Figure 17 and 18 show how
the axial force and stiffness vary when the air gap changes for different ring axial height. The
force doesn’t seem to vary greatly when the magnet height changes, and the stiffness even
less. But the attention should be drawn to the scale of the force amplitude. Indeed, Fig.19
and 20 show the force and the stiffness for a fixed air gap when the magnet height varies.
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Fig. 12. Cross-section of a stack of three elementary devices with alternate axial polarizations.

Besides, the stiffness obtained for a ring pair of same total dimensions as the stack of three
pairs is 34.7 N/mm. This example emphazises the advantage, for a given volume and a suf-
ficient axial height, of splitting the ring into several rings of smaller heights and opposite
polarizations: making three pairs increases the stiffness fourfold. The splitting is interesting
as long as the height of each ring magnet is large enough (see section 4.1.3).

5. Study and characteristics of axial bearings with axially polarized ring magnets
and a plane air gap.

This section considers devices with two axially polarized ring magnets of exactly the
same dimensions. They are positioned so as to have the same rotation axis and thus are
separated by a plane air gap. In this configuration, if the rings have the same polarization
direction, the device works as a radial bearing, if the polarizations are opposite, it works
as an axial bearing. It is noticeable that for axial polarizations, parallel polarizations yield

�4 �2 0 2 4
�100

�50

0

50

100

z �mm�

A
xi
al
St
ifn
es
s�
N
�m
m
�

Fig. 13. Axial stiffness for one elementary device (blue), for a stack of two elementary devices
(green) and three elementary devices (red).

radial bearings whereas antiparallel polarizations yield axial ones, whatever the air gap shape.

For these structures, the axial displacement of one ring corresponds to an air gap variation.
Of course, the maximal axial force between the rings occurs when they are axially in contact
with each other. When the air gap, z, increases, the axial force decreases, as show on Fig.15.
As the variation is monotonous, the axial stiffness has always the same sign (Fig. 16) and the
force the same nature (restoring, here).
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Fig. 14. Cross-section of a bearing with a plane air gap

Moreover, the axial force depends on the size of surfaces which are facing each other. There-
fore, it is obvious that when the ring radial thickness increases, the force increases in the same
way. The only other interesting parameter is the ring axial height. Figure 17 and 18 show how
the axial force and stiffness vary when the air gap changes for different ring axial height. The
force doesn’t seem to vary greatly when the magnet height changes, and the stiffness even
less. But the attention should be drawn to the scale of the force amplitude. Indeed, Fig.19
and 20 show the force and the stiffness for a fixed air gap when the magnet height varies.
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Fig. 15. Axial force when the plane air gap length, z, varies. r1 = r3 = 25mm, r2 = r4 =
28mm, h = 3mm.
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Fig. 16. Axial stiffness when the plane air gap length, z, varies. r1 = r3 = 25mm, r2 = r4 =
28mm, h = 3mm.

They emphazise the fact that increasing the magnet height is interesting for small heights, but
becomes rapidly inefficient, especially with regard to the stiffness.

6. Determination of the force transmitted between two radially polarized ring per-
manent magnets.

The structure considered now is shown in Fig 21. The device is constituted by two concentric
ring magnets which are separated by a cylindrical air gap and are radially polarized, their
polarizations being in the same direction.

6.1 Notations
The parameters which describe the geometry of Fig.21 and its properties are listed below:
J1: outer ring polarization [T].
J2: inner ring polarization [T].
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Fig. 17. Axial force when the plane air gap length, z, varies. r1 = r3 = 25mm, r2 = r4 = 28mm.
Blue: h = 3mm, Green: h = 2mm , Red: h = 4mm.

rin, rout: radial coordinates of the outer ring [m].
rin2, rout2: radial coordinates of the inner ring [m].
h: outer ring height [m].
zb − za: inner ring height [m].
The rings are radially centered and their polarizations are supposed to be uniformly radial.

6.2 Magnet modelling
For this kind of configuration, the coulombian model of magnets is the one that gives interest-
ing analytical and semi analytical expressions. Consequently, each ring permanent magnet is
represented by two curved planes which correspond to the inner and outer faces of the rings.
These faces are charged with a surface magnetic pole density σ∗ and the charge balance is
reached thanks to a magnetic pole volume density σ∗

v . For each ring, the inner face is charged
with the surface magnetic pole density +σ∗ and the outer one is charged with the surface
magnetic pole density −σ∗. Moreover, all the calculations are carried out with σ∗ = �J.�n = 1T
where �J is the magnetic polarization vector and �n is the unit normal vector which is directed
towards the rotation axis.

6.3 Expression of the force
The axial force exerted between the magnets results of the interaction of all the charge densi-
ties. The axial component of the magnetic field produced by the outer ring permanent magnet
is Hz. Thus, the axial force Fz can be written as follows:

Fz =
∫ ∫

(Sin)
Hzσ∗

2 dS̃ −
∫ ∫

(Sout)
Hzσ∗

2 dS̃ +
∫ ∫ ∫

(V)
Hz

σ∗
2

r2
dṼ (17)

where σ∗
2 is the magnetic pole surface density of the inner ring magnet, (Sin) is the surface of

the inner face of the inner ring permanent magnet, (Sout) is the surface of the outer face of the
inner ring permanent magnet and (V) is the volume of the inner ring permanent magnet. So,
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Fig. 15. Axial force when the plane air gap length, z, varies. r1 = r3 = 25mm, r2 = r4 =
28mm, h = 3mm.
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Fig. 16. Axial stiffness when the plane air gap length, z, varies. r1 = r3 = 25mm, r2 = r4 =
28mm, h = 3mm.

They emphazise the fact that increasing the magnet height is interesting for small heights, but
becomes rapidly inefficient, especially with regard to the stiffness.

6. Determination of the force transmitted between two radially polarized ring per-
manent magnets.

The structure considered now is shown in Fig 21. The device is constituted by two concentric
ring magnets which are separated by a cylindrical air gap and are radially polarized, their
polarizations being in the same direction.

6.1 Notations
The parameters which describe the geometry of Fig.21 and its properties are listed below:
J1: outer ring polarization [T].
J2: inner ring polarization [T].
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Fig. 17. Axial force when the plane air gap length, z, varies. r1 = r3 = 25mm, r2 = r4 = 28mm.
Blue: h = 3mm, Green: h = 2mm , Red: h = 4mm.

rin, rout: radial coordinates of the outer ring [m].
rin2, rout2: radial coordinates of the inner ring [m].
h: outer ring height [m].
zb − za: inner ring height [m].
The rings are radially centered and their polarizations are supposed to be uniformly radial.

6.2 Magnet modelling
For this kind of configuration, the coulombian model of magnets is the one that gives interest-
ing analytical and semi analytical expressions. Consequently, each ring permanent magnet is
represented by two curved planes which correspond to the inner and outer faces of the rings.
These faces are charged with a surface magnetic pole density σ∗ and the charge balance is
reached thanks to a magnetic pole volume density σ∗

v . For each ring, the inner face is charged
with the surface magnetic pole density +σ∗ and the outer one is charged with the surface
magnetic pole density −σ∗. Moreover, all the calculations are carried out with σ∗ = �J.�n = 1T
where �J is the magnetic polarization vector and �n is the unit normal vector which is directed
towards the rotation axis.

6.3 Expression of the force
The axial force exerted between the magnets results of the interaction of all the charge densi-
ties. The axial component of the magnetic field produced by the outer ring permanent magnet
is Hz. Thus, the axial force Fz can be written as follows:

Fz =
∫ ∫

(Sin)
Hzσ∗

2 dS̃ −
∫ ∫

(Sout)
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2 dS̃ +
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(V)
Hz

σ∗
2

r2
dṼ (17)

where σ∗
2 is the magnetic pole surface density of the inner ring magnet, (Sin) is the surface of

the inner face of the inner ring permanent magnet, (Sout) is the surface of the outer face of the
inner ring permanent magnet and (V) is the volume of the inner ring permanent magnet. So,
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Fig. 18. Axial stiffness when the plane air gap length, z, varies. r1 = r3 = 25mm,r2 = r4 =
28mm. Blue: h = 3mm, Green: h = 2mm , Red: h = 4mm.

the axial force Fz can be expressed by:

Fz = −
∫ 2π

θ1=0

∫ h

z1=0

∫ 2π

θ2=0

∫ zb

z2=za

a(rin, rout2)dz1dθ1dz2dθ2

+
∫ 2π

θ1=0

∫ h

z1=0

∫ 2π

θ2=0

∫ zb

z2=za

a(rout, rout2)dz1dθ1dz2dθ2

+
∫ 2π

θ1=0

∫ h

z1=0

∫ 2π
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−
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+
∫ rout

r1=rin

∫ 2π

θ1=0

∫ h

z1=0

∫ 2π

θ2=0

∫ zb

z2=za

b(rin2, r1)dr1dz1dθ1dz2dθ2

+
∫ rout2

r2=rin2

∫ 2π

θ1=0

∫ h

z1=0

∫ 2π

θ2=0

∫ zb

z2=za

b(rin, r2)dz1dθ1dr2dz2dθ2

−
∫ rout2

r2=rin2

∫ 2π

θ1=0

∫ h

z1=0

∫ 2π

θ2=0

∫ zb

z2=za

b(rout, r2)dz1dθ1dr2dz2dθ2

+
∫ rout

r1=rin

∫ rout2

r2=rin2

∫ 2π

θ1=0

∫ h

z1=0

∫ 2π

θ2=0

∫ zb

z2=za

c(r1, r2)dr1dz1dθ1dr2dz2dθ2

(18)

with

a(α, β) =
σ∗

1 σ∗
2

4πµ0

(z2 − z1)αβ

(α2 + β2 − 2αβ + (z2 − z1)2)
3
2

(19)
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Fig. 19. Axial force when the ring axial height, h, varies. Plane air gap z = 1mm, r1 = r3 =
25mm, r2 = r4 = 28mm.

where σ∗
1 is the magnetic pole surface density of the outer ring magnet. and

b(α, β) =
a(α, β)

β
(20)

c(α, β) =
a(α, β)

αβ
(21)

The next step is to evaluate Eq. (18). Therefore, the number of integrals is first reduced by
integrating analytically a(α, β), b(α, β) and c(α, β) according to the integral variables. Un-
fortunately, a fully analytical expression of the force can’t be found but the following semi-
analytical expression is quite useful:

Fz =
σ∗

1 σ∗
2

2µ0

∫ 2π

θ1=0
Sdθ1

+
σ∗

1 σ∗
2

2µ0

∫ 2π

θ1=0
Mdθ1

+
σ∗

1 σ∗
2

2µ0

∫ 2π

θ1=0

∫ rout2

r2=rin2

Vdθ1dr2

(22)

where S represents the interaction between the magnetic pole surface densities of each ring
magnet, M corresponds to the magnetic interaction between the magnetic pole surface densi-
ties of one ring permanent magnet and the magnetic pole volume density of the other one, and
V denotes the interaction between the magnetic pole volume densities of each ring permanent
magnet.
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Fig. 18. Axial stiffness when the plane air gap length, z, varies. r1 = r3 = 25mm,r2 = r4 =
28mm. Blue: h = 3mm, Green: h = 2mm , Red: h = 4mm.

the axial force Fz can be expressed by:

Fz = −
∫ 2π

θ1=0

∫ h

z1=0

∫ 2π

θ2=0

∫ zb

z2=za

a(rin, rout2)dz1dθ1dz2dθ2

+
∫ 2π

θ1=0

∫ h

z1=0

∫ 2π

θ2=0

∫ zb

z2=za

a(rout, rout2)dz1dθ1dz2dθ2

+
∫ 2π

θ1=0

∫ h

z1=0

∫ 2π

θ2=0

∫ zb

z2=za

a(rin, rin2)dz1dθ1dz2dθ2

−
∫ 2π

θ1=0

∫ h

z1=0

∫ 2π

θ2=0

∫ zb

z2=za

a(rout, rin2)dz1dθ1dz2dθ2

−
∫ rout

r1=rin

∫ 2π

θ1=0

∫ h

z1=0

∫ 2π

θ2=0

∫ zb

z2=za

b(rout2, r1)dr1dz1dθ1dz2dθ2

+
∫ rout

r1=rin

∫ 2π

θ1=0

∫ h

z1=0

∫ 2π

θ2=0

∫ zb

z2=za

b(rin2, r1)dr1dz1dθ1dz2dθ2

+
∫ rout2

r2=rin2

∫ 2π

θ1=0

∫ h

z1=0

∫ 2π

θ2=0

∫ zb

z2=za

b(rin, r2)dz1dθ1dr2dz2dθ2

−
∫ rout2

r2=rin2

∫ 2π

θ1=0

∫ h

z1=0

∫ 2π

θ2=0

∫ zb

z2=za

b(rout, r2)dz1dθ1dr2dz2dθ2

+
∫ rout

r1=rin

∫ rout2

r2=rin2

∫ 2π

θ1=0

∫ h

z1=0

∫ 2π

θ2=0

∫ zb

z2=za

c(r1, r2)dr1dz1dθ1dr2dz2dθ2

(18)

with

a(α, β) =
σ∗

1 σ∗
2

4πµ0

(z2 − z1)αβ

(α2 + β2 − 2αβ + (z2 − z1)2)
3
2

(19)
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Fig. 19. Axial force when the ring axial height, h, varies. Plane air gap z = 1mm, r1 = r3 =
25mm, r2 = r4 = 28mm.

where σ∗
1 is the magnetic pole surface density of the outer ring magnet. and

b(α, β) =
a(α, β)

β
(20)

c(α, β) =
a(α, β)

αβ
(21)

The next step is to evaluate Eq. (18). Therefore, the number of integrals is first reduced by
integrating analytically a(α, β), b(α, β) and c(α, β) according to the integral variables. Un-
fortunately, a fully analytical expression of the force can’t be found but the following semi-
analytical expression is quite useful:

Fz =
σ∗

1 σ∗
2

2µ0

∫ 2π

θ1=0
Sdθ1

+
σ∗

1 σ∗
2

2µ0

∫ 2π

θ1=0
Mdθ1

+
σ∗

1 σ∗
2

2µ0

∫ 2π

θ1=0

∫ rout2

r2=rin2

Vdθ1dr2

(22)

where S represents the interaction between the magnetic pole surface densities of each ring
magnet, M corresponds to the magnetic interaction between the magnetic pole surface densi-
ties of one ring permanent magnet and the magnetic pole volume density of the other one, and
V denotes the interaction between the magnetic pole volume densities of each ring permanent
magnet.
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Fig. 20. Axial stiffness when the ring axial height, h, varies. Plane air gap z = 1mm, r1 = r3 =
25mm,r2 = r4 = 28mm.
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Fig. 21. Radial bearing with radially polarized ring magnets and a cylindrical air gap

The first contribution S is given by (23).

S = − f (za, zb, h, θ1, rin, rout2)

+ f (za, zb, h, θ1, rout, rout2)

+ f (za, zb, h, θ1, rin, rin2)

− f (za, zb, h, θ1, rout, rin2)

(23)

with

f (α1, α2, α3, θ1, α5, α6) = α5α6 log
[

α3 − α1 +
√

α2
5 + α2

6 + (α3 − α1)2 − 2α5α6 cos(θ1)

]

+α5α6 log
[

α1 +
√

α2
5 + α2

6 + α2
1 − 2α5α6 cos(θ1)

]

−α5α6 log
[

α3 − α2 +
√

α2
5 + α2

6 + (α3 − α2)2 − 2α5α6 cos(θ1)

]

−α5α6 log
[

α2 +
√

α2
5 + α2

6 + α2
2 − 2α5α6 cos(θ1)

]

(24)

The second contribution M is given by (25).

M = −t(rin, rout, rout2, h, za, zb, θ1)

+t(rin, rout, rin2, h, za, zb, θ1)

+t(rin, rout, rin, h, za, zb, θ1)

−t(rin, rout, rout, h, za, zb, θ1)

(25)

with

t(β1, β2, β3, β4, β5, β6, θ1) = t(2)
(

β1, β2, β4 − β5, β2
3 + (β4 − β5)

2, 2β3 cos(θ1)
)

+t(2)
(

β1, β2, β5, β2
3 + β2

5, 2β3 cos(θ1)
)

−t(2)
(

β1, β2, β4 − β6, β2
3 + (β4 − β6)

2, 2β3 cos(θ1)
)

−t(2)
(

β1, β2, β6, β2
3 + β2

6, 2β3 cos(θ1)
)

(26)

and
t(2)(β1, β2, q, d, f ) = t(3)(β2, q, d, f )− t(3)(β1, q, d, f ) (27)

and

t(3)(s, q, d, f ) = −s +
√

4d − f 2 − 4q2

2
arctan

[
− f + 2s√

4d − f 2 − 4q2

]
− f

4
log

[
d − q2 − f s + s2

]

+s log
[

q +
√

d − f s + s2
]
+ q log

[
− f + 2(s +

√
d − f s + s2)

]

−
(
4d − f 2 − 4q2 + f η

)
log [u1]

4η

−
(
−4d + f 2 + 4q2 + f η

)
log [u2]

4η

(28)
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Fig. 20. Axial stiffness when the ring axial height, h, varies. Plane air gap z = 1mm, r1 = r3 =
25mm,r2 = r4 = 28mm.
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Fig. 21. Radial bearing with radially polarized ring magnets and a cylindrical air gap

The first contribution S is given by (23).

S = − f (za, zb, h, θ1, rin, rout2)

+ f (za, zb, h, θ1, rout, rout2)

+ f (za, zb, h, θ1, rin, rin2)

− f (za, zb, h, θ1, rout, rin2)

(23)

with

f (α1, α2, α3, θ1, α5, α6) = α5α6 log
[

α3 − α1 +
√

α2
5 + α2

6 + (α3 − α1)2 − 2α5α6 cos(θ1)

]

+α5α6 log
[

α1 +
√

α2
5 + α2

6 + α2
1 − 2α5α6 cos(θ1)

]

−α5α6 log
[

α3 − α2 +
√

α2
5 + α2

6 + (α3 − α2)2 − 2α5α6 cos(θ1)

]

−α5α6 log
[

α2 +
√

α2
5 + α2

6 + α2
2 − 2α5α6 cos(θ1)

]

(24)

The second contribution M is given by (25).

M = −t(rin, rout, rout2, h, za, zb, θ1)

+t(rin, rout, rin2, h, za, zb, θ1)

+t(rin, rout, rin, h, za, zb, θ1)

−t(rin, rout, rout, h, za, zb, θ1)

(25)

with

t(β1, β2, β3, β4, β5, β6, θ1) = t(2)
(

β1, β2, β4 − β5, β2
3 + (β4 − β5)

2, 2β3 cos(θ1)
)

+t(2)
(

β1, β2, β5, β2
3 + β2

5, 2β3 cos(θ1)
)

−t(2)
(

β1, β2, β4 − β6, β2
3 + (β4 − β6)

2, 2β3 cos(θ1)
)

−t(2)
(

β1, β2, β6, β2
3 + β2

6, 2β3 cos(θ1)
)

(26)

and
t(2)(β1, β2, q, d, f ) = t(3)(β2, q, d, f )− t(3)(β1, q, d, f ) (27)

and

t(3)(s, q, d, f ) = −s +
√

4d − f 2 − 4q2

2
arctan

[
− f + 2s√

4d − f 2 − 4q2

]
− f

4
log

[
d − q2 − f s + s2

]

+s log
[

q +
√

d − f s + s2
]
+ q log

[
− f + 2(s +

√
d − f s + s2)

]

−
(
4d − f 2 − 4q2 + f η

)
log [u1]

4η

−
(
−4d + f 2 + 4q2 + f η

)
log [u2]

4η

(28)
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u1 = −
2
(

f 2 + 4 f q2 − f 2(η + 2s) + 4d(− f + η + 2s)
)

q2(−4d + f 2 + 4q2 − f η)(− f + η + 2s)

− 8q(−2qs + η
√

d − f s + s2)

q2(−4d + f 2 + 4q2 − f η)(− f + η + 2s)
(29)

u2 = −
2
(

f 2 + 4 f q2 − f 2(η − 2s)− 4d( f + η − 2s)
)

q2(−4d + f 2 + 4q2 + f η)( f + η − 2s)

− −8q(2qs + η
√

d − f s + s2)

q2(−4d + f 2 + 4q2 + f η)( f + η − 2s)
(30)

with
η =

√
−4d + f 2 + 4q2 (31)

The third contribution V is given by (32).

V = th(1)(rout, r2, za, zb, h, θ1)− th(1)(rin, r2, za, zb, h, θ1) (32)

with

th(1) = t(3)(r1, h − za, r2
2 + (h − za)

2, 2r2 cos(θ1))

+t(3)(r1, za, r2
2 + z2

a , 2r2 cos(θ1))

−t(3)(r1, h − zb, r2
2 + (h − zb)

2, 2r2 cos(θ1))

−t(3)(r1, zb, r2
2 + z2

b, 2r2 cos(θ1))

(33)

6.4 Expression of the axial stiffness between two radially polarized ring magnets
As previously done, the stiffness K exerted between two ring permanent magnets is deter-
mined by calculating the derivative of the axial force with respect to za. We set zb = za + b
where b is the height of the inner ring permanent magnet. Thus, the axial stiffness K can be
calculated with (34).

K = − ∂

∂za
Fz (34)

where Fz is given by (18). We obtain :

K = KS + KM + KV (35)

where KS represents the stiffness determined by considering only the magnetic pole surface
densities of each ring permanent magnet, KM corresponds to the stiffness determined with
the interaction between the magnetic pole surface densities of one ring permanent magnet
and the magnetic pole volume density of the other one, and KV corresponds to the stiffness
determined with the interaction between the magnetic pole volume densities of each ring
permanent magnet. Thus, KS is given by:

KS =

η31

(
1√
α31

K∗
[
−4r3r1

α31

]
− 1√

β31
K∗

[
−4r3r1

β31

]
+

1√
δ31

K∗
[
−4r3r1

δ31

]
− 1√

γ31
K∗

[
−4r3r1

γ31

])

+ η41

(
1√
α41

K∗
[
−4r4r1

α41

]
− 1√

β41
K∗

[
−4r4r1

β41

]
+

1√
δ41

K∗
[
−4r4r1

δ41

]
− 1√

γ41
K∗

[
−4r4r1

γ41

])

+ η32

(
1√
α32

K∗
[
−4r3r2

α32

]
− 1√

β32
K∗

[
−4r3r2

β32

]
+

1√
δ32

K∗
[
−4r3r2

δ32

]
− 1√

γ32
K∗

[
−4r3r2

γ32

])

+ η42

(
1√
α42

K∗
[
−4r4r2

α42

]
− 1√

β42
K∗

[
−4r4r2

β42

]
+

1√
δ42

K∗
[
−4r4r2

δ42

]
− 1√

γ42
K∗

[
−4r4r2

γ42

])

(36)

with

ηij =
2rirjσ

∗

µ0
(37)

αij = (ri − rj)
2 + z2

a (38)

βij = (ri − rj)
2 + (za + h)2 (39)

γij = (ri − rj)
2 + (za − h) (40)

δij = (ri − rj)
2 + (b − h)2 + za(2b − 2h + za) (41)

K∗ [m] =
∫ π

2

0

1√
1 − m sin(θ)2

dθ (42)

The second contribution KM is given by:

KM =
σ∗

1 σ∗
2

2µ0

∫ 2π

θ=0
udθ (43)

with

u = f (rin, rout, rin2, h, za, b, θ)

− f (rin, rout, rout2, h, za, b, θ)

+ f (rin2, rout2, rin, h, za, b, θ)

− f (rin2, rout2, rout, h, za, b, θ)

(44)

and
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u1 = −
2
(

f 2 + 4 f q2 − f 2(η + 2s) + 4d(− f + η + 2s)
)

q2(−4d + f 2 + 4q2 − f η)(− f + η + 2s)

− 8q(−2qs + η
√

d − f s + s2)

q2(−4d + f 2 + 4q2 − f η)(− f + η + 2s)
(29)

u2 = −
2
(

f 2 + 4 f q2 − f 2(η − 2s)− 4d( f + η − 2s)
)

q2(−4d + f 2 + 4q2 + f η)( f + η − 2s)

− −8q(2qs + η
√

d − f s + s2)

q2(−4d + f 2 + 4q2 + f η)( f + η − 2s)
(30)

with
η =

√
−4d + f 2 + 4q2 (31)

The third contribution V is given by (32).

V = th(1)(rout, r2, za, zb, h, θ1)− th(1)(rin, r2, za, zb, h, θ1) (32)

with

th(1) = t(3)(r1, h − za, r2
2 + (h − za)

2, 2r2 cos(θ1))

+t(3)(r1, za, r2
2 + z2

a , 2r2 cos(θ1))

−t(3)(r1, h − zb, r2
2 + (h − zb)

2, 2r2 cos(θ1))

−t(3)(r1, zb, r2
2 + z2

b, 2r2 cos(θ1))

(33)

6.4 Expression of the axial stiffness between two radially polarized ring magnets
As previously done, the stiffness K exerted between two ring permanent magnets is deter-
mined by calculating the derivative of the axial force with respect to za. We set zb = za + b
where b is the height of the inner ring permanent magnet. Thus, the axial stiffness K can be
calculated with (34).

K = − ∂

∂za
Fz (34)

where Fz is given by (18). We obtain :

K = KS + KM + KV (35)

where KS represents the stiffness determined by considering only the magnetic pole surface
densities of each ring permanent magnet, KM corresponds to the stiffness determined with
the interaction between the magnetic pole surface densities of one ring permanent magnet
and the magnetic pole volume density of the other one, and KV corresponds to the stiffness
determined with the interaction between the magnetic pole volume densities of each ring
permanent magnet. Thus, KS is given by:

KS =

η31

(
1√
α31

K∗
[
−4r3r1

α31

]
− 1√

β31
K∗

[
−4r3r1

β31

]
+

1√
δ31

K∗
[
−4r3r1

δ31

]
− 1√

γ31
K∗

[
−4r3r1

γ31

])

+ η41

(
1√
α41

K∗
[
−4r4r1

α41

]
− 1√

β41
K∗

[
−4r4r1

β41

]
+

1√
δ41

K∗
[
−4r4r1

δ41

]
− 1√

γ41
K∗

[
−4r4r1

γ41

])

+ η32

(
1√
α32

K∗
[
−4r3r2

α32

]
− 1√

β32
K∗

[
−4r3r2

β32

]
+

1√
δ32

K∗
[
−4r3r2

δ32

]
− 1√

γ32
K∗

[
−4r3r2

γ32

])

+ η42

(
1√
α42

K∗
[
−4r4r2

α42

]
− 1√

β42
K∗

[
−4r4r2

β42

]
+

1√
δ42

K∗
[
−4r4r2

δ42

]
− 1√

γ42
K∗

[
−4r4r2

γ42

])

(36)

with

ηij =
2rirjσ

∗

µ0
(37)

αij = (ri − rj)
2 + z2

a (38)

βij = (ri − rj)
2 + (za + h)2 (39)

γij = (ri − rj)
2 + (za − h) (40)

δij = (ri − rj)
2 + (b − h)2 + za(2b − 2h + za) (41)

K∗ [m] =
∫ π

2

0

1√
1 − m sin(θ)2

dθ (42)

The second contribution KM is given by:

KM =
σ∗

1 σ∗
2

2µ0

∫ 2π

θ=0
udθ (43)

with

u = f (rin, rout, rin2, h, za, b, θ)

− f (rin, rout, rout2, h, za, b, θ)

+ f (rin2, rout2, rin, h, za, b, θ)

− f (rin2, rout2, rout, h, za, b, θ)

(44)

and
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f (α, β, γ, h, za, b, θ) =

− γ log
[

α − γ cos(θ) +
√

α2 + γ2 + z2
a − 2αγ cos(θ)

]

+ γ log
[

α − γ cos(θ) +
√

α2 + γ2 + (za + b)2 − 2αγ cos(θ)
]

+ γ log
[

α − γ cos(θ) +
√

α2 + γ2 + (za − h)2 − 2αγ cos(θ)
]

− γ log
[

α − γ cos(θ) +
√

α2 + γ2 + (b − h)2 + 2za(b − h) + z2
a − 2αγ cos(θ)

]

+ γ log
[

β − γ cos(θ) +
√

β2 + γ2 + z2
a − 2αγ cos(θ)

]

− γ log
[

β − γ cos(θ) +
√

β2 + γ2 + (za + b)2 − 2αγ cos(θ)
]

+ γ log
[

β − γ cos(θ) +
√

β2 + γ2 + (za − h)2 − 2αγ cos(θ)
]

− γ log
[

β − γ cos(θ) +
√

β2 + γ2 + (b − h)2 + 2za(b − h) + z2
a − 2αγ cos(θ)

]

(45)

The third contribution KV is given by:

KV =
σ∗

1 σ∗
2

2µ0

∫ 2π

θ=0

∫ rout

r1=rin
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As a remark, the expression of the axial stiffness can be determined analytically if the magnetic
pole surface densities of each ring only are taken into account, so, if the magnetic pole volume

densities can be neglected. This is possible when the radii of the ring permanent magnets are
large enough (Ravaud, Lemarquand, Lemarquand & Depollier, 2009).

7. Study and characteristics of bearings with radially polarized ring magnets.

Radially polarized ring magnets can be used to realize passive bearings, either with a cylindri-
cal air gap or with a plane one. A device with a cylindrical air gap works as an axial bearing
when the ring magnets have the same radial polarization direction, whereas it works as a
radial one for opposite radial polarizations.
For rings with a square cross-section and radii large enough to neglect the magnetic pole
volume densities, the authors shew that the axial force exerted between the magnets as well
as the corresponding siffness was the same whatever the polarization direction, axial or radial.
For instance, this is illustrated for a radial bearing of following dimensions: rin2 = 0.01 m,
rout2 = 0.02 m, rin = 0.03 m, rout = 0.04 m, zb − za = h = 0.1 m, J = 1 T.
Fig. 22 gives the results obtained for a bearing with radial polarization. These results are to
be compared with the ones of Fig. 23 corresponding to axial polarizations.
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Fig. 22. Axial force and stiffness versus axial displacement for two ring permanent magnets
with radial polarizations; r1 = 0.01 m, r2 = 0.02 m, r3 = 0.03 m, r4 = 0.04 m, z2 − z1 =
z4 − z3 = 0.1 m, J = 1 T
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pole surface densities of each ring only are taken into account, so, if the magnetic pole volume

densities can be neglected. This is possible when the radii of the ring permanent magnets are
large enough (Ravaud, Lemarquand, Lemarquand & Depollier, 2009).

7. Study and characteristics of bearings with radially polarized ring magnets.

Radially polarized ring magnets can be used to realize passive bearings, either with a cylindri-
cal air gap or with a plane one. A device with a cylindrical air gap works as an axial bearing
when the ring magnets have the same radial polarization direction, whereas it works as a
radial one for opposite radial polarizations.
For rings with a square cross-section and radii large enough to neglect the magnetic pole
volume densities, the authors shew that the axial force exerted between the magnets as well
as the corresponding siffness was the same whatever the polarization direction, axial or radial.
For instance, this is illustrated for a radial bearing of following dimensions: rin2 = 0.01 m,
rout2 = 0.02 m, rin = 0.03 m, rout = 0.04 m, zb − za = h = 0.1 m, J = 1 T.
Fig. 22 gives the results obtained for a bearing with radial polarization. These results are to
be compared with the ones of Fig. 23 corresponding to axial polarizations.
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Fig. 22. Axial force and stiffness versus axial displacement for two ring permanent magnets
with radial polarizations; r1 = 0.01 m, r2 = 0.02 m, r3 = 0.03 m, r4 = 0.04 m, z2 − z1 =
z4 − z3 = 0.1 m, J = 1 T
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Fig. 23. Axial force and stiffness versus axial displacement for two ring permanent magnets
with axial polarizations; r1 = 0.01 m, r2 = 0.02 m, r3 = 0.03 m, r4 = 0.04 m, z2 − z1 =
z4 − z3 = 0.1 m, J = 1 T

These figures show clearly that the performances are the same. Indeed, for the radial polar-
izations the maximal axial force exerted by the outer ring on the inner one is 37.4 N and the
maximal axial stiffness is |Kz| = 7205 N/m and for the axial polarizations the maximal axial
force exerted by the outer ring on the inner one is 35.3 N and the maximal axial stiffness is
|Kz| = 6854 N/m.
Moreover, the same kind of results is obtained when radially polarized ring magnets with
alternate polarizations are stacked: the performances are the same as for axially polarized
stacked rings.
So, as the radial polarization is far more difficult to realize than the axial one, these calcula-
tions show that it isn’t interesting from a practical point of view to use radially polarized ring
magnets to build bearings.
Nevertheless, this conclusion will be moderated by the next section. Indeed, the use of
“mixed” polarization directions in a device leads to very interesting results.
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Fig. 24. Ring permanent magnets with perpendicular polarizations.

8. Determination of the force exerted between two ring permanent magnets with
perpendicular polarizations

The geometry considered is shown in Fig. 24: two concentric ring magnets separated by a
cylindrical air gap. The outer ring is radially polarized and the inner one is axially polarized,
hence the reference to “perpendicular” polarization.

8.1 Notations
The following parameters are used:
r1, r2: inner and outer radius of the inner ring permanent magnet [m]
r3, r4: inner and outer radius of the outer ring permanent magnet [m]
z1, z2: lower and upper axial abscissa of the inner ring permanent magnet [m]
z3, z4: inner and outer axial abscissa of the outer ring permanent magnet [m]
The two ring permanent magnets are radially centered and their polarization are supposed
uniformly radial.

8.2 Magnet modelling
The coulombian model is chosen for the magnets. So, each ring permanent magnet is repre-
sented by faces charged with fictitious magnetic pole surface densities. The outer ring perma-
nent magnet which is radially polarized is modelled as in the previous section. The outer face
is charged with the fictitious magnetic pole surface density −σ∗ and the inner one is charged
with the fictitious magnetic pole surface density +σ∗. Both faces are cylindrical. Moreover,
the contribution of the magnetic pole volume density will be neglected for simplifying the
calculations.
The faces of the inner ring permanent magnet which is axially polarized are plane ones: the
upper face is charged with the fictitious magnetic pole surface density −σ∗ and the lower one
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Fig. 23. Axial force and stiffness versus axial displacement for two ring permanent magnets
with axial polarizations; r1 = 0.01 m, r2 = 0.02 m, r3 = 0.03 m, r4 = 0.04 m, z2 − z1 =
z4 − z3 = 0.1 m, J = 1 T

These figures show clearly that the performances are the same. Indeed, for the radial polar-
izations the maximal axial force exerted by the outer ring on the inner one is 37.4 N and the
maximal axial stiffness is |Kz| = 7205 N/m and for the axial polarizations the maximal axial
force exerted by the outer ring on the inner one is 35.3 N and the maximal axial stiffness is
|Kz| = 6854 N/m.
Moreover, the same kind of results is obtained when radially polarized ring magnets with
alternate polarizations are stacked: the performances are the same as for axially polarized
stacked rings.
So, as the radial polarization is far more difficult to realize than the axial one, these calcula-
tions show that it isn’t interesting from a practical point of view to use radially polarized ring
magnets to build bearings.
Nevertheless, this conclusion will be moderated by the next section. Indeed, the use of
“mixed” polarization directions in a device leads to very interesting results.
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8. Determination of the force exerted between two ring permanent magnets with
perpendicular polarizations

The geometry considered is shown in Fig. 24: two concentric ring magnets separated by a
cylindrical air gap. The outer ring is radially polarized and the inner one is axially polarized,
hence the reference to “perpendicular” polarization.

8.1 Notations
The following parameters are used:
r1, r2: inner and outer radius of the inner ring permanent magnet [m]
r3, r4: inner and outer radius of the outer ring permanent magnet [m]
z1, z2: lower and upper axial abscissa of the inner ring permanent magnet [m]
z3, z4: inner and outer axial abscissa of the outer ring permanent magnet [m]
The two ring permanent magnets are radially centered and their polarization are supposed
uniformly radial.

8.2 Magnet modelling
The coulombian model is chosen for the magnets. So, each ring permanent magnet is repre-
sented by faces charged with fictitious magnetic pole surface densities. The outer ring perma-
nent magnet which is radially polarized is modelled as in the previous section. The outer face
is charged with the fictitious magnetic pole surface density −σ∗ and the inner one is charged
with the fictitious magnetic pole surface density +σ∗. Both faces are cylindrical. Moreover,
the contribution of the magnetic pole volume density will be neglected for simplifying the
calculations.
The faces of the inner ring permanent magnet which is axially polarized are plane ones: the
upper face is charged with the fictitious magnetic pole surface density −σ∗ and the lower one
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is charged with the fictitious magnetic pole surface density +σ∗. All the illustrative calcula-
tions are done with σ∗ = �J.�n = 1 T, where �J is the magnetic polarization vector and �n is the
unit normal vector.

8.3 Force calculation
The axial force exerted between the two magnets with perpendicular polarizations can be
determined by:

Fz =
J2

4πµ0

∫ r2

r1

∫ 2π

0
Hz(r, z3)rdrdθ

− J2

4πµ0

∫ r2

r1

∫ 2π

0
Hz(r, z4)rdrdθ

(46)

where Hz(r, z) is the axial magnetic field produced by the outer ring permanent magnet. This
axial field can be expressed as follows:

Hz(r, z) =
J

4πµ0

∫ ∫

S

(z − z̃)
R(r3, θ̃, z̃)

r3dθ̃dz̃

− J
4πµ0

∫ ∫

S

(z − z̃)
R(r4, θ̃, z̃)

r4dθ̃dz̃

(45)

with

R(ri, θ̃, z̃) =
(

r2 + r2
i − 2rri cos(θ̃) + (z − z̃)2

) 3
2 (45)

The expression of the force can be reduced to:

Fz =
J2

4πµ0

2

∑
i,k=1

4

∑
j,l=3

(−1)i+j+k+l
(

Ai,j,k,l

)

+
J2

4πµ0

2

∑
i,k=1

4

∑
j,l=3

(−1)i+j+k+l
(

Si,j,k,l

)

(44)

with

Ai,j,k,l = −8πriεE
[
−

4rirj

ε

]

Si,j,k,l = −2πr2
j

∫ 2π

0
cos(θ) ln [β + α] dθ

(43)

where E [m] gives the complete elliptic integral which is expressed as follows:

E [m] =
∫ π

2

0

√
1 − m sin(θ)2dθ (43)

The parameters ε, α and β depend on the ring permanent magnet dimensions and are defined
by:

ε = (ri − rj)
2 + (zk − zl)

2

α =
√

r2
i + r2

j − 2rirj cos(θ) + (zk − zl)2

β = ri − rj cos(θ)

(41)

8.4 Stiffness exerted between two ring permanent magnets with perpendicular polarizations
The axial stiffness derives from the axial force:

Kz = − d
dz

Fz (41)

where Fz is determined with R(ri, θ̃, z̃) and Eq. (46). After mathematical manipulations, the
previous expression can be reduced in the following form:

Kz =
J2

4πµ0

2

∑
i,k=1

4

∑
j,l=3

(−1)i+j+k+l
(

ki,j,k,l

)
(41)

with

ki,j,k,l = −
∫ 2π

0

rj(zk − zl)(α + ri)

α (α + β)
dθ

(41)

9. Study and characteristics of bearings using ring magnets with perpendicular
polarizations.

9.1 Structures with two ring magnets
The axial force and stiffness are calculated for the bearing constituted by an outer radially
polarized ring magnet and an inner axially polarized one. The device dimensions are the
same as in section 7. Thus, the results obtained for this bearing and shown in Fig. 25 are
easily compared to the previous ones: the maximal axial force is 39.7 N and the maximal axial
stiffness is |Kz| = 4925 N/m.
So, the previous calculations show that the greatest axial force is obtained in the bearing using
ring permanent magnets with perpendicular polarizations whereas the greatest axial stiffness
is obtained in the one using ring permanent magnets with radial polarizations.

9.2 Multiple ring structures: stacks forming Halbach patterns
The conclusion of the preceding section naturally leads to mixed structures which would have
both advantages of a great force and a great stiffness. This is achieved with bearings consti-
tuted of stacked ring magnets forming a Halbach pattern (Halbach, 1980).
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So, the previous calculations show that the greatest axial force is obtained in the bearing using
ring permanent magnets with perpendicular polarizations whereas the greatest axial stiffness
is obtained in the one using ring permanent magnets with radial polarizations.

9.2 Multiple ring structures: stacks forming Halbach patterns
The conclusion of the preceding section naturally leads to mixed structures which would have
both advantages of a great force and a great stiffness. This is achieved with bearings consti-
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Fig. 25. Axial force axial stiffness versus axial displacement for two ring permanent magnets
with perpendicular polarizations; r1 = 0.01 m, r2 = 0.02 m, r3 = 0.03 m, r4 = 0.04 m,
z2 − z1 = z4 − z3 = 0.1 m, J = 1 T

Fig. 26. Cross-section of a stack of five ring permanent magnets with perpendicular polar-
izations; r1 = 0.01 m, r2 = 0.02 m, r3 = 0.03 m, r4 = 0.04 m, J = 1 T, height of each ring
permanent magnet = 0.01 m
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Fig. 27. Axial force and stiffness versus axial displacement for a stack of five ring permanent
magnets with perpendicular polarizations; r1 = 0.01 m, r2 = 0.02 m, r3 = 0.03 m, r4 = 0.04 m,
J = 1 T, height of each ring permanent magnet = 0.01 m

Section 4.2 shew that stacking ring magnets with alternate polarization led to structures with
higher performances than the ones with two magnets for a given magnet volume. So, the per-
formances will be compared for stacked structures, either with alternate radial polarizations
or with perpendicular ones.
Thus, the bearing considered is constituted of five ring magnets with polarizations alternately
radial and axial (Fig. 26). The axial force and stiffness are calculated with the previously
presented formulations (Fig.27).
The same calculations are carried out for a stack of five rings with radial alternate polarizations
having the same dimensions (Fig. 28). It is to be noted that the result would be the same for a
stack of five rings with axial alternate polarizations of same dimensions.
As a result, the maximal axial force exerted in the case of alternate magnetizations is 122 N
whereas it reaches 503 N with a Halbach configuration. Moreover, the maximal axial stiffness
is |Kz| = 34505 N/m for alternate polarizations and |Kz| = 81242 N/m for the perpendicular
ones. Thus, the force is increased fourfold and the stiffness twofold in the Halbah structure
when compared to the alternate one. Consequently, bearings constituted of stacked rings with
perpendicular polarizations are far more efficient than those with alternate polarizations. This
shows that for a given magnet volume these Halbach pattern structures are the ones that give
the greatest axial force and stiffness. So, this can be a good reason to use radially polarized
ring magnets in passive magnetic bearings.

10. Conclusion

This chapter presents structures of passive permanent magnet bearings. From the simplest
bearing with two axially polarized ring magnets to the more complicated one with stacked
rings having perpendicular polarizations, the structures are described and studied. Indeed,
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Fig. 25. Axial force axial stiffness versus axial displacement for two ring permanent magnets
with perpendicular polarizations; r1 = 0.01 m, r2 = 0.02 m, r3 = 0.03 m, r4 = 0.04 m,
z2 − z1 = z4 − z3 = 0.1 m, J = 1 T

Fig. 26. Cross-section of a stack of five ring permanent magnets with perpendicular polar-
izations; r1 = 0.01 m, r2 = 0.02 m, r3 = 0.03 m, r4 = 0.04 m, J = 1 T, height of each ring
permanent magnet = 0.01 m
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Fig. 27. Axial force and stiffness versus axial displacement for a stack of five ring permanent
magnets with perpendicular polarizations; r1 = 0.01 m, r2 = 0.02 m, r3 = 0.03 m, r4 = 0.04 m,
J = 1 T, height of each ring permanent magnet = 0.01 m

Section 4.2 shew that stacking ring magnets with alternate polarization led to structures with
higher performances than the ones with two magnets for a given magnet volume. So, the per-
formances will be compared for stacked structures, either with alternate radial polarizations
or with perpendicular ones.
Thus, the bearing considered is constituted of five ring magnets with polarizations alternately
radial and axial (Fig. 26). The axial force and stiffness are calculated with the previously
presented formulations (Fig.27).
The same calculations are carried out for a stack of five rings with radial alternate polarizations
having the same dimensions (Fig. 28). It is to be noted that the result would be the same for a
stack of five rings with axial alternate polarizations of same dimensions.
As a result, the maximal axial force exerted in the case of alternate magnetizations is 122 N
whereas it reaches 503 N with a Halbach configuration. Moreover, the maximal axial stiffness
is |Kz| = 34505 N/m for alternate polarizations and |Kz| = 81242 N/m for the perpendicular
ones. Thus, the force is increased fourfold and the stiffness twofold in the Halbah structure
when compared to the alternate one. Consequently, bearings constituted of stacked rings with
perpendicular polarizations are far more efficient than those with alternate polarizations. This
shows that for a given magnet volume these Halbach pattern structures are the ones that give
the greatest axial force and stiffness. So, this can be a good reason to use radially polarized
ring magnets in passive magnetic bearings.

10. Conclusion

This chapter presents structures of passive permanent magnet bearings. From the simplest
bearing with two axially polarized ring magnets to the more complicated one with stacked
rings having perpendicular polarizations, the structures are described and studied. Indeed,
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Fig. 28. Axial force and stiffness versus axial displacement for a stack of five ring permanent
magnets with radial polarizations; r1 = 0.01 m, r2 = 0.02 m, r3 = 0.03 m, r4 = 0.04 m, J = 1 T,
height of each ring permanent magnet = 0.01 m

analytical formulations for the axial force and stiffness are given for each case of axial, ra-
dial or perpendicular polarization. Moreover, it is to be noted that Mathematica Files con-
taining the expressions presented in this paper are freely available online (http://www.univ-
lemans.fr/∼glemar, n.d.). These expressions allow the quantitative study and the comparison
of the devices, as well as their optimization and have a very low computational cost. So, the
calculations show that a stacked structure of “small” magnets is more efficient than a structure
with two “large” magnets, for a given magnet volume. Moreover, the use of radially polar-
ized magnets, which are difficult to realize, doesn’t lead to real advantages unless it is done
in association with axially polarized magnets to build Halbach pattern. In this last case, the
bearing obtained has the best performances of all the structures for a given magnet volume.

Eventually, the final choice will depend on the intended performances, dimensions and cost
and the expressions of the force and stiffness are useful tools to help the choice.
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Fig. 28. Axial force and stiffness versus axial displacement for a stack of five ring permanent
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1. Introduction  

The noncontact high speed rotor is one of dream for many engineers. There are many 
investigations. At example, one is the bearing less motor, another is flywheel using the bulk 
high temperature superconducting (HTS). The bearing less motor is needed the high 
technical knowledge and the accurate system. HTS materials are effectively utilized to the 
flywheel which needs the grater levitation force, to the motor of the ship which needs the 
grater torque, and to the motor for the airplane which needs the grater torque and smaller 
weight. It is very difficult that the rotor of the micro size type generator generates a high 
power which rotating in a high speed. 
 

 
Fig. 1. View of the original rotor model in 2007 
 
As my first try in 2006, a small generator in which only one HTS bulk (47mm in diameter) 
was arranged was tested for the levitation force, but it was useless as the synchronous 
generator because of being unstable. And an axial gap type rotor improved to a new rotor 
with two gradient static field shafts which is lifted between a set of the magnets and a 
trapped static magnetic field of a HTS bulk. Furthermore, the improved rotor was so 
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rearranged as to form a twin type combination of two bulks and two set of magnets 
components (Figure 1). The concept of magnetic shafts which plays a role of the twined the 
magnetic bearing was presented, and acts as magnetic spring. 
For achieve the system which achieve the more convenient and continuously examinations 
without use of liquid nitrogen, we fabricated bulk twined heads type pulse tube cryocooler 
based on the above experimental.  
And, I reported [1] that this system recorded at 2,000 rpm. Later, the improved system and 
rotor recorded at 15,000 rpm. 

 
2. System 

2.1 Rotor model with two gradient static field shafts 
The rotor is 70mm in diameter, 70mm in height, and consists of many size acrylic pipes of 
various sizes. A set of the combined magnets consist of both a cylindrical magnet, 20mm in 
diameter, 10mm in thickness, and 0.45T, and the two ring magnets, 30mm in inside 
diameter, 50mm in outside diameter, 5mm in thickness, and 0.33T. The cylindrical magnet 
was arranged to be the opposite pole in the centre of a ring magnet. The dissembled 
drawing of the rotor is shown in figure 2. The detail of the structure of the rotor is shown in 
figure 3. The centre ring part of the rotor is rotary mechanism part, and it can change easily 
another differ type ring. 
The magnetic distribution of a set of the magnets of the rotor measured by the Hall 
generator with gap 0.5mm is shown in figure 4. In advance the trapped field distribution of 
the supplied HTS bulk was measured with Hall generator at 0.5mm above the surface of the 
bulk at over 1.5T field cooling. The peak value was at 0.9T. The relationship of the 
distributions between the magnetic distribution of the rotor and the magnetic distribution of 
a HTS bulk trapped in field cooling using liquid nitrogen by the permanent magnets of the 
rotor is shown in figure 5. The shown values of the magnetic flux density of a HTS bulk in 
figure 5 were reverse pole. The magnetic distributions of the both poles of the magnets of 
the rotary mechanism part (8 poles, acrylic ring, in figure 3 and 9) of the rotor were shown 
in figure 6. The x-axis is shown at vertical direction, and 0 point in x-axis is shown the hole 
position the acrylic ring of the rotary mechanism part of the rotor. 
 

 
Fig. 2. View of the rotor model 

 

 
Fig. 3. Detail of component of the rotor model 
 

 
Fig. 4. Magnetic distribution of a set the component of the permanent magnets of the rotor  
 

 
Fig. 5. Magnetic flux density of a set the component of the permanent magnets of the rotor 
and a trapped HTS bulk 
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Fig. 4. Magnetic distribution of a set the component of the permanent magnets of the rotor  
 

 
Fig. 5. Magnetic flux density of a set the component of the permanent magnets of the rotor 
and a trapped HTS bulk 
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Fig. 6. Magnetic flux density of a rotary mechanism part of the rotor model 

 
2.2 Bulk twined heads pulse tube cryocooler 
We improved a pulse tube cryocooler (SPR-05, AISIN SEIKI CO., LTD.). Namely, the two 
bulks were installed on the boxes of a head part (Thermal Block CO., LTD.) of a pulse tube 
cryocooler. Figure 7 shows the schematic design of the bulk twined heads pulse tube 
cryocooler. The rotor explained above was set between the bulk twined heads of this 
cryocooler. The frost did not occur at the surface of this head in the air because the insulated 
space in the head was in vacuum condition, and the cold HTS bulk insulated the head. This 
condition was able to rotate the rotor in the air. Two sensors monitored the temperature 
condition. One sensor (sensor1) monitored the temperature of the cold head of the pulse 
tube cryocooler, and the second sensor (sensor2) monitored the temperature of the copper 
holder which inserted the HTS bulk in the upper head of two heads of the bulk twined 
heads device. Figure 8 shows efficiency of the cooler device. 
After I reported [1], I tried two improvements to this device. One was that an acrylic board 
(W300, L300mm) with two square holes were as the sections of the top of the heads of this 
device, sat the bottom of the head of this device. Other improvement was that the distance 
between the heads of this device was expanded a few millimetres. These improvements 
were a key of successful to break through the unstable rotation at about 2,000 rpm. The 
former was because that the board cut the affect of the turbulence of the promotion gas 
based on the uneven face of this device. The latter was because that a point of inflexion of 
the relationship line between the vertical force and the vertical distance at an experiment 
using a HTS bulk and a permanent magnet [2]. 
 

 
Fig. 7. The bulk twined heads pulse tube cryocooler 

 

 
Fig. 8. The relationship between temperature of the cyocooler and time 

 
2.3 Rotation and Measurement system 
Rotation of the rotor was occurred that flow of air of the nozzles hit the wall of the holes of 
the rotary mechanism part of the rotor. The power generation based on action between the 
permanent magnets in the rotary mechanism part and the coils was used for purpose of to 
measurement the frequency of the rotor. 
In 2007 the nozzles (1/4in, 50-100mm, stainless pipe) were connected to a nitrogen gas 
cylinder with silicon tubes (OD =6mm, ID =4mm). The branch of the middle from a nitrogen 
cylinder went in a Y-shaped joint tube (a product made in polypropylene: pp). After a 
nozzle was consist of a pp tube (L=48mm, ID=3mm), a pp joint (L=43mm, ID=2.5mm), a 
stainless steel pipe (1/4in, 300mm) (Figure 9). The nozzles were connected to an air 
compressor (EC1443H, Hitachi KokI Co., Ltd.) with stainless pipes (1/4in, 300mm) and 
silicon tube (OD =6mm, ID =4mm).and T-shaped 
The frequency of the rotation was measure by the two coils connected each to the measuring 
instruments. There were three type coils, I-shaped coil, U-shaped coil, and T-shaped coil. 
The core of the coil was used one or some pieces of the permalloy (a permalloy is alloy 
between iron and nickel: permability+alloy). The wire of the coil was used to having wound 
up copper wire OD=0.5mm. The I-shaped coil was used with core which one plate 5mm 
wide and 10mm long and the wire about 2m long. U-shaped and T-shaped coils were used 
with core which some plates 10mm wide and 50mm long and the wire about 300mm. 
Centre of outer of the U-shaped and T-shaped coil fixed to the end of a stainless steel pipe 
(1/4in, 300mm) with the polyimide tape.  
One coil of the two coils connected  to a multi-meter (Type-VOAC7523, IWATSU TEST 
INSTRUMENTS CORPORATION) connected a PC, other coil connected to a digital 
oscilloscope (Type-DS-5110, IWATSU TEST INSTRUMENTS CORPORATION), stored the 
pulse of a coil as USB data by manual operation. The small I-shaped coil of the figure 10 was 
used without the U-shaped coils for confirmation of that the U-shaped coils were a little 
related to the rotation of the rotor. 
The two nozzles were also placed by the both sides of the rotor, with the direction of the 
nozzles in perpendicular to the outer surface of the rotor. The U-shaped coils arranged it 
facing the nozzles and 90 degrees corner (in figure 9 and 10). 
The states of rotation tests were taken by a video camera (Type-SR11, Sony Corporation).  
The magnetic flux densities were measured by a gauss meter (Type-421, Lakeshore 
Cryotronics Inc.). 
 



A rotor model with two gradient static field shafts and a bulk twined heads system 121

 

 
Fig. 6. Magnetic flux density of a rotary mechanism part of the rotor model 

 
2.2 Bulk twined heads pulse tube cryocooler 
We improved a pulse tube cryocooler (SPR-05, AISIN SEIKI CO., LTD.). Namely, the two 
bulks were installed on the boxes of a head part (Thermal Block CO., LTD.) of a pulse tube 
cryocooler. Figure 7 shows the schematic design of the bulk twined heads pulse tube 
cryocooler. The rotor explained above was set between the bulk twined heads of this 
cryocooler. The frost did not occur at the surface of this head in the air because the insulated 
space in the head was in vacuum condition, and the cold HTS bulk insulated the head. This 
condition was able to rotate the rotor in the air. Two sensors monitored the temperature 
condition. One sensor (sensor1) monitored the temperature of the cold head of the pulse 
tube cryocooler, and the second sensor (sensor2) monitored the temperature of the copper 
holder which inserted the HTS bulk in the upper head of two heads of the bulk twined 
heads device. Figure 8 shows efficiency of the cooler device. 
After I reported [1], I tried two improvements to this device. One was that an acrylic board 
(W300, L300mm) with two square holes were as the sections of the top of the heads of this 
device, sat the bottom of the head of this device. Other improvement was that the distance 
between the heads of this device was expanded a few millimetres. These improvements 
were a key of successful to break through the unstable rotation at about 2,000 rpm. The 
former was because that the board cut the affect of the turbulence of the promotion gas 
based on the uneven face of this device. The latter was because that a point of inflexion of 
the relationship line between the vertical force and the vertical distance at an experiment 
using a HTS bulk and a permanent magnet [2]. 
 

 
Fig. 7. The bulk twined heads pulse tube cryocooler 

 

 
Fig. 8. The relationship between temperature of the cyocooler and time 

 
2.3 Rotation and Measurement system 
Rotation of the rotor was occurred that flow of air of the nozzles hit the wall of the holes of 
the rotary mechanism part of the rotor. The power generation based on action between the 
permanent magnets in the rotary mechanism part and the coils was used for purpose of to 
measurement the frequency of the rotor. 
In 2007 the nozzles (1/4in, 50-100mm, stainless pipe) were connected to a nitrogen gas 
cylinder with silicon tubes (OD =6mm, ID =4mm). The branch of the middle from a nitrogen 
cylinder went in a Y-shaped joint tube (a product made in polypropylene: pp). After a 
nozzle was consist of a pp tube (L=48mm, ID=3mm), a pp joint (L=43mm, ID=2.5mm), a 
stainless steel pipe (1/4in, 300mm) (Figure 9). The nozzles were connected to an air 
compressor (EC1443H, Hitachi KokI Co., Ltd.) with stainless pipes (1/4in, 300mm) and 
silicon tube (OD =6mm, ID =4mm).and T-shaped 
The frequency of the rotation was measure by the two coils connected each to the measuring 
instruments. There were three type coils, I-shaped coil, U-shaped coil, and T-shaped coil. 
The core of the coil was used one or some pieces of the permalloy (a permalloy is alloy 
between iron and nickel: permability+alloy). The wire of the coil was used to having wound 
up copper wire OD=0.5mm. The I-shaped coil was used with core which one plate 5mm 
wide and 10mm long and the wire about 2m long. U-shaped and T-shaped coils were used 
with core which some plates 10mm wide and 50mm long and the wire about 300mm. 
Centre of outer of the U-shaped and T-shaped coil fixed to the end of a stainless steel pipe 
(1/4in, 300mm) with the polyimide tape.  
One coil of the two coils connected  to a multi-meter (Type-VOAC7523, IWATSU TEST 
INSTRUMENTS CORPORATION) connected a PC, other coil connected to a digital 
oscilloscope (Type-DS-5110, IWATSU TEST INSTRUMENTS CORPORATION), stored the 
pulse of a coil as USB data by manual operation. The small I-shaped coil of the figure 10 was 
used without the U-shaped coils for confirmation of that the U-shaped coils were a little 
related to the rotation of the rotor. 
The two nozzles were also placed by the both sides of the rotor, with the direction of the 
nozzles in perpendicular to the outer surface of the rotor. The U-shaped coils arranged it 
facing the nozzles and 90 degrees corner (in figure 9 and 10). 
The states of rotation tests were taken by a video camera (Type-SR11, Sony Corporation).  
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Fig. 9. Schematic drawing of the nozzle and the rotary mechanism part 
 

 
Fig. 10. Schematic drawing of the rotary mechanism part 

 
3. Experiments and results 

3.1 Original rotor model 

 
Fig. 11. View of original rotary mechanism part 

 

Figure 11 shows the broken original rotary mechanism part with 4 plate magnets 
(20mmx10mmxt2, 0.23T) were arranged in a felt disk in the central side of the cylinder to be 
alternate poles of the magnets for a rotary mechanism part of the rotor. This rotary 
mechanism part were broken at 7,770 rpm using nitrogen gas cylinder at 0.49MPa in the 
meter of the nitrogen gas cylinder. After acrylic boards (W300mm, L300mm) were prepared 
to protect or for above reason. 

 
3.2 Improved rotor model 
The rotary mechanism part was improved by acrylic ring with 8 holes (in figure 12 and 9). 
The both of the donut-shaped cross sections of the rotary mechanism part were needed the 
masking with a polyimide tape, because it was absolute terms for this rotor. The holes and 
sponge rubbers were also absolute terms. If the holes were changed to bucket shapes or the 
holes without sponge rubbers, the rotor was never rotate at 2,000 beyond. It is guessed that 
these holes with the sponge rubbers act as sink and source in fluid dynamics. 
 

 
Fig. 12. View of the acrylic rotary mechanism part  
 
In this examination, the acrylic cover was prepared. The box tunnel model acrylic cover 
(L300mm, W190mm, H82mm), was sat the between the heads of the bulk twined heads 
device. Inner surface of the acrylic cover top and bottom plane of the upper head of the bulk 
twined heads device is top of the cover off the board so that same plane. Also, inner surface 
of the acrylic cover bottom and top plane of the under head of the bulk twined heads device 
is top of the cover off the board so that same plane. This cover limited the control volume of 
the promote gas. The promote gas was nitrogen gas at 0.49MPa in meter of gas cylinder. The 
I-shaped coils were used. Purpose of this test was two. One was for confirmation of that the 
U-shaped coils were a little related to the rotation of the rotor. Other was for confirmation of 
flow around the rotor. The same examination was three times in a row. Figure 13-1 shows 
views of video records. The dot circle of Figure 13-1 (c) shows the hitting point of turn flow 
around the rotor to the inside wall (in figure 13-2). Figure 14-1 and 14-2 show the results 
which rotation speed and the voltage. An early stage of unstable state shown for figure 13-1 
(b) suddenly stabilized it after having occurred from a rotation start from observation of a 
video from the back to 17 seconds for 10 seconds. The rotation fell slowly after having 
stopped the promote gas 10 minutes later and became an unstable state for 1010 seconds 
from 992 seconds. These examinations demonstrated that the U-shaped coils were a little 
related to the rotation of the rotor. 



A rotor model with two gradient static field shafts and a bulk twined heads system 123

 

 
Fig. 9. Schematic drawing of the nozzle and the rotary mechanism part 
 

 
Fig. 10. Schematic drawing of the rotary mechanism part 

 
3. Experiments and results 

3.1 Original rotor model 

 
Fig. 11. View of original rotary mechanism part 

 

Figure 11 shows the broken original rotary mechanism part with 4 plate magnets 
(20mmx10mmxt2, 0.23T) were arranged in a felt disk in the central side of the cylinder to be 
alternate poles of the magnets for a rotary mechanism part of the rotor. This rotary 
mechanism part were broken at 7,770 rpm using nitrogen gas cylinder at 0.49MPa in the 
meter of the nitrogen gas cylinder. After acrylic boards (W300mm, L300mm) were prepared 
to protect or for above reason. 

 
3.2 Improved rotor model 
The rotary mechanism part was improved by acrylic ring with 8 holes (in figure 12 and 9). 
The both of the donut-shaped cross sections of the rotary mechanism part were needed the 
masking with a polyimide tape, because it was absolute terms for this rotor. The holes and 
sponge rubbers were also absolute terms. If the holes were changed to bucket shapes or the 
holes without sponge rubbers, the rotor was never rotate at 2,000 beyond. It is guessed that 
these holes with the sponge rubbers act as sink and source in fluid dynamics. 
 

 
Fig. 12. View of the acrylic rotary mechanism part  
 
In this examination, the acrylic cover was prepared. The box tunnel model acrylic cover 
(L300mm, W190mm, H82mm), was sat the between the heads of the bulk twined heads 
device. Inner surface of the acrylic cover top and bottom plane of the upper head of the bulk 
twined heads device is top of the cover off the board so that same plane. Also, inner surface 
of the acrylic cover bottom and top plane of the under head of the bulk twined heads device 
is top of the cover off the board so that same plane. This cover limited the control volume of 
the promote gas. The promote gas was nitrogen gas at 0.49MPa in meter of gas cylinder. The 
I-shaped coils were used. Purpose of this test was two. One was for confirmation of that the 
U-shaped coils were a little related to the rotation of the rotor. Other was for confirmation of 
flow around the rotor. The same examination was three times in a row. Figure 13-1 shows 
views of video records. The dot circle of Figure 13-1 (c) shows the hitting point of turn flow 
around the rotor to the inside wall (in figure 13-2). Figure 14-1 and 14-2 show the results 
which rotation speed and the voltage. An early stage of unstable state shown for figure 13-1 
(b) suddenly stabilized it after having occurred from a rotation start from observation of a 
video from the back to 17 seconds for 10 seconds. The rotation fell slowly after having 
stopped the promote gas 10 minutes later and became an unstable state for 1010 seconds 
from 992 seconds. These examinations demonstrated that the U-shaped coils were a little 
related to the rotation of the rotor. 



Magnetic Bearings, Theory and Applications124

 

 
Fig. 13-1. View of test using tunnel cover, I-shaped coils and nitrogen gas 
 

 
Fig. 13-2. Schematic drawing of the rotation of the test using tunnel cover, I-shaped coils and 
nitrogen 
 

 
Fig. 14-1. Result of the rotation of the test using tunnel cover, I-shaped coils and nitrogen 

 

 
Fig. 14-2. Result of the volt of the test using tunnel cover, I-shaped coils and nitrogen 
 
Though above the examinations show 10,000 rpm, the ability of the system as nitrogen gas 
cylinder was limited. At next step, an air compressor and acrylic boards of the walls without 
a box tunnel model acrylic cover were preparation. During the examinations the rotary 
mechanism part was destroyed it in 11,809 [rpm]. This result was show an ability of an 
increase in rotation speed under this condition. 
 

 
Fig. 15. Result of test of the acrylic rotary mechanism part 
 

 
Fig. 16. View of test (a) Standstill, (b) Unstable rotation, ( c) High speed rotation, (d) Broken 
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After the acrylic ring of the rotary mechanism part of the rotor, an aluminium ring with 8 
holes was used (in figure 17). The both of the donut-shaped cross sections of the rotary 
mechanism part were needed the masking with a polyimide tape, because it was absolute 
terms. This improved rotor was used safety. In 2009, a gauss meter was join the 
measurement system and Hall generator was fixed to the top of the upper head of the bulk 
twined heads system with polyimide tape so that the centre position on the HTS bulk placed 
in the upper head. The promote gas was air using an air compressor at 0.2 MPa (free) in a 
meter of this device. The T-shaped coils were used. 
  

 
Fig. 17. View of the rotary mechanism part with an aluminium ring 
 
The result of the examinations was show that the flux flows were increase along the increase 
of the rotation. The results in figure 18-1 through 18-4 were show that the same 
examinations were ten times continuously. The vertical lines, 80x10 seconds in x-axis in 
figure 18-1, are shown trigger marks of the rotor completely stopped. 
The results in figure 19-1 through 19-4 were show the same result using timeline. Figure 19-5 
was show the result of temperature of each thermocouples, p1 was room temperature, p4 
was placed at upper face of the upper head, p7 was point above the upper face of the upper 
head, p3 and p5 were point of the centre between the head and the end of the stainless of the 
nozzle, p2 and p6 were point of the end of the stainless of the nozzle. All points were along a 
line of centre between the nozzles. 
There were shown the good repeatability except the temperature data of the HTS bulk. The 
gradient of a data line of the magnetic flux density was raised slowly than a data line of the 
rotation. The data line of the temperature was different other graphs. In figure 19-3. The 
temperature peaks were shown at from 3rd to 6th examinations. Though the falling of a based 
line of the temperature of the HTS bulk was shown along the room temperature in figure 19-
5, the characteristic of the up-and-down of a base line of the temperature of the HTS bulk 
was also related to the rotation because another result of the test was shown in figure 20. 
It is assumed to risen the magnetic flux density so that following; 
Based on a point of charge (point particle) be not able to stay on a gradient of the magnetic 
field by Earnshaw’s theory, it is assumed that a moved magnetic flux was not able to stay on 
a gradient of the magnetic field, and the magnetic flux pinning were moved to centre of the 
HTS bulk by the centripetal force, and the magnetic flux were diffused according over time, 
and while the temperature of the HTS bulk was down. 

 

 
Fig. 18-1. Result of the rotation of the same tests 
 

 
Fig. 18-2. Result of magnetic flux density of the same tests 
 

 
Fig. 18-3. Result of the temperature of the HTS bulk the same tests 
 

 
Fig. 18-4. Result of the voltage of the same tests 
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Fig. 18-1. Result of the rotation of the same tests 
 

 
Fig. 18-2. Result of magnetic flux density of the same tests 
 

 
Fig. 18-3. Result of the temperature of the HTS bulk the same tests 
 

 
Fig. 18-4. Result of the voltage of the same tests 
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Fig. 19-1. Result using timeline of the rotation of the same tests 
 

 
Fig. 19-2. Result using timeline of the magnetic flux density of the same tests 
 

 
Fig. 19-3. Result using timeline of the temperature of the HTS bulk of the same tests 
 

 
Fig. 19-4. Result using timeline of the voltage of the same tests 

 

 
Fig. 19-5. Result using timeline of the temperature of each point around space of the system 
during the same tests 
 

 
Fig. 20. Relationship between the magnetic flux density and the rotation at using timeline 
  
In the experiment to proceed, the problem of the drag (coefficient) of the coils and nozzles 
was remained. There was tried the condition that differ distances between the rotor and T-
shaped coils and/or the nozzles. The promote gas was air using the air compressor. The 
distances between the T-shaped coil and the rotor were three that near (no sign), 10mm 
(C10), and 15mm (C15) in figure 21. The distances between the nozzle and the rotor (see 
figure 9 and 10) were three that near (no sign), 15mm (N15), and 20mm (N20). The result of 
the test was shown in figure 21. The position of the nozzle was influenced by unstable 
rotation. The condition of this test was that the distance between the coil and the rotor was 
10mm and the distance between the nozzle and the rotor was 15mm. In this condition, the 
differ pressures of the air compressor was tested (in figure 22). The condition that high 
pressure and long time, was not shown because the ability of the air compressor was small. 
The point of falling along the down slope in figure 22 was shown clearly unstable rotation. 
Table 1 was shown the rotation values at the point of its falling.   
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Fig. 21. Result of the rotation using the differ conditions 
 

 
Fig. 22. Result of the rotation using the differ pressures 
 

 0.20MPa
C10N15 

0.25MPa
C10N15 

0.30MPa
C10N15 

0.35MPa
C10N15 

0.40MPa
C10N15 

n [xE4 rpm] 0.2160 0.2056 0.2012 0.2027 0.2011 
Table 1.  The rotation values at each falling point under the differ pressures 
 
Figure 23 was shown the data at 0.2MPa and 0.4MPa in figure 22. 
The slope of the function curve line upside were legend symbol ‘rev’ as shown at figure 23. 
In this my report, I assumed the following that; 
1) The distance is the short distance in infinity in the x-axis direction as the rotation direction 
at around the rotor and the time is infinite. 
2) The velocity of the rotor is constant while X as the external force is maxima at infinite time. 
3) Though X is proportional to angular velocity, the value of X is constant. 
4) The resistance of air is proportionate to the square of v. 
5) Function of hyperbolic arctangent is 1 at finite time. 
6) It is only problem as a contradiction between the infinite time and the finite time. 
7) In this paper, it is may be no problem to formed the equation no using fluid dynamics, N-
S equation, a complex velocity potential, and etc. 
The equation of motion was shown to equation 1 through 3. The equation 5 is the result of 
that is introduced the idea of the equation (6) into the equation (4). The results of the 
equation were legend symbol ‘cal’ as shown at figure 23. 

 

It is assumed that the true function curve line must be existed the surrounded area with a 
function curve line of the experiment data and a curve line of a slope of the same function 
curve line upside. 
Therefore, it is guessed that the surrounded area with a true function curve line and a 
function curve line of the experiment data line shows the energy of the external force, and 
the surround area with a true function curve line and a curve line of the slope of the 
function curve line upside of the experiment data line shows the energy of the resistance of 
air for the rotor in this examination. 
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Fig. 21. Relationship between the results of the simulation and the real data 
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4. Conclusion 

The above results of the examinations were shown the following; 
1) These experimental results were demonstrated the high speed rotation. 
2) It was clearly indicated the unstable rotation at 2,000 rpm. 
3) The magnetic flux density was risen along that the rotation was raised. It was assumed 

that the magnetic fluxes were moved in direction to the centre of the HTS bulk. 
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