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Preface

Vibrations are extremely important in all areas of human activities, for all sciences, 
technologies and industrial applications. Sometimes these vibrations are harmless, of-
ten they can be noticed as noise or cause wear. Vibrations, if they are not desired, can 
be dangerous. But sensibly organized and controlled vibrations may be pleasant (think 
of all kinds of music) or vitally important (heartbeat).  In any case, understanding and 
analysis of vibrations are crucial.

This book reports on the state of the art research and development fi ndings on this 
very broad matt er through 22 original and innovative research studies exhibiting vari-
ous investigation directions. 

In particular, it introduces recent research results on many important issues at the vi-
bration analysis fi eld such as vibration analysis of structural members like beams and 
plates especially made of composite or functionally graded materials using analytical 
and fi nite element method and shows some results on applications in vibration analy-
sis of framed structures, masonry structures and building vibration problems due to 
human rhythmic activities. 

It also presents related themes in the fi eld of vibration analysis of internal combustion 
engines, electrical machines, shaft s, rotors and gear units and some other interesting 
topics like vibration analysis of carbon nanotube mass sensors, sensitivity analysis of 
spatial multibody systems, analysis of microparts dynamics, defect detection of tubes 
and vocal fold vibrations and introduces harmonic balance; topology-based transfor-
mation and independent coordinate coupling methods. 

In summary, this book covers a wide range of interesting topics of vibration analysis.

The advantage of the book vibration analysis is its open access fully searchable by 
anyone anywhere, and in this way it provides the forum for dissemination and ex-
change of the latest scientifi c information on theoretical as well as applied areas of 
knowledge in the fi eld of vibration analysis. 

The present book is a result of contributions of experts from international scientifi c 
community working in diff erent aspects of vibration analysis. The introductions, data, 
and references in this book will help the readers know more about this topic and help 
them explore this exciting and fast-evolving fi eld. 



X Preface

The text is addressed not only to researchers, but also to professional engineers, stu-
dents and other experts in a variety of disciplines, both academic and industrial seek-
ing to gain a bett er understanding of what has been done in the fi eld recently, and what 
kind of open problems are in this area. 

I hope that readers will fi nd the book useful and inspiring by examining the recent 
developments in vibration analysis.

Tehran, February 2011

Farzad Ebrahimi    
Mechanical Engineering Department

University of Tehran
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Transverse Vibration Analysis of  
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Safa Bozkurt Coşkun1, Mehmet Tarik Atay2 and Baki Öztürk3 
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Department of Civil Engineering 41380 Kocaeli, 
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1. Introduction 
The vibration problems of uniform and nonuniform Euler-Bernoulli beams have been 
solved analytically or approximately [1-5] for various end conditions. In order to calculate 
fundamental natural frequencies and related mode shapes, well known variational 
techniques such as Rayleigh_Ritz and Galerkin methods have been applied in the past. 
Besides these techniques, some discretized numerical methods were also applied to beam 
vibration analysis successfully. 
Recently, by the emergence of new and innovative semi analytical approximation methods, 
research on this subject has gained momentum. Among these studies, Liu and Gurram [6] 
used He’s Variational Iteration Method to analyze the free vibration of an Euler-Bernoulli 
beam under various supporting conditions. Similarly, Lai et al [7] used Adomian 
Decomposition Method (ADM) as an innovative eigenvalue solver for free vibration of 
Euler-Bernoulli beam again under various supporting conditions. By doing some 
mathematical elaborations on the method, the authors obtained ith natural frequencies and 
modes shapes one at a time. Hsu et al. [8] again used Modified Adomian Decomposition 
Method to solve free vibration of non-uniform Euler-Bernoulli beams with general 
elastically end conditions. Ozgumus and Kaya [9] used a new analytical approximation 
method namely Differential Transforms Method to analyze flapwise bending vibration 
analysis of double tapered rotating Euler-Bernoulli beam. Hsu et al. [10] also used Modified 
Adomian Decomposition Method, a new analytical approximation method, to solve 
eigenvalue problem for free vibration of uniform Timoshenko beams. Ho and Chen [11] 
studied the problem of free transverse vibration of an axially loaded non-uniform spinning 
twisted Timoshenko beam using Differential Transform Method. Another researcher, 
Register [12] found a general expression for the modal frequencies of a beam with 
symmetric spring boundary conditions. In addition, Wang [13] studied the dynamic analysis 
of generally supported beam. Yieh [14] determined the natural frequencies and natural 
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modes of the Euler_Bernoulli beam using the singular value decomposition method. Also, 
Kim [15] studied the vibration of uniform beams with generally restrained boundary 
conditions. Naguleswaran [16] derived an approximate solution to the transverse vibration 
of the uniform Euler-Bernoulli beam under linearly varying axial force. Chen and Ho [17] 
studied the problem of transverse vibration of rotating twisted Timoshenko beams under 
axial loading using differential transform method to obtain natural frequencies and mode 
shapes. 
In this study, transverse vibration analysis of uniform and nonuniform Euler-Bernoulli 
beams will be briefly explained and demonstrated with some examples by using some of 
these novel approaches. To this aim, the theory and analytical techniques about lateral 
vibration of Euler-Bernoulli beams will be explained first, and then the methods used in the 
analysis will be described. Finally, some case studies will be presented by using the 
proposed techniques and the advantages of those methods will be discussed. 

2. Transverse vibration of the beams    
2.1 Formulation of the problem 
Lateral vibration of beams is governed by well-known Bernoulli-Euler equation. To develop 
the governing equation, consider the free body diagram of a beam element in bending 
shown in Fig.1. In this figure, M(x,t) is the bending moment, Q(x,t) is the shear force, and 
f(x,t) is the external force per unit length acting on the beam. 
 

 
Fig. 1. Free-body diagram of a beam element in bending 

Equilibrium condition of moments leads to the following equation: 

 0MM Q x M
x

δ ∂⎛ ⎞+ − + =⎜ ⎟∂⎝ ⎠
 (1) 

or 

 
2

2
M wQ EI
x x x

⎛ ⎞∂ ∂ ∂
= = ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
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Since a uniform beam is not assumed in the formulation, I(x) will be variable along beam 
length. 
The equation of motion in the tranverse direction for the beam element is: 

 
2

2( ) ( , )w QA x f x t x Q Q
xt

ρ δ δ∂ ∂⎛ ⎞= + − +⎜ ⎟∂∂ ⎝ ⎠
 (3) 

In Eq.(3), ρ is mass density of the material of the beam. After simplifications, Eq.(3) can be 
rewritten as follows: 

 
2

2 ( , )w QA f x t
xt

ρ ∂ ∂
+ =
∂∂

 (4) 

In view of Eq.(2), governing equation for forced transverse vibration  is obtained as below 
which is the well known Euler-Bernoulli equation. 

 
2 2 2

2 2 2 ( , )w wEI A f x t
x x t

ρ
⎛ ⎞∂ ∂ ∂

+ =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
 (5) 

For a uniform beam Eq.(5) reduces to 

 
4 2

4 2 ( , )w wEI A f x t
x t

ρ∂ ∂
+ =

∂ ∂
 (6) 

For the free vibration case, i.e. f(x,t)=0, the equation of motion becomes 

 
2 2 2

2 2 2 0w wEI A
x x t

ρ
⎛ ⎞∂ ∂ ∂

+ =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
 (7) 

If the beam is uniform, i.e. EI is constant, the equation of motion in Eq.(7) reduces to 

 
4 2

2
4 2 0w wc

x t
∂ ∂

+ =
∂ ∂

 (8) 

where  

 EIc
Aρ

= . (9)  

Transverse vibration of beams is an initial-boundary value problem. Hence, both initial and 
boundary conditions are required to obtain a unique solution w(x,t). Since the equation 
involves a second order derivative with respect to time and a fourth order derivative with 
respect to a space coordinate, two initial conditions and four boundary conditions are 
needed. 

2.2 Modal analysis 
The solution to problem given by Eq.(5) can be produced by, first obtaining the natural 
frequencies and mode shapes and then expressing the general solution as a summation of 
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modal responses. In each mode, the system will vibrate in a fixed shape ratio which leads to 
providing a separable displacement function into two separate time and space functions. 
This approach is the same for both free and forced vibration problems. Hence, the 
displacement function w(x,t) can be defined by the following form. 

 ( , ) ( ) ( )w x t Y x T t=  (10) 

Consider the free vibration problem for a uniform beam, i.e. EI is constant. The governing 
equation for this specific case previously was given in Eq.(8). The free vibration solution will 
be obtained by inserting Eq.(10) into Eq.(8) and rearranging it as 

 
2 4 2

2
4 2
( ) 1 ( )

( ) ( )
c Y x T t

Y x T tx t
ω∂ ∂

= − =
∂ ∂

 (11) 

where c is defined in Eq.(9) and ω2 is defined as constant. Eq.(11) can be rearranged as two 
ordinary differential equations as 

 
4

4
4
( ) ( ) 0d Y x Y x

dx
λ− =  (12) 

 
2

2
2
( ) ( ) 0d T t T t

dt
ω+ =  (13) 

where 

 
2

4
2c

ωλ =  (14) 

General solution of Eq.(12) is a mode shape and given by 

 1 2 3 4( ) cosh sinh cos sinY x C x C x C x C xλ λ λ λ= + + +  (15) 

The constants C1, C2, C3 and C4 can be found from the end conditions of the beam. Then, the 
natural frequencies of the beam are obtained from Eq.(14) as 

 
2cω λ=  (16) 

Inserting Eq.(9) into Eq.(16) with rearranging leads to 

 ( )2
4

EIL
AL

ω λ
ρ

=  (17) 

2.3 Boundary conditions 
The common boundary conditions related to beam’s ends are as follows: 

2.3.1 Simply supported (pinned) end 

 0Y = Deflection = 0 
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2

2 0YEI
x

∂
=

∂
 Bending Moment = 0 

2.3.2 Fixed (clamped) end 

 0Y = Deflection = 0    

 0Y
x

∂
=

∂
 Slope = 0 

2.3.3 Free end 

 
2

2 0YEI
x

∂
=

∂
 Bending Moment = 0 

 
2

2 0YEI
x x
⎛ ⎞∂ ∂

=⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
 Shear Force = 0 

2.3.4 Sliding end 

 0Y
x

∂
=

∂
 Slope = 0 

 
2

2 0YEI
x x
⎛ ⎞∂ ∂

=⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
 Shear Force = 0 

The exact frequencies for lateral vibration of the beams with different end conditions will 
not be computed due to the procedure explained here. Since, the motivation of this chapter 
is the demonstration of the use of analytical approximate techniques in the analysis of 
bending vibration of beams, available exact results related to the selected case studies will 
be directly taken from [5,18]. The reader can refer to these references for further details in 
analytical derivations of the exact results. 

2.4 The methods used in the analysis of transverse vibration of beams 
Analytical approximate solution techniques are used widely to solve nonlinear ordinary or 
partial differential equations, integro-differential equations, delay equations, etc. Main 
advantage of employing such techniques is that the problems are considered in a more 
realistic manner and the solution obtained is a continuous function which is not the case for 
the solutions obtained by discretized solution techniques. Hence these methods are 
computationally much more efficient in the solution of those equations. 
The methods that will be used throughout the study are, Adomian Decomposition Method 
(ADM), Variational Iteration Method (VIM) and Homotopy Perturbation Method (HPM). 
Below, each technique will be explained and then all will be applied to several problems 
related to the topic of the article. 
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2.4.1 Adomian Decomposition Method (ADM) 
In the ADM a differential equation of the following form is considered 

 ( )Lu Ru Nu g x+ + =  (18) 

where L is the linear operator which is highest order derivative,  R is the remainder of linear 
operator  including derivatives of less order than L, Nu represents the nonlinear terms and g 
is the source term. Eq.(18) can be rearranged as 

 ( )Lu g x Ru Nu= − −  (19) 

Applying the inverse operator L-1 to both sides of Eq.(19) employing given conditions we 
obtain 

 { } ( ) ( )1 1 1( )u L g x L Ru L Nu− − −= − −  (20) 

After integrating source term and combining it with the terms arising from given conditions 
of the problem, a function f(x) is defined in the equation as 

 ( ) ( )1 1( )u f x L Ru L Nu− −= − −  (21) 

The nonlinear operator ( )Nu F u= is represented by an infinite series of specially generated 
(Adomian) polynomials for the specific nonlinearity. Assuming Nu is analytic we write 

  
0

( ) k
k

F u A
∞

=
= ∑  (22) 

The polynomials Ak’s are generated for all kinds of nonlinearity so that they depend only on 
uo to uk components and can be produced by the following algorithm. 

 0 0( )A F u=  (23) 

 1 1 0( )A u F u′=  (24) 

 2
2 2 0 1 0

1( ) ( )
2!

A u F u u F u′ ′′= +  (25) 

 3
3 3 0 1 2 0 1 0

1( ) ( ) ( )
3!

A u F u u u F u u F u′ ′′ ′′′= + +  (26) 

 

The reader can refer to [19,20] for the algorithms used in formulating Adomian polynomials. 
The solution u(x) is defined by the following series   

 
0

k
k

u u
∞

=
= ∑  (27) 

where the components of the series are determined recursively as follows: 
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 0 ( )u f x=  (28) 

 ( ) ( )1 1
1 ,      0k k ku L Ru L A k− −

+ = − − ≥  (29) 

2.4.2 Variational Iteration Method (VIM) 
According to VIM, the following differential equation may be considered: 

 ( )Lu Nu g x+ =  (30) 

where L is a linear operator, and N is a nonlinear operator, and g(x) is an inhomogeneous 
source term. Based on VIM, a correct functional can be constructed as follows: 

 { }1
0

( ) ( ) ( ) ( )  
x

n n n nu u Lu Nu g dλ ξ ξ ξ ξ ξ+ = + + −∫  (31) 

where λ is a general Lagrangian multiplier, which can be identified optimally via the 
variational theory, the subscript n denotes the nth-order approximation, u is considered as a 
restricted variation i.e. 0uδ = . By solving the differential equation for λ obtained from 
Eq.(31) in view of  0uδ = with respect to its boundary conditions, Lagrangian multiplier λ(ξ) 
can be obtained. For further details of the method the reader can refer to [21]. 

2.4.3 Homotopy Perturbation Method (HPM) 
HPM provides an analytical approximate solution for problems at hand as other explained 
techniques. Brief theoretical steps for the equation of following type can be given as 

 ( ) ( ) ( )  ,  L u N u f r r+ = ∈Ω  (32) 

with boundary conditions ( , ) 0B u u n∂ ∂ = . In Eq.(8) L is a linear operator, N is nonlinear 
operator, B is a boundary operator, and f(r) is a known analytic function. HPM defines 
homotopy as  

 ( , ) [0,1]v r p R= Ω× →  (33) 

which satisfies following inequalities: 

 0( , ) (1 )[ ( ) ( )] [ ( ) ( ) ( )] 0H v p p L v L u p L v N v f r= − − + + − =  (34) 
or  

  0 0( , ) ( ) ( ) ( ) [ ( ) ( )] 0H v p L v L u pL u p N v f r= − + + − =   (35) 

where r∈Ω  and [0,1]p∈  is an imbedding parameter, u0 is an initial approximation which 
satisfies the boundary conditions. Obviously, from Eq.(34) and Eq.(35) , we have : 

 0( ,0) ( ) ( ) 0H v L v L u= − =  (36) 

  ( ,1) ( ) ( ) ( ) 0H v L v N v f r= + − =   (37) 

As p changing from zero to unity is that of  ( , )v r p  from 0u  to ( )u r . In topology, this 
deformation 0( ) ( )L v L u−  and ( ) ( ) ( )L v N v f r+ −  are called homotopic. The basic 
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assumption is that the solutions of Eq.(34) and Eq.(35)  can be expressed as a power series 
in p such that: 

  2 3
0 1 2 3 ...v v pv p v p v= + + + +   (38) 

The approximate solution of ( ) ( ) ( )  ,  L u N u f r r+ = ∈Ω  can be obtained as:  

 0 1 2 31
lim ...
p

u v v v v v
→

= = + + + +   (39) 

The convergence of the series in Eq.(39) has been proved in [22]. The method is described in 
detail in references [22-25]. 

2.5 Case studies 
2.5.1 Free vibration of a uniform beam 
The governing equation for this case was previously given in Eq.(12). ADM, VIM and HPM 
will be applied to this equation in order to compute the natural frequencies for the free 
vibration of a beam with constant flexural stiffness, i.e. constant EI, and its corresponding 
mode shapes. To this aim, five different beam configurations are defined with its end 
conditions. These are PP, the beam with both ends pinned, CC, the beam with both ends 
clamped, CP, the beam with one end clamped and one end pinned, CF, the beam with one 
end clamped and one end free, CS, the beam with one end clamped and one and sliding. 
The boundary conditions associated with these configurations was given previously in text. 
Below, the formulations by using ADM, VIM and HPM are given and then applied to the 
governing equation of the problem. 
2.5.1.1 Formulation of the algorithms 
2.5.1.1.1 ADM 
The linear operator and its inverse operator for Eq.(12) is 

 
4

4( ) ( )dL
dx

⋅ = ⋅  (40) 

 1

0 0 0 0

( ) ( )    
x x x x

L dx dx dx dx− ⋅ = ⋅∫ ∫ ∫ ∫  (41) 

To keep the formulation a general one for all configurations to be considered, the boundary 
conditions are chosen as (0)Y A= , (0)Y B′ = , (0)Y C′′ =  and (0)Y D′′′ = . Suitable values 
should be replaced in the formulation with these constants. For example, 0A =  and 0C =  
should be inserted for the PP beam. Hence, the equation to be solved and the recursive 
algorithm can be given as 

 4LY Yλ=  (42) 

 
2 3

1 4( )
2! 3!
x xY A Bx C D L Yλ−= + + + +  (43) 

 1 4
1 ( ),      0n nY L Y nλ−

+ = ≥  (44) 
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Finally, the solution is defined by 

 0 1 2 3 ...Y Y Y Y Y= + + + +  (45) 

2.5.1.1.2 VIM 

Based on the formulation given previously, Lagrange multiplier λ would be obtained for the 
governing equation, i.e. Eq.(12), as 

 ( )3

( )
3!

xξ
λ ξ

−
=  (46) 

An iterative algorithm can be constructed inserting Lagrange multiplier and governing 
equation into the formulation given in Eq.(31) as 

 { }4
1

0

( ) ( ) ( )  
x

iv
n n n nY Y Y Y dλ ξ ξ λ ξ ξ+ = + −∫  (47) 

Initial approximation for the algorithm is chosen as the solution of 0LY = which is a cubic 
polynomial with four unknowns which will be determined by the end conditions of the 
beam.  
2.5.1.1.3 HPM 
Based on the formulation, Eq.(12) can be divided into two parts as 
 

  ivLY Y=   (48) 

 4NY Yλ= −  (49) 

The solution can be expressed as a power series in p such that 
 

 2 3
0 1 2 3 ...Y Y pY p Y p Y= + + + +  (50) 

Inserting Eq.(50) into Eq.(35) provides a solution algorithm as 
 

 0 0 0iv ivY y− =  (51) 

 4
1 0 0 0iv ivY y Yλ+ − =  (52) 

 4
1 0,      2n nY Y nλ −− = ≥  (53) 

Hence, an approximate solution would be obtained as 
 

 0 1 2 3 ...Y Y Y Y Y= + + + +  (54) 

Initial guess is very important for the convergence of solution in HPM. A cubic polynomial 
with four unknown coefficients can be chosen as an initial guess which was shown 
previously to be an effective one in problems related to Euler beams and columns [26-31]. 
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2.5.1.2 Computation of natural frequencies 
By the use of described algorithms, an iterative procedure is conducted and a polynomial 
including the unknown coefficients coming from the initial guess is produced as a 
solution to the governing equation. Besides four unknowns from initial guess, an 
additional unknown λ also exists in the solution. Applying each boundary condition to 
the solution produces a linear algebraic system of equations which can be defined in 
matrix form as 

 [ ]{ } { }( ) 0M λ α =  (55) 

where { } , , , TA B C Dα = . For a nontrivial solution, determinant of coefficient matrix must 
be zero. Determinant of matrix [ ]( )M λ  yields a characteristic equation in terms of λ. Positive 
real roots of this equation are the natural free vibration frequencies for the beam with 
specified end conditions.  
2.5.1.3 Determination of vibration mode shapes 
Vibration mode shapes for the beams can also be obtained from the polynomial 
approximations by the methods considered in this study. Introducing, the natural 
frequencies into the solution, normalized polynomial eigenfunctions for the mode shapes 
are obtained from 

 
( )

( )
1/21 2

0

,
 ,  1,2,3,...

,

N j
j

N j

Y x
Y j

Y x dx

λ

λ

= =
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
∫

 (56) 

The same approach can be employed to predict mode shapes for the cases including variable 
flexural stiffness.  

2.5.1.4 Orthogonality of mode shapes 
Normalized mode shapes obtained from Eq.(56) should be orthogonal. These modes can be 
shown to satisfy the following condition. 

 
0,      

 
1,      i j

i j
YY dx

i j
≠⎧

=⎨ =⎩
∫  (57) 

2.5.1.5 Results of the analysis 
After applying the procedures explained in the text, the following results are obtained for 
the natural frequencies and mode shapes. Comparison with the exact solutions is also 
provided that one can observe an excellent agreement between the exact results and 
computed results. 
Ten iterations are conducted for each method and computed λL values are compared with 
the corresponding exact values for the first three modes of vibration in the following table.  
From the table it can be seen that computed values are highly accurate which show that the 
techniques used in the analysis are very effective. Natural frequencies can be easily obtained 
by inserting the values in Table 1 into Eq.(17). 
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The free vibration mode shapes of uniform beam for the first three mode are also depicted in 
the following figures. Since the obtained mode shapes coincide with the exact ones, to 
prevent a possible confusion to the reader, the exact mode shapes and the computed ones 
are not shown separately in these figures. The mode shapes for the free vibration of a 
uniform beam for five different configurations are given between Figs.2-6. 
 

Beam Mode Exact ADM VIM HPM 

P-P 
1 3.14159265 (π) 3.14159265 3.14159265 3.14159265 
2 6.28318531 (2π) 6.28318531 6.28318531 6.28318531 
3 9.42477796 (3π) 9.42477796 9.4247796 9.4247796 

C-C 
1 4.730041 4.73004074 4.73004074 4.73004074 
2 7.853205 7.85320462 7.85320462 7.85320462 
3 10.995608 10.99560784 10.99560784 10.99560784 

C-P 
1 3.926602 3.92660231 3.92660231 3.92660231 
2 7.068583 7.06858275 7.06858275 7.06858275 
3 10.210176 10.21017612 10.21017612 10.21017612 

C-F 
1 1.875104 1.87510407 1.87510407 1.87510407 
2 4.694091 4.69409113 4.69409113 4.69409113 
3 7.854757 7.85475744 7.85475744 7.85475744 

C-S 
1 2.365020 2.36502037 2.36502037 2.36502037 
2 5.497806 5.49780392 5.49780392 5.49780392 
3 8.639380 8.63937983 8.63937983 8.63937983  

Table 1. Comparison of λL values for the uniform beam 

 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

M
od

e 

Sh
ap

e 

Y i
(x

)

x/L

Mode 1

Mode 2

Mode 3

 
 

Fig. 2. Free vibration modes of PP beam. 
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Fig. 3. Free vibration modes of CC beam. 

 
 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1
 

 
x/L

Mode 1

Mode 2

Mode 3

M
od

e 
Sh

ap
e 

Y 
 (x

)
i

 
 

Fig. 4. Free vibration modes of CP beam. 
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Fig. 5. Free vibration modes of CF beam. 
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Fig. 6. Free vibration modes of CF beam. 
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Orthogonality condition given in Eq.(57) for each mode will also be shown to be satisfied. To 
this aim, the resulting polynomials representing normalized eigenfunctions are integrated 
according to the orthogonality condition and following results are obtained. 
The PP Beam: 

-14 -12

-11

1.0000000000000018 3.133937506642793*10 1.1716394903869283*10

 1.0000000000011495 -1.2402960384615706*10
1.0000000002542724

i jYY dx

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫  

The CC Beam: 

-13 -11

-10

1.0000000000000218 -3.2594265231428034*10 3.0586251883350275*10

 0.9999999999825311 -4.152039340197406*10
0.9999999986384138

i jYY dx

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫  

The CP Beam: 

-13 -12

-11

1.0000000000000027 -1.1266760906960104*10 3.757083743946838*10

 0.9999999999991402 -5.469593759847241*10
1.000000001594055

i jYY dx

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫  

The CF Beam: 

-15 -14

-13

1.0000000000000000 1.134001985461197*10 5.844267022420876*10

 1.0000000000000178 4.1094000558822104*10
0.9999999999969831

i jYY dx

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫  

The CS Beam: 

-15 -13

-13

1.0000000000000009 -1.067231239470151*10 -2.57978811982526*10

 1.0000000000002232 -2.422143056441983*10
1.0000000000643874

i jYY dx

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫  

From these results it can be clearly observed that the orthogonality condition is perfectly 
satisfied for each configuration of the beam. 
The analysis for the lateral free vibration of the uniform beam is completed. Now, these 
techniques will be applied to a circular rod having variable cross-section along its length. 

2.5.2 Free vibration of a rod with variable cross-section 
A circular rod having a radius changing linearly is considered in this case.  Such a rod is 
shown below in Fig.7. The function representing the radius would be as 

 0( ) (1 )R x R bx= −  (58) 
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where Ro is the radius at the left end, L is the length of the rod and 1bL ≤ .  
 

 
Fig. 7. Circular rod with variable cross-section 

Employing Eq.(58), cross-sectional area and moment of inertia for a section at an arbitrary 
point x becomes: 

 2
0( ) (1 )A x A bx= −  (59) 

 4
0( ) (1 )I x I bx= −  (60) 

where 

 2
0 0A Rπ=  (61) 

 
4
0

0 4
RI π

=  (62) 

Free vibration equation of the rod was previously given in Eq.(7) as 

2 2 2

2 2 2 0w wEI A
x x t

ρ
⎛ ⎞∂ ∂ ∂

+ =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
 

After the application of separation of variables technique by defining the displacement 
function as ( , ) ( ) ( )w x t Y x T t= , the equation to obtain natural frequencies and mode shapes 
becomes 

 
2 2

2
2 2( ) ( ) 0d d YEI x A x Y

dx dx
ω ρ

⎛ ⎞
− =⎜ ⎟⎜ ⎟

⎝ ⎠
 (63) 

2.5.2.1 Formulation of the algorithms 
2.5.2.1.1 ADM 
Application of ADM to Eq.(63) leads to the following 

 2 4
1 2 0 28 ( ) 12 ( ) ( ) 0ivY b x Y b x Y x Yψ ψ λ ψ′′′ ′′− + − =  (64) 

where 

 1
1( )

1
x

bx
ψ =

−
 (65) 

x 
R

L 
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( )2 2

1( )
1

x
bx

ψ =
−

 (66) 

 
2

4
0 2

0c
ωλ =  (67) 

 0
0

0

EIc
Aρ

=  (68) 

Once λo is provided by ADM, natural vibration frequencies for the rod can be easily found 
from the equation below. 

 ( )2 0
0 4

0

EIL
A L

ω λ
ρ

=  (69) 

ADM gives the following formulation with the previously defined fourth order linear 
operator. 

 ( )
2 3

1 2 4
1 2 0 28 ( ) 12 ( ) ( )

2! 3!
x xY A Bx C D L b x Y b x Y x Yψ ψ λ ψ− ′′′ ′′= + + + + − +  (70) 

2.5.2.1.2 VIM 
Lagrange multiplier is the same as used in the uniform beam case due to the fourth order 
derivative in Eq.(64). Hence an algorithm by using VIM can be constructed as 

 { }2 4
1 1 2 0 2

0

( ) 8 ( ) 12 ( ) ( )  
x

iv
n n n n n nY Y Y b x Y b x Y x Y dλ ξ ψ ψ λ ψ ξ+ ′′′ ′′= + − + −∫  (71) 

2.5.2.1.3 HPM 
Application of HPM to Eq.(64) produce following set of recursive equations as the solution 
algorithm. 

 0 0 0iv ivY y− =  (72) 

 2 4
1 0 1 0 2 0 0 2 08 ( ) 12 ( ) ( ) 0iv ivY y b x Y b x Y x Yψ ψ λ ψ′′′ ′′+ − + − =  (73) 

 2 4
1 1 2 1 0 2 18 ( ) 12 ( ) ( ) 0,      2n n n nY b x Y b x Y x Y nψ ψ λ ψ− − −′′′ ′′− + − = ≥  (74) 

2.5.2.2 Results of the analysis 
After applying the proposed formulations, the following results are obtained for the natural 
frequencies and mode shapes. Ten iterations are conducted for each method and computed 
λοL values are given for the first three modes of vibration in the following table. 
The free vibration mode shapes of the rod for the first three modes are also depicted in the 
following figures. The mode shapes for predefined five different configurations are given 
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between Figs. 8-12. To demonstrate the effect of variable cross-section in the results, a 
comparison is made with normalized mode shapes for a uniform rod which are given 
between Figs.2-6.   
 

Beam Mode ADM VIM HPM 

P-P 
1 2.97061902 2.97061902 2.97061902 
2 5.95530352 5.95530352 5.95530352 
3 8.93099026 8.93099026 8.93099026 

C-C 
1 4.48292606 4.48292606 4.48292606 
2 7.44076320 7.44076320 7.44076320 
3 10.41682600 10.41682600 10.41682600 

C-P 
1 3.80402043 3.80402043 3.80402043 
2 6.74289447 6.74289447 6.74289447 
3 9.70480586 9.70480586 9.70480586 

C-F 
1 1.96344512 1.96344512 1.96344512 
2 4.58876313 4.58876313 4.58876313 
3 7.52531208 7.52531208 7.52531208 

C-S 
1 2.35500726 2.35500726 2.35500726 
2 5.26125511 5.26125511 5.26125511 
3 8.21783948 8.21783948 8.21783948  

Table 2. Comparison of λοL values for the variable cross-section rod 
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Fig. 8. Free vibration modes of PP rod (         variable cross section          uniform rod). 
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Fig. 9. Free vibration modes of CC rod (         variable cross section          uniform rod). 
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Fig. 10. Free vibration modes of CP rod (         variable cross section          uniform rod). 
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Fig. 11. Free vibration modes of CF rod (         variable cross section          uniform rod). 
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Fig. 12. Free vibration modes of CS rod (         variable cross section          uniform rod). 
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3. Conclusion 
In this article, some analytical approximation techniques were employed in the transverse 
vibration analysis of beams. In a variety of such techniques, the most used ones, namely 
ADM, VIM and HPM were chosen for use in the computations. First, a brief theoretical 
knowledge was given in the text and then all of the methods were applied to selected cases. 
Since the exact values for the free vibration of a uniform beam was available, the analyses 
were started for that case. Results showed an excellent agreement with the exact ones that 
all three methods were highly effective in the computation of natural frequencies and 
vibration mode shapes. Orthogonality of the mode shapes was also proven. Finally, ADM, 
VIM and HPM were applied to the free vibration analysis of a rod having variable cross 
section. To this aim, a rod with linearly changing radius was chosen and natural frequencies 
with their corresponding mode shapes were obtained easily.  
The study has shown that ADM, VIM and HPM can be used effectively in the analysis of 
vibration problems. It is possible to construct easy-to-use algorithms which are highly 
accurate and computationally efficient. 
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Vibration Analysis of Beams with and without 
Cracks Using the Composite Element Model  

Z.R. Lu, M. Huang and J.K. Liu  
Sun Yat-sen University  

P.R. China   

1. Introduction    
Beams are fundamental models for the structural elements of many engineering applications 
and have been studied extensively. There are many examples of structures that may be 
modeled with beam-like elements, for instance, long span bridges, tall buildings, and robot 
arms.  
The vibration of Euler–Bernoulli beams with one step change in cross-section has been well 
studied. Jang and Bert (1989) derived the frequency equations for combinations of classical 
end supports as fourth order determinants equated to zero. Balasubramanian and 
Subramanian (1985) investigated the performance of a four-degree-of-freedom per node 
element in the vibration analysis of a stepped cantilever. De Rosa (1994) studied the 
vibration of a stepped beam with elastic end supports. Recently, Koplow et al. (2006) 
presented closed form solutions for the dynamic response of Euler–Bernoulli beams with 
step changes in cross section. 
There are also some works on the vibration of beams with more than one step change in 
cross-section.  Bapat and Bapat (1987) proposed the transfer matrix approach for beams with 
n-steps but provided no numerical results. Lee and Bergman (1994) used the dynamic 
flexibility method to derive the frequency equation of a beam with n-step changes in cross-
section. Jaworski and Dowell (2008) carried out a study for the free vibration of a 
cantilevered beam with multiple steps and compared the results of several theoretical 
methods with experiment.  
A new method is presented to analyze the free and forced vibrations of beams with either a 
single step change or multiple step changes using the composite element method (CEM) 
(Zeng, 1998; Lu & Law, 2009). The correctness and accuracy of the proposed method are 
verified by some examples in the existing literatures. The presence of cracks in the structural 
components, for instance, beams can have a significant influence on the dynamic responses 
of the whole structure; it can lead to the catastrophic failure of the structure. To predict the 
failure, vibration monitoring can be used to detect changes in the dynamic responses and/or 
dynamic characteristics of the structure. Knowledge of the effects of cracks on the vibration 
of the structure is of importance. Efficient techniques for the forward analysis of cracked 
beams are required. To this end, the composite element method is then extended for free 
and forced vibration analysis of cracked beams.  
The principal advantage of the proposed method is that it does not need to partition the 
stepped beam into uniform beam segments between any two successive discontinuity points 
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and the whole beam can be treated as a uniform beam. Moreover, the presented work can 
easily be extended to cracked beams with an arbitrary number of non-uniform segments.  

2. Theory  
2.1 Introduction to Composite Element Method (CEM)  
The composite element is a relatively new tool for finite element modeling. This method is 
basically a combination of the conventional finite element method (FEM) and the highly 
precise classical theory (CT).  In the composite element method, the displacement field is 
expressed as the sum of the finite element displacement and the shape functions from the 
classical theory. The displacement field of the CEM can be written as 

 ( , ) ( , ) ( , )CEM FEM CTu x t u x t u x t= +  (1) 

where ( , )FEMu x t  and ( , )CTu x t are the individual displacement fields from the FEM and CT, 
respectively. 
Taking a planar beam element as an example, the first term of the CEM displacement field 
can be expressed as the product of the shape function vector of the conventional finite 
element method ( )N x  and the nodal displacement vector q 

 ( , ) ( ) ( )FEMu x t N x q t=  (2) 

where 1 1 2 2( ) [ ( ), ( ), ( ), ( )]Tq t v t t v t t= θ θ  and ‘ v ’ and ‘θ ’ represent the transverse and rotational 
displacements, respectively.  
The second term uCT(x,t) is obtained by the multiplication of the analytical mode shapes 
with a vector of N coefficients c ( also called the c degrees-of-freedom or c-coordinates). 

 
1

( , ) ( ) ( )
N

CT i i
i

u x t x c t
=

= ∑ϕ  (3) 

where  iϕ (i=1,2,…N) is the analytical shape function of the beam. Different analytical shape 
functions are used according to the boundary conditions of the beam. 
Like the FEM, the CEM can be refined using the h-refinement technique by increasing the 
number of finite elements. Moreover, it can also be refined through the c-refinement 
method, by increasing the number of shape functions. Here, we apply the c-refinement from 
the CEM, where the beam needs only to be discretized into one element. This will reduce the 
total number of degrees-of-freedom in the FEM. 
The displacement field of the CEM for the Euler-Bernoulli beam element can be written 
from Equations (1) to (3) as 

 ( , ) ( ) ( )CEMu x t S x Q t=  (4) 

where 1 2 3 4 1 2( ) [ ( ), ( ), ( ), ( ), ( ), ( ),..., ( )]NS x N x N x N x N x x x x= φ φ φ  is the generalized shape 

function of the CEM, 1 1 2 2 1 2( ) [ ( ), ( ), ( ), ( ), ( ), ( ),..., ( )]TNQ t v t t v t t c t c t c t= θ θ  is the vector of 
generalized displacements, and N is the number of shape functions used from the classical 
theory. 
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2.2 Vibration analysis for stepped beams without crack  
Figure 1 shows the sketch of a beam with n steps, the height of the beam ( )d x  with n step 
changes in cross section is expressed as 

 

1 1

2 1 2

1

0

( )

n n n

d x L
d L x L

d x

d L x L−

≤ <⎧
⎪ ≤ ≤⎪= ⎨
⎪
⎪ ≤ ≤⎩

 (5) 

It is assumed that the beam has aligned neutral axis, the flexibility of the beam ( )EI x  can be 
expressed as 
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⎧
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⎪
⎪
⎪ ≤ ≤= ⎨
⎪
⎪
⎪
⎪ ≤ ≤
⎩

 (6) 

where w is the width of the beam. For the stepped beam with misaligned neutral axes, the 
expression of ( )EI x  can not expressed simply as shown in Equation (6). 
The beam mass per unit length is 
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where ρ is the mass density of the beam. 
The elemental stiffness matrix of the stepped beam can be obtained from the following 
equation 
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where the submatrix [ ]qqk  corresponds to the element stiffness matrix from the FEM for the 
stepped beam; the submatrix [ ]qck  corresponds to the coupling terms of the q-dofs and the 
c-dofs; submatrix [ ]cqk  is a transpose matrix of [ ]qck , and the submatrix [ ]cck  corresponds 
to the c-dofs and is a diagonal matrix. 
The consistent elemental mass matrix can be expressed as 
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where the submatrix [ ]qqm  corresponds to the elemental mass matrix from the FEM for the 
stepped beam; the submatrix [ ]qcm  corresponds to the coupling terms of the q-dofs and the 
c-dofs; submatrix [ ]cqm  is a transpose matrix of [ ]qcm , and the submatrix [ ]ccm  corresponds 
to the c-dofs and is a diagonal matrix.  
After introducing the boundary conditions, this can be performed by setting the associated 
degrees-of-freedom in the systematic stiffness matrix K to be a large number, say, 1210 , the 
governing equation for free vibration of the beam can be expressed as 

 2( ) 0V− =K Mω  (10) 

where K and M are system stiffness and mass matrices, respectively, ω  is the circular 
frequency,   from which and the natural frequencies are identified. The ith normalized mode 
shapes of the stepped beam can be expressed as 
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The equation of motion of the forced vibration of the beam with n steps when expressed in 
terms of the composite element method is 

 ( )Q Q Q f t+ + =M C K  (12) 

where M and K are the system mass and stiffness matrices, which are the same as those 
shown in Equation (10), C is the damping matrix which represents a Rayleigh damping 
model,say, 1 2a a= +C M K , 1a  and 2a  are constants to be determined from two modal 
damping ratios. For an external force F(t) acting at the location Fx  from the left support, the 
generalized force vector ( )f t  can be expressed as 

 1 2 3 4 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T
F F F F F n Ff t N x N x N x N x x x F t= ⎡ ⎤⎣ ⎦φ φ  (13) 

The generalized acceleration Q , velocity Q  and displacement Q  of the stepped beam can 
be obtained from Equation (12) by direct integration. The physical acceleration ( , )u x t  is 
obtained from  

 ( , ) [ ( )]Tu x t S x Q=  (14) 

The physical velocity and displacement can be obtained in a similar way, i.e. 

 ( , ) [ ( )]Tu x t S x Q= ,  (15a) 

 ( , ) [ ( )]Tu x t S x Q=  (15b) 

2.3 The crack model  
Numerous crack models for a cracked beam can be found in the literature. The simplest one 
is a reduced stiffness (or increased flexibility) in a finite element to simulate a small crack in 
the element (Pandey et al., 1991; Pandy & Biswas, 1994). Another simple approach is to 
divide the cracked beam into two beam segments joined by a rotational spring that 
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represents the cracked section (Rizos et al., 1990; Chaudhari & Maiti, 2000). Christides and 
Barr (1984) developed the one-dimensional vibration theory for the lateral vibration of a 
cracked Euler-Bernoulli beam with one or more pairs of symmetric cracks. 
According to Christides and Barr(1984), the variation of bending stiffness ( )dEI x  along the 
cracked beam length takes up the form of 

 0( )
1 ( 1)exp( 2 / )d

c

EIEI x
c x x d

=
+ − − −α

 (16) 

where E is the Young’s modulus of the beam, 3
0 /12I wd=  is the second moment of area of 

the intact beam, 31 /(1 )rc C= − , /r cC d d=  is the crack depth ratio and cd and d are the 
depth of crack and the beam, respectively, cx  is the location of the crack. α is a constant 
which governs the rate of decay and it is estimated by Christides and Barr from experiments 
to be 0.667. According to Lu and Law (2009), this parameter needs to be adjusted to be 1.426.  

2.4 Vibration analysis for beams with crack(s)  
The elemental stiffness matrix of the cracked beam can be obtained from the following 
equation 
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It is assumed that the existence of crack does not affect the elemental mass matrix, the 
elemental mass matrix can be expressed in the similar way with the intact beam 
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The equation of motion of the forced vibration of a cracked beam with n cracks when 
expressed in terms of the composite element method is 

 
1 1, , ,( ,..., ,... ) ( )

i i n nL c L c L cQ Q x d x d x d Q f t+ + =M C K  (19) 

3. Applications Information 
3.1 Free and forced vibration analysis for beam without crack  
3.1.1 Free vibration analysis for a free-free beam with a single step 
The free vibration of the free-free beam studied in Koplow et al. (2006) is restudied using the 
CEM and the results are compared with those in Koplow et al. Figure 2 shows the geometry 
of the beam under study. The material has a mass density of 32830 /kg m=ρ , and a Young’s 
modulus of 71.7E GPa= . In the CEM when 350 numbers of c-dofs are used, the first three 
natural frequencies are converged. The first three natural frequencies of the beam are 
291.9Hz, 1176.2Hz and 1795.7Hz, respectively. The calculated natural frequencies from the 
CEM are very close to the experimental values in Koplow et al. when the test is measured at 
location A in Figure 2, which are 291Hz, 1165Hz and 1771Hz, respectively. The relative 
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errors between the CEM and the experimental values of the three natural frequencies are 
0.31%, 0.96% and 1.39%, respectively. This shows the proposed method is accuracte. 

3.1.2 Free vibration analysis for a cantilever beam with a several steps 
The cantilever beam studied in Jaworski and Dowell (2008) is restudied to further check the 
accuracy and effectiveness of the proposed method. Figure 3 shows the dimensions of the 
beam under study. The parameters of the beam under study are: 60.6E GPa=  and 

32664 /kg m=ρ .  In the CEM model of the beam, the beam is discretized into one element 
and 350 terms of c-dofs are used in the calculation. The first and second flapwise (out-of-
plane) bending mode frequencies are calculated to be 10.758 Hz and 67.553 Hz, and the first 
chordwise (in-plane) bending mode frequency is 54.699 Hz. The results from the CEM agree 
well with the theoretical results in Jaworski and Dowell  using Euler-Bernoulli theory, as 
shown in Table 1. 

3.1.3 Forced vibration analysis for a cantilever beam with two steps 
In this section, the forced vibration analysis for the stepped beam is investigated. The 
dynamic responses of the beam under external force are obtained from the CEM and the 
results are compared with those from the FEM. Figure 4 shows the cantilever beam under 
study. The parameters of the beam under study are 69.6E GPa=  and 32700 /kg m=ρ . A 
sinusoidal external force is assumed to act at free end of the beam with a magnitude of 1 N 
and at a frequency of 10 Hz. The time step is 0.005 second in calculating the dynamic 
response. The Rayleigh damping model is adopted in the calculation with 0.01 and 0.02 as 
the first two modal damping ratios. In the CEM model, the beam is discretized into one 
element and 350 c-dofs are used in the calculation of the dynamic responses. Figure 5 shows 
the displacement response, velocity response and acceleration response at the free end of the 
beam. In order to check the accuracy of the responses from the CEM, a forced vibration 
analysis for the beam is conducted using the FEM. The beam is discretized into 90 Euler-
Bernoulli beam elements with a total of 182 dofs.  The corresponding responses from the 
FEM and the CEM are compared in Figure 5. This indicates the accuracy of the proposed 
method for forced vibration of multiple stepped beam. Figure 6 gives a close view between 
the responses from two methods. From this figure, one can see that the two time histories in 
every subplot are virtually coincident indicating the excellent agreement between the time 
histories. 

3.2 Free and forced vibration analysis for beam with crack 
3.2.1 Free vibration analysis for a uniform cantilever beam with a single crack 
An experimental work in Sinha et al. (2002) is re-examined. The geometric parameters of the 
beam are: length 996mm, width 50mm, depth 25mm, material properties of the beam are: 
Young’s modulus 69.79E GPa= , mass density 32600 /kg m=ρ . The beam is discretized into 
one element and ten shape functions are used in the calculation with the total degrees-of-
freedom in the CEM equals 14, while the total degrees-of-freedom in the finite element 
model is 34 for the beam in Sinha et al. The crack depth in the beams varies in three stages of 
4mm, 8mm and 12mm. The comparison of predicted natural frequencies of the beam from 
the proposed model and those in  Sinha et al. and the experimental results are shown in 
Table 2. The proposed model, in general, gives better results than the model in Sinha et al. 
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since the latter crack model is a linear approximation of the theoretical crack model of 
Christides and Barr.  

3.2.2 Free vibration analysis for a cantilever beam with multiple cracks 
The last beam above is studied again with a new crack introduced. The first crack is at 
595mm from the left end with a fixed crack depth of 12mm while the second crack is at 
800mm from the left end with the crack depth varying from 4mm to 12mm in step of 4mm. 
Table 3 gives the first five natural frequencies of the beam by CEM method and compares 
with those from Sinha et al. and the experimental measurement.  The results from CEM are 
found closer to the experimental prediction than those in Sinha et al. The above comparisons 
show that the CEM approach of modeling a beam with crack(s) is accurate for the vibration 
analysis. A significant advantage of the model is the much lesser number of DOFs in the 
resulting finite element model of the structure. 

3.2.3 Forced vibration analysis for a cracked simply supported beam  
The forced vibration analysis for a simply supported cracked beam  is conducted in this 
section. The effects of the presence of crack on the dynamic response of the beam is 
investigated. The parameters of the beam under study are taken as: Young’s 
modulus 28E = GPa, width w=200mm, depth d=200mm, length L=8.0m, mass 
density 32500 /kg m=ρ . Two cases are investigated in the following.  
Effect of crack depth on the dynamic response 

An impulsive force is assumed to act at mid-span of the beam with a magnitude of 100N, the 
force starts to act on the beam from the beginning and lasts for 0.1 second. The time step is 
0.002 s in calculating the dynamic response. Rayleigh damping model is adopted in the 
calculation with 0.01 and 0.02 as the first two modal damping ratios. 
Figure 7 shows comparison on the acceleration response at the 1/4 span of the beam for 
different crack depth. The crack is assumed to be at the mid-span of the beam. From this 
figure, one can see that the crack depth has significant effect on the dynamic response of the 
beam.  

Effect of crack location on the dynamic response 

Figure 8 shows comparison on the acceleration response at the 1/4 span of the beam for 
different crack locations with a fixed crack depth / 0.3cd d = . The crack is assumed to be at 
the 0.1 L, 0.2L, 0.3L, 0.4L, and 0.5L of the beam. From this figure, one can see that the 
response changes with the crack location.  
These studies show that the effect of the crack on the dynamic response is significant, so it is 
feasible to identify crack from measured structural dynamic responses. 

4. Conclusion 
The composite element method is proposed for both free and forced vibration analyses of 
beams with multiple steps. As the composite beam element is of a one-element-one-member 
configuration, modeling with this type of element would not need to take into account the 
discontinuity between different parts of the beam. The accuracy of this new composite 
element has been compared satisfactorily with existing results. One advantage of the 
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method proposed is that it can be extended easily to deal with beams consisting of an 
arbitrary number of non-uniform segments. Regarding the free and forced vibration analysis 
for cracked beam using composite element, modelling with this type of element would 
allow the automatic inclusion of interaction effect between adjacent local damages in the 
finite element model. The accuracy of the present method has been compared satisfactory 
with existing model and experimental results. 
 

 

Fig. 1. Sketch of the stepped free-free beam with n segments 

 

 

Fig. 2. Sketch of the stepped free-free beam in Koplow et al. (2006). Dimension in millimetre 

 

 
Fig. 3. Cantilever beam in Jaworski and Dowell (2008) with up and down steps. Dimension 
in millimeter 

3.175 
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Fig. 4. Sketch of the stepped cantilever beam (dimensions are not scaled) 

 
 

0 1 2 3 4 5 6 7 8 9 10
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Time(sec.)

D
is

pl
.(m

)

0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2

Time(sec.)

Ve
l.(

m
/s

)

0 1 2 3 4 5 6 7 8 9 10
-150

-100

-50

0

50

100

150

Time(sec.)

A
cc

.(m
/s

2 )

 

Fig. 5. Forced vibration dynamic response comparison between the CEM and FEM(- Solid: 
CEM; -- Dashed: FEM) 
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Fig. 6. Forced vibration dynamic response comparison between the CEM and FEM (a close 
view; - Solid: CEM, -- Dashed: FEM) 

 

 
Fig. 7. Comparison on the dynamic responses for different crack depth 
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Fig. 8. Comparison on the dynamic responses for different crack location  

 

Present Jaworski and Dowell (2008) 

CEM Rayleigh-Ritz CMA ANSYS Mode 

Euler Euler Euler Euler Timoshenk
o 2D Shell 3D Solid 

Experiment 

1Bω  10.758 10.752 10.816 10.775 10.745 10.44 10.46 10.63 

2Bω  67.553 67.429 67.463 67.469 67.456 65.54 65.70 66.75 

1Cω  54.699 54.795 54.985 54.469 54.429 49.62 49.83 49.38 

Table 1. Natural frequencies [Hz] comparison for the stepped beam in Jaworski and Dowell 
(2008) 
Note: 1Bω , 2Bω  are the first and second out-of-plane bending mode frequencies, 
respectively. 

1cω  denotes the first in-plane bending mode frequency. 
CMA represents component modal analysis. 
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No crack 1 4cd = mm at 

1 595x = mm 
1 8cd = mm at 

1 595x = mm 
1 12cd = mm at 

1 595x = mm Mod
e 

Exp. Propos
ed Exp. Sinha et 

al.(2002)
Propos

ed Exp. Sinha et 
al.(2002)

Propose
d Exp. Sinha et 

al.(2002) 
Propos

ed 

1 40.000 39.770 39.688 39.379 39.490 39.375 39.094 39.242 39.063 38.857 38.869 

2 109.688 109.340 109.063 108.206 108.633 108.125 107.132 107.670 105.938 106.278 106.293 

3 215.000 214.795 215.000 214.087 214.230 214.688 213.825 213.986 214.375 213.622 213.631 

4 355.000 354.853 354.688 353.107 353.683 353.438 351.872 352.524 350.625 350.881 350.921 

5 528.750 529.601 527.188 524.696 526.540 522.812 520.452 522.448 513.125 517.219 517.003 

 

Table 2. Comparison of natural frequencies (Hz) of the aluminium free-free beam with one 
crack in Sinha et al.(2002) 

 
 
 

No crack 

1 12cd = mm at 

1 595x = mm 

2 4cd = mm at 

2 800x = mm 

1 12cd = mm at 

1 595x = mm 

2 8cd = mm at 

2 800x = mm 

1 12cd = mm at 

1 595x = mm 

2 12cd = mm at 

2 800x = mm 

Mod
e 

Exp. Propos
ed Exp. Sinha et 

al.(2002)
Propos

ed Exp. Sinha et 
al.(2002)

Propose
d Exp. Sinha et 

al.(2002) 
Propose

d 

1 40.000 39.770 38.750 38.352 38.607 38.437 37.897 38.246 37.500 37.513 37.703 

2 109.688 109.340 105.938 105.890 106.196 105.938 105.510 106.062 105.625 105.559 105.858 

3 215.000 214.795 213.750 212.207 212.786 212.813 210.897 211.643 210.000 209.815 209.975 

4 355.000 354.853 350.000 348.920 349.843 349.063 347.235 348.410 345.625 345.876 346.374 

5 528.750 529.601 512.500 514.575 514.735 511.250 512.903 513.044 507.500 510.560 510.633 

 

Table 3. Comparison of natural frequencies (Hz) of the aluminium free-free beam with two 
cracks in Sinha et al.(2002) 
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1. Introduction  
Applications of sandwich construction and composites continue to expand. They are used in 
a number of industries such as the aerospace, automotive, marine and even sports 
equipment. Sandwich construction offers designers high strength to weight ratios, as well as 
good buckling resistance, formability to complex shapes and easy reparability, which are of 
extremely high importance in aerospace applications. Due to their many advantages over 
traditional aerospace materials, the analysis of sandwich beams has been investigated by a 
large number of authors for more than four decades. Sandwich construction can also offer 
energy and vibration damping when a visco-elastic core layer is used.  However, such non-
conservative systems are not the focus of the present study.  
The most common sandwich structure is composed of two thin face sheets with a thicker 
lightweight, low-stiffness core. Common materials used for the face layers are metals and 
composite while the core is often made of foam or a honeycomb structure made of metal. It 
is very important that the core, although weaker than the face layers, be strong enough to 
resist crushing. The current trend in the aerospace industry of using composites and 
sandwich material, to lighten aircraft in an attempt to make them more fuel efficient, has led 
to further recent researches on development of reliable methods to predict the vibration 
behaviour of sandwich structures.  
In the late 1960s, pioneering works in the field of vibration analysis of viscously damped 
sandwich beams (Di Taranto, 1965, and Mead and Marcus, 1968) used classical methods to 
solve the governing differential equations of motion, leading to the natural frequencies and 
mode shapes of the system. Ahmed (1971) applied the finite element method (FEM) to a 
curved sandwich beam with an elastic core and performed a comparative study of several 
different formulations in order to compare their performances in determining the natural 
frequencies and mode shapes for various different beam configurations. Interest in the 
vibration behaviour of sandwich beams has seen resurgence in the past decade with the 
availability of more powerful computing systems. This has allowed for more complex finite 
element models to be developed. Sainsbury and Zhang (1999), Baber et al. (1998), and 
Fasana and Marchesiello (2001) are just some among many researchers who investigated 
FEM application in the analysis of visco-elastically damped sandwich beams. The Dynamic 
Stiffness Method (DSM), which employs symbolic computation to combine all the governing 
differential equations of motion into a single ordinary differential equation, has also been 
well established. Banerjee and his co-workers (1995-2007) and Howson and Zare (2005) have 
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published numerous papers on DSM illustrating its successful application to numerous 
homogeneous and sandwich/composite beam configurations, with a number of papers 
focusing on elastic-core sandwich beams. It is worth noting that in all the above-mentioned 
sandwich element models, the beam motion is assumed to exhibit coupled bending-axial 
motion only, with no torsional or out-of-plane motion. Also, the layers are assumed to be 
perfectly and rigidly joined together and the interaction of the different materials at the 
interfaces is ignored. Although it is known that bonding such very much different materials 
will cause stress at the interfaces, the study of their interactions and behaviour at the 
bonding site is another research topic altogether and is beyond the scope of the present 
Chapter.  
Another important factor that largely affects the results of the sandwich beam analysis is the 
assumed vibration behaviour of the layers. The simplest sandwich beam model utilizes 
Euler-Bernoulli theory for the face layers and only allows the core to deform only in shear.  
This assumption has been widely used in several DSM and FEM studies such as those by 
Banerjee (2003), Ahmed (1971,1972), Mead and Markus (1968), Fasana and Marchesiello 
(2001), Baber et al. (1998), and in earlier papers by the authors; see e.g.,  Adique & Hashemi 
(2007), and Hashemi & Adique (2009). In more recent publications, Banerjee derived two 
new DSM models which exploit more complex displacement fields. In the first and simpler 
of the two (Banerjee & Sobey, 2005), the core bending is governed by Timoshenko beam 
theory, whereas the face plates are modeled as Rayleigh beams. To the authors’ best 
knowledge, the most comprehensive sandwich beam theory was developed and used by 
Banerjee et al. (2007), where all three layers are modeled as Timoshenko beams. However, 
increasing the complexity of the model also significantly increases the amount of numerical 
and symbolic computation in order to achieve the complete formulation. 
Classical FEM method has a proven track record and is the most commonly used method for 
structural analysis. It is a systematic approach, leading to element stiffness and mass 
matrices, easily adaptable to a wide range of problems. The polynomial shape functions are 
used to approximate the displacement fields, resulting in a linear eigenproblem, whose 
solutions are the natural frequencies of the system. Most commercial FEM-based structural 
analysis software also offer multi-layered elements that can be used to model layered 
composite materials and sandwich construction (e.g., ANSYS® and MSC 
NASTRAN/PATRAN®). As a numerical formulation, however, the versatility of the FEM 
theory comes with a drawback; the accuracy of its results depends on the number of 
elements used in the model. This is the most evident when FEM is used to evaluate system 
behaviour at higher frequencies, where a large number of elements are needed to achieve 
accurate results.  
Dynamic Stiffness Matrix (DSM) method, on the other hand, provides an analytical solution 
to the free vibration problem, achieved by combining the coupled governing differential 
equations of motion of the system into a single higher order ordinary differential equation.  
Enforcing the boundary conditions then leads to the system’s DSM and the most general 
closed form solution is then sought. The DSM formulation results in a non-linear eigenvalue 
problem and the bi-section method, combined with the root counting algorithm developed 
by Wittrick & Williams (1971), is then used as a solution technique. DSM provides exact 
results (i.e., closed form solution) for any of the natural frequencies of the beam, or beam-
structure, with the use of a single continuous element characterized by an infinite number of 
degrees of freedom. However, the DSM methods is limited to special cases, for which the 
closed form solution of the governing differential equation is known; e.g., systems with 
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constant geometric and material properties and only a certain number of boundary 
conditions.  
The Dynamic Finite Element (DFE) method is a hybrid formulation that blends the well-
established classical FEM with the DSM theory in order to achieve a model that possesses all 
the best traits of both methods, while trying to minimize the effects of their limitations; i.e., 
to fuse the adaptability of classical FEM with the accuracy of DSM. Therefore, the 
approximation space is defined using frequency dependent trigonometric basis functions to 
obtain the appropriate interpolation functions with constant parameters over the length of 
the element. DFE theory was first developed by Hashemi (1998), and its application has ever 
since been extended by him and his coworkers to the vibration analysis of intact (Hashemi 
et al.,1999, and Hashemi & Richard, 2000a,b) and defective homogeneous (Hashemi et al., 
2008), sandwich (Adique & Hashemi, 2007-2009, and Hashemi & Adique, 2009, 2010) and 
laminated composite beam configurations (Hashemi & Borneman, 2005, 2004, and Hashemi 
& Roach, 2008a,b) exhibiting diverse geometric and material couplings. DFE follows a very 
similar procedure as FEM by first applying the weighted residual method to the differential 
equations of motion. Next, the element stiffness matrices are derived by discretizing the 
integral form of the equations of motion.  For FEM, the polynomial interpolation functions 
are used to express the field variables, which in turn are introduced into the integral form of 
the equations of motion and the integrations are carried out and evaluated in order to obtain 
the element matrices. At this point, DFE applies an additional set of integration by parts to 
the element equations, introduces the Dynamic Trigonometric Shape Functions (DTSFs), 
and then carries out the integrations to form the element matrices. In the case of a three-
layered sandwich beam, the closed form solutions to the uncoupled parts of the equations of 
motion are used as the basis functions of the approximation space to develop the DTSFs.  
The assembly of the global stiffness matrix from the element matrices follows the same 
procedure for FEM, DSM and DFE methods. Like DSM, the DFE results in a non-linear 
eigenvalue problem, however, unlike DSM, it is not limited to uniform/stepped geometry 
and can be readily extended to beam configurations with variable material and geometric 
parameters; see e.g., Hashemi (1998). 
In the this Chapter, we derive a DFE formulation for the free vibration analysis of curved 
sandwich beams and test it against FEM and DSM to show that DFE is another viable tool 
for structural vibration analysis. The face layers are assumed to behave according to Euler-
Bernoulli theory and the core deforms in shear only, as was also studied by Ahmed 
(1971,1972). The authors have previously developed DFE models for two straight, 3-layered, 
sandwich beam configurations; a symmetric sandwich beam, where the face layers are 
assumed to follow Euler-Bernoulli theory and core is allowed to deform in shear only 
(Adique & Hashemi, 2007, and Hashemi & Adique, 2009), and a more general non-
symmetric model, where the core layer of the beam behaves according to Timoshenko 
theory while the faces adhere to Rayleigh beam theory (Adique & Hashemi, 2008, 2009). The 
latter model not only can analyze sandwich beams, where all three layers possess widely 
different material and geometric properties, but also it has shown to be a quasi-exact 
formulation (Hashemi & Adique, 2010) when the core is made of a soft material.   

2. Mathematical model 
Figure 1 below shows the notation and corresponding coordinate system used for a 
symmetrical curved three-layered sandwich beam with a length of S and radius R at the 
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mid-plane of the beam. The thicknesses of the inner and outer face layers are t while the 
thickness of the core is represented by tc. In the coordinate system shown, the z-axis is the 
normal co-ordinate measured from the centre of each layer and the y-axis is the 
circumferential coordinate and coincides with the centreline of the beam. The beam only 
deflects in the y-z plane. The top and bottom faces, in this case, are modelled as Euler-
Bernoulli beams, while the core is assumed to have only shear rigidity (e.g., the stresses in 
the core in the longitudinal direction are zero). The centreline displacements of layers 1 and 
3 are v1 and v2, respectively. The main focus of the model is flexural vibration, w, and is 
common among all three layers, which leads to the assumption v1 = -v2 = -v. 
 

 
Fig. 1. Coordinate system and notation for curved symmetric three-layered sandwich beams 

For the beam model developed, the following assumptions made (Ahmed, 1971): 
• All displacements and strains are so small that the theory of linear elasticity still applies. 
• The face materials are homogeneous and elastic, while the core material is assumed to 

be homogeneous, orthotropic and rigid in the z-direction. 
• The transverse displacement w does not vary throughout the thickness of the beam. 
• The shear within the faces is negligible. 
• The bending strain within the core is negligible. 
• There is no slippage or delamination between the layers during deformation. 
Using the model and assumptions described above, Ahmed (1971) used the principle of 
minimum potential energy to obtain the differential equations of motion and corresponding 
boundary conditions. For free vibration analysis, the assumption of simple harmonic motion 
is used, leading to the following form of the differential equations of motion for a curved 
symmetrical sandwich beam (Ahmed, 1971): 
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In the equations above, v(y) and w(y) are the amplitudes of the sinusoidally varying 
circumferential and radial displacements, respectively. E is the Young’s modulus of the face 
layers, Gc is the shear modulus of the core layer, and ρ and ρc are the mass densities of the 
face and core materials, respectively. The appropriate boundary conditions are imposed at 
y=0 and y=S.  For example, for  
• clamped at y = 0 and y = S; v = w = ∂w/∂y = 0.   
• simply supported at y = 0 and y = S; ∂v/∂y = w = ∂2w/∂y2 = 0.   
• cantilever configuration; at y = 0: v=w=∂w/∂y=0; and at y=S: ∂v/∂y=∂2w/∂y2=0 and a 

resultant force term of  γ β∂ ∂ + + ∂ ∂ =2 3 3 2[2 / 2 (2 / )] 0w y h v h w y , … 
For harmonic oscillation, the weak form of the governing equations (1) and (2) are obtained 
by applying a Galerkin-type integral formulation, based on the weighted-residual method.  
The method involves the use of integration by parts on different elements of the governing 
differential equations and then the discretization of the beam length into a number of two-
node beam elements (Figure 2).  
 

 
Fig. 2. Domain discretized by N number of 2-noded elements 

Applying the appropriate number of integration by parts to the governing equations and 
discretization lead to the following form (in the equations below, primes denote integration 
with respect to y):  

 δ α δ ω β δ β= − − +∫ ∫ ∫2 2 2 2
1

0 0 0

' ' ( 4 ) 2 '
l l l

k
vW v v dy v Q vdy v h w dy  (4) 

 δ γ δ β δ α ω δ β= + + − +∫ ∫ ∫ ∫2 2 2 2 2 2 2
2

0 0 0 0

" " ' ' ( / ) '2
l l l l

k
wW w w dy w h w dy w R Q wdy w h vdy   (5) 

All of the resulting global boundary terms produced by integration by parts before 
discretization in the equations above are equal to zero. The above equations are known as 
the element Galerkin-type weak form associated to the discretized equations (4) and ( 5) and 
also satisfy the principle of virtual work: 
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In the equations above, δv and δw are the test- or weighting -functions, both defined in the 
same approximation spaces as v and w, respectively. Each element is defined by nodes j and 
j+1 with the corresponding co-ordinates (l=xj+1–xj). The admissibility condition for finite 
element approximation is controlled by the undiscretized forms of equations (4) and (5).  

3. Finite elements method (FEM) derivations 
Two different FEM models were derived for the curved beam model.  The first one has three 
degrees of freedom (DOFs) per node and uses a linear approximation for the axial 
displacement and a Hermite type polynomial approximation for the bending displacement.  

 + +=< > = +1 1 2 1( ) ( ) {   } ( ) ( )v j j v j v jv y N y v v N y v N y v  (8) 

+ + + +=< > = + + +1 1 1 2 3 1 4 1( ) ( ) {  '   ' } ( ) ( ) ' ( ) ( ) 'w j j j j w j w j w j w jw y N y w w w w N y w N y w N y w N y w  (9) 

In the equations above, vj, vj+1, wj and wj+1 are the nodal values at j and j+1 corresponding to 
the circumferential and radial displacements, respectively (these can be likened to the axial 
and flexural displacements for a straight beam).  wj’ and w’j+1 represent the nodal values of 
the rate of change of the radial displacements with respect to x (which can be likened to the 
bending slope for a straight beam). The same approximations were also used for δv and δw, 
respectively. The first FEM formulation is achieved when the nodal approximations 
expressed by equations (8) and (9) are applied to simplify equations (4) and (5). Similar 
approximations are also used for the corresponding test functions, δv and δw, and the 
integrations are performed to arrive at the classical linear (in ω2) eigenvalue problem as 
functions of constant mass and stiffness matrices, which can be solved using programs such 
as Matlab®.  
In the second FEM model the number of DOFs per node is increased to four and Hermite-
type polynomial approximations are used for both the axial and bending displacements.  

 + + + + +=< > = + + +1 1 1 2 1 3 1 4 1( ) ( ) {  '   ' } ( ) ( ) ' ( ) ( ) 'v j j j j v j v j v j v jv y N y v v v v N y v N y v N y v N y v  (10) 

 + + + +=< > = + + +1 1 1 2 3 1 4 1( ) ( ) {  '   ' } ( ) ( ) ' ( ) ( ) 'w j j j j w j w j w j w jw y N y w w w w N y w N y w N y w N y w  (11) 

In the equations above, vj, vj+1, wj and wj+1 are the nodal values at j and j+1 corresponding to 
the circumferential and radial displacements, respectively. vj’, v’j+1, wj’ and w’j+1 are the 
nodal values at j and j+1 for the rate of change with respect to y for the circumferential and 
radial displacements, respectively. The same approximations are also used for δv and δw.  
The second FEM formulation applies equations (10) and (11) to simplify equations (4) and 
(5) to produce the linear (in ω2) eigenvalue problem as a function of constant mass and 
stiffness matrices, which can again be solved using programs such as Matlab®. For the 
current research, both FEM models were programmed using Matlab®.  
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4. Dynamic finite element (DFE) formulation 
In order to obtain the DFE formulation, an additional set of integration by parts are applied 
to the element equations (4) and (5) leading to:  
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Equation (12) and (13) are simply a different, yet equivalent, way of evaluating equations (4) 
and (5) at the element level. The follwing non-nodal approximations are defined 

 δ δ=< > =< >( ) { };    ( ) { };V Vv P y a v P y a  (14) 

 δ δ=< > =< >( ) { };    ( ) { },W Vw P y b w P y b  (15) 

where {a} and {b} are the generalized co-ordinates for v and w, respectively, with the basis 
functions of approximation space expressed as:  

 ε ε ε< > =( ) cos( )  sin( )/ ;VP y y y  (16) 
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where ε, σ and τ (shown below) are calculated based on the characteristic equations (*) and 
(**) in expressions (12) and (13) being reduced to zero.  
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The non-nodal approximations (14) and (15) are made for δv, v, δw and w so that the integral 
terms (*) and (**) in expressions (12) and (13) become zero. The former term has a 2nd-order 
characteristic equation of the form A1D2 + B1 ω2 = 0, whereas the latter one has a 4th-order 
characteristic equation of the form A2D4 – B2D2 + C2ω2 = 0.  Solving (*) and (**) yields the 
solution to the uncoupled parts of (12) and (13), which are subsequently used as the 
dynamic basis functions of approximation space to derive the DTSFs. The nodal 
approximations for element variables, v(y) and w(y), are then written as: 

 =< > < >-1
n V n V 1 2( ) [P ]  {u } = ( ) {   };V Vv P y N y v v  (19) 
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where <N(y)v> and <N(y)w> are the dynamic (frequency-dependent), trigonometric, shape 
functions, DTSFs, of the approximation space. Similar expressions are also written for the 
weighting functions, δv(y) and δw(y). Substituting the above nodal approximations into (12) 
and (13) and carrying out the integrations and term evaluations leads to the following 
matrix form:  

 ω= + + =k
Uncoupled Uncoupled CouplingW ([ ]  [ ]  [ ]  ){ } [ ( )] { }k k k k

V W V n nk k k u k u  (21) 

where [k(ω)]k represents the frequency-dependent element dynamic stiffness matrix for 
coupled bending-axial vibrations of a curved symmetric sandwich beam element k. The 
appendix provides a more in-depth description of the process used to obtain the element 
matrices. The standard assembly method is used to obtain the global equation: 

 δ ω
=

=< > =∑
Number of Elements

1
W= [ ( )]{ } 0k

k
W U k U  (22) 

where [k(ω)] is the global, overall, dynamic Stiffness Matrix (DSM), and {U} stands for the 
vector of global DOFs of the system.   
Matlab® program was used in the calculation of the integral terms for the element dynamic 
stiffness matrix. It is worth noting that Matlab® performs the calculations using complex 
arithmetics and as a result some of the elements in the matrix [K]kCoupling are complex.  
However, the resulting dynamic stiffness matrix [k(ω)] is real and symmetric, with the 
imaginary parts of each element being zero.  
It should also be pointed out that in equation (12) an integral term containing 
“ 2(4 )v vdyδ β ”, was purposely left out of (*). This term represents the effect of the shear 
from the core on the face layers (SCF), and its inclusion in (*) would change the trigonometric 
basis functions to purely hyperbolic functions. This, in turn, makes it impossible to find the 
solution to the free vibration problem. However, above a given frequency, the excluded 
integral term can be included in the (*) term (using, e.g., an ’if’ statement) without any 
convergence problems. For the test cases being studied here, the critical frequency is much 
higher than the range being studied. Therefore, the SCF term is simply evaluated separately 
and using the originally proposed basis functions (16) and (17).  

5. Numerical tests and results 
The DFE is used to compute the natural frequencies and modes of curved symmetrical 
sandwich beams. The solution to the problem lies in finding the system eigenvalues (natural 
frequencies, ω), and eigenvectors (natural modes). A simple determinant search method is 
utilized to compute the natural frequencies of the system. The beam considered has a span 
of S = 0.7112 m, a radius of curvature of R = 4.225 m, with the top and bottom faces having 
thicknesses of t = 0.4572 mm, and a core thickness of tc = 12.7 mm. The material properties of 
the face layers are: E = 68.9 GPa and ρf = 2680 kg/m3, while the core has properties of Gc = 
82.68 MPa and ρc = 32.8 kg/m3.   

5.1 Cantilever end conditions 
The first test case investigates the natural frequencies of the beam described above, with 
cantilever end conditions. The DFE and FEM results (Table 1) are presented and compared 
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with those reported by Ahmed (1971), obtained from a 10-element FEM model of 2-noded 8-
DOFs beam elements. The model developed by Ahmed employs polynomial cubic Hermite 
shape functions for the approximation space of the field variables v, v’, w and w’. 
 

FEM; 3-DOF/node FEM; 4-DOF/node 
ωn 

rad/s 

FEM, 
10-Elem. 
Ahmed, 

1971 

DFE 
20-Elem.

DFE 
30- Elem.

DFE 
40-Elem. 20-Elem. 40-Elem. 20-Elem. 40-Elem. 

ω1 1124.69 1124.69 1121.93 1121.8 1121.67 1121.61 1121.61 1121.61 
ω2 1671.33 1678.87 1671.89 1668.37 1668.25 1665.67 1665.48 1664.98 
ω3 3430.62 3451.98 3420.38 3408.88 3420.32 3402.97 3402.41 3398.51 
ω4 5868.50 5901.80 5838.65 5817.10 5860.33 5811.82 5811.07 5799.69 
ω5 8664.51 8695.93 8600.30 8567.37 8659.42 8566.24 8564.74 8524.02 

Table 1. Natural frequencies (rad/s) of a clamped- free curved symmetric sandwich beam 
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Fig. 3. First four ormalized modes for cantilever curved symmetric sandwich beam 

The frequency results for the FEM and DFE models agree very well with one another with 
the maximum difference of 1.53% for the fifth natural frequency for 20-element models 
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when comparing the DFE and the 4-DOF FEM. For the 40-element models, the largest 
difference is 0.51% again for the fifth mode when comparing the DFE and 4-DOF FEM. Also, 
the first four normalized modes were computed using DFE model for the cantilevered 
curved sandwich beam and are shown in the Figure 3 below, generated using a 40-element 
DFE model. The curved beam has a large radius of curvature compared to its span, so the 
mode shapes of a straight beam can be used as a rough guideline to gauge the acceptability 
of the current modes. The frequency values used in the calculations of the mode shapes of 
the beam are 99.99% of the natural frequencies because the displacements cannot be 
evaluated as the true value of the natural frequency is approached.  
As can be seen in Figures 3, all the mode shapes are dominated by radial displacements.  
This was expected as the bending stiffness of the beam is much smaller than its axial 
stiffness and the primary concern of the equations derived by Ahmed was to study the 
flexural behaviour of the beam (The undeformed shape of the beam was not included in the 
figures above because the beam’s short length (0.7112) with respect to its large radius of 
curvature (4.225 m) would make the beam appear nearly straight).  

5.2 Clamped-Clamped (C-C) end conditions 
The next test case uses the same beam properties as the previous example, with clamped-
clamped end conditions. The results of the DFE, and 3- and 4-DOF/node FEM formulations 
along with those reported by Ahmed (1971,1972) are listed in Table 2 below. For the first set 
of results from Ahmed (1971), shown in the second column of Table 2 below, each node has 
4-DOFs.  The 10-element FEM model developed employs similar polynomial Hermite shape 
functions such as those found in equations (10) and (11) for the approximation space of the 
field variables v, v’, w and w’, respectively. The results from Ahmed (1972), shown in the 
third column of Table 2, are from a 10-element FEM model where each node has 6-DOFs.  
The DOFs, in this case, are associated with circumferential displacement (v and v’), radial 
displacement (w and w’) and transverse shear in the x-y plane (φ and φ’, which none of the 
derived models takes into account). For each of the displacements, a Hermite polynomial 
shape function similar to expressions (10) and (11) was used to define the approximation 
space for both the field variables and weighting - or test - functions.   
 

FEM DFE 
10 Elements 

Ahmed, 1971, 1972 3-DOF 4-DOF ωn 

4-DOF 6-DOF 20-Elem 40-Elem 20-Elem 40-Elem
20 Elem. 30 Elem. 40 Elem. 

ω1 1658.76 1507.96 1653.73 1649.96 1649.84 1648.96 1665.67 1655.62 1652.23 
ω2 3279.82 2978.23 3272.97 3249.60 3250.92 3244.20 3295.53 3263.30 3252.30 
ω3 5585.75 5296.73 5563.57 5502.19 5508.34 5488.74 5580.10 5520.47 5499.99 
ω4 8243.54 7872.83 8208.29 8093.94 8107.70 8069.37 8203.96 8112.91 8081.62 
ω5 11102.4 10662.6 11054.8 10878.2 10900.1 10839.1 11020.1 10896.0 10853.0 

Table 2. Natural frequencies (rad/s) of a clamped- clamped curved symmetric sandwich beam 

Table 2 above, shows that for the first two natural frequencies, the DFE results are slightly 
larger than those obtained from both FEM formulations, but for the 3rd-5th frequencies, the 
DFE values are smaller than those found by the 3-DOF FEM formulation but larger than the 
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4-DOF FEM formulation. For 20-element FEM models, the largest difference is 1.4% seen 
between the 3-DOF and 4-DOF FEM formulations (in the 5th natural frequencies), but when 
the number of elements is increased to 40, the difference reduces to 0.36%, which is still the 
largest when comparing all three models.   
 

radial

circumferential

radial 

circumferential 

circumferential

radial
radial

circumferential

 
Fig. 4. First four ormalized modes for clamped-clamped curved symmetric sandwich beam 

The largest difference when comparing the 40-element DFE and 3-DOF FEM models is 
0.23% for the 5th natural frequency with the rest of the error being smaller.  When comparing 
the 40-element DFE and 4-DOF FEM models, the largest error is 0.25% for the 2nd mode. The 
dramatic decrease in the discrepancies of the three models indicates that they are all 
converging to nearly the same values for the natural frequencies. When comparing the 
results to those of Ahmed, it can be seen that they agree very well with the 4-DOF model, 
although, they are smaller in value. The main reason for this is that Ahmed only used 10 
elements and an increase in the number of elements used would give lower values. From 
Ahmed’s results for the 6-DOF model, it can be seen that they are considerably lower than 
all the calculated values. When comparing the DFE to Ahmed’s 6-DOF formulation, the 
largest differences can be seen for the first two natural frequencies with a difference of 9.56% 
and 9.20%, respectively.  For the 3rd, 4th and 5th frequencies, the difference between the DFE 
and Ahmed 6-DOF formulation is 3.84%, 2.65% and 1.79%, respectively. Ahmed (1971) 
states that the difference in values is most likely due to the differences in formulations 
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between the two models. The equations of motion upon which the DFE is based on ignores 
the shear of the face layers and the bending and axial stiffness of the core while the 6-DOF 
formulation takes all of these factors into account.  
The normalized natural modes of the curved sandwich beam, generated using a 40-element 
DFE model, are shown in Figures 4. As expected, the mode shapes for the curved 
symmetrical sandwich beam with clamped-clamped end conditions exhibit mainly radial 
displacement. Some circumferential displacement is also observed but is small when 
compared the magnitude of the radial displacement. This can be explained by the fact that 
the beam’s axial stiffness is much higher than its bending stiffness. Also, the mode shapes 
conform to the clamped-clamped boundary conditions applied to the beam; the radial and 
circumferential displacements are zero at the end points, as is also the slope.  

5.3 Simply supported-Simply supported (S-S) end conditions 
The third numerical case uses the beam described earlier in the chapter with both ends 
simply supported. The DFE, 3- and 4-DOF FEM formulations are used to calculate the 
beam’s natural frequencies and mode shapes. The results of these models are listed along 
with those reported by Ahmed (1971), obtained using a 10-element FEM model with 4-DOFs 
per node (see Table 3). The FEM model developed by Ahmed uses polynomial Hermite 
shape functions similar to equations (10) and (11) for the approximation space of the field 
variables v, v’, w and w’, respectively.  
As can be seen from the 2nd row in Table 3, there is a good agreement between all the 20-
element models, with the biggest discrepancy being between the DFE and the 4-DOF FEM 
formulations; the FEM 1st natural frequency is only 0.41% smaller than that obtained from 
the DFE. However, when the remaining frequencies are examined, the growing difference 
can be observed for the higher modes. When comparing the 20-element DFE and the 20-
element 3-DOF FEM formulations, the largest difference is for the 2nd natural frequency, 
with the FEM value being 1.21% smaller than the DFE result. The difference between the 
DFE and 3-DOF FEM results decreases with increasing mode number.   
 

FEM DFE 

3DOF 4DOF ωn 4DOF; 
10-Elem. 

Ahmed, 1971 20-Elem. 40-Elem. 20-Elem. 40-Elem.
20-Elem. 30-Elem. 40-Elem. 

ω1 1253.5 1248.60 1248.34 1248.34 1248.34 1253.50 1250.35 1249.47 
ω2 2475.58 2471.74 2466.65 2464.89 2464.89 2501.96 2480.60 2472.87 
ω3 4687.26 4690.84 4669.22 4662.06 4662.06 4746.95 4697.94 4680.97 
ω4 7382.74 7405.49 7354.72 7337.82 7337.82 7478.88 7397.82 7370.11 
ω5 10298.1 10351.3 10261.4 10231.4 10231.4 10433.9 10318.9 10279.0 

Table 3. Natural frequencies (rad/s) of a simply-supported curved symmetric sandwich beam 
Increasing the number of elements from 20 to 40, reduces the difference between the two 
models for the 2nd frequency to 0.25% remaining the maximum and the difference for the 
other frequencies decreasing with the increase in mode number.   
Comparing the 20-element DFE and the 4-DOF FEM models, the trend is reversed; the two 
values are closest for the 1st natural frequency and increase with the higher modes with the 
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largest difference being for the 5th frequency, where the FEM value is 1.94% smaller than 
that of the DFE. When the number of elements used in the model is increased to 40, the 
agreement between the two formulations becomes much better with the maximum relative 
error being 0.46% for the 5th frequency. Increasing the number of elements from 20 to 40 
considerably reduces the relative error between all the models; i.e., convergence. For the 1st 
natural frequency, there is a perfect match between Ahmed’s results and the 20-element 
DFE model. But with the increase in the mode number, the difference between the DFE and 
Ahmed’s results grow to a maximum of 1.32% for the 5th natural frequency.   
As seen in Table 3 above, increasing the number of elements in the DFE to 40 reduces the 
values of all the DFE frequencies lower than those reported by Ahmed; the maximum 
difference is now in the 1st mode, with the DFE frequency 0.32% smaller than the value 
reported by Ahmed. Although increasing the number of elements seems to have gone in the 
opposite direction of what it was intended, it should be noted that Ahmed (1971) only used 
10 elements in the reported FEM results and based on the trend observed, increasing the 
number of elements will lower the values of the frequencies, better matching the DFE results.   
Using the 40-element DFE model, the mode shapes are calculated and illustrated in Figures 
5 below. The mode shapes were found using values 99.99% of the actual natural frequencies 
 

radial

circumferential

radial

circumferential

radial 

circumferential

radial

circumferential

 
Fig. 5. First four normalized modes for clamped-clamped curved symmetric sandwich beam 
of the system because displacements of the system become impossible to evaluate at the 
values near the natural frequencies. As can be seen from Figures 5, the mode shapes for the 
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curved symmetric sandwich beam with simply supported end conditions are dominated by 
radial displacement which is the expected result due to the beam’s high axial stiffness in 
comparison to its bending stiffness. It is worth noting that at the end points some axial 
displacement is observed.  This is in accordance with the fact that for the simply supported 
end condition, the circumferential displacement is not forced to zero, giving the possibility 
of a non-zero value for displacement at the end points.  

5.4 Simply-Supported (S-S) straight symmetric sandwich beam  
In the final numerical test, the curved symmetrical sandwich beam formulation is applied to 
a straight beam case. The beam has a length of S = 0.9144 m, radius R = ∞, with face 
thickness t = 0.4572 mm and core thickness tc = 12.7 mm. The mechanical properties of the 
face layers are: E = 68.9 GPa and ρf = 2680 kg/m3, while the core has properties of Gc = 82.68 
MPa and ρc = 32.8 kg/m3.  The natural frequencies of the beam are calculated using the DFE 
method as well as the 3-DOF and 4-DOF FEM formulations and compared to the data 
published by Ahmed (1971) (see Table 4). In the case of a straight beam, the radial 
displacement and circumferential displacements directly translate into the flexural and axial 
displacements, respectively.  
 

FEM DFE 

3DOF 4DOF ωn Ahmed,1971
4DOF 

10-Elem 20-Elem. 40-Elem. 20-Elem 40-Elem.
20-Elem. 30-Elem. 40-Elem. 

ω1 361.35 359.27 359.02 358.90 358.90 370.02 363.55 361.41 
ω3 2938.6 2940.5 2924.3 2918.9 2918.9 3012.4 2958.6 2952.72 
ω5 6980.6 7044.7 6966.0 6939.9 6939.8 7169.2 6993.5 6987.1 
ω7 11574. 11740. 11559. 11498. 11498. 11885. 11667 11591. 
ω9 16299. 16582. 16284. 16184. 16182. 16729. 16423. 16316. 

Table 4. Natural frequencies (rad/s) of a simply-supported straight symmetric sandwich beam 

6. Conclusion 
Based on the theory developed by Ahmed (1971,1972) and the weak integral form of the 
differential equations of motion, a dynamic finite element (DFE) formulation for the free 
vibration analysis of symmetric curved sandwich beams has been developed. The DFE 
formulation models the face layer as Euler-Bernoulli beams and allows the core to deform in 
shear only. The DFE formulation is used to calculate the natural frequencies and mode 
shapes for four separate test cases. In the first three cases the same curved beam, with 
different end conditions, are used: cantilever, both ends clamped and lastly, both ends 
simply supported. The final test case used the DFE formulation to determine the natural 
frequencies of a simply supported straight sandwich beam.  
All the numerical tests show satisfactory agreement between the results for the developed 
DFE, FEM and those published in literature. For all test studies, when a similar number of 
elements are used, the DFE matched more closely with the 3-DOF FEM formulation than 
with Ahmed’s 4-DOF FEM results. The reason for this is that the DFE is derived from the 3-
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DOF FEM formulation and such a trend is expected. Ahmed (1971) goes on to explain that 
the addition of an extra degree of freedom for each node has a tendency to lower the overall 
stiffness of a sandwich beam element causing an overall reduction in values of the natural 
frequencies. The mode shapes determined by the DFE formulation match the expectations 
based on previous knowledge on the behaviour of straight sandwich beams. The results of 
the DFE theory and methodology applied to the analysis of a curved symmetric sandwich 
beam demonstrate that DFE can be successfully extended from a straight beam case to 
produce a more general formulation. The proposed DFE is equally applicable to the 
piecewise uniform (i.e., stepped) configurations and beam-structures. It is also possible to 
further extend the DFE formulation to more complex configurations and to model geometric 
non-uniformity and material changes over the length of the beam.  
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8. Appendix: development of DFE Stiffness matrices for curved symmetric 
Euler-Bernoulli/Shear sandwich beam  
The Dynamic Finite Element stiffness matrix for a symmetric curved sandwich beam is 
developed from equations (12) and (13) found in Section 4. Applying the approximations for 
the element variables, v(y) and w(y), and the test functions, δv(y) and δw(y), as shown in 
expressions (19) and (20) to element integral equations (12) and (13) yield the element DFE 
stiffness matrix defined in equation (21).   
First, let us consider the element virtual work corresponding to the circumferential 
displacement, v(y). Based on the governing differential equation (1), the critical value, or 
changeover frequency, is then determined from  

 ω β− =2 2
1 4 0Q  (A1) 

For the frequencies below the changeover frequency, the element integral equation (12) can be 
expressed as:  

δ α δ ω δ β δ α δ β

×

= − + + + +∫ ∫ ∫
2 4

2 2 2 2 2
1 0

0 0 0
(*) [ ]  Coupling[ ]  Uncoupled

( " ) (4 ) [ ' ] ( 2 ) '

k VWV

l l l
k l

V

kk

W v v Q vdy v vdy v v v h w dy  (12 repeated) 

where the first integral term, (*) vanishes due to the choice of the trigonometric basis 
function for v(y), as stated in: 

 ε ε ε< > =( ) cos( )  sin( )/ ;VP y y y  (16 repeated) 

The next two terms, produce a symmetric 2x2 matrix [ k ]Vk that contains all the uncoupled 
stiffness matrix elements associated with the displacement v(y). The inclusion of SCF term in 
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(*) would make the solution to the corresponding characteristic equation (also used as basis 
functions of approximation space) change form trigonometric to purely hyperbolic 
functions. This, in turn, would lead to solution divergence of the DFE formulation, where 
natural frequencies of the system cannot be reached using the determinant search method.  
For the test cases examined here, the changeover frequency for the faces is well above the 
range of frequencies being studied; therefore, the SCF term, representing the shear effect 
from the core on the face layers, is kept out of the integral term (*) and evaluated as a part of 
the second term, [ k ]Vk.   
For the frequencies above the changeover frequency, the element integral equation can be re-
written as:  

 δ α δ ω β δ α δ β

×

= − + − + +∫ ∫
2 4

2 2 2 2 2
01

0 0
(*) [ ]  Coupling[ ]  Uncoupled

( " ( 4 ) [ ' ] ( 2 ) '

k
VWV

l l
k l

V

kk

W v v Q vdy v v v h w dy  (A2) 

where the SCF term is included in the integral term (*), which vanishes due to the choice of 
purely trigonometric basis functions for v(y), similar to (16). The next term, then produces a 
symmetric 2x2 matrix [ k ]Vk that contains all the uncoupled stiffness matrix elements 
associated with the displacement v(y) and the final term, produces a 2x4 matrix [kVW] that 
contain all the terms that couple the displacement v(y) with w(y).   

 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

(1,1) (1,2)
[ ]

. (2,2)
V Vk

V
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k k
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sym k  (A3) 
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Now considering equations (13): 

δ γ δ β δ α ω

δ β δ γ δ γ δ

= − + − +

+ − +

∫ 2 2 2 2 2 2
1

0
(**)

2 2 2 2
00 0
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                            [ ' ] [ " '] [ "' ]  '(

k
W

l
k

W
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k

W w w h w R Q wdy

w h w w w w w w β

×

∫
4 2

2

0
[ ]  Coupling

2 )

WV

l

k

h vdy
 (13 repeated) 

The first integral term, (**), in equation (13), vanishes due to the choice of mixed 
trigonometric-hyperbolic basis functions for w(y), similar to (17): 

σ τ σ τ σ
σ

σ σ τ σ τ
− −

< > =
+ +2 2 3 3

sin( ) cosh( ) cos( ) sinh( ) sin( )( ) cos( )         ,W
y y y y yP y y    (17 repeated) 

The next three terms, produce a symmetric 4x4 matrix [k]Wk that contain all the uncoupled 
stiffness matrix elements associated with the displacement w(y). The final term, produces a 
4x2 matrix [kWV] that contain all the terms that couple the displacement w(y) with v(y). It is 
important to note that [kWV] = [kVW]T.  
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Matrices (A3), (A4), (A5) and (A6) are added according to equation (21) in order to obtain 
the 6x6 element stiffness matrix for a symmetric straight sandwich beam. 
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1. Introduction  
In the last 50-60 years, use of composite structures in engineering applications has increased. 
Due to this fact many studies have been conducted related with composite structures (such 
as: shells, plates and beams).  
Bending, buckling and free vibration analysis of composite structures has taken 
considerable attention. Beams are one of these structures that are used in mechanical, civil 
and aeronautical engineering applications (such: robot arms, helicopter rotors and 
mechanisms). Considering these applications free vibration problem of the composite beams 
are studied in the previous studies. Kapania & Raciti, 1989 investigated the nonlinear 
vibrations of un-symmetrically laminated composite beams. Chandashekhara et al., 1990 
studied the free vibration of symmetric composite beams. Chandrashekhara & Bangera, 
1993 investigated the free vibration of angle-ply composite beams by a higher-order shear 
deformation theory. They used the shear flexible finite element method. Krishnaswamy et 
al., 1992 solved the generally layered composite beam vibration problems. Chen et al., 2004 
used the state-space based differential quadrature method to study the free vibration of 
generally laminated composite beams. Solution methods for composite beam vibration 
problems depend on the boundary conditions, some analytical (Chandrashekhara et al., 
1990, Abramovich, 1992, Krishnaswamy et al., 1992, Abramovic & Livshits, 1994, Khdeir & 
Reddy, 1994, Eisenberger et al., 1995, Marur & Kant, 1996, Kant et al., 1998, Shi & Lam, 1999, 
Yıldırım et al., 1999, Yıldırım, 2000, Matsunaga, 2001, Kameswara et al., 2001, Banerjee, 2001, 
Chandrashekhara & Bangera, 1992, Ramtekkar et al., 2002, Murthy et al., 2005, Arya, 2003, 
Karama et al., 1998, Aydogdu, 2005, 2006) solution procedures have been used.    
Many factors can affect the vibrations of beams, in particular the attached springs and 
masses, axial loads and dampers. This type of complicating effects is considered in the 
vibration problem of isotropic beams. Gürgöze and his collogues studied vibration of 
isotropic beam with attached mass, spring and dumpers (Gürgöze, 1986, Gürgöze, 1996, 
Gürgöze & Erol, 2004). Vibration of Euler-Bernoulli beam carrying two particles and several 
particles investigated by Naguleswaran, 2001, 2002. Nonlinear vibrations of beam-mass 
system with different boundary conditions are investigated by Ozkaya & Pakdemirli, 1999, 
Ozkaya et. al., 1997. They used multiscale perturbation technique in their solutions.  
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It is interesting to note that, although mass or spring attached composite beams are used or 
can be used in some engineering applications, their vibration problem is not generally 
considered in the previous studies. Vibration of symmetrically laminated clamped-free 
beam with a mass at the free end is studied by Chandrashekhara & Bangera, 1993.        
The aim of present study is to fill this gap. Therefore in this study vibration of composite 
beams with attached mass or springs is studied. After driving equations of motion different 
boundary conditions, lamination angles, attached mass or spring are considered in detail. 

2. Equation of motion 
In this study, equations of motion of composite beams will be derived from Classical 
Laminated Plate Theory (CLPT). For CLPT following displacement field is generally 
assumed: 

 

( , ; ) ( , ) ,
( , ; ) ( , ) ,
( , ; ) ( , )

U x z t u x t zw x
V x z t v x t zw y
W x z t w x t

= −

= −

=

 (1) 

where U,V and W are displacement components of a point of the plate in the x, y and z 
directions respectively and u, v and w are the displacement components of a point of the 
beam in the midplane again in the x, y and z directions respectively. The comma after a 
letter denotes partial derivative with respect to x and y. The Hooke’s law can be written in 
the following form using CLPT: 
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where σx and σy are the in-plane normal stress components in the x and y directions 
respectively, τxy is the shear stress in the x-y plane, εx, εy and γxy are normal strains and shear 
strain respectively and Qij are the reduced transformed rigidities (Jones, 1975). These strains 
are defined in the following form: 
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Applying Hamilton principle leads to the following equations of motion for laminated 
composite plate. 

 
, , ,

, , ,
2, , , ,

N N ux x xy y tt
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M M M wx xx xy xy y yy tt
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 (4) 

where the force and moment resultants are defined in the following form. 
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These force and moment results can also be written in the following form: 
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where extensional, coupling and bending rigidities are defined as follows: 
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Now, consider a laminated composite beam with length L, width b and thickness h. 
Equations of motion of laminated composite beams can be derived from Eq.(4) assuming 
Ny=Nxy=My=Mxy=0.  
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Eq.(7) can be inverted in the following form: 
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where Aij* ,Bij* ,Dij* are the members of inverse of rigidity matrix given in Eq.(7). Eq.(10) can 
be written in the following form. 
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Eq.(11) can be solved in term of Nx and Mx. 
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Inserting equations (12)-(13) in equation (9) yields to: 
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Where A, B and D  are defined in the following form.  
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Eqs. (14) are the equations of motion of generally laminated composite beam for the 
assumptions Ny=Nxy=My=Mxy=0. Boundary conditions of the generally laminated composite 
beams can be written in the following form: 

 
x x

,x

x x x

S : w M N 0
C : w w u 0
F : M Q N 0

= = =
= = =

= = =

 (18) 

2.1 Symmetrically laminated composite beams  
For symmetrically laminated composite beams coupling terms Bij ’s are zero. Then Eq. (14) 
takes the following form. 
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 (19) 

General solution of Eq.(19) can be written in the following form: 

 ( ) sin( ) cos( ) sinh( ) cosh( )w x A x B x C x D xΩ Ω Ω Ω= + + +  (20) 

Where A,B,C and D are undetermined coefficients, 4 2 4 3
2/L E hΩ ρω=    is non-dimensional 

frequency parameter. Using boundary conditions given in Eq.(18) following Eigenvalue 
determinants are obtained for different boundary conditions: 
H-H boundary condition:  
Following condition exists between undetermined coefficients given in Eq.(20): B=D=0 

 
sin( ) sinh( )

02 2sin( ) sinh( )

Ω Ω

Ω Ω Ω Ω
=

−
 (21) 

C-H boundary condition:  
Following condition exists between undetermined coefficients given in Eq.(20):  D=-B, C=-A: 
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C-C boundary condition:  
Following condition exists between undetermined coefficients given in Eq.(20):  D=-B, C=-A: 
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C-F boundary condition:  
Following condition exists between undetermined coefficients given in Eq.(20): D=-B, C=-A 
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F-F boundary condition:  
Following condition exists between undetermined coefficients given in Eq.(20): D=B, C=A: 
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H-F boundary condition:  
Following condition exists between undetermined coefficients given in Eq.(20):   B=D=0: 
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Solution of each determinant equation given in Eq.(21)-Eq.(26) gives frequency parameter of 
symmetrically laminated composite beams. 

2.2 Symmetrically laminated beams with attached mass or spring 
Now consider a symmetrically laminated composite beam with attached mass or spring 
(figure 1). Where η is length of first part of the beam. In order to investigate vibration of two 
portion composite beam Eq.(20) is written for each portion in the following form: 

 
( ) sin( ) cos( ) sinh( ) cosh( )1 1 1 1 1
( ) sin( ) cos( ) sinh( ) cosh(2 2 2 2 2 )
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Ω Ω Ω Ω
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= + + +

= + + +
 (27) 

 

x x 

η η

M k

 
                                    a)                                                                            b)  
Fig. 1. Composite beam with attached mass (a) and spring (b). 

Continuity conditions of the beam at x=η can be written in the following form: 
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Where dimensionless mass and spring parameter are defined in the following form: 

0
,m s

M kL
L AE

α α
ρ

= =  

Using boundary conditions Eq.(18) and continuity conditions Eq.(28) following equations 
are obtained for different boundary conditions and composite beams with attached mass 
and spring at different position. 
H-H boundary condition:  
Following condition exists between undetermined coefficients given in Eq.(27): B1=D1=0: 
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H-C boundary condition:  
Following condition exists between undetermined coefficients given in Eq.(27): B1=D1=0: 
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C-C boundary condition:  
Following condition exists between undetermined coefficients given in Eq.(27): D1=-B1,   
C1=-A1: 
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C-F boundary condition:  
Following condition exists between undetermined coefficients given in Eq.(27): D1=-B1,   
C1=-A1: 
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F-F boundary condition 
Following condition exists between undetermined coefficients given in Eq.(27): D1=B1, 
C1=A1: 
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H-F boundary condition:  
Following condition exists between undetermined coefficients given in Eq.(27): B1=D1=0: 
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Solution of each determinant equation given in Eq.(29)-Eq.(34) gives frequency parameter of 
symmetrically laminated beams with attached point mass or spring at the different location 
of the beam. 

3. Numerical results 
In this section, firstly, numerical results are given for vibration of composite beams with or 
without attached mass or springs. In order to check validity of present results first five 
flexural vibration frequencies of laminated composite beams are compared with previous 
results (Reddy, 1997) and good agreement is observed between two results. After checking 



 Advances in Vibration Analysis Research 

 

66 

validity of present formulation, vibration of composite beams with attached mass or spring 
is investigated for different boundary conditions. Material properties are chosen as: E1=25E2, 
G12=0.5E2 and ν12=0.3. Obtained parametrical results are given in figures. In order to 
completeness of present study, first five frequency of symmetric three layer (θ/-θ/θ) 
composite beams are given in Fig.2. According to Fig. 2, dimensionless frequency 
parameters decrease with increasing lamination angle θ. This is due to decrease in rigidities 
Dij with increasing θ. The frequency gap is narrowing for higher θ, so this type of beams 
should be carefully designed. Highest frequencies are obtained for C-C and F-F boundary 
conditions where as lowest one is obtained for C-F boundary condition. 
Variation of frequency ratio of composite beams with attached mass to composite beam 
without mass (Ωm/Ω0) is depicted in Fig.3 for different boundary conditions. According to 
this figure, ratio of frequencies is insensitive to lamination angle θ. The lowest frequencies 
generally are most affected by attached mass.  Influence of attached mass is decreasing with 
increasing mode number. This fact can be explained by considering mode shapes of 
vibrating composite beams. For H-H, C-C, H-C and F-F beams η=0.25 is a nodal point for 
fourth frequency, therefore this frequency is not affected by attached mass as expected. 
Highest %40 and lowest %20 changes are observed for frequencies for different boundary 
conditions.        
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Fig. 2. Variation of frequency parameter of composite beam with lamination angle θ. 
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Fig. 3. Variation of frequency ratio of composite beam with lamination angle for αm=1   and 
η=0,25 . 
Variation of frequency ratio of composite beams with attached spring to composite beam 
without spring (Ωs/Ω0) is given in Fig.4 for different boundary conditions. According to this 
figure, ratio of frequencies is insensitive to lamination angle θ. Effect of attached spring on 
the frequency ratio is negligible for composite beams with at least one clamped edge. The 
beams with F-F and H-F boundary conditions are most affected by attached mass. For these 
boundary conditions spring behaves like a hinged boundary condition and decreases 
frequency of composite beam.  
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Fig. 4. Variation of frequency ratio of symmetric angle-ply composite beam with lamination 
angle for αs=10 and  η=0,25. 
 

In Fig. 5, variation of frequency ratio with αm is given for three layer symmetric angle-ply 
(300/-300/300) composite beams. Increasing αm decreases frequency of the composite beam. 
Different decreases are observed for different boundary conditions.  
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Fig. 5. Variation of frequency ratio of symmetric angle-ply composite beam (300/-300/300) 
with αm  for  η=0,25. 

Variation of frequency ratio with αs is given in Fig. 6 for three layer symmetric angle-ply 
(300/-300/300) composite beams. Increasing αs decreases frequency of the composite beam 
for F-F and H-F boundary conditions.  For these two boundary conditions zero frequencies 
exist for rigid body motions. Attaching a spring prevents from rigid body motion and these 
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zero frequencies turn two none zero frequencies. Other boundary conditions are insensitive 
to increase of αs for given range. 
 

H - H

αs

0,00 0,25 0,50 0,75 1,00

Ω
m

/ Ω
0

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

Mode 1 
Mode 2 
Mode 3 
Mode 4 
Mode 5 

H - C

αs

0,00 0,25 0,50 0,75 1,00

Ω
m

/ Ω
0

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

Mode 1 
Mode 2 
Mode 3 
Mode 4 
Mode 5 

 
 

H - F

αs

0,00 0,25 0,50 0,75 1,00

Ω
m

/ Ω
0

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4
Mode 1 
Mode 2 
Mode 3 
Mode 4 
Mode 5 

F - F

αs

0,00 0,25 0,50 0,75 1,00

Ω
m

/ Ω
0

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4 Mode 1 
Mode 2 
Mode 3 
Mode 4 
Mode 5 

 
 

C-F

αs

0,00 0,25 0,50 0,75 1,00

Ω
m

/ Ω
0

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

Mode 1 
Mode 2 
Mode 3 
Mode 4 
Mode 5 

C - C

αs

0,00 0,25 0,50 0,75 1,00

Ω
m

/ Ω
0

0,00

0,25

0,50

0,75

1,00

1,25

1,50

Mode 1 
Mode 2 
Mode 3 
Mode 4 
Mode 5 

 
Fig. 6. Variation of frequency ratio of symmetric angle-ply composite beam (300/-300/300) 
with αs   for η=0,25. 

In Fig. 7, variation of frequency ratio of composite beam with η for αm=1 and η=0.25 are 
given for three layer symmetric angle-ply (300/-300/300) composite beams. Generally, lower 



Some Complicating Effects in the Vibration of Composite Beams   

 

71 

frequencies are most affected by position of attached mass. Forth frequency is not affected 
by position of attached mass for boundary conditions other than F-F and F-H. This is due to 
nodal points coincides with position of attached masses. 
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Fig. 7. Variation of frequency ratio of symmetric angle-ply composite beam (300/-300/300) 
with  η  for αm=1and η=0,25. 
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Fig. 8. Variation of frequency ratio of symmetric angle-ply composite beam (300/-300/300) 
with  η  for αs=1 and  η=0,25. 
Variation of frequency ratio of composite beam with η for αs=1 and η=0.25 are given in Fig. 
8 for three layer symmetric angle-ply (300/-300/300) composite beams. Similar to Fig. 7 
generally lower frequencies are most affected by position of attached spring. Forth 
frequency is not affected by position of attached spring for boundary conditions other than 
F-F and F-H. This is due to nodal points coincides with position of attached spring. 
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In Fig. 9-10, variation of frequency parameter of composite beam with lamination angle for 
αs=1, αm=1 and η=0.25 for different number of layers (single, three and four layer) are given 
respectively. First frequencies are insensitive to number of layers but for the fourth 
frequencies higher frequencies are obtained with increasing number of layers. 
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Fig. 9. Variation of frequency parameter of symmetric angle-ply composite beam with 
lamination angle for αs=1 and η=0,25  for different number of layers. 
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Fig. 10. Variation of frequency parameter of symmetric angle-ply composite beam with 
lamination angle for αm=1 and η=0,25  for different number of layers. 

In Fig 11-12 variation of frequency ratio of three layer cross-ply composite beams with η is 
given for αm=1 and αs=1 respectively. Generally similar behavior is observed with 
symmetric angle-ply and cross-ply composite beams. 
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Fig. 11. Variation of frequency ratio of symmetric cross-ply composite beam (00/900/00) with  
η  for αm=1and η=0,25 . 

4. Conclusion 
In this study, vibration of laminated composite beams with attached mass or spring is 
studied using classical lamination theory.  First five flexural frequencies of composite beams 
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Fig. 12. Variation of frequency ratio of symmetric cross-ply composite beam (00/900/00) with  
η  for αs=1and η=0,25. 
are obtained for different boundary conditions, attached mass, spring and their different 
positions. It is obtained that attaching mass reduces frequency of composite beams whereas 
attaching spring increases frequency of composite beams. Some modes do not change 
depending on position of attached spring or mass. This study can be extended to anti-
symmetric composite beams and shear deformation effects can be added in the future 
studies. 
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1. Introduction  
A rectangular plate with a rectangular or a circular hole has been widely used as a 
substructure for ship, airplane, and plant. Uniform circular and annular plates have been 
also widely used as structural components for various industrial applications and their 
dynamic behaviors can be described by exact solutions. However, the vibration 
characteristics of a circular plate with an eccentric circular hole cannot be analyzed easily. 
The vibration characteristics of a rectangular plate with a hole can be solved by either the 
Rayleigh-Ritz method or the finite element method. The Rayleigh-Ritz method is an 
effective method when the rectangular plate has a rectangular hole. However, it cannot be 
easily applied to the case of a rectangular plate with a circular hole since the admissible 
functions for the rectangular hole domain do not permit closed-form integrals. The finite 
element method is a versatile tool for structural vibration analysis and therefore, can be 
applied to any of the cases mentioned above. But it does not permit qualitative analysis and 
requires enormous computational time. 
Tremendous amount of research has been carried out on the free vibration of various 
problems involving various shape and method. Monahan et al.(1970) applied the finite 
element method to a clamped rectangular plate with a rectangular hole and verified the 
numerical results by experiments. Paramasivam(1973) used the finite difference method for 
a simply-supported and clamped rectangular plate with a rectangular hole. There are many 
research works concerning plate with a single hole but a few work on plate with multiple 
holes. Aksu and Ali(1976) also used the finite difference method to analyze a rectangular 
plate with more than two holes. Rajamani and Prabhakaran(1977) assumed that the effect of 
a hole is equivalent to an externally applied loading and carried out a numerical analysis 
based on this assumption for a composite plate. Rajamani and Prabhakaran(1977) 
investigated the effect of a hole on the natural vibration characteristics of isotropic and 
orthotropic plates with simply-supported and clamped boundary conditions. Ali and 
Atwal(1980) applied the Rayleigh-Ritz method to a simply-supported rectangular plate with 
a rectangular hole, using the static deflection curves for a uniform loading as  admissible 
functions. Lam et al.(1989) divided the rectangular plate with a hole into several sub areas 
and applied the modified Rayleigh-Ritz method. Lam and Hung(1990) applied the same 
method to a stiffened plate. The admissible functions used in (Lam et al. 1989, Lam and 
Hung 1990) are the orthogonal polynomial functions proposed by Bhat(1985, 1990). Laura et 
al.(1997) calculated the natural vibration characteristics of a simply-supported rectangular 



 Advances in Vibration Analysis Research 

 

80 

plate with a rectangular hole by the classical Rayleigh-Ritz method. Sakiyama et al.(2003) 
analyzed the natural vibration characteristics of an orthotropic plate with a square hole by 
means of the Green function assuming the hole as an extremely thin plate. 
The vibration analysis of a rectangular plate with a circular hole does not lend an easy 
approach since the geometry of the hole is not the same as the geometry of the rectangular 
plate. Takahashi(1958) used the classical Rayleigh-Ritz method after deriving the total 
energy by subtracting the energy of the hole from the energy of the whole plate. He 
employed the eigenfunctions of a uniform beam as admissible functions. Joga-Rao and 
Pickett(1961) proposed the use of algebraic polynomial functions and biharmonic singular 
functions. Kumai(1952), Hegarty(1975), Eastep and Hemmig(1978), and Nagaya(1951) used 
the point-matching method for the analysis of a rectangular plate with a circular hole. The 
point-matching method employed the polar coordinate system based on the circular hole 
and the boundary conditions were satisfied along the points located on the sides of the 
rectangular plate. Lee and Kim(1984) carried out vibration experiments on the rectangular 
plates with a hole in air and water. Kim et al.(1987) performed the theoretical analysis on a 
stiffened rectangular plate with a hole. Avalos and Laura(2003) calculated the natural 
frequency of a simply-supported rectangular plate with two rectangular holes using the 
classical Rayleigh-Ritz method. Lee et al.(1994) analyzed a square plate with two collinear 
circular holes using the classical Rayleigh-Ritz method. 
A circular plate with en eccentric circular hole has been treated by various methods. 
Nagaya(1980) developed an analytical method which utilizes a coordinate system whose 
origin is at the center of the eccentric hole and an infinite series to represent the outer 
boundary curve. Khurasia and Rawtani(1978) studied the effect of the eccentricity of the 
hole on the vibration characteristics of the circular plate by using the triangular finite 
element method. Lin(1982) used an analytical method based on the transformation of Bessel 
functions to calculate the free transverse vibrations of uniform circular plates and 
membranes with eccentric holes. Laura et al.(2006) applied the Rayleigh-Ritz method to 
circular plates restrained against rotation with an eccentric circular perforation with a free 
edge. Cheng et al.(2003) used the finite element analysis code, Nastran, to analyze the effects 
of the hole eccentricity, hole size and boundary condition on the vibration modes of  
annular-like plates. Lee et al.(2007) used an indirect formulation in conjunction with 
degenerate kernels and Fourier series to solve for the natural frequencies and modes of 
circular plates with multiple circular holes and verified the finite element solution by using 
ABAQUS. Zhong and Yu(2007) formulated a weak-form quadrature element method to 
study the flexural vibrations of an eccentric annular Mindlin plate. 
Recently, Kwak et al.(2005, 2006, 2007), and Heo and Kwak(2008) presented a new method 
called the Independent Coordinate Coupling Method(ICCM) for the free vibration analysis 
of a rectangular plate with a rectangular or a circular hole. This method utilizes independent 
coordinates for the global and local domains and the transformation matrix between the 
local and global coordinates which is obtained by imposing a kinematical relation on the 
displacement matching condition inside the hole domain. In the Rayleigh-Ritz method, the 
effect of the hole can be considered by the subtraction of the energy for the hole domain in 
deriving the total energy. In doing so, the previous researches considered only the global 
coordinate system for the integration. The ICCM is advantageous because it does not need 
to use a complex integration process to determine the total energy of the plate with a hole. 
The ICCM can be also applied to a circular plate with an eccentric hole. The numerical 
results obtained by the ICCM were compared to the numerical results of the classical 
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approach, the finite element method, and the experimental results. The numerical results 
show the efficacy of the proposed method. 

2. Rayleigh-Ritz method for free vibration analysis of rectangular plate 
Let us consider a rectangular plate with side lengths a  in the X  direction and b  in the 
Y direction.  The kinetic and potential energies of the rectangular plate can be expressed as 

 2
0 0

1
2

a b
R rT h w dxdyρ= ∫ ∫  (1) 

 
22 22 2 2 2 2

2 2 2 20 0

1 2 2(1 )
2

a b r r r r r
R

w w w w wV D dxdy
x yx y x y

ν ν
⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎢ ⎥= + + + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎦⎣

∫ ∫  (2) 

where ( , , )r rw w x y t=  represents the deflection of the plate, ρ  the mass density, h  the 
thickness, 3 2/12(1 )D Eh v= − , E  the Young’s modulus, and ν  the Poisson’s ratio. 
By using the non-dimensional variables, /x aξ = , /y bη =  and the assumed mode 
method, the deflection of the plate can be expressed as 

 ( , , ) ( , ) ( )r r rw t q tξ η Φ ξ η=  (3) 

where 1 2( , ) [ ... ]r r r rmΦ ξ η Φ Φ Φ=  is a 1 m× matrix consisting of the admissible functions and 
1 2( ) [ ... ]Tr r r rmq t q q q=  is a 1m×  vector consisting of generalized coordinates, in which m  is 

the number of admissible functions used for the approximation of the deflection. Inserting 
Eq. (3) into Eqs. (1) and (2) results in Eq. (4). 

 1
2

T
R r r rT q M q= ,  1

2
T

R r r rV q K q=  (4a,b) 

where 

 r rM hab Mρ= ,  3r r
DbK K
a

=  (5a,b) 

In which 
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∂ ∂ ∂ ∂ ⎥⎦

∫ ∫
 (6b) 

,r rM K  represent the non-dimensionalized mass and stiffness matrices, respectively, and 
/a bα =  represents the aspect ratio of the plate. The equation of motion can be derived by 

inserting Eq. (4) into the Lagrange’s equation and the eigenvalue problem can be expressed as 
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 2 0r rK M Aω⎡ ⎤− =⎣ ⎦  (7) 

If we use the non-dimensionalized mass and stiffness matrices introduced in Eq. (5), the 
eigenvalue problem given by Eq. (7) can be also non-dimensionalized. 

 2 0r rK M Aω⎡ ⎤− =⎣ ⎦  (8) 

where ω  is the non-dimensionalized natural frequency, which has the relationship with the 
natural frequency as follows: 

 
4ha

D
ρω ω=  (9) 

To calculate the mass and stiffness matrices given by Eq. (6) easily, the admissible function 
matrix given by Eq. (3) needs to be expressed in terms of admissible function matrices in 
each direction.  

 ( , ) ( ) ( ), 1,2,...,ri i i i mΦ ξ η φ ξ ψ η= =  (10) 

Then, the non-dimensionalized mass and stiffness matrices given by Eq. (6) can be 
expressed as [Kwak and Han(2007)] 

 ( )r ij ijij
M X Y=  (11a)  

 ( ) ( )4 2 2ˆˆ (1 ) , , 1,2,...,r ij ij ij ij ji ij ij ji ij ijij
K X Y X Y X Y X Y X Y i j mα α ν α ν= + + + + − =  (11b) 

where 

 
1

0ij i jX dφ φ ξ= ∫ , 
1

0ij i jX dφ φ ξ′ ′= ∫ ,  
1

0
ˆ

ij i jX dφ φ ξ′′ ′′= ∫ , 
1

0ij i jX dφ φ ξ′′= ∫  (12a-d) 

1

0ij i jY dψ ψ η= ∫ , 
1

0ij i jY dψ ψ η′ ′= ∫ ,  
1

0
ˆ
ij i jY dψ ψ η′′ ′′= ∫ , 

1

0
, , 1,2,...,ij i jY d i j mψ ψ η′′= =∫  (12e-h) 

If n admissible functions are used in the X and Y directions and the combination of 
admissible functions are used, a total of 2n  admissible functions can be obtained, which 
yields 2m n= .  If each type of admissible functions are considered as ( 1,2,..., )i i nχ = and 

( 1, 2,..., )i i nγ = , then the relationship of between the sequence of the admissible function 
introduced in Eq. (10) and those of separated admissible functions can be expressed as 
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 (13a,b) 
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Therefore, instead of integrating 2 4m n= elements in Eq. (12), 2n integrations and matrix 
rearrangement will suffice. First, let us calculate the following. 

 
1

0ij i jdΣ χ χ ξ= ∫ , 
1

0ij i jdΣ χ χ ξ′ ′= ∫ ,
1

0
ˆ

ij i jdΣ χ χ ξ′′ ′′= ∫ ,  
1

0ij i jdΣ χ χ ξ′′= ∫  (14a-d) 

 
1

0ij i jdΓ γ γ η= ∫ , 
1

0ij i jdΓ γ γ η′ ′= ∫  
1

0
ˆ
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1

0
, , 1,2,...,ij i jd i j nΓ γ γ η′′= =∫  (14e-h) 

And then the matrices given by Eq. (12) can be derived as follows: 
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 (15g,h) 

where I is an n n×  matrix full of ones. 
Let us consider the simply-supported case in the X direction. In this case, the eigenfunction 
of the uniform beam can be used as an admissible function. 

 2 sin , 1,2,...i i i nχ πξ= =  (16) 

In the case of the clamped condition in the X direction, the eigenfunction of a clamped-
clamped uniform beam can be used.  

 (sinh sin )cosh cosi i i ii iχ σ λ ξ λ ξλ ξ λ ξ= − −− ,  1,2,...,i n=  (17) 

where iλ =4.730, 7.853, 10.996, 14.137,… and ( ) ( )cosh cos / sinh sini i i i iσ λ λ λ λ= − − . In the 
case of a free-edge condition in the X direction, we can use the eigenfunction of a free-free 
uniform beam. 
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 1 1χ = , 2
112
2

χ ξ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (18a,b) 

 2 (sinh sin )cosh cosi i i ii iχ σ λ ξ λ ξλ ξ λ ξ+ = + − + ,  1,2,... 2i n= −  (18c) 

where iλ  and iσ are the same as the ones for the clamped-clamped beam, and the first and 
the second modes represent the rigid-body modes.  ijΣ , ijΣ , ˆ

ijΣ , ijΣ for each case are 
given in the work of Kwak and Han(2007). 
For the admissible functions in the y direction, iγ , the same method can be applied. The 
combination of different admissible functions can yield various boundary conditions. 

3. Rayleigh-Ritz method for free vibration analysis of circular plate 
Let us consider a uniform circular plate with radius, R , and thickness, h . The kinetic and 
potential energies can be expressed as follows: 

 2 2
0 0

1
2

R
C cT h w rdrd

π
ρ θ= ∫ ∫  (19a) 
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⎫⎤⎛ ⎞∂ ∂ ⎪⎥− −⎜ ⎟ ⎬⎜ ⎟ ⎥∂ ∂ ∂ ⎪⎝ ⎠ ⎦⎭

∫ ∫
 (19b) 

Unlike the uniform rectangular plate, simply-supported, clamped, and free-edge uniform 
circular plates have eigenfunctions. Hence, the deflection of the circular plate can be 
expressed as the combination of eigenfunctions and generalized coordinates. 

 
1

( , , ) ( , ) ( ) ( , ) ( )
cn

c ci ci c c
i

w r t r q t r q tθ Φ θ Φ θ
=

= =∑  (20) 

where ( , )ci rΦ θ  represents the eigenfunction of the uniform circular plate and ( )ciq t  
represents the generalized coordinate. Inserting Eq. (20) into Eq. (19) results in the 
following. 

 1
2

T
C c c cT q M q= , 1

2
T

C c c cV q K q=  (21a,b) 

where 

 2
cM h R Iρ π= ,    

2c c
DK

R
π Λ=  (22a,b) 

in which I is an c cn n×  identity matrix, cΛ is an c cn n× diagonal matrix whose diagonals are 
4
iλ . The eigenvalue has the expression, 4 2 4 /hR Dλ ω ρ= . 

Since our study is concerned with either a rectangular or a circular hole, we consider only a 
free-edge circular plate [Itao and Crandall(1979)]. If the eigenfunctions are rearranged in 
ascending order, we can have 
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 1 1cΦ = , 2 cosc
r
R

Φ θ= , 3 sinc
r
R

Φ θ=  (23a-c) 

 ( 3) ( ), 1,2,...
k kc k k n k k n k k

r rA J C I f k
R R

Φ λ λ θ+
⎡ ⎤⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (23d) 

where 
knJ and 

knI are the Bessel functions of the first kind and the modified Bessel functions 
of order kn , respectively. The first three modes represent the rigid-body modes and other 
modes represent the elastic vibration modes. The characteristic values obtained from Eq. 
(23d) are tabulated in the work of Kwak and Han(2007) by rearranging the values given in 
reference [Leissa(1993)]. In this case,  cΛ  has the following form. 

 ( )4 4 4 4
1 2 3 30 0 0

cc ndiagΛ λ λ λ λ −⎡ ⎤= ⎣ ⎦  (24) 

4. Free vibration analysis of rectangular plate with a hole by use of global 
coordinates 
Let us consider a rectangular plate with a rectangular hole, as shown in Figure 1. 
 

 
Fig. 1. Rectangular plate with a rectangular hole with global axes. 
In this case, the total kinetic and potential energies can be obtained by subtracting the 
energies belonging to the hole domain from the total energies for the global domain.  

 

*

*

1 1( )
2 2
1 1( )
2 2

T T
total R RH r r rh r r rrh r

T T
total R RH r r rh r r rrh r

T T T q M M q q M q

V V V q K K q q K q

= − = − =

= − = − =
 (25a,b) 

where 

 * *,rrh r rh rrh r rhM KM M K K= =− −  (26a,b) 

in which ,r rM K are mass and stiffness matrices for the whole rectangular plate, which are 
given by Eq. (5), and * *,rh rhM K  reflect the reductions in mass and stiffness matrices due to 
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the hole, which can be also expressed by non-dimensionalized mass and stiffness matrices, 
respectively. 

 * *
rh rhM Mhabρ= , 3

* *
rh rh

DbK K
a

=  (27a,b) 

where 
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∫ ∫
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in which / , / , / , /x x y y c c c cr r a r r b a a a b b b= = = =  represent various aspect ratios. Hence, 
the non-dimensionalized eigenvalue problem for the addressed problem can be expressed 
as: 

 ( )2 0rrh rrhK M Aω− =  (29) 

where 

 * *,rrh r rh rrh r rhM KM M K K= =− −  (30a,b) 

To calculate the non-dimensionalized mass and stiffness matrices for the hole domain given 
by Eq. (28), we generally resort to numerical integration. However, in the case of a simply-
supported rectangular plate with a rectangular hole, the exact expressions exists for the non-
dimensionalized mass and stiffness matrices for the hole[Kwak & Han(2007)].  

5. Independent coordinate coupling method for a rectangular plate with a 
rectangular hole 

Let us consider again the rectangular plate with a rectangular hole, as shown in Fig. 2. As 
can be seen from Fig. 2, the local coordinates fixed to the hole domain is introduced. 
Considering the non-dimensionalized coordinates, /h h cx aξ = , /h h cy bη = , we can express 
the displacement inside the hole domain as 

 ( , ) ( , )h h h h h h hw qξ η Φ ξ η=  (31) 

where 1 2( , ) [ ... ]
hh h h h h hmΦ ξ η Φ Φ Φ=  is the 1 hm×  admissible function matrix, and 

1 2( ) [ ... ]
h

T
h h h hmq t q q q= is the 1hm ×  generalized coordinate vector. If we apply the 

separation of variables to the admissible function as we did in Eq. (10), then we have 

 ( , ) ( ) ( ), 1,2,...,hi h h hi h hi h hi mΦ ξ η φ ξ ψ η= =  (32) 
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Fig. 2. Rectangular plate with a rectangular hole with local axes. 

Using Eqs. (31) and (32), we can express the kinetic and potential energies in the hole 
domain as 

 1
2

T
RH rh rh rhT q M q= , 1

2
T

RH rh rh rhV q K q=  (33a,b) 

Hence, the total kinetic and potential energies can be written as 

 1 1
2 2

T T
total r r r rh rh rhT q M q q M q= − ,  1 1

2 2
T T

total r r r rh rh rhV q K q q K q= −  (34a,b) 

Where ,r rM K are defined by Eqs. (5) and (6), and 

 rh c c rhM ha b Mρ= , 3
c

rh rh
c

DbK K
a

=  (35a,b) 

in which 

 
1 1

0 0
T

rh h h h hM d dΦ Φ ξ η= ∫ ∫  (36a) 

 

2 2 2 2 2 2 2 21 1 4 2
2 2 2 2 2 2 2 20 0

2 2
22(1 )

T T T T
h h h h h h h h

rh c c
h h h h h h h h

T
h h

c h h
h h h h

K

d d

Φ Φ Φ Φ Φ Φ Φ Φα να
ξ ξ η η ξ η η ξ

Φ Φν α ξ η
ξ η ξ η

⎡ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + +⎜ ⎟⎢ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢⎣ ⎝ ⎠

⎤∂ ∂
+ − ⎥

∂ ∂ ∂ ∂ ⎥⎦

∫ ∫
 (36b) 

and /c c ca bα = . Note that the definite integrals in Eq. (36) has distinctive advantage 
compared to Eq. (28) because it has an integral limit from 0 to 1 thus permitting closed form 
expressions. Therefore, we can use the same expression used for the free-edge rectangular 
plate.  
Since the local coordinate system is used for the hole domain, we do not have to carry out 
integration for the hole domain, as in Eq. (28). However, the displacement matching 
condition between the global and local coordinates should be satisfied inside the hole 
domain. The displacement matching condition inside the hole domain can be written as 
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 ( , ) ( , )rh h h rw wξ η ξ η=  (37) 

The relationship between the non-dimensionalized global and local coordinates can be 
written as 

 ,   yx c c
h h

rr a b
a a b b

ξ ξ η η= + = +  (38a,b) 

Considering Eqs. (3), (10), (31) and (32), and inserting them into Eq. (37), we can derive 

 
1 1 1 1

( , ) ( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( ) ( )
h hm m m m

rhj h h rhj hj h hj h rhj rk rk k k rk
j j k k

q t q t q t q tΦ ξ η φ ξ ψ η Φ ξ η φ ξ ψ η
= = = =

= = =∑ ∑ ∑ ∑  (39) 

Multiplying Eq. (39) by ( ) ( )hi h hi hφ ξ ψ η  and performing integration, we can derive 

 

1 1

0 0
1

1 1

0 0
1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ),    1,2,...,

hm

hi h hi h hj h hj h h h rhj
j

m

hi h hi h rk rk h h rk h
k

d d q t

d d q t i m

φ ξ ψ η φ ξ ψ η ξ η

φ ξ ψ η φ ξ ψ η ξ η

=

=

=

= =

∑∫ ∫

∑∫ ∫
 (40) 

Using the orthogonal property of the eigenfunctions of the uniform beam, Eq. (40) can be 
rewritten as 

 

( )

1 1

0 0
1

1

( ) ( ) ( ) ( ) ( ) ( )

( ), 1,2,...,

m

rhi hi h k h hi h k h rk
k

m

rrh rk hik
k

q t d d q t

T q t i m

φ ξ φ ξ ξ ψ η ψ η η
=

=

=

= =

∑∫ ∫

∑
 (41) 

If we express Eq. (41) in the matrix form, we can have 

 rh rrh rq T q=  (42) 

where rrhT  is the hm m×  transformation matrix between two coordinates. Inserting Eq. (42) 
into Eq. (34), we can derive 

 1 1 1
2 2 2

T T T
total r r r rh rrh rh rrh rh r rrh rT q M q q T M T q q M q= − =  (43a) 

 1 1 1
2 2 2

T T T T
total r r r rh rrh rh rrh rh r rrh rV q K q q T K T q q K q= − =  (43b) 

where 

 T
rrh r rrh rh rrhM M T M T= − , T

rrh r rrh rh rrhK K T K T= −  (44a,b) 

Equation (44) can be expressed by means of non-dimensionalized parameters 

 rrh rrhM hab Mρ= , 
3rrh rrh

DbK K
a

=  (45a,b) 
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where  

 ( ) T
rrh r c c rrh rh rrhM M a b T M T= − , 3

Tc
rrh r rrh rh rrh

c

bK K T K T
a

= −  (46a,b) 

Hence, the non-dimensionalized eigenvalue problem can be written in the same form as  
Eq. (29). 
 In deriving the mass and stiffness matrices, Eq. (46), for the eigenvalue problem, we only 
needed the transformation matrix, rrhT . ,r rM K can be easily computed by Eq. (11) 
according to the edge boundary conditions and ,rh rhM K  can be computed from the results 
of Eq. (11) for the all free-edge rectangular plate.  On the other hand, the computation of 

* *,rh rhM K  based on the global coordinates is not easy because of integral limits. Compared to 
the approach based on the global coordinates, the numerical integration for the 
transformation matrix, rrhT , is easy because the integral limits are 0 and 1. The process 
represented by Eqs. (42) and (46) is referred to as the ICCM in the study by Kwak and 
Han(2007). The ICCM enables us to solve the free vibration problem of the rectangular plate 
with a rectangular hole more easily than the previous approaches based on the global 
coordinates do. The advantage of the ICCM becomes more apparent when we deal with a 
circular hole, as will be demonstrated in the next section. 

6. Free vibration analysis of rectangular plate with multiple rectangular 
cutouts by independent coordinate coupling method 
As in the case of single rectangular hole, the total energy can be computed by subtracting 
the energy belonging to holes from the energy of the whole rectangular plate, which is not 
an easy task when applying the classical Rayleigh-Ritz method. However, the ICCM enables 
us to formulate the free vibration problem for the rectangular plate with multiple holes 
more easily than the CRRM.  
Let us consider a rectangular plate with n rectangular holes as shown in Fig. 3.  
 

 
Fig. 3. Rectangular plate with multiple rectangular holes 
By employing the same formulation used in the case of a rectangular hole with a single 
rectangular hole, the non-dimensionalized mass and stiffness matrices can be derived 
considering a single hole case: 
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1
( )

n
T

rrh r k k rrhk rh rrhk
k

M M a b T M T
=

= − ∑ , 3
1

n
Tk

rrh r rrhk rh rrhk
k k

bK K T K T
a=

= − ∑  (47a,b) 

where the following non-dimensionalized variables are introduced for the analysis 

 / , / , / , /xk xk yk yk k k k kr r a r r b a a a b b b= = = =  (48a-d) 

And the transformation matrix can be expressed by considering Eq. (41) 

 ( ) 1 1

0 0
( ) ( ) ( ) ( )rrhk hi hi j hi hi hi j hiijT d dφ ξ φ ξ ξ ψ η ψ η η=∫ ∫  (49) 

In order to validate the efficacy of the ICCM for the rectangular plate with multiple 
rectangular holes, the rectangular plate with two square holes as shown in Fig. 4 is 
considered as a numerical example, in which 0.3ν = . The results of the ICCM are compared 
to those obtained by the classical Rayleigh-Ritz method. 
 

 
Fig. 4. Square plate with two square holes 

Ten admissible functions in each direction were employed, which implies one hundred 
admissible functions, for both CRRM and ICCM. In the case of the ICCM, the additional 
admissible functions are necessary for the hole domain. In our study ten admissible 
functions in each direction of the rectangular hole domain, which implies one hundred 
admissible functions, were used. The number of admissible functions guaranteeing the 
convergence are referred to the work of Kwak and Han(2007). 
Fig. 5 shows the non-dimensionalized natural frequencies obtained by the CRRM and ICCM 
for the case that the plate shown in Fig. 4 has all simply-supported boundary conditions, 
where h ha a a= .  As shown in Fig. 5, the results obtained by the ICCM agree well with the 
results obtained by the CRRM. The fundamental frequency increases as the size of the hole 
increases but higher natural frequencies undergo rapid change as the size of the hole 
increases. This result is similar to the one obtained by Kwak and Han(2007) for a single hole 
case. 
In the case of the simply-supported rectangular plate with a hole, the solutions of integrals 
can be obtained in a closed form without numerical integral technique. However, in the case 
of the clamped rectangular plate, the closed-form solution can’t be obtained, so the 
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numerical integrations are necessary. Figure 6 shows the advantage of the ICCM over the 
CRRM regarding the computational time. As can be seen from Fig. 6, the computational 
time increases enormously in the case of the CRRM compared to the ICCM as the size of the 
hole increases. Hence, it can be readily recognized that the ICCM has the computational 
efficiency compared to the CRRM, which was confirmed in the work of Kwak and 
Han(2007) for a single hole case.  
 

ICCM

CRRM

h  
Fig. 5. Simply-supported square plate with two square holes 

 

CRRM

ICCM

h  
Fig. 6. CPU time vs. hole size 
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7. Independent coordinate coupling method for a rectangular plate with a 
circular hole  
Let us consider a rectangular plate with a circular hole, as shown in Fig. 7. The global 
coordinate approach used in Section 4 can be used for this problem but we must resort to 
numerical integration technique. If we use the ICCM, we can avoid the complex numerical 
computation and thus simplify the computation as in the case of a rectangular hole. 
 

 
Fig. 7. Rectangular plate with a circular hole. 
The total kinetic and potential energies of the rectangular plate with a circular hole are 
obtained by subtracting the energies of the circular hole domain from the energies of the 
whole plate, as we did for the case of a rectangular hole. Hence, the following equations can 
be obtained by using Eqs. (4) and (21). 

 1 1
2 2

T T
total r r r ch ch chT q M q q M q= − ,  1 1

2 2
T T

total r r r ch ch chV q K q q K q= −  (50a,b) 

In order to apply the ICCM, the displacement matching condition should be satisfied. 
Hence, the following condition should be satisfied inside the circular hole domain. 

 ( , ) ( , )c rw r wθ ξ η=  (51) 

Considering Eqs. (20), (3) and (10), we can obtain. 

 
1 1 1

( , ) ( ) ( , ) ( ) ( ) ( ) ( )
cm m m

cj chj rk rk k k rk
j k k

r q t q t q tΦ θ Φ ξ η φ ξ ψ η
= = =

= =∑ ∑ ∑  (52) 

Multiplying Eq. (52) by ( , )ci rΦ θ  and performing integration over the circular hole domain 
result in 

 
2 2

0 0 0 0
1 1

( , ) ( , ) ( ) ( , ) ( ) ( ) ( ),

1,2,...,

cm mR R
ci cj chj ci k k rk

j k

c

r r rdr d q t r rdr d q t

i m

π π
Φ θ Φ θ θ Φ θ φ ξ ψ η θ

= =
=

=

∑ ∑∫ ∫ ∫ ∫  (53) 
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Using the orthogonal property of ( , )ci rΦ θ , Eq. (53) can be rewritten as  

 ( )2

0 0
1 1

( ) ( , ) ( ) ( ) ( ) ( ), 1,2,...,
m mR

chi ci k k rk ch rk cik
k k

q t r rdr d q t T q t i m
π

Φ θ φ ξ ψ η θ
= =

= = =∑ ∑∫ ∫  (54) 

Equation (54) can be expressed in matrix form. 

 ch rch rq T q=  (55) 

where chT  is a cm m×  transformation matrix. We also need the relationship between the 
global and local coordinates, which can be expressed as follows.  

 cos sin,   yx rr r r
a a b b

θ θξ η= + = +  (56a,b) 

Using Eq. (55), the mass and stiffness matrices can be easily derived as in the case of a 
rectangular hole. 

 T
rch r rch ch rchM M T M T= − , T

rch r rch ch rchK K T K T= −  (57a,b) 

Eq. (57) can be nondimensionalized using Eqs. (5) and (22) as for the rectangular hole. 
Hence, we obtain 

 rch rchM hab Mρ= , 3rch rch
DbK K
a

=  (58a,b) 

where 

 ( )2 T
rch r rch rchM M T Tπαβ= − , 2

T
rch r rch c rchK K T Tπα Λ

β
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

 (59a,b) 

in which /R aβ = . 
As shown in the process from Eq. (55), (57) and (59), it can be readily seen that the 
application of the ICCM is very straightforward and the theoretical background is solid. The 
efficacy of the ICCM are fully demonstrated in the numerical results[Heo and Kwak(2008), 
Kwak et al.(2005,2006,2007)]. 

8. Free vibration analysis of rectangular plate with multiple circular cutouts 
by independent coordinate coupling method  
Let us consider a rectangular plate with multiple circular holes as shown in Fig. 8.  We can 
easily extend the formulation developed in the previous section to the case of a rectangular 
plate with multiple circular holes. The resulting mass and stiffness matrices can be 
expressed as: 

 2

1

n
T

r k rchk rchk
k

M M T Tπαβ
=

= − ∑ , 2
1

n
T

rch r rchk c rchk
k k

K K T Tπα Λ
β=

= −∑   (60a,b) 
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where rchkT  represents the transformation matrix for kth circular hole  

 ( ) ( ) ( ) ( )
2

0 0
,kR

rchk ki k k j jijT r rdrd
π

Ψ θ φ ξ ψ η θ= ∫ ∫  (61) 

We also need the relationship between the global and local coordinates, which can be 
expressed as follows:  

 cos sin, kykx k k k krr r r
a a b b

θ θξ η= + = +  (62a,b) 

For the numerical study, we considered a square plate with two circular holes as shown in 
Fig. 9. The results of the ICCM were compared to those obtained by the commercial finite 
element method, ANSYS. 0.3ν = , 76GPaE = , 1ma = , 37800 kg mρ = were used and non-
dimensionalized frequencies were estimated from the computed natural frequencies. For the 
ICCM, ten admissible functions were used for each direction of the square plate and fifty 
admissible functions were used for each circular hole. 
 

 
Fig. 8. Rectangular plate with multiple circular holes with local axes  
 

 
Fig. 9. Square plate with two circular holes 
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Figure 10 shows the non-dimensionalized natural frequencies obtained by the ICCM and 
ANSYS for simply-supported square plate with two circular hole, where hR aβ = . As 
shown in the figure, the results obtained by the ICCM are in good agreement with those 
obtained by ANSYS. 
 

 
Fig. 10. Simply-supported square plate with two circular holes ( —: ICCM, □:ANSYS) 

9. Independent coordinate coupling method for a circular plate with an 
eccentric circular hole 
Let us consider a circular plate with an eccentric circular hole as shown in Fig. 11 to 
demonstrate the efficacy of the ICCM.  
The total kinetic and potential energies can be written as  

 total C CHT T T= − , total C CHV V V= − . (63a,b) 

However, it is not easy to express the energies belonging to the eccentric circular hole using 
the global coordinate system whose origin is fixed to the circular plate since the integral 
limits cannot be easily established. In addition, the numerical integration for the eccentric 
circular hole is also not an easy task. These complexities can be avoided with the use of the 
ICCM [Heo and Kwak(2008)]. Based on the ICCM, the deflection of the circular plate with 
the eccentric circular hole can be expressed as a combination of eigenfunctions and 
generalized coordinates, which are based on the local coordinates, ,c cr θ , as shown in Fig.11. 
Inserting Eq. (21) into Eq. (63), the total kinetic and potential energies can be written as 

 1 1
2 2

T T
total c c c ch ch chT q M q q M q= − , 1 1

2 2
T T

total c c c ch ch chV q K q q K q= −  (64a,b) 
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Fig. 11. Circular plate with an eccentric hole for coordinate system 

In the next task in the ICCM, the displacement matching condition is satisfied inside the 
eccentric circular hole domain, i.e. 

 ( , ) ( , )ch c c cw r w rθ θ= . (65) 

Inserting Eqs. (20) into (65), we then obtain 

 
1 1

( , ) ( ) ( , ) ( )
cn n

cj c c chj j cj
j j

r q t r q tΦ θ Φ θ
= =

=∑ ∑ . (66) 

Multiplying Eq. (661) by ( , )ci c crΦ θ  and integrating over the eccentric circular hole domain 
result in 

 
2 2

0 0 0 0
1 1

( , ) ( , ) ( ) ( , ) ( , ) ( )

1,2,...,

c
c c

n nR R
ci c c cj c c c c c chj ci c c j c c c j

j j

c

r r r dr d q t r r r dr d q t

i n

π π
Φ θ Φ θ θ Φ θ Φ θ θ

= =

=

=

∑ ∑∫ ∫ ∫ ∫ . (67) 

Using the orthogonal property of ( , )ci c crΦ θ , Eq. (67) can be rewritten as  

 ( )2

0 0
1 1

( ) ( , ) ( , ) ( ) ( ), 1,2,...,c
n nR

chi ci c c j c c c j cch jk cik
j k

q t r r r dr d q t T q t i n
π

Φ θ Φ θ θ
= =

= = =∑ ∑∫ ∫ . (68) 

Equation (68) can be expressed in matrix form 

 ch cch cq T q=  (69) 

where cchT  is a cn n×   transformation matrix. The relationships between the global and 
local coordinates are needed to compute each element in the transformation matrix, which 
can be expressed as follows.  

 2 2 1 sin( )2 cos( ) , tan
cos

c c
c e c e c

e c c

rr r R r R
R r

π θπ θ θ
θ

− ⎛ ⎞−
= + − − = ⎜ ⎟

+⎝ ⎠
. (70a,b) 
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Using Eqs. (69) into (64), we can derive the mass and stiffness matrices as follows: 

 T
cch c cch ch cchM M T M T= − , T

cch c cch ch cchK K T K T= − . (71a,b) 

which can be expressed in terms of the non-dimensionalized mass and stiffness matrices 

 2
cch cchM h R Mρ π= , 2cch cch

DK K
R
π

=  (72a,b) 

where 

 2 T
cch cch cchM I T Tα= − , 2

1 T
cch cch c cchK T TΛ Λ

α
= −  (73a,b) 

in which /cR Rα =  is the ratio of the radius of the eccentric circular hole to the radius of the 
circular plate. Hence, the non-dimensionalized eigenvalue problem for the circular plate 
with an eccentric circular hole can be expressed as 

 2 0cch cchK M Aω⎡ ⎤− =⎣ ⎦   (74) 

where 4hR Dω ω ρ=  is the non-dimensionalized natural frequency. 
The finite element commercial code, ANSYS, was used for the calculation of non-
dimensionalized natural frequencies of the simply-supported circular plate with an eccentric 
circular hole, where material constants, 32700 , 69 , 0.3kg m E GPaρ ν= = = and h =2 mm, 
R =1 m were used. Figure 12 shows the mesh configuration of two cases for 

0.25α = , 0.4e =  and 0.5α = , 0.4e = , respectively, where the non-dimensionalized eccentric 
constant, /ee R R= , is introduced. The mesh for the first case consisted of 4261 elements 
and 4395 nodes and the mesh for the second case consisted of 3197 elements and 3357 nodes. 
 

    
(a) 0.25, 0.4eα = =                                                 (b) 0.5, 0.4eα = =  

Fig. 12. Mesh Configurations by ANSYS 

Figures 13 and 14 show the changes in the non-dimensionalized natural frequencies of the 
simply-supported circular plate with an eccentric circular hole with respect to the eccentricity 
when α = 0.25 and 0.5, respectively. Figs. 13 and 14 show the good agreement between the 
results obtained by the ICCM and the results by ANSYS. Eccentricity had a small effect on the 
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fundamental mode, regardless of the hole size. However, the increases of the hole size and 
eccentricity had a large effect on higher natural frequencies, which changed unpredictably. 
Instead of commercial finite element codes, the ICCM can be used as an effective tool for the 
estimation of natural frequencies of a circular plate with an eccentric circular hole. Different 
boundary conditions were treated in the work by Heo and Kwak(2008). 
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Fig. 13. Non-Dimensionalized Natural Frequency vs. Eccentricity for 0.25α =  
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Fig. 14. Non-Dimensionalized Natural Frequency vs. Eccentricity for 0.5α =  

10. Discussion and conclusions 
In general, the free vibration problem of a plate with holes can’t be solved analytically. 
Therefore, we have to resort to numerical approach such as the finite element method. The 
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classical Rayleigh-Ritz method has been popularly used for the analysis of a uniform 
rectangular plate and the exact solution exists for uniform circular plate. The procedure of 
the classical Rayleigh-Ritz method was first explained in detail. In applying the classical 
Rayleigh-Ritz method based on the global coordinates only, the kinetic and potential 
energies of the rectangular plate with a hole were calculated by subtracting the hole domain 
in the integrals. However, the Rayleigh-Ritz method can’t be effectively used when the plate 
has holes because the numerical computation of integrals is required. If the plate hole 
geometry belongs to either rectangular or circular shape, the newly developed method, so 
called the independent coordinate coupling method (ICCM) can be effectively used. The 
ICCM has proved its effectiveness in analyzing the free vibration of a rectangular plate with 
a rectangular hole, a rectangular plate with multiple rectangular holes, a rectangular plate 
with a circular hole, a rectangular plate with multiple circular holes, and a circular plate 
with a circular hole. However, the ICCM can be easily extended to a circular plate with a 
rectangular hole and circular plate with multiple circular holes.  
To apply the ICCM to the addressed problem, the global coordinates are set up for the plate 
and the local coordinates are set up for the hole domain, independently. The kinetic and 
potential energy expressions for the plate and the inner hole were then derived 
independently. Since the plate inside the hole domain can be regarded as a virtual free-edge 
plate, the energies, which are to be subtracted from the total energies, can be easily 
expressed in closed form. The resulting total energies are expressed in terms of generalized 
coordinates, which belong to either global or local coordinates. Hence, we need to unify the 
generalized coordinates. To this end, the relationships between the generalized coordinates 
belonging to the global and local coordinates were then derived using the displacement 
matching condition inside the hole domain and the orthogonal property of the admissible 
functions. In this way, the total kinetic and potential energies can be easily obtained and 
used for the calculation of the natural frequencies and modes of the circular plate with holes. 
To verify results of the proposed ICCM, numerical calculations were carried out using the 
classical Rayleigh-Ritz method based on the global coordinates only and the commercial 
finite element program. Experiments have been also carried out for the free-edge square 
plate with a square and circular hole. Both numerical and experimental results showed that 
good agreement exists between the results by the ICCM and the results obtained by the 
different algorithms and experiments. Hence, it can be concluded that the proposed ICCM 
can be effectively used for the free vibration analysis of a plate with holes. 
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1. Introduction 
A new class of materials known as ‘functionally graded materials’ (FGMs) has emerged 
recently, in which the material properties are graded but continuous particularly along the 
thickness direction. In an effort to develop the super heat resistant materials, Koizumi [1] 
first proposed the concept of FGM. These materials are microscopically heterogeneous and 
are typically made from isotropic components, such as metals and ceramics.  
In the quest for developing lightweight high performing flexible structures, a concept 
emerged to develop structures with self-controlling and self-monitoring capabilities. 
Expediently, these capabilities of a structure were achieved by exploiting the converse and 
direct piezoelectric effects of the piezoelectric materials as distributed actuators or sensors, 
which are mounted or embedded in the structure [2, 3]. Such structures having built-in 
mechanisms are customarily known as ‘smart structures’. The concept of developing smart 
structures has been extensively used for active control of flexible structures during the past 
decade [4].  
Recently considerable interest has also been focused on investigating the performance of FG 
plates integrated with piezoelectric actuators. For example, Ootao and Tanigawa [5] 
theoretically investigated the simply supported FG plate integrated with a piezoelectric 
plate subjected to transient thermal loading. A 3-D solution for FG plates coupled with a 
piezoelectric actuator layer was proposed by Reddy and Cheng [6] using transfer matrix and 
asymptotic expansion techniques. Wang and Noda [7] analyzed a smart FG 
compositestructure composed of a layer of metal, a layer of piezoelectric and a FG layer in 
between, while in [8] a finite element model was developed for studying the shape and 
vibration control of FG plates integrated with piezoelectric sensors and actuators. Yang et al. 
[9] investigated the nonlinear thermo-electro-mechanical bending response of FG 
rectangular plates covered with monolithic piezoelectric actuator layers; most recently, 
Huang and Shen [10] investigated the dynamics of a FG plate coupled with two monolithic 
piezoelectric layers undergoing nonlinear vibrations in thermal environments. All the 
aforementioned studies focused on the rectangular-shaped plate structures.  
However, to the authors’ best knowledge, no researches dealing with the free vibration 
characteristics of the circular FGM plate integrated with the piezoelectric layers has been 
reported. Therefore, the present work attempts to solve the problem of providing analytical 
solution for free vibration of thin circular FG plates with two full size surface-bonded 
piezoelectric layers on the top and the bottom of the FG plate. The formulations are based 
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on CPT. A consistent formulation that satisfies the Maxwell static electricity equation is 
presented so that the full coupling effect of the piezoelectric layer on the dynamic 
characteristics of the circular FGM plate can be estimated based on the free vibration results. 
The physical and mechanical properties of the FG substrate plate are assumed to be graded 
continuously in the thickness direction according to the power-law distribution in terms of 
the volume fractions of the constituents. The differential equations of motion are solved 
analytically for clamped edge boundary condition of the plate. By using of some 
mathematical techniques these differential equations are transformed to a sixth order 
ordinary differential equation and finally by implementing the operator decomposition 
method on this equation, three Bessel types of equations are obtained which can easily be 
solved for the plate deflection and the potential function. The detailed mathematical 
derivations are presented. In Numerical investigations, the emphasis is placed on 
investigating the effect of varying the gradient index of FG plate on the free vibration 
characteristics of the structure. The results are verified by those obtained from 3D finite 
element analyses. 

2. Functionally graded materials 
In a FG material made of ceramic and metal mixture, if the volume fraction of the ceramic 
part is represented by Vc and the metallic part by Vm, we have; 

 1m cV V+ =  (1) 

Based on the power law distribution [11], the variation of Vc vs. thickness coordinate (z) 
placed at the middle of thickness, can be expressed as; 

 ( 2 1 2) , 0g
c fV z h g= + ≥  (2) 

We assume that the inhomogeneous material properties, such as the modulus of elasticity E 
and the density ρ  change in the thickness direction z based on Voigt’s rule over the whole 
range of the volume fraction [12]; while Poisson’s ratio υ is assumed to be constant in the 
thickness direction [13] as; 

 ( ) ( ) ( )c m c mE z E E V z E= − +  (3a) 

 ( ) ( ) ( )c m c mz V zρ ρ ρ ρ= − +  (3b) 

where subscripts m and c refer to the metal and ceramic constituents, respectively. After 
substituting Vc from Eq. (2) into Eqs. (3), material properties of the FGM plate are 
determined in the power law form which are the same as those proposed by Reddy et al. 
[11] i.e.; 

 ( ) ( )( 2 1 2)g
c m f mE z E E z h E= − + +  (4a) 

 ( ) ( )( 2 1 2)g
c m f mz z hρ ρ ρ ρ= − + +  (4b) 

 ( )zν ν=  (4c) 
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3. Piezoelectric materials 
For symmetry piezoelectric materials in polar coordinate, the stress - strain - electric field 
intensity relations based on well-known assumptions of classical plate theory,  can be 
written as [16]; 

 11 12 31
p E E
rr rr zC C e Eθθσ ε ε= + −  (5) 

 12 11 31
p E E

rr zC C e Eθθθθσ ε ε= + −  (6) 

 ( ) ( )11 12 11 12
p E E E E

rr C C z C Cθθτ ε= − = − −  (7) 

in which iσ  , kε  and e represent the stress and strain components and the permeability 
constant of piezoelectric material and Ek indicates the components of the electric field and 

E
ijC are the components of the symmetric piezoelectric stiffness matrix and 31e  is the reduced 

permeability constant of piezoelectric material as [13]; 

( )2
11 11 13 33
E E E EC C C C= − , ( )2

12 12 13 33
E E E EC C C C= −  

31 31 13 33 33
E E Ee e C e C= −  

4. Constitutive relations  
 

 
Fig. 1. Schematic representation of the FGM circular plate with two piezoelectric layers 
mounted on its upper and lower surfaces 
The cross section of a circular FGM plate with a piezoelectric layer mounted on its surface is 
shown in Fig. 1. In most practical applications, the ratio of the radius to the thickness of the 
plate is more than ten, and the Kirchhoff assumption for thin plates is applicable, whereby 
the shear deformation and rotary inertia can be omitted. For such a structure, the 
displacement field is assumed as follows: 

 ( , , ) ( , , )z zu u r t w r tθ θ= =  (8) 
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 ( , , ) z
r r

uu u r t z
r

θ
∂

= = −
∂

 (9) 

 ( , , ) zuu u r t z
rθ θ θ

θ
∂

= = −
∂

 (10) 

where uz, ur and uθ are the displacements in the transverse z-direction, radial r-direction, and 
tangential θ-direction of the plate, respectively. 
It is also assumed that the poling direction of the piezoelectric material to be in the z-
direction. A differential strain can be induced in case of applying external electric potential 
across the piezoelectric layer resulting in bending of the plate. The strain of the FGM plate 
and piezoelectric layer in the radial and tangential directions and the shear component are 
given by [14] 

 
2

2
r

rr
u wz
r r

ε ∂ ∂
= = −

∂ ∂
 (11) 

 
2

2 2( )ru u w wz
r r r rr

θ
θθε

θ θ
∂ ∂ ∂

= + = − +
∂ ∂∂

 (12) 

 1 ( )
2

r
r

u u u
r r r

θ θ
θε

θ
∂ ∂

= + −
∂ ∂

 (13) 

The stress components in the FGM plate in terms of strains or component of displacement 
field based on the generalized Hooke’s Law are [14]; 

 2( )( ) (1 )f
rr rrE z θθσ ε νε ν= + −  (14) 

 2( )( ) (1 )f
rrE z θθθθσ ε νε ν= + −  (15) 

 
2

2
( )

1
f

r
zE z w w

r r rθτ
ν θ θ

⎛ ⎞∂ ∂
= − −⎜ ⎟⎜ ⎟+ ∂ ∂ ∂⎝ ⎠

 (16) 

where the superscript f represents the variable in the FGM structure; Two piezoelectric 
layers are attached to the FG plate and intended to be used as an actuator or sensor to 
determine the natural frequencies of a vibrating coupled plate,. There are several different 
models representing the input electric potential for such a piezoelectric layer. In this paper 
we decided to adopt the following Wang et al. electric potential function which is 
appropriate for free vibrations of proposed system [13]; 

 ( )( ) 21 2 2 ( , , )f p pz h h h r tφ ϕ θ⎡ ⎤= − − −⎢ ⎥⎣ ⎦
 (17) 

where ( , , )r tϕ θ is the electric potential on the mid-surface of the piezoelectric layer.  
Based on Eq. (17), the components of electric field intensity E and electric flux density D is 
written as [15]: 

 11 11( )r rD E
r
φΞ Ξ ∂

= = −
∂

 (18) 
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 11 11( )D E
rθ θ

φΞ Ξ
θ

∂
= = −

∂
 (19) 

 ( )33 31z z rrD E e θθΞ ε ε= + +  (20) 

where 11Ξ , 33Ξ  are the symmetric reduced dielectric constants of piezo layer and given by 
[17]; 

 2
33 33 33 33( )Ee CΞ Ξ= + , 11 11Ξ Ξ=  (21) 

in which 33Ξ , 11Ξ  are the dielectric constants. 

5. Governing equations  
In order to obtain the governing differential equation of the coupled circular plate, we begin 
with resultant moments components as [16];  

 2f f p

f f

h h hf p
rr rr rrh h

M z dz z dzσ σ
+

−
= +∫ ∫  (22) 

 2f f p

f f

h h hf p
h h

M z dz z dzθθ θθ θθσ σ
+

−
= +∫ ∫  (23) 

 2f f p

f f

h h hf p
r r rh h

M z dz z dzθ θ θτ τ
+

−
= +∫ ∫  (24) 

and the resultant shear forces are herein written as 

 rr r rr
r

M M M Mq
r r r

θ θθ

θ
∂ ∂ −

= + +
∂ ∂

 (25) 

 
2r rM M Mq

r r r
θ θθ θ

θ θ
∂ ∂

= + +
∂ ∂

 (26) 

Substituting Eqs. (11-13) in to Eqs. (14-16) and Eqs. (5-7) and substituting the results in to 
Eqs. (22-26) and substituting the final results into the governing equation for the Kirchhoff 
plate, 

 2 2

2 2( ) 2 0f f p

f f

r r

h h hz z
f ph h

q q q
r r r

u uz dz dz
t t

θ

θ

ρ ρ
+

−

∂ ∂
+ + −

∂ ∂
⎛ ⎞∂ ∂

+ =⎜ ⎟⎟⎜ ∂ ∂ ⎠⎝
∫ ∫

 (27) 

will result in the equation for the piezoelectric coupled circular FGM plate, 

 ( )
2

1 2 31 0 2
4 0
3 p

wD D w h e P
t

ΔΔ Δϕ ∂
+ + + =

∂
 (28) 
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where Δ is the Laplace operator in polar coordinate and 

2

1 2
( )

1
f

f

h

h

z E zD dz
ν−

=
−∫  

2 2
2 11

2 (3 3 )
3

E
p f f p pD h h h h h C= + +  

1 ( )
2

f

f

h
f fh

f
z dz

h
ρ ρ

−
= ∫ , 0 2( )f f p pP h hρ ρ= +  

where ρf and ρp are material densities of the FGM plate and piezoelectric layer, respectively.  
Note that all of the electrical variables primarily must satisfy the Maxwell's equation which 
requires that the divergence of the electric flux density vanishes at any point within the 
media as [15]; 

 ( ) 0f p

f

h h r z
h

rD D D dz
r r r z

θ

θ
+ ⎛ ⎞∂ ∂ ∂

+ + =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
∫  (29) 

Now, by substituting Eqs. (18- 20) into the above equation we arrive at; 

 
2 2

11 31

33 33
0

12 8
p ph h e

w
Ξ

Δϕ ϕ Δ
Ξ Ξ

− + =  (30) 

6. Solution method  
Primarily we solve Eqs. (28) and (30) simultaneously by which φ can be expressed in terms 
of w as; 

 

( ) 2
1 2 11 31

31 33 33
2

11
2

31 33

( , , )
16 8

( )
8

p p

p f f p p

D D h h e
r t w w

e
h h h w

e t

Ξ
ϕ θ ΔΔ Δ

Ξ Ξ
ρ ρ Ξ

Ξ

+
= − +

+ ∂
−

∂

 (31) 

Applying the Laplacian operator to the above equation and substituting the result into 
equation (28) gives a decoupled sixth-order partial differential equation, namely 

 
2 2

3 2 1 02 2( ) 0w wP w P w P P
t t

ΔΔΔ ΔΔ Δ ∂ ∂
− + − =

∂ ∂
 (32) 

where 

 

2
1 11 0 33

3 2
2 1 2 31 33

2
3 1 2 11 33

12 ,

6 ,

( ) 12

p

p

p

P h P

P D D h e

P D D h

Ξ Ξ

Ξ

Ξ Ξ

=

= + +

= +

 (33)  
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To solve Eq. (34) for w, we first assume that; 

 ( )
1( , , ) ( ) i m tw r t w r e θ ωθ −=  (34) 

where 1( )w r  is the displacement amplitude in the z - direction as a function of radial 
displacement only;  ω is the natural angular frequency of the compound plate; and m is the 
wave number in the circumferential direction. Rewriting Eq. (32) in terms of 1( )w r  and 
using Eq. (34), after canceling the exponential term one would get; 

 2 2
3 1 2 1 1 1 0 1 0P w P w P w P wΔΔΔ ΔΔ ω Δ ω− − + =  (35) 

where 2 2 2 2d dr d rdr m rΔ = + −  
Eq. (35) can be solved by the method of decomposition operator and noting that the 1w  is 
non-singular at the center of the plate its general solution yields to 

 
3

1
1

( )nm nm n
n

w A Z rα
=

= ∑  (36) 

here  

 1 1xα = , 2 2xα = , 3 3xα =  (37) 

in which x1, x2 and x3 are the roots of the following cubic characteristic equation, 

 3 2 2 2
3 2 1 0 0P x P x P x Pω ω− − + =  (38) 

and 

 
( ) , 0

( ) ( , )
( ) , 0

m i i
im i im i

m i i

J r x
Z r Z r

I r x
α

α α
α

<⎧
= = ⎨ >⎩

 (39) 

here i=(1,2,3) and ( )m iJ rα , ( )m iI rα are the first type and the modified first type Bessel 
function ,both of them of the order of m. In order to obtain appropriate solution for ( , , )r tϕ θ , 
we assume; 

 ( )
1( , , ) ( ) i m tr t r e θ ωϕ θ ϕ −=  (40) 

then substituting Eq. (36) in to Eq. (31)we arrive to the following relation for ( , , )r tϕ θ ; 

 

31 2 2
1 31 33 31

1
4 2

1 2 11 0 11

( ) 16 (2

( ) ) ( )

nm p n n p
n

n nm n

r e A h s h e

D D P Z r

ϕ Ξ α

α Ξ ω Ξ α

−

=

⎡⎡ ⎤= −⎣ ⎦ ⎣

⎤+ + ×⎦

∑
 (41) 

7. Case studies, results and discussions 
We will solve above the relations in this section; the material parameters and geometries are 
listed in Table 1. 
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FGM Plate: Ec = 205 GPa  ρc =8900  (kg/ m3) 
 Em = 200 GPa ρm =7800 
PZT4: 11

EC = 132 33
EC = 115 

55
EC = 26 GPa 13

EC = 73 12
EC = 71 

e31 =-4.1 (C/m2) e33 =14.1 e15 =10.5  

11Ξ =7.124 (nF/m) 33Ξ =5.841  ρp =7500 (kg/ m3) 
   
Geometry(mm): r0=600 hf =2, hp =10  

Table 1. Material properties and geometric size of the piezoelectric coupled FGM plate [13,17] 

7.1 Clamped circular piezo-coupled FGM plate 
The boundary condition is given by 

 1 1 1 00 ( )w dw dr d dr at r rϕ= = = =  (42) 

and the characteristic equation is 

 
11 12 13

21 22 23

31 32 33

0
c c c
c c c
c c c

=  (43) 

 
1 0 2 0 0

2 3 5 4
0 1 2 0 11 1 2 11

3 02 2 3
31 31 0

( ),     ( )

( ) ( )
( )

8 16 16

i im i i i im i

p i i p i p i
i im i

c Z r c r Z r

h r s D D h r D D h
c Z r

e e r

α α α

α α Ξ α λ Ξ
α

′= =

⎛ ⎞+ +
⎜ ⎟ ′= − +
⎜ ⎟
⎝ ⎠

 (44) 

 

1
2 4

0
1 2

2( )f f p ph h
r

D D
ρ ρ ω

λ
⎡ ⎤+
⎢ ⎥=

+⎢ ⎥⎣ ⎦
 (45) 

 
2

1 2
2
0 2( )f f p p

D D
h hr

λω
ρ ρ

+
=

+
 (46) 

in which the ()’ symbol indicates the derivative with respect to r and λ is the 
nondimensional angular natural frequency.  
After calculating ω from Eq. (43) and using Eqs. (36, 42) we find the mode shape for w1 as; 

 

3 2 2 0 3 3 0 2 3 3 0 2 2 0
1 3 1 1

2 1 1 0 2 2 0 1 2 2 0 1 1 0

1 3 3 0 1 1 0 3 1 1 0 3 3 0

2 1 1 0 2 2 0 1 2 2 0 1 1

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) (

m m m m
m m

m m m m

m m m m

m m m m

Z r Z r Z r Z rw r A Z r
Z r Z r Z r Z r

Z r Z r Z r Z r
Z r Z r Z r Z r

α α α α α α α
α α α α α α

α α α α α α
α α α α α α

⎡⎛ ⎞′ ′−
= × × +⎢⎜ ⎟′ ′−⎢⎝ ⎠⎣

′ ′−
′ ′−

]2 2 3 3
0

( ) ( )
) m mZ r Z rα α

⎛ ⎞
× +⎜ ⎟

⎝ ⎠

 (47) 

and moreover, by using Eqs. (36, 41, 42) we have the electric potential as; 
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3 2 2 0 3 3 0 2 3 3 0 2 2 0
3

2 1 1 0 2 2 0 1 2 2 0 1 1 0
12 2 4 2

1 1 1 1 31 1 2 1 11 0 11 31 33

1 3 3 0 1
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Power
Index 

Mode 
no. FGM plate 

g m Present 
Method 

Present 
(FEM) 

Error 
(%) 

Wang 
et al. 
[13] 

0 138.42 139.27 0.61 138.48
1 288.05 289.70 0.57 288.200 
2 472.55 473.45 0.19 472.79
0 134.63 135.43 0.59 - 
1 280.17 281.78 0.57 - 1 
2 459.62 460.45 0.18 - 
0 132.70 133.63 0.69 - 
1 276.19 278.04 0.67 - 3 
2 453.09 454.34 0.28 - 
0 132.12 133.06 0.70 - 
1 274.96 276.85 0.68 - 5 
2 451.06 452.39 0.29 - 
0 131.85 132.78 0.70 - 
1 274.39 276.25 0.67 - 7 
2 450.13 451.46 0.29 - 
0 131.69 132.70 0.76 - 
1 274.07 276.09 0.73 - 9 
2 449.60 450.84 0.28 - 
0 131.64 132.55 0.68 - 
1 273.96 275.79 0.67 - 10 
2 449.42 450.66 0.28 - 

Table 2. First three resonance frequencies (Hz) of FGM plate 
In order to validate the obtained results, we compared our results with those given in the 
literature [7,9,10].Further as there were no published results for the compound piezoelectric 
FGM plate, we verify the validity of obtained results with those of FEM results. 
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Our FEM model for piezo- FG plate comprises: a 3D 8-noded solid element with: number of 
total nodes 26950, number of total element 24276, 3 DOF per node in the host plate element 
and 6 DOF per node in the piezoelectric element. Tables 2 and 3 shows the numerical results 
of our method compared with other references and techniques. 
As one can see from Table 2, the obtained results from the analytical method when g=0 
(isotropic steel plate) corresponds closely with the results of [7-9] and FEM solution. As it is 
seen in these tables the maximum estimated error of our solution with FEM is about 1.51%. 
 

Power
Index 

Mode 
no. Coupled Piezo-FGM plate 

g m Present 
Method 

Present 
(FEM) 

Error 
(%) 

Wang 
et al. 
[13] 

0 143.63 144.69 0.73 143.71
1 298.92 300.49 0.52 299.070 
2 490.37 492.62 0.46 490.62
0 140.26 142.22 1.38 - 
1 291.89 295.82 1.33 - 1 
2 478.84 482.09 0.67 - 
0 138.54 140.60 1.46 - 
1 288.33 292.47 1.42 - 3 
2 472.99 476.61 0.76 - 
0 138.01 140.07 1.47 - 
1 287.21 291.39 1.43 - 5 
2 471.16 474.81 0.77 - 
0 137.76 139.82 1.47 - 
1 286.69 290.83 1.43 - 7 
2 470.30 473.95 0.77 - 
0 137.62 139.73 1.51 - 
1 286.40 290.54 1.43 - 9 
2 469.83 473.16 0.70 - 
0 137.57 139.61 1.46 - 
1 286.30 290.41 1.42 - 10 
2 469.66 473.26 0.76 - 

Table 3. First three resonance frequencies (Hz) for piezo-coupled FGM plate for various 
values of power index 
A close inspection of results listed in Tables 2 and 3 indicates that the amount of error between 
analytical and FEM results for the natural frequencies in FGM plate alone in the all vibration 
modes and for all values of g are less than the similar results for the compound plate. 
The obtained results in Table 3 indicate that by increasing the value of g, the frequency of 
system decreases in all different vibrational modes. Moreover, this decreasing trend of 
frequency for smaller values of g is more pronounced, for example by increasing value of g 
from 1 to 3 (~200%) the frequency of the first mode for the compound plate decreases by 
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Fig. 2. Effect of power index on the natural frequencies (first mode) 
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Fig. 3. Effect of power index on the natural frequencies (third mode) 
1.23% but by increasing g from 3 to 9 (~ 200%) of the same plate and for the same mode, the 
frequency decreases by 0.66%. In order to see better the effect of g variations on the natural 
frequencies of the different plates, Fig. 2 and Fig. 3 also illustrate these variations for the first 
and third mode shapes. 
As it is seen from Figs. 2 and Fig. 3, the behavior of the system follows the same trend in all 
different cases, i.e. the natural frequencies of the system decrease by increasing of g and 
stabilizes for g values greater than 7. In fact for g>>1 the FGM plate becomes a ceramic plate 
and the compound plate transforms to a laminated plate with ceramic core as a host plate. 
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8. Conclusion 
In this paper free vibration of a thin FGM plus piezoelectric laminated circular plate based 
on CPT is investigated. The properties of FG material changes according to the Reddy’s 
model in direction of thickness of the plate and distribution of electric potential in the 
piezoelectric layers follows a quadratic function in short circuited form. The validity of the 
obtained results was done by crossed checking with other references as well as by obtained 
results from FEM solutions. It is further shown that for vibrating circular compound plates 
with specified dimensions, one can select a specific piezo-FGM plate which can fulfill the 
designated natural frequency and indeed this subject has many industrial applications. 
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1. Introduction 
Since their discovery in 1991 by Ijima [1], carbon nanotubes (CNT) have received much 
attention as a new class of nanomaterials revealing a significant potential for use in a diverse 
range of novel and evolving applications. Much of the interest in CNTs has focused on their 
particular molecular structures and their unique electronic and mechanical properties. For 
example, their elastic stiffness is comparable to that of diamond (1000 GPa), while their 
strength is ten times larger (yield strength 100 GPa). Furthermore, CNTs conduct heat and 
electricity along their length with very little resistance, and therefore they act as tiny 
electrical wires or paths for the rapid diffusion of heat. As a result, progressive research 
activities regarding CNTs have been ongoing in recent years. For more detail on theoretical 
predictions and experimental measurements of both mechanical and physical properties, see 
the comprehensive reviews in [2,3].  
The combination of an extremely high stiffness and light weight in CNTs results in vibration 
frequencies on the order of GHz and THz. There is a wide range of applications in which the 
vibrational characteristics of CNTs are significant. In applications such as oscillators, charge 
detectors, field emission devices, vibration sensors, and electromechanical resonators, 
oscillation frequencies are key properties. An representative application is the development 
of sensors for gaseous molecules, which play significant roles in environmental monitoring, 
chemical process control, and biomedical applications. Mechanical resonators are widely 
used as inertial balances to detect small quantities of adsorbed mass through shifts in 
oscillation frequency. Recently, advances in lithography and materials synthesis have 
enabled the fabrication of nanoscale mechanical resonators that utilize CNTs [4,5]. The use 
of a CNT to make the lightest inertial balance ever is essentially a target to make a nanoscale 
mass spectrometer of ultrahigh resolution. Building such a mass spectrometer that is able to 
make measurements with atomic mass sensitivity is one of the main goals in the burgeoning 
field of nanomechanics. An inertial balance relies only on the mass and does not, therefore, 
require the ionization or acceleration stages that might damage the molecules being 
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measured. This means that a nanoscale inertial balance would be able to measure the mass 
of macromolecules that might be too fragile to be measured by conventional instruments [5]. 
Several efforts for the building of CNT-based sensors have been presented in the literature. 
Mateiu et al. [6] described an approach for building a mass sensor based on multi-walled 
CNTs with an atomic force microscope. Chiu et al. [7] demonstrated atomic-scale mass 
sensing using doubly clamped, suspended CNT resonators in which their single-electron 
transistor properties allowed the self-detection of nanotube vibration. They used the 
detection of shifts in the resonance frequency of the nanotubes to sense and determine the 
inertial mass of atoms as well as the mass of the nanotube itself. Commonly, multi-walled 
CNTs are less sensitive than single-walled CNTs. However, multi-walled carbon nanotubes 
are easier to manipulate and more economical to be produced, since they are both longer 
and have larger diameters than single-walled CNTs [8]. 
Hence, it is important to develop accurate theoretical models for evaluation of natural 
frequencies and mode shapes of CNTs. An excellent review article was recently published 
by Gibson et al. [9] that presents related scientific efforts in dealing with the vibrational 
behavior of CNTs and their composites, including both theoretical and experimental studies. 
Controlled experiments performed at nanoscale dimensions remain both difficult and 
expensive. Despite of this fact, Garcia-Sanchez et al. [10] have recently presented a 
mechanical method for detecting CNT resonator vibrations using a novel scanning force 
microscopy method. The comparison between experimental and theoretical methods pre-
require the complete definition of all parameters such as the length of the vibrating 
nanotube, the nanotube type and other conditions that influence the vibrational behavior 
such as the slack phenomenon, nature of the support condition, environmental conditions 
and other influences.  
In an attempt to approach the vibration behavior of CNTs, various theoretical methods have 
been reported in literature. Molecular dynamics (MD) and molecular mechanics, as well as 
elastic continuum mechanics, are considered efficient because they can accurately and cost-
effectively produce results that closely approximate the behavior of CNTs. . Each of the 
previously mentioned approaches offers different advantages, but also certain drawbacks. 
MD is an accurate method capable of simulating the full mechanical CNT performance. 
However, it carries a high computational cost that may be prohibitive for large-scale 
problems, especially in the context of vibration analysis. Molecular mechanics-based 
techniques, such as those in [11-13], have been used for vibration analysis of CNTs and have 
been shown to be accurate and also more computationally cost-effective than MD. 
Nevertheless, under such approaches, the modeling of atomic interactions requires special 
attention because the mechanical equivalent used to simulate the carbon-carbon bond 
deformations must be efficient for the studied problem. Generally, typical elements of 
classical mechanics, such as rods [14], beams [15, 16], springs [17-19] and cells [20] have been 
proposed including appropriate stiffness parameters, thus their strain energies are 
equivalent to the potential energies of each interatomic interaction. Furthemore, elastic 
continuum mechanics methods based on well-known beam theories have also been 
successfully used to evaluate the vibration characteristics of CNTs under typical boundary 
conditions [21-24]. Xu et al. [25] studied the free vibration of double-walled CNTs modeled 
as two individual beams interacting with each other taking van der Waals forces into 
account and supported with different boundary conditions between the inner and outer 
tubes. These methods have the lowest computational cost; however, they can compute only 
a subset (mainly the bending modes) of the vibrational modes and natural frequencies. 
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In terms of CNT mass detector function, the principle of mass detection using CNT-based 
resonators is based on the fact that the vibrational behavior of the resonator is sensitive to 
changes in its mass due to attached particles. The change of the resonator mass due to an 
added mass causes frequency shifts. The key challenge in mass detection is quantifying the 
changes in the resonant frequencies due to added masses. Based on this principle, the usage 
of computational tools, as presented in prevous paragraph, capable of simulating the 
vibrational behavior of CNT-based mass detectors is important for two reasons. First, they 
can cost-effectively predict the mass sensing characteristics of different nanoresonator types, 
thereby allowing the optimal design of detectors with a specific sensing range. Second, their 
cooperation with experimental measurements can improve the detection abilities of the 
nanodevice. With respect to theoretical studies on CNT-based sensors, Li and Chou [26] 
examined the potential of nanobalances using individual single-walled CNTs in a 
cantilevered or bridged configuration. Wu et al. [27] explored the resonant frequency shift of 
a fixed-free single-walled CNT caused by the addition of a nanoscale particle to the beam 
tip. This was done to explore the suitability of a single-walled CNT as a mass detector 
device in a micro-scale situation via a continuum mechanics-based finite element method 
simulation using a beam-bending model. Chowdhury et al. [28] examined the potential of 
single-walled CNTs as biosensors using a continuum mechanics-based approach and 
derived a closed-form expression to calculate the mass of biological objects from the 
frequency shift.  
In this chapter, an atomistic spring-mass based finite element approach  appropriate to 
simulate the vibration characteristics of single-walled and multi-walled CNTs is presented. 
The method uses spring-mass finite elements that simulate the interatomic interactions and 
the inertia effects in CNTs. It uses a special technique for simulating the bending between 
adjacent bonds, distinguishing it from other mechanics-based methods. This method utilizes 
the exact microstructure of the CNTs while allowing the straightforward input of the force 
constants that molecular theory provides. In addition, spring-like elements are formulated 
in order to simulate the interlayer van der Waals interactions. These elements connect all 
atoms between different CNT layers at a distance smaller than the limit below which the 
van der Waals potential tends to zero. The related stiffness is a function of this distance. The 
resulting dynamic equilibrium equations can be used to generate new results. Results 
available in the literature were used to validate the proposed method. Parametric analyses 
are performed reporting the natural frequencies as well as the mode shapes of various 
multi-walled CNTs for different aspect geometric characteristics. Furthermore, the principle 
of mass detection using resonators is based on the fact that the resonant frequency is 
sensitive to the resonator mass, which includes the self-mass of the resonator and the 
attached mass. The change of the attached mass on the resonator causes a shift to the 
resonant frequency. Since, the key issue of mass detection is in quantifying the change in the 
resonant frequency due to the added mass, the effect of added mass to the vibration 
signature of CNTs is investigated for the clamped-free and clamped-clamped support 
conditions. And  different design parameters. Additionally, the frequency shifts of single- 
and multi-walled CNTs were compared.  

2. CNTs geometry 
A planar layer of carbon atoms forms a periodic structure called the graphene sheet. Pencil 
lead consists of a stack of overlaying graphene sheets that easily separate upon shearing in 
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writing. A perfect graphene sheet in the xy-plane consists of a doubly periodic hexagonal 
lattice defined by two base vectors, 

 ( )1,0a=1v  and ( ) 1 3cos60 ,sin60 ,
2 2

o oa a
⎛ ⎞

= = ⎜ ⎟⎜ ⎟
⎝ ⎠

2v  (1) 

where α is equal to 3 hr  and hr  is the radius of the hexagonal cell. Note that the lengths of 
these vectors are equal. Any point of plane ( , )P x y=  is uniquely defined as a linear 
combination of these two vectors, 

 1a b= + +0 2P v v v , (2) 

where a  and b  are integers, provided that 0v  is the center of a hexagon.  
Knowing the geometry of graphene, a single-walled CNT can be geometrically generated by 
rolling a single-layer graphene sheet, which is ideally cut, to make a cylinder. The graphene 
sheet must be rolled up in the direction of the chiral vector hC  defined as (see Figure 1): 

 1 2n m= +hC a a  (3) 

where 1a  and 2a  are the basis vectors of the honeycomb lattice and integers ( n , m ) are the 
number of steps along the zigzag carbon bonds and generally are used to name a nanotube.  
 

 
Fig. 1. Generation of a SWCNT from a graphene sheet. 
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A nanotube ( n , n ) is usually named as armchair (Figure 2(a)) while the nanotube ( n ,0) is 
usually named zigzag (Figure 2(b)). The chiral angle ψ  ( o0 30ψ≤ ≤ ) is defined as: 

 3tan
(2 )

m
n m

ψ =
+

 (4) 

It is obvious that for an armchair nanotube o30ψ =  while for a zigzag o0ψ = . The 
nanotube’s diameter D  is given by the following equation: 

 
2 2

c c 3( )a n nm m
D

π
− + +

=  (5) 

where cc−a  is distance between two neighbor carbon atoms and is equal to 0.1421 nm. 
Chiral vector hC  and the following translational vector T  define the ideal rectangular 
cutting area of graphene sheet:  

 1 2
2 2m n n m

W W
+ +⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
T a a  (6) 

where W defines the higher common divisor of 2m n+  and 2n m+ .  
 

 
(a) 

 
(b) 

Fig. 2. Geometry of an (a) armchair and (b) zigzag single-walled CNTs 



 Advances in Vibration Analysis Research 

 

120 

For simplicity, the original coordinate system of the graphene sheet ( ', ')x y  is transformed 
into a new system ( , , )x y z  of the nanotube such that T  is along 'y -axis. Then, the 
graphene atomic coordinates are converted to those of the nanotube according to the 
equation (Kołoczek et al. [29]): 

 ' '( , , ) cos , sin , 'x xx y z R r y
R R

⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 (7) 

where R is the nanotube’s radius. 
A multi-walled CNT consists of multiple layers of graphene rolled in on themselves to form 
a tube shape. In other words, every multi-walled CNT consists of more than one coaxial 
single-walled CNTs. Since single-walled CNTs are parts of multi-walled CNTs, the layers of 
multi-walled CNTs have similar geometric characteristics. Given that the interlayer distance 
is 0.34nm, as has been observed in [1], the difference between diameters of neighbouring 
layers, where the diameter of every layer can be calculated using the Equation (5), is 
∆D=0.68nm. Knowing that this equation is a function only of chirality indexes of the two 
neighboring nanotubes in a multi-walled CNT, someone can calculate the convenient types 
of single-walled CNTs able to apart the multi-walled CNT of  
 

 
Fig. 3. Geometry of a multi-walled CNT. 

specific number of layers and outer diameter. If 1 1( , )n m and 2 2( , )n m are the types of the 
inner and outer neighboring layers respectively, it is observed that for zig-zag nanotubes, 
the chirality indexes are 2 1 9n n= +  and 2 1 0m m= = . Correspondingly, if the neighboring 
nanotubes are armchair then 2 2 1 5n m n= = +  and 1 1m n= . The type of one MWCNT, here, 
is declared as the sequence of the types of all layers ( , ) ... ( , )in in out outn m n m− − , starting from 
the type of the innermost tube and finishing to the type of the outermost tube. A 
representative example of multi-walled CNT geometry consists of three layers is depicted in 
Figure 3. 
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3. Computational model 
3.1 Force field 
The total potential energy, omitting non-bonded interactions, i.e. the electrostatic energy 
and the energy due to van der Waals interaction, is a sum of energies caused by the bonded 
interatomic interactions, which are depicted in Figure 4(a), and may be expressed by the 
following equation (Rappe et al. [30]): 

 rU U U U Uθ φ ω= + + +∑ ∑ ∑ ∑  (8) 

where rU  represents the energy due to bond stretching, Uθ  the energy due to bond angle 
bending, Uφ  the energy due to dihedral angle torsion andUω  the energy due to out of plane 
torsion. 
 

bond streching Out of plane 
torsion

bond angle 
bending Dihedral angle 

torsion

   

kb1kb2

kb3

kτ

kr

 
(a)                                                                             (b) 

Fig. 4. Force field in neighboring atoms (a) interatomic interactions and (b) spring model. 
Under the assumption of small deformations, the harmonic approximation is adequate for 
describing potential energy (Gelin [31]) and therefore the force field. By adopting the 
simplest harmonic forms and combining the dihedral angle, torsion with the out of plane 
torsion into a single equivalent term then the following terms can describe the total potential 
energy [17]: 

 21 ( )
2r rU k rΔ= ,    

2

2
r

r
d U k
d rΔ

=  (9) 

 21 ( )
2

U kθ θ Δθ= ,    
2

2
θd U k

d θΔθ
=  (10) 

 21 ( )
2

U U U kτ ϕ ω τ Δφ= + = ,    
2

2
d U k
d

τ
τΔτ

=  (11) 
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where rk  , kθ  and kτ  are the bond stretching, bond angle bending, and torsional resistance 
force constants, respectively, while rΔ , Δθ  and Δφ  represent the bond length, bond angle 
and twisting bond angle variations, respectively. 
The second derivatives of the potential energy terms appearing in equations (7), (8) and (9) 
with respect to bond stretch, bond angle and twisting bond angle variations, respectively, 
produce spring stiffness coefficients rk  , kθ  and kτ . Thus, here, axial and torsional springs 
that straightforwardly introduce the physical constants are utilized (Figure 4(b)) in order to 
describe the force field.   The springs interconnect the nodes that have been extracted from 
the eq. (3). The bond angle bending interaction is simulated by axial springs, which have 
stiffness  

 
2

o
c c

1
cos(90 )bik k

a θγ−

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠

 (12) 

 

as has been described in [17], where o30γ =  in the hexagonal lattice of the graphene. This 
angle may vary for each C-C-C microstructure in a CNT according to its type and radius 
due to its cylindrical shape. In the case of chiral nanotubes, the stiffness of the three different 
bending springs (Figure 4(b)) varies 1 2 3b b bk k k≠ ≠ . In the cases of armchair and zigzag 
nanotubes, two of the three bending spring stiffnesses are equal due to the same angle γ . In 
the other hand, because of the planar shape of the graphene sheets, all the bond angle 
bending springs have the same stiffness, i.e. 1 2 3b b bk k k= = . 
The interlayer interactions between the walls of a multi-walled CNT is caused by the van 
der Waals forces and can described through the Lennard-Jones pair potential [32,33] 

 
12 6

( ) 4 σ σU R
R R

ε
⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (13) 

where R is the distance between the interacting atoms, ε is the depth of the potential and σ is 
a parameter that is determined by the equilibrium distance. The van der Waals force F is 
obtained by taking the derivative of the Lennard-Jones pair potential, i.e., 
 

 
6 12

7 13
d ( )( ) 4 6 12

d
U RF R

r R R
σ σε

⎛ ⎞
= − = − −⎜ ⎟⎜ ⎟

⎝ ⎠
 (14) 

 

It should be noted that the initial pressure exerted on a sheet is negligible at the equilibrium 
distance, and thus the van der Waals force can be estimated by the Taylor expansion to the 
first order around the equilibrium position, i.e., 
 

 
12 6

0
0 0 013 7

0 0

d ( )( ) ( ) ( ) 24 26 7 ( )
d

F RF R F R R R R R
R R R

σ σε
⎛ ⎞

= + − = − − −⎜ ⎟⎜ ⎟
⎝ ⎠

 (15) 

 

Where ( ) ( ) ( )2 2 2
0 j i j i j iR X X Y Y Z Z= − + − + −  is the initial distance between the atoms of 

the different layers. 
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3.2 CNT modeling 
In order to evaluate the vibrational characteristics of CNTs, we must develop equations that 
describe the dynamic equilibrium of the entire model. The elemental equations must be 
constructed first before the global stiffness and mass matrices can be assembled.  
The elemental equation for the ia -element, as defined and developed in [18]  to represent 
the bond stretching as well as twisting bond angle interactions, is 

    or   r rk m
kτ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ = + =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

20 21
a a

20

uI 0 u I 0 F
k U m U P

0 I θ 0 0 Tθ
, (16) 

where  

 1 1
1 1

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

20I , 1
0 1
0 1

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

2I , (17) 

rm  is the concentrated mass equal to the half or whole mass of the carbon nuclei [18],  
F represents the forces applied to nodes 1 and 2 of the element, u is the vector of nodal 
displacements ( [ ]T1 2u u=u , [ ]T1 2F F=F ), θ is the vector of nodal rotations, T is the 
vector of the applied torsional moments ( [ ]T1 2θ θ=θ , [ ]T1 2T T=T ), U  is the vector of 
nodal translations and rotations, U  is the vector of nodal accelerations, P  is the column 
vector of loads, and finally, ka and ma are the elemental stiffness and mass matrix, 
respectively. Similarly, the equation for the ib -element, which describes the bond angle 
interaction in the hexagonal lattice, is 

      or   bk ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ = + =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

20
b b

uI 0 u 0 0 F
k U m U P

0 0 θ 0 0 Tθ
, (18) 

where  

1

2

   , when  -element is straight in respect to the hexagonal cell 
 ,       when -element is slant in respect to the hexagonal cell

b
b

b

k b
k

k b
⎧

= ⎨
⎩

 

is the stiffness coefficient, as described in [18], and kb and mb  are the corresponding 
elemental stiffness and mass matrix, respectively. 
Moreover, we must derive the elemental equation for the van der Waals nanosprings (vdw 
elements). Because this spring is only translational, we can write the elemental equation as 
follows: 

     or   vdwk ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ = + =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

20
vdw vdw

uI 0 u 0 0 F
k U m U P

0 0 θ 0 0 Tθ
, (19) 

where vdwk  is the stiffness as derived by Equation (15) [19]. Note that the mass matrix vdwm  
is a null matrix because all of the inertia effects are included in the previously defined 
elements.  
To express the stiffness matrix of the elements in the global coordinate system, a 
transformation matrix must be used. Let (local) nodes 1 and 2 of the axial spring correspond 
to nodes i and j, respectively, of the global system. The local displacements ul and u2 can be 
resolved into the respective components ux1, uy1, uz1 and ux2, uy2, uz2. These groups of 
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components are parallel to the global X, Y, Z axes, respectively. Then, the two sets of 
displacements are related as  

 = 1 xyzu T u  (20) 

where uxyz is the vector of nodal displacements of the axial spring expressed in the global 
coordinate system, and the transformation matrix T is given by 

 1

0 0 0
0 0 0
xx yy zz

xx yy zz

c c c
c c c

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

T  (21)      

Here, cxx, cyy, and czz  are the direction cosines of the angles between the line ij  and the 
directions OX, OY, and OZ, respectively. The direction cosines can be expressed with 
respect to the global coordinates of nodes i  and j  as 
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 where the nanospring length is 

 ( ) ( ) ( )2 2 2
e j i j i j il X X Y Y Z Z= − + − + − . (23) 

The transformation matrix of the rotations for the corresponding rotational spring is similar to 
the one for the axial spring. The transformation matrix for a nanospring has dimension 4 x 12, 

 1

1

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

T 0
T

0 T
 (24) 

Hence, the elemental matrices expressed in the global coordinate system are 

 

=

=

=

=

T
a a

T
a a

T
b b

T
vdw vdw

K T k T

M T m T

K T k T

K T k T

 (25) 

The displacements and rotations as well as the loads are related by the equation 

 =U TD , = TR T P , (26) 

where D is the vector of displacements and rotations and R is the vector of  loads with 
respect to the global coordinates. The superscript T in the above equations denotes matrix 
transposition. Finally, the elemental equations in the global system become 
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 + =a aK D M D R  (27) 

 + =b bK D M D R  (28) 

 + =vdw vdwK D M D R , (29) 

We assemble the global stiffness K and global mass matrices M from the above elemental 
matrices. Considering undamped free vibration for the tubes, the equation of motion becomes: 

 + =MX KX 0  (30)     

After applying the CNT support conditions, the eigenvalue problem can be solved using 
common finite element procedures. The solution to the eigenvalue problem reveals the 
natural frequencies of vibration and the corresponding mode shapes. 

3.3 CNT with added mass modeling 
In the case that a nanoparticle is attached to a CNT mass detector, the nano-particle mass is 
considered to be located at a node of the CNT model and has a value m. Thus, for one ai-
element that includes this node, the value of the additional mass is added in Equation (16). 
The location of the nano-particle can be considered at the nanotube tip or at an intermediate 
position (Figure 5). 
 

L

x
CNTmass m

 
Fig. 5. CNT mass resonant sensor with an attached mass at an intermediate position. 
As previously mentioned, the principle of mass detection using CNT-based detectors is 
based on resonant frequency shifts of a CNT due to a change in mass. The key challenge of 
mass detection and measuring is quantifying the changes in the resonant frequencies due to 
the added mass. The frequency shift is defined as  

 0Shift  f  - fFrequency = , (31) 

where f0 is the frequency a CNT without an attached mass, and f is the frequency of the 
same tube with an attached mass. 

4. Results and discussion 
4.1 Validation of model for vibration analysis 
First, in order to validate the proposed method, we compare the results obtained from the 
present method with outputs from other theoretical approaches based on molecular or 
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continuum mechanics, as shown in Table 1. The comparison is limited in terms of different 
sequence of vibration modes. This is mainly because of differences in                         
 

Fundamental Frequency 
(THz) Di  

(nm) 
Do 

(nm) L (nm) 

Support 
Condition 

of inner 
CNT 

Support 
Condition 
of outer 

CNT 
Present Other 

Studies 
0.4 1.1 4.1 C-C C-C 0.9478 0.9276 [13] 

0.4 1.1 5.5 C-C C-C 0.6410 0.7355 [13] 

0.4 1.1 8.0 C-C C-C 0.3551 0.3323 [13] 

0.7 1.4 14 Free C-C 0.1582 0.1665 [25] 

0.7 1.4 14 Free C-F 0.0288 0.0270 [25] 

0.7 1.4 14 C-C C-C 0.1661 0.1718 [25] 

0.7 1.4 20 C-C C-C 0.04 ~0.03 [24] 

Table 1. Comparison of fundamental frequencies of MWCNTs resulting from different 
theoretical approaches. fundamental frequencies because the other methods obtain a 
formulation as well as the presence of new modes that are not reported in the other 
methods. Very good agreement is shown between results for different support conditions. 

4.2 Modes of vibration of pure CNTs 
The solution of the eigenvalue problem reveals numerous natural frequencies and 
corresponding mode shapes. The lengths of studied nanotubes are appropriate for possible 
future miniaturized products based on nanoscale structures. Figure 6 illustrates the modes 
of vibration for an armchair (12, 12) nanotube with length L = 10.95 nm subjected to 
clamped-clamped support condition. Figure 6(a) depicts the first radial breathing mode 
shape in which the atoms at the half-length of the tube have the largest displacement due to 
the fixed-end boundary constraints. The second radial breathing mode has a vase-like shape. 
On the other hand, Figure 6(b) shows the first bending-like mode that simultaneously 
exhibits radial breathing. As a result, a triangle-like shape is observed at every cross-section 
of the tube. For this reason, hereafter, modes with a similar shape will be called triangular 
mode shapes. Furthermore, in Figure 6(c), the deformation of the nanotube has a shape in 
which every cross-section has a cross-like form.  
For this reason, modes with this type of shape will be called as cross mode shapes of 
vibration. The modal analysis for the specific nanotube also reveals bending, axial, and 
twisting modes. The first bending mode has a half-sine shape, whereas the second has a full-
sine shape, as observed in a beam. In the axial modes of vibration, the movement of the 
atoms is parallel to the longitudinal axis of the tube. The first axial mode is accompanied by 
a simultaneous movement of all atoms along the longitudinal direction. In the second one, 
longitudinal movement of the vectors towards the center of the tube is observed. Another 
type of mode is the twisting (torsional) mode, as referred to in [18]. The atoms move in the 
circumferential direction with a simultaneous increase in the radius of the single-walled 
CNT. In the first twisting mode, all atoms have the same circumferential movement and the 
maximum increase in the radius is observed on the half length of the tube. 



An Atomistic-based Spring-mass Finite Element Approach for  
Vibration Analysis of Carbon Nanotube Mass Detectors   

 

127 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Radial-like modes of vibration of clamped-clamped supported single-walled CNTs: 
(a) radial breathing mode, (b) triangular mode, and (c) cross mode. 
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(b) 

 

 
(c) 
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(d) 

Fig. 7. Beam-like modes of vibration of clamped-free supported MWCNTs: (a) first bending, 
(b) second bending, (c) first twisting, and (d) first axial modes. 

For the clamped-free support condition, the basic mode shapes of vibration will be 
described for a zigzag (5,0)-(14,0) double-walled CNT with length L = 15 nm and using a 
higher aspect ratio than the previous example. Figure 7 correspondingly depicts modes that 
are basic for large aspect ratios. Figures 7a and 7b illustrate the first and second bending 
mode shapes. These are similar to the bending modes presented in a macro-scale cantilever 
beam. The twisting modes (Figure 7c) exhibit a behavior similar to the clamped-clamped 
case, but the shapes differ because of the free end. The first axial mode (Figure 7d) is 
accompanied by a simultaneous movement of all atoms in the longitudinal direction and 
changing tube length during the vibration.  

4.3 Effect of layers on CNT vibration 
In order to investigate the influence of the number of layers on the vibration characteristics 
of a nanotube, CNTs of the same aspect ratio (i.e., the same length and outer diameter) were 
chosen for analysis with the proposed technique. Figure 8a depicts how the natural 
frequencies change for armchair tubes of length L = 17 nm and outer diameter Do = 2.45 
nmwhen subjected to a clamped-clamped support condition. It is observed that the lower 
the number of layers, the lower the frequency of the first radial breathing, second radial 
breathing, first triangular, and first cross modes. In contrast, the higher the number of 
layers, the lower the frequency of the first bending, second bending, first twisting, and first 
axial modes. As the number of layers increases, the tube tends to behave more like a beam. 
Note that for tubes with only one layer (single-walled CNTs), the basic modes are the first 
triangular, the first cross, and the first radial breathing shapes. Figure 8b illustrates similar 
variations for the clamped-free support condition. Here, the tube has length L = 15 nm and 
outer diameter Do = 2.5 nm. In this case, the frequencies are certainly lower, as expected 
with the less strict support condition. We also note that non-coaxial mode shapes are 
revealed, together with modes for which the inner layers exhibit different shapes from the 
outer ones. These are not analytically described because they are not basics modes of 
vibration. 



 Advances in Vibration Analysis Research 

 

130 

1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

 

N
at

ur
al

 F
re

qu
en

cy
 (T

H
z)

Number of Layers

 1st Bending         2nd Bending
 1st Radial           2nd Radial   
 1st Triangular     1st Cross
 1st Twist             1st Axial

 
(a) 

1 2 3 4
0.0

0.2

0.4

0.6

0.8
 

N
at

ur
al

 F
re

qu
en

cy
 (T

H
z)

Number of Layers

 1st Bending         2nd Bending
 1st Radial           2nd Radial   
 1st Triangular     1st Cross
 1st Twist             1st Axial

 
(b) 

Fig. 8. Natural frequencies of (a) a clamped-clamped armchair CNT (Do = 2.45nm,  
L = 17nm), and (b) a clamped-free zigzag CNT (Do = 2.5nm, L = 15nm) vs number of layers. 
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Fig. 9. Vibration spectra of clamped-free supported (5,0) CNT with a mass (a) m/mr = 1 and 
(b) m/mr = 10 attached on the CNT tip.  
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4.4 Vibration signature of CNT mass detectors 
Also, the Fast Fourier Transform (FFT) of CNT mass detector is resembled for various cases 
in order to be depicted the changes occurred in the spectrum due to the magnitude and 
location of the added mass on CNT. In Figure 9, the spectra of a simply supported zigzag 
(5,0) with and without an added mass equal to one (Figure 9(a)) or ten carbon atoms (Figure 
9(b)) attached on the tip are illustrated. The length of the CNT is L = 10.95 nm. The 
continuous red line gives the response of the CNT with the added mass, while the dashed 
blue line gives the corresponding signature of the same, however, pure CNT. 
Despite the very small value of the added mass, important changes are observed in 
frequencies of the fundamental and higher order modes of vibration. Here, it has to be 
noticed that, most of the available studies in the literature investigate mainly the 
fundamental frequency shift. Nevertheless, significant changes in frequencies of higher 
order modes are also obtained here, as in [34] also reported. The results demonstrate that the 
higher order frequency shifts may be very helpful in the design and function of CNT mass 
detectors. Similar results are obtained also for the case of clamped-clamped support 
condition for the same CNT, when the added mass attached on the center of the CNT length 
(Figure 10). 
An important question, which should be answered before a practical CNT mass detector 
may be made, is the problem of determining where the mass lands on the nanotube. Because 
some parts of the tube vibrate much more than the base, a mass that lands near the fast-
moving region has a much greater effect on the resonant frequency and equivalent to a 
much greater mass arriving near to the base. Moreover, in addition to the fundamental 
mode of vibration, higher-order modes in which the maximum displacement occurs at two 
or more positions along the nanotube are possible as have been previously seen. These 
higher-order vibration modes could be exploited in experiments because the change in the 
resonant frequency also depends on how much the nanotube moves at the absorbing point 
[5]. This means that measurements made with higher-order modes could potentially allow 
both the mass and landing position to be determined. In literature, the majority of 
theoretical models are focused to sense the shift of the fundamental frequency due to an 
added mass. However, this suffices to sense a mass addition to the CNT, but not to measure 
the amount of mass because the magnitude of the shift is influenced by the mass and its 
location on the CNT. Hence, the sensing and measurement of the mass require investigation 
of the frequency shifts of the fundamental vibration mode as well as higher-order modes of 
vibration [5,35]. Based on this concept, the spectra of the CNT-mass system for different 
positions of the added mass on the CNT as well as different support conditions are depicted 
in Figure 11 and Figure 12. Here, we assume a lager mass (m/mr = 100) than in previous 
results. In all cases, there are a lot of additional modes of vibration in comparison with the 
pure CNT case (see Figure 9). This can be explained by the asymmetry of the system 
existing due to the large mass value. Extremely different behaviors for different mass 
positions on CNT are observed in frequencies of the fundamental and higher order modes 
of vibration.  
The previous mentioned results demonstrate that CNTs reveal a very different vibration 
signature even if a very small mass is added on its body. Moreover, they indicate that the 
position of the added mass noticeably influences the CNTs vibration spectra. The present 
methodology is capable to quantify these effects and thus can be used as a helpful 
computational tool for the design of CNT mass detectors. 
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Fig. 10. Vibration spectra of clamped-clamped supported (5,0) CNT with a mass (a) m/mr = 1 
and (b) m/mr = 10 attached on the middle of CNT length. 
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Fig. 11. Vibration spectra of clamped-free supported (5,0) CNT with a mass m/mr = 100 
attached on the (a) x/L = 0.75 and (b) x/L = 0. 5 position compared with CNT tip case.  
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Fig. 12. Vibration spectra of clamped-clamped supported (5,0) CNT with a mass m/mr = 100 
attached on the  x/L = 0.75 position compared with x/L = 0.5 case.  

 

Frequency Shift (MHz) 

L (nm) Din 
(nm) 

Dout 
(nm) Layers Support 

condition 

Additional 
mass 

Position 
m/mr = 

100 
m/mr = 

101 

m/mr = 
102 

m/mr  = 
103 

- 1 10 98 1208 7880.9 
1.76 2 8 80 793 7693 
1.09 3 6 58 579 5630 

17 

0.41 

2.44 

4 

C-F Free End 

5 52 518 5021 
- 1 21 228 3907 26907 

1.76 2 20 260 6940 30420 
1.09 3 20 190 2800 19390 

17 

0.41 

2.44 

4 

C-C Middle 

20 170 2320 16700 

Table 2. Comparison of the frequency shift between single- and multi-walled CNTs with the 
same lengths and diameters. 

4.5 Comparison between single and multi-walled CNT mass detectors 
The main issue to examine is whether multi-walled CNTs are more or less sensitive to an 
added mass in terms of frequency shift than single-walled CNTs with the same geometry, 
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i.e. same outer diameter and length. Based on the data included in Table 2, it can be 
observed that a significant difference in frequency shift exists for all of the different masses 
attached to the CNTs. Furthermore, a higher frequency shift was observed for CNTs with 
fewer layers apparently because the fractional change in mass is larger. There are cases 
where the frequency shift of single-walled CNTs is more than 100% higher than the 
corresponding shift present in a multi-walled CNT. These observations suggest that single-
walled CNTs are more suitable as mass resonant detectors than multi-walled CNTs. 

5. Conclusions  
The present chapter presented an efficient method for vibration analysis of CNTs mass 
detectors. The numerical method uses the CNT atomistic microstructure in order to 
assemble the dynamic equilibrium equation utilizing appropriate spring-mass based finite 
elements, which simulate the interatomic interactions and the inertia effects of CNTs. The 
analysis revealed the basic mode shapes of vibration and the corresponding natural 
frequencies of CNTs. Assuming the presence of an added mass attached on CNT, the 
method was utilized to resemble the FFT of CNT mass detector. The results demonstrate a 
significantly different vibration signature for different values and locations of the added 
mass in terms of frequency shift of fundamental and higher order modes. The method is 
capable to quantify these effects and hence could be used and facilitate the optimal design of 
CNT mass detectors of ultrahigh sensitivity. Finally, a parametric analysis demonstrated 
that single-walled carbon nanotubes are more sensitive than multi-walled CNTs  and hence 
more suitable as mass resonant detectors. 
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1. Introduction 
Within the context of structural dynamics, Finite Element (FE) models are commonly used 
to predict the system response. Theoretically derived mathematical models may often be 
inaccurate, in particular when dealing with complex structures. Several papers on FE 
models based on B-spline shape functions have been published in recent years (Kagan & 
Fischer, 2000; Hughes et al, 2005). Some papers showed the superior accuracy of B-spline FE 
models compared with classic polynomial FE models, especially when dealing with 
vibration problems (Hughes et al, 2009). This result may be useful in applications such as FE 
updating. 
Estimated data from measurements on a real system, such as frequency response functions 
(FRFs) or modal parameters, can be used to update the FE model. Although there are many 
papers in the literature dealing with FE updating, several open problems still exist. 
Updating techniques employing modal data require a previous identification process that 
can introduce errors, exceeding the level of accuracy required to update FE models 
(D’ambrogio & Fregolent, 2000). The number of modal parameters employed can usually be 
smaller than that of the parameters involved in the updating process, resulting in ill-defined 
formulations that require the use of regularization methods (Friswell et al., 2001; Zapico et 
al.,2003). Moreover, correlations of analytical and experimental modes are commonly 
needed for mode shapes pairing. Compared with updating methods using modal 
parameters as input, methods using FRFs as input present several advantages (Esfandiari et 
al., 2009; Lin & Zhu, 2006), since several frequency data are available to set an 
over-determined system of equations, and no correlation analysis for mode pairing is 
necessary in general. 
Nevertheless there are some issues concerning the use of FRF residues, such as the number 
of measurement degrees of freedom (dofs), the selection of frequency data and the 
ill-conditioning of the resulting system of equations. In addition, common to many FRF 
updating techniques is the incompatibility between the measurement dofs and the FE model 
dofs. Such incompatibility is usually considered from a dof number point of view only, 
measured dofs being a subset of the FE dofs. Reduction or expansion techniques are a 
common way to treat this kind of incompatibility (Friswell & Mottershead, 1995). A more 
general approach should also take into account the adoption of different dofs in the two 
models. As a matter of result, the adoption of B-spline functions as shape functions in a FE 
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model leads to non-physical dofs, and the treatment of this kind of coordinate 
incompatibility must be addressed.  
In this paper a B-spline based FE model updating procedure is proposed. The approach is 
based on the least squares minimization of an objective function dealing with residues, 
defined as the difference between the model based response and the experimental measured 
response, at the same frequency. A proper variable transformation is proposed to constrain 
the updated parameters to lie in a compact domain without using additional variables. A 
B-spline FE model is adopted to limit the number of  dofs. The incompatibility between the 
measured dofs and the B-spline FE model dofs is also dealt with. 
An example dealing with a railway bridge deck is reported, considering the effect of both 
the number of measurement dofs and the presence on random noise. Results are critically 
discussed. 

2. B-spline shell finite element model 
2.1 B-spline shell model  
A shell geometry can be efficiently described by means of B-spline functions mapping the 
parametric domain ( ), ,ξ η τ  ( )0 , , 1with ξ η τ≤ ≤  into the tridimensional Euclidean space 
(x,y,z). The position vector of a single B-spline surface patch, with respect to a Cartesian 
fixed, global reference frame O, {x,y,z}, is usually defined by a tensor product of B-spline 
functions (Piegl & Tiller, 1997): 

 
1 1

( , ) ( ) ( )
x m n

p q
y i j

i j
z

r
r B B
r

ξ η ξ η
= =

⎧ ⎫
⎪ ⎪

= = ⋅ ⋅⎨ ⎬
⎪ ⎪
⎩ ⎭

∑∑ ijr P , (1) 

involving the following parameters: 
• a control net of m n×  Control Points (CPs) ijP ; 
• the uni-variate normalized B-spline functions ( )p

iB ξ of degree p, defined with respect to 
the curvilinear coordinate ξ  by means of the knot vector: 

{ } N N1 1 1
1 1

,..., 0,...,0 , ,..., ,1,...,1m p p m
p p

ξ ξ ξ ξ+ + +
+ +

⎧ ⎫⎪ ⎪= = ⎨ ⎬
⎪ ⎪⎩ ⎭

U ; 

• the uni-variate normalized B-spline functions ( )q
jB η of degree q, defined with respect to 

the curvilinear coordinate η  by means of the knot vector: 

{ } N N1 1 1
1 1

,..., 0,...,0 , ,..., ,1,...,1n q q n
q q

η η η η+ + +
+ +

⎧ ⎫⎪ ⎪= = ⎨ ⎬
⎪ ⎪⎩ ⎭

V . 

The degenerate shell model is a standard in FE software because of its simple 
formulation (Cook et al., 1989). The position vector of the solid shell can be expressed 
as: 

 
1 1

1( , , ) ( ) ( )
2

m n
p q

iji j
i j

B B tξ η τ ξ η τ
= =

⎡ ⎤⎛ ⎞= ⋅ ⋅ + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑∑ ij

3
ijs P v , (2) 
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where the versors 
ij

3v  and the thickness values ijt  can be calculated from the interpolation 
process proposed in (Carminelli & Catania, 2009). 
The displacement field can be defined by following the isoparametric approach and 
enforcing the fiber inextensibility in the thickness direction (Cook et al., 1989): 

 

1 1

1 1

u
1( , , ) ( ) ( ) v t [ ]
2

w

u
1 0 0

1( ) ( ) 0 1 0 t [ ]
2

0 0 1

x m n
p q

y ij ij iji j
i j

z

m n
p q

ij ij iji j
i j

d
d B B
d

B B

α
ξ η τ ξ η τ

β

ξ η τ

= =

= =

⎛ ⎞⎧ ⎫⎧ ⎫
⎜ ⎟⎧ ⎫⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎛ ⎞⎜ ⎟= = ⋅ ⋅ + − =⎜ ⎟⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎝ ⎠⎜ ⎟⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎩ ⎭⎜ ⎟⎩ ⎭ ⎪ ⎪⎩ ⎭⎝ ⎠

⎡ ⎤
⎢ ⎥

⎛ ⎞⎢ ⎥= ⋅ ⋅ − ⋅⎜ ⎟⎢ ⎥⎝ ⎠
⎢ ⎥
⎣ ⎦

∑∑

∑∑

ij
ij2 1

ij
ij

ij

i

2 1

d -v v

-v v

v
w

,

α

β

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪ =⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

⎡ ⎤
⎢ ⎥= ⋅ = ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

j

ij

ij

ij

ij

u

v

w

N
N δ N δ
N

 (3) 

where δ  is the vector collecting the (5 )m m⋅ ⋅  generalized dofs: 

 { }11 11 11 11 11
T

mn mn mn mn mnu v w u v wα β α β=δ " , (4) 

( )1 2 3
ij ij ijv , v , v  refer to orthonormal sets defined on ijP  starting from the vector 3

ijv  (Carminelli 
& Catania, 2007), uij, vij and wij are translational dofs, αij  and βij  are rotational dofs.  
The strains can be obtained from displacements in accordance with the standard positions 
assumed in three-dimensional linear elasticity theory (small displacements and small 
deformations), and can be expressed as: 

 { }T
x y z xy yz xzε ε ε γ γ γ= = ⋅ ⋅ = ⋅ε L N δ D δ , (5) 

where ⋅D = L N and L is the linear operator: 

 

0 0 0

0 0 0

0 0 0
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x y z
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L . (6) 

The stress tensor σ  and strain ε  are related by the material constitutive relationship:  

 { }T
x y z xy yz xzσ σ σ τ τ τ = ⋅σ = E ε , (7) 



 Advances in Vibration Analysis Research 

 

142 

where E is the plane stress constitutive matrix obtained according to the Mindlin theory. T is 
the transformation matrix from the local material reference frame (1,2,3) to the global 
reference frame (x,y,z) (Cook et al., 1989): 

 ⋅ ⋅T 'E = T E T , (8) 

and 'E is the plane stress constitutive matrix in the local material reference frame: 
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'E ,  (9) 

where Eij are Young modulus, Gij are shear modulus and vij are Poisson’s ratios in the 
material reference frame. 
The expressions of the elasticity, inertia matrices and of the force vector can be obtained by 
means of the principle of minimum total potential energy: 

 minU WΠ = + → , (10) 

where U is the potential of the strain energy of the system: 

 1
2

U d
Ω

Ω= ⋅∫ Tε σ , (11) 

and W is the potential of the body force f and of the surface pressure Q, and includes the 
potential Wi of the inertial forces: 

 i
S

W d dS W
Ω

Ω= − ⋅ ⋅ − ⋅ ⋅ +∫ ∫T Td f d Q , (12) 

where: 

 iW d
Ω

ρ Ω= ⋅ ⋅ ⋅∫ Td d�� . (13) 

The introduction of the displacement function (Eq.3) in the functional Π (Eq.10), imposing 
the stationarity of the potential energy: 

 ( ) 0Π∇ =δ , (14) 

yields the equations of motion: 

 ⋅ + ⋅ =fM δ K δ F�� , (15) 
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where the unconstrained stiffness matrix is: 

 d
Ω

Ω= ⋅ ⋅∫ T
fK D E D , (16) 

the mass matrix is: 

 d
Ω

ρ Ω= ⋅ ⋅∫ TM N N , (17) 

and the force vector is: 

 
S

d dS
Ω

Ω= ⋅ + ⋅∫ ∫T TF N f N Q , (18) 

where ρ  is the mass density, Ω  being the solid structure under analysis and S the external 
surface of solid Ω . 

2.2 Constraint modeling 
Distributed elastic constraints are taken into account by including an additional term ΔW  
in the functional of the total potential energy. The additional term ΔW  takes into account 
the potential energy of the constraint force per unit surface area QC, assumed as being 
applied on the external surface of the shell model: 

 − ⋅CQ = R d , (19) 

where R is the matrix containing the stiffness coefficients rab of a distributed elastic 
constraint, modeled by means of B-spline functions: 

 ij
1 1

ab ab
ab abm n

p q ab
ab i j

i j
r B B κ

= =
= ⋅ ⋅∑∑ , (20) 

where abp
iB  and abq

jB  are the uni-variate normalized B-spline functions defined by means of 

the knot vectors, respectively, Uab and Vab : 

 ( )1 1ΔW ( )
2 2

T

S S

dS dS= − ⋅ = ⋅ ⋅ ⋅ ⋅∫ ∫T T
Cd Q δ N R N δ . (21) 

The stiffness matrix due to the constraint forces is 

 ( )
S

dS= ⋅ ⋅∫ TΔK N R N . (22) 

The introduction of ΔW  this last term in the total potential energy Π  yields the equation of 
motion: 

 ( )⋅ + ⋅ =+fM δ δ FK ΔK�� . (23) 

2.3 Damping modelling  
For lightly damped structures, effective results may be obtained by imposing the real 
damping assumption (real modeshapes). 
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The real damping assumption is imposed by adding a viscous term in the equation of 
motion: 

 ( )⋅ + ⋅ + ⋅ =+fM δ C δ δ FK ΔK�� � , (24) 

where the damping matrix C is: 

 1(2 )T ζω− −= ⋅ ⋅C Φ diag Φ , (25) 

and 
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0 2
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0

0 0 2 N N

ζ ω
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diag

"
#

# %
…

, (26) 

where Φ is the matrix of the eigen-modes iΦ  obtained by solving the eigen-problem: 

 ( )2
i iω−K M Φ = 0 , (27) 

and 2
iω  is the i-th eigen-value of Eq.(27). Modal damping ratios iζ can be evaluated from: 

 ( ) ( )2i i ifζ ζ ζ π ω= = ⋅ , (28) 

where the damping ( )fζ  is defined by means of control coefficients zγ and B-spline 
functions zB defined on a uniformly spaced knot vector: 

 ( ) ( ) ( ) ( ) [ ]
1

( ) ; ; ,0,1
zn

z z ST FI ST
z

f f u B u f f u f f uζ ζ γ
=

= = ⋅ = + ⋅ − ∈∑  (29) 

where fST and fFI are, respectively, the lower and upper bound of the frequency interval in 
which the spline based damping model is defined. 

3. Updating procedure 
The parametrization adopted for the elastic constraints and for the damping model is 
employed in an updating procedure based on Frequency Response Functions (FRFs) 
experimental measurements. 
The A  measured FRFs ( )X

bH ω , with b=1,…, A , are collected in a vector ( )X ωh : 

 ( )
( )

( )

1
X

X
X

H

H

ω
ω

ω

⎧ ⎫
⎪ ⎪
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⎪ ⎪
⎩ ⎭

h

A

# . (30) 

The dynamic equilibrium equation in the frequency domain, for the spline-based finite 

element model, can be defined by Fourier transforming Eq.(24), where ( )
~

( ) =F : 
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 ( ) ( ) ( )2 1jω ω ω ω−− + + + ⋅ = ⋅ = ⋅ =fM C K ΔK δ Z δ H δ F� � � � , (31) 

where ( )ωZ is the dynamic impedance matrix and ( ) ( )( ) 1
ω ω

−
=H Z is the receptance matrix. 

Since the vector δ� contains non-physical displacements and rotations, the elements of the 
matrix ( )ωH  cannot be directly compared with the measured FRFs ( )X

qH ω . The analytical 
FRFs related to physical dofs of the model can be obtained by means of the FE shape 
functions. Starting from the input force applied and measured on the point ( , , )i i iξ η τ=iP s  
along a direction φ  and the response measured on the point ( , , )r r rξ η τ=rP s  along the 
direction ψ , the corresponding analytical FRF is: 

 ( ) ( ),
, ( , , ) ( , , )r i T

r r r i i iH ξ η τ ξ η τω ω= ⋅ ⋅ψ φ ψ φN H N , (32) 

where φ  and ψ can assume a value among u, v or w (Eq.3). 
The sensitivity of the FRF ,

,
r iHψ φ  with respect to a generic parameter kp  is: 
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 (33) 

where { }1 p

T

np p=p " is the vector containing the updating parameters pk. 

Since each measured FRF ( )X
bH ω  refers to a well-defined set { }, , ,i r φ ψ , it is possible to 

collect, with respect to each measured FRF, the analytical FRFs in the vector:  
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The elements of ha(ω,p) are generally nonlinear functions of p. The problem can be 
linearized, for a given angular frequency ωi, by expanding  ( ),ωah p  in a truncated Taylor 
series around p=p0: 
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in matrix form: 
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or: 

 i i⋅ =S Δp Δh , (37) 

where iS is the sensitivity matrix for the i-th angular frequency value ωi. 
It is possible to obtain a least squares estimation of the np parameters pk, by defining the 
error function e: 

 
1

,
fn

f p
i i

i
n n

=

= ⋅ −∑e S Δp Δh � , (38) 

and by minimizing the objective function g: 

 ( )g minT= ⋅ →e e . (39) 

Since the updating parameters pk belong to different ranges of value, ill-conditioned 
updating equations may result. A normalization of the variables was employed to prevent 
ill-conditioning of the sensitivity matrix: 

 ( )1 ; =1,…,n
k

p
k 0 kp p x k= ⋅ + , (40) 

where 
k0p is a proper normalization value for the parameter kp . 

Moreover, to avoid updating parameters assuming non-physical values during the iterative 
procedure, a proper variable transformation is proposed to constrain the parameters in a 
compact domain without using additional variables: 

 maxmin
min max min max

k k

kk
k k k k k

0 0

pp
x x x , x 1, x 1

p p

⎛ ⎞
⎜ ⎟≤ ≤ = − = −
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⎝ ⎠

, (41) 

where 
maxkp and 

minkp are, respectively, the maximum and minimum values allowed for the 

parameter pk. The transformation is: 
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k min max max min

k min max k max min
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p p 1 0.5 x x x x sin y
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 (42) 

The sensitivity matrices were derived with respect to the new variables yk: 

 ( ) ( )
max min

k
k k k

k k k k

p 0.5 p p cos y
y p y p

a a a∂ ∂ ∂ ∂
= ⋅ = ⋅ − ⋅ ⋅

∂ ∂ ∂ ∂
h h h , (43) 

which are allowed to take real values ( ky−∞ ≤ ≤ ∞ ) during the updating procedure. 
Since FRF data available from measurement are usually large in quantity, a least squares 
estimation of the parameters can be obtained by adopting various FRF data at different 
frequencies. The proposed technique is iterative because a first order approximation was 
made during derivation of Eq.(35). At each step the updated global variables pk can be 
obtained by means of Eq.(42). 
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4. Applications 
The numerical example concerns the deck of the “Sinello” railway bridge (Fig.1). It is a 
reinforced concrete bridge located between Termoli and Vasto, Italy. It has been studied by 
several authors (Gabriele et al., 2009; Garibaldi et al., 2005) and design data and dynamical 
simulations are available. 
The second deck span is a simply supported grillage with five longitudinal and five 
transverse beams. The grillage and the slab were modeled with an equivalent orthotropic 
plate, with fourth degree B-spline functions and 13x5 CPs (blue dot in Fig.2), for which the 
equivalent material properties were estimated by means of the design project: 

9 8 8
1 2

3
12

5.5 10 , 9.6 10 , 4.3 10 ,

975 , 0.3.

E Pa E Pa G Pa

Kg mρ ν

= ⋅ = ⋅ = ⋅

= =
 

Because of FRF experimental measurement unavailability, two sets of experimental 
measurements were simulated assuming the input force applied on point 1 along z direction 
(Fig. 2). Twelve response dofs (along z direction) were used in the first set (red squares in 
Fig.2), while the second set contains only four measurement response dofs (red squares 1-4 
in Fig. 2), in the frequency range [0, 80] Hz. 
The simply supported constraint was modelled as a distributed stiffness acting on a portion 
of the bottom surface of the plate (τ = 0): 

 ( )= ⋅ ⋅ ⋅∫ TΔK N R N
S

d S , (44) 

where R is the matrix containing the stiffness of distributed spring acting only in vertical 
direction z: 

 
( )33

0 0 0
0 0 0
0 0 ,r ξ η

⎡ ⎤
⎢ ⎥= ⎢ ⎥
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R . (45) 

The distributed stiffness r33 is modelled by means of B-spline functions: 

 ( ) ( ) ( ) ( )
1 4 1 4

0 2 0 2
33 ij ij

1 1 1 1
i j i j

i j i j
r B B B Bκ κξ η ξ η

= = = =
= ⋅ ⋅ + ⋅ ⋅∑∑ ∑∑' ' ' '' '' '' , (46) 

where: 
• [ ]9 30.4 1.5 1.8 0.610 N m= ⋅κ' , and the associated B-spline functions are defined on 

the knot vectors {0,0.03}=U'  and {0,0,0,0.5,1,1,1}=V' ; 
• [ ]9 310 1.5 0.4 0.5 1.8 N m= ⋅κ'' , and the associated B-spline functions are defined 

on the knot vectors {0.97,1}=U''  and {0,0,0,0.5,1,1,1}=V'' . 
The distribution of the spring stiffness is plotted in Fig.3. In order to simplify the presentation 
of the numerical results, the stiffness coefficients are collected in the vector κ as follows: 

[ ] [ ]9 3
1 8 0.4 1.5 1.8 0.6 1.5 0.4 0.5 1.810j N mκ κ κ= = = ⋅⎡ ⎤⎣ ⎦κ' κ''κ " " . (47) 

The modal damping ratio values reported in Fig.4 were employed for the first 30 
eigen-modes. 
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Fig. 1. Sinello railway bridge (Garibaldi et al., 2005). 
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Fig. 2. The B-spline FE model with the 13x5 pdc (blue dot) and the 12 measurement  
response dofs (red squares). 
 

 
Fig. 3. Distributed stiffness values (vertical-axis) of the simply supported constraint 
employed to generate the measurements. 
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Fig. 4. Modal damping ratio values adopted to simulate the measurements. The values refer 
to the first 30 modes in the frequency range [0,80] Hz. 

4.1 Numerical simulation without noise and with 12 measurement response dofs 
Coefficients in vector κ and damping coefficients zγ  (quadratic B-spline functions, nz=7, 
fST=0 Hz and fFI=80 Hz in Eq.28) are assumed as the updating identification variables. The 
updating procedure is started by setting all of the coefficients in κ  to 109 3N m  and all of 
the damping coefficients to 0.01. The comparison of the resulting FRFs is reported in Fig.5. 
The gradient of C with respect to the stiffness parameters is disregarded, i.e.  

0
kp

∂
∂

C �  if k zp γ≠ . All twelve measurements dofs (Fig. 2) are considered as input. The value 

of the identification parameters at each step, adopting the proposed procedure, is reported 
in Fig.6 for the stiffness coefficients, and in Fig.7 for the γz coefficients; Fig.8 refers to the 
comparison of the modal damping ratio values used to simulate the measurements (red 
squares) and the identified curve (black line). The negative values of some parameters can 
lead to non physical stiffness matrix ∆K so that instabilities may occur during the updating 
procedure. The proposed variable transformation does not allow stiffness coefficients to 
assume negative values. The comparison of theoretical and input FRF after updating is 
reported in Fig.9. 

4.2 Numerical simulation without noise and with 4 measurement response dofs 
The second simulation deals with the same updating parameters adopted in the previous 
example and with the same starting values, but only four measurement response dofs (dofs 
from 1 to 4 in Fig. 2) are considered. 
The value of the identification parameters at each step, adopting the proposed procedure, is 
reported in Fig.10 for the stiffness coefficients, and in Fig.11 for the γz damping coefficients; 
Fig.12 refers to the comparison of the modal damping ratio values used to simulate the 
measurements (red squares) and the identified curve (black line). Fig.13 refers to the 
comparison of the FRFs after updating. 
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Fig. 5. Comparison of (input in dof 1; output in dof 1) FRF before updating: the input data 
(black continuous line) and the model (red dotted line). 

 

0 5 10 15 20

0.5

1

1.5

2

2.5

3x 109

iteration step

 

 

κ j [N
/m

3 ]

1
2
3
4
5
6
7
8

 
 

Fig. 6. Evolution of the stiffness parameters jκ (j=1,...,8 in the legend) during iterations by 
adopting the proposed updating procedure. Example with 12 measurement  response dofs 
and without noise. 
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Fig. 7. Evolution of the damping parameters γz (z=1,...,7 in the legend) during iterations by 
adopting the proposed updating procedure. Example with 12 measurement  response dofs 
and without noise. 
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Fig. 8. Comparison of the modal damping ratio used to simulate the measurements (red 
squares) and the identified ( )fζ  (black line; green filled squares refer to B-spline curve 
control coefficients). Example with 12 measurement  response dofs and without noise. 
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Fig. 9. Comparison of (input in point 1; output in point 1) FRF after updating (example with 
12 measurement response dofs without noise): the input data (black continuous line) and the 
updated model (red dotted line). 
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Fig. 10. Evolution of stiffness parameters jκ (j=1,...,8 in the legend) during iterations by 
adopting the proposed updating procedure. Example with 4 measurement  response dofs 
and without noise. 
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Fig. 11. Evolution of the damping parameters γz (z=1,...,7 in the legend) during iterations by 
adopting the proposed updating procedure. Example with 4 measurement  response dofs 
and without noise. 
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Fig. 12. Comparison of the modal damping ratio used to simulate the measurements (red 
squares) and the identified ( )fζ (black line; green filled squares refer to B-spline curve 
control coefficients). Example with 4 measurement  response dofs and without noise. 
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Fig. 13. Comparison of (input in point 1; output in point 1) FRF after updating (example 
with 4 measurement  response dofs, without noise):  the input data (black continuous line) 
and the updated model (red dotted line). 
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Fig. 14. Evolution of stiffness parameters jκ  (j=1,...,8 in the legend) during iterations by 
adopting the proposed updating procedure. Example with 4 measurement  response dofs 
and with 3% noise. 
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4.3 Numerical simulations with noise 
In these two simulations, the same updating parameters of the previous examples are 
considered with the same starting values. A random noise is added in FRFs, by considering 
a normal distribution with a standard deviation set to 3% and 10% of the signal RMS value. 
Four FRFs data (dofs from 1 to 4, Fig.2) are employed in the updating process. 
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Fig. 15. Evolution of the damping parameters γz(z=1,...,7 in the legend) during iterations by 
adopting the proposed updating procedure. Example with 4 measurement  response dofs 
and with 3% noise. 
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Fig. 16. Comparison of the modal damping ratio used to simulate the measurements (red 
squares) and the identified ( )fζ (black line; green filled squares refer to B-spline curve 
control coefficients). Example with 4 measurement  response dofs and with 3% noise. 
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When 3% noise is added, the value of the identification parameters at each step, adopting 
the proposed procedure, is reported in Fig.14 for the stiffness coefficients, and in Fig.15 for 
the γz damping coefficients; Fig.16 refers to the comparison of the modal damping ratio used 
to simulate the measurements (red squares) and the identified curve (black line) where the 
green filled squares are the B-spline control coefficient γz. Fig.17 refers to the comparison of 
the input and updated FRFs. 
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Fig. 17. Comparison of (input point 1; output point 1) FRF considering noise (3% case) after 
updating (4 measurement  response dofs): the  input data (black line) and the updated 
model (red line). 
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Fig. 18. Evolution of stiffness parameters jκ  (j=1,...,8 in the legend) during iterations by 
adopting the proposed updating procedure. Example with 4 measurement  response dofs 
and with 10% noise. 
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For the simulation considering the 10% noise case, Fig.18 and Fig.19 show the evolution 
during iteration for, respectively, the stiffness coefficients and the γz damping coefficients; 
Fig.20 refers to the comparison of the modal damping ratio values used to simulate the 
measurements and the identified function. Fig.21 and Fig.22 refer to the comparison of the 
input and updated FRFs. 
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Fig. 19. Evolution of the damping parameters γz (z=1,...,7 in the legend) during iterations by 
adopting the proposed updating procedure. Example with 4 measurement  response dofs 
and with 10% noise. 
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Fig. 20. Comparison of the modal damping ratio ζ used to simulate the measurements (red 
squares) with the  identified ( )fζ (black line; green filled squares refer to B-spline curve 
control coefficients). Example with 4 measurement  response dofs and with 10% noise. 
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Fig. 21. Comparison of (input point 1; output point 1) FRF considering noise (10% case) after 
updating (4 measurement  response dofs): the input data (black line) and the updated model 
(red line). 
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Fig. 22. Comparison of (input point 1; output point 4) FRF considering noise (10% case) after 
updating (4 measurement  response dofs): the input data (black line) and the updated model 
(red line).   

5. Discussion 
Experimental measurement data were simulated by adopting the same B-spline analytical 
model used as the updating model. Numerical results showed good matching of the FRFs 
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after the updating process with both twelve and four measurement dofs, when noise is not 
considered. However, when only four measurement dofs are employed, more iterations 
were necessary to make updating parameter values become stable, with respect to the case 
in which twelve measurement dofs were adopted. The updated FRFs showed a good 
matching with the input FRFs even with the adoption of four measurement dofs and noisy 
data as input in the updating procedure: in the 10% noise case, the procedure required more 
iterations than in the 3% noise case example, but a moderately fast convergence was 
obtained anyway. A transformation of the updating variables was proposed to constrain the 
updated parameters to lie in a compact domain without using additional variables. This 
transformation ensured physical values to be assumed for all of the parameters during the 
iteration steps, and convergence was effectively and efficiently obtained in all of the cases 
under study. 
The approach needs to be tested by adopting true measurement data as input. However, the 
experimental estimate of input-output FRFs for big structures like bridges can be difficult 
and can also be affected by experimental model errors, mainly due to input force placement, 
spatial distribution and measurement estimate. A technique employing output-only 
measured data need to be considered in future studies. 

6. Conclusions 
An updating procedure of a B-spline FE model of a railway bridge deck was proposed, the 
updating parameters being the coefficients of a distributed constraint stiffness model and 
the damping ratios, both modeled by means of B-spline functions. The optimization 
objective function was defined by considering the difference between the measured 
(numerically synthesised) FRFs and the linearized analytical FRFs. The incompatibility 
between the measured dofs and the non-physical B-spline FE model dofs was overcome by 
employing the same B-spline shape functions, thus adding a small computational cost.  
A transformation of the updating variables was proposed to constrain the updated 
parameters to lie in a compact domain without using additional variables. Some test cases 
were investigated by simulating the experimental measurements by model based numerical 
simulations. Results are shown and critically discussed. Future applications will be 
addressed towards the development of a model updating technique employing output-only 
vibrational measured data. 

7. Acknowledgments 
The present study was developed within the MAM-CIRI, with the contribution of  
the Regione Emilia-Romagna, Progetto Tecnopoli. Support from the Italian Ministero 
dell'Università e della Ricerca (MIUR), under the "Progetti di Interesse Nazionale" (PRIN07) 
framework is also kindly acknowledged. 

8. References 
Carminelli, A. & Catania, G. (2007). Free vibration analysis of double curvature thin walled 

structures by a B-spline finite element approach. Proceedings of ASME IMECE 2007, 
pp. 1-7, Seattle (Washington), USA, 11-15 November 2007. 



 Advances in Vibration Analysis Research 

 

160 

Carminelli, A. & Catania, G. (2009). PB-spline hybrid surface fitting technique. Proceedings of 
ASME IDETC/CIE 2009, pp.1-7, San Diego, California, USA, August 30-September 
2, 2009. 

Cook, R.D.; Malkus, D.S.; Plesha, M.E. & Witt, R.J.  (1989). Concepts and applications of 
finite element analysis, J. Wiley & Sons, ISBN 0-471-35605-0, New York, NY, USA. 

D’ambrogio W. & Fregolent A. (2000). Robust dynamic model updating using point 
antiresonances. Proceedings of the 18th International Modal Analysis Conference, pp. 
1503-1512, San Antonio, Texas. 

Esfandiari, A.; Bakhtiari-Nejad, F.; Rahai, A. & Sanayei, M. (2009). Structural model 
updating using frequency response function and quasi-linear sensitivity equation. 
Journal of Sound and Vibration, Vol. 326, 3-5, pp. 557-573, ISSN 0022-460X. 

Friswell, M. I. & Mottershead, J. E. (1995) Finite element modal updating in structural dynamics, 
Kluwer Academic Publisher, ISBN 0-7923-3431-0, Dordrecht, Netherlands. 

Friswell, M.I.; Mottershead, J.E. & Ahmadian, H. (2001). Finite-Element Model Updating 
Using Experimental Test Data: Parametrization and Regularization. Philosophical 
Transactions: Mathematical, Physical and Engineering Sciences, 359, 1778, Experimental 
Modal Analysis (Jan. 2001), pp. 169-186. 

Gabriele S.; Valente, C. & Brancaleoni, F. (2009). Model calibration by interval analysis. 
Proceedings of XIX AIMETA CONFERENCE, Ancona, Italy, September 14-17, 2009. 

Garibaldi, L.; Catania, G.; Brancaleoni, F.; Valente, C. & Bregant, L. (2005). Railway Bridges 
Identification Techniques. Proceedings of IDETC2005: The 20th ASME Biennial 
Conference on Mechanical Vibration and Noise, Long Beach, CA, USA, September 24-
28, 2005. 

Hughes, T.J.R.; Cottrell, J.A. & Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite 
elements, NURBS, exact geometry, and mesh refinement. Computer Methods in 
Applied Mechanics and Engineering, 194, pp. 4135–4195, 2005. 

Hughes, T.J.R.; Reali, A. & Sangalli, G. (2009). Isogeometric methods in structural dynamics 
and wave propagation, Proceedings of COMPDYN 2009 - Computational Methods in 
Structural Dynamics and Earthquake Engineering, Rhodes, Greece, 22-24 June 2009. 

Lin, R.M. & Zhu, J. (2006). Model updating of damped structures using FRF data. Mechanical 
Systems andSignal Processing, 20, pp. 2200-2218. 

Kagan, P. & Fischer, A. (2000). Integrated mechanically based CAE system using B-spline 
finite elements. Computer Aided Design, 32, pp. 539-552. 

Piegl L. & Tiller, W. (1997). The NURBS Book, 2nd Edition. Springer-Verlag, ISBN 
3-540-61545-8, New York, NY, USA. 

Zapico, J.L.; Gonzalez, M.P.; Friswell, M.I.; Taylor, C.A. & Crewe, A.J. (2003). Finite element 
model updating of a small scale bridge. Journal of Sound and Vibrations, 268, 
pp. 993-1012. 

 



9 

Dynamic Analysis of a  
Spinning Laminated Composite-  

Material Shaft Using the hp- version of the  
Finite Element Method 

Abdelkrim Boukhalfa 
Department of Mechanical Engineering, Faculty of Technology 

University of Tlemcen 
Algeria 

1. Introduction  
Because of their high strength, high stiffness, and low density characteristics, composite 
materials are now used widely for the design of rotating mechanical components such as, 
for example, driveshafts for helicopters, cars and jet engines, or centrifugal separator 
cylindrical tubes. The interest of composites for rotordynamic applications has been 
demonstrated both numerically and experimentally. Accompanied by the development of 
many new advanced composite materials, various mathematical models of spinning 
composite shafts were also developed by researchers. 
Zinberg and Symonds (Zinberg & Symonds, 1970) investigated the critical speeds for 
rotating anisotropic shafts and their experiments affirmed the advantages of composite 
shafts over aluminum alloy shafts. Using Donell’s thin shell theory, Reis et al. (Dos Reis et 
al., 1987) applied finite element method to evaluate critical speeds of thin-walled laminated 
composite shafts. They concluded that the lay-up of a composite shaft strongly influences 
the dynamic behavior of this shaft. 
Kim and Bert (Kim & Bert, 1993) utilized Sanders’ best first approximation shell theory to 
determine critical speeds of a rotating shaft containing layers of arbitrarily laminated 
composite materials. Both the thin- and thick-shell models, including the Coriolis effect, 
were presented. Bert (Bert, 1992), as well as Bert and Kim (Bert & Kim, 1995a), examined 
critical speeds of composite shafts using Bernoulli-Euler beam theory and Bresse-
Timoshenko beam model, respectively. Conventional beam model approaches used to date 
are Equivalent Modules Beam Theory (EMBT). In another study, Bert and Kim (Bert & Kim, 
1995b) have analysed the dynamic instability of a composite drive shaft subjected to 
fluctuating torque and/or rotational speed by using various thin shell theories. The 
rotational effects include centrifugal and Coriolis forces. Dynamic instability regions for a 
long span simply supported shaft are presented. 
M- Y. Chang et al (Chang et al., 2004a) published the vibration behaviours of the rotating 
composite shafts. In the model the transverse shear deformation, rotary inertia and 
gyroscopic effects, as well as the coupling effect due to the lamination of composite layers 
have been incorporated. The model based on a first order shear deformable beam theory 
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(continuum- based Timoshenko beam theory). M- Y. Chang et al (Chang et al., 2004b) 
published the vibration analysis of rotating composite shafts containing randomly oriented 
reinforcements. The Mori-Tanaka mean-field theory is adopted here to account for the 
interaction at the finite concentrations of reinforcements in the composite material. 
Additional recent work on composite shafts dealing with both the theoretical and 
experimental aspects was reported by Singh (Singh, 1992), Gupta and Singh (Gupta & Singh, 
1996) and Singh and Gupta (Singh & Gupta, 1994a). Rotordynamic formulation based on 
equivalent modulus beam theory was developed for a composite rotor with a number of 
lumped masses, and supported on general eight coefficient bearings. A Layerwise Beam 
Theory (LBT) was derived by Singh and Gupta (Gupta & Singh, 1996) from an available 
shell theory, with a layerwise displacement field, and was then extended to solve a general 
composite rotordynamic problem. The conventional rotor dynamic parameters as well as 
critical speeds, natural frequencies, damping factors, unbalance response and threshold of 
stability were analyzed in detail and results from the formulations based on the two 
theories, namely, the equivalent modulus beam theory (EMBT) and layerwise beam theory 
(LBT) were compared (Singh & Gupta, 1994a). The experimental rotordynamic studies 
carried by Singh and Gupta (Singh & Gupta, 1995-1996) were conducted on two filament 
wound carbon/epoxy shafts with constant winding angles (±45° and ±60°). Progressive 
balancing had to be carried out to enable the shaft to traverse through the first critical speed. 
Inspire of the very different shaft configurations used, the authors’ have shown that 
bending-stretching coupling and shear-normal coupling effects change with stacking 
sequence, and alter the frequency values. Some practical aspects such as effect of shaft disk 
angular misalignment, interaction between shaft bow, which is common in composite shafts 
and rotor unbalance, and an unsuccessful operation of a composite rotor with an external 
damper were discussed and reported by Singh and Gupta (Singh & Gupta, 1995). The Bode 
and cascade plots were generated and orbital analysis at various operating speeds was 
performed. The experimental critical speeds showed good correlation with the theoretical 
prediction.  
Mastering vibratory behavior requires knowledge of the characteristics of the composite 
material spinning shafts, the prediction of this knowledge is fundamental in the design of 
the rotating machinery in order to provide a precise idea of the safe intervals in terms of 
spinning speeds. Within the framework of this idea, our work concerns to the study of the 
vibratory behavior of the spinning composite material shafts, and more precisely, their 
behavior in rotation by taking into account the effects of the transverse shear deformation, 
rotary inertia and gyroscopic effects, as well as the coupling effect due to the lamination of 
composite layers, the effect of the elastic bearings and external damping and the effect of 
disk. In the presented composite shaft model, the Timoshenko theory will be adopted.  An 
hp- version of the finite element method (combination between the conventional version of 
the finite element method (h- version) and the hierarchical finite element method (p- 
version) with trigonometric shape functions (Boukhalfa et al., 2008-2010) is used to model 
the structure. A hierarchical finite element of beam type with six degrees of freedom per 
node is developed. The assembly is made same manner as the standard version of the finite 
element method for several elements. The theoretical study allows the establishment of the 
kinetic energy and the strain energy of the system (shaft, disk and bearings) necessary to 
determine the motion equations. A program is elaborated to calculate the Eigen-frequencies 
and the critical speeds of the system. The results obtained are compared with those available 
in the literature and show the speed of convergence, the precision and the effectiveness of 
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the method used. Several examples are treated, and a discussion is established to determine 
the influence of the various parameters and boundary conditions. In the hp- version of the 
finite element method, the error in the solution is controlled by both the number of elements 
h and the polynomial order p ((Babuska & Guo, 1986); (Demkowicz et al., 1989)). The hp- 
version of the finite element method has been exploited in a few areas including plate 
vibrations (Bardell et al., 1995) and beam statics (Bardell, 1996) and has been shown to offer 
considerable savings in computational effort when compared with the standard h-version of 
the finite element method. 

2. Equations of motion 
2.1 Kinetic and strain energy expressions of the shaft 
The shaft is modeled as a Timoshenko beam, that is, first-order shear deformation theory 
with rotary inertia and gyroscopic effect is used. The shaft rotates at constant speed about its 
longitudinal axis. Due to the presence of fibers oriented than axially or circumferentially, 
coupling is made between bending and twisting. The shaft has a uniform, circular cross 
section. 
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Fig. 1. The elastic displacements of a typical cross-section of the shaft  
The following displacement field of a spinning shaft (one beam element) is assumed by 
choosing the coordinate axis x to coincide with the shaft axis: 
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Where U, V and W are the flexural displacements of any point on the cross-section of the 
shaft in the x, y and z directions respectively, the variables U0, V0 and W0 are the flexural 
displacements of the shaft’s axis, while xβ and yβ are the rotation angles of the cross-section, 
about the y and z axis respectively. The φ  is the angular displacement of the cross-section 
due to the torsion deformation of the shaft (see figure 1).  
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The strain components in the cylindrical coordinate system (As shown in figure 2-3) can be 
written in terms of the displacement variables defined earlier as 
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Let us consider a composite shaft consists of k layered (see figure 3) of fiber inclusion 
reinforced laminate. The constitutive relations for each layer are described by 
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 (3) 

Where Cij’ are the effective elastic constants, they are related to lamination angle η (as shown 
in figure 4-5) and the elastic constants of principal axes. 
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Fig. 2. The cylindrical coordinate System  

The stress-strain relations of the nth layer expressed in the cylindrical coordinate system (see 
figure 6) can be expressed as 
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 (4) 

Where ks is the transverse shear correction factor. 
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Fig. 5. The definitions of the principal coordinate axes on an arbitrary layer of the composite 

The formula of the strain energy is 

 1 ( 2 2 )
2d xx xx xr xr x xV

E dVθ θσ ε τ ε τ ε= + +∫  (5) 

The various components of strain energy of the shaft are presented as follow (one beam 
element) 
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 (6) 

where Aij and Bij  are given in Appendix. 
The kinetic energy of the spinning composite shaft (one beam element) (Boukhalfa et al., 
2008), including the effects of translatory and rotary inertia, can be written as 
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where Ω is the rotating speed of the shaft which is assumed constant, L is the length of the 
shaft, the 2 p x yIΩ β β�  term accounts for the gyroscopic effect, and ( )2 2

d x yI β β+� �  represent the 
rotary inertia effect. The mass moments of inertia Im, the diametrical mass moments of 
inertia Id and polar mass moment of inertia Ip of spinning shaft per unit length are defined in 
the appendix. As the ( )2 2 2

d x yIΩ β β+  term is far smaller than 2
pIΩ , it will be neglected in 

further analysis. 
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2.2 Kinetic energy of the disk 
The disk fixed to the composite shaft (see figure 7) is assumed rigid and made of isotropic 
material. According to Equation (7) the kinetic energy of the disk can be expressed as 
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where Im, Id  and Ip are the mass, the diametrical mass moment of inertia and the polar mass 
moment of inertia of the disk. As the ( )2 2 2D

p x yIΩ β β+  term is far smaller than 2 D
pIΩ , it will 

be neglected in further analysis. 
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Fig. 7. Various positions of the disk on the spinning shaft (one element). 

2.3 Virtual work of the bearings 
The bearings are characterized by values of stiffness and viscous damping following the y 
and z directions and the cross terms (see Figures 8 and 9). The stiffness and damping effects 
of the bearings are modeled using springs and viscous dampers. 
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Fig. 8. Model of bearings 

The virtual work Aδ done by these external forces can be written as 

 
0 0 0 0V V W WA F Fδ δ δ= +  (9) 
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where 
0VF and 

0wF are the generalized forces expressed by 
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Fig. 9. Spinning shaft (one element) supported by two bearings 

2.4 Hierarchical Beam element formulation 
The spinning flexible beam is descretised by hierarchical beam elements. Each element with 
two nodes 1 and 2 is shown in figure 10. In the case of a staged shaft, several elements can 
be used (see figure 11). The element’s nodal d.o.f. at each node are 0 0 0, , , ,x yU V W β β and φ . 
The local and non-dimensional co-ordinates are related by 

 x Lξ =      With (0 ≤ ξ  ≤ 1) (11) 
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1 2 ξ,x  
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Fig. 10. 3D Beam element with two nodes 
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Fig. 11. Assembly between two p- elements 

The vector displacement formed by the variables 0 0 0, , , ,x yU V W β β and φ  can be 
written as 
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where [N] is the matrix of the shape functions, given by 
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where , , , ,
x yU V Wp p p p pβ β  and pφ  are the numbers of hierarchical terms of 

displacements (are the numbers of shape functions of displacements). In this work, 
x yU V Wp p p p p p pβ β φ= = = = = =  

The vector of generalized coordinates given by 
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The group of the shape functions used in this study is given by 

 ( ) ( ) ( )( ) }{ 1 2 21 sin , ; 1 , 2 , 3 , ...r r rf f f r rξ ξ δ ξ δ π+= − = = = =  (16) 

The functions (f1, f2) are those of the finite element method necessary to describe the nodal 
displacements of the element; whereas the trigonometric functions fr+2 contribute only to the 
internal field of displacement and do not affect nodal displacements. The most attractive 
particularity of the trigonometric functions is that they offer great numerical stability. The 
shaft is modeled by elements called hierarchical finite elements with p shape functions for 
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each element. The assembly of these elements is done by the h- version of the finite element 
method. 
After modelling the spinning composite shaft using the hp- version of the finite element 
method and applying the Euler-Lagrange equations, the motion’s equations of free vibration 
of spinning flexible shaft can be obtained. 

 [ ]{ } [ ] { } [ ]{ } { }0pM q G C q K q⎡ ⎤⎡ ⎤+ + + =⎣ ⎦⎣ ⎦�� �  (17) 

[M] and [K] are the mass and stiffness matrix respectively, [G] is the gyroscopic matrix and 
[Cp] is the damping matrix of the bearing (the different matrices of the equation (17) are 
given in the appendix). 

3. Results  
A program based on the formulation proposed to resolve the resolution of the equation (17).    

3.1 Convergence 
First, the mechanical properties of boron-epoxy are listed in table 1, and the geometric 
parameters are L =2.47 m, D =12.69 cm, e =1.321 mm, 10 layers of equal thickness (90°, 45°,-
45°,0°6, 90°). The shear correction factor ks =0.503 and the rotating speed Ω =0. In this 
example, the boron -epoxy spinning shaft is modeled by one element of length L, then by 
two elements of equal length L/2. 
 

 Graphite-epoxy Boron-epoxy 

E11 (GPa) 
E22 (GPa) 
G12 (GPa) 
G23 (GPa) 
ν12 

 ρ (kg/m3) 

139.0 
11.0 
6.05 
3.78 
0.313 
1578.0 

211.0 
24.1 
6.9 
6.9 
0.36 
1967.0 

Table 1. Properties of composite materials (Bert & Kim, 1995a) 

The results of the five bending modes for various boundary conditions of the composite 
shaft as a function of the number of hierarchical terms p are shown in figure 12. Figure 
clearly shows that rapid convergence from above to the exact values occurs when the 
number of hierarchical terms increased. The bending modes are the same for a number of 
hierarchical finite elements, equal 1 then 2. This shows the exactitude of the method even 
with one element and a reduced number of the shape functions. It is noticeable in the case of 
low frequencies, a very small p is needed (p=4 sufficient), whereas in the case of the high 
frequencies, and in order to have a good convergence, p should be increased. 

3.2 Validation 
In the following example, the critical speeds of composite shaft are analyzed and compared 
with those available in the literature to verify the present model. In this example, the 
composite hollow shafts made of boron-epoxy laminae, which are considered by Bert and 
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Kim (Bert & Kim, 1995a), are investigated. The properties of material are listed in table1. The 
shaft has a total length of 2.47 m. The mean diameter D and the wall thickness of the shaft 
are 12.69 cm and 1.321 mm respectively. The lay-up is [90°/45°/-45°/0°6/90°] starting from 
the inside surface of the hollow shaft. A shear correction factor of 0.503 is also used. The 
shaft is modeled by one element. The shaft is simply-supported at the ends. In this 
validation, p =10. 
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Fig. 12. Convergence of the frequency ω for the 5 bending modes of the composite shaft for 
different boundary conditions (S: simply-supported; C: clamped) as a function of the 
number of hierarchical terms p 

The result obtained using the present model is shown in table 2 together with those of 
referenced papers. As can be seen from the table our results are close to those predicted by 
other beam theories. Since in the studied example the wall of the shaft is relatively thin, 
models based on shell theories (Kim & Bert, 1993) are expected to yield more accurate 
results. In the present example, the critical speed measured from the experiment however is 
still underestimated by using the Sander shell theory while overestimated by the Donnell 
shallow shell theory. In this case, the result from the present model is compatible to that of 
the Continuum based Timoshenko beam theory of M-Y. Chang et al (Chang et al., 2004a). In 
this reference the supports are flexible but in our application the supports are rigid. 
In our work, the shaft is modeled by one element with two nodes, but in the model of the 
reference (Chang et al., 2004a) the shaft is modeled by 20 finite elements of equal length (h- 
version).  The rapid convergence while taking one element and a reduced number of shape 
functions shows the advantage of the method used. One should stress here that the present 
model is not only applicable to the thin-walled composite shafts as studied above, but also 
to the thick-walled shafts as well as to the solid ones. 
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L=2.47 m, D =12.69 cm, e =1.321 mm, 10 layers of equal thickness  (90°, 45°,-45°,0°6,90°) 
 Theory or Method Ωcr1 (rpm) 

Zinberg & Symonds, 1970
 
 

Dos Reis et al., 1987 
 
 

Kim & Bert, 1993 
 
 

Bert, 1992 
 

Bert & Kim, 1995a 
 

Singh & Gupta, 1996 
 
 

Chang et al., 2004a 
 

Present 

Measured experimentally 
EMBT 
 

Bernoulli–Euler beam theory with stiffness 
determined by shell finite elements 
 

Sanders shell theory 
Donnell shallow shell theory 
 

Bernoulli–Euler beam theory 
 

Bresse–Timoshenko beam theory 
 

EMBT 
LBT 
 

Continuum based Timoshenko beam theory 
 

Timoshenko beam theory  by the hp- version 
of the FEM. 

6000 
5780 
 

4942 
 
 

5872 
6399 
 

5919 
 

5788 
 

5747 
5620 
 

5762 
 

5760 

Table 2. The first critical speed of the boron-epoxy composite shaft 

The first eigen-frequency of the boron-epoxy spinning shaft calculated by our program in 
the stationary case is 96.0594 Hz on rigid supports and 96.0575 Hz on two elastic supports of 
stiffness 1740 GN/m.  In the reference (Chatelet et al., 2002), they used the shell’s theory for 
the same shaft studied in our case and on rigid supports; the frequency is 96 Hz.  In this 
example, is not noticeable the difference between shaft bi-supported on rigid supports or 
elastic supports because the stiffness of the supports are very large. 

3.3 Results and interpretations  
In this study, the results obtained for various applications are presented.  Convergence 
towards the exact solutions is studied by increasing the numbers of hierarchical shape 
functions for two elements.  The influence of the mechanical and geometrical parameters 
and the boundary conditions on the eigen-frequencies and the critical speeds of the 
embarked spinning composite shafts are studied. In this study, p = 10. 

3.3.1 Influence of the gyroscopic effect on the eigen-frequencies 
In the following example, the frequencies of a graphite- epoxy spinning shaft are analyzed.  
The mechanical properties of shaft are shown in table 1, with ks = 0.503.  The ply angles in 
the various layers and the geometrical properties are the same as those in the first example. 
Figure 13 shows the variation of the bending fundamental frequency ω as a function of 
rotating speed Ω for different boundary conditions. The gyroscopic effect inherent to 
rotating structures induces a precession motion. When the rotating speed increase, the 
forward modes (1F) increase, whereas the backward modes (1B) decrease. The gyroscopic 
effect causes a coupling of orthogonal displacements to the axis of rotation, and by 
consequence separate the frequencies in two branches: backward precession mode and 
forward precession mode. In all cases, the forward modes increase with increasing rotating 
speed however the backward modes decrease.  
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Fig. 13. The first backward (1B) and forward (1F) bending mode of a graphite- epoxy shaft 
for different boundary conditions and different rotating speeds (S: simply-supported;  
C: clamped; F: free) 
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Fig. 14. The first backward (1B) and forward (1F) bending mode of a boron- epoxy shaft for 
different boundary conditions and different rotating speeds. L =2.47 m, D =12.69 cm, e =1.321 
mm, 10 layers of equal thickness (90°, 45°,-45°,0°6, 90°) 
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3.3.2 Influence of the boundary conditions on the eigen-frequencies 
In the following example, the boron-epoxy shaft is modeled by two elements of equal length 
L/2. The frequencies of the spinning shaft are analyzed.  The mechanical properties of shaft 
are shown in table 1, with ks = 0.503. The ply angles in the various layers and the geometrical 
properties are the same as those in the preceding example.  
Figure 14 shows the variation of the bending fundamental frequency ω according to the 
rotating speeds Ω for various boundary conditions. According to these found results, it is 
noticed that, the boundary conditions have a very significant influence on the eigen-
frequencies of a spinning composite shaft. For example, by adding a support to the mid-
span of the spinning shaft, the rigidity of the shaft increases which implies the increase in 
the eigen-frequencies. 

3.3.3 Influence of the lamination angle on the eigen-frequencies  
By considering the same preceding example, the lamination angles have been varied in 
order to see their influences on the eigen-frequencies of the spinning composite shaft.  
Figure 15 shows the variation of the bending fundamental frequency ω according to the 
rotating speeds Ω (Campbell diagram) for various ply angles. According to these results, the 
bending frequencies of the composite shaft decrease when the ply angle increases and vice 
versa.   
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Fig. 15. The first backward (1B) and forward (1F) bending mode of a boron- epoxy shaft  
(S-S) for different lamination angles and different rotating speeds. L =2.47 m, D =12.69 cm,  
e =1.321 mm, 10 layers of equal thickness 

3.3.4 Influence of the ratios L/D, e/D and η on the critical speeds and rigidity  
The intersection point of the line (Ω = ω) with the bending frequency curves (diagram of 
Campbell) indicate the speed at which the shaft will vibrate violently (i.e., the critical 
speed Ωcr). 
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In figure 16, the first critical speeds of the graphite-epoxy composite shaft (the properties are 
listed in table 1, with ks =0.503) are plotted according to the lamination angle for various 
ratios L/D and various boundary conditions (S-S, C-C). From figure 16, the first critical speed 
of shaft bi-simply supported (S-S) has the maximum value at η = 0° for a ratio L/D = 10, 15 
and 20, and at η = 15° for a ratio L/D = 5.  For the case of a shaft bi-clamped (C-C), the 
maximum critical speed is at η = 0° for a ratio L/D = 20 and at η = 15° for a ratio L/D = 10 and 
15, and at η = 30° for a ratio L/D = 5.   
Above results can be explained as follows. The bending rigidity reaches maximum at η = 0° 
and reduces when the lamination angle increases; in addition, the shear rigidity reaches 
maximum at η = 30° and minimum with η = 0° and η = 90°.  A situation in which the 
bending rigidity effect predominates causes the maximum to be η = 0°.  However, as 
described by Singh ad Gupta (Singh & Gupta, 1994b), the maximum value shifts toward a 
higher lamination angle when the shear rigidity effect increases. Therefore, while comparing 
the phenomena of figure 16, the constraint from boundary conditions would raise the 
rigidity effect. A similar is observed for short shafts. 
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Fig. 16. The first critical speed Ω1cr of spinning composite shaft according to the lamination 
angle η for various ratios L/D and various boundary conditions (S-S, C-C) 
In figures 17 and 18, the first critical speeds according to ratio L/D of the same graphite-
epoxy shaft bi-simply supported (S-S) and the same graphite-epoxy shaft bi- clamped (C-C) 
for various lamination angles. It is noticeable, if ratio L/D increases, the critical speed 
decreases and vice versa. 
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Fig. 17. The first critical speed Ω1cr of spinning composite shaft bi- simply supported (S-S) 
according to ratio L/D for various lamination angles η 
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Fig. 18. The first critical speed Ω1cr of spinning composite shaft bi- clamped (C-C) according 
to ratio L/D for various lamination angles η 
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Fig. 19. The first critical speed Ω1cr of spinning composite shaft according to the lamination 
angle η for various ratios e/D and various boundary conditions (S-S, C-C); (L/D = 20) 
Figure 19 plots the variation of first critical speeds of the same graphite-epoxy composite 
shaft with ratio L/D = 20 according to the lamination angle for various e/D ratios and various 
boundary conditions. It is noticed the influence of the e/D ratio on the critical speed is almost 
negligible; the curves are almost identical for the various e/D ratios of each boundary 
condition. This is due to the deformation of the cross section is negligible, and thus the 
critical speed of the thin-walled shaft would approximately independent of thickness ratio 
e/D. According to above results, while predicting which stacking sequence of the spinning 
composite shaft having the maximum critical speed, we should consider L/D ratio and the 
type of the boundary conditions. I.e., the maximum critical speed of a spinning composite 
shaft is not forever at ply angle equalizes zero degree, but it depends on the L/D ratio and 
the type the boundary conditions.   

3.3.5 Influence of the stacking sequence on the eigen-frequencies   
In order to show the effects of the stacking sequence on the eigen-frequencies, a spinning 
carbon- epoxy shaft is mounted on two rigid supports; the mechanical and geometrical 
properties of this shaft are (Singh & Gupta, 1996): 
E11 = 130 GPa, E22 = 10 GPa, G12 = G23 = 7 GPa, ν12 = 0.25,  ρ = 1500 Kg/m3 
L =1.0 m, D = 0.1 m, e = 4 mm, 4 layers of equal thickness, ks = 0.503 
A four-layered scheme was considered with two layers of 0° and two of 90° fibre angle. The 
flexural frequencies have been obtained for different combinations (both symmetric and 
unsymmetric) of 0° and 90° orientations (see figure 20). This figure plots the Campbell 
diagram of the first eigen-frequency of a spinning shaft for various stacking sequences. It 
can be observed from this figure that, for symmetric configurations, the frequency values of 
the spinning composite shaft are very close, and do have a slight dependence on the relative 
positioning of the 0° and 90° layers. 
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Fig. 20. First bending eigen-frequency of the spinning carbon- epoxy shaft bi- simply 
supported (S-S) for various stacking sequences according to the rotating speed 

3.3.6 Influence of the disk’s position according to the spinning shaft on on the eigen-
frequencies   
By considering another example, the eigen-frequencies of a graphite-epoxy shaft system are 
analyzed. The material properties are those listed in table 1. The lamination scheme remains 
the same as example 1, while its geometric properties, the properties of a uniform rigid disk 
are listed in table 3.  The disk is placed at the mid-span of the shaft. The shaft system is 
shown in figure 21. For the finite element analysis, the shaft is modeled into two elements of 
equal lengths. The first element is simply-supported - free (S-F) and the second element is 
free- simply-supported (F-S). The disk is placed at the free boundary (F). 
 

Disk
Rotating shaft

x
L 

 
Fig. 21. System; embarked hollow spinning shaft.  
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The Campbell diagram containing the frequencies of the second pairs of bending whirling 
modes of the above composite system is shown in figure 22. Denote the ratio of the whirling 
bending frequency and the rotation speed of shaft as γ. The intersection point of the line 
(γ=1) with the whirling frequency curves indicate the speed at which the shaft will vibrate 
violently (i.e., the critical speed). In figure 22 the second pair of the forward and backward 
whirling frequencies falls more wide apart in contrast to other pairs of whirling modes. This 
might be due to the coupling of the pitching motion of the disk with the transverse vibration 
of shaft. Note that the disk is located at the mid-span of the shaft, while the second whirling 
forward and backward bending modes are skew-symmetric with respect to the mid-span of 
the shaft. Figure 23  shows the Campbell diagram of the first two bending frequencies of the 
embarked graphite- epoxy shaft for various disk’s positions (x) according to the shaft (see 
figure 21). It is noted that when the disk approaches the support, the first bending frequency 
decreases and the second bending frequency increases and vice versa. 
 

Properties Shaft Disk 
L (m) 
Interior ray (m) 
external ray (m) 
ks 

Im  (kg) 
Id  (kg m2) 
Ip (kg m2) 

0.72 
0.028 
0.048 
0.56 
 

 
 
 
 
2.4364 
0.1901 
0.3778 

Table 3. Properties of the system (shaft + disk) 

 

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ω [rpm]

ω
 [r

ad
/s

] 1B
1F
2B
2F
γ =1

 
Fig. 22. Campbell diagram of the first two bending frequencies of the embarked graphite-
epoxy shaft   
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Fig. 23. Campbell diagram of the first two bending frequencies of the graphite-epoxy shaft 
for various disk’s positions (x) according to the shaft  

4. Conclusion 
The analysis of the free vibrations of the spinning composite shafts using the hp-version of the 
finite element method (hierarchical finite element method (p-version) with trigonometric shape 
functions combined with the standard finite element method (h-version)), is presented in this 
work. The results obtained agree with those available in the literature. Several examples were 
treated to determine the influence of the various geometrical and physical parameters of the 
embarked spinning shafts. This work enabled us to arrive at the following conclusions:  
a. Monotonous and uniform convergence is checked by increasing the number of the 

shape functions p, and the number of the hierarchical finite elements h. The 
convergence of the solutions is ensured by the element beam with two nodes. The 
results agree with the solutions found in the literature.   

b. The gyroscopic effect causes a coupling of orthogonal displacements to the axis of 
rotation, and by consequence separates the frequencies in two branches, backward and 
forward precession modes. In all cases the forward modes increase with increasing 
rotating speed however the backward modes decrease. This effect has a significant 
influence on the behaviours of the spinning shafts. 

c. The dynamic characteristics and in particular  the eigen-frequencies, the critical speeds 
and the bending and shear rigidity of the spinning composite shafts are influenced 
appreciably by changing the ply angle, the stacking sequence, the length, the mean 
diameter, the materials, the rotating speed and the boundary conditions.   

d. The critical speed of the thin-walled spinning composite shaft is approximately 
independent of the thickness ratio and mean diameter of the spinning shaft. 

e. The dynamic characteristics of the system (shaft + disk + support) are influenced 
appreciably by changing disk’s positions according to the shaft. 
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Prospects for future studies can be undertaken following this work: a study which takes into 
account damping interns in the case of a functionally graded material rotor with flexible 
disks, supported by supports with oil and subjected to disturbing forces like the air pockets 
or seisms, etc.   

5. Nomenclature  
U(x, y, z) Displacement in x direction. 
V(x, y, z) Displacement in y direction. 
W(x, y, z) Displacement in z direction. 

xβ  Rotation angles of the cross-section about the y axis. 
yβ  Rotation angles of the cross-section, about the z axis. 

φ  Angular displacement of the cross-section due to the torsion 
deformation of the shaft. 

E Young modulus. 
G  Shear modulus. 
(1, 2, 3) Principal axes of a layer of laminate 
(x, y, z) Cartesian coordinates.   
(x, r, θ) Cylindrical coordinates.   
Gc Centre of the cross-section.  
(O, x, y, z) Inertial reference frame. 
(Gc, x1,  y1, z1) Local reference frame is located in the centre of the cross-section.   
Cij’ Elastic constants. 
ks Shear correction factor. 
ν Poisson coefficient. 
ρ Masse density. 
L Length of the shaft. 
D   Mean radius of the shaft. 
e Wall thickness of the shaft. 
Rn  The nth layer inner radius of the composite shaft. 
Rn+1 The nth layer outer radius of the composite shaft. 
k Number of the layer of the composite shaft. 
η Lamination (ply) angle. 
θ Circumferential coordinate. 
ξ Local and non-dimensional co-ordinates. 
ω Frequency, eigen-value. 
Ω  Rotating speed. 
[N] Matrix of the shape functions. 
f (ξ) Shape functions. 
p Number of the shape functions or number of hierarchical terms. 
t Time. 
Ec Kinetic energy. 
Ed  Strain energy. 
{qi} Generalized coordinates, with (i = U, V, W, xβ , yβ , φ ) 
[M] Masse matrix. 
[K] Stiffness matrix. 
[G] Gyroscopic matrix. 
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[Cp] Damping matrix. 
0 0 0 0, , ,yy yz zy zzK K K K  Bearing stiffness coefficients in x = 0. 
, , ,yyL yzL zyL zzLK K K K  Bearing stiffness coefficients in x = L. 

0 0 0 0, , ,yy yz zy zzC C C C  Bearing damping coefficients in x = 0. 
, , ,yyL yzL zyL zzLC C C C  Bearing damping coefficients in x = L. 

6. Appendix 
The terms Aij, Bij of the equation (6) and Im, Id, Ip of the equation (7) are given as follows: 
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where k is the number of the layer, Rn-1 is the nth layer inner radius of the composite shaft 
and Rn it is the nth layer outer of the composite shaft. L is the length of the composite shaft 
and nρ  is the density of the nth layer of the composite shaft.   
The indices used in the matrix forms are as follows: 
a: shaft; D: disk; e: element; P: bearing (support) 
The various matrices of the equation (13) which assemble the elementary matrices of the 
system as follows   
- Shaft 
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- Bearings (Supports) 
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The elementary matrices of the system are 
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The various matrices (globally matrices) which assemble the elementary matrices, according 
to the boundary conditions as follows   
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The terms of the matrices are a function of the integrals: ( ) ( )
1

0
mn m nJ f f dα β α βξ ξ ξ= ∫ ; 

(m, n) indicate the number of the shape functions used, and ( ),α β  is the order of derivation. 
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1. Introduction 
The vibration analysis is an important stage in the design of mechanical systems and 
buildings subject to dynamic loads like wind and earthquake. The dynamic characteristics of 
these structures are obtained by the free vibration analysis. 
The Finite Element Method (FEM) is commonly used in vibration analysis and its 
approximated solution can be improved using two refinement techniques: h and p-versions. 
The h-version consists of the refinement of element mesh; the p-version may be understood 
as the increase in the number of shape functions in the element domain without any change 
in the mesh. The conventional p-version of FEM consists of increasing the polynomial 
degree in the solution. The h-version of FEM gives good results for the lowest frequencies 
but demands great computational cost to work up the accuracy for the higher frequencies. 
The accuracy of the FEM can be improved applying the polynomial p refinement. 
Some enriched methods based on the FEM have been developed in last 20 years seeking to 
increase the accuracy of the solutions for the higher frequencies with lower computational 
cost. Engels (1992) and Ganesan & Engels (1992) present the Assumed Mode Method 
(AMM) which is obtained adding to the FEM shape functions set some interface restrained 
assumed modes. The Composite Element Method (CEM) (Zeng, 1998a and 1998b) is 
obtained by enrichment of the conventional FEM local solution space with non-polynomial 
functions obtained from analytical solutions of simple vibration problems. A modified CEM 
applied to analysis of beams is proposed by Lu & Law (2007). The use of products between 
polynomials and Fourier series instead of polynomials alone in the element shape functions 
is recommended by Leung & Chan (1998). They develop the Fourier p-element applied to 
the vibration analysis of bars, beams and plates. These three methods have the same 
characteristics and they will be called enriched methods in this chapter. The main features of 
the enriched methods are: (a) the introduction of boundary conditions follows the standard 
finite element procedure; (b) hierarchical p refinements are easily implemented and (c) they 
are more accurate than conventional h version of FEM. 
At the same time, the Generalized Finite Element Method (GFEM) was independently 
proposed by Babuska and colleagues (Melenk & Babuska, 1996; Babuska et al., 2004; Duarte 
et al., 2000) and by Duarte & Oden (Duarte & Oden, 1996; Oden et al., 1998) under the 
following names: Special Finite Element Method, Generalized Finite Element Method, Finite 
Element Partition of Unity Method, hp Clouds and Cloud-Based hp Finite Element Method. 
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Actually, several meshless methods recently proposed may be considered special cases of 
this method. Strouboulis et al. (2006b) define otherwise the subclass of methods developed 
from the Partition of Unity Method including hp Cloud Method of Oden & Duarte (Duarte & 
Oden, 1996; Oden et al., 1998), the eXtended Finite Element Method (XFEM) of Belytschko 
and co-workers (Sukumar et al, 2000 and 2001), the Generalized Finite Element Method 
(GFEM) of Strouboulis et al. (2000 and 2001), the Method of Finite Spheres of De & Bathe 
(2001), and the Particle-Partition of Unity Method of Griebel & Schweitzer (Schweitzer, 
2009). The GFEM, which was conceived on the basis of the Partition of Unity Method, allows 
the inclusion of a priori knowledge about the fundamental solution of the governing 
differential equation. This approach ensures accurate local and global approximations. 
Recently several studies have indicated the efficiency of the GFEM and others methods 
based on the Partition of Unity Method in problems such as analysis of cracks (Xiao & 
Karihaloo, 2007; Abdelaziz & Hamouine, 2008; Duarte & Kim, 2008; Nistor et al., 2008), 
dislocations based on interior discontinuities (Gracie et al., 2007), large deformation of solid 
mechanics (Khoei et al., 2008) and Helmholtz equation (Strouboulis et al., 2006a; Strouboulis 
et al., 2008). In structural dynamics, the Partition of Unity Method was applied by De Bel et 
al. (2005), Hazard & Bouillard (2007) to numerical vibration analysis of plates and by Arndt 
et al. (2010) to free vibration analysis of bars and trusses. Among the main challenges in 
developing the GFEM to a specific problem are: (a) choosing the appropriate space of 
functions to be used as local approximation and (b) the imposition of essential boundary 
conditions, since the degrees of freedom used in GFEM generally do not correspond to the 
nodal ones. In most cases the imposition of boundary conditions is achieved by the 
degeneration of the approximation space or applying penalty or Lagrange multipliers 
methods. 
The purpose of this chapter is to present a formulation of the GFEM to free vibration 
analysis of framed structures. The proposed method combines the best features of GFEM 
and enriched methods: (a) efficiency, (b) hierarchical refinements and (c) the introduction of 
boundary conditions following the standard finite element procedure. In addition the 
enrichment functions are easily obtained. The GFEM elements presented can be used in 
plane free vibration analysis of rods, shafts, Euler Bernoulli beams, trusses and frames. 
These elements can be simply extended to spatial analysis of framed structures. The main 
features of the GFEM are discussed and the partition of unity functions and the local 
approximation spaces are presented. The GFEM solution can be improved using three 
refinement techniques: h, p and adaptive versions. In the adaptive GFEM, trigonometric and 
exponential enrichment functions depending on geometric and mechanical properties of the 
elements are added to the conventional Finite Element Method shape functions by the 
partition of unity approach. This technique allows an accurate adaptive process that 
converges very fast and is able to refine the frequency related to a specific vibration mode 
even for a coarse discretization scheme. 
In this chapter the efficiency and convergence of the proposed method for vibration analysis 
of framed structures are checked. The frequencies obtained by the GFEM are compared with 
those obtained by the analytical solution, the CEM and the h and p versions of the Finite 
Element Method. 
The chapter is structured as follows. Section 2 describes the variational form of the free 
vibration problems of bars and Euler-Bernoulli beams. The enriched methods proposed for 
free vibration analysis of bars and beams are discussed in Section 3. In Section 4 the main 
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features of the GFEM and the formulation of C0 and C1 elements are discussed. Section 5 
presents some applications of the proposed GFEM. Section 6 concludes the chapter. 

2. Structural free vibration problem 
Generally the structural free vibration problems are linear eigenvalue problems that can be 
described by: find a pair ( ),uλ  so that 

 Tu Quλ=  on Ω, with (1) 

 0Pu =  on ∂Ω (2) 

where T, Q and P are linear operators and ∂Ω corresponds to the boundary of domain Ω. 
The vibration of bars, stationary shafts and Euler-Bernoulli beams are mathematically 
modeled by elliptic boundary value problems, so T is a linear elliptic operator of order 2m 
and P is a consistent boundary operator of order m. Moreover, as the structural free 
vibration problems are derived from conservative laws, the operator T is formally assumed 
self-adjoint (Carey & Oden, 1983). 
According to Carey & Oden (1984), in order to obtain the variational form of a time 
dependent problem, one should consider the time t as a real parameter and develop a family 
of variational problems in t. This consists in selecting test functions w, independent of t, and 
applying the weighted-residual method.  
By this technique the structural free vibration problem becomes an eigenvalue problem with 
variational statement: find a pair ( ),uλ , with ( )u H Ω∈  and λ ∈R , so that 

 ( , ) ( , )B u w F u wλ= , w H∀ ∈  (3) 

where :B H H× R6  and :F H H× R6  are bilinear forms. 
In numerical methods, finite dimensional subspaces of approximation ( )hH H Ω⊂  are 
chosen and the variational statement becomes: find hλ ∈R  and ( )h

hu H Ω∈  so that 

 ( , ) ( , )h h hB u w F u wλ= , hw H∀ ∈ . (4) 

Established an overview of the problem, in what follows the specific features of the free 
vibration problems of bars and beams are presented. 

2.1 Axial vibration of a straight bar 
The bar consists of a straight rod with axial strain (Fig. 1). The basic hypotheses concerning 
physical modeling of bar vibration are (Craig, 1981): (a) the cross sections which are straight 
and normal to the axis of the bar before deformation remain straight and normal after 
deformation; and (b) the material is elastic, linear and homogeneous.  
The momentum equation that governs this problem is the partial differential equation 

 ( )
2

2( ) ( ) ,u uA x EA x p x t
x xt

ρ ∂ ∂ ∂⎛ ⎞− =⎜ ⎟∂ ∂∂ ⎝ ⎠
 (5) 

where A(x) is the cross section area, E is the Young modulus, ρ is the specific mass, p is the 
externally applied axial force per unit length and t is the time. The problem of free vibration 
is stated as: find the axial displacement ( , )u u x t=  which satisfies Eq. (5) when ( , ) 0p x t = . 
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Fig. 1. Straight bar 

Assuming periodic solutions ( , ) ( )i tu x t e u xω= , where ω  is the natural frequency, the free 
vibration of a bar becomes an eigenvalue problem with variational statement: find a pair 
( ),uλ , with 1(0, )u H L∈  and λ ∈R , which satisfies Eq. (3) when H space is 1(0, )H L , 

2λ ω= and L is the bar length. 
The bilinear forms B and F in Eq. (3) for Dirichlet and Neumann boundary conditions are 

 
0

( , )
L du dwB u w EA dx

dx dx
= ∫  (6) 

 
0

( , )
L

F u w Auwdxρ= ∫  (7) 

Similarly the bilinear forms for general natural boundary conditions are 

 
0

( , ) (0) (0) ( ) ( )
L

L R
du dwB u w EA dx k u w k u L w L
dx dx

= + +∫  (8) 

 
0

( , ) (0) (0) ( ) ( )
L

L RF u w Auwdx m u w m u L w Lρ= + +∫  (9) 

where Lk  and Rk  are the spring stiffness at left and right bar ends, respectively, and Lm  
and Rm  are the masses at left and right bar ends, respectively. 
The torsional free vibration of a circular shaft is mathematically identical to the axial free 
vibration of a straight bar so the variational forms of these problems are the same. 

2.2 Transversal vibration of an Euler-Bernoulli beam 
Consider a straight beam with lateral displacements, as illustrated in Fig. 2. The basic 
hypotheses concerning physical modeling of Euler-Bernoulli beam vibration are: (a) there is 
a neutral axis undergoing no extension or contraction; (b) cross sections in the undeformed 
beam remain plane and perpendicular to the deformed neutral axis, that is, transverse shear 
deformation is neglected; (c) the material is linearly elastic and the beam is homogeneous at 
any cross section; (d) normal stresses σy and σz are negligible compared to the axial stress σx 
; and (e) the beam rotary inertia is neglected.  
The momentum equation governing this problem is the partial differential equation 
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2 2 2

2 2 2 ( , )v vEI A p x t
x x t

ρ
⎛ ⎞∂ ∂ ∂

+ =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
 (10) 

where I(x) is the second moment of area, A(x) is the cross section area, E is the Young 
modulus, ρ  is the specific mass, p is the externally applied transversal force per unit length 
and t is the time. The free vibration problem consists in finding the lateral displacement 

( , )v v x t=  which satisfies Eq. (10) when ( , ) 0p x t = . 
Assuming periodic solutions ( , ) ( )i tv x t e v xω= , where ω  is the natural frequency, the free 
vibration of a beam becomes an eigenvalue problem with variational statement: find a pair 
( ),vλ , with 2(0, )v H L∈  and λ ∈R , which satisfies Eq. (3) when H space is 2(0, )H L , 

2λ ω= , u v=  and L is the beam length. 
 

 
Fig. 2. Straight Euler-Bernoulli beam 
For Dirichlet and Neumann boundary conditions the bilinear forms B and F in Eq. (3) are 
obtained from 

 ( )
2 2

2 2
0

,
L d v d wB v w EI dx

dx dx
= ∫  (11) 

 ( )
0

,
L

F v w Avwdxρ= ∫ . (12) 

Similarly the bilinear forms for general natural boundary conditions are 

 
( )

2 2

2 2
0 00

, (0) (0) ( ) ( )
L

TL TR RL
x x

RR
x L x L

d v d w dv dwB v w EI dx k v w k v L w L k
dx dxdx dx

dv dwk
dx dx

= =

= =

= + + + +

+

∫
 (13) 

 
( )

0 00

, (0) (0) ( ) ( )
L

L R mL
x x

mR
x L x L

dv dwF v w Avwdx m v w m v L w L I
dx dx

dv dwI
dx dx

ρ
= =

= =

= + + + +

+

∫
 (14) 
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where TLk , RLk , Lm  and  mLI  are translational stiffness, rotational  stiffness, concentrated 
mass and moment of inertia of the attached mass at the left beam end, respectively, and TRk , 

RRk , Rm  and mRI  are translational stiffness, rotational  stiffness, concentrated mass and 
moment of inertia of the attached mass at the right beam end, respectively. 

3. Enriched methods 
Several methods found in the literature have as main feature the enrichment of the shape 
functions space of the classical FEM by adding other non polynomial functions. In this 
chapter such methods will be called enriched methods. Actually the Assumed Mode 
Method (AMM) of Ganesan & Engels (1992), the Composite Element Method (CEM) of Zeng 
(1998a, b and c) and the Fourier p-element of Leung & Chan (1998) are enriched methods. 
Their main features are: (a) the introduction of boundary conditions follows the standard 
finite element procedure; (b) hierarchical p refinements are easily implemented and (c) they 
present more accurate results than conventional h-version of FEM. 
The approximated solution of the enriched methods, in the element domain, is obtained by: 

 
e e e
h FEM ENRICHEDu u u= +  (15) 

or in matrix shape 

 e T T
hu = +N q Ø q  (16) 

where e
FEMu  is the FEM displacement field based on nodal degrees of freedom, e

ENRICHEDu  is 
the enriched displacement field based on field degrees of freedom, q  is the conventional 
FEM degrees of freedom vector, the vector N contains the classical FEM shape functions and 
the vectors Ø  and q  contain the enrichment functions and the field degrees of freedom, 
respectively. The vectors Ø  and q  can be defined by: 

 ( ) [ ]1 2 r nF F F FξΤ =Ø … …  (17) 

 [ ]1 2
T

nc c c=q "  (18) 

 
e

x
L

ξ =  (19) 

where rF  are the enrichment functions, rc  are the field degrees of freedom and eL  is the 
element length. Different sets of enrichment functions produce different enriched methods. 
The enrichment functions spaces of the main enriched methods are described as follows. 

3.1 Enriched C0 elements 
C0 elements are used in free vibration analysis of bars and shafts. In this section the enriched 
C0 elements are described. In all these enriched methods the FEM displacement field 
corresponds to the classical FEM with two node elements and linear Lagrangian shape 
functions. Only the enrichment functions are different. 
In the AMM proposed by Engels (1992) the enrichment functions are the normalized 
analytical solutions of the free vibration problem of a fixed-fixed bar in the form 
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 ( )sinrF C rπξ= ,    1,2,r = …  (20) 

where C is the mass normalization constant given by 

 2

e
C

ALρ
= . (21) 

The CEM enrichment functions proposed by Zeng (1998a) are trigonometric functions in the 
form 

 ( )sinrF rπξ= ,    1,2,r = …  (22) 

They differ from those of AMM just by the normalization.  
The enrichment functions used by Leung & Chan (1998) in the bar Fourier p-element and by 
Zeng (1998a) in the CEM are the same. 
It is noteworthy that all these functions vanish at element nodes. This feature allows the 
introduction of boundary conditions following the standard finite element procedure. 

3.2 Enriched C1 elements 
C1 elements are used in free vibration analysis of Euler-Bernoulli beams. In this section the 
enriched C1 elements are described. The FEM displacement field in these enriched methods 
corresponds to the classical FEM with two node elements and cubic Hermitian shape 
functions. The enrichment functions are described below. 
In the AMM three different enrichment functions are proposed. Engels (1992) uses analytical 
free vibration normal modes of a clamped-clamped beam in the classical form 

 ( ) ( ) ( ) ( ){ }sinh sin cosh cos  r r r r r r rF C λ ξ λ ξ α λ ξ λ ξ⎡ ⎤= − − −⎣ ⎦  (23) 

 
2

1
r

e r

C
ALρ α

=  (24) 

 ( ) ( )
( ) ( )

sinh sin
cosh cos

r r
r

r r

λ λ
α

λ λ
−

=
−

 (25) 

where Cr is the mass normalization constant for the rth mode and rλ  are the eigenvalues 
associated to the analytical solution obtained by the following characteristic equation 

 ( ) ( )cos cosh 1 0r rλ λ − =  (26) 

Alternatively, Ganesan & Engels (1992) propose enrichment functions based on the same 
analytical solution but in the form presented by Gartner & Olgac (1982) given by 

 ( ) ( )
( )

( ) ( ) ( )

( )

11 1 11 cos sin
1 1 1 1

rr r

r r

r r

r r rr r
e

e e e
F

AL e e

λ ξλ λ ξ

λ λ
λ ξ λ ξ

ρ

− −− −

− −

⎡ ⎤+ − − −
⎢ ⎥= − −
⎢ ⎥− − − −⎣ ⎦

 (27) 

where rλ  are the eigenvalues obtained by solving the equation 
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 ( ) 2
2cos 0

1

r

rr
e
e

λ

λλ
−

−− =
+

 (28) 

Ganesan & Engels (1992) also propose trigonometric enrichment functions in the following 
form: 

 ( ) ( )cos 1 cos 1rF r rπξ πξ= ⎡ − ⎤ − ⎡ + ⎤⎣ ⎦ ⎣ ⎦  (29) 

The Composite Element Method (CEM), proposed by Zeng (1998b), uses enrichment 
functions given by: 

 ( ) ( ) ( ) ( )sin sinhsin sinh cos cosh
cos cosh

r r
r r r r r

r r
F λ λλ ξ λ ξ λ ξ λ ξ

λ λ
−

⎡ ⎤= − − −⎣ ⎦−
 (30) 

corresponding to the clamped-clamped beam free vibration solution where rλ  are the 
eigenvalues obtained by the solution of Eq. (26). 
Leung & Chan (1998) propose two types of enrichment functions based on the Fourier 
series: the cosine version  

 ( )1 cosrF rπξ= −  (31) 
and the sine version  

 ( ) ( )1 sinrF rξ ξ πξ= − . (32) 

The cosine version is the simplest but is not recommended when modeling a free of shear 
forces structure with only one element. Leung & Chan (1998) also note that the cosine 
version fails to predict the clamped-hinged and clamped-clamped modes of beams. 
It is noteworthy that all these functions and their first derivatives vanish at element nodes. 
Again this feature allows the introduction of boundary conditions following the standard 
finite element procedure.  

4. Generalized finite element method 
The Generalized Finite Element Method (GFEM) is a Galerkin method whose main goal is 
the construction of a finite dimensional subspace of approximating functions using local 
knowledge about the solution that ensures accurate local and global results. The GFEM local 
enrichment in the approximation subspace is incorporated by the partition of unity 
approach. 

4.1 Partition on unity 
The Partition of Unity Method is defined as follows. 
Let ( )1u Η Ω∈  be the function to be approximated and { }iΩ  be an open cover of domain 
Ω  (Fig. 3) satisfying an overlap condition: 

 SM∃ ∈Ν   so that  x Ω∀ ∈    { } i Scard i x MΩ∈ ≤ . (33) 

A partition of unity subordinate to the cover { }iΩ  is the set of functions { }iη  satisfying the 
conditions: 
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 ( ) { } [ ]supp  ( ) 0i i ix xη Ω η Ω= ∈ ≠ ⊂ ,   i∀  (34) 

 
i

1  on  iη Ω≡∑  (35) 

where ( )supp iη  denotes the support of definition of the function iη  and [ ]iΩ   is the 
closure of the patch iΩ .  
 

 
Fig. 3. Open cover { }iΩ  of domain Ω (Duarte et al., 2000) 
 

 
Fig. 4. Patchs and partition of unity set for one-dimensional GFEM finite element mesh 

The partition of unity set { }iη  allows to obtain an enriched set of approximating functions. 
Let ( )1

i iS Η Ω Ω⊂ ∩  be a set of functions that locally well represents u:  

 { }
1

mj
i i j

S s
=

=  (36) 

Then the enriched set is formed by multiplying each partition of unity function iη  by the 
corresponding j

is , i.e.,  

 ( )1: j j
i i i ii i

i i
S S s s S Hη η Ω

⎧ ⎫⎪ ⎪= = ∈ ⊂⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑  (37) 

Accordingly, the function u can be approximated by the enriched set as: 

 ( ) ( )
j

ii

j
h i iji

i s S

u x s x aη
∈

=∑ ∑  (38) 
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where ija  are the degrees of freedom. 
The proposed C0 and C1 generalized elements for free vibration analysis of framed 
structures are described below. The h, p and adaptive refinements of these elements are 
discussed.  
In the proposed GFEM, the cover { }iΩ corresponds to the finite element mesh and each 
patch iΩ corresponds to the sub domain of Ω  formed by the union of elements that contain 
the node xi (Fig. 4). 

4.2 Generalized C0 elements 
The generalized C0 elements use the classical linear FEM shape functions as the partition of 
unity, i.e.: 

 
( )

( )

1
1

1
1

1 f ,

1 f ,

i
i i

i i
i

i
i i

i i

x x i x x x
x x

x x i x x x
x x

η
−

−

+
+

−⎧ + ∈⎪ −⎪= ⎨ −⎪ − ∈
⎪ −⎩

 (39) 

in the patch ( )1 1,i i ix xΩ − +=  . 
The proposed local approximation space in the patch ( )1 1,i i ix xΩ − +=  takes the form: 

 { }1 2 1 21i j j j jS span γ γ φ φ= … , 1,2, , lj n= …  (40) 

 
( )

( ) ( )
1

1
1

0 ,

sin ,
i i

j
Rj i i i

if x x x

x x if x x x
γ

β
−

+

⎧ ∈⎪= ⎨ ⎡ ⎤− ∈⎪ ⎣ ⎦⎩
 (41) 

 ( ) ( )
( )

1
2

1

sin ,

0 ,
Lj i i i

j
i i
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 R
Rj j

RE
ρβ μ=  (45) 

 L
Lj j

LE
ρβ μ=  (46) 

where  ER and ρR  are the Young modulus and specific mass on sub domain ( )1,i ix x + , EL and 
ρL are the Young modulus and specific mass on sub domain ( )1 ,i ix x− , and jμ  is a frequency 
related to the enrichment level j.  
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The enriched functions, so proposed, vanish at element nodes, which allows the imposition 
of boundary conditions in the same fashion of the finite element procedure. 
This C0 element can be applied to the free vibration analysis of shafts, bars and trusses. 
Different frequencies jμ produce different enriched elements. The increase in the number of 
elements in the mesh with only one level of enrichment (j = 1) and a fixed parameter 

1 1 1R Lβ β β= = , 1β π=  for example, produces an h refinement. Otherwise the increase in the 
number of levels of enrichment, with a different parameter j Rj Ljβ β β= = each, j jβ π=  for 
example, produces a hierarchical p refinement. Another possible refinement in the proposed 
GFEM is the adaptive one, which is presented below.  
The adaptive GFEM is an iterative approach presented first by Arndt et al. (2010) whose 
main goal is to increase the accuracy of the frequency (eigenvalue) related to a chosen 
vibration mode with order denoted by “target order”. The flowchart with blocks A to H 
presented in Fig. 5 represents the adaptive process.  
 

(A)   Choice of the target vibration 
mode 

target = chosen mode order 

(B)   Solution by FEM (GFEM nl = 0 ) 
mesh ndof  >=  target 

Obtain ωtarget,FEM 

C)              i  = 1 
ωtarget,i =  ωtarget,FEM 

D)            i = i + 1 
j =  1

E)   Solution by GFEM 
nl = j and µj = ωtarget,i-1 

Obtain ωtarget,GFEM 

F)   ωtarget,i =  ωtarget,GFEM 

G)       Convergence test 
|ωtarget,i -  ωtarget,i-1|  < tolerance  

H)               End 
Show results

NO

YES

 
Fig. 5. Flowchart of the adaptive GFEM  
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In this flowchart, ωtarget corresponds to the frequency related to the target mode. The first 
step of the adaptive GFEM process (blocks A to C) consists in obtaining an approximation of 
the target frequency by the standard FEM (GFEM with nl = 0) with a coarse mesh. The finite 
element mesh used in the analysis has to be as coarse as necessary to capture a first 
approximation of the target frequency. The subsequent steps (blocks D to G) consist in 
applying the GFEM with only one enrichment level (nl = 1) to the same finite element mesh 
assuming the frequency μj (j = 1, blocks D and E) of the enrichment functions (Eqs. 41-46) as 
the target frequency obtained in the last step. Thus, no mesh refinement is necessary along 
the iterative process. 
Both the standard FEM and the adaptive GFEM allow as many frequencies as the total 
number of degrees of freedom to be obtained. However, in the latter, only the precision of 
the target frequency is effectively improved by the iterative process. The other frequencies 
present errors similar to those obtained by the standard FEM with the same mesh. In order 
to improve the precision of another frequency, it is necessary to perform a new adaptive 
GFEM analysis, taking this new one as the target frequency. 

4.3 Generalized C1 elements 
The generalized C1 elements also use the classical linear FEM form functions as partition of 
unity (Eq. (39)). The proposed local approximation space in the patch ( )1 1,i i ix xΩ − +=  takes 
the form: 

 { }1 2 1 2 i j jS span ϕ ϕ γ γ= … ,  1,2, , lj n= …  (47) 
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 (51) 

where jλ  are the eigenvalues obtained by the solution of Eq. (28). 
Such partition of unity functions and local approximation space produce the cubic FEM 
approximation space enriched by functions that represent the local behavior of the 
differential equation solution. The enriched functions and their first derivatives vanish at 
element nodes. Hence, the imposition of boundary conditions follows the finite element 
procedure. This C1 element is suited to apply to the free vibration analysis of Euler-Bernoulli 
beams.  
Again the increase in the number of elements in the mesh with only one level of enrichment 
(j = 1) and a fixed eigenvalue 1λ  produces the h refinement of GFEM. Otherwise the 
increase in the number of levels of enrichment, each of one with a different frequency jλ , 
produces a hierarchical p refinement. An adaptive GFEM refinement for free vibration 
analysis of Euler-Bernoulli beams is straight forward, as can be easily seen. However it will 
not be discussed here. 

5. Applications 
Numerical solutions for two bars, a beam and a truss are given below to illustrate the 
application of the GFEM. To check the efficiency of this method the results are compared to 
those obtained by the h and p-versions of FEM and the c-version of CEM. 
The number of degrees of freedom (ndof) considered in each analysis is the total number of 
effective degrees of freedom after introduction of boundary conditions. As an intrinsic 
imposition of the adaptive method, each target frequency is obtained by a new iterative 
analysis. The mesh used in each adaptive analysis is the coarser one, that is, just as coarse as 
necessary to capture a first approximation of the target frequency. 

5.1 Uniform fixed-free bar 
The axial free vibration of a fixed-free bar (Fig. 6) with length L, elasticity modulus E, mass 
density ρ and uniform cross section area A, has exact natural frequencies ( rω ) given by 
(Craig, 1981):   

 ( )2 1
2r

r E
L

π
ω

ρ
−

=     , 1,2,r = … . (52) 

In order to compare the exact solution with the approximated ones, in this example it is 
used a non-dimensional eigenvalue rχ  given by: 

 
2 2

r
r

L
E

ρ ωχ = . (53) 
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Fig. 6. Uniform fixed-free bar 
a) h refinement 

First the proposed problem is analyzed by a series of h refinements of FEM (linear and 
cubic), CEM and GFEM (C0 element). A uniform mesh is used in all methods. Only one 
enrichment function is used in each element of the h-version of CEM. One level of 
enrichment (nl = 1) with 1β π= is used in the h-version of GFEM. The evolution of relative 
error of the h refinements for the six earliest eigenvalues in logarithmic scale is presented in 
Figs. 7-9. 
The results show that the h-version of GFEM exhibits greater convergence rates than the h 
refinements of FEM and CEM for all analyzed eigenvalues. 
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Fig. 7. Relative error (%) for the 1st and 2nd fixed-free bar eigenvalues – h refinements 
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Fig. 8. Relative error (%) for the 3rd and 4th fixed-free bar eigenvalues - h refinements 
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Fig. 9. Relative error (%) for the 5th and 6th fixed-free bar eigenvalues - h refinements 
b) p refinement 

The p refinement of GFEM is now compared to the hierarchical p-version of FEM and the c-
version of CEM. The p-version of GFEM consists in a progressive increase of levels of 
enrichment with parameter j jβ π= .  
The evolution of relative error of the p refinements for the six earliest eigenvalues in 
logarithmic scale is presented in Figs. 10-12.  
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Fig. 10. Relative error (%) for the 1st and 2nd fixed-free bar eigenvalues - p refinements 
The fixed-free bar results show that the p-version of GFEM presents greater convergence rates 
than the h refinements of FEM and the c-version of CEM. The hierarchical p refinement of 
FEM only overcomes the results obtained by p-version of GFEM for the first eigenvalue. For 
the other eigenvalues the GFEM presents more precise results and greater convergence rates. 
c) adaptive refinement 
Four different adaptive GFEM analyses are performed in order to obtain the first four 
frequencies. The behavior of the relative error in each analysis is presented in Fig. 13.  
In order to capture an initial approximation of the target vibration frequency, for the first 
frequency, the finite element mesh must have at least one bar element (one effective degree 
of freedom), for the second frequency, it must have at least two bar elements (two effective 
degrees of freedom), and so on. 
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Fig. 11. Relative error (%) for the 3rd and 4th fixed-free bar eigenvalues - p refinements 

 

1,0E-13

1,0E-11

1,0E-09

1,0E-07

1,0E-05

1,0E-03

1,0E-01

1,0E+01

1,0E+03

1 10 100

e
rr

o
r (

%
)

total number of degrees of freedom

5th eigenvalue

linear h FEM
cubic h FEM
c CEM
p FEM
p GFEM

1,0E-14

1,0E-12

1,0E-10

1,0E-08

1,0E-06

1,0E-04

1,0E-02

1,0E+00

1,0E+02

1 10 100

e
rr

o
r (

%
)

total number of degrees of freedom

6th eigenvalue

linear h FEM
cubic h FEM
c CEM
p FEM
p GFEM

 
Fig. 12. Relative error (%) for the 5th and 6th fixed-free bar eigenvalues - p refinements 

 

1,E-14
1,E-13
1,E-12
1,E-11
1,E-10
1,E-09
1,E-08
1,E-07
1,E-06
1,E-05
1,E-04
1,E-03
1,E-02
1,E-01

1,E+00
1,E+01
1,E+02

0 1 2 3 4 5

er
ro

r (
%

)

number of iterations

Analysis 1: 1st target frequency

Analysis 2: 2nd target frequency

Analysis 3: 3rd target frequency

Analysis 4: 4th target frequency

 
Fig. 13. Error in the adaptive GFEM analyses of fixed-free uniform bar 
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Table 1 presents the relative errors obtained by the numerical methods. The linear FEM 
solution is obtained with 100 elements, that is, 100 effective degrees of freedom (dof). The 
cubic FEM solution is obtained with 20 elements, that is, 60 effective degrees of freedom. 
The CEM solution is obtained with one element and 15 enrichment functions corresponding 
to one nodal degree of freedom and 15 field degrees of freedom resulting in 16 effective 
degrees of freedom. The hierarchical p FEM solution is obtained with a 17-node element 
corresponding to 16 effective degrees of freedom. The analyses by the adaptive GFEM have 
no more than 20 degrees of freedom in each iteration. For example, the fourth frequency is 
obtained taking 4 degrees of freedom in the first iteration and 20 degrees of freedom in the 
two subsequent ones.  
 

linear h FEM
(100e) 

ndof  = 100 

cubic h FEM
(20e) 

ndof = 60 

p FEM 
(1e 17n)

ndof = 16

c CEM 
(1e 15c) 

ndof =16

Adaptive GFEM 
(after 3 iterations) 

 
 

Eigenvalue 
error (%) error (%) error (%) error (%) error (%) ndof in iterations 

1 2,056 e-3 8,564 e-10 3,780 e-13 8,936 e-4 3,780 e-13 1x 1 dof + 2x 5 dof 

2 1,851 e-2 1,694 e-7 2,560 e-13 8,188 e-3 2,560 e-13 1x 2 dof + 2x 10 
dof 

3 5,141 e-2 3,619 e-6 1,382 e-13 2,299 e-2 2,304 e-14 1x 3 dof + 2x 15 
dof 

4 1,008 e-1 2,711 e-5 1,602 e-11 4,579 e-2 5,289 e-13 1x 4 dof + 2x 20 
dof 

Table 1. Results to free vibration of uniform fixed-free bar 

The adaptive process converges rapidly, requiring three iterations in order to achieve each 
target frequency with precision of the 10-13 order. For the uniform fixed-free bar, one notes 
that the adaptive GFEM reaches greater precision than the h versions of FEM and the c-
version of CEM. The p-version of FEM is as precise as the adaptive GFEM only for the first 
two eigenvalues. After this, the precision of the adaptive GFEM prevails among the others. 
For the sake of comparison, the standard FEM software Ansys© employing 410 truss 
elements (LINK8) reaches the same precision for the first four frequencies. 

5.2 Fixed-fixed bar with sinusoidal variation of cross section area 
In order to analyze the efficiency of the adaptive GFEM for non-uniform bars, the 
longitudinal free vibration of a fixed-fixed bar with sinusoidal variation of cross section 
area, length L, elasticity modulus E and mass density ρ is analyzed. The boundary 
conditions are (0, ) 0u t =  and ( , ) 0u L t = , and the cross section area varies as 

 2
0( ) sin 1xA x A

L
⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (54) 

where A0 is a reference cross section area. 
Kumar & Sujith (1997) presented exact analytical solutions for longitudinal free vibration of 
bars with sinusoidal and polynomial area variations.  
This problem is analyzed by the h and p versions of FEM and the adaptive GFEM. Six 
adaptive analyses are performed in order to obtain each of the first six frequencies. The 
behavior of the relative error of the target frequency in each analysis is presented in Fig. 14.  
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Fig. 14. Error in the adaptive GFEM analyses of fixed-fixed non-uniform bar 

Table 2 shows the first six non-dimensional eigenvalues ( r rL Eβ ω ρ= ) and their relative 
errors obtained by these methods. The linear h FEM solution is obtained with 100 elements, 
that is, 99 effective degrees of freedom after introduction of boundary conditions. The cubic 
h FEM solution is obtained with 12 cubic elements, that is, 35 effective degrees of freedom. 
The p FEM solution is obtained with one hierarchical 33-node element, that is, 31 effective 
degrees of freedom. The analyses by the adaptive GFEM have maximum number of degrees 
of freedom in each iteration ranging from 9 to 34. 
 

Analytical 
solution 

(Kumar & 
Sujith, 1997)

linear h 
FEM 

(100e) 
ndof = 99

cubic h 
FEM 
(12e) 

ndof = 35 

hierarchical p 
FEM 

(1e 33n) 
ndof  = 31 

Adaptive GFEM 
 

(after 3 iterations) r 

χr error (%) error (%) error (%) error (%) ndof in iterations 

1 2,978189 4,737 e-3 2,577 e-5 2,998 e-5 2,997 e-5 1x 1 dof + 2x 9 dof 
2 6,203097 1,699 e-2 1,901 e-4 6,774 e-6 6,871 e-6 1x 2 dof + 2x 14 dof 
3 9,371576 3,753 e-2 3,065 e-4 1,643 e-6 1,731 e-6 1x 3 dof + 2x 19 dof 
4 12,526519 6,632 e-2 7,312 e-4 2,498 e-6 2,441 e-6 1x 4 dof + 2x 24 dof 
5 15,676100 1,033 e-1 2,332 e-3 2,407 e-7 2,044 e-7 1x 5 dof + 2x 29 dof 
6 18,823011 1,486 e-1 6,787 e-3 2,163 e-6 2,187 e-6 1x 6 dof + 2x 34 dof 

Table 2. Results to free vibration of non-uniform fixed-fixed bar 

The adaptive GFEM exhibits more accuracy than the h-versions of FEM with even less 
degrees of freedom. The precision reached for all calculated frequencies by the adaptive 
process is similar to the p-version of FEM with 31 degrees of freedom. The errors are greater 
than those from the uniform bars because the analytical vibration modes of non-uniform 
bars cannot be exactly represented by the trigonometric functions used as enrichment 
functions; however, the precision is acceptable for engineering applications. Each analysis 
by the adaptive GFEM is able to refine the target frequency until the exhaustion of the 
approximation capacity of the enriched subspace.  
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5.3 Uniform clamped-free beam 
The free vibration of an uniform clamped-free beam (Fig. 15) in lateral motion, with length 
L, second moment of area I, elasticity modulus E, mass density ρ  and cross section area A, is 
analyzed in order to demonstrate the application of the proposed method. The analytical 
natural frequencies ( rω ) are the roots of the equation: 

 ( ) ( )cos cosh 1 0r rL Lκ κ + = , 1,2,r = …  (55) 

 
2

4 r
r

A
EI

ω ρ
κ =  (56) 

To check the efficiency of the proposed generalized C1 element the results are compared to 
those obtained by the h and p versions of FEM and by the c refinement of CEM. The 
eigenvalue .r r Lχ κ=  is used to compare the analytical solution with the approximated ones. 
 

 
Fig. 15. Uniform clamped-free beam 
a) h refinement 
First this problem is analyzed by the h refinement of FEM, CEM and GFEM.  A uniform 
mesh is used in all methods. Only one enrichment function is used in each element of the h-
version of CEM. One level of enrichment (nl = 1) is used in the h-version of GFEM. 
The evolution of the relative error of the h refinements for the four earliest eigenvalues in 
logarithmic scale is presented in Figs. 16 and 17. 
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Fig. 16. Relative error (%) for the 1st and 2nd clamped-free beam eigenvalues – h refinements 
The results show that the h-version of GFEM presents greater convergence rates than the h 
refinement of FEM. The results of h-version of CEM for the first two eigenvalues resemble 
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those obtained by the h-version of GFEM. However the results of h-version of GFEM for 
higher eigenvalues are more accurate. 
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Fig. 17. Relative error (%) for the 3rd and 4th clamped-free beam eigenvalues – h refinements 
b) p refinement 
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Fig. 18. Relative error (%) for the 1st and 2nd clamped-free beam eigenvalues – p refinements 
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Fig. 19. Relative error (%) for the 3rd and 4th clamped-free beam eigenvalues – p refinements 
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The p refinement of GFEM is now compared to the hierarchical p-version of FEM and the c-
version of CEM. The p-version of GFEM consists in a progressive increase of levels of 
enrichment. The relative error evolution of the p refinements for the first eight eigenvalues 
in logarithmic scale is presented in Figs. 18-21. 
The results of the p-version of GFEM converge more rapidly than those obtained by the h-
version of FEM and the c-version of CEM. The hierarchical p-version of FEM overcomes the 
precision and convergence rates obtained by the p-version of GFEM for the first six 
eigenvalues. However the p-version of GFEM is more precise for higher eigenvalues. 
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Fig. 20. Relative error (%) for the 5th and 6th clamped-free beam eigenvalues – p refinements 

 

1,0E-05

1,0E-04

1,0E-03

1,0E-02

1,0E-01

1,0E+00

1,0E+01

1,0E+02

1 10 100

e
rr

o
r (

%
) 

total number of degrees of freedom

7th eigenvalue

h FEM

c CEM

p FEM

p GFEM
1,0E-05

1,0E-04

1,0E-03

1,0E-02

1,0E-01

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1 10 100

e
rr

o
r (

%
) 

total number of degrees of freedom

8th eigenvalue

h FEM

c CEM

p FEM

p GFEM

 
Fig. 21. Relative error (%) for the 7th and 8th clamped-free beam eigenvalues – p refinements 

5.4 Seven bar truss 
The free axial vibration of a truss formed by seven straight bars is analyzed to illustrate the 
application of the adaptive GFEM in structures formed by bars. This problem is proposed by 
Zeng (1998a) in order to check the CEM. The geometry of the truss is presented in Fig. 22. 
All bars in the truss have cross section area A = 0,001 m2, mass density ρ = 8000 kg m-3 and 
elasticity modulus E = 2,1 1011 N m-2. 
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All analyses use seven element mesh, the minimum number of C0 type elements necessary 
to represent the truss geometry. The linear FEM, the c-version of CEM and the h-version of 
GFEM with nl = 1 and 1β π= are applied. Six analyses by the adaptive GFEM are performed 
in order to improve the accuracy of each of the first six natural frequencies. The frequencies 
obtained by each analysis are presented in Table 3.  
 

 
Fig. 22. Seven bar truss 
 

 
FEM (7e) 

 
ndof = 6 

CEM (7e 1c)
 

ndof = 13 

CEM (7e 2c)
 

ndof = 20 

CEM (7e  5c)
 

ndof = 41 

h GFEM (7e)
nl = 1, β1 = π 

ndof = 34 

Adaptive GFEM 

(7e 3i) 
1x 6 dof + 
2x 34 dof 

i iω  (rad/s) iω  (rad/s) iω  (rad/s) iω  (rad/s) iω  (rad/s) iω  (rad/s) 

1 1683,521413 1648,516148 1648,258910 1647,811939 1647,785439 1647,784428 

2 1776,278483 1741,661466 1741,319206 1740,868779 1740,840343 1740,839797 

3 3341,375203 3119,123132 3113,835167 3111,525066 3111,326191 3111,322715 

4 5174,353866 4600,595156 4567,688849 4562,562379 4561,819768 4561,817307 

5 5678,184561 4870,575795 4829,702095 4824,125665 4823,253509 4823,248678 

6 8315,400602 7380,832845 7379,960217 7379,515018 7379,482416 7379,482322 

Table 3. Results to free vibration of seven bar truss 

The FEM solution is obtained with seven linear elements, that is, six effective degrees of 
freedom after introduction of boundary conditions. The c-version of the CEM solution is 
obtained with seven elements and one, two and five enrichment functions corresponding to 
six nodal degrees of freedom and seven, 14 and 35 field degrees of freedom respectively. All 
analyses by the adaptive GFEM have six degrees of freedom in the first iteration and 34 
degrees of freedom in the following two. 
This special case is not well suited to the h-version of FEM since it demands the adoption of 
restraints at each internal bar node in order to avoid modeling instability. The FEM analysis 
of this truss can be improved by applying bar elements of higher order (p-version) or beam 
elements. The results show that both the c-version of CEM and the adaptive GFEM 
converges to the same frequencies. 
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6. Conclusion 
The main contribution of the present study consists in formulating and investigating the 
performance of the Generalized Finite Element Method (GFEM) for vibration analysis of 
framed structures. The proposed generalized C0 and C1 elements allow to apply boundary 
conditions as in the standard finite element procedure. In some of the recently proposed 
methods such as the modified CEM (Lu & Law, 2007), it is necessary to change the set of 
shape functions depending on the boundary conditions of the problem. In others, like the 
Partition of Unity used by De Bel et al. (2005) and Hazard & Bouillard (2007), the boundary 
conditions are applied under a penalty approach. In addition the GFEM enrichment 
functions require less effort to be obtained than the FEM shape functions in a hierarchical p 
refinement.  
The GFEM results were compared with those obtained by the h and p versions of FEM and 
the c-version of CEM. The h-version of GFEM for C0 elements exhibits more accuracy than h 
refinements of FEM and CEM. The C1 h-version of GFEM presents more accurate results 
than h-version of FEM for all beam eigenvalues. The results of h-version of CEM for the first 
beam eigenvalues are alike those obtained by the h-version of GFEM. However the higher 
beam eigenvalues obtained by the h-version of GFEM are more precise. 
The p-version of GFEM is quite accurate and its convergence rates are higher than those 
obtained by the h-versions of FEM and the c-version of CEM in free vibration analysis of 
bars and beams. It is observed however that the last eigenvalues obtained in each analysis of 
p-version of GFEM did not show good accuracy, but this deficiency is also found in the 
other enriched methods, such as the CEM. Although the p refinement of GFEM has 
produced excellent results and convergence rates, the adaptive GFEM exhibits special skills 
to reach accurately a specific frequency. 
In most of the free vibration analysis it is virtually impossible to get all the natural 
frequencies. However, in practical analysis it is sufficient to work with a set of frequencies in 
a range (or band), or with those which have more significant participation in the analysis. 
The adaptive GFEM allows to find a specific natural frequency with accuracy and 
computational efficiency. It may be used in repeated analyses in order to find all the 
frequency in the range of interest. 
In the C0 adaptive GFEM, trigonometric enrichment functions depending on geometric and 
mechanical properties of the elements are added to the linear FEM shape functions by the 
partition of unity approach. This technique allows an accurate adaptive process that 
converges very fast and is able to refine the frequency related to a specific vibration mode.  
The adaptive GFEM shows fast convergence and remains stable after the third iteration with 
quite precise results for the target frequency.  
The results have shown that the adaptive GFEM is more accurate than the h refinement of 
FEM and the c refinement of CEM, both employing a larger number of degrees of freedom. 
The adaptive GFEM in free vibration analysis of bars has exhibited similar accuracy, in some 
cases even better, to those obtained by the p refinement of FEM. 
Thus the adaptive GFEM has shown to be efficient in the analysis of longitudinal vibration 
of bars, so that it can be applied, even for a coarse discretization scheme, in complex 
practical problems. Future research will extend this adaptive method to other structural 
elements like beams, plates and shells.  
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1. Introduction

The analysis of the dynamic response induced in a structure by ambient vibrations is
important for two reasons. On the one hand, the environmental impact of vibrations
is a common cause for concern in many cities throughout the world on account of
both the consequences of such vibrations on buildings, especially those in structurally
weak conditions, and on people in terms of annoyance. On the other hand, the
measured data contain information on the dynamic characteristics of the structures, such
as modal parameters (frequencies, damping ratios and mode shapes). Several techniques of
experimental modal analysis are nowadays well established and make it possible to extract
modal parameters from the measurements of the dynamical response. Books on this topic
are by (Bendat & Piersol, 1980; Ewins, 2000; Juang, 1994; Maia & Silva, 1997; Van Overschee
& De Moor, 1996). A knowledge of modal parameters is a basic step for updating a finite
element model which not only replicates the real response (Friswell & Mottershead, 1995),
but also enables to build damage identification procedures based on the variation of the
structural response (Morassi & Vestroni, 2009; Vestroni & Capecchi, 1996). Furthermore,
periodical repetition of the measurement process over time, together with observation of
possible variation of modal parameters, forms the basis for a structural health monitoring
procedure (Farrar et al., 2001). These issues are especially important for ancient buildings,
marked by complex geometry, heterogeneous materials and in poor conditions, which are
often very sensitive to deterioration.
Experimental modal analysis usually deals with frequency response functions (FRF) in the
frequency domain or impulse response functions in the time domain and requires that the
response to an assigned input is measured. In civil structures, the system should be excited
with heavy shakers (De Sortis et al., 2005), which makes these tests expensive and often
impracticable, especially in the case of very large structures. The measurement of the ambient
vibration response, which is the response to an unknown input due to natural and human
actions (for instance wind, microtremors, traffic), makes it possible to overcome the difficulties
that often arise when artificial excitation is used. The drawbacks in this kind of measurements
are that there is the need to deal with signals with small amplitude and, furthermore, the
hypothesis that the spectrum of the forcing function is approximately flat in the frequency
band where the modes are to be estimated, which can not be fully experimentally proved,
must be accepted. Of the several ambient vibration modal identification techniques, three
will be described in this chapter: peak picking from the power spectral densities (PP) (Bendat
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& Piersol, 1980), singular value decomposition (SVD) (Brincker et al., 2001) and stochastic
subspace identification (SSI) (Peeters, 2000; Van Overschee & De Moor, 1993; 1994; 1996). The
mentioned techniques have been successfully used for the modal identification of numerous
civil structures, such as bridges (Ren et al., 2004) or tall buildings (Brownjohn, 2003), but
less frequently applied to historical structures and monuments (Gentile & Saisi, 2007; Pau
& Vestroni, 2008; 2010). This chapter aims to describe their application to selected cases of
historical masonry structures in Italy.
Of late, some of the most important monuments in Rome have been investigated because
of the proximity of these structures to a new underground line that is at present under
construction. These tests include the recording of the ambient vibration response. The
Colosseum, the Basilica of Maxentius and the Trajan Column are some of the investigated
monuments. The availability of such data enables a dynamic characterization and
identification of modal parameters of the structures, which presents a challenging task in
such large and geometrically complex monuments, built with heterogeneous materials. Parts
of the results of these experimental tests are reported in the works by (Pau & Vestroni,
2008; 2010). Here, the case of the Trajan Column will be discussed in detail together with
another application to a railway masonry bridge of the 19th century. For each of these cases,
a comparison between experimental and numerical modal parameters is discussed, in the
perspective of the evaluation and updating of the finite element models according to the
measured behavior. This comparison may enable the identification of the possible causes
of discrepancies between predicted and measured properties. In particular, the information
obtained may relate to the current state of a structure: lower natural frequencies than those
predicted by the finite element model may indicate deterioration in the stiffness of the
structure and anomalous mode shapes may point to the independent motion of structural
parts due to major cracks. In many cases, notwithstanding the severe simplifications, mainly
regarding the material behavior introduced in the numerical modeling, the comparison
between numerical and experimental frequencies and mode shapes provides sufficient
agreement, after an adjustment of the mechanical characteristics to tune the two models.
This adjustment has shown to have a significant mechanical meaning indicating the effective
presence of cracks and discontinuities (Pau & Vestroni, 2010).

2. Ambient vibration modal identification techniques

Very often, when dealing with large engineering structures such as building or bridges, it is
impractical to measure the response to an ad hoc and controlled artificial excitation for different
reasons, such as costs concern or even the unwanted possibility of activating nonlinear
phenomena.
Reasonable estimates of modal properties can be obtained from an output-only analysis
of the ambient vibration response to the natural dynamic environment. This excitation,
which is random in its nature, is due to various human and artificial sources, such as
traffic, wind and microtremors. When dealing with output-only analysis of the vibration
response, it is fundamental to cope with signals with small amplitude and contaminated
by noise. Although the input is unknown, which prevents from measuring the proper FRF,
a hypothesis that the spectrum of the forcing function is flat in the frequency band where
the modes are to be estimated must be made, which can only be partially proved from
experiments. This paragraph describes three techniques of modal identification, which are
important for different reasons. The peak picking from the power spectral densities is a
frequency domain based technique and is important for historical reasons, since it was one of
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the first output-only modal identification techniques to be presented in the late ’70s (Bendat &
Piersol, 1980), and its simplicity. The singular value decomposition is an extension of the peak
picking (Brincker et al., 2001). With respect to the peak picking, it enables to deal better with
close frequencies and damped modes. Its advantage over other recent techniques consists
mainly in its preserving the user’s understanding of the data he is dealing with through a
frequency approach. In the early ’90s, the stochastic subspace identification, which is a time
domain technique, was described in research papers (Van Overschee & De Moor, 1993; 1994)
and in the fundamental book by (Van Overschee & De Moor, 1996). Today, the SSI is one
of the most widespread techniques for output-only modal identification and is implemented
not only in commercial softwares for data analysis (Artemis) but also in Matlab routines and
freely available software (http://homes.esat.kuleuven.be/ smc/sysid/software/).

2.1 Peak picking
This method is very often used for its simplicity in analysing the ambient vibration response,
when the input is unknown (Bendat & Piersol, 1980). The ambient vibration response of
a structure cannot be predicted by deterministic models, within reasonable error. Each
experiment produces a random time-history that represents only one physical realization
of what might occur. In general, the response x(t) of the structure to ambient excitation
is recorded for a very long time, even for hours, which enables to cut the random process
x(t) into a collection of subregistrations xk(t) which describe the phenomenon. The
Fourier Transforms of the kth subregistrations of two random processes xk(t) and yk(t) are
respectively:

Xk( f , T) =
∫ T

0
xk(t) exp−i2π f t dt (1)

Yk( f , T) =
∫ T

0
yk(t) exp−i2π f t dt. (2)

The auto (or power) spectral density (PSD) and cross-spectral density (CSD) and related
coherence function between the two random processes are respectively:

Sxx( f ) = lim
T→∞

1
T

E[| Xk( f , T) |2] (3)

Sxy( f ) = lim
T→∞

1
T

E[X∗k ( f , T)Yk( f , T)] (4)

γxy( f ) =
| Sxy( f ) |2

Sxx( f )Syy( f )
(5)

where the symbol E[.] indicates an averaging operation over the index k and the asterisk
denotes complex conjugate.
Let us now assume that x(t) is the input and y(t) is the output. The auto-spectral and
cross-spectral density functions satisfy the important formulae:

Syy( f ) = |Hxy( f )|2Sxx( f ) Sxy( f ) = Hxy( f )Sxx( f ) (6)

where Hxy( f ) is the frequency response function. The simple peak picking method is based on
the fact that the autospectrum (61), at any response point, reaches a maximum either when the
excitation spectrum peaks or the frequency response function peaks. To distinguish between
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peaks that are due to vibration modes as opposed to those in the input spectrum, a couple
of criteria can be used. The former concerns the fact that in a lightly damped structure, two
points must oscillate in-phase or out-of-phase. Then, the cross spectrum (62) between the two
responses provides this information, which can be used to distinguish whether the peaks are
due to vibration modes or not. The second criterion uses the coherence function (5), which
tends to peak at the natural frequencies, as the signal-to-noise ratio is maximised at these
frequencies.

2.2 Singular value decomposition
The second method referred to also relies only on the response to ambient excitations (output
only). The method is based on the singular value decomposition of the response spectral
matrix (Brincker et al., 2001), exploiting the relationship:

Syy (ω) = H∗ (ω)Sxx (ω)HT (ω) (7)

where Sxx(ω) (r × r, r number of inputs) and Syy(ω) (m × m, m number of measured
responses) are the input and output power spectral density matrices, respectively, and H(ω) is
the frequency response function matrix (m× r). Supposing the inputs at the different points
are completely uncorrelated and white noise, Sxx is a constant diagonal matrix, independent
of ω. Thus:

Syy (ω) = S H (ω)HT (ω) (8)

whose term jk can be written, by omitting the constant S, as:

Syyjk (ω) =
r

∑
r=1

(
n

∑
p=1

φjpφrp

λ̄2
p −ω2

)(
n

∑
q=1

φkqφrq

λ2
q −ω2

)
. (9)

In the neighbourhood of the ith resonance, the previous equation can be approximated by:

Syyjk (ω) ∼=
r

∑
r=1

φjiφri

λ̄2
i −ω2

φkiφri

λ2
i −ω2

=
φjiφki(

λ̄2
i −ω2

) (
λ2

i −ω2
) r

∑
r=1

φ2
ri. (10)

By ignoring the constant
r
∑

r=1
φ2

ri, Syy can thus be expressed as the product of the three matrices:

Syy (ω) = ΦΛiΦ
T (11)

which represents a singular value decomposition of the matrix Syy, where:

Λi =

⎡
⎢⎢⎢⎢⎣

1
(λ2

i−ω2)(λ̄2
i−ω2)

0... 0

0 0... 0
...

...
...

0 0... 0

⎤
⎥⎥⎥⎥⎦ . (12)

This is valid in the neighbourhood of every natural frequency of the system, that hence
emerges as a peak of the first singular value. The first column of the matrix Φ contains the
first singular vector, which, in the neighborhood of the ith resonance, coincides with the ith
eigenvector. This occurs at each resonance, when the prevailing contribution is given by the
related mode. This procedure has recently had great diffusion mainly in in situ experimental
tests and has also been implemented in commercial codes.
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2.3 Stochastic subspace identification
The stochastic subspace identification belongs to the wide class of time domain methods. The
continuous-time dynamics of a discrete or a discretized (in space) mechanical system in the
state-space can be written as:

ẋ(t) = Acx(t) + Bcf(t) (13)

which is a representation deriving from the control theory (Juang, 1994). In this relationship,
x(t) = [u(t)T u̇(t)T ] ∈ R

2n is the state vector of the process. This vector contains the 2n states
of the system, where u(t) and u̇(t) are respectively the displacement and velocity vectors and
n is the number of degrees-of-freedom. Ac ∈ R

2n×2n is the continuous-time state matrix,
which is related to the classical matrices of mass M, damping Cd and stiffness K by:

Ac =

[
0 I

−M−1K −M−1Cd

]
, (14)

f(t) ∈ R
n is the load vector and Bc ∈ R

2n×n is the system control influence coefficient matrix:

Bc =

[
0

M−1

]
. (15)

In a vibration experiment, only a subset l of the responses at the n degrees-of-freedom
can be measured. The vector of the measured outputs y(t) ∈ R

l is written as: y(t) =
Caü(t)+Cvu̇(t)+Cuu(t), where Ca, Cv and Cu are output location matrices for accelerations,
velocities and displacements respectively, which are matrices of zeros and ones made up to
select the measured degrees of freedom. The vector y(t) can be written as:

y(t) = Ccx(t) + Dcf(t) (16)

where Cc ∈ R
l×2n is the output matrix and Dc ∈ R

l×n is the direct transmission matrix:

Cc = [Cu − CaM−1K Cv − CaM−1Cu] and Dc = CaM−1. (17)

Then, in conclusion, the continuous-time state-space model can be written as:{
ẋ(t) = Acx(t) + Bcf(t)
y(t) = Ccx(t) + Dcf(t)

. (18)

It can be shown that the eigenvalues Λc and eigenvectors Ψ of the continuous state-space
matrix Ac which solve the eigenvalue problem AcΨ = ΨΛc contain the eigenvalues Λ and
eigenvectors Θ of the original second-order system:

Λc =

(
Λ 0
0 Λ

∗

)
, Ψ =

(
Θ Θ

∗

ΘΛ Θ
∗
Λ
∗

)
. (19)

In practice, experimental data are discrete. Therefore, the model of equation (18) has to be
converted to discrete time, in order to fit the models to measurements. The continuous-time
equations are discretized and solved at all the discrete time instants tk = kΔt, k ∈ N, where
Δt is the sampling period. Let us suppose to focus the analysis on time-invariant state-space
models. These deterministic-stochastic systems, excited both by deterministic and random
actions, are described by the following set of difference equations:
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{
xk+1 = Axk + Bfk + wk
yk = Cxk + Dfk + vk

(20)

The vector xk ∈ R
2n is defined as the state vector of the process at the discrete time instant

k. This vector contains the numerical values of the 2n states of the system. When dealing
with mechanical systems, the state vector is xk = [uT

k u̇T
k ] ∈ R

2m, fk ∈ R
n and yk ∈ R

l are
respectively the experimental measurements at time instant k of the n inputs and l outputs.
wk ∈ R

2n and vk ∈ R
l are respectively process and measurement noise vectors, which

are unmeasurable quantities. The former is due to model inaccuracies, the latter due to
measurement inaccuracies. A is the discrete state matrix, B is the discrete input matrix, C
is the discrete output matrix and D is the direct transmission matrix. They are related to their
continuous-time counterparts by the relationships:

A = eAcΔt B =
(∫ Δt

0 eAcτdτ
)

Bc = (A− I)A−1
c Bc

C = Cc D = Dc.
(21)

These well-established relationships can be found in the literature (Juang, 1994). The
hypothesis:

E
[(

wp
vp

)(
wT

q vT
q

)]
=

(
Q S
ST R

)
δpq � 0 (22)

is further added, where E[.] indicates the expected value and δpq is the Kronecker delta. The
matrices Q ∈ R

2n×2n, S ∈ R
2n×l and R ∈ R

l×l are the covariance matrices of the noise
terms wk and vk, which are supposed to be independent of each other and both with zero
mean. It must be remarked that in output-only modal identification, the input sequence fk
is unmeasured and only the response yk is known. Hence, it is impossible to distinguish
the input term fk from the noise terms wk and vk in equation (20). This results in a purely
stochastic system: {

xk+1 = Axk + wk
yk = Cxk + vk

. (23)

In equation (23), the white noise assumption on the terms wk and vk cannot be omitted.
If the input contains some dominant frequency components, they will not be separated
from the eigenfrequencies of the system. The stochastic subspace identification then moves
from equations (23) to estimate the state-space matrices A and C from the measured output
yk, with k = 1, 2, . . . , N and N −→ ∞. The estimate of state-space matrices can be
performed by different algorithms. In the applications, the procedure described in the work
by (Van Overschee & De Moor, 1994) is used. In short, this procedure is based on selected
theorems of linear algebra illustrated in (Van Overschee & De Moor, 1994; 1996), which
demonstrate that the state space matrices can be calculated from the knowledge of the block
Hankel matrix. This matrix is obtained by casting the finite dimensional output vector yk into
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the columns of a semi infinite 2i × j matrix:

U0|2i−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y0 y1 y2 . . . yj−1
y1 y2 y3 . . . yj
. . . . . . . . . . . . . . .

yi−1 yi yi+1 . . . yi+j−2
yi yi+1 yi+2 . . . yi+j−1

yi+1 yi+2 yi+3 . . . yi+j
. . . . . . . . . . . . . . .

y2i−1 y2i y2i+1 . . . u2i+j−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(24)

where the horizontal line divides past inputs from future inputs. Once the matrix A is known,
the natural frequencies and mode shapes can be evaluated. In fact, as shown in (Peeters,
2000), the eigenvalues Λd and eigenvectors of the discrete state-space matrix are related to
their continuous counterparts by the relationships:

A = eAcΔt = eΨΛcΨ
−1Δt = ΨeΛcΔt

Ψ
−1 = ΨΛdΨ

−1. (25)

That is, the eigenvectors are the same for both systems, while the discrete eigenvalues μi are
related to the continuous eigenvalues λi by:

λi =
ln(μi)

Δt
. (26)

three-axial

bi-axial

bi-axial

bi-axial

(b)

Ch1-2

Ch3-4

Ch5-6

Ch7-8-9

Fig. 1. A view of the Trajan column (a), its survey (b) and accelerometer setup (c).
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3. Applications

3.1 The Trajan Column
The Trajan Column is a honorary monument that, in 113 A.D., was dedicated to Trajan the
emperor to celebrate his triumph over the Dacians, the inhabitants of the present Romania.
Over the surface of the column, a helical bas-relief depicts the story of Trajan’s victory. The
monument consists of a marble column about 30m tall, with a circular section having an
external diameter of 3.55m, placed over a square-section pedestal 6.23m high (Figures 1 a-b).
It represents a peculiarity in archaeological heritage because of its slenderness. The column is
formed by nineteen cylindrical elements, dug-out to form an internal helical staircase going to
the top level. The helical geometry is perturbed by tiny windows along the external surface.
The response of this structure was measured by one three-axial set of accelerometers at the
base and three biaxial horizontal sets at the upper levels. The measurement points with their
related channels are reported in Figure 1c. The recordings were performed at a sampling
frequency of fs = 300Hz for a duration of about 2 hours.
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detail of the PSD
in the neighbourhood
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Fig. 2. Power Spectral Densities of accelerations measured on the top of the column (a) and
coherence function among channel 1 and channels 3 and 5(b).

As a first step, the power spectral densities of the accelerations are observed. Figure 2a reports
the PSDs of the two measurement points on the top of the column, in the frequency band
where natural frequencies are expected. Two peaks in the neighborhood of 1.5 Hz emerge
quite clearly (see details in Figure 2), while two other peaks appear in the range 5-8 Hz, but
with strong damping. In such an unclear situation, the observation of the coherence (Figure 2
b) may be of some help. The coherence peaks are at the same frequencies as those observed
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in the PSDs, suggesting that all these four peaks may in fact be representative of natural
frequencies, as reported in Table 1.
Analogous results can be obtained from the singular value decomposition. Figure 3 reports
the first singular value of the spectral matrix as a function of frequency, showing the two close
peaks related to the first and second natural frequencies and the other peaks related to the
third and fourth frequencies. The identified frequencies coincide with those detected with the
peak picking, as reported in Table 1.

f1 f2 f3 f4
PP, SVD 1.46 1.53 5.83 6.83

SSI 1.45 1.52 5.69 6.56
FE 3.14 3.32 15.68 17.52

Table 1. Experimental and numerical natural frequencies [Hz] of the Trajan column
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f [Hz]

0

1E-006
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5E-006

Fig. 3. First singular value of the spectral matrix as a function of frequency.

As a final step, the data are analyzed following the stochastic subspace decomposition. In
this case, the evaluation of the model order is fundamental. A good model for modal analysis
applications can be obtained by constructing stabilization diagrams, that is, by evaluating a
set of models with different orders (Peeters, 2000). A criterion to state when an eigenvalue is
stable must be defined; for instance, eigenvalues do not have to change more than 1% when
the model order is increased. When an eigenvalue satisfies this stability criterion, its value
is determined. Figure 4 shows the eigenvalue stabilization when increasing the model order
and enables to define the natural frequencies that are reported in Table 1. The difficulties
in the interpretation of the third and fourth frequencies, and related mode shapes, remain,
in fact these frequencies stabilize for higher model order than the first and second. These
difficulties, which concern in fact all the employed methods, are not surprising. In fact, the
third and fourth frequencies are close to 6 Hz, which is the cutoff frequency of the ground, as
was observed in other experimental tests on the Colosseum and Basilica of Maxentius (Pau
& Vestroni, 2008; 2010). The ground attenuates frequencies which are smaller than 6 Hz and
guarantees a white-noise spectrum in the frequency band 0-6 Hz. Therefore, for frequencies
higher than 6 Hz, the hypotheses on the input, on which the present modal identification
methods are based, are not satisfied.
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Fig. 4. Eigenvalue stabilization diagram for the Trajan column.

A comparison between the experimental mode shapes is now performed. The modal
assurance criterion (MAC), which is a scalar product between the two mode shape vectors
under consideration, normalized to the product of the moduli, is a measure of the agreement
between two mode shapes. A comparison shows that the differences between the three
techniques are very small for the first two modes (MAC� 0.99), but increase for the third
and fourth modes (MAC � 0.8), which are identified with great difficulties in all the cases
because of the strong damping. However, the results obtained by SVD and SSI agree each
other better than those obtained by PP.
As regards the shapes of the modes, the mode shape pairs 1-3 and 2-4 strongly resemble those
of a cantilever beam, as shown in Figure 5. For the sake of brevity, this Figure shows only
the mode shapes determined by SSI method. Furthermore, the first two modes are nearly
contained respectively into the two planes parallel to the base, while the third and fourth
mode shapes are contained in planes which are not coincident with the measurement planes.
This is also evident from Figure 2, as the peaks related to the first and second frequencies are
present only in one of the two spectra, while the peaks related to the third and fourth are
present in both the spectra. This experimental result was verified by a laboratory experiment
on an axisymmetric clamped cylinder, a pipe with vertical axis, which was tested both in
its nominally perfect and perturbed configuration. Figure 6 reports the projection onto the
horizontal plane of the vertical planes containing the mode pairs 1-2, 3-4 and 5-6. Different
colors relate to different test conditions. The tests show that even in nominally perfect
conditions, the planes containing the mode shape pairs corresponding to the clamped beam
can be different for each pair, especially for higher modes. Furthermore, each pair is contained
in planes which only slightly deviate from orthogonality, consistent with the orthogonality of
modes. These results can be ascribed to imperfections in geometry, which cause a deviation
from perfect axisymmetry.
In conclusion, a comparison with the results provided by a numerical (FE) model is
performed. The column is simply represented as a cantilever beam with varying section.
In this model, the Young’s modulus E and mass density ρ come from literature values
determined by static tests on cores bored into the solid material. The natural frequencies
obtained are reported in Table 1. These values are much higher than the experimental ones,
and the reason is that the material parameters of the solid material are not representative of the
behavior of the assembled system, where the interactions among the blocks have considerable
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Fig. 5. Experimental mode shapes.

influence. A similar result was found by the authors in the analysis of the response of
the Colosseum (Pau & Vestroni, 2008), where a reduction in the elastic modulus based on
measurements of the wave propagation velocity in structural parts including joints brought
the analytical and experimental results into satisfactory agreement. Here also, the reduction
of the ratio E/ρ brings numerical and experimental results into satisfactory agreement. As
regards the mode shapes, Table 2 shows that, whichever modal analysis method is used, the
experimental modes 1 and 2 agree very well with the numerical ones. By contrast, for the pair
3-4 the mode shapes obtained by the SSI method have better quality.

1 2 3 4
PP–FE 1.00 1.00 0.47 0.36

SVD–FE 0.98 0.95 0.62 0.55
SSI–FE 0.98 0.98 0.84 0.79

Table 2. MAC between experimental and numerical modes for the Trajan column
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Fig. 6. Top view of the experimental mode shapes of a clamped pipe.
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Fig. 7. Picture of the Vallone Scarpa bridge (a), front view (b) and plans (c,d) of the two
accelerometer setups.

3.2 The Vallone Scarpa bridge
The Vallone Scarpa bridge was built at the end of the nineteenth century and is located along
the Roma-Sulmona railway line, which crosses the central Italian region of Abruzzo. It is a
masonry arch viaduct with thirteen bays, each with a span of 10 m. The piers are about 9
m in height (Figure 7). The plan has a radius of curvature of 400 m; the slope of the line is
2.7 %. The ambient vibrations of the bridge were recorded using two different arrangements
of accelerometers (Figure 7c,d) at a sampling frequency of fs = 120Hz. The measurement
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directions were: in the plan of the deck, tangent to the bridge axis (L, longitudinal) and related
orthogonal line (T, transverse), and the vertical direction (V) along the viaduct axis. In the first
setup (Figure 7c), transverse sensors were placed on top of each pier, together with triaxial sets
(T, L, V) located at the middle of each span. In the second setup (Figure 7d), triaxial sets of
accelerometers (L,T,V) were placed on the deck edges of the three central bays.
To start with, the PSDs are examined. Figure 8(a) shows the PSDs measured at channels
19-21 of the first arrangement of sensors, placed on the fifth bay of the bridge. This figure
immediately points out that, in this frequency range, the vertical and longitudinal components
of the modes are much smaller than the transverse ones. These PSDs, at a glance, also
enable to detect some peaks that are representative of the first natural frequencies of the
structure. However, the identification of their values is very difficult because of the closeness
of frequencies and strong damping, as is often the case with masonry structures. For instance,
two very close peaks are present in the neighborhood of 3.9 Hz. The coherence function, which
is shown in Figure 8(b), also shows peaks in correspondence with the peaks of PSDs, but does
not help in resolving the close resonances.
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Fig. 8. PSDs (a) and coherence (b) of the accelerations measured on the fifth bay of the
Vallone Scarpa bridge.

The technique of singular value decomposition points out analogous difficulties, as can be
seen from Figure 9, that reports the first singular value of the spectral matrix for both setups as
a function of frequency. An advantage of this technique compared to peak picking is the easier
and faster determination of mode shapes, which enables to choose the peaks representative of
natural frequencies.
Using the SVD with the first arrangement of sensors, the first five frequencies listed in Table
3 were determined. The stabilization diagram shown in Figure 10 furnishes frequencies,
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obtained using SSI, similar to those obtained from SVD and PP (Table 3). Figure 10 also shows
that a high model order is necessary to detect natural frequencies, which is computationally
very much demanding, especially when using such a large number of accelerometers.
The mode shapes are bending modes of a beam over elastic supports in the plane of the deck,
as shown in Figure 11, which depicts the first five modes of the structure. As for frequencies,
SVD and SSI provide similar mode shapes. The main component of the mode shape is also
in the transverse direction, as shown in Figure 11, which reports a comparison between the
longitudinal and transverse components of each mode.
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Fig. 9. First singular value of the spectral matrix as a function of frequency.

f1 f2 f3 f4 f5
PP, SVD 3.87 3.88 4.24 4.73 5.49

SSI 3.82 3.98 4.57 4.74 5.33
FE 2.41 2.71 2.92 3.44 3.76

Table 3. Experimental and numerical natural frequencies [Hz] of the Vallone Scarpa bridge
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Fig. 10. Eigenvalue stabilization diagram for the Vallone Scarpa bridge.

The measurements performed with the second arrangement of sensors provided similar
results, but showed in addition that the identified modes presented a slight rotational
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component, shown by the opposite sign of the modal displacements measured on the right
and left edges of the deck. This is shown in Figure 12, only for modes 3 and 4 for brevity.
Furthermore, in the second arrangement of sensors there was a slight variation of frequencies,
with an inversion between the order of modes 1 and 2. According to these measurements,
the first mode presents one node, while the second one does not have any. This phenomenon
is related to the closeness between the two frequencies of the arch in the horizontal plane
and to the possible slight variation of the mechanical parameters between a measurement set
and the other. A complete explanation of the phenomenon would require a repetition of the
measurements and a verification of their robustness with regard to the ambient conditions.

mode 1 mode 2  mode 3

mode 4 mode 5

T
L

Fig. 11. Mode shapes of the Vallone Scarpa bridge and comparison between longitudinal
(crosses) and transverse components (asterisks).

A finite element model of the bridge was also built to perform a modal analysis. The natural
frequencies obtained are reported in Table 3 and are lower than those experimentally detected.
The observed differences may be considerably reduced with a magnification of the mechanical
parameters. In fact, the required updating is opposite in sign and smaller than that needed for
the Trajan column. This depends on the fact that in a brick masonry the mechanical behavior
of a specimen is much more representative of the behavior of the continuum than in the case
of a dry block masonry. Analogous results were observed by the authors in (Pau & Vestroni,
2010). A comparison between experimental and numerical mode shapes, reported in Figure
13, presents a good agreement.
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experimental modes 3 and 4.

4. Conclusions

The ambient vibration response of two masonry structures, the Trajan column and the
Vallone Scarpa bridge, has been analyzed using three widespread techniques, namely, the
peak picking, singular value decomposition and stochastic subspace identification. The two
structures are very different in masonry typology, with large blocks connected by clamps
and pins for the Trajan column and mixed brick masonry for the Vallone Scarpa bridge.
Notwithstanding the low level of excitation, the analysis has shown that the first frequencies
of the structures are quite easily detectable. However, when higher frequencies are sought,
difficulties may arise due to the lack in the verification of the hypothesis requiring that the
input is white noise. Among the three different techniques considered, the SSI is the most
demanding from a computational point of view and in general provides a better quality for
mode shapes. As regards the comparison with finite element models, it has been shown
that after an updating of the material properties of the finite element models, an agreement
between experimental and numerical frequencies can be obtained. When dealing with dry
masonry structures, this updating can imply a strong reduction of the Young’s modulus since
the material parameters of the solid material are not representative of the assembly, where the
interactions between the blocks have considerable influence. In other types of masonry, such
as the brick type, the behavior of a specimen is more representative of the continuum from
which it is extracted and the required updating is more limited.
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1. Introduction 
In the last years, building structures are more and more becoming the modern landmarks of 
urban areas. Designers seem to continuously move the safety border, in order to increase 
slenderness and lightness of their structural systems. However, more and more steel and 
composite floors (steel-concrete) are carried out as light weight structures with low 
frequencies and low damping. These facts have generated very slender composite floors, 
sensitive to dynamic excitation, and consequently changed the serviceability and ultimate 
limit states associated to their design. 
The increasing incidence of building vibration problems due to human rhythmic activities 
led to a specific design criterion for rhythmic excitations to be addressed in structural design 
(Allen et al. 1985); (Almeida, 2008); (Almeida et al., 2008); (Bachmann & Ammann, 1987); 
(Faisca, 2003); (Ji & Ellis, 1994); (Langer, 2009); (Murray et al., 2003); (Silva et al., 2008). This 
was the main motivation for the development of a design methodology centred on the 
structural system dynamical response submitted to dynamic loads due to human activities. 
This paper investigated the dynamic behaviour of composite floors (steel-concrete) 
subjected to the human rhythmic activities. The dynamic loads were obtained through 
experimental tests conducted with individuals carrying out rhythmic and non-rhythmic 
activities such as stimulated and non-stimulated jumping and aerobics (Faisca, 2003). 
The description of the loads generated by human activities is not a simple task. The 
individual characteristics in which each individual perform the same activity and the 
existence of external excitation are relevant factors when the dynamic action is defined. 
Numerous investigations were made aiming to establish parameters to describe such 
dynamic loads (Allen et al. 1985); (Bachmann & Ammann, 1987); (Faisca, 2003); (Murray et 
al., 2003). 
The present investigation considered the dynamic loads, based on results achieved through 
a long series of experimental tests made with individuals carrying out rhythmic and non-
rhythmic activities. This investigation described these dynamic loads, generated by human 
activities, such as jumps with and without stimulation, aerobics, soccer, rock concert 
audiences and dancing (Faisca, 2003). 
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The load modelling was able to simulate human activities like aerobic gymnastics, dancing 
and free jumps. In this paper, the Hanning function was used to represent the human 
dynamic actions since it was verified that this mathematical representation was very similar 
to the signal force obtained through experimental tests (Faisca, 2003). Based on the 
experimental results, human load functions due to rhythmic and non-rhythmic activities 
were proposed. 
The computational model, developed for the composite floors dynamic analysis, adopted 
the usual mesh refinement techniques present in finite element method simulations 
implemented in the Ansys program (ANSYS, 2003). In the present computational model, the 
floor steel joists were represented by three-dimensional beam elements, considering flexural 
and torsion effects, while the composite slab was represented by shell finite elements. 
The investigated structural model was associated to a floor composed by steel joists and a 
concrete slab. The structural system was a typical floor used as a restaurant with an adjacent 
dancing area (Almeida, 2008); (Almeida et al., 2008); (Murray et al., 2003); (Silva et al., 2008). 
The composite (steel-concrete) floor system consisted of long span (14m) joists supported by 
concrete block walls. 
The floor effective weight was estimated to be equal to 3.6kPa, including 0.6kPa for people 
dancing and dining. The joists effective composite moment of inertia was selected based on 
its required strength, i.e., 1.1x106 mm4. This structural system geometry was based on a 
typical example described in literature (Almeida, 2008); (Almeida et al., 2008); (Murray et al., 
2003); (Silva et al., 2008). 
The parametric study considered correlations between analytical and numerical results 
found in literature. The peak acceleration values were compared to the limits proposed by 
design codes and recommendations (ISO 2631-2, 1989); (Murray et al., 2003), based on 
human comfort criteria. The results indicated that the limits suggested by the design 
recommendations were not satisfied. This fact indicated that these rhythmic activities could 
generate peak accelerations that surpass design criteria limits developed for ensuring 
human comfort. 

2. Human-induced dynamic loads 
Floor vibrations induced by human rhythmic activities like: walking, running, jumping or 
even aerobics consist on a very complex problem. This is due to the fact that the dynamical 
excitation characteristics generated during these activities are directly related to the 
individual body adversities and to the specific way in which each human being executes a 
certain rhythmic task. All these aspects do not contribute for an easy mathematical or 
physical characterization of this phenomenon. 
Human beings have always analysed the most apparent distinctions of the various activities 
they perform. However the fundamental mechanical analysis of these tasks was not possible 
before a significant development of the mechanical science. Initially the human motion 
received an incipient attention from researchers like Borelli in 1679 (Lehmkuhl & Smith, 
1985) and the Weber brothers in 1836 (Lehmkuhl & Smith, 1985). The first pioneer on this 
field was Otto Fischer, a German mathematician that in 1895 made the first study containing 
a comprehensive evaluation of the forces involved in human motion. 
In order to determine the dynamical behaviour of floor structural systems subjected to 
excitations from human activities, various studies have tried to evaluate the magnitude of 
these rhythmic loads. The following stage of this research line was the development of a 
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loading platform by Elftman (Lehmkuhl & Smith, 1985), that enable the determination of the 
ground reactions to the foot forces associated to the human walk motion. The typical force 
platform is made by an approximate 1m2 steel plate supported by four small columns at the 
plate midsides. Load cells were installed at each of the columns to detect the magnitude of 
the load variation at these points. With these results in hand it was possible to determine the 
magnitude and direction of the forces transmitted to the supporting surface, denominated 
ground reaction forces. 
Rainer also contributed in this investigation developing more sophisticated load platforms 
that recorded the ground reaction forces coming from the foot forces associated to the 
human motion (Rainer et al., 1987). Ebrahimpur developed a 14.2m length x 2m wide 
platform designed to record the actions from a single individual, or groups of two or four 
individual walk motion (Ebrahimpur, 1996). 
Another load model used to represent the walk motion forces is expressed as a function of 
tests that recorded the heel impact over the floor. This load type, considered as the main 
excitation source during the human walk motion, produces a transient response, i.e., when 
the system is excited by an instantaneous force application. Its graphical representation was 
presented by Ohmart (Ohmart, 1968) in experiments denominated heel drop tests, where the 
individual drops its heel over the floor after elevating it to a height corresponding to its 
weight. 
The heel drop test was also made by Murray and Hendrick in different building types 
(Murray & Hendrick, 1977). A 0.84kN impact force was measured by a seismograph in nine 
church ceremonial rooms, three slabs located at a shopping mall highest floor, two balcony 
slabs of a hotel and one slab located at a commercial building second floor. With these 
results in hand, the structural dynamic responses, in terms of the force amplitudes, 
frequencies and damping, associated to the investigated structural systems, could be 
determined. 
Murray (Murray, 1975) classified the human vibration perception in four categories, i.e.: the 
vibration is not noticed by the occupants; the vibration is noticed but do not disturb the 
occupants; the vibration it is noticed and disturb the occupants; the vibration can 
compromise the security of the occupants. These categories were established based on 100 
heel drop tests performed on composite floors made of steel beams and concrete slabs. 
Allen et al. (Allen et al., 1985) proposed minimum values for the natural frequencies of 
structures evaluated according to the type of occupation and their main characteristics. 
These values were based on the dynamical load values produced by human rhythmic 
activities like dancing and aerobics and on the limit acceleration values associated to those 
activities. 
A significant contribution to this field was made in Brazil by Alves (Alves, 1997) and Faisca 
(Faisca, 2003) based on experiments made with a group of volunteers acting on a concrete 
platform. These tests enabled the development of approximated descriptions of the loads 
induced by human activities such as: jumps, aerobics, soccer and rock show audience 
responses. These tests were executed over two concrete platforms, one rigid and the other 
flexible, both of them over movable supports. The experimental results analysis, allied to an 
analytical model, led to the development of load functions associated to synchronous and 
asynchronous activities that could be used in structural designs intended for stadiums and 
other related structures. 
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3. Loads generated by human activities 
The description of the loads generated by human activities is not a simple task. The 
individual characteristics in which each individual perform the same activity and the 
existence of external excitation are relevant factors when the dynamic action is defined. 
Numerous investigations were made aiming to establish parameters to describe such loads 
(Allen et al. 1985); (Bachmann & Ammann, 1987); (Faisca, 2003); (Murray et al., 2003). 
Several investigations described the loads generated by human activities as a Fourier series, 
which consider a static part due to the individual weight and another part due to the 
dynamic load. The dynamic analysis is performed equating one of the activity harmonics to 
the floor fundamental frequency, leading to resonance (Almeida, 2008); (Bachmann & 
Ammann, 1987); (Langer, 2009); (Murray et al., 2003); (Silva et al., 2008). 
The present investigation considered the dynamic loads, based on results achieved through 
a long series of experimental tests made with individuals carrying out rhythmic and non-
rhythmic activities (Faisca, 2003). These dynamic loads, generated by human activities, were 
described such as jumps with and without stimulation, aerobics, soccer, rock concert 
audiences and dancing. 
The load modelling was able to simulate human activities like aerobic gymnastics, dancing 
and free jumps. In this paper, the Hanning function was used to represent the human 
dynamic actions since it was verified that this mathematical representation was very similar 
to the signal force obtained through experimental tests (Faisca, 2003). 
The mathematical representation of the human dynamic loading is described by Equation 
(1). This expression requires some parameters like the activity period, T, contact period with 
the structure, Tc, period without contact with the model, Ts, impact coefficient, Kp, and 
phase coefficient, CD, see Fig. 1 and Table 1. 
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Where: 
F(t) : dynamic loading, in (N); 
t : time, in (s); 
T : activity period (s); 
Tc : activity contact period (s); 
P : weight of the individual (N); 
Kp : impact coefficient; 
CD : phase coefficient. 
Figure 1 illustrates the phase coefficient variation, CD, for some human activities, initially, 
considering a few number of individuals and later extrapolating for a larger number of 
people (Faisca, 2003). Figure 2 presents an example of dynamic action related to human 
rhythmic activities using the following parameters: T = 0.53s, Tc = 0.43s, Ts = 0.10, Kp = 2.78 
and CD = 1.0, see Table 1. 
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Fig. 1. Phase coefficients for the studied activities (Faisca, 2003) 
 

Activity T (s) Tc (s) Kp 

Aerobics 0.44 ± 0.09 0.34 ± 0.09 2.78 ± 0.60 

Free jumps 0.44 ± 0.15 0.32 ± 0.09 3.17 ± 0.58 

Table 1. Parameters used for human rhythmic activities representation (Faisca, 2003) 
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Fig. 2. Dynamic loads induced by dancing associated to the following parameters: T=0.53s, 
Tc=0.43s, Ts=0.10, Kp=2.78 and CD=1.0 

4. Investigated structural model 
The investigated structural model was associated to a floor composed by steel joists and a 
concrete slab, as presented in Figs. 3 to 6. The structural system was a typical floor used as a 
restaurant with an adjacent dancing area (Almeida, 2008); (Almeida et al., 2008); (Murray et 
al., 2003); (Silva et al., 2008). 
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The composite floor system consisted of long span (14m) joists supported by concrete block 
walls, see Figs. 3 to 6. The floor effective weight was estimated to be equal to 3.6kPa, 
including 0.6kPa for people dancing and dining. The joists effective composite moment of 
inertia was selected based on its required strength, i.e., 1.1x106 mm4. This structural system 
geometry was based on a typical example described in literature (Almeida, 2008); (Almeida 
et al., 2008); (Murray et al., 2003); (Silva et al., 2008). 
The adopted steel sections were made with a 300MPa yield stress steel grade. A 2.05x105 
MPa Young’s modulus was used for the steel joists. The concrete slab had a 30MPa specified 
compression strength and a 2.4x104 MPa Young’s Modulus. The structural model 
geometrical characteristics are illustrated in Table 2. 
 

Main Span Bottom Chords Top Chords Vertical Members Diagonals 
14.0m ⎦ ⎣2x(1 ½” x 1/8”) ⎤ ⎡2x(2” x 1/8”) L (½ ”x 1/8”) L (½ ”x 1/8”) 

Table 2. Structural model geometric properties 
 

 
Fig. 3. Dancing floor layout (dimensions in m) 
 

 
Fig. 4. Structural model three-dimensional view 
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Fig. 5. Composite floor cross section - Section AA (dimensions in mm) 
 

 
Fig 6. Support details (dimensions in mm) 

The human-induced dynamic action was applied to the dancing area, see Figs. 3 and 7. The 
composite floor dynamical response, in terms of peak accelerations values, were obtained on 
the nodes A, B and C, to verify the influence of the dynamical loads on the adjacent slab 
floor, see Figs. 3 and 7. In the current investigation, the human rhythmic dynamic loads 
were applied to the structural model corresponding to the effect of 1, 3, 6, 9 and 12 
individuals practicing aerobics or couples dancing. 
 

 
Fig. 7. Load distribution associated to nine individuals acting on the floor (dimensions in m) 
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The live load considered in this analysis corresponds to one individual for each 4.0m2 (0.25 
person/m2), (Bachmann & Ammann, 1987). The load distribution was considered 
symmetrically centred on the slab panel, as depicted in Fig. 7. The present investigation also 
assumed that an individual person weight was equal to 800N (0.8kN) (Bachmann & 
Ammann, 1987) and that the adopted damping ratio was equal to, ξ=3% (ξ = 0.03) in all 
studied cases (Almeida, 2008); (Almeida et al., 2008); (Murray et al., 2003); (Silva et al., 2008). 

5. Finite element modelling 
The proposed computational model, developed for the composite floors dynamic analysis, 
adopted the usual mesh refinement techniques present in finite element method simulations 
implemented in the ANSYS program (ANSYS, 2003). In the present computational model, 
the floor steel joists were represented by three-dimensional beam elements (BEAM44), with 
tension, compression, bending and torsion capabilities (ANSYS, 2003). The composite slab 
was represented by shell finite elements (SHELL63) (ANSYS, 2003), as illustrated in Fig. 8. In 
this investigation, it was considered that both materials (steel and concrete) presented total 
interaction and have an elastic behaviour. The finite element model has 11673 nodes, 5267 
three-dimensional beam elements (BEAM44), 6912 shell elements (SHELL63) and 62568 
degrees of freedom. The developed computational model is illustrated in Fig. 8. 
 

 
Fig. 8. Composite floor (joists and concrete slab) finite element model 

6. Natural frequencies and vibration modes 
The composite (steel-concrete) floor natural frequencies were determined with the aid of the 
numerical simulations, as illustrated in Table 3. The structural system vibration modes were 
illustrated in Fig. 9. 
It can be clearly noticed from Table 3 results, that there is a very good agreement between 
the structural model fundamental frequency value calculated using finite element 
simulations and the AISC recommendation (Murray et al., 2003). 
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Such fact validates the numeric model here presented, as well as the results and conclusions 
obtained throughout this work. It must be emphasized that the structural model presented 
vibration modes with a predominance of flexural effects, as illustrated in Fig. 9. 
 

Natural Frequencies (Hz) AISC* Error 
f01 f02 f03 f04 f05 f06 f01 % 

5.70 5.91 6.13 6.42 6.56 7.89 5.80 2.0 
*(Murray et al., 2003) 

Table 3. Composite floor (steel-concrete) natural frequencies 
 

 
a) Vibration mode associated to the first 

natural frequency: f01=5.80 Hz. 

 
b) Vibration mode associated to the second 

natural frequency: f02=5.91 Hz. 

 
c) Vibration mode associated to the third 

natural frequency: f03=6.13 Hz. 

 
d) Vibration mode associated to the fourth 

natural frequency: f04=6.42 Hz. 

 
e) Vibration mode associated to the fifth 

natural frequency: f05=6.56 Hz. 

 
f) Vibration mode associated to the sixth 

natural frequency: f06=7.89 Hz. 

Fig. 9. Composite floor (steel-concrete) vibration modes 
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7. Time domain analysis 
For practical purposes, a linear time-domain analysis was also performed throughout this 
study. This section presents the evaluation of the structural systems vibrations levels when 
submitted to dynamic excitations coming from human rhythmic activities (aerobics and 
dancing). 
The composite floor (steel-concrete) dynamic responses were determined through an 
analysis of its displacements and accelerations. The results of the dynamic analysis were 
obtained from an extensive numerical analysis, based on the finite element method using 
the ANSYS program (ANSYS, 2003). 
Figures 10 and 11present the vertical displacement and acceleration, respectively, versus 
time graphs for the analysed composite floor (steel-concrete) at point A (see Figs. 3 and 7), 
when only one individual is acting on the structural model (aerobics). 
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Fig. 10. Composite floor displacement response due to one individual practicing aerobics at 
Point A (see Figs. 3 and 7): Tc=0.25s, Ts=0.10s, Kp=2.78 and CD=1. 
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Fig. 11. Composite floor acceleration response due to one individual practicing aerobics at 
Point A (see Figs. 3 and 7): Tc=0.25s, Ts=0.10s, Kp=2.78 and CD=1. 
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Figures 10 and 11 show that, the vertical displacement and acceleration, at point A (see Figs. 
3 and 7) of the structural model, gradually increase with time until the beginning of the 
composite floor steady state response, which occurred at the time of approximately 2.0 
seconds. From this point (t = 2.0s) onwards, the maximum displacement and acceleration 
values were, respectively, equal to 0.051 cm and 0.55 m/s2. 
It must be emphasized that considering only one individual acting on the floor (aerobics) the 
calculated peak acceleration value (ap = 0.55m/s2), was higher than limits proposed by 
design recommendations (alim = 5%g = 0.50 m/s² ), violating the human comfort criteria (ISO 
2631-2, 1989); (Murray et al., 2003). 

8. Peak accelerations 
The peak acceleration analysis was focused in dancing activities and considered a contact 
period carefully chosen to simulate dancing activities on the composite floor. The adopted 
parameters were: Tc, equal to 0.43s (Tc = 0.43s) and the period without contact to the 
structure, Ts, of 0.10s (Ts = 0.10s). Based on the experimental results (Faisca, 2003), the 
composite floors dynamic behaviour was evaluated keeping the impact coefficient value, Kp, 
equal to 2.78 (Kp = 2.78). Tables 4 and 5 depict the peak accelerations, ap, corresponding to 
nodes A, B and C, see Figs. 3 and 7, when 1, 3, 6, 9 and 12 dynamical loads, simulating 
individual dancing, see Table 4, and couples dancing, see Table 5, were applied to the 
composite floor. 
 

Number of individuals - ap (m/s²) Nodes 
(see Fig. 3) 1 3 6 9 12 

ISO 2631-2 and AISC* 
(m/s²) 

A 0.12 0.24 0.41 0.52 0.69 
B 0.11 0.28 0.53 0.72 0.88 
C 0.07 0.17 0.31 0.42 0.54 

0.50 

*(ISO 2631-2, 1989); (Murray et al., 2003) 

Table 4. Structural model peak accelerations corresponding to individuals dancing: Tc=0.43s; 
Ts=0.10s; Kp=2.78. 
 

Number of couples - ap (m/s²) Nodes 
(See Fig. 3) 1 3 6 9 12 

ISO 2631-2 and AISC* 
(m/s²) 

A 0.23 0.47 0.83 1.05 1.36 
B 0.23 0.57 1.04 1.45 1.76 
C 0.13 0.34 0.62 0.83 1.09 

0.50 

*(ISO 2631-2, 1989); (Murray et al., 2003) 

Table 5. Structural model peak accelerations corresponding to couples dancing: Tc=0.43s; 
Ts=0.10s; Kp=2.78 
It can be verified that the obtained peak acceleration values are proportional to an increase 
of the number of considered individuals, Tables 4 and 5. These values tend to decrease 
when the dynamical response obtained on the node C (see Figs. 3 and 7) was compared to 
the response of nodes A and B (see Figs. 3 and 7), as presented in Tables 4 and 5. 
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Based on the results presented in Table 4, it was possible to verify that dancing activities on 
the structural model, represented by Equation (1), led to peak accelerations higher than 0.50 
m/s² (5%g) (ISO 2631-2, 1989); (Murray et al., 2003), when the composite floors was 
submitted to six individuals dancing, violating the human comfort criteria. The situation 
becomes even more significant when nine and twelve individuals were considered in the 
analysis, see Table 4. 
On the other hand, when couples dancing were considered, the human comfort criterion 
was violated starting from cases associated with only three couples. It must be emphasized 
that in this situation the peak accelerations presented higher values when compared to 
individual dancing. 
Observing the results illustrated in Tables 4 and 5, it was also possible to verify that the 
analyzed composite floor presented peak accelerations higher than 5.0% g (ISO 2631-2, 
1989); (Murray et al., 2003) and the human comfort criteria was not satisfied even when an 
adjacent area, where no dancing actions are present (Node C, see Figs. 3 and 7), was 
investigated, Tables 4 and 5. 

9. Final remarks 
This paper investigated the dynamic behaviour of composite floors (steel-concrete) when 
subjected to the human rhythmic activities corresponding to aerobics and dancing effects. 
The dynamic loads were obtained through experimental tests conducted with individuals 
carrying out rhythmic and non-rhythmic activities such as stimulated and non-stimulated 
jumping and aerobics. 
The proposed analysis methodology adopted the usual mesh refinement techniques present 
in the finite element method (FEM). Based on the experimental results (Faisca, 2003), human 
load functions due to rhythmic and non-rhythmic activities were proposed. The investigated 
structural system was a typical floor used as a restaurant with an adjacent dancing area. The 
composite floor system consisted of long span (14m) joists supported by concrete block 
walls. 
The parametric analysis considered correlations between analytical and numerical results 
found in literature. The results, in terms of maximum accelerations, were compared to the 
limits proposed by design recommendations, focusing on human comfort considerations. 
The results obtained throughout this study indicated that the limits recommended by design 
standards (ISO 2631-2, 1989); (Murray et al., 2003) were not satisfied for the investigated 
structural model when subjected dancing load actions. Such fact shows that these rhythmic 
activities may generate peak accelerations that violated design criteria related to human 
comfort. 
The present investigation also indicated that these dynamic loads can even generated 
considerable perturbations on adjacent areas, where there is no human rhythmic activity of 
such kind present. Despite this fact there was still a surpassing of the associated human 
comfort criteria. 
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1. Introduction 
With modern machinery industry developing, the application of internal combustion engine 
is getting wider and research direction is towards high-power, high speed and strong loads. 
So the issue of torsional vibration of the engine is becoming more prominent. All kinds of 
work conditions of the engine may have great impacts on the shafting, leading to all sorts of 
torsional vibration and resonance, and many accidents which lead to much detriment have 
occurred at home and abroad due to torsional vibration. 
As the problem of torsional vibration of the engine is becoming more and more prominent, 
broad research is made both at home and abroad. This article mainly refers to the literatures 
on torsional vibration issue published in recent years, summarizes on the modeling of 
torsional vibration, corresponding analysis methods, appropriate measures and torsional 
vibration control, and points out the problems to be solved in the study and some new 
research directions. 

2. Modeling of engine crankshaft  
2.1 Engine crankshaft modeling method 
Crankshaft is the main component of internal combustion engine. Shaft vibration is one of 
the most important factors affecting engine operation safety. Crankshaft modeling is the 
base of crankshaft torsional vibration analysis, whose accuracy and simple practical 
applicability will greatly improve the efficiency and credibility of research results. 
At present, there are 3 kinds of most basic shaft models used in analyzing torsional 
vibration: the first type is simple mass - spring model, the second is continuous mass model, 
and the third is multi-segment concentrated mass model. 

2.1.1 Simple mass - spring model 
Simple mass - spring model is the earliest mechanics model in the calculation of shaft 
vibration [1-6], which was also called lumped parameter model in some literatures. It 
disperses crankshaft onto the disk with concentration of inertia moment, elastic axis without 
mass, internal damping and external damping, as shown in figure 1. Each disk rotational 
inertia includes: the rotational inertia of the crank, the equivalent rotational inertia of 
connecting rod and piston , transmission system, shock absorber, the rotational inertia of the 
flywheel, etc. 
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Fig. 1. Simple mass - spring model schematic diagram 

This model has certain precision for lower frequency of torsional vibration modal and clear 
physical concept. It’s simple to use and easy to calculate. But since this model is simplified, 
when precise calculation of the crankshaft is required, its precision is limited. This model is 
established completely for rigid shaft and rotation parts, so it can not simulate the actual 
shaft. 

2.1.2 Continuous mass model 
Continuous mass model is based on continuum theory, regarding shaft as elastomer, 
established in finite element method. It’s also called distributed mass model in some 
literatures [7-8]. It adopts finite element method in general, dissecting the crankshaft entities 
directly into finite element calculation model of division. Hence, the mass of the shaft is 
distributed continuously along the shaft, closer to practice than that of simple mass - spring 
model. Partial differential equations can be used in this model, which can accurately 
calculate low frequency and vibration model of the shaft, as well as high frequency and 
vibration model, solve by numerical method, and also can calculate arbitrary section stress 
conveniently. But the model is complex and with low speed to calculate, and is easy to cause 
greater accumulative error. It is more difficult to use this model in system simulation and 
design. Due to the method of forced vibration calculation, it is hard to realize, thus it’s 
mainly used in the calculation of free vibration. 
Recently, two consecutive quality models also have derived from this model: framework 
model and multi-diameter model. 
Framework model is a model, in which, circular cross section straight beam represents main 
journal and crank pin, and variable cross-section rectangular beam represents crank arm 
and counterbalance in finite element analysis [9]. For these analyses, circular cross section 
beam also can represent main journal and crank pin, but the crank arm and counterbalance 
should be treated as simple rectangular beam. Model schematic diagram is shown in figure 2. 
In framework model, different structural parts of the crankshaft are substituted by the 
continuous entities with regular shape, and the original basic shapes of crankshaft are kept. 
Thus this model has higher precision to analyze the crankshaft vibration. 
Multi-diameter model is a model used in elastic wave propagation theory solving torsional 
vibration of internal combustion engine [10-12]. Assign piston-rod additional mass to two 
crank arms and simplify a unit crankcase into a group of concentric multi-diameter. Model 
schematic diagram is shown in figure 3. Because the model has continuous mass 



Progress and Recent Trends in the Torsional Vibration of Internal Combustion Engine   

 

247 

distribution, the effect of distribution parameters on shafting vibration characteristics can be 
considered. It also can adopt different mathematical methods to calculate and compare with 
simple mass - spring model. This model can have high precision. 
 

 
Fig. 2. Framework model schematic diagram 
 

n

i
2

1

 
Fig. 3. Multi-diameter model schematic diagram 

2.1.3 Multisegment concentrated mass model [13] 
This model is similar to the simple mass model in essence. However, it can be separated into 
dozens to hundreds sections according to the structure characteristics  upon analysis 
demand. It can calculate high order torsional vibration frequencies that can’t be determined 
by simply mass model, and also avoids the large amount of computation that required in 
the calculation of continuous mass model. Thus it has been widely used. 

2.1.4 Soft body dynamics model [14] 
In the calculation of flexible multi-body dynamics, flexible body is described as modal 
flexible body. A flexible body contains a series of modals. In the breakdown steps, each 
model unit requires obtaining system state variables and calculating the relative amplitude 
of each characteristic vector, then using linear superposition principle to integrate node 
deformation of each time step to reflect total deformation of flexible body. 

2.1.5 Other axis modeling methods 
In recent years, with the further study of shafting vibration, many new modeling methods 
came up in the engine industry and other related industries. 
Continuous beam model was used in the crankshaft load calculation by Li Renxian [15]. The 
crank and conrod were equalized to the concentrated force acting on a non-equal 
continuous beam, and all kinds of force were also equalized to simplify. The author 
analyzed various loads of crankshaft and its changes in an operation cycle comprehensively. 
This is a simplified model force shown in figure 4. Of course, in order to calculate simply, 
the author treats both gas load and centrifugal force function load as concentrated loads. If 
they were expressed as some forms of distributed loads, the calculation might be more 
accurate. Calculation model may also adopt continuous beam to make it more close to the 
actual situation of crankshaft.  
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Fig. 4. Continuous beam model schematic diagram 

Gu Yujiong[16] used the four-terminal network model in calculating torsional vibration. The 
author starts with motor control equations and its general solution, equalizing torsional 
vibration system to the four-terminal network model based on the principle of 
electromechanical analogy; then adopts mechanical impedance method to obtain frequency 
equation controlling torsional vibration according to the input impedance of the system and 
the resonant characteristics, and then obtains the natural frequency, vibration mode and 
stress distribution, etc. of each order. Four-terminal network model is an accurate low-order 
model, whose algorithm is convenient and fast. The physical significance is obvious to 
analyze the mechanical impedance of the system, thus it is a good attempt to model  
torsional vibration. He Shanghong and Duan Jian [17] also used network method in 
calculating torsional vibration, and based on dynamic in the process of modeling, which 
was also a kind of deepening of the method. 
Through the analysis of different vibration mathematical models, Xiang Jianhua [18] 
proposed a graphical modeling method based on system matrix method solving the axis of 
torsional vibration. The modeling method only requires users providing original torsional 
vibration mechanics model, and is not restricted by axis branches and modeling scale. In 
actual implementation, torsional vibration module is divided into two kinds of module unit 
in this method, which can be used to build various kinds of torsional vibration mechanical 
model. Model topology relation can be generated through the module traverse and 
equalisation conversion of the torsional vibration model, and finally the system integration 
required for solution is integrated. 

2.2 Axis modeling research direction 
Thanks to the development of modern computer, the precise calculation for shaft can be 
easily realized by finite element method. So for the continuous mass model, the main 
development direction is how to make the model have better simulation with material object 
in computer modeling, thus to peer analysis of the model to  material object. 
, As the model parameters (especially rigidity parameters) of a simple mass - spring model 
are obtained by a large number of experience formula and approximate calculations, as its 
accuracy is hard to ensure, resulting in rather great error between calculated results and 
actual machine test results. The reason that theoretical calculation result has lager error is 
often not because of the calculation method of itself, but lies in the accuracy of the model. 
Since rotational inertia has a relatively accurate analytic calculation, and the torsional 
vibration damping of the axis is small, to improve the accuracy of the models, focus should 
be on the amendment of rigidity parameters. Multi-segment concentrated mass model also 
has similar problem. 
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The establishment and derivation of a new model should be based on the amendment with 
material object, adopting all kinds of similar models used in other industries to derive, thus 
further perfect engine crankshaft torsional vibration model. The influence of damping 
should not only be considered, the influence of bending-torsional mixture should also be 
taken into account. Now, many scholars apply model reduction method [19]used in dealing 
with torsion vibration of steam turbine and generator as well as the method [20]used in 
identifying parameters of experimental data to the calculation of the engine torsional 
vibration. This is also the evitable trend of torsional vibration integration. 

3 Solving method of torsional vibration of internal combustion engine 
3.1 Common method of Torsional vibration 
Based on the above-mentioned several shaft models, the common methods and algorithms 
solving torsional vibration for multi-freedom free vibration calculation include Holzer 
method, system matrix method and transfer matrix method, etc. The methods for multi-
freedom forced vibration calculation include energy method, amplification coefficient 
method and system matrix method, etc. With the development of computer technology, the 
traditional manual calculation has been replaced by computers gradually, while some 
common calculation methods of torsional vibration emerged, such as modal analysis 
method and finite element method, etc. Various methods are described below. 

3.1.1 Holzer method. 
Holzer method [1, 2] is always a classic and effective solution in “free- free” system of power 
machine. The Holzer form method or the Tolle form method derived from its basic principle 
are often used in engineering. The Holzer method, widely used today, is a numerical 
calculation method and corresponding calculation program derived from its principle. The 
advantage of this method is clear physical concept. 
From its scientific name, this method can be called “method of sum of torsion moments”. 
The basic idea is: the sum of inertia moment of each lumped mass (disc) should be zero 
when the shaft doing  free vibration without damp, that is 

0k kI ϕ =∑  

Due to the characteristics of simple harmonic oscillator, the relation between the 
displacement kα  and the acceleration kϕ  of each inertia Ik is: 

2
k kpϕ α= − , namely, 2 0k kI p α =∑ . This is the foundation of Holzer method. 

This method is effective in estimating low order torsional vibration frequency in initial 
design stage. This method has simple algorithm and is easy to use, thus is widely used in 
actual engineering. But its higher-order calculation has lower precision and is time 
consuming. 

3.1.2 System matrix method 
System matrix method [1, 2, 21] is a method using each parameter matrices of torsional 
vibration equation of the axis to solve characteristic root to calculate torsional vibration. All 
methods which can calculate the eigenvalue and eigenvector of the matrix can be used to 
calculate the free torsional vibration of multi-mass system. 
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The basic principle of this method is: for more freedom vibration equation: 0ϕ ϕ+ =I Κ by 
assuming the form of solution and input them into equation, the following can be obtained: 

2
nω=KA IA  let 2

nλ ω=  and -1H = I K , now the system matrix of M CW W= .can be obtained. 
So free vibration calculation can come down to the question of solving characteristic 
equations 0=D . 
System matrix method is widely used, not only in free vibration solution, but also in the 
solution of forced vibration. However, it’s generally only suitable for solving low 
frequencies and its accumulative error would be bigger for calculating high frequencies. 

3.1.3 Transfer matrix method 
The transfer matrix method [16,22] is a commonly used method for analyzing various 
vibration problems, which was first introduced by Holzer to analyze crankshaft vibration 
and calculate the inherent frequency of undamped-free vibration of the shafting. 
The basic concept of transfer matrix method is: decomposing the studied system into several 
two-terminal elements with simple mechanical properties, and building relation between 
the state vectors of the two terminals of one component by transfer matrix. Then, connect all 
components one by one, and multiply them together to obtain and solve the transfer matrix. 
Internal combustion engine shafting, according to its composition configuration 
characteristics, can be divided into three kinds of components: inertial disks - viscous 
damper components, elastic elements and even elastomer shaft section components. 
The advantage of vibration calculation by transfer matrix method is that the order of 
transfer matrix will be not affected by the increased unit number, namely, the dimension of 
matrix will not increase with the increase of the freedom degree of the system, and the 
calculation method of each order vibration mode is identical. So with simple calculation, 
convenient programming and less memory for calculation and less time consumption, this 
method is widely used in the analysis and research of crankshaft vibration. However, when 
analyzing complex shaft with many freedom degrees by this method, due to the error 
accumulation of the transfer matrix, the calculation accuracy will decrease, thus the 
precision of higher frequencies computation is relatively low. 

3.1.4 Energy method and amplification coefficient method 
Both energy method and amplification coefficient method[2,23] belong to the resonance 
calculation method of forced torsional vibration, which are basic and the most important 
calculation methods of torsional vibration before electronic computer popularized. They are 
still widely used at present. The basic principle of energy method is that the input energy of 
the exciting moment within a system vibration period is completely consumed by system 
damping, namely, M CW W= . Amplification coefficient method was proposed by Tuplin in 
1930’s for resonance calculation, and then was further developed, becoming a guiding 
method that the Shipping Standard of British Lloyds Register recommends. 

3.1.5 Modal analysis method 
The basic thought of modal analysis method [24-25] is to decompose complex multi-freedom 
system into several sub systems. Firstly, when analyzing, compute  the several lower modes 
of each sub system, then assemble each sub system into an integrated motion differential 
equation set according to displacement compatibilities or force balance relations between 
adjacent sub systems to derive comprehensive eigenvalue problem of shrinkage of Freedom 
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Degree., thus work out the inherent frequency A vibration mode and response of the 
system. Since modal analysis method reduces the freedom degree of the system, the time 
consumption and memory for calculation are significantly reduced compared with finite 
element method. If the sub systems are divided reasonably, its calculation precision is also 
satisfactory. In addition, modal analysis method can also combine with experimental 
research [26] to obtain system vibration modal parameters by measuring the transfer function 
of shaft vibration, e.g., natural frequency, vibration mode, damping, modal inertia and 
modal rigidity, etc. 

3.1.6 Finite element method 
Finite element method [1,2,7-10] is a numerical calculation method for solving mathematical 
physics equation based on variation principle. Its basic thought is to regard complex 
structure as finite set of discretized units. Each unit is connected into a unity through the 
common point of the neighboring units, namely, "joints". Take each unit as a continuous 
component and joint displacement as generalized coordinate. To establish torsional vibration 
mechanics model of the shafting of internal combustion engine, we need to define  which 
units are selected as well as load positions and sizes, etc. Finite element method is currently 
accepted as with the highest calculation precision for torsional vibration calculation. 

3.1.7 Substructure analysis method of the torsional vibration of systems with branch 
shafts [27] 
In the torsional vibration analysis of shaft systems with branches, the main commonly used 
methods are transfer matrix method, matrix iterative method and system matrix method, etc 

[28-31]. But these methods are mainly used to analyze straight string structure or a particular 
branch. Their calculation efficiency is relatively low for the whole branching structure 
system. In general, substructure method has already formed  systemic theory [32-33], whose 
basic idea is to divide large and complex structure system into several substructures and 
calculate the dynamic characteristics information of each subsystem by  finite element 
method, analytical method and experimental method, and then integrate them into the 
dynamic characteristics of the whole structure system. But substructure method is used less 
in torsional vibration analysis of shaft systems with branches. Representative method is 
dynamic substructure matrix method. This method requires working out the compatible 
relation among all substructures in substructure integrating, which leads to the complicated 
and tedious  modal synthesis process in case the amount of divided substructures is large. 
Thus this method has certain limit in solving complex shaft systems with branches. 
Chu Hua [34] and Z P Mourelatos [35] combined substructure method with transfer matrix 
method in torsional vibration calculation, which became a new migration substructure 
method, and the new method was compared with finite element method. 
According to the structure of shaft systems with branches, Li Shen and Zhao Shusen [27] put 
forward a method that divided substructures and integrate step by step based on gear 
meshing form to obtain the torsional vibration inherent characteristics of the whole system. 
This method was also used in analyzing the torsional vibration inherent characteristics of 
the structure of the main transmission system with branches of 650 rolling mill. The 
comparison with the results calculated by other methods shows the feasibility of 
substructure graded division and stepwise integration method. This principle has expanded 
the application scope of the substructure modal synthesis in solving the torsional vibration 
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of shaft systems with branches and effectively solved the problem of complex system, thus 
provided a good idea for solving the torsional vibration of shaft systems with branches. 

3.1.8  New research methods for torsional vibration 
In recent years, the number of scholars engaged in research of vibration has continuously 
increased and new algorithms kept on emerging continuously, such as elastic wave 
propagation method, eigenvector method and frequency analysis method, etc. According to 
the theory of torsional elastic wave, Bogacz [36] gave out a method to solve torsional vibration 
dynamic response by torsion wave method. Shu Gequn and Hao Zhiyong [11,37] also 
presented a new torsional vibration response calculation method based on the theory of 
torsional elastic wave, whose basic thought is: the torsional vibration of the shafting is 
caused by the torsional elastic wave propagation along the shaft; elastic wave propagates 
along the axis forward and back in traveling wave form; when one traveling wave meets 
with another after reflection or delay, , both waves will stack into standing wave causing 
torsional vibration if their phases are appropriate. The method can be used to analyze 
continuous parameter distribution boundary, transient response and steady-state response 
of the crankshaft axis with transient boundary conditions and other vibration characteristics. 
Since it only requires solving linear equations in calculation, its computational complexity is 
small, thus it is an accurate and fast vibration analysis method. According to 
electromechanical analog principle, Gu Yujiong [16] put forward a four-terminal network 
method for analyzing torsional vibration. State vector method, proposed by He Chengbing [38], 
was widely used in the analysis of torsional vibration. People are also exploring the 
calculation method of  continuous mass model for torsional vibration response of forced 
vibration. Wang Ke she and Wang Zheng guang[39] used frequency analysis method in the 
calculation of torsional vibration to combine frequency change with the structural 
parameters of shafting, which was beneficial to visual analysis. It also worked out analysis 
mode,  resonance frequency and  resonant modes, etc. 

3.2 Research direction of shafting solving methods 
At present, the methods for solving  torsional vibration are various and each has its own 
use. While in general, it shall be developed from the following aspects: 
1. Improve the computation efficiency of current methods. For instance, calculation 

precision is high by finite element method, but its calculation is time consuming and 
resources occupying, so fewer and dimension-reduced units should be considered in 
model building when improving this method. 

2. Combine the calculation method used in other industries with this direction. 
2.1  For example, Shen Tumiao [16] mentioned to apply electrical four-terminal 

network in the calculation of torsional vibration . This is an example of unified 
calculation method. In addition, integrating all calculation methods to 
construct a new method is also one of the research directions. 

2.2  Based on the torsional vibration numerical simulation study of the internal 
combustion engine shaft with the precise time integration method, Lin Sen [40] 
introduced and deduced the precise time integration based on Duhamel 
integral, described in detail the calculation characteristics of this method  with 
example and comparison, simulated the torsional vibration of some type of 
internal combustion engine, compared the results with the calculation results 
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in literature, and analyzed their similarities and differences briefly, which, to a 
certain extent, solved the conflict between the accuracy and stability of 
calculation. 

2.3 Along with the development of microcomputer technology, we can use 
professional software to analyze torsional vibration of internal combustion 
engine. Tong-Qun Han [41] introduced the functions and characteristics of 
engine simulation software EXCITE—designer developed by AVL company, 
analyzed torsional vibration and vibration reduction of the shaft system based 
on the software targeting at the problem of a car engine flywheel bolt fracture, 
and put forward correcting measures. 

4. Experimental studies on engine crankshaft 
4.1 Current torsional vibration measurement methods 
Torsional vibration measurement is an important content in the study of crankshaft 
vibration. Compared with transverse vibration measurement, the extract and analysis of 
torsional vibration signals are both difficult. There are basically two kinds of torsional 
vibration measurements: contact measurement and non-contact measurement. The former 
installs sensor (such as strain gauge, accelerometer, etc) on the shaft, and the  measured 
signal is transmitted to instrument by collector ring or radio signal. Non-contact 
measurement commonly uses “measuring gear method”, which uses  shaft encoder, gear, or 
other repeated structure to measure angular velocity in homogeneity to measure torsional 
vibration. If designing Doppler test method properly, laser can also be used to measure 
torsional vibration. The followings are introduction to various methods and analysis of their 
error sources and applications. 

4.1.1 Mechanical measurement 
Geiger torsional vibration analyzer is a typical mechanical torsional vibration measuring 
instrument [2, 23] and was used in torsional vibration study in the earliest stage. This 
instrument is designed dexterously, whose signal acquisition and signal record are both 
realized by mechanical devices, simple and practical. It is widely used in the study of 
torsional vibration. DVL torsional vibration instrument also belongs to this type of torsional 
vibration instrument. However, the torsional vibration of this method is transmitted to 
measuring head shelf by belt, the belt elastic vibration will cause distortion. The response 
bandwidth of mechanical measuring system is very limited, and also because disc springs 
cannot be too soft, so very low frequency torsional vibration cannot be measured. In 
addition, the measured signal cannot be analyzed directly by means of modern analytical 
instrument, thus it has gradually been eliminated. 

4.1.2 Contact measurement 
Contact measurement [42] is to install sensor (such as inductance, strain gauge, etc.) on 
crankshaft directly. The measured signals are transmitted to analytical instrument by 
collector ring or in radio frequency manner. To monitor the dynamic response of shaft or 
shaft parts (e.g., blade, etc.), the arrangement of strain gauge should eliminate the 
interference of transverse vibration, and can realize the automatic compensation of influence 
by temperature. Torsional vibration meters belonging to this measurement method include 
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strain-gauge torsional vibration meter, piezoelectric torsional vibration meter and 
inductance-type torsional vibration meter, etc. Contact measurement, centered by sensing 
element, is widely used in the vibration test of internal combustion engine, thanks to its high 
sensitivity, wide frequency response range and convenience for measured signal record and 
analysis. But this kind of measuring device system itself has certain rotational inertia, which 
will inevitably impact on the system under test in measurement. In all kinds of contact 
measurement, measurement devices, such as sensors, are required being installed on the 
shaft, which sometimes has to destroy the original shaft structure. This is not allowed in 
many cases. 

4.1.3 Non-contact measurement 
The measurement device of non-contact torsional vibration measurement [43,44] is not 
installed directly on the crankshaft, but collects torsional vibration signals through 
photoelectric and magnetoelectricity conversion by code disc, gear or other indexing 
structure on the crankshaft. These kinds of method are based on the principle of “gear 
testing”. When the shaft is rotating, the teeth structure installed on the shaft can induce bell 
shaped pulse  leveling signal sequences on the sensor, whose amplitude and phase might 
carry the information on axial torsional vibration, which is demodulated by phase detectors 
into torsional vibration signals. Torsional vibration meters belonging to this measurement 
methods include TV - l torsional vibration meter of British Econocruise Company, VED - 
233A torsional vibration meter of American Shaker Company and DTV - 88 torsional 
vibration meter[45] developed by Shanghai Institute of Electrical Equipment, etc. Non-contact 
measurement method does not need installing special devices on the shaft, but uses the 
existing shaft repeated structure, whose measurement preparations is less, and 
measurement process does not interfere with the normal operation of shaft. It’s especially 
suitable for the long-term monitoring of torsional vibration. At present it has become a 
major means of torsional vibration measurement. 

4.1.4 Laser measurement 
Laser Doppler Torsional Vibration Measurement Technique [46-48] is put forward and 
developed from fluid velocity measurement. When laser beam irradiates on shaft surface, 
the linear velocity of shaft surface make scattered light produce Doppler frequency shift. 
The transient angular velocity of shaft represents the transient value of frequency shift 
volume of the instantaneous axis. Torsional vibration is obtained by removing dc 
component. 2523 torsional vibration meter launched out by the Denmark B&K Company 
was a typical representative of Doppler laser torsional vibration meter. In 1994, Ge Weijing 

[49] and others from Tianjin University applied laser Doppler velocimetry on the torsional 
vibration measurement of internal combustion engine shaft. Only a smooth section on the 
surface of the shaft is required, and measuring point is easy to be set up. This method can 
realize absolute measurement and measurement datum is not required to be specially 
established. However, since the transverse vibration of the shaft and the form and position 
errors of the shaft section directly affect measurement precision, it is rather difficult to 
improve its accuracy. 

4.1.5 The latest torsional vibration measurement method 
Wang Ting and Cheng Peng [50] introduced a kind of digital measurement system of 
crankshaft using PC computer. The measurement system consists of angle encoder, self-
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made count plate, PCL724 digital input/output card and PC computer, etc. installed on the 
tested crankshaft. Angle encoder is crankshaft angle sensor with high precision, and is 
connected with crankshaft by flange. The grating disc fixed in the angle encoder has two 
reticules, e.g., outer and inner rings. The outer ring is a uniform reticule, which can produce 
CDM signals, and the inner ring is a TRIG reticule for judging tdc signal. The light emitting 
components in the angle encoder are two infrared light emitting diodes, and there are two 
infrared light receptors respectively corresponded with CDM reticule and TRIG reticule. 
When angle encoder operates together with crankshaft, a TRlG signal will be outputted in 
each rotation, and a series of CDM square-wave pulse signal will be outputted. Thus, the 
crankshaft torsional vibration can be directly reflected on the time width of the CDM 
square-wave pulses outputted by angle encoder. Count each CDM pulse width with 
frequency division by high count circuit board. The counted data is inputted into PC by 
parallel data I/O card PCL - 724. Then crankshaft torsional angle can be obtained after 
program processing. The measurement system measures torsional angle directly, thus it’s 
with convenient measurement, high precision and simple process. 

4.2 Research direction of torsional vibration measurement of internal combustion 
engine 
The focus and future development of torsional vibration measurement is to improve its 
accuracy and real-time performance to realize the torsional vibration monitoring of internal 
combustion engine in operation, especially the monitoring of severe torsional vibration 
caused by emergencies, such as the severe torsional vibration by transient large torque 
incentive resulted from cylinder flameout. At the same time, eliminating the interference of 
lateral vibration and establishing reliable measurement datum are still the problem 
requiring to be solved. Finally, the problem of system calibration should also be solved. 

5. The latest research direction of torsional vibration of internal combustion 
engine 
The traditional research methods of torsional vibration can not meet the needs on the precise 
study. In recent years, many scholars have continuously broadened research field and scope 
to further explore the various problems of shaft torsional vibration, making the research on 
torsional vibration closing to ideal level unceasingly. Some main research directions of 
torsional vibration in resent years are introduced as follows. 

5.1 Nonlinear research 
With the further research on torsional vibration of the shaft, many nonlinear vibration 
problems are met [51-55]. At the same time, crank shaft is a complex nonlinear system, thus it 
often needs to consider all sorts of complex nonlinear factors to construct a model that can 
reflect actual system. However, current relevant studies are mostly on single degree-of-
freedom nonlinear vibration problems that considers single factor, which obviously cannot 
meet the need on  the accurate calculation of crankshaft vibration. Therefore, it is necessary 
to further consider the crankshaft nonlinear vibration problems with multiple nonlinear 
factors, multi-degree-of-freedom and even continuous mass distribution. In the current 
calculation models, equivalent moment of inertia (constant) is usually adopted to consider 
the inertia of piston and connecting rod. But in fact, the inertia of engine crank module is: 
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( )0 1 cos 2I I ε ϕ= ⎡ − ⎤⎣ ⎦  

Where ε is variable inertia coefficient, a value below 1. We can see from the formula, the 
moment of inertia of crank component is a variable related with rotation angle. Sheng Gang 
[56] researched on the solution methods of some simplified models of single cylinder engine 
and established the equation of motion of crankshaft vibration of multi-cylinder engine 
under the condition of considering variable inertia. At the same time, in literature [1], the 
problems of variables caused by machining error and assembling error were also 
considered. In literature [57], forward and inverse Fourier transformation was applied to 
numerically solve nonlinear torsional vibration system. While Lin Ruilin [58] took the diesel 
engine shaft with a third-order rigidity component as research object, deduced the 
calculation formula and numerical calculation formula iterative procedure for solving 
periodic response of nonlinear torsional vibration by incremental harmonic balance method 
(IHB). This method is used to solve linear and nonlinear torsional vibration response of 
diesel engine shaft. Compared with the existing methods, it is more effective to solve strong 
nonlinear vibration response. What’s more, it has virtues of less operation time and accurate 
calculated result.  
The discussion about nonlinear components is mainly concentrated on the non-linear shock 
absorber, coupling and other components. Literature[59] of as early as 1987 analyzed the 
nonlinear problems of diesel engine shaft with piecewise linear components (cylindrical 
spring-loaded buffers), and calculated vibration response of shaft by step-by-step 
integration method. Gong Xiansheng[55] introduced theoretical and experimental research on 
the calculation method of steady state vibration response of marine propulsion shafting 
with hysteretic nonlinear coupling subjected to eccentric mass exciting force action. 
Farshidianfar [60] solved nonlinear problems of driving shaft by substructure modeling, and 
compared the results with the results of whole structure modeling. 
The research on nonlinear torsional vibration has made many important achievements [50]. 
But so far, the majority of nonlinear torsional vibration problems are still analyzed by some 
approximate methods or by ignoring nonlinear factors, in most cases, the results obtained 
have greater errors compared with actual results. Therefore, there are still many problems 
waiting to be solved in further exploring the nonlinear problem, mainly including: 
1. The modeling, system parameters identification method and test of complex nonlinear 

torsion vibration problems; 
2. Accurate solving methods for multi-degree-of-freedom strong nonlinear torsional 

vibration problems; 
3. Self-excited vibration of complex nonlinear torsional vibration system; 
4. Decoupling, numerical calculation and optimization methods of complex nonlinear 

structure. 

5.2 Coupling vibration analysis 
Torsional vibration of shaft has huge harm on the system, so people paid attention to and 
researched on it at very early period. However, many phenomenon produced by vibration 
in practice need to take longitudinal/bending/tortional vibration together into account. The 
bending vibration caused by unbalanced mass has certain weight on the torsional direction 
and can couple to the torsional vibration; on the other hand, torsion also has certain weight 
on horizontal and vertical directions, thus couples to the bending vibration. In recent years, 
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significant progress has been made in the aspects of theoretical calculation method and 
testing technology of longitudinal/bending/tortional coupling vibration. 
Li Bozhong [62] discussed about the axial vibration problems caused by torsional vibration 
and established a relatively simple analysis model for this kind of model. In the following 
two literatures[63,64] of same series, the longitudinal twist coupling vibration was tested and 
further analyzed and the coupled vibration model was established, and the model 
calculation was compared and analyzed with actual measurement. In paper [65], the author 
put forward a kind of spring - mass model with non-linear rigidness being used in 
calculating torsional - vertical coupled vibration of engine shaft. It explained the doubled-
frequency problem of the torsional - longitudinal coupling, and also revealed the presence 
of quadruple frequency and octuple frequency in the longitudinal - torsional coupled 
response. It is more reasonable than just simply giving an assumption doubled-frequency 
excitation torque in the right of the motion equation. Zhang Yong and Jiang Zikang[66,67,68] 
adopted distributed mass model in analyzing bending - torsional coupling vibration of 
shaft, which divided the actual unit shaft system structure into several sections with equal 
diameter according to orders in simplifing, treated each segment as continuous mass, and 
listed  the vibration differential equation of each segment, then united them to solve. Finally, 
some results of the analysis for bending - torsional coupling vibration of shaft by numerical 
method were given. In literature [69], system matrix model was established for longitudinal 
twisting coupling vibration of shaft, whose general rule of coupling vibration was studied 
based on the calculation and analysis of the practical examples of longitudinal twisting 
coupling vibration of shaft. In this paper, the test equipment used for measuring coupling 
vibration is only eddy current sensor for non-contact measuring the condition of axis 
vertical vibration. In contrast, multi-dimensional measurement is relatively rare.  
Okamura[70] and Shen Hongbin[ 71] used the longitudinal / bending / tortional vibration 
test device in all research processes of shaft vibration. This kind of measuring device can 
acquire three-dimensional vibration signals simultaneously. As shown in figure 5, an 
electromagnetic sensor (measuring torsional vibration signal) and three acceleration sensors 
(of which, one measuring longitudinal vibration signals and the other two measuring 
bending vibration signals) are mounted on its shell. It shows that testing technology has also 
been developed from single parameter measurement to multi-parameter measurement 
method. 
 

 
Fig. 5. Three-dimensional torsional vibration measurement schematic diagram 
For the research of torsional vibration with coupling vibration and transversal vibration, the 
current research level is far insufficient. Especially in the study of theoretical models, 
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traditional method can not unify the physical model and mathematical model of coupling 
vibration simultaneously. In view of this, the future research on coupling vibration can 
roughly focus on the following aspects: 
1. Mechanism research on coupling vibration and relay relation of mutual excitation; 
2. Model unification and solve using universal algorithm;  
3. Precise treatment of measuring equipment, long distance measurement and the 

implementation of long-term test, etc. 

5.3 The analysis of torsional vibration response based on multi-body dynamics of soft 
body crank shaft 
The forces on engine are very complex. Traditional analysis method is to calculate rotation 
inertia and reciprocating inertia produced by each force based on the motion analysis of 
each component, then combine them with the maximum combustion pressure of gas to 
solve the force on the main body and excitation force of shaft vibration. This is a very 
complicated process[73]. By using mechanical system simulation software ADAMS, by 
establishing crankshaft multi-body dynamics model including pistons, connecting rod, 
crankshaft and flywheel, we can not only calculate the motion law and the force among each 
component, but can also further analyze balance and vibration. Due to the interaction 
between inertial load and transverse bending deformation of shaft and the coupling 
behavior with lubrication problem, the bearing load problem based on rigid body dynamics 
becomes complicated, and there exist errors in calculation precision. If transforming engine 
crankshaft into flexible body, the tiny deformation can guarantee the completely accurate 
dynamic equation to deformation generalized coordinates first-order items. In order to 
sufficiently study the effect of crankshaft flexible body on the calculation results of 
dynamics, based on the finite element analysis of crankshaft system and by establishing 
rigid-flexible coupling multi-body dynamics system model with multiple degrees, Liang 
Xingyu and Shu Gequn[72] analyzed the torsional vibration response of crankshaft system 
that constitutes main flexible body, and obtained the time history response of system 
dynamics, and then made assessment on the power quality and safety of the system. Then it 
measured the torsional vibration of the crankshaft free end of an inline four cylinder diesel 
engine with a newly developed test device. Through calculation and comparison between 
sub-harmonic analysis of test results, both reflected higher equality, and explained the 
correctness of rigid-flexible coupling multi-body dynamics system model. 

5.4 The method of compensating divisional error in shafts torsional vibration 
measurement and program implementation [74] 
Now non-contact measurement method are generally used for torsional vibration 
measurement, namely, by using repeated structure in the shaft, pulses are produced in non-
contact sensor, and the interval dimension reflects the transient angular velocity dimension 
of the shaft. The shaft torsional vibration information can be obtained by processing interval 
data of the pulses. When measuring torsional vibration by this method, the indexing error of 
the shaft repeated structure directly influences the precision of measurement results. If 
indexing error is very great, the measurement results will have serious distortion. In the 
measurement of torsional vibration by non-contact measurement method in practice, 
selected sensors mainly include photoelectric encoder, hall sensor and photoelectric sensor. 
The three kinds of sensors in practical measurement have their advantages and 
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disadvantages.  Photoelectric encoder has large indexing number and small indexing error, 
so its measurement is more accurate. But its installation is inconvenient and it requires using 
shaft coupling to connect with measured shaft. If encoder shaft is eccentric with measured 
shaft after installation, transmission eccentric error will be introduced[75]. Hall sensor 
requires gearing disc with equal division to measure. Since the teeth number of equal 
division disc is usually less than the indexing number of encoder, and gear disc has certain 
indexing error in processing, its accuracy is lower than that of encoder. But its installation is 
convenient. It can be directly installed on the measured shaft, or can directly measure by 
gear disc on the shaft without additional modification on the shaft. The use of photoelectric 
sensor is of the most convenience. It needs only uniformly pasting a certain number of 
reflective strips on the component with circular surface of the shaft. If the shaft is very thick, 
those reflective strips can be directly pasted on the shaft. However, currently, the reflective 
strips can only be manually pasted. Great degree error will definitely occur leading to the 
distortion of measurement results. So in the actual torsional vibration test, if the indexing 
error of selected repeated structure can not be ignored, such as selected manually pasted 
turntable of reflective strips, test results should be dealt with to compensate for the effects of 
indexing error, then correct torsional vibration information can be calculated. Guo Wei-dong 
[74] described the compensation principle of indexing error in detail and listed the 
compensation program of indexing error compiled based on LabVIEW. So we could find out 
from test results that the data curves after the compensation of indexing error became 
smooth, and the effect that indexing error on measured results is obviously reduced and test 
result is more accurate. 

6. Control technologies in torsional vibration of internal combustion engine 
For the internal combustion engine with reciprocating motion, due to the property of 
periodical work, the torque on the shaft is a periodic compound harmonic torque, and then 
forms excitation source. When the frequency of the excitation source is equal to the inherent 
vibration frequency, resonance phenomenon will occur, and torsional vibration will be 
subjected to huge dynamic amplification effect, then  the torsional stress on the shaft greatly 
increases, leading to various accidents on the shaft, and even fracture. These are the causes 
and consequences of torsional vibration.  
To avoid the destructive accident of torsional vibration of internal combustion engine, it’s 
not only required to conduct detailed calculation of torsional vibration in design phase, 
torsional vibration measurement is also required timely after manufacturing completion. 
This can not only check and modify the theoretical calculation results, but also detect and so 
as to solve the torsional vibration problems promptly. 
Based on the above analysis, main vibration control technology includes two parts: study on 
the avoidance of vibration and on shock absorber. 

6.1 Study on the avoidance of vibration 
If great torsional vibration does exist on internal combustion engine according to the 
calculation of and actual test on torsion vibration, proper measures shall be taken to avoid 
or remove it. 
There are a lot of preventive measures for avoiding torsional vibration [61], classified roughly 
into the following two methods. 
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6.1.1 Frequency adjustment method [2, 76] 
According to torsional vibration characteristics, when the frequency of excitation torsional 
vibration is equal to some inherent frequency nw of torsional vibration system, extremely 
severe dynamic amplification phenomenon will occur, namely resonance phenomenon, thus 
the possibility of w = nw shall be avoided, i.e., avoidance of the most severe conditions of 
dynamic amplification means the possibility of avoidance of all consequences caused by 
excessive torsional vibration. The basic concept of this method is that let w actively avoid nw. 
The main measures of this kind of method include: inertia adjustment method and flexibility 
adjustment method, etc. By adjustment, let the natural vibration frequency of the system 
itself avoid excitation frequency. Reduce vibration stress to be within the instantaneous 
allowable stress range, thus avoid the damage on engine by bigger torsional vibration. This 
method is one of the most widely applied measures in torsional vibration prevention 
measures, not only because of it being a simple and feasible measure, but also because of it 
being effective and reliable when meeting the requirement of frequency modulation. But its 
disadvantage is small scale of frequency modulation, which restricts its practical application. 

6.1.2 Vibration energy deducing method [23] 
Incentive torque is the power source causing torsional vibration. Since the input system 
energy of incentive torque is the source of maintaining torsional vibration., if  the vibration 
energy of input system can be reduced, the magnitude order of torsional vibration can also 
be reduced immediately. One way is to change the firing sequence of internal combustion 
engine. When the dangerous torsional vibration is deputy critical rotation speed within 
machine speed range, this method might be used to reduce the dangerous torsional 
vibration and reduce the risk degree. The second method is to change crank arrangement. 
Deliberately choosing unequal interval firing in  multi-cylinder engine and appropriately 
choosing crank angle to change crank arrangement can let some simple harmonic torsional 
vibration in any main-subsidiary critical speed counteract mutually to avoid dangerous 
torsional vibration. The third method is to choose the best relative position between crank 
and power output device, make the disturbance torque between them counteract mutually, 
which can reduce the torsional vibration of the crankshaft. 

6.1.3 Impedance coordination method 
Considering the complexity of solving above problems by the conventional dynamics 
method, energy wave theory can be used to solve this problem. According to energy wave 
theory and by coordinating the impedance of various component loops, resonance can be 
avoided to realize the target of reducing vibration intensity. Impedance coordination 
method can modify the inferior design in design phase, or design directly correct 
transmission shaft system, to ensure the shaft working with sound dynamic characteristics 
without resonance and reducing dynamic load. 

6.2 Study on shock absorber 
As is known to all, engine installed on shock absorber can greatly reduce the vibration 
transmitted to the foundation. Likewise, torsional vibration can also be eliminated before it 
reaches the foundation. If vibration reducing device is installed on the front head of the 
crankshaft of the engine, then shock absorber will absorb the torsional vibration of rotating 
shaft generated by engine. It shows the important role of shock absorber in internal 
combustion engine system. The technical requirements on shock absorber are very high, 
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mainly including: elastic material strength should be reliable in use and storage, the fixation 
with metal should be firm, rigid fluctuation range in installation stage should be small, and 
technical characteristics do not change with time. 
Now, main shock absorbers include the following kinds: dynamic shock absorber, damping 
shock absorber and dynamic-damping shock absorber. 

6.2.1 Dynamic shock absorber [2, 23, 77] 
This kind of shock absorber is connected with crankshaft by spring or short shaft. By the 
dynamic effect of shock absorber at resonance, an inertia moment with the size and 
frequency same with excitation torque, but direction opposite to excitation torque is produced 
at the vibration reduction location to achieve the purpose of vibration reduction. This kind 
of shock absorber doesn’t consume the energy of the shaft. They can be divided into two 
types: one type is constant fm dynamic shock absorber, namely undamped elastic shock 
absorber, shown in the schematic of figure 6, and the other type is variable fm dynamic 
shock absorber, such as undamped tilting shock absorber, drawing as shown in figure 7. 
 

 
Fig. 6. Undamped elastic shock absorber schematic diagram 
 

 
Fig. 7. Undamped tilting shock absorber schematic diagram 
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6.2.2 Damping shock absorber 
Damping shock absorber achieves the purpose of vibration reduction by damping 
consuming excitation energy (shown in schematic diagram 8).The main type is silicone oil 
damper[78,79], whose shell is fixed to the crankshaft, high viscosity silicone oil is filled 
between ring and shell. When the shaft is under torsional vibration, the shell and the 
crankshaft vibrate together, and the ring moves relatively with the shell due to inertia effect. 
Silicone oil absorbs vibration energy by friction damper, thus reduce vibration for the 
torsional vibration system. This kind of shock absorber is widely used with simple structure, 
good effect of vibration isolation and reliable and durable performance. 
 

 
Fig. 8. Damping shock absorber schematic diagram 

6.2.3 dynamic-damping shock absorber 
Dynamic damping shock absorber features both of the above effects, such as rubber flexible 
shock absorber [80], rubber silicone oil shock absorber, silicone oil spring shock absorber [81], 
etc., shown in schematic diagram 9. Theoretically, the effect of dynamic damping shock 
absorber is the best, since it can not only produce dynamic effect by elastic, but also 
consume excitation energy by damping. But the elastic elements, such as springs and 
rubber, etc., that connect the shock absorber and crankshaft often work under great 
amplitude and high stress, thus the process is relatively complex and the cost is higher. 
 

 
Fig. 9. Dynamic-damping shock absorber schematic diagram 



Progress and Recent Trends in the Torsional Vibration of Internal Combustion Engine   

 

263 

6.2.4 Study on new shock absorber  
Along with the deepening of the research on shock absorber, many new shock absorbers 
have appeared. Several typical kinds are listed as below: 
Yan Jiabin [82] proposed an elastic metal shock absorber, which fixed two disks connected 
with elastic materials at the ends of the crankshaft. disks are tightened in the way that one 
disk rotates in the opposite direction of the other disk (see figure 10). If loosen both disks 
simultaneously, they will complete torsional vibration with low amplitude, till stop. At this 
moment, one section of the shaft rotates in one direction, and another section of the shaft 
rotates in the other direction. In this case, one end face of the crankshaft will produce 
displacement. Due to the effect of vibration absorption, the vibration will proceed with 
reduced amplitude but constant speed, which depends on the internal friction or delayed 
quantity of elastic material. There are three kinds of elastic shock structure of shock 
absorber: welding metal elastic elements, combination elastic metal components and 
welding-combination elastic metal elements. Welding-combination elastic metal elements 
consist of driving and inertia members that connect each other with elastic material. This 
kind of shock absorber is suitable for application with simple structure and convenient 
maintenance. 

 
Fig. 10. Monolayer thin-type elastic metal shock absorber 
Huo Quanzhong [83] and Hao Zhiyong[84] introduced the research on driving control shock 
absorber. Figure 2 is the diagram of the shock absorber. The shock absorber itself is similar 
to a dc motor, whose stator and the shell of the shock absorber compose as a whole entity, 
and rotor is connected with the shell by radial leaf spring, forming a dynamic shock 
absorber. The shell of the shock absorber is fixed on the main vibration body. According to 
the conditions of main vibration body, the regulation apparatus produces control signals 
with fixed size, phase and frequency, which, by power amplifying, make armature generate 
control torque (namely, electromagnetic torque). Active torsional vibration shock absorber is 
feasible both in theory and practice. What’s more, its damping effect is better than that of 
dynamic shock absorber. 
Liu Shengtian [85] proposed a double-mass flywheel torsional vibration shock absorber, 
which was a new type of torsional vibration shock absorber occurred in the middle of 
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1980’s. The double-mass flywheel torsional vibration shock absorber at early period was to 
remove torsional vibration absorber from the clutch driven plate, place it among engine 
flywheels, thus double-mass flywheel torsional vibration shock absorber was formed. The 
basic structure of double-mass flywheel torsional vibration shock absorber has three major 
parts, i.e. the first mass, the second mass and the shock absorber between the two masses. 
Relative rotation can exist between the first and the second masses, which are connected 
with each other by shock absorber. 
 

 
Fig. 11. Active control shock absorber functional diagram 
Double mass flywheel torsional vibration shock absorber can very effectively control 
torsional vibration and noise of automobile power-transmission system. Compared with the 
traditional clutch disc torsional vibration shock absorber, its effect of damping and isolation 
of vibration is not only better within the common engine speed range, it can also realize 
effective control over idle noise. After developing the double-mass flywheel torsional 
vibration shock absorber, the author also introduced hydraulic pressure into shock absorber 
and developed hydraulic double-mass flywheel shock absorber [86], which is the latest 
structure style in the family of double-mass flywheel torsional vibration shock absorber. It 
lets the technology of car powertrain and noise control of torsional vibration step further 
into the direction of excellent performance and simple structure. 
 

 
Fig. 12. Double-mass flywheel torsional vibration shock absorber 
M Hosek, H Elmal [87] introduced the design process of a kind of FM tilting shock absorber, 
which was developed based on centrifugal tilting shock absorber, and was named as 
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centrifugal delay type resonator by the author. Based on the study of centrifugal tilting 
shock absorber, the author installed a sliding globule between the end of pendulum and the 
rotary table, thus, when the rotation of the shaft fluctuates, the pendulum will delay duet to 
the effect of damper, while the sliding globule will coordinate actively with the changes. By 
this shock absorber, minor disturbance can be quickly completely eliminated; and 
broadband disturbance, especially the disturbance that obviously increases speed, also can 
be completely eliminated. 
 

 
Fig. 13. Centrifugal delay resonator 
Shu Gequn [88,89] presented a research approach of coupling shock absorber. Since torsion 
vibration is the most dangerous vibration mode in shaft vibration, torsional vibration shock 
absorber is the main damping device, and for coupling damping,  bending shock absorber 
or lateral shock absorber will be installed on the basis of torsional vibration shock absorber. 
Through the experimental research, the author concluded that, compared with single torsion 
vibration damper, after installing bending vibration shock absorber, due to the effective 
damping act on shaft bending vibration, twist/bending shock absorber can control engine 
vibration and noise effectively. Normally, the parameters setting of bending vibration shock 
absorber depends on the bending vibration model of crankshaft, but due to its effect on 
torsion vibration reduction, the design of coupling shock absorber should consider its 
damping effect on torsional vibration and bending vibration of the shaft. Shu Gequn [90] 

investigated the effect of bending shock absorber on the performance of twist/bending 
shock absorber by theoretical analysis. 
Through the above analysis, we can see that torsional vibration absorber is being developed 
towards the aspects of broadband, high efficiency, being timely, multi-function, etc. So 
research on torsional vibration shock absorber  still has considerable prospect, worthy more 
efforts from scholars. The following aspects can be studied and explored. 
1. Study on active control of torsional vibration of internal combustion engine; 
2. Study on shock absorber with coupling between torsional vibration with longitudinal 

vibration and transverse vibration, etc; 
3. Study on integrating torsion vibration absorber with clutch or other components of 

internal combustion engine; 
4. Finite element optimization design of torsional vibration shock absorber [91]. 
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7. Utilization of torsional vibration of internal combustion engine crankshaft 
Restricted by various factors, we can only decrease the degree of torsional vibration, while 
the occurrence of torsion vibration is inevitable. Torsional vibration is directly related to the 
various incentive factors of internal combustion engine, such as the combustion sequence of 
various cylinders, the change of crankshaft inertia and the sudden change of loads, etc. So 
how to use torsional vibration signals to monitor the changes of these quantities is the main 
purpose of utilizing torsional vibration. The utilization of torsional vibration is mainly 
embodied in identifying faults by torsional vibration signals[92, 93]. 

7.1 The progress of torsional vibration utilization 
The diagnosis of diesel engine faults by the change of torsional vibration parameters of the 
shaft is a new fault diagnosis technology. Torsional vibration signals of diesel engine shaft 
often have strong repeatability and regularity, and fault diagnosis by torsional vibration 
signals is used to diagnose cylinder flameout. Diagnosing cylinder flameout fault by 
torsional vibration signal of diesel engine has been developed in recent years. The work 
process fault of diesel engine cylinder directly affect the changes of torsional vibration 
characteristics, and such changes of torsional vibration parameters also reflect directly the 
work state of cylinders. Torsional vibration signals of diesel engine shaft can be used as the 
basis for fault diagnosis. Ying Qiguang explored this issue at the beginning of 1990's of the 
20th century, who thought that diagnosis of the technical condition and fault of diesel 
engine by the response characteristics of the frequency, amplitude (and phase) and damping 
of shaft torsional vibration is a new and promising fault diagnosis technology. The author 
judged cylinder flameout fault by the comparison of amplitude size between normal 
torsional vibration and in the circumstance of cylinder flameout. This method is convenient 
and intuitive. However, it requires normally torsional vibration amplitude figure for 
comparison under the same conditions, so its application is limited [94]. In the application of 
fault diagnosis by torsional vibration, Lin Dayuan and Shu Gequn studied on the sensitivity 
of various torsional vibration modals and frequency response characteristics on crack by 
torsional vibration modal experiment, who recommended modal damping, damping 
attenuation factor, frequency response function modal and self-spectral modal as the 
optimum evaluation factors for the crack fault, and further discussed the change law 
between crack and the above evaluation factors, thus provided an effective method of 
intermittent diagnosis for the engine stops[95,96]. 

7.2 The development direction of torsional vibration utilization 
Fault diagnosis by torsional vibration signal of internal combustion engine crankshaft is a 
new type of fault diagnosis theory. Developing this theory towards new application field is 
an inevitable trend in internal combustion engine industry. Thus, the development direction 
of torsional vibration is mainly oriented to broader fault diagnosis fields and continuously 
make this achievement become more mature and its application become more skilled. 

7.3 Sub-conclusions 
1. Damping technology becomes more mature. 
2. Multi-function shock absorbers are innovated constantly. 
3. Application fields of torsional vibration become more and more wide. 
4. Modern design theory is used unceasingly in control field. 
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8. Conclusions 
Research on torsional vibration of internal combustion engine will become more and more 
deepen with the development of science and technology. Corresponding new research 
methods will appear in modal building, solving, test and control of the shaft model, making 
research contents more wide, method more scientific, object more specific and application 
more direct. 
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1. Introduction      
Large electrical machines, which operate at high speeds, are often designed with flexible 
shafts and sleeve bearings, because of the high circumferential speed of the shaft journals. 
Especially for industrial applications, the foundations of this kind of machines are often 
designed as soft foundations (Fig. 1), because of plant specific requirements. Therefore often 
a significant influence of the soft foundation on the vibrations exists (Gasch et al., 1984; 
Bonello & Brennan, 2001). Additionally to the mechanical parameters – such as e.g. mass, 
mechanical stiffness and damping – an electromagnetic field in the electrical machine exists, 
which causes an electromagnetic coupling between rotor and stator and also influences the 
natural vibrations (Schuisky, 1972; Belmans et al., 1987; Seinsch, 1992; Arkkio et al., 2000; 
Holopainen, 2004; Werner, 2006). The aim of the chapter is to show a plane vibration model 
for natural vibration analysis, of soft mounted electrical machines, with flexible shafts and 
sleeve bearings, especially considering the influence of a soft foundation and the 
electromagnetic field. Based on a simplified plane vibration model, the mathematical 
correlations between the rotor and the stator movement, the sleeve bearings, the 
electromagnetic field and the foundation, are shown. For visualization, the natural 
vibrations of a soft mounted 2-pole induction motor (rated power: 2 MW) are analyzed 
exemplary, especially focusing on the influence of the foundation, the oil film stiffness and 
damping and of the electromagnetic field. 
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2. Vibration model             
The vibration model is a simplified plane model (Fig. 2), describing the natural vibrations in 
the transversal plane (plane y, z) of a soft mounted electrical machine. Therefore no natural 
vibrations regarding the translation in the x-axis, the rotation at the y-axis and the rotation at 
the z-axis are considered. The plane model is based on the general models in (Werner, 2008; 
Werner, 2010), but especially focusing here on the natural vibration analysis.  
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Fig. 2. Vibration model of a soft mounted electrical machine 

The model consists of two masses, rotor mass mw, concentrated at the shaft – rotating with 
angular frequency Ω – and stator mass ms, which has the inertia θsx and is concentrated at 
the centre of gravity S. The moments of inertia of the rotor are not considered and therefore 
no gyroscopic effects. Shaft journal centre point V describes the movement of the shaft 
journal in the sleeve bearing. Point B is positioned at the axial centre of the sleeve bearing 
shell and describes the movement of the bearing housing. The rotor mass is mechanically 
linked to the stator mass by the stiffness of rotor c and the oil film stiffness matrix Cv and the 
oil film damping matrix Dv of the sleeve bearings, which contain the oil film stiffness 
coefficients (cyy, cyz, czy, czz) and the oil film damping coefficients (dyy, dyz, dzy, dzz) (Fig. 3). 
The cross-coupling coefficients – stiffness cross-coupling coefficients cyz, czy and damping 
cross-coupling coefficients dyz, dzy – cause a coupling between vertical and horizontal 
movement and the vertical oil film force Fz and the horizontal oil film forces Fy (Tondl, 1965; 
Glienicke, 1966; Lund & Thomsen, 1978; Lund & Thomsen, 1987; Gasch et al. 2002; Vance et 
al., 2010), which is mathematically described in (1).  
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For cylindrical shell bearings the cross-coupling stiffness coefficients are usually not equal 
(czy ≠ cyz). This leads to an asymmetric oil film stiffness matrix Cv, which is the reason that 
vibration instability may occur (Tondl, 1965; Glienicke, 1966; Lund & Thomsen, 1978; Lund 
& Thomsen, 1987; Gasch et al. 2002; Vance et al., 2010). In this model it is assumed that the 
drive side and the non drive side values are the same, and the bearing housing and end 
shield stiffness matrix Cb is also assumed to be same for the drive side and non drive side. 
The stiffness and damping values of the oil film are calculated by solving the Reynolds-
differential equation, using the radial bearing forces, which are caused by the rotor weight 
and static magnetic pull. The stiffness and damping values of the oil film are assumed to be 
linear regarding the displacements of the shaft journals relative to the bearing housings. 
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Fig. 3. Oil film forces  

Damping of the bearing housings and the end shields are not considered because of the 
usually low damping ratio. For electrical machines, an additional magnetic stiffness matrix Cm 
between the rotor and the stator exists, which describes the electromagnetic coupling between 
the rotor and stator. The magnetic spring constant cm has a negative reaction. This means that a 
radial movement between the rotor and stator creates an electromagnetic force that tries to 
magnetize the movement (Schuisky, 1972; Belmans et al., 1987; Seinsch, 1992; Arkkio et al., 
2000; Holopainen, 2004; Werner, 2006). Here the magnetic spring coefficient cm is defined to be 
positive, which acts in the direction of the magnetic forces. Electromagnetic field damping 
effects, e.g. by the rotor cage of an induction motor, are not considered in this paper. The stator 
structure is assumed to be rigid when compared to the soft foundation. The foundation 
stiffness matrix Cf and the foundation damping matrix Df connect the stator feet, FL (left side) 
and FR (right side), to the ground. The foundation stiffness and damping on the right side is 
assumed to be the same as on the left side. The stiffness values cfy and cfz and the damping 
values dfy and dfz are the values for each machine side. The coordinate systems for V (zv; yv) 
and B (zb; yb) have the same point of origin, as well as the coordinate systems for the stator 
mass ms (zs; ys) and for the rotor mass mw (zw; yw). They are only shown with an offset to show 
the connections through the various spring and damping elements. 

3. Natural vibrations        
To calculate the natural vibrations, it is necessary to derive the homogenous differential 
equation, which is assumed to be linear.  
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3.1 Derivation of the homogenous differential equation system   
The homogenous differential equation system can be derived by separating the vibration 
system into four single systems – (a) rotor mass system, (b) journal system, (c) bearing house 
system and (d) stator mass system – (Fig. 4).  
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Fig. 4. Vibration system, split into four single systems 

The equilibrium of forces and moments for each single system (Fig. 4) leads to following 
equations for each single system: 
- Rotor mass system (Fig. 4a): 

 ↑:           ( ) ( ) 0swmvwww =−⋅−−⋅+⋅ zzczzczm  (2) 

 →:         ( ) ( ) 0swmvwww =−⋅−−⋅+⋅ yycyycym  (3) 

- Journal system (Fig. 4b): 

 ↑:           ( ) ( ) ( ) ( ) ( ) 0
2 vwbvzybvzzbvzybvzz =−−−+−+−+− zzcyydzzdyyczzc  (4) 

 →:         ( ) ( ) ( ) ( ) ( ) 0
2 vwbvyybvyzbvyybvyz =−−−+−+−+− yycyydzzdyyczzc  (5) 

- Bearing house system (Fig. 4c): 

 ↑:           ( ) ( ) ( ) ( ) ( ) 0sbbzbvzybvzzbvzybvzz =−⋅−−+−+−+− zzcyydzzdyyczzc  (6) 

 →:         ( ) ( ) ( ) ( ) ( ) 0sbbybvyybvyzbvyybvyz =−⋅−−+−+−+− yycyydzzdyyczzc  (7) 
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- Stator mass system (Fig. 4d): 

 ↑:         ( ) ( ) 02 fLffLffRffRfsbbzswmss =⋅−⋅−⋅+⋅+−⋅−−⋅+⋅ zdzczdzczzczzczm zzzz  (8) 

 →:     ( ) ( ) 02 fLffLfyfRffRfsbbyswmss =⋅+⋅+⋅+⋅+−⋅−−⋅+⋅ ydycydycyycyycym yyy  (9) 

 
S :  ( ) ( ) 0fLffLfyfRffRffLffLffRffRfs =+++⋅−+++⋅+⋅Θ ydycydychzdzczdzcb yyyzzzzsx ϕ  (10) 

The equations (2)-(10) lead to a linear homogenous differential equation system (11) with 13 
degrees of freedom (DOF = 13), with the mass matrix Mo, the damping matrix Do and the 
stiffness matrix Co, which have the form 13x13.  

 0qCqDqM =⋅+⋅+⋅ oooooo  (11) 

The coordinate vector qo is a vector with 13 rows described by:  

 ( )Tswsws yyzzyyzzyyzz fLfRfLfRbvbvo ;;;;;;;;;;;; ϕ=q  (12) 

The linear homogenous differential equation system can be reduced into a system of 9 DOF, 
by considering the cinematic constraints between the stator mass and the machine feet. 

3.2 Kinematic constraints between stator mass and machine feet      
The kinematic constraints are derived for translation of the stator mass and for angular 
displacement of the stator mass and for the superposition of both. 

3.2.1 Kinematic constraints for translation of the stator mass 
If the stator mass centre S makes only a translation (zs, ys) without angular displacement  
(ϕs = 0) the kinematic constraints between stator mass centre S and the machine feet FL and 
FR can be described as follows:  

 szzz == fRfL ; syyy == fRfL  (13) 

3.2.2 Kinematic constraints for angular displacement of the stator mass  
If the stator mass centre S only makes an angular displacement (ϕs) without translation  
(zs = ys = 0) the kinematic constraints between the angular displacement (ϕs) of the stator 
mass centre S and the translation of the machine feet FL and FR are shown in Fig. 5.  
The displacements of the machine feet on the left side of the machine can be described as 
follows: 

 βϕβ sin
2

sin2sin s
fLfL ⋅⎟

⎠
⎞

⎜
⎝
⎛⋅⋅−=⋅−= luz  (14) 

 βϕβ cos
2

sin2cos s
fLfL ⋅⎟

⎠
⎞

⎜
⎝
⎛⋅⋅−=⋅−= luy  (15) 

The angle β is described by: 



 Advances in Vibration Analysis Research 

 

278 

 

S

FL’

fLy
fRy

fLz

fRz

sϕ sϕ

ζ

Z W

b

h

b

l l
l l

Ψ Ψ

FL
FR’

FR

fLy

fLz Ψβ

α
⋅

Lτ fLu

sϕ

Z:

FL’

FL

fRy

fRz fRu

Rτ

⋅γ

sϕ

W:

ζ

FR’

FR

S

FL’

fLy
fRy

fLz

fRz

sϕ sϕ

ζ

Z W

b

h

b

l l
l l

Ψ Ψ

FL
FR’

FR

fLy

fLz Ψβ

α
⋅

Lτ fLu

sϕ

Z:

FL’

FL

fRy

fRz fRu

Rτ

⋅γ

sϕ

W:

ζ

FR’

FR

 
 

Fig. 5. Angular displacement ϕs of the stator mass centre S 

 ΨΨ +=+=−°=
2

90 s
L

ϕταβ  (16) 

The displacements of the machine feet on the right side of the machine can be described as 
follows: 

 γϕγ sin
2

sin2sin s
fRfR ⋅⎟

⎠
⎞

⎜
⎝
⎛⋅⋅=⋅= luz  (17) 

 γϕγ cos
2

sin2cos s
fRfR ⋅⎟

⎠
⎞

⎜
⎝
⎛⋅⋅−=⋅−= luy  (18) 

The angle γ is described by: 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +−°=+−°=

2
9090 s

R
ϕζτζγ  (19) 

For small angular displacements ϕs of the stator mass centre S (ϕs << Ψ and ϕs << ζ) 
following linearizations can be deduced: 

 
22

sin ss ϕϕ
→⎟

⎠
⎞

⎜
⎝
⎛  (20) 

 ΨΨ ≈→+= βϕβ
2

s  (21) 

 ζγϕζγ −°≈→⎟
⎠
⎞

⎜
⎝
⎛ +−°= 90

2
90 s  (22) 

With these linearizations the displacements of the machine feet on the left side and on the 
right side can be described as follows: 
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 ssfL sin ϕϕ ⋅−=⋅⋅−= bΨlz  (23) 

 ssfL cos ϕϕ ⋅−=⋅⋅−= hΨly  (24) 

 ( ) ssfR 90sin ϕζϕ ⋅=−°⋅⋅= blz  (25) 

 ( ) ssfR 90cos ϕζϕ ⋅−=−°⋅⋅−= hly  (26) 

3.2.3 Kinematic constraints for superposition of translation and angular displacement  
For superposition of the translation and angular displacement of the stator mass centre S 
following kinematic constraints can be derived: 

 ssfL ϕ⋅−= bzz  (27) 

 ssfL ϕ⋅−= hyy  (28) 

 ssfR ϕ⋅+= bzz  (29) 

 ssfR ϕ⋅−= hyy  (30) 
 

Therefore, it is possible to describe the translations of the machine feet (zfL; yfL; zfR; yfR) by the 
movement of the stator mass (zs, ys, ϕs). 

3.3 Reduced homogenous differential equation system      
With the kinematic constraints (27)-(30) the differential equation system (11) – with 13 DOF 
– can be reduced to a differential equation system of 9 DOF. By deriving the reduced 
differential equation system, it is necessary to consider, that the negative vertical 
displacement of the machine foot FL, related to the coordinate system in Fig. 4 is considered 
in the direction of the vertical forces in FL. Therefore the displacement zfL has to be described 
negative zfL → - zfL, as well as the velocity żfL → - żfL.  With this boundary condition and with 
the kinematic constraints (27)-(30) the equations for the stator system (8)-(10) become: 
 

 ↑:     ( ) ( ) 0222 sfsfsbbzswmss =⋅+⋅+−⋅−−⋅+⋅ zdzczzczzczm zz   (31) 

 →:   ( ) ( ) ( ) ( ) 0222 ssfssfsbbyswmss =⋅−⋅+⋅−⋅+−⋅−−⋅+⋅ ϕϕ hydhycyycyycym yy  (32) 

 
S :  0)(22)(22 s

2
fz

2
fysfys

2
fz

2
fysfyssx =⋅++⋅−⋅++⋅−⋅ ϕϕϕ bchcyhcbdhdyhdΘ  (33) 

 

Therefore, it is now possible to derive the reduced homogenous differential equation 
system, which only has 9 DOF: 

 0qCqDqM =⋅+⋅+⋅  (34) 

The mass matrix M and coordinate vector q are described by:  
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The damping matrix D is described by: 
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The stiffness matrix C is described by: 
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(37)
 

3.4 Solution of the reduced homogenous differential equation system 
The natural vibrations can be derived by solving the homogeneous differential equation 
(34). Therefore usually a complex ansatz is used.  So the homogeneous differential equation 
is described complex, with the vector q as a complex vector (underlined = complex value), 
the mass matrix M, the damping matrix D and the stiffness matrix C. 

 0qCqDqM =⋅+⋅+⋅   with: Tyyzzyyzz );;;;;;;;(
bvbvswsws ϕ=q   (38) 
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The complex ansatz – with the complex eigenvalue λ and the complex eigenvectors  h
q̂  –  

  te ⋅⋅= λqq ˆ  with:  Tyyzzyyzz )ˆ;ˆ;ˆ;ˆ;ˆ;ˆ;ˆ;ˆ;ˆ(ˆ
bvbvswsws ϕ=q  (39)  

leads to the eigenvalue equation: 

 0qMDC =⋅⋅+⋅+ ˆ][ 2λλ  (40) 

To get the complex eigenvalues λ, it is necessary to solve the determination equation:  

 0]det[ 2 =⋅+⋅+ MDC λλ  (41) 

This leads to a characteristic polynomial of 12th grade:  

 0
12

0
n =⋅∑

=

n

n

A λ  (42) 

With a numerical solution of this polynomial, n complex eigenvalues λn – with the real parts 
αn, which describe the decay of each natural vibration and the imaginary parts ωn, which 
describe the corresponding natural angular frequencies – can be calculated. The eigenvalues 
occur mostly conjugated complex ( j: imaginary unit → 12 −=j ):  

 nnn ωαλ ⋅±= j  (43) 

With the complex eigenvalues λn the complex eigenvectors  n
q̂ can be calculated. Therefore 

the natural vibrations can be described by:  

 t

n

ek ⋅

=

⋅⋅=∑ n

12

1
nn

ˆ λqq  (44) 

 

The factors kn can be used, to adapt the natural vibrations to the starting conditions. Using 
the calculated real part αn and the imaginary part ωn of each complex eigenvalue λn the 
modal damping Dn of each natural vibration mode can be derived (Kellenberger, 1987). 

 
2
n

2
n

n
n

ωα

α

+

−
=D  (45) 

3.5 Stability of the vibration system 
If the oil film stiffness matrix Cv of the sleeve bearings is non symmetric (czy ≠ cyz) – for e.g. 
sleeve bearings with cylindrical shell the cross-coupling coefficients of the stiffness matrix 
are mostly unequal (czy ≠ cyz )  – also the system stiffness matrix C (37) gets non symmetric. 
This may lead to instabilities of the vibration system (Gasch et al., 2002), which occur if the 
real part of one or more complex eigenvalues gets positive, leading to negative modal 
damping values (45). The oil film stiffness and damping coefficients are a function of the 
rotary angular frequency Ω of the rotor.  

  )(;)( ijijijij ΩddΩcc == with   i, j = z, y (46) 
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To find the limit of stability of the vibration system, the rotary angular frequency Ω has to be 
increased, until the real part of one or more complex eigenvalues becomes zero. Then the 
limit of stability is reached at the rotary angular frequency Ω = Ω limit. At the limit of stability 
the natural angular frequency of the critical mode becomes ωlimit and no damping exists 
(αlimit = 0).  So the critical complex eigenvalue at the limit of stability becomes:  

 limitlimit ωλ ⋅±= j with 0limit =α  (47) 

With this complex eigenvalue the complex eigenvector can be calculated. So the undamped 
natural vibration at the limit of stability can be described by:  

 tjtj ekek ⋅−−−⋅++ ⋅⋅+⋅⋅= limitlimit

limitlimitlimitlimitlimit
ˆˆ ωω qqq  (48) 

At the limit of stability, that means at the rotary angular frequency of Ωlimit, which 
represents the rotor speed nlimit (= Ω limit/2π), the undamped mode (with αlimit = 0) oscillates 
with the natural angular frequency of ω limit, as a self exciting vibration. 

4. Example        
In this chapter the natural frequencies of a 2-pole induction motor (Fig. 1), mounted on a 
rigid foundation and also mounted on a soft steel frame foundation, is analyzed.   

4.1 Data of motor, sleeve bearing and foundation    
The machine data, sleeve bearing data and foundation data are shown in Table 1. First the 
stiffness data of the foundation are chosen arbitrarily. The damping ratio Df of the steel 
frame foundation is assumed to be 0.02, which is common for a welded steel frame. 
 
Machine data Sleeve bearing data 
Rated power PN = 2000 kW Type of bearing Side flange bearing 
Number of pole pairs  p = 1 Bearing shell Cylindrical 
Rated voltage UN = 6000 V Lubricant viscosity grade ISO VG 32 
Rated frequency fN = 50 Hz Nominal bore diameter db = 110 mm 
Rated torque MN = 6.4 kNm Bearing width  bb = 81.4 mm 
Rated speed nN = 2990 r/min Ambient temperature  Tamb = 25°C 
Mass of the stator ms = 7200 kg Lubricant supply temp. Tin = 40°C 
Mass of the rotor mw = 1900 kg 
Moment of inertia of the stator Θsx = 1550 kgm2 

Mean relative bearing 
clearance (DIN 31698) Ψm = 1.6 ‰ 

Height of the centre of gravity h = 560 mm 
Distance between feet 2b = 1060 mm 

Foundation data 

Rotor stiffness c = 155.7 kN/mm Vertical foundation 
stiffness at each motor side cfz = 133 kN/mm 

Magnetic spring constant cm = 7.15 kN/mm Horizontal foundation 
stiffness at each motor side cfy = 100 kN/mm 

Vertical stiffness of bearing 
house and end shield cbz = 570 kN/mm 

Horizontal stiffness of bearing 
house and end shield cby = 480 kN/mm 

 
Damping ratio of the steel 
frame foundation Df = 0.02 

Table 1. Data of induction motor, sleeve bearings and foundation 
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4.2 Oil film stiffness and damping coefficients    
The oil film stiffness and damping coefficients of the sleeve bearings are calculated for each 
rotor speed in steady state operation, using the program SBCALC from RENK AG. 
 

 
Fig. 6. Oil film stiffness and damping coefficients for different rotor speeds 

4.3 Used FE-Program   
To calculate the natural vibrations and to picture the mode shapes the finite element 
program MADYN is used. A simplified finite element model is used (Fig. 7), which is based 
on the model in Fig. 2. The degrees of freedom of the nodes are chosen in such a way, that 
only movements in the transversal plane (y-z plane) occur.  
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Fig. 7. Finite element model  

Additionally the analytical formulas from chapter 3 could be validated with this finite 
element model, by comparing the calculated eigenvalues, calculated by the analytical 
formulas – which were solved by using the mathematic program MATHCAD – with the 
eigenvalues, calculated with the finite element program MADYN.  
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4.4 Natural vibrations; motor mounted on a rigid foundation 
Before the natural vibrations of the motor, mounted on the soft steel frame foundation, are 
analyzed the natural vibrations of the motor, mounted on a rigid foundation are calculated. 
Therefore the foundation stiffness values are assumed to be infinite high (cfz = cyz →  ∞ ).  

4.4.1 Natural vibrations at rated speed 
First the natural vibrations at rated speed are calculated. The mode shapes are pictured in 
Fig. 8. In the 1st mode the rotor mass – shaft centre point W - moves on an elliptical orbit, 
which is run through forwards. The semi-major axis of the orbit is about 34° shifted out of 
the horizontal axis. The orbit of rotor mass is larger than the orbits of the shaft journals. The 
orbits of the shaft journals – shaft journal points V – have the same orientation as the orbit of 
the rotor mass and are also run through forwards. The orbits of the bearing housing points B 
are much smaller than the orbits of the shaft journal points V, but are also run through 
forwards. Their semi-major axes are about 28° shifted out of the horizontal axis. Because of 
the infinite stiffness of the foundation no movement of the stator mass occurs. In the 2nd 
mode the semi-major axes of all orbits have the nearly the same orientation, shifted about 8° 
out of the horizontal axis. All orbits are run through forwards. In this mode the largest 
orbits are the orbits of the shaft journal points V. In the 3rd mode the semi-major axes of the  
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Fig. 8. Mode shapes, motor mounted on a rigid foundation, operating at rated speed (nN = 
2990 r/min) 
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shaft centre point W and of the shaft journal points V are shifted about 15° out of the vertical 
axis. The semi-major axes of the bearing housing points B are shifted about 20° out of the 
vertical axis. All orbits are run through backwards. In this mode the orbit of the shaft centre 
point W is much larger than the orbits of the shaft journal points V and the orbits of the 
bearing housing points B, which are nearly equal to each other. This leads to a strong 
bending of the rotor shaft with only small orbits in the sleeve bearings. 
The natural frequencies and the modal damping values are shown in Table 2. Because of the 
assumption of an infinite high foundation stiffness (cfz = cyz → ∞) only three natural 
vibrations occur with three natural frequencies f1, f2, f3 and three modal damping values D1, 
D2,D3. The modal damping values are here described in percentage. 
 

Modes 
n 

Natural 
frequency fn [Hz] 

Modal damping
Dn[%] 

1 33.15 5.31 
2 34.62 68.24 
3 41.17 3.82 

Table 2. Natural frequencies and modal damping, motor mounted on a rigid foundation, 
operating at rated speed (nN = 2990 r/min) 

4.4.2 Critical speed map  
In this chapter the natural frequencies and the modal damping for different rotor speeds are 
calculated and a critical speed map is derived (Fig. 9). 
Fig. 9 shows how the natural frequencies fn and the modal damping values Dn change with 
the rotor speed nr, caused by the changing of the oil film stiffness and damping coefficients.  
Where the rotary frequency (Ω/2π) meets the natural frequencies critical speeds regarding 
the 1x excitation may occur if the modal damping value is low at this rotor speed. Usually, if 
the modal damping value Dn is higher than 20% no critical resonance vibrations are 
expected and the rotor speed is usually not assumed to be a critical speed. Here two critical 
speeds have to be passed to reach the operating speed. The 1st critical speed occurs at about 
a rotor speed of 2070 r/min with a modal damping value of about 15%. The 2nd critical 
speed occurs at a rotor speed of 2475 r/min with a modal damping value of about 3.5%. Fig. 
9 shows that a separation margin larger than 15% for the critical speeds to the operating 
speed (2990 r/min) is given, which is required in many standards and specifications. Fig. 9 
shows additionally that limit of stability is reached at a rotor speed of about 3900 r/min. 
Here the modal damping of mode 1 gets zero.  

4.4.3 Stiffness variation map regarding the electromagnetic stiffness  
In this chapter the influence of the electromagnetic stiffness between the rotor and the stator 
on the natural frequencies is analyzed. Therefore the magnetic spring constant cm, which 
describes the electromagnetic stiffness between rotor and stator, is variegated by a factor kcm, 
called magnetic stiffness factor. The rated magnetic spring constant is cm,rated = 7.15 kN/mm 
(Table 1). The magnetic stiffness factor kcm is variegated in the range of 0…2 and the 
influence on the natural frequencies and modal damping values are calculated for operation 
at rated speed (Fig. 10). 
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Fig. 9. Critical speed map, motor mounted on a rigid foundation  

 Magnetic spring constant:      ratedm,cmm ckc ⋅=   (49) 

Fig. 10 shows that mode 1 and mode 3 are clearly influenced by the magnetic spring 
constant. Their natural frequencies and modal damping values change with the magnetic 
stiffness factor, whereas mode 2 is hardly influenced by the magnetic spring value. The 
reason is that the orbits of rotor mass are larger than the orbits of the shaft journals for mode 
1 and mode 3 (Fig. 8), contrarily to mode 2, where the orbits of the shaft journals are larger.   
Therefore the influence of the magnetic spring constant, which acts at the rotor mass, is 
higher for mode 1 and mode 3.   
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Fig. 10. Stiffness variation map regarding the electromagnetic stiffness, motor mounted on a 
rigid foundation, operating at rated speed (nN = 2990 r/min)   

4.5 Natural vibrations; motor mounted on a soft steel frame foundation  
After the natural vibrations of the rigid mounted motor are analyzed, the natural vibrations 
of the motor, mounted on a soft steel frame foundation, are now investigated. The 
foundation data are described in Table 1.  

4.5.1 Natural vibrations at rated speed 
Again, the natural vibrations at rated speed are calculated first. The natural frequencies are 
calculated once without considering of the foundation damping (Df = 0) and once with 
considering of the foundation damping (Df = 0.02). The mode shapes without considering 
foundation damping are pictured in Fig. 11, which can be assumed to be equal to the mode 
shapes with considering foundation damping.  
The first two modes are nearly rigid body modes of the soft mounted machine. Rotor and 
stator are nearly acting like a one-mass system. The orbits of the rotor and of the stator are 
nearly straight lines. In the 1st mode the rotor mass and the stator mass oscillate in phase to 
each other nearly in horizontal direction, while stator mass makes a lateral buckling at the x-
axis, in the same direction as its horizontal movement. In the 2nd mode the rotor mass and the 
stator mass also oscillate in phase to each other, but in vertical direction. Nearly no buckling of 
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Fig. 11. Mode shapes, motor mounted on a soft steel frame foundation (cfz = 133 kN/mm; cfy 

= 100 kN/mm), without considering foundation damping (Df =0), operating at rated speed 
(nN = 2990 r/min) 
the stator mass occurs. For the higher modes stator and rotor behave like a two- mass system 
and elliptical orbits of the rotor mass and stator mass occur. In the 3th mode the semi-major 
axes of orbits of the rotor mass, the bearing housings and the shaft journals are shifted about 
12° out of the horizontal axis, whereas the semi-major axis of the orbit of the stator mass is only 
shifted 5° out of the horizontal axis. All orbits are run through forwards. The rotor mass and 
the stator mass oscillate out of phase to each other, as well as the shaft journals to the bearing 
housings. The largest orbits are the orbits of the shaft journals, compared to the other orbits. 
Because of the large relative orbits between the shaft journals and the bearing housings, the 
modal damping of this mode is very high, due to the oil film damping of the sleeve bearings. 
In the 4th mode the semi-major axis of the orbit of the rotor mass is shifted about 14° out of the 
horizontal axis. The same is valid for the shaft journals, whereas the semi-major axis of the 
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stator orbit is shifted about 47° out of the horizontal axis. The semi-major axes of the orbits of 
the bearing housings are shifted about 62° out of the horizontal axis. All orbits are still run 
through forwards. In the 5th mode the semi-major axis of the orbit of the rotor mass is shifted 
about 12° out of the vertical axis. The other orbits lie nearly in vertical direction.  The stator 
mass and the rotor mass oscillate out of phase to each other. The orbit of the stator mass and 
the orbits of the bearing housing are run through forwards, while the orbit of the rotor mass 
and the orbits of the shaft journals are run through backwards. In the 6th mode the semi-major 
axes of the orbits of the stator mass and of the bearing housings are shifted about 80° out of the 
vertical axis, while the semi-major axes of the orbits of the rotor mass and of the shaft journals 
are shifted about 45° out of the vertical axis. All orbits are run through backwards. 
Additionally the 6th mode shows a strong lateral buckling of the stator mass at the x-axis, 
which leads to large orbits at the motor feet. Contrarily to the 1st mode the lateral buckling of 
the stator mass is contrariwise to its horizontal movement, which means that if the stator mass 
moves to the right the lateral buckling is to the left. To consider the influence of the foundation 
damping on the natural vibrations, a simplified approach is used. Referring to (Gasch et al., 
2002), the damping ratio Df of the foundation can be described by the damping coefficients dfq, 
stiffness coefficients cfq of the foundation and the stator mass ms, as a rough simplification.  

      sfqsffq /2 mcmDd ⋅⋅⋅=  with: z,yq =  (50) 

The calculated natural frequencies and modal damping of each mode shape with and 
without considering foundation damping are shown in Table 3. It is shown that considering 
the foundation damping influences the natural frequencies only marginal, as expected. But 
the modal damping values of some modes are strongly influenced by the foundation 
damping. The modal damping values of the first two modes are strongly influenced by the 
foundation damping, because the modes are nearly rigid body modes of the motor on the 
foundation. Also the modal damping of the 6th mode is strongly influenced by the 
foundation damping, because large orbits of the motor feet occur in this mode shape, 
compared to the other orbits. 
 

Without foundation damping (Df = 0) With foundation damping (Df = 0.02) Modes 
n Natural frequency 

fn [Hz] 
Modal damping 

Dn [%] 
Natural frequency fn

[Hz] 
Modal damping 

Dn [%] 
1 16.05 -0.11 16.05 0.95 
2 25.35 0.51 25.33 1.84 
3 35.22 65.75 35.23 65.72 
4 37.72 6.97 37.67 7.36 
5 48.50 3.39 48.54 4.24 
6 52.63 1.0 52.61 4.17 

Table 3. Natural frequencies and modal damping, motor mounted on a soft steel frame 
foundation (cfz = 133 kN/mm; cfy = 100 kN/mm) with and without considering foundation 
damping (Df = 0.02 and Df = 0), operating at rated speed (nN = 2990 r/min) 

4.5.2 Critical speed map 
Again, a critical speed map is derived to show the influence of the rotor speed on the natural 
frequencies and the modal damping and to derive the critical speeds (Fig. 12). 
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Fig. 12. Critical speed map, motor mounted on a soft steel frame foundation (cfz = 133 
kN/mm; cfy = 100 kN/mm; Df =0.02)             
 

Critical speed Critical speed [r/min] Modal damping Dn [%] 
1 950 1.6 
2 1540 2.3 
3 2340 12.2 
4 2900 4.3 
5 3160 4.2 

Table 4. Critical speeds, motor mounted on a soft steel frame foundation (cfz = 133 kN/mm; 
cfy = 100 kN/mm; Df =0.02) 
Fig. 12 shows that the limit of stability is here reached at about 4650 r/min, because the 
modal damping of mode 4 gets zero at this rotor speed. For the rigid foundation the limit of 
stability is already reached at a rotor speed of about 3900 r/min. But contrarily to the rigid 
mounted motor here four critical speeds have to be passed before the operating speed (2990 
r/min) is reached. Additionally a 5th critical speed is close above the operating speed. The 
critical speeds and the modal damping in the critical speeds are shown in Table 4. 
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Table 4 shows that two critical speeds (4th and 5th) with low modal damping values are very 
close to the operating speed (2990 r/min), having less than 5% separation margin to the 
operating speed. Therefore resonance vibrations problems may occur. The conclusion is that 
the arbitrarily chosen foundation stiffness values are not suitable for that motor with a 
operation speed of 2990 r/min. To find adequate foundation stiffness values, a stiffness 
variation of the foundation is deduced and a stiffness variation map is created (chapter 
4.5.4). But preliminarily the influence of the electromagnetic stiffness on the natural 
frequencies and modal damping values is investigated for the soft mounted motor. 

4.5.3 Stiffness variation map regarding the electromagnetic stiffness  
In this chapter the influence of the electromagnetic stiffness on the natural frequencies and 
the modal damping values at rated speed is analyzed again, but now for the soft mounted 
motor. Again the magnetic stiffness factor kcm is variegated in a range of 0….2 and the 
influence on the natural frequencies and the modal damping values is analyzed. Fig. 13  
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Fig. 13. Stiffness variation map regarding the electromagnetic stiffness, motor mounted on a 
soft steel frame foundation (cfz = 133 kN/mm; cfy = 100 kN/mm; Df = 0.02), operating at rated 
speed (nN = 2990 r/min) 
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shows that mainly the natural frequencies of the 4th mode and the 5th mode are influenced 
by the magnetic spring constant. The natural frequencies of the other modes are hardly 
influenced by the magnetic spring constant. The reason is that for the 4th mode and the 5th 
mode the relative orbits between the rotor mass and the stator mass are large, compared to 
the other orbits. Large orbits of the rotor mass and of the stator mass occur for these two 
modes and both masses – the rotor mass and the stator mass – vibrate out of phase to each 
other (Fig. 11), which lead to large relative orbits between these two masses. Therefore, the 
electromagnetic interaction between these two masses is high and therefore a significant 
influence of the magnetic spring constant on the natural vibrations occurs for these two 
modes. In the 1st and 2nd mode the motor is acting like a one-mass system (Fig. 11) and 
nearly no relative movements between rotor mass and stator mass occur. Therefore the 
electromagnetic coupling between rotor and stator has nearly no influence on the natural 
frequencies of the first two modes. The 3th mode is mainly dominated by large relative orbits 
between the shaft journals and the bearing housings – compared to the other orbits – leading 
to high modal damping. A relative movement between the rotor mass and the stator occurs, 
but is not sufficient enough for a clear influence of the electromagnetic coupling. The 6th 
mode is mainly dominated by large orbits of the motor feet, compared to the other orbits. 
Again the relative movement of the stator and rotor is not sufficient enough that the 
electromagnetic coupling influences the natural frequency of this mode clearly. The modal 
damping values of all modes are only marginally influenced by the magnetic spring 
constant, only a small influence on the modal damping of the 4th mode is obvious.  

4.5.4 Stiffness variation map regarding the foundation stiffness 
The foundation stiffness values cfz and cyz are changed by multiplying the rated stiffness 
values cfz,rated and cfy,rated from Table 1 with a factor, called foundation stiffness factor kcf. 

 Vertical foundation stiffness:      ratedfz,cffz ckc ⋅=  (51) 

 Horizontal foundation stiffness:  ratedfy,cffy ckc ⋅=  (52) 

Therefore the vertical foundation stiffness cfz and the horizontal foundation stiffness cfy are 
here changed in equal measure by the foundation stiffness factor kcf. The influence of the 
foundation stiffness at rated speed on the natural frequencies and on the modal damping is 
shown in Fig. 14.  
It is shown that for a separation margin of 15% between the natural frequencies and the 
rotary frequency Ω/2π the foundation stiffness factor kcf has to be in a range of 2.5…3.0. If 
the foundation stiffness factor is smaller than 2.5 the natural frequency of the 5th mode gets 
into the separation margin. If the foundation stiffness factor is bigger than 3.0 the natural 
frequency of the 4th mode gets into the separation margin. Both modes – 4th mode and 5th 
mode – have a modal damping less than 10% in the whole range of the considered 
foundation stiffness factor (kcf = 0.5…4). Because of the low modal damping values of these 
two modes, the operation close to the natural frequencies of these both modes suppose to be 
critical. Therefore the first arbitrarily chosen foundation stiffness values (cfz,rated = 133 
kN/mm; cfy,rated = 100 kN/mm) have to be increased by a factor of kcf = 2.5…3.0. With the 
increased foundation stiffness values the foundation can still be indicated as a soft 
foundation, because the natural frequencies of the 1st mode and the 2nd mode – the mode 
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shapes are still the same as in Fig. 11 – are still low, lying in a range between 24 Hz and 26 
Hz for the 1st mode and between 33 Hz and 35 Hz for the 2nd mode. 
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Fig. 14. Stiffness variation map regarding the foundation stiffness, motor mounted on a soft 
steel frame foundation, operating at rated speed (nN = 2990 r/min) 

5. Conclusion        
The aim of this paper is to show a simplified plane vibration model, describing the natural 
vibrations in the transversal plane of soft mounted electrical machines, with flexible shafts 
and sleeve bearings. Based on the vibration model, the mathematical correlations between 
the rotor dynamics and the stator movement, the sleeve bearings, the electromagnetic and 
the foundation, are derived. For visualization, the natural vibrations of a soft mounted 2-
pole induction motor are analyzed exemplary, for a rigid foundation and for a soft steel 
frame foundation. Additionally the influence of the electromagnetic interaction between 
rotor and stator on the natural vibrations is analyzed. Finally, the aim is not to replace a 



 Advances in Vibration Analysis Research 

 

294 

detailed three-dimensional finite-element calculation by a simplified plane multibody 
model, but to show the mathematical correlations based on a simplified model. 
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1. Introduction 
Predictive maintenance by condition monitoring is used to diagnose machinery health. 
Early detection of potential failures can be accomplished by periodic monitoring and 
analysis of vibrations. This can be used to avoid production losses or a catastrophic 
machinery breakdown. Predictive maintenance can monitor equipments during operation. 
Predictions are based on a vibration signature generated by a healthy machine. Vibrations 
are measured periodically and any increment in their reference levels indicates the 
possibility of a failure. 
There are several approaches to analyze the vibrations information for machinery diagnosis.  
Conventional time-domain methods are based on the overall level measurement, which is a 
simple technique for which reference charts are available to indicate the acceptable levels of 
vibrations.  Processing algorithms have been developed to extract some extra features in the 
vibrations signature of the machinery. Among these is the Fast Fourier Transforms (FFT) 
that offers a frequency-domain representation of a signal where the analyst can identify 
abnormal operation of the machinery through the peaks of the frequency spectra. Since FFT 
cannot detect transient signals that occur in non-stationary signals, more complex analysis 
methods have been developed such as the wavelet transform. These methods can detect 
mechanical phenomena that are transient in nature, such as a rotor rubbing the casing of a 
motor in the machine. This approach converts a time-domain signal into a time-frequency 
representation where frequency components and structured signals can be localized. Fast 
and efficient computational algorithms to process the information are available for these 
new techniques. 
A number of papers can be found in the literature which report wavelets as a vibration 
processing technique. Wavelets are multiresolution analysis tools that are helpful in 
identifying defects in mechanical parts and potential failures in machinery. Multiresolution 
has been used to extract features of signals to be used in classifications algorithms for 
automated diagnosis of machine elements such as rolling bearings (Castejón et al., 2010; 
Xinsheng & Kenneth, 2004). These elements produce clear localized frequencies in the 
vibration spectrum when defects are developing. However, a more complex phenomena 
occurs when the rotor rubs a stationary element. The impacts produce vibrations at the 
fundamental rotational frequency and its harmonics, and additionally yield some high 
frequency components, that increase as the severity of the impacts increases (Peng et al., 
2005). 
Rotor dynamics may present light and severe rubbing, and both are characterized by a 
different induced vibration response. It is known that conditions that cause high vibration 
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levels are accompanied by significant dynamic nonlinearity (Adams, 2010).  The resonance 
frequency is modified because of the stiffening effect of the rubbing on the rotor (Abuzaid et 
al., 2009). These systems are strongly nonlinear and techniques have been applied for 
parameter identification. These techniques have developed models that explain the jump 
phenomenon typical of partial rub (Choi, 2001; Choi, 2004).  
The analysis of rubbing is accomplished with the aid of the Jeffcott rotor model for lateral 
shaft vibrations. This model states the idealized equations of rotor dynamics (Jeffcott, 1919). 
Research has been done to extend this model to include the nonlinear behavior of the rotor 
system for rubbing identification. It has been shown that time-frequency maps can be used 
to analyze multi-non-linear factors in rotors.  They also reveal many complex characteristics 
that cannot be discovered with FFT spectra (Wang et al., 2004). Other approaches use 
analytical methods for calculating the nonlinear dynamic response of rotor systems. Second-
order differential equations which are linear for non-contact and strongly nonlinear for 
contact scenarios have been used (Karpenko et al., 2002). Rub-related forces for a rotor 
touching an obstacle can be modeled by means of a periodic step-function that neglects the 
transient process (Muszynska, 2005). 
In this chapter the phenomenon of rotor rubbing is analyzed by means of a vibrations 
analysis technique that transforms the time-domain signal into the time-frequency domain. 
The approach is proposed as a technique to identify rubbing from the time-frequency 
spectra generated for diagnostic purposes. Nonlinear systems with rotating elements are 
revised and a nonlinear model which includes terms for the stiffness variation is presented. 
The analysis of the signal is made through the wavelet transform where it is demonstrated 
that location and scale of transient phenomena can be identified in the time-frequency maps. 
The method is proposed as a fast diagnostic technique for rapid on-line identification of 
severe rubbing, since algorithms can be implemented in modern embedded systems with a 
very high computational efficiency. 

2. Nonlinear rotor system with rubbing elements 
Linear models have intrinsic limitations describing physical systems that show large 
vibration amplitudes. Particularly, they are unable to describe systems with variable 
stiffness. To reduce the complexity of nonlinear problems, models incorporate simplified 
assumptions, consistent with the physical situation, that reduce their complexity and allow 
representing them by linear expressions. Although linearized models capture the essence of 
the problem and give the main characteristics of the dynamics of the system, they are unable 
to identify instability and sudden changes. These problems are found in nonlinear systems 
and the linear vibration theory offers limited tools to explain the complexity of their 
unpredictable behavior. Therefore, nonlinear vibration theories have been developed for 
such systems.     
The steady state response of the nonlinear vibration solution exhibits strong differences with 
respect to the linear approach. One of the most powerful models for the analysis of 
nonlinear mechanical systems is the Duffing equation. Consider the harmonically forced 
Duffing equation with external excitation: 
ሷݔ  ൅ ሶݔܿ ൅ ݔߙ ൅ ଷݔߚ ൌ ݐሺ߱ݏ݋ܿܽ ൅ φሻ (1) 

Curves of response amplitude versus exciting frequency are often employed to represent 
this vibration behavior as shown in Fig. 1. The solid line in this figure shows the response 
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curve for a linear system. The vertical line at ω/ωn=1 corresponds to the resonance. At this 
point vibration amplitude increases dramatically and it is limited only by the amount of 
damping in the system. It is important to ensure that the system operates outside of this 
frequency to avoid excessive vibration that can result in damage to the mechanical parts. In 
linear systems amplitude of vibrations grows following a straight line as excitation force 
increases. 
 

 
Fig. 1. Resonant frequency dependency in nonlinear systems 
In nonlinear systems the motion follows a trend that is dependent upon the amplitude of the 
vibrations and the initial conditions. The resonance frequency is a function of the excitation 
force and the response curve does not follow a straight line. When the excitation force 
increases, the peak amplitude “bends” to the right or left, depending on whether the 
stiffness of the system hardens or softens. For larger amplitudes, the resonance frequency 
decreases with amplitude for softening systems and increases with amplitude for hardening 
systems. The dashed lines in  Fig. 1 show this effect. 
When the excitation force is such that large vibration amplitudes are present, an additional 
“jump” phenomenon associated with this bending arises. This is observed in Fig. 2. Jump 
phenomenon occurs in many mechanical systems. In those systems, if the speed is increased 
the amplitude will continue increasing up to values above 1.6ωn. 
 

 
Fig. 2. Jump phenomenon typical of nonlinear systems 
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When the excitation force imposes low vibration amplitudes, or there is a relative strong 
damping, the response curve is not very different from the linear case as it can be observed 
in the two lower traces.  However, for large vibration amplitudes the bending effect gets 
stronger and a “jump” phenomenon near the resonance frequency is observed. This 
phenomenon may be observed by gradually changing the exciting frequency ω  while 
keeping the other parameters fixed.  Starting from a small ω and gradually increasing the 
frequency, the amplitude of the vibrations will increase and follow a continuous trend. 
When frequency is near resonance, vibrations are so large that the system suddenly exhibits 
a jump in amplitude to follow the upper path, as denoted with a dashed line in Fig. 2.  When 
reducing the excitation frequency the system will exhibit a sudden jump from the upper to 
the lower path. This unusual performance takes place at the point of vertical tangency of the 
response curve, and it requires a few cycles of vibration to establish the new steady-state 
conditions. 
There is a region of instability in the family of response curves of a nonlinear system where 
such amplitudes of vibration cannot be established. This is shown in Fig. 3. It is not possible 
to obtain a particular amplitude in this region by forcing the exciting frequency. Even with 
small variations the system is unable to restore the stable conditions. Therefore, from the 
three regions depicted in this figure, only the upper and lower amplitudes of vibration exist. 
The same applies for a hardening system but with the peaks of amplitude of vibrations 
bending to the right. 
A rotor system with rub impact is complex and behaves in a strong nonlinearity. A 
complicated vibration phenomenon is observed and the response of the system may be 
characterized by the jump phenomena at some frequencies. Impacts are associated with 
stiffening effects; therefore, modeling of rotor rub usually includes the nonlinear term of 
stiffness.     
When the rotor hits a stationary element, it involves several physical phenomena, such as 
stiffness variation, friction, and thermal effects. This contact produces a behavior that 
worsens the operation of the machine. Rubbing is a secondary transient phenomenon that 
arises as a result of strong rotor vibrations. The transient and chaotic behavior of the rotor 
impacts generate a wide frequency bandwidth in the vibrational response. 
 

 
Fig. 3. Region of instability 

Dynamics of the rotor rubbing can be studied with the Jeffcott rotor model (Jeffcott, 1919). 
This model was developed to analyze lateral vibrations of rotors and consists of a centrally 
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mounted disk on a flexible shaft. Rigid bearings support the ends of the shaft as shown in 
Fig. 4. The model is more representative of real rotor dynamics for the inclusion of a 
damping force proportional to the velocity of the lateral motion. The purpose of this model 
was to analyze the effect of unbalance at speeds near the natural frequency, since the 
vibration amplitude increase considerably in this region. 
 

 
Fig. 4. Diagram of a rotor rubbing with a stationary element  

Modifying the Jeffcott´s model, the rubbing phenomenon can be studied. A stationary 
element can be added to the model to take rubbing into consideration. A diagram of the 
forces that are involved during the rub-impact phenomenon is shown in Fig. 5. 
 

 
Fig. 5. A Jeffcott rotor model with rubbing 

At the contact point, normal and tangential forces are described by the following 
expressions: 
 ே݂ ൌ ோሺܴܭ െ ܿሻ (2) 
 ்݂ ൌ ்݂ߤ  (3) 

Where KR is the combined stiffness of the shaft and the contact stiffness. 
This is valid for 
 ܴ ൒ ܿ (4) 
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otherwise  
 ே݂ ൌ ்݂ ൌ 0 (5) 

For a Cartesian coordinate system forces are represented as: 
 ௫݂ ൌ െ ே݂ܿݏ݋ φ ൅ ்݂ ݊݅ݏ φ (6) 
 ௬݂ ൌ െ ே݂݊݅ݏ φ െ ்݂ ݏ݋ܿ φ (7) 

And the motion equations of the rotor system are described by: 
ሷݔܯ  ൅ ሶݔܥ ൅ ݔሺ߱ሻܭ ൌ ௫ܨ ൅ ݏ݋ଶܿ߱ߩ݉ ሺ߮଴ ൅  ሻ (8)ݐ߱
ሷݕܯ  ൅ ሶݕܥ ൅ ݕሺ߱ሻܭ ൌ ௬ܨ ൅ ݊݅ݏଶ߱ܲܯ ሺ߮଴ ൅  ሻ (9)ݐ߱

Where K is the stiffness of the system and C is the damping coefficient of the system. 
The contact of the rotor with the stationary element creates a coupling of the system that 
causes a variation in the stiffness because of the non-continuous  ே݂ and the model becomes 
nonlinear. The rotor rubs the element only a fraction of the circumferential movement and 
the stiffness value varies with respect to the rotor angular position. 
The nonlinear behavior can be related to the stiffness variation. As shown in Fig. 6, the 
system´s stiffness can be related to the shaft stiffness KS, and it increases to KR during 
contact. This increment can be estimated using the Hertz theory of contact between two 
elastic bodies placed in mutual contact. 

 

 
Fig. 6. Stiffness increase during contact  

Assuming that the system´s stiffness can be represented as a rectangular function, then the 
stiffness variation can be approximated as a Taylor series such that 
ሺ߱ሻܭ  ൌ ߙ ൅  ଷ߱ (10)ߚ

3. Vibrations analysis with data-domain transformations 
The vibrational motion produced by a rotating machine is complicated and may be analyzed 
by transforming data from the time-domain to the frequency-domain by means of the 
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Fourier Transform. This transform gives to the operator additional information from the 
behavior of the machine that a signal in time-domain cannot offer. 
Fourier developed a theory in which any periodic function f(t), with period T, can be 
expressed as an infinite series of sine and cosine functions of the form: 
 ݂ሺݐሻ ൌ ܽ଴2 ൅ ෍ሺܽ௡ܿݏ݋ ݐ்߱݊ ൅ ܾ௡ ݊݅ݏ ሻஶݐ்߱

௡ୀଵ  (11) 

Where ω denotes the fundamental frequency and 2ω, 3ω, etc., its harmonics. This series is 
known as the Fourier series expansion and an and bn are called the Fourier coefficients. By 
this way, a periodic waveform can be expanded into individual terms that represent the 
various frequency components that make up the signal. These frequency components are 
integer multiples of ω. 
The following identity can be used to extend the Fourier series to complex functions: 
 ݁௜௫ ൌ ሻݔሺݏ݋ܿ ൅ ሻݔሺ݊݅ݏ݅ (12) 
 ݂ሺݐሻ ൌ ෍ ܿ௡݁௜௡௧ஶ

ିஶ  (13) 

Where cn can be obtained by the following integration: 
 ܿ௡ ൌ ߨ12 න ݂ሺݐሻ݁ି௜௡௧݀ݐగ

ିగ  (14) 

This applies to periodic functions on a 2π interval.  
Fourier series can be extended to functions with any period T with angular frequency 
ω=2π/T. Sine and cosine functions have frequencies that are multiples of ω as in Eq. (11). 
For non-periodic functions, with period T, discrete frequencies nω separated by Δω=2π/T, 
and taking the limit as T→∞, nΔω becomes continuous and the summation can be expressed 
as an integral. As a result, the continuous Fourier transform for frequency domain is defined 
as:      
ሺ߱ሻܨ  ൌ න ݂ሺݐሻ݁ି௜ఠ௧ାஶ

ିஶ ݐ݀ (15) 

While for time domain the inverse Fourier transform is defined as:  
 ݂ሺݐሻ ൌ ߨ12 න ሺ߱ሻ݁௜ఠ௧ାஶܨ

ିஶ ݀߱ (16) 

And f=f(t) satisfying the condition 
 න |݂ሺݐሻ|ଶ݀ݐ ൏ ∞ାஶ

ିஶ  (17) 

Since computers can’t work with continuous signals, the Discrete Fourier Transform (DFT) 
was developed and implemented through the Fast Fourier Transform (FFT). The FFT is a 
fast algorithm for computing the DFT that requires the size of the input data to be a power 
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of 2. FFT is a helpful engineering tool to obtain the frequency components from stationary 
signals. However, non-stationary phenomena can be present in signals obtained from real 
engineering applications, and are characterized by features that vary with time. 
A difficulty that has been observed with FFT is that the complex exponentials used as the 
basis functions have infinite extent. Therefore, localized information is spread out over the 
whole spectrum of the signal. A different approach is required for this type of signals. 
Time-frequency methods are used for their analysis and one of the most used methods is the 
Short Time Fourier Transform (STFT). This was the first time-frequency technique 
developed. The solution approach introduces windowed complex sinusoids as the basis 
functions.  
The STFT is a technique that cuts out a signal in short time intervals, which can be assumed 
to be locally stationary, and performs the conventional Fourier Transform to each interval. 
In this approach a signal ௧ܵሺ߱ሻ is multiplied by a window function ݄ሺ߬ሻ, centered at ߬, to 
obtain a modified signal that emphasises the signal characteristics around ߬:  
 ௧ܵሺ߱ሻ ൌ ߨ12 න ݁ି௝ఠ௧ݏሺ߬ሻ݄ሺ߬ െ ሻ݀߬ஶݐ

ିஶ  (18) 

Frequency distribution will be reflected around ߬ after applying the Fourier Transform to 
this window. The spectral density of the energy at time ߬ can be written as follows: 
 
 
 ܲሺݐ, ߱ሻ ൌ | ௧ܵሺ߱ሻ|ଶ ൌ ቤ ߨ12 න ݁ି௝ఠఛݏሺ߬ሻ݄ሺݐ െ ߬ሻ݀߬ஶ

ିஶ ቤଶ
 (19) 

As expected, a different spectrum will be obtained for each time. A Spectrogram, which is 
the time-frequency distribution, can be constructed with the resulting spectra. Resolution in 
time and frequency depends on the width of the windows ݄ሺ߬ሻ. Large windows will provide 
a good resolution in the frequency domain, but poor resolution in time domain. Small 
windows will provide good resolution in time domain, but poor resolution in frequency 
domain. The major disadvantage of this approach is that resolution in STFT is fixed for the 
entire time-frequency map. This means that a single window is used for all the frequency 
analysis. Therefore, only the signals that are well correlated in the time interval and 
frequency interval chosen will be localized by the procedure. It may be thought of as a 
technique to map a time-domain signal into a fixed resolution time-frequency domain. 
This drawback can be surpassed with basis functions that are short enough to localize high 
frequency discontinuities in the signal, while long ones are used to obtain low frequency 
information. A new transform called wavelet transform achieves this with a single 
prototype function that is translated and dilated to get the required basis functions. 
The wavelet transform is a time-frequency representation technique with flexible time and 
frequency resolution. Conversely to the STFT where the length of the windows function 
remains constant during the analysis, in the wavelet approach a function called the mother 
wavelet is operated by translation and dilation to build a family of window functions of 
variable length:    
 

ψ௦ఛሺݐሻ ൌ ݏ√1 ψ ൬ݐ െ ݏ߬ ൰ (20) 

Where ψ(t) is the mother wavelet function, ݏ the scale parameter, and ߬ the time shift or 
dilation parameter. Based on the mother wavelet function, the wavelet transform is defined as: 
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ψܹݔሺݏ, ߬ሻ ൌ න ሻஶݐሺݔ

ିஶ ψ௦ఛതതതതതሺݐሻ݀(21) ݐ 

And ψܹݔሺݏ, ߬ሻ are the wavelet coefficients. 
The wavelet transform is different from other techniques in that it is a multiresolution signal 
analysis technique that decomposes a signal in multiple frequency bands. By operating over ݏ and ߬ the wavelets permit to detect singularities, which makes it an important technique 
for nonstationary signal analysis. 
Due to this characteristic, the wavelet transform is the analysis technique that we found 
more suitable for the analysis of the rubbing phenomenon. 

4. Experimental methodology 
An experimental test rig was implemented to get a deeper understanding of the main 
characteristics of the rubbing phenomenon, and to apply the wavelet analysis technique in 
the processing and identification of the vibrations produced by the rub-impact of the 
system. Elements were included to run experiments under controlled conditions. Fig. 7 
shows the experimental set-up.   
 

 
Fig. 7. Test rig for the rubbing experiments  
The experimental system is composed of a shaft supported by ball bearings and coupled to 
an electrical motor with variable rotational speed. The velocity of the motor was controlled 
with an electronic circuit. A disk was installed in the middle of the shaft, which was drilled 
to be able to mount bolts of different masses to simulate unbalance forces. An adjustable 
mechanism was designed in order to simulate the effect of a rotor rubbing a stationary 
element. The position of the device, acting as the stationary element, was adjusted with a 
threaded bolt that slides a surface to set the clearance between the rotating disk and the 
rubbing surface. The shaft and disk were made of steel, and the rubbing device of 
aluminium alloy. Light and severe rubbing were simulated by controlling the speed of the 
rotor. Low velocities caused light rubbing while high velocities generated severe impact-like 
rubbing vibrations. Both types of rubbing were analyzed with the proposed methodology. 
An accelerometer was used to measure the vibrations amplitude. Output of the 
accelerometer was connected to a data acquisition system to convert analog signals to digital 
data with a sampling rate of 10 kHz. An antialias filter stage was included to get a band 
limited input signal.    
Experimental runs were carried out for fixed and variable rotor velocities. Fixed velocities 
were tested for values between 350 rpm and 1900 rpm. Continuous variable velocity 
experiments were also carried out to simulate a rotor system under ramp-up and ramp-
down conditions, to verify the preservation of the scale and temporal information with the 
processing technique used. 
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Daubechies 4 wavelet transform was implemented to convert the signal from the 
time-domain to the time-frequency domain. Scaling and wavelet functions for this transform 
are shown in Fig. 8.  
 

 
Fig. 8. Daubechies D4 scaling and wavelet functions 

Implementation of the continuous wavelet transform is impractical, especially for on-line 
detection devices for process monitoring purposes. This implementation consumes a 
significant amount of time and resources. An algorithm for the discrete wavelet transform 
(DWT) is used to overcome this situation. It is based on a sub-band coding which can be 
programmed with a high computational efficiency. Subband coding is a multiresolution signal 
processing technique that decomposes the signal into independent frequency subbands.  
With this approach, the DWT applies successive low-pass and high-pass filters to the 
discrete time-domain signal as shown in Fig. 9. This procedure is known as the Mallat 
algorithm.  
  

 
Fig. 9. Algorithm for the sub-band decomposition of the input signal 
The algorithm uses a cascade of filters to decompose the signal. Each resolution has its own 
pair of filters. A low-pass filter is associated with the scaling function, giving the overall 
picture of the signal or low frequency content, and the high-pass filter is associated with the 
wavelet function, extracting the high frequency components or details. In Fig. 9 the low-pass 
filter is denoted by H and the high-pass filter is denoted by G. Each end raw is a level of 
decomposition. A sub-sampling stage is added to modify the resolution by two at each step 
of the procedure. As a result of this process, time resolution is good at high frequencies, 
while frequency resolution is good at low frequencies. 
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For each transform iteration the scale function to the input data is applied through the low-
pass and high-pass filters. If the input array has N cells, after applying the scale function, the 
down-sampling by two, which follows the filtering, halves the resolution and an array with 
N/2 values will be obtained. With the low-pass branch, coarse approximations are obtained. 
The high-pass filtered signal will reflect the fluctuations or details content of the signal. By 
iterating recursively a signal is decomposed into sequences. The successive sequences are 
lower resolution versions of the original data.  
The implemented form of the Daubechies 4 wavelet transform has a wavelet function with 
four coefficients and a scale function with four coefficients. The scale function is: 
௜ܣ  ൌ ଴ܵଶ௜ܪ ൅ ଵܵଶ௜ାଵܪ ൅ ଶܵଶ௜ାଶܪ ൅  ଷܵଶ௜ାଷ (22)ܪ

Where scaling coefficients are defined as 
଴ܪ  ൌ 1 ൅ √34√2  (23) 

ଵܪ  ൌ 3 ൅ √34√2  (24) 

ଶܪ  ൌ 3 െ √34√2  (25) 

ଷܪ  ൌ 1 െ √34√2  (26) 

The wavelet function is: 
௜ܥ  ൌ ଴ܵଶ௜ܩ ൅ ଵܵଶ௜ାଵܩ ൅ ଶܵଶ௜ାଶܩ ൅  ଷܵଶ௜ାଷ (27)ܩ

Where wavelet coefficients are defined as 
଴ܩ  ൌ  ଷ (28)ܪ

ଵܩ  ൌ െܪଶ (29) 
ଶܩ  ൌ  ଵ  (30)ܪ
ଷܩ  ൌ െܪ଴ (31) 

Each wavelet and function value is calculated by taking the product of the coefficients with 
four data values of the input data array. The process is iterated until desired results are 
reached.    

5. Experimental results and discussion 
The methodology described in the previous section was applied and experimental runs 
were carried out with the aid of the test rig to obtain a deeper comprehension of the rubbing 
phenomenon. Fig. 10 shows results for time and frequency domains for the rotor rubbing 
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and no-rub experimental runs. The upper row corresponds to time-domain signals, while 
the lower row shows the frequency-domain signals. 
With no-rub (upper left), the signal in time-domain is characterized by a uniform trace with 
a small dispersion of data produced by the low-level noise of the measuring system. 
However, when rub occurs (upper right), as acceleration is the measurement engineering 
unit, even for low level rubbing the energy content of the signal is high, and spikes appear 
at the location of each rub-contact. 
The spectral distribution of the signal obtained when the rotor is rubbing shows the wide 
frequency bandwidth in the vibrational response, produced by the chaotic behavior of the 
rubbing phenomenon. 

 
Fig. 10. Spectral distribution of the vibrations for the rotor rubbing and no-rubbing 
When rubbing is present, the response is dependent on the angular frequency of the rotor. 
For low rotor velocities rub generates low vibration amplitudes as shown in the acceleration 
values in the upper graph of Fig. 11. This can be considered a light-rubbing, but when the 
rotor velocity is high, the time-domain response of the vibrations produced is quite different 
and get closer to an impact response characterized by spikes with high acceleration values. 
This response can be seen in the lower graph of Fig. 11. The amplitudes of vibrations for 
light rubbing are within ±0.1 g, while for severe rubbing peak values reach ±1 g, about ten 
times higher. 
Processing results of the signals for the rotor with rubbing and without rubbing to obtain 
the spectral distribution are shown in Fig. 12. The graph localizes the natural frequency of 
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the test rig for both cases. As explained in the introductory section, the nonlinear nature of 
the system produced a slight different vibrations pattern when rubbing is present. Solid line 
shows the natural frequency for the rub-free experiments. However, the dotted line 
corresponds to the experiments with rubbing induced to the rotor, and as expected there is a 
shift in the natural frequency. 
 

 
Fig. 11. Vibrations amplitude for light rubbing and severe rubbing 

Frequency shift occurs to the right, with the trend to move to the high frequency side of the 
spectrum, which means that the system is hardening as a result of the stiffness increase 
produced by the contact of the rotor with the stationary element. The amplitude of the 
natural frequency also increases as a product of the higher energy content of the 
rub-impacts. 
The signal of the vibrations was processed to transform the data from the time-domain to 
the time-frequency domain. Wavelet transform Daubechies 4 was used for the 
transformation and results are shown in Fig. 13. 
As stated before, a vector is obtained with this procedure which is the same size as the 
original vector. Recalling the subband coding, upper half of the vector contains the high 
frequency content of the information (subband 1). From the remaining data, upper half 
contains the next subband with mid-frequency content (subband 2), and so on. This way, the 
low frequency content of the information is coded and located in the lower part of the vector 
while the high frequency content is coded into the higher indexes of the vector. Indexes 
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represent the transformed values in the resulting vector which amplitude is a function of the 
correlation between the input signal and the mother wavelet. A higher value for the index 
means a stronger correlation and therefore a major content of that frequency corresponding 
to a particular value of scale and translation. 
 

 
Fig. 12. Resonance frequency dependence observed for a rotor with rubbing 

Taking this into consideration, it can be observed that for light rubbing the correlation gets 
stronger for mid-value indexes, which means that light rubbing is characterized by 
frequencies that fall in the lower middle of the frequency spectrum. 
On the other side, rub-impacts produced by the contact of the rotor with the stationary 
element at high rotational frequencies, are characterized by spikes with a high frequency 
content. The wavelet transformation enhances this type of rubbing as can be observed in the 
upper half of the vector for severe rubbing shown in Fig. 13 (subband 1), although some 
rubbing information can be found in the next subband.  As both light and severe rubbing 
may be present in a rotor, the sum of the frequency content produced by the phenomena 
reflects again a wide spectral distribution in the vibrational response. 
To test the wavelet approach as a rubbing detection technique, especially for severe rubbing 
where it is desirable to assess alert signals before a catastrophic failure occurs as it can 
happens under some rubbing conditions, a vibration signal which presents rub-impacts was 
chosen. The test data are shown in Fig. 14. 
There are two spikes in the graph produced by the rotor rubbing at high velocity rotation. 
These spikes can be treated as singularities of transient nature whose occurrence cannot be 
predicted. A technique like wavelets that analyzes a signal by comparison of a basis wavelet 
that is scaled and translated to extract frequency and location information is ideal for this 
situation. The procedure enhances these singularities and makes it easier their detection as it 
is demonstrated next.  
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Fig. 13. Rotor rubbing signal transformed to time-frequency domain with wavelets 

 

 
Fig. 14. Time-domain vibrations with rub-impact 
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Graphs showing the details of the impacts are shown in Fig. 15. The signal is characterized 
by a sudden excitation that generates a mechanical oscillation that grows to peak amplitude 
and decays as the impact energy dissipates. Each impact is characterized by only a few 
cycles that analyzed with the traditional FFT would not have enough energy to obtain a 
clear spectral definition.  
 

 
Fig. 15. Details of the transient impacts analyzed 

A wavelet decomposition of this signal was made and the main subbands are shown in 
Fig. 16. Subbands are associated with their corresponding frequency range according to the 
sampling rate established during the experiments. The graph shows the frequency content 
between 78 Hz and 5 kHz. 
From this graph it is observed that the subband with the higher frequency content 
encompasses the information of the transient signals. The correlation technique enhances 
the spikes giving amplitude values higher than the coefficients where impacts are not 
present. This makes it easier to establish a discrimination criterion and an estimation of their 
values to determine the presence and severity of the rubbing for diagnostic purposes. 
Additionally, as the transient signals produced are in the first subband, only the first level of 
decomposition in the wavelet transformation is necessary reducing the computing time that 
it takes to make the analysis and optimizing the detection process. 
The experimental results of the vibrations presented in the previous discussion were 
analyzed through one of the approaches that wavelets offer to the vibration analyst. This is a 
time-frequency representation of the data from which it can be extracted the information of 
interest to apply the necessary processes and criteria for the rubbing detection. This 
approach permits the characterization of the signal from which it can be obtained the 
necessary information for the implementation of the technique for the design of testing 
equipment with automatic detection and recognition of the rubbing phenomena. 
Another type of representation of the information that wavelets offer are the time-frequency 
maps. These are contour plots where the wavelet coefficient values are plotted against the 
time and scale parameter, that is, translation and frequency. One axis represents time, the 
other axis frequency, and the amplitude of the vibrations is color-coded. The contour maps 
permit to visualize the whole picture of the frequencies present in the signal as well as their 
occurrence or location in time. 
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Fig. 16. Subband coding with wavelets of the vibrational response with impact-rubbing 

The light rubbing data was processed with commercially available software by means of the 
Morlet continuous wavelet transform and results are shown in Fig. 17. In this graph, the 
color coding is red for low amplitude vibrations throughout blue for high amplitude 
vibrations. It can be observed the intermittent nature of the rubbing and, in concordance 
with Fig. 13, that the main vibrations are limited to frequencies below 1 250 Hz.    
An analogous process was applied to severe rubbing data and results are shown in Fig. 18. 
The image shows that mid-range frequencies get stronger while high frequencies appear as 
a result of the increase in the vibrations amplitude as in the lower graph of Fig. 13. Upper 
spots in the time-frequency map (rub-impacts) appear elongated and lower spots stretched 
due to the compromise between the time and frequency resolution of the technique as stated 
in the introduction. 
Additionally, an experimental run was carried out varying continuously the rotating 
conditions to obtain a sweep from a low to a high velocity and then decreasing the velocity 
until a minimum value. Results are shown in Fig. 19. 
It can be seen that as time runs throughout the experiment, velocity increases and higher 
frequency components appear. These components get their peak value near the middle of 
the time axis where the maximum velocity is reached, and then begin to fade showing the 
trend of the higher frequencies to disappear as velocity decreases. This graph confirms the 
wide spectral bandwidth of the rubbing phenomena. 
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Fig. 17. Time-Frequency map for light rubbing 

It is important to notice the evolution of the frequencies as time passes by. There is an 
unsteady variation of frequencies, and in Fig. 19 it can be seen how they have an 
unsymmetrical pattern even with speed variations.  
 

 
 

Fig. 18. Time-frequency map for severe rubbing 
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Fig. 19. Time-frequency map for a run-up and run-down rotor velocity sweep 

6. Conclusions 
Rotor rubbing has been analyzed with a methodology that processes the vibrations signal in 
such a way that time and scale information is preserved. It was demonstrated that with this 
approach vibrations of transient nature can be studied through a controlled subband coding 
scheme and time-frequency spectra. The technique revealed additional information that 
traditional processing techniques cannot, such as FFT. Experimental results showed that 
light rubbing presents a vibrational response characterized by a rich frequency content 
spectrum, and that severe rubbing is more adequately described as an impact-like transient 
behavior. Accordingly, impacts could be identified and localized with wavelets in the 
upper-frequency subbands which resulted after the algorithm was applied. 
Since rotor-to-stator contact changes the effective stiffness of the coupled elements, a 
frequency shift was identified that shows the nonlinear response of the system. Time-
frequency maps evidenced again the wide spectral response and differences between light 
and severe rotor rubbing, and location in time of the rub-impacts. The processing algorithm 
can be implemented with a high computational efficiency for on-line inspection systems for 
continuous machinery condition monitoring. 
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1. Introduction  
The main goal of maintenance is to maintain the characteristics of a technical system at the 
most favourable or still acceptable level. Maintenance costs can be reduced, operation can 
become more reliable and the frequency and complexity of damages can be reduced. To 
evaluate the condition of a technical system, it is necessary to collect precise data, and the to 
analyse, compare and process this data properly.  
Gear units are the most frequent machine parts or couplings. They consist of a housing, 
toothed wheels, bearings and a lubricating system and are of various types and sizes. 
Durable damages in gear units are often a resulta of the following factors: geometrical 
deviations or unbalanced component parts, material fatigue, which is a result of 
engagement of a gear pair, or damages caused to roller bearings.  
To monitor the condition of mechanical systems, methods for measuring vibrations and 
noise are usually used; data about a gear unit can be acquired in this way. Afterwards 
certain tools are used to analyse the data. Features that denote the presence of damages and 
faults are identified in this way. 

2. Noise source identification 
A visualization method of complex noise sources on the basis of an acoustic camera is 
presented. The method is based upon a new digital signal processing algorithm. This 
algorithm makes it possible to visualize all types of different complex noise sources from 
their far area. It is possible to observe monopole, dipole or quadropole noise sources, which 
occur simultaneously. In addition to this, reflections from hard walls, and refraction and 
scattering of sound waving can be observed. 
The difference between the acoustic camera operation and the acoustic ray reconstruction 
method is great. Signals from all microphones, located along the ring or the cross of the 
acoustic camera, are processed in a complex way, by means of the acoustic camera 
algorithm. On the basis of this algorithm, delays are appropriately corrected in time domain 
– in relation to time, i.e. to the path length of sound waving from the elementary source to 
an individual microphone located in the camera – and not by means of phases as in 
frequency domain as in relation to the sound ray reconstruction method. 



 Advances in Vibration Analysis Research 

 

316 

Sound waving travels along paths ri of various lengths from the elementary acoustic source 
V(xj) to an individual microphone on the ring of an acoustic camera (Fig. 1). Paths travelled 
by sound waving |ri| are of different lengths and, consequently, signal delays Δi of the 
same sound waving, produced at the elementary sound source V(xj), are different as well. 
 

 
Fig. 1. Path length of an elementary source to individual microphones on an acoustic camera 

Figure 2 swows an electrical signal of four microphones. The sound path from the 
elementary source to microphone 2 is the shortest, and the signal of microphone 2 is the 
fastest. The second fastest is the signal of microphone 1, the third and the fourth are signals 
of microphones 3 and 4. Acoustic holography calculation is based upon these delays in time. 
 

 
Fig. 2. Acoustic holography calculation method in relation to acoustic camera 
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Heinz Interference Transformation algorithm, which represents the basis for an acoustic 
camera, creates a pseudo inverse acoustic field with interference integrals by approximating 
the original acoustic source in the best way possible (by moving it forward and backward 
simultaneously). Time-negative reconstruction in a time positive way is realized, using this 
algorithm. The result is a surface of equivalent acoustic pressure at the point of greatest 
emission.  
If we assume that sound waving from each elementary source reaches each microphone on 
the ring of the acoustic camera, signals arriving from different microphones can be shifted 
and integrated in time. For each elementary source, a new signal f(xj,t) is obtained, using the 
following equation: 

 
1

1( , ) ( ,( ))
M

j i i j i
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f t w f t
M =

= − Δ∑x x   (1) 

Afterwards the effective value of the sound pressure feff(xj,t) can be calculated on the basis of 
this signal: 
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Effective sound pressure represents a mean square value of the acoustic pressure, caused by 
the elementary acoustic signal at the spot of emission. The corresponding point in the 
acoustic image must be coloured appropriately. Ths depends on the position of the 
elementary source and on the value of its effective acoustic pressure. Areas with high 
effective sound pressure are usually coloured red, and areas with lower effective sound 
pressure are blue, which gradually fades until these areas become white. For each 
elementary source, the procedure must be repeated in order to obtain the entire acoustic 
image of the acoustic source. In case of more acoustic sources, it is possible to find out, on 
the basis of the acoustic image, which acoustic source at the measurement spot is the one 
that contributes mostly to effective acoustic pressure.  
The resolution of place and time of an acoustic image, produced with an acoustic camera, 
has an impact upon the form of sound signals. An impulse of sound pressure has an ideal 
form in relation to the algorithm of an acoustic camera, and pure sine-shaped form of 
acoustic waving is the least favourable sound pressure phenomenon. All real sound 
pressure phenomena can be placed between these two forms. The sinus function, i.e. the 
Fourier area, represents the basis for most of the acoustic theory. This includes the theory of 
image method in a nearby field and the theory of acoustic ray reconstruction method. Pure 
sine-shaped form is very rare in relation to real sound/noise signals. Consequently, the 
application possibilities of the acoustic camera algorithm are much wider than the 
application possibilities of other algorithms developed so far. 
The acoustic camera is the only acoustic source visualization method functioning 
exclusively in time domain; it is not necessary to use the Fourier transform to calculate the 
acoustic image. This means that the method using the acousting camera is not limited in the 
same way as are methods using the Fourier transform. Frequency analysis is  part in the 
user system but the algorithm calculates the acoustic image first and only afterwards the 
Fourier transform. 
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The measurement system in relation to the acoustic camera of the GFaI with dRec48C192 
and 32 phase coordinated microphones is presented in Figure 3. The microphones are 
located on a ring, in concern to the work in a free acoustic field. For an acoustic camera, 
prepolarised condensation microphones with linear frequency of 23 kHz (–3 dB) are used. 
Their response is slowly reduced from 6 dB per decade to 40 kHz. It is required to use 
microphones with such a high frequency area to achieve adequate resolution of the acoustic 
image. It is possible to achieve higher resolution in relation to higher sampling frequencies 
or better phase coordination of microphones. 
The resolution of an analogue-digital converter is 21 bits. The highest sampling frequency is 
196 kHz per channel. Digitalised signals are stored in this converter temporarily, during 
measurement. After data transfer to a personal computer, taking a few seconds, it is possible 
to calculate the sound source acoustic image.  
 

 
Fig. 3. An acoustic camera system GFaI for visualisation of acoustic sources 

3. Adaptive time-frequency identification 
A gear unit is a set of elements enabling the transmission of rotating movement. Although it 
is a complex dynamic model, its movement is usually periodical, and faults and damages 
represent a disturbing quantity or impulse. Local and time changes in vibration signals 
denote disturbance, consequently, time-frequency changes can be expected. This idea is 
based on kinematics and operating characteristics. 
The presence of cracks in gear units is the most important factor with a negative impact 
upon the reliability of operation and quality of operation of gear units. It is usually possible 
to determine deviations from reference values on the basis of a frequency spectrum. As 
mentioned, it is impossible to identify changes of a frequency component in time as a gear 
unit is a complex mechanical system with changeable dynamic reaction; this makes the 
approach based on time-frequency methods more appropriate. 
It often happens that some frequency components in signals are present from time to time 
only. In such cases classical frequency analysis does not suffice to determine when certain 
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frequencies appear in a spectrum. If time-frequency analysis is used, it can be determined 
not only in what way frequency components of non-stationary signals change with time but 
also their intensity levels. 
Frequency analysis is often used in diagnostics, but good results are obtained more or less 
only in relation to periodical processes without local changes. A presence of a damage or 
fault leads to changes in dynamic parameters of a mechanical system. This influences the 
frequency spectrum. Monitoring frequency reaction is one of the most common spectral 
methods to identify the condition of a gear unit. With classical frequency analysis, time 
description of vibration is transformed into frequency description, and changes within a 
signal are averaged within the entire time period. This means that local changes are lost in 
the average of the entire function of vibrations. As a result, it is very difficult if not 
impossible to define local changes. 
These deficiencies are eliminated with the use of the time-frequency analysis: local changes 
that deviate from the global periodical oscillation are expressed with the appearance or 
disappearance of individual frequency components in a spectrogram. A signal is presented 
simultaneously in time and frequency.  
Individual frequency components often appear only from time to time in signals related to 
technical diagnostics. On the basis of classical frequency analysis of such signals, it is not 
possible to determine when certain frequencies appear in the spectrum. The aim of time-
frequency analysis is to describe in what way frequency components of non-stationary 
signals change with time and to determine their intensity levels. 
Fourier, adaptive and wavelet transforms and Gabor expansion are representatives of 
various time-frequency algorithms. The basic idea of all linear transforms is to perform 
comparison with elementary function determined in advance. On the basis of various 
elementary functions, different signal presentations are acquired. 
Qian improved and concluded adaptive transform of a signal to a large extent although 
many authors had been developing algorithms without interference parts, which make 
individual transforms less useable as opposed to Cohen’s class. 
Adaptive transform of a signal x(t) is expressed as follows: 

 ( ) ( )p p
p

x t B h t= ⋅∑   (3) 

where analysis coefficients are determined by means of the following equations  

 ,p pB x h=  (4) 

expressing similarity between the measured signal x(t) and elementary functions hp(t) of 
transform. The original signal represents the starting point with parameter values p=0 and 
x0(t)=x(t). In the set of desired elementary functions, h0(t) is searched for that is most similar 
to x0(t) in the following sense 

 ( ) ( )
22

max ,
pp h p pB x t h t=  (5) 

for p = 0. The next step includes the calculation of the remaining x1(t)  

 ( ) ( ) ( )1p p p px t x t B h t+ = − ⋅  (6) 
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Without giving up the generalisation idea, hp(t) is to have a unit of energy representation of 
a signal.  

 ( )
2

1ph t =  (7) 

The energy in the remaining signal 

 ( ) ( )
2 2 2

1p p px t x t B+ = −  (8) 

The equation (6) is repeated in order to find h1(t) that would suit best x1(t), etc. One 
elementary function hp(t) that suits best xp(t) is found in each step. The primary purpose of 
adaptive signal representation is to identify a set of elementary functions {hp(t)}, most 
similar to time-frequency structure of a signal, and at the same time satisfy equations (3)  
and (4). 
If Wigner-Ville distribution is used for both sides of the equation (3), and if equations are 
organised into two groups, the result is as follows: 

 ( ) ( ) ( )( )2, , * , ,WV p WV p p q WV p q
p p q

P x t B P h t B B P h h tω ω ω
≠

= ⋅ + ⋅∑ ∑  (9) 

The first group represents elementary signal components and the second one represents 
cross interference terms. 
A new time-dependent adaptive spectrum can be defined in the following way: 

 ( ) ( )
2

, ,ADT p WV p
p

P t B P h tω ω= ⋅∑  (10) 

As an adaptive spectrum based on representations, it is called an adaptive spectrogram. As 
opposed to Wigner-Ville distribution, it contains no interferences and no cross terms, and it 
also satisfies the condition of energy conservation. 

 ( ) ( )2 1 ,
2 ADTx t P t dt dω ω
π

= ⋅ ⋅ ⋅
⋅ ∫∫  (11) 

The basic issue related to linear presentations is the selection of elementary functions. When 
it comes to Gabor expansion, a set of elementary functions comprises time-shifted and 
frequency modulated prototype window function w(t). In relation to wavelets, elementary 
functions are acquired by scaling and shifting a mother wavelet ψ(t). In these two examples, 
structures of elementary functions are determined in advance. Elementary functions related 
to adaptive representation are rather demanding. 
As adaptive transform permits arbitrary elementary functions, it is, generally speaking, 
independent from the choice of elementary functions hp(t). 
Elementary functions, used for adaptive representation of a signal with equation (3), are 
very general but this is not always so in practice. It is desirable that elementary functions are 
localised in regard to time and frequency in order to emphasize time dependence of a signal. 
Also it must be possible to use the presented algorithm in a relatively simple way. In 
relation to adaptive representation, a Gauss type signal with its very favourable features is 
considered a basic choice.  
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The calculation of an adaptive spectrogram begins in a wide time range of a measured 
signal. Then the range must be decreased, depending on what the goals are. Fourier integral 
is among the elementary operations of searching for a suitable elementary function, and so 
the described calculation process is very effective. The accuracy of approximation depends 
primarily on the size of time-frequency interval. With narrower intervals, the representation 
is more accurate, but the calculation time is longer. This means that it is necessary to find a 
compromise between the accuracy of approximation and its efficiency. 

4. Practical example 
The measurements were performed in the test plant of the Laboratory for Pumps, 
Compressors and Technical Acoustics of the Faculty of Mechanical Engineering, University 
of Ljubljana. The room in which the tests were carried out was not specially adjusted for 
performing acoustic measurements as the noice level was between 36 and 42 dB(A). This 
level can be achieved also in an industrial environment that is located adequately far away 
from intense noice sources.  
A single stage gear unit with a helical gear unit with straight teeth integrated into it was 
used. 
Two pairs of spur gear-units, built in a single stage gear-unit, were used for noise 
measurements. One of the pairs had a crack and the other one was without it. Thus, tests 
were carried out, using faultless and faulty gear units. 
The aim of the measurements was to determine the presence of individual changes in a gear 
unit. The measured signal of a faultless gear unit and the signal of a faulty gear unit were 
compared to determine the gear unit condition.  
Measurements were carried out under operating conditions normally associated with the 
relevant type of a gear unit. A ground gear pair used was a standard gear pair, with the 
teeth quality 6, but it had a crack in the tooth root of a pinion. It is presented in Fig. 4. 
 

 
Fig. 4. A pinion with a crack in the tooth root 

Adaptive time frequency transform was used to determine the presence of a crack in the 
tooth root, whereby the LabVIEW software tools, including the author’s own software 
modules, were used [9]. 
The length of the signal of measured values was 1 s; on an average, the signal was 
composed of 192000 measuring points. At the time of measurement, the rotational frequency 
was 28,5Hz. The number of teeth of the pinion was 18, and of the gear unit 99.  
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In Fig. 5, the acoustic image with sound level of a gear unit is presented, where the 
engagement area of a gear pair can be observed as a noice source, wheras in Fig. 6, the 
adaptive spectrogram of noise source is presented; it is not possible to note any rhythmic 
pulsation of harmonics, with the exception of typical frequencies, defined on the basis 
typical frequencies components. Some pulsation sources are indicated (but not expressed) 
and their stohastics. It is very interesting to monitor the increase or decrease (even complete 
disappearance) in appropriate frequency components with pulsating frequency. 
In Fig. 7, the acoustic image of a gear unit with a crack in the tooth root is presented, where 
it is possible to note the engagement area of a gear pair as a noice source, and in Fig. 8 and 
Fig. 9, the adaptive spectrogram of noise source is presented. Rhythmic pulsation of some 
frequency can be observed. This is typical for meshing frequency 515 Hz. Pulsating is 
expressed only in relation to the presence of a crack. Pulsation reflects a single engagement 
of a gear pair with a crack. 
To determine the presence of a crack in the tooth root, adaptive transform was used for 
vibration analysis. In relation to adaptive spectrogram, adaptive representation for signal 
decomposition, prior to Wigner-Ville distribution, was used. 
A fine adaptive time-frequency resolution is characteristic of an adaptive spectrogram due 
to limited features of elementary functions. Consequently, time-frequency resolution of the 
transform is adapted to signal characteristics. As an elementary function, it is possible to 
apply Gauss function (impulse) and linear chirp with Gauss window. If a signal contains 
linear chirps resulting from a linear change in the rotational frequency of a gear unit, it is 
possible to use an adaptive spectrogram to determine in what ways a possible frequency 
modulation is reflected in the time-frequency domain. The transform calculation time 
increases, along with the larger amount of data and the increased number of cycles required 
to search for an adequate elementary function. 
 

 
Fig. 5. An acoustic image with noise source of a gear unit of a faultless gear 
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Fig. 6. A adaptive spectrogram of a gear unit of a faultless gear 

 
Fig. 7. An acoustic image with noise source of a gear unit with a crack in the tooth root 
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Fig. 8. A adaptive spectrograms of a gear unit with a crack in the tooth root; position 1 

 
Fig. 9. A adaptive spectrograms of a gear unit with a crack in the tooth root; position 2 
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The vibration signal of measured values was 1 s long and composed of, on an average, 50000 
measuring points. At the time of measurement rotational frequency was 20 Hz. Adaptive 
spectrograms in relation to Gabor transforms are presented for comparison. The length of 
the window is 6800 points, which is 15% more that the length of the period of one rotation of 
a gear pair. 
Calculation time required for adaptive spectrogram is at least 10 times longer than the 
calculation time for the Gabor transform, but the resolution of the adaptive transform is, on 
an average, two times better. 
Fig. 10 shows Gabor spectrogram; no rhythmic pulsation of harmonics can be noted, with 
the exception of typical frequencies, determined on the basis of power spectrum. When it 
comes to adaptive spectrogram (Fig. 11), with a higher level of energy accumulation in the 
origins, it is possible to note some pulsation sources but they are not very expressed. It is 
very interesting to monitor how appropriate frequency components with rotational 
frequency of 20 Hz increase or descrease or even completely disappear. This phenomenon is 
typical of the 3rd harmonic, 1530 Hz is expressed, only in relation to the presence of a crack. 
The phenomenon is much more expressed in relation to the adaptive spectrogram (Fig. 13) 
than in relation to the Gabor spectrogram (Fig. 12).  
The spectrogram evaluation can be based on an average spectrogram, which represents an 
amplitude spectrum of a Fourier or adaptive transform of a measured signal, and on 
observing pulsating frequencies of individual frequency components. 
 
 

 
 

Fig. 10. Gabor’s spectrogram of a faultless gear unit 
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Fig. 11. Adaptive spectrogram of a faultless gear unit 
 
 

 
Fig. 12. Gabor’s spectrogram of a gear unit with a pinion with a crack 
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Fig. 13. Adaptive spectrogram of a gear unit with a pinion with a crack 

5. Conclusion 
The resolution in time and in place achieved with the use of an acoustic camera with its 
specific algorithm, which functions in time domain, and of specifically located microphones 
for acoustic source visualization is better than with any other acoustic system. 
Industrial gear units were used for noise analysis, the purpose of which was to identify 
faults. The use of the presented methods can improve both, the safety of operation and the 
reliability of monitoring operational capabilities. 
The reliability of monitoring life cycle of a gear unit is improved with the use of appropriate 
spectrogram samples and the achievement of a clear presentation of the pulsation of 
individual frequency components, which, along with the average spectrum, for a criterion 
for evaluating the condition of a gear unit.  
When it comes to life cycle design, it is necessary to use an adequate method or criterion to 
monitor the actual condition of a device and particularly of its vital component parts, which 
can have a considerable impact upont the operational capability. If faults and damages are 
detected in time, it is possible to control the reliability of operation to a great extent. The 
prediction of the remaining life cycle of a gear unit is improved with the use of reliable fault 
identification methods. 
In this contribution, fault identification in industrial gear units is based on vibration 
analysis; it increases the safety of operation and, consequently, of monitoring operational 
capabilities. 
The life cycle of a gear unit can be monitored more reliably with the use of appropriate 
spectrogram samples and a clear presentation of the pulsation of individual frequency 
components that, in addition to the average spectrum, represent a criterion for evaluating 
the condition of a gear unit. Adaptive time-frequency representation is clearer, without 
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increased dissemination of signal energy into the surroundings, and it enbles reliable fault 
identification.  
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1. Introduction 
A great percentages of transformer failures occur in the on-load tap changer (OLTC) (R. 
Jongen & P. Morshuis et al.,2007) Fig 1. The OLTC is the only moving part of a power 
transformer and its elements suffer from great mechanical and electrical stress. 
The condition of some of the elements of the OLTC (diverter switch, resistors, contacts, etc.) 
can be evaluated through periodic inspections. However, these inspections require having 
the transformer out of service for a relatively long period. In addition, it is expensive and 
requires a skilled staff. 
Vibration is a suitable parameter to monitor the mechanical condition of an OLTC (P. 
Kang,et al.,2000). Vibrations from a working OLTC are often readily available, but obtaining 
them from a defective OLTC is not as easy. 
Previous studies (P. Kang et al.,2001)  show that OLTC failures can be diagnosed by using 
vibration envelope analysis. Wavelet analysis is an effective technique for extracting the 
main characteristics of the vibration signal, over the whole spectrum, without requiring a 
dominant frequency band in the vibration signal.  
The purpose of this paper is to present a methodology implemented to find the OLTC 
diagnostic indicators (Number of vibration bursts, Vibration burst amplitude, Time between 
vibration bursts, Main frequency bands in the burst, energy of the vibration bursts). To 
obtain these indicators pre-processing and processing of the vibration signal is needed. 
In the pre-processing stage the signal is synchronized, normalized and then Hilbert 
transform is applied to obtain the envelope. In the signal processing stage a technique in 
time-frequency domain, Discrete Wavelet Transform, is used and then a threshold based on 
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preserved energy is applied in order to determine the characteristic bursts of the vibration 
signal both the OLTC in good condition and with faults. 

2. OLTC   
An OLTC (Fig. 1) modify the transformer voltage ratio in response to voltage variations in 
the electrical system, in order to maintain transformer output voltage. The OLTC changes 
the tapping connection of the transformer winding without disconnecting it out of service.  
An OLTC comprises the following elements: 
• Tap Selector  
• Diverter Switch  
An OLTC always switches between two consecutive taps. The tap selector pre-selects the 
next tap to work on and does not switch load current. The tap selector is inserted in the 
transformer tank or attached to it, and it is refrigerated by the same oil refrigerating the 
windings. 
The tap selector is driven by a motor drive mechanism synchronized with the diverter 
switch. The tap selector and the mechanical energy accumulator of the diverter switch are 
the first elements to move when a tap change is ordered. The tap selector moves only to the 
tap preceding the current tap or to the tap next the current tap. 
The diverter switch is the element transferring the load current, without load interruption, 
from the current tap to the pre-selected tap.  

3. Vibration signal measurements 
A test program was carried out to get vibration signals with different types of failures. As it 
is no easy to record in field vibration signals from a given OLTC with different kind of 
failures, failures were simulated physically in the laboratory. 
An OLTC (Fig. 1) type D I 1200 150/110 12 23 3 W, from an 80 MVA single-phase 
autotransformer 250.000/150.000 ±10x1517/17000 V was used. The OLTC is rated at 1200 A 
and has 12 taps, 23 regulation positions, an inverter type pre-selector and 3 intermediate 
positions when the inverter is in operation.  
The OLTC was not mounted on the transformer tank and was not immersed in oil. So 
pattern vibration changes slightly because no viscous lubrication is provided. Nevertheless 
the experiment is valid in the essence. 
The vibration measurements were obtained using an accelerometer, which measures tank 
vibrations during the tap-change operation. A piezoelectric accelerometer was used with a 
sensitivity of 1.02±0.02pC/ms2 and a frequency range of 1 to 12 kHz. The data acquisition 
card had PCMCIA architecture, 12-bit resolution, 50KS/s per channel and variable input 
range of ±0.05V to ±10V.  The measuring system is shown in Fig. 2. 
Vibration signal was recorded from the OLTC in good working condition. Fig. 3 shows the 
vibration signal during a tap change in which the tap selector is operative. Six bursts can be 
distinguished in the vibration signal. 
- Burst 1: Starting of the motor drive.  
- Burst 2: Activation of the Geneva drive. The tap selector contact attached to the 

previous tap (n-1) starts moving. 
- Burst 3: Moving contacts of the tap selector reach the final tap (n+1). 
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- Burst 4: The movement of the Geneva drive ends. 
- Burst 5: Group of bursts corresponding to the diverter switch’s activation.  
- Burst 6: The motor drive stops.  
 

 
Fig. 1. OLTC used in the experimental measurements 

 

 
Fig. 2. Measuring system 
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Fig. 3. Vibration signal during a tap change  

4. Test programme 
Some of the failures simulated in the experiment were: Broken contact bar (Fig. 4) and tap 
selector contacts damaged by arcing (Fig. 5), worn selector contacts, etc. 
 
 

 
 

Fig. 4. Broken contact bar 
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Fig. 5. Tap selector fixed contacts damaged by arcing 

5. Vibration signal treatment 
Vibration signal analysis is used to detect on load tap changer failures. According to ( P. 
Kang & D. Birtwhistle, 1998) the main parameters for diagnosis are: Number of vibration 
bursts, vibration burst amplitude, time between vibration bursts.  
When two consecutive changes are made from the same initial tap to the same final tap, the 
obtained records are not identical. Large differences can be observed in amplitudes and in 
time between vibration bursts. Consequently, some kind of signal processing must be used 
when using vibration monitoring to detect OLTC faults. 
The OLTC vibration signals are subjected to the treatment process shown in Fig. 6. The 
purpose and meaning of each treatment is summarised below.  
 

Normalization

Synchronization

Envelope Wavelet
Transform

Bursts
DetectionX(t)

Original
Signal

 
Fig. 6. Process for obtaining the wavelet envelope spectrum 
A. Normalization and synchronization of signals  
In first place vibration signals are synchronised, so that they start at the same time. Then, 
signals are normalised using their RMS value.  
As in our study the sampling rate is 50kS/s, in a 10s record there are 500 000 samples (Fig.2). 
By eliminating the samples with no information will the signals are reduced to 267,001-
269,001 samples.  
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B. Envelope analysis  
The main information in the vibration signal is in the signal envelope. So, once the vibration 
signals are normalised and synchronised, the Hilbert transform is used to obtain the 
envelope (A. I. Zayed., 1998).  
The analytic signal corresponding to a real signal ( )x t is defined as ( ) ( )x t jx t+ , where the 
real part of the analytical signal is the original signal and the imaginary part, ( )x t is the 
Hilbert transform of ( )x t . The magnitude of this complex analytical signal forms the signal 
envelope and is always a positive function. 
As mentioned the vibration signal is not exactly the same when repeated a tap change. Even 
some spurious bursts can appear. To solve this problem the vibration signal is converted 
into energy with the same number of intervals for each input signal. The average energy 
signal is computed, obtaining signals containing bursts with a similar number of samples.  
For the correct detection of bursts present in the envelope of the vibration signal is divided 
into six time intervals, thus reducing the signal to 640 samples (Fig. 7). 
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Fig. 7. Average energy of the envelope in regular time intervals 
C. Discrete wavelet transform  
Envelope analysis based on Hilbert transform is used as Wavelet decomposition pre-
processing. 
Discrete wavelet transform (DWT) is used to decompose a signal, through two types of 
filters (low pass and high pass filter). The number of times the signal is filtered is 
determined by the applied decomposition level. In this way, a set of coefficients 
(approximation and detail coefficients) are obtained at each decomposition level.  
Discrete wavelet transform (DWT) of a signal f (t) is defined by (S. Mallat, 1988): 
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  ( ) [ ] [ ]
j

j j jn
n Z

DWTf t d n a nψ
−∞ ∈

= +∑∑ ∑ , j Z∈  (1) 

[ ]ja n  : Approximation coefficients 
[ ]jd n : Detail coefficients 
jnψ  : scaling function. 

These coefficients represent part of the original signal, for certain frequency bands and time 
intervals.  
For the implementation of discrete wavelet transform to the envelope of the vibration signal 
in a first instance we must select the mother wavelet and then decompose the signal. The 
signal is reconstructed using Inverse Wavelet Transform (IDWT). 

Mother wavelet selection  
In order to have an indicator relating the correlation between the processed signal and the 
selected mother wavelet Parseval’s theorem is used. This indicator is the sum of the squared 
spectrum coefficients of the Fourier transform refer to frequency domain. 

 2 21 | [ ]| | |kf t b
N

=∑ ∑  (2) 

Where N is the sampling period, and bk are the coefficients of the Fourier transform 
Spectrum. 
Then, we use (1) and (2) to apply Parseval’s theorem to the DWT application and we  
obtain (3) 

  2 2 21 | [ ]| | [ ]| | [ ]|
j

j j
n Z

f t d n a n
N −∞ ∈

= +∑ ∑∑ ∑  (3) 

Parseval’s theorem relates the energy of the signal f (t) to the energy in each component and 
the wavelet coefficients. 
Then we use (3) as a comparison index for evaluation of the different mother wavelets that 
can be used. Table 1 shows the value of the aforementioned index with different mother 
wavelets when using the original signal and when using the envelope. 
 
 

Wavelet Type Index 
(Signal) 

Index  
(Envelope) 

Daubechies db9 3500.103468 251.8379024 

Symelet sym8 3497.532913 250.7456702 

Coiflet coif5 3502.697888 253.4763404 

Biortogonal bior 3.1 498043.4396 2420.976428 

Biortogonal bior 3.3 20573.9404 639.0276636 

Table 1. The value of the aforementioned index with different mother wavelets 
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Fig. 8. Wavelet decomposition 

From Table 1, it is evident that the best index when evaluating the envelope is the one 
obtained with the Biorthogonal Wavelet 3.1. Nevertheless, this mother wavelet is not square 
integrable (E. Rivas, et al.,2009), so the Fourier fast transform cannot be performed since it 
does not converge. Therefore, a pseudofrequency cannot be associated allowing us to relate 
one scale in the Wavelet domain with one frequency in the Fourier domain. 
Then Bior 3.3 mother wavelet was chosen since this wavelet presents the greatest correlation 
index when compared to other mother wavelets and it allows characterizing the vibration 
signal.  
Wavelet decomposition at level 3 (Fig. 8) is applied to the envelope of the energy signal  
(Fig. 7). Signal reconstruction from the coefficients of third level has a correlation of 94% 
with the original signal. 

D. Bursts detection  
Once discrete Wavelet Transform is performed, bursts are detected (Fig. 10). A smooth 
filtering based on threshold is used, to reduce noise and eliminate spurious bursts. To 
distinguish residual noise in the signal from the true burst, the energy present in the bursts 
are computed as the energy of residual noise is very low. The indicators used to evaluate the 
suitability threshold were:  
- Preserved energy in the signal (Ep): Measures the proportion of energy preserved in the 

envelope signal after thresholding.  
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Where env= envelope and envth=   smoothed envelope. 
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- Mean Square Noise (MSE): This indicator is proportional to the distortion in the filtered 
signal, thus its value should be the lowest possible.  

  [ ]
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1 [ ] [ ]
N

th
i

MSE env i env i
N =

= −∑  (5) 

- Signal Noise Ratio (SNR): This indicator measures the noise proportion referring to the 
signal. 
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The criterion to choose the threshold value is based on capturing the greatest percentage of 
energy with a low MSE and a suitable SNR. Fig. 9 shows Ep and MSE values as a function of 
threshold value.  
From this figure it is deduced that the appropriate threshold value is within the range from 
0.8% to 1.3% of the envelope RMS value.  
In our case a threshold of 1% was used. The average values (72 vibration records) of process 
indicators were, Ep= 97.59%, MSE=1.28E-08 with SNR= 36. 55db. Fig. 9 shows the 
reconstructed vibration signal after applying the threshold. 
 

 
Fig. 9. Preserved energy versus threshold value (discontinuous line) and Mean Square Error 
(dotted line) vs. threshold 
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Fig. 10. Bursts detection 
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Table 2. Vibration signals for the simulated failures  
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Table 3. Statistical Study 

6. Results 
Table 2 shows the vibration signature for some of the simulated failures. The study was 
carried out on 120 vibration signals, corresponding to 6 different conditions (Table 2) of the 
OLTC (20 signals for each condition). 
Some diagnostic indicators were extracted starting from the vibration signal (frequency 
spectrum, wavelet coefficient comparison, etc). The best indicator to classify vibration 
signals was time between vibration bursts. As vibration signals are not repetitive a statistical 
study was carried out to prove the suitability of this indicator. Table 3 shows the results of 
the statistical study. As it is deduced from Table 3, time between vibration bursts differs 
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significantly when failures do exist and when failures are absent. In certain types of failures 
some impulses (highlighted in grey in table 3) even disappear from the vibration signal.  

7. Conclusion 
It is of great importance to obtain indicators to assess the condition of high voltage 
equipment. Vibration signal can be used to assess the condition of a transformer OLTC. 
Main diagnostic indicators can be obtained by using Wavelet Transform to signal vibration. 
The use of a mother wavelet with the highest correlation with the vibration signals allows 
for a higher preservation of the original signal energy (and even with respect to the 
smoothed signal). But this is not a guarantee for smoothing the obtained signal or spurious 
burst elimination.  
In order to automatically obtain the bursts in the vibration envelope it is necessary to obtain 
wavelet coefficients of the signal. The proper election of those coefficients depends on the 
required information and the mother wavelet used and is obtained as a trade-off between 
the correlation of the envelope of the energy signal and the reconstructed signal.  
After analyzing the ability of different diagnostic indicators (number of bursts, vibration 
burst amplitudes, burst energy, time between vibration bursts, frequency band of bursts) to 
properly classify different kind of OLTC failures, time between vibration bursts (and 
eventually burst appearance or disappearance) are proven the most suitable indicators. 
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1. Introduction  
Devices to feed along microparts, such as ceramic chip capacitors and resistors, have 
become more common, due to their use in sorting, inspecting, and shipping mass produced 
microparts. In microparts feeding, to feed along microparts in one direction, the driving 
force applied to each micropart must vary according to the direction of motion of the 
micropart. Especially, the motion of microparts smaller than submillimeter can be affected 
by not only inertia but also adhesion which is caused by electrostatic, van der Waal's, 
intermolecular forces, and surface tension. 
Now we have developed a novel microparts feeder applied an asymmetric fabricated 
surface, for example, sawtoothed surface, as a feeder table (Figure 1) (Mitani, 2006). The 
asymmetric fabricated surface can feed along microparts in one direction using horizontal 
and symmetric vibrations because contact between a micropart and the asymmetric 
fabricated surface varies according to the direction of motion. In order to formulate the 
dynamics of micropart, we need to analyse driving force and adhesion according to these 
contacts.  
In this chapter, we developed micropart dynamics considering the effect of contact. 
Sawtoothed silicon wafers with various pitch were applied for feeder table, and also 0603 
(size, 0.6 x 0.3 x 0.3 mm: weight, 0.3 mg) capacitors were applied for microparts. 
First, we analysed contact between a micropart and a sawtoothed surface. Each surface 
profile model was approximated by a linear polynomial based on measurements using a 
microscopy system.  
Secondly, we derived dynamics including the effect of adhesion. We analysed contact 
between both approximated models, because both inertia caused by feeder vibrations and 
adhesion vary according to contact. Supposing that adhesion occurs in the direction vertical 
to the tangent and also adhesion acts when the distance between two surface models is 
smaller than an adhesion limit, we obtained an adhesion model. Then the adhesion model 
parameters were identified using the results of friction angle measurement experiments of 
microparts.  
Finally, we assessed the dynamics derived above. We firstly conducted feeding experiments 
of microparts using various pitch of sawtoothed surface with the same driving and 
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environmental conditions. Using these experimental results, we verified driving condition 
and feeding velocity at each sawtooth pitch, and also we assessed an appropriate driving 
condition and a feeder surface. Feeding simulations were then executed using dynamics 
derived with the same parameters as the feeding experiments. These simulation results were 
compared with experimental results in order to evaluate the derived dynamics. 
 

 
Fig. 1. Diagram of microparts feeding using a sawtoothed surface with symmetric vibrations 

2. Related works 
Partsfeeder is a key device in factory automation. The most popular feeders are vibratory 
bowl feeders (Maul, 1997), which use revolving vibrators to move parts along a helical track 
on the edge of a bowl. Linear feeders as well as an inclined mechanism and oblique 
vibration for unidirectional feeding (Wolfsteiner, 1999), have also been developed. In all of 
these systems, the aspect ratio of the horizontal/vertical vibrations must be adjusted to 
prevent parts from jumping. In our system, however, this adjustment is not necessary 
because only horizontal vibration is used.  
A parts feeding that employs non-sinusoidal vibrations (Reznik, 2001) has been developed. 
The part moves to its target position and orientation or is tracked during its trajectory by 
using the difference between the static and sliding friction. Our system realizes 
unidirectional feeding by symmetric vibration of a sawtoothed surface, which yields 
different contact forces in the positive and negative directions.  
Designing have been tested by simulation (Berkowitz, 1997 & Christiansen, 1996). The focus 
was mainly on the drive systems such as the structure and actuator, the movement of fed 
parts was generally neglected. In contrast, the movement of the microparts are considered in 
the present study.  
Attempts have been made to improve the drive efficiency by feedback control systems (Doi, 
2001) and nonlinear resonance systems (Konishi, 1997). Our system depends only upon 
contact between the feeder surface and the micropart. So the driving system is simple and 
uses an open loop system for feeding. 
Micro-electro-mechanical systems (MEMS) technology has been used to mount on a planar 
board arrays of micro-sized air nozzles which, by turning on or off their air flow, have been 
used to control the direction of moving microparts (Fukuta, 2004 & Arai, 2002). 
It is possible to perform manipulation with ciliary systems (Ebefors, 2000) and vector fields 
(Oyobe, 2001) without sensors. In this case, there are many actuator arrays on a vibratory 
plate. Actuator arrays enable control of contact between the vibratory plate and micropart in 
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order to accomplish the target manipulation. However, these studies did not mention the 
dynamics of the micropart, especially the effects of adhesion forces on its motion. Other 
various feeding systems using electric-field (Fuhr, 1999), magnetic (Komori, 2005), bimorph 
piezoelectric actuators (Ting, 2005), and inchworm systems (Codourey, 1995) have been 
developed. These studies, however, have also not investigated the contact between the 
feeder surface and the micropart.  

3. Measurement tool 
For inspection of both the sawtooth surface and the micropart surface profiles, we used the 
AZ-100 multi-purpose zoom microscopy system (Nikon Instech Co., Ltd.) (Figure 2), which 
includes a mono zoom optical system that enables on-axis observation and documentation 
and built-in optics of up to 8 times magnification. In combination with an objective lens of 5 
times magnification, we could take pictures at up to 40 times magnification. This microscope 
also has an automatic stage driven by a stepping motor to control focus height at a 
resolution of 0.54 μm.  
A digital camera is attached to the top of the microscopy system, and captured pictures were 
forwarded to a computer via USB interface, and saved as bitmap files. The resolution of 
forwarded pictures taken at 40 times magnification was 0.276 μm/pixel. We used the 
DynamicEye Real focus image synthesizing software (Mitani Corp.) to analyse these surface 
profiles. This software can synthesize a three dimensional (3D) model from these pictures 
according to focus height. Sections of the 3D model are analysed to obtain a surface profile 
model. 
 

 
Fig. 2. AZ-100 multi-purpose zoom microscope (Nikon Instech Co., Ltd.) 
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4. Analysis of micropart surface 
4.1 Detail of micropart 
We applied a 0603 ceramic chip capacitor, electronic parts used in various mobile devices, as 
a micropart. As shown in Figure 3, a capacitor consists of a conductor and electrodes with 
convexities on each end surface. We obtained representative contours along a capacitor 
using a Form Talysurf S5C sensing-pin surface measurement tool (Taylor Hobson Corp.) 
(Figure 4). Electrodes contact the feeder because they protrude 10 μm higher than the 
conductor. To obtain minute profile models of these electrodes, we used the microscopy 
system mentioned above. 
 

 
Fig. 3. Ceramic chip capacitor 0603 (size, 0.6 x 0.3 x 0.3 mm: weight, 0.3 mg) 

 

 
Fig. 4. Section of 0603 capacitor 

4.2 Surface model of micropart based on measurements 
Using the automatic capture mode of the DynamicEye Real software, we obtained a 3D 
model of an electrode shown in Figure 5 synthesized from 256 successive pictures with an 
interval of 0.54 μm in focus height at 40 times magnification. Analysing this 3D model, a 
numerical model of surface profile at any section was obtained. Figure 5 shows a profile 
model with a section along the y axis, and also Figure 6 shows a section along the x axis in 
Figure 4. 
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Next, we considered a convexity model on the surface of electrode. We assumed that only 
some higher convexities can contact the sawtoothed feeder surface. We then selected five 
convexities numbered from #1 to #5 in Figure 6 and 7. Let us approximate each convexity 
with a second order polynomial as follows: 

 2 ,p p py b x c′= +  (1) 

where, cp  is constant, yp  is defined along the vertical line, and also xp  is defined along the 
horizontal line. Figure 8 shows the profile model of the convexity #1 and its approximation 
function. Assuming that each approximation function could be rotated around the 
horizontal line, and be transformed to its minimum value at the position ( , ) (0,0)p px y =  
without loss of generality, equation (1) can be rewritten as: 

 2 ,p py bx=  (2) 

where, b b′≡ − . Averaging five transformed approximation functions, the coefficient was 
formulated as 0.186b =  (Figure 9). 
Finally, the surface profile model of electrode convexity was defined by a hyperboloid of 
revolution of equation (2) around the  yp  axis. When considering the zp axis perpendicular 
to the  p px y−  plane with passing the position ( , ) (0,0)p px y = , the trajectory of a point 
( , )p px y  on equation (2)  was represented as  a circle with a radius r as follows: 

 .p
p

y
r x

b
= =  (3) 

Then, the convexity surface model was formulated as: 

 2 2 .p p px z y+ =  (4) 

 

 
Fig. 5. Synthesized model of capacitor electrode 
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Fig. 6. Profile model along the y axis 

 
 

 
Fig. 7. Profile model along the x axis 
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Fig. 8. Profile model of convexity #1 and its approximation 
 

 

 
Fig. 9. Convexity model based on measurements: averaged model of five convexities 



 Advances in Vibration Analysis Research 

 

350 

5. Analysis of sawtoothed feeder surface model 
In this study, sawtoothed silicon wafers were applied for feeder surfaces. These surfaces 
were fabricated by a dicing saw (Disco Corp.), a high-precision cutter-groover using a 
bevelled blade to cut sawteeth in silicon wafers. Inspecting a sawtoothed silicon wafer using 
the microscopy system, we obtained a synthesized model (Figure 10) and its contour model 
(Figure 11). Then we found that these sawtooted surfaces were not perfectly sawtooth 
shape, but were rounded at the top of sawteeth because of cracks by fabricating errors. So 
these sawtoothed surfaces were needed to derive surface profile models based on 
measurements same as Section 4. 
Analysing Figure 9 with the DynamicEye Real software, we obtained a numerical model of 
the top of sawtooth representing with the circle symbol in Figure 12. Defining the feeder 
coordinate O xy− with the origin O at the maximum value, x  axis along the horizontal line, 
and y  axis along the vertical line, this numerical model was approximated with four order 
polynomials as follows: 

 4 3 2
4 3 2 1 0( ) .sy f x a x a x a x a x a= = + + + +  (5) 

An approximation function was drawn with a red continuous line in Figure 11 when each 
coefficient was defined as Table 1.  Interpolating other part of sawtooth with straight lines, 
we obtained surface profile model of sawtoothed surfaces (Figure 13). In this figure, 
p shows the sawtooth pitch, and θ  shows the angle of elevation. In addition, the incline 
angle of the line HJ was the same as the angle of elevation θ , the line KL was along the sy  
axis, and the curve JK  was represented by equation (5). 
 

 
Fig. 10. Synthesized model of sawtoothed surface (p = 0.1 mm and θ=20 deg) 
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Fig. 11. Contour model  
 

 
Fig. 12. Measured sawtooth profile and its approximation 
 

 
Fig. 13. Surface profile model of sawtooth 
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4a  3a  2a  1a  0a  

-0.772e-4 -0.370e-2 -0.611e-1 0.0 0.0 

Table 1. Coefficients of approximation function 

6. Analysis of contact between approximated models of both surfaces 
6.1 Distance between two surfaces 
Now we consider contact between two approximation functions represented by equations 
(2) and (5) as shown in Figure 14. Let us assume that these two functions share a tangent 
at the contact point ( , )c cC x y , and also assume that adhesion acts perpendicular to the 
tangent.  
 

 
Fig. 14. Contact between two approximation models of micropart and sawtoothed surface 

When the part origin pO  is located at 0
0 0( , )pO x y  on the feeder coordinate, equation (2) can 

be rewritten as: 

 2
0 0( ) .y b x x y= − +  (6) 

Differentiating with respect to x and also substituating the contact point ( , )c cC x y , we have 
the tangent as follows: 

 0 02 ( )( ) .c cy b x x x x y= − − +  (7) 

When the incline of the tangent is defined as ( ) tancy x θ′ ≡ , the following equations are 
obtained: 

 0( ) 2 ( ) ( ),c c s cy x b x x f x′′ = − =  (8) 

 3 2 1
4 3 2 1

( )( ) 4 3 2 .s
s c c c c

df xf x a x a x a x a
dx

′ ≡ = + + +  (9) 

From these equations, the part origin 0
0 0( , )pO x y  is calculated as: 
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 0
( ) ,
2

s c
c

f xx x
b

′
= −  (10) 

 
2

0
{ ( )} .

4
s c

c
f xy y

b

′
= −  (11) 

Let us consider a normal equation against the tangent passing through a coordinate 
( , )q qQ x y . When the normal equation intersects two surfaces at the coorinates 1 1 1( , )Q x y  

and 2 2 2( , )Q x y , respectively (Figure 15), distance of two surfaces can be represented as: 

 2 2
1 2 2 1 2 1( ) ( ) .dl Q Q x x y y= = − + −  (12) 

 

 
Fig. 15. Distance of two surface models 

Now we formulate the coordinate 2 2 2( , )Q x y  assuming that the coordinate 1 1 1( , )Q x y  is 
already known. The normal equation is represented as: 

 
1 1

1

1 ( )             ( ) 0 ,
( )

                                            ( ( ) 0).

p c
p c

p c

y x x y (y x )
y x

x x y x

⎧ ′= − − + ≠⎪ ′⎪
⎨
⎪ ′= =⎪⎩

 (13) 

Then, substituting into equation (5), we have: 

 0 a 
2

1

-x                   ( ) 0 ,

                          ( ( ) 0),

p c

p c

x (y x )
x

x y x

′⎧ ≠⎪= ⎨ ′ =⎪⎩

 (14) 

 
2

0 a
2

0 1 0

x                   ( ) 0 ,

( -x )            ( ( ) 0),

p c

p c

y b (y x )
y

y b x y x

′⎧ + ≠⎪= ⎨ ′+ =⎪⎩

 (15) 

where, 
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0 1
0 12

p c p c p c

0 1
0 12

p c p c p c

1 1 1 4 ( )                   ( ) 0 ,
2 y (x ) y (x ) y (x )

1 1 1 4 ( )                  ( ( ) 0).
2 y (x ) y (x ) y (x )

p c

a

p c

x xb y y (y x )
b

x
x xb y y y x

b

⎧ ⎧ ⎫⎛ ⎞−⎪ ⎪⎪ ′⎜ ⎟− − − − >⎨ ⎬⎪ ′ ′ ′⎜ ⎟⎪ ⎪⎪ ⎝ ⎠⎪ ⎩ ⎭≡ ⎨
⎧ ⎫⎪ ⎛ ⎞−⎪ ⎪ ′⎪ ⎜ ⎟+ − − − <⎨ ⎬′ ′ ′⎪ ⎜ ⎟⎪ ⎪⎝ ⎠⎪ ⎩ ⎭⎩

 (16) 

Here, when the square root in equation (16) is imaginary, equations (5) and (13) do not 
intersect each other, which means that dl = ∞ . 
 

 
Fig. 15. Definition of contact area 

6.2 Area of adhesion 
Let as assume that adhesion acts when the distance dl  is less than or equal to an adhesion 
limit dδ . In Figure 16, area of adhesion can be defined as colored part between two lines 
satisfying dl dδ= .  Now we defined coordinates 1R  and 2R  as 1 1 1( , )r rR x y and 2 2 2( , )r rR x y , 
(however, 1 2r rx x< ), respectively.  The equation that passes through 1R and 2R  is described 
in the part coordinate system as: 

 2
1 1( ) ,p r p r ry c x x x= − +  (17) 

where,  

2 1

2 1
.r r

r
r r

y yc
x x

−
=

−
 

When equation (17) is applied to the coordinate system p p p pO x y z−  as a plane parallel to the 
pz axis, equation (17) cuts the hyperboloid represented in equation (4). In this study, the 

area of adhesion A  is determined by the cut plane as shown in Figure 16. Substituting 
equation (17) into (4), equation of intersection is obtained: 

 2 2 2
1( ) ( ) .

2 2
r r

p p r
c cx z x− + = −  (18) 
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Fig. 16. Area of adhesion 

Consequently, we have: 

 2
1( ) .

2
r

r
cA xπ= −  (19) 

Figure 17 show calculation results of area of adhesion, assuming that the adhesion limit lδ  
is determined by the Kelvin equation as follows: 

 

0

2 ,
ln

m
k k k

Vl c r c P RT
P

γδ = ≡ −  (19) 

where, T is the thermodynamic temperature, R the gas constant, γ  the surface tension, 
0P the saturated vapor pressure, P vapor pressure, mV  molecular volume, kr  the Kelvin 

radius, and kc  proportionally coefficient. 
 

 
Fig. 17. Area of adhesion 

Let aF , AD , n , and iA be the adhesion force, the coefficient of adhesion, number of 
micropart convexity contacting with the sawtoothed surface, the area of adhesion of i-th 
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micropart convexity ( 1, ,i n= ), respectively . Assuming that adhesion force is proportional 
to the area of adhesion, the adhesion force is finally represented as follows: 

 
1

,
n

a A i
i

F D A
=

= ∑  (19) 

7. Identification of adhesion by angle of friction of microparts 
Adhesion between microparts and a feeder surface is affected by surroundings such as 
temperature and ambient humidity. The Kelvin radius is getting larger as the ambient 
humidity increases, and then the adhesion force is also getting larger. In this section, we 
identified the adhesion force based on measurements of angle of friction of microparts 
under several conditions of ambient humidity. 

7.1 Measurements of angle of friction of microparts 
Angle of friction of microparts were measured under a temperature of 24oC  and an 
ambient humidity of 50, 60, or 70 %. We prepared sawtoothed silicon wafers with an 
elevation angle of 20oθ =  and various sawtooth pitches of 0.01,0.02, ,0.1 mmp = . 
Experiments were conducted three times using 35 capacitors. Before experiments, all the 
experimental equipments were left in the sealed room with keeping constant temperature 
and ambient humidity for a day. 
The averaged experimental data of each experimental condition were plotted in Figures 18 
to 20.  In these figures, ‘positive’ direction means that the sawtoothed surface was put as  
Figure 13, and then was turned around with the clockwise direction, whereas ‘negative’ 
direction means when it was turned around with the counter clockwise. Also, the averaged 
angle of friction at each ambient humidity is shown in Figure 21. 
 

 
Fig. 18. Angle of friction of microparts with an ambient humidity of 50 % 
Now we examine the directionality of friction. From Figures 18 to 20, experimental results at 
‘positive’ direction were totally smaller than that of ‘negative’ direction, even opposite 
directions were appeared at on the surfaces of p=0.02, 0.03, 0.05, and 0.06 mm under an 
ambient humidity of 50 %, and on the surface of p=0.07, 0.08, and 0.09 mm under an 
ambient humidity of 60 %. The maximum directionality was 17.9 % realized on the surface 
of p=0.04 mm under an ambient humidity of 50 %, 26.6 % on the surface of p=0.05 mm 
under an ambient humidity of 60 %, and 15 % on the surface of p=0.06 mm under an 
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ambient humidity of 70 %. From Figure 21, the angle of friction is getting larger according to 
ambient humidity, which indicates that the effect of adhesion increases as the increase of 
ambient humidity. 
 

 
Fig. 19. Angle of friction of microparts with an ambient humidity of 60 % 
 

 
Fig. 20. Angle of friction of microparts with an ambient humidity of 70 % 
 

 
Fig. 21. Relationship between ambient humidity and angle of friction 



 Advances in Vibration Analysis Research 

 

358 

7.2 Examination of friction coefficient 
We consider the case that i-th convexity contacts a sawtooth at a position 0x < , that is, 

0iθ > (Figure 22).  When the surface is inclined to the positive direction, adhesion acts as 
friction resistance against sliding motion, and also when inclined to the negative direction, 
adhesion acts as resistance against pull-off force. Let sif be friction resistance against sliding 
motion, and pif be resistance against pull-off force, these resistances can be represented as: 

 cos ,si A i if D Aμ θ=  (20) 

 sin .pi A i if D A θ=  (21) 

Similarly, when contact at a position 0x > ( 0iθ < ), these two resistance is rewritten as 
follows: 

 cos ,si A i if D Aμ θ= −  (22) 

 sin .pi A i if D A θ=  (23) 

On the other hand, when contact occurs at 0x = ( 0iθ = ), adhesion acts as friction resistant 
against sliding motion according to the direction of incline. If φ  is the incline of the 
sawtoothed surface, we have: 

 A i
si

A i

D A
f

D A
μ

μ
−⎧

= ⎨
⎩

   
( 0)
( 0)
φ
φ
<
>

 (24) 

Let us assume that (m+n) convexities contact sawteeth, then each convexity numbered 1, 2, 
, m is shared a tangent with 0,( 1,2, , )pi i mθ > = , and also each convexity numbered 

(m+1), (m+2), , (m+n) is shared a tangent with 0,( 1, 2, , )nj j m m m nθ < = + + + . Let 
pF and nF  be the resistances at the positive and negative direction. Also, let piA and njA be 

adhesion area of the i-th convexity and j-th convexity, respectively, we obtained: 

 
1 1

( sin cos ),
m n

p A pi pi nj nj
i j

F D A Aθ μ θ
= =

= +∑ ∑  (25) 

 
1 1

( cos sin ).
m n

n A pi pi nj nj
i j

F D A Aμ θ θ
= =

= −∑ ∑  (26) 

When the incline of the feeder surface is φ , inertia of micropart along the feeder surface is 
represented as: 

 ( ) sin cos ,F mg mgφ φ μ φ= −  (27) 

where, m is mass of micropart and g is gravity. Let as assume that micropart starts to move 
when the resistance caused by adhesion balances the inertia of micropart, ( )F φ . If pφ and nφ  
are angles of friction of positive and negative direction, respectively, we have: 

 sin cos ,p p pF mg mgφ μ φ= −  (28) 
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 sin cos .n n nF mg mgφ μ φ= −  (29) 

 

 
Fig. 22. Resistance caused by adhesion 

7.3 Identification of friction and adhesion 
First, we identified the coefficient of friction from experimental results in Figure 21. 
Assuming that adhesion is proportional to area adhesion, we decided the ratio of adhesion 
according to ambient humidity from Figure 17 as follows: 

 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

(60%) (60%) (70%) (70%)
1.18, 1.47,

(50%) (50%) (50%) (50%)
dir dir dir dir

dir dir dir dir

A F A F
A F A F

= = = =  (30) 

where, either symbol  ‘p’ or ‘n’ is substituted into the subscript ‘(dir)’ according to direction. 
Substituting m=0.3 mg and g = 9.8 m/s2 into equations (28) and (29), we identified the 
coefficient of friction so as to fit equation (30). From Figure 23, the identification results 
when 0.28μ = corresponds with simulations, error between both results is 0.96 %. 
Next, we considered the identification of adhesion. In equations (25) and (26), we assumed 
that: 

 ,m n=  (31) 

 ( ) ( ) ( )0 ( )0,
1

sin sin
n

dir i dir i dir dir
i

A Aθ θ
=

≡∑  (32) 

 ( ) ( ) ( )0 ( )0
1

cos cos .
n

dir i dir i dir dir
i

A Aθ θ
=

≡∑  (33) 

Substituting equations (31), (32) and (33) into equations (25) and (26), we have: 

 0 0 0 0( sin cos ),p A p p n nF D A Aθ μ θ= +  (34) 
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 0 0 0 0( cos sin ).n A p p n nF D A Aμ θ θ= −  (35) 

Then, the ratio of adhesion of positive and negative direction was formulated as: 

 0 0 0 0

0 0 0 0

sin cos
.

sin cos
p p p n n

n n n p p

F A A
F A A

θ μ θ
θ μ θ

+
=
− +

 (36) 

Substituting the ratio of adhesion calculated from equations (28) and (29) into equation (36), 
we identified variables ( )0dirA and ( )0dirθ (Table 2). Consequently, the coefficient of adhesion 
was almost constant while there was 4 % error at each ambient humidity condition. We 
finally decided 2 23.72 10  /AD N mμ μ= × averaging them.  
To assess the identified results, we compared experiments with calculation using the 
identified results. From Figure 24, identification results were in well agreement with 
experiments. 
 

 
Fig. 23. Identification of coefficient of friction 

7.4 Micropart dynamics including adhesion 
When the feeder surface moves with sinusoidal vibration at an amplitude vibA  and an 
angular frequency ω  (Figure 25), the inertia sF  transffered to a micropart is defined 
according to relative motion of the micropart and the feeder surface and its contact position 
as follows: 

 

2

2

sin ,

sin              ( 0)
0                          ( 0)

vib

vib
s

F mAvib t

FF

ω ω

θ θ
θ

= −

⎧ ≠⎪= ⎨
=⎪⎩

 (37) 



Analysis of Microparts Dynamics Fed Along on an  
Asymmetric Fabricated Surface with Horizontal and Symmetric Vibrations   

 

361 

ambient humidity 50 % 60 % 70 % 

,  cx mμ  0.913±  

0 , radpθ  0.102  

0 , radnθ  0.121−  
2

0 ,  pA mμ  1.21 2e −  1.42 2e −  1.77 2e −  
2

0 ,  nA mμ  1.12 2e −  1.32 2e −  1.65 2e −  
2,  /AD N mμ μ  3.63 2e +  3.80 2e +  3.72 2e +  

Table 2. Identification of adhesion 

 

 
Fig. 24. Comparison of identfication and experiments 

 

 
Fig. 25. Transferred force from feeder surface to micropart 
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Also, If px is micropart position, micropart dynamics is given by: 

 ,s p pF mx cx= +  (38) 

where, c is the coefficient of viscous attenuation, px second order time differential, and 
px time differential.  

Next we considered the effect of adhesion. Adhesion changes according to the relative 
motion of micropart on the feeder surface. If x is displacement of the feeder surface, velocity 
of the feeder surface is represented as: 

 cosvib
dxx A t
dt

ω ω= = , (39) 

Then the micropart dynamics along the x axis can be expressed as: 

 ( ) ,p p s dirmx cx F F+ = −  (40) 

where, 

( )

          ( 0)
          ( 0)

p p
dir

n p

F x x
F

F x x
− >⎧⎪= ⎨ − <⎪⎩

 

 

 
Fig. 26. Microparts feeder using bimorph piezoelectric actuators 
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8. Feeding experiments of micropart 
8.1 Experimental equipment 
In micropart feeder (Figure 26), a sawtoothed silicon wafer is placed at the top of the feeder 
table, which is driven back and forth in a track by a pair of piezoelectric bimorph elements, 
powered by a function generator and an amplifier that delivers peak-to-peak output voltage 
of up to 300 V.  
 

8.2 Feeding experiments 
Using this microparts feeder and sawtoothed silicon wafers mentioned in section 7.2, we 
conducted feeding experiments of microparts at a frequency of f=98 to 102 Hz with an 
interval of 0.2 Hz, and at an amplitude of A=0.5 mm under an ambient humidity of 60 % 
and a temperature of 24°C.   
Each experimental result is the average of three trials using five microparts. Then the 
maximum feeding velocities of each feeder surface was recorded in Table 3. 
When the pitch was 0.04 mm or less, the velocity was around 0.6 mm/s at a driving 
frequency f=98 to 100 Hz. The fastest feeding was 1.7 mm/s which was realized at a 
frequency f=101.4 Hz on p=0.05 mm surface. When the pitch was 0.06 mm or larger, the 
maximum velocities were around 1.0 mm/s at a frequency around f=101.4 Hz.   
 

pitch, mm velocity, mm/s frequency, Hz 

0.01 0.695 99.2 

0.02 0.839 98.8 

0.03 0.749 100.0 

0.04 0.582 99.2 

0.05 1.705 101.4 

0.06 0.880 101.6 

0.07 1.253 101.4 

0.08 1.262 101.8 

0.09 0.883 101.2 

0.10 1.049 101.6 
 

Table 3. Maximum feeding velocity on each feeder surface 

8.3 Comparison of feeding simulation 
Using equations (37) and (40), we simulated microparts feeding with the same conditions as 
experiments. In order to assess the effectiveness of adhesion, we conducted simulations 
when adhesion would be ignored. Experimental results and both simulation results were 
plotted simultaneously (Figure 27). 
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From this figure, both simulations were far from experimental results. These differences 
were caused by rotational motion around the axis along the sawtooth groove (Mitani, 2007). 

9. Conclusion 
We formulated feeding dynamics of microparts considering the effect of adhesion between 
sawtoothed silicon wafers and capacitors. Using a microscopy system, we obtained precise 
surface models of a micropart and sawtoothed silicon wafers. Contact between two surface 
models was analysed assuming that they shared a tangent at the contact point. Adhesion 
was then examined according to adhesion limit that both surfaces are near enough to adhere 
each other. Experiments of angle of friction of microparts were conducted in order to 
identify the coefficients of friction and adhesion. The feeding dynamics including the effect 
of adhesion were finally formulated. 
Comparing simulation using the dynamics derived and experimental results, we found 
large differences between them because of rotation around the axis along to sawtooth 
groove.  
In future studies, we will try to: 
• Identify micropart dynamics including rotation, and 
• Develop feeder surfaces with more precise profile. 
This research was supported in part by a Grant-in-Aid for Young Scientists (B) (20760150) 
from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and by a 
grant from the Electro-Mechanic Technology Advancing Foundation (EMTAF), Japan. 
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1. Introduction 
A defect detection of a heating tube installed in a power station is a very important process 
for avoidance of a serious disaster. The defect detection for the fast breeder reactor “Monju” 
in Japan is implemented by feeding an eddy current testing (ECT) probe (Isobe et al., 1995; 
Robinson, 1998) with a magnetic sensor, into the tube. The ECT probe (hereafter, simply 
called probe) is controlled so as to move in the heating tube at a constant velocity. A 
peculiar feature of the heating tubes in “Monju” is that each tube is mostly helical. An 
undesirable vibration of the probe always happened in the helical heating tube under a 
certain condition (Inoue et al., 2007). The vibration was considerably large and generated an 
obstructive noise in the signal of the magnetic sensor. It made the detection of defects 
difficult. Some papers reported similar problems (Bihan, 2002; Giguere et al., 2001; Tian and 
Sophian, 2005), but a large vibration of the probe was not involved. A key to the problem is 
that the noise in the signal was accompanied with the hard vibration. Several characteristics 
of the vibration became clear through some experiments by using a mock-up, and a 
countermeasure was taken by making use of the characteristics of the vibration (Inoue et al., 
2007). However, an essential factor on the cause of the vibration was still unclear. Since the 
noise in the signal is highly correlated with the vibration, a thorough investigation of the 
vibration is needed. It is desirable to find out the cause of the vibration in order to remove or 
reduce the vibration and ensure the reliability of the inspection.  
In this study, the cause of the vibration is assumed to be Coulomb friction between floats, 
which are attached to the probe, and the inner wall of the heating tube on the basis of the 
experimental results. An analytical model is obtained by taking Coulomb friction into 
account and numerical simulation is implemented by applying a step-by-step time 
integration scheme. However, the analytical model has a very large number of degree of 
freedom. Furthermore, there are many points on which Coulomb friction acts when the 
probe is fed into the tube under air pressure since many floats, which are in contact with the 
inner wall of the heating tube, are attached to the probe. It implies that a lot of strong non-
linearities exist in the analytical model. There is no precedent for this kind of problem, and 
heavy computational costs are ordinarily required to carry out the numerical simulation.  
Sueoka et al. (1985) presented the Transfer Influence Coefficient Method (Inoue et al., 1997; 
Kondou et al., 1989, hereafter: TICM), which is a computational method for a dynamic 



 Advances in Vibration Analysis Research 

 

368 

response of a structure and has advantages in computational accuracy and speed. The TICM 
is especially good at a longitudinally extended structure, such as a pipeline system and 
rotational machinery of a large plant. The advantages of the TICM are outstanding in an 
application to such structures. The probe can be regarded as a long cable, so that it exactly 
coincides with the structure suitable for the TICM. The TICM is applicable to various fields 
of the dynamic response, that is, free vibration analysis, forced vibration analysis, and time 
historical response analysis. The numerical simulation of the probe is efficiently 
implemented by applying the time historical response analysis of the TICM. The results of 
the numerical simulation qualitatively agree well with the experimental results. It confirms 
the validity of the assumption that the vibration is caused by Coulomb friction. In other 
words, the numerical simulation is regarded as an available tool to estimate a vibration of 
some modified probes. Based on this study, some improvements of probe sufficiently 
suppress the vibration, and a reliable inspection of helical tubes is realized. 

2. The mock-up experimental equipment and analytical model of the probe 
A mock-up experimental equipment is shown in Fig. 1. For the most part, the heating tube is 
helical. Six heating tubes with different helical diameters are mounted in the mock-up. The 
probe consists of a remote field (RF) sensor, cable and floats as shown in Fig. 2. The floats 
are attached to the cable at equal spaces. The probe is fed into the heating tube from the 
upper side of the steam generator. The RF sensor inspects the attenuation of the wall 
thickness of the heating tube by detecting the change of eddy current. The cable of the 
forward section from the sensor is called the guide cable and the aft section is called the 
carrier cable. A drag force which acts on the floats by means of dry compressed air flow is 
the driving force of the probe. The directions of the air flow and the movement of the probe 
are the same, that is, the direction of the air flow in the insertion process is opposite to the  
 

 
Fig. 1. Mock-up test facility. 
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Fig. 2. ECT probe and accelerometer. 

air flow of the return process. The probe passes through the heating tube very quickly 
unless the feed control equipment, which is shown in Fig. 1, regulates the feeding speed. An 
axial force of which direction is opposite to the moving direction acts on the probe from the 
feed control equipment. Thus, a tensile force acts on the probe in the insertion process on the 
average, while a compressive force acts on the probe in the return process. The detection of 
defects can be operated both in the insertion and the return processes, and inspections in 
both processes are desirable in order to ensure the reliability of the inspection.  

2.1 Summary of the experimental results 
Experimental results by using the mock-up (Inoue et al., 2007) are summarized as follows.  
a. During the inspection, the RF sensor transmits two signals X and Y, which are output 

voltage from the detector coil. Their directions are perpendicular to each other, and also 
perpendicular to the axial direction of the helical tube as shown in Fig. 3(a). Usually, the 
directions of X and Y do not correspond to the normal and the binormal ones of the 
helical tube. Fig. 3(b) shows RF signal at the carrier velocity of 200 mm/s when the 
sensor part passes through the sensitivity test piece. Signals X and Y generate 
fluctuations in opposite directions at the same time, but the amplitudes are different 
from each other. In Fig. 3(c), the Lissajous’ figures for signals X and Y are illustrated. 

 

 
Fig. 3. (a) Two RF signals X and Y, (b) RF signals at the test piece and (c) its Lissajous’ figure. 
b. The total length of the heating tube is about 90 m. The length of the helical part is about 

60m (see Fig. 1). RF signals of X, Y and accelerations nearby the sensor in the insertion 
process are shown in Fig. 4(a and b), respectively. The sensor passed the helical part of 
the heating tube in the shaded area of Fig. 4(a and b) and an approximate length of the 
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probe inserted into the helical part is also indicated. Large impulsive signals at 
positions A and B shown in Fig. 4(a) were caused by metallic flanges to connect the 
both ends of the acrylic fluoroscopy tube. The acrylic fluoroscopy tube can be set up at 
either position A or B in order to observe the movement of probe by high-speed camera. 
Although the impulsive signals are large noises on the RF signals, we ignore them 
because the actual heating tubes are not equipped with the acrylic fluoroscopy tube and 
metallic flanges. On one hand, the small impulsive signals in the RF signals like short 
beards in the region of the helical tube occurring at equal intervals. These signals are 
generated as the sensor part passes through the metallic outer support of the heating 
tube. The small impulsive signal is called “support signal”. Although the support signal 
is a kind of noise on the RF signals, the discrimination between the attenuation and the 
support signal is not discussed in this study, because the actual metallic outer supports 
are different from the ones of the mock-up. We focus on the relationship between the 
vibration and the RF signal noise. 

 

 
Fig. 4. (a and b) RF signal and acceleration in insertion process.  
c. The accelerations shown in Fig. 4(b) were measured by an accelerometer, which was 

specially arranged for the experiment, located nearby the sensor as shown in Fig. 2. The 
directions of the acceleration were lateral and longitudinal of the probe and correspond 
to the radial and axial directions of the helical heating tube. From Fig. 4(b), the vibration 
of the probe rapidly increased after the sensor passed through the middle position of 
the helical part. At the same time, the noises were raised in the RF signals and kept a 
large value until the insertion process finished. It means that there was adequate 
correlation between the probe vibration and RF signal noise. In addition, we confirmed 
that a noticeable peak in the frequency analysis (about 20 Hz) appeared in both the axial 
and the radial vibrations of the probe. Both vibrations were weakly coupled and the 
probe showed an inchworm-like motion.  

d. In the case of non-feeding, no vibration of the probe occurred even if the dry 
compressed air streamed into the heating tube. No RF signal noise was also appeared. It 
was expected that the vibration of the probe was mainly caused by a frictional force 
between the floats and the inner wall of the heating tube, and the fluid force was not an 
essential factor of the vibration.  

e. The vibration of the probe in the return process was smaller than the one in the 
insertion process. There was no noticeable peak in the frequency analysis of the 
vibration in the return process.  

f. The vibration of the probe became small in the case of low feeding speed, large helical 
diameter and low supply rate of the air flow.  
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g. It was found that the RF signal noise highly correlated with radial vibration of the 
probe. A long guide cable made the RF signal noise small because it was effective in 
suppressing the radial vibration. In addition, a large size of float attached to the guide 
cable was also effective in suppressing the vibration.  

In this study, only the vibration of the probe is focused on because there was a certain 
correlation between the probe vibration and RF signal noise. The inspection of the 
attenuation of the wall thickness is operated in both the insertion and the return processes in 
order to perform a firm inspection. In this study, the vibration of the insertion process is 
focused on since it is larger than the one of the return process as mentioned above e.  

2.2 Analytical model of probe 
The analytical model is obtained under the following simplifications so that the numerical 
analysis can be implemented as easily as possible. 
a. The heating tubes consist of straight, helical and bending parts as shown in Fig. 1. The 

vibration of the probe always occurred in the helical part, and it did not occur in the 
other parts of the heating tubes. Therefore, only the helical part of the heating tube is 
considered. 

b. The length of the actual probe becomes longer as the insertion process goes on. 
However, it is difficult to treat a probe with time varying length. On one hand, if a 
vibrating probe, which is sufficiently inserted in the helical tube, stops feeding and 
restarts, the vibration of the probe is always reproduced. It follows that a probe with a 
constant length can be regarded as a momentary situation in which the actual time 
varying length of probe just reached the length. Hence, many probes with constant 
length (each length is different from one another) can be substitutes for the actual probe 
with time varying length. In this paper, the length of the probe is assumed to be 
constant and many probes with constant length are treated in order to cope with the 
actual probe with time varying length.  

c. Contact points between the floats and the inner wall of the heating tube are always 
generated at the inside of the helical tube as shown in Fig. 5, because tensile force acts 
on the probe in the insertion process.  

 

 
Fig. 5. Analytical model of probe in helical tube. 

d. The vertical motion of the probe is disregarded. The motion of the probe is restricted 
within the horizontal plane. Thus, the probe moves in a circular tube placed in the 
horizontal plane as shown in Fig. 6.  

e. The movement of the probe is modeled as illustrated in Fig. 5. The probe moves in the 
heating tube at a constant speed u from the left-hand side to the right-hand side of Fig. 5. 
The dry compressed air also flows inside the tube in the same direction of the 
movement of probe. Secondary flow around the floats and cable is neglected. 



 Advances in Vibration Analysis Research 

 

372 

 
Fig. 6. Actual and analytical heating tube. 

 

 
Fig. 7. Lumped mass modeling. 

Based on the simplifications, the probe is modeled as a lumped mass system as shown in 
Fig. 7. The cable is equally divided, and rigid bodies which possess mass and moment of 
inertia, are put to each divided point. Each section spaced by floats is divided into four by 
taking a balance between the float pitch pf and diameter of the cable dc into consideration. 
The analytical model is formed by a connection of the rigid bodies and massless beams in 
series as shown in Fig. 7. The probe can be regarded as almost uniform because it was made 
by a continuous cable and lightweight spherical floats which are attached to the cable. Thus, 
the mass and moment of inertia of each rigid body are assumed to be identical and given as 
follows:  

 ( )⎡ ⎤= = +⎢ ⎥⎢ ⎥⎣ ⎦

2 21,
4 12 4 16

ff c
c

p p dm ρ J m  (1) 

where ρc is mass per unit length of probe, including the mass of the cable and floats. The 
moment of inertia J was obtained as a rigid column with diameter dc and height pf/4. Virtual 
spheres are assumed to be around the rigid bodies which occupy the place where the floats 
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originally existed. The diameter of the virtual spheres is equal to one of the floats and is 
common to all spheres. The spheres fill the role of the floats, which are subjected to the drag 
force of air flow and are in contact with the inner wall of the heating tube. Contact forces 
and frictional forces from the inner wall of the heating tube also act on the virtual sphere. 
The forces are transmitted to the rigid bodies through the virtual sphere. The mass and the 
moment of inertia of the RF sensor are also assumed to be m and J without a special 
treatment.  
Each rigid body is called “Node” and the left- and the righ-thand ends of the system are 
defined as node 0 and node n, respectively. The beam element between the node j and j−1 is 
called jth beam element. Each of the beam elements is assumed to be straight and slantingly 
connects with rigid bodies at both ends as shown in Fig. 7. The slant connection is due to the 
curvature of the helical heating tube and the slanting angle φ is given as:  

 −= 1sin [ /(4 )]f hpφ d  (2) 

where dh is a diameter of the helix.  

2.3 Equation of motion 
In this paper, variables with head symbol and subscripts have following principles:  
a. Variables with subscript j represent the physical quantities related to node j or the jth 

beam element.  
b. Variables with and without head symbol “–” represent the physical quantities on the 

left- and the right-hand side of node, respectively.  
 

 
Fig. 8. Polar coordinate. 
Since the probe goes into the helical (circular, under the assumption d of Section 2.2) tube at 
a constant speed, the motion of the rigid body at node j is represented in a polar coordinate 
O–XjYj as shown in Fig. 8. The point O in Fig. 8 corresponds to the center of the helix (or 
circle) and the Xj-axis points toward a center of gravity of the rigid body Gj. Supposing that 
a center of gravity of the rigid body without stretch and lateral motion of the probe is 
denoted Gj,0, the point of Gj,0 turns around the center O at a constant angular velocity ω0 
which is given as:  

 0 / , /2hω u r r d= =  (3) 

where r is the radius of the helix. The relative movement of the rigid body at node j with 
respect to the unstretched probe is represented as an axial displacement xj(t) (arc coordinate 
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along the helix) from Gj,0, a radial displacement yj(t) from Gj,0 and a rotation θj(t) around Gj 
as shown in Fig. 8. Physical quantities such as xj(t), yj(t), θj(t), etc., are functions of time t in 
principle but the argument (t) is omitted in Fig. 8. The root of the probe, node 0, is assumed 
to move at the regulation speed u without lateral motion and rotation around G0 = G0,0. So, 
physical quantities on node 0 are fixed as: x0(t) = y0(t) = θ0(t) = 0.  
 

 
Fig. 9. State variables and external forces at (a) both ends of the jth beam element and (b) 
node j. 

State variables at both ends of the jth beam element and the positive direction of the 
variables are shown in Fig. 9(a), where ( )jV t , Vj−1(t) are axial forces, ( )jF t , Fj−1(t) are shearing 
forces and ( )jN t , Nj−1(t) are moment of forces. Displacement vectors and force vectors are 
defined as follows:  

 
T T

T T

1 1

1 1

( ) { ( ), ( ), ( )} , ( ) { ( ), ( ), ( )}

( ) { ( ), ( ), ( )} , ( ) { ( ), ( ), ( )}
j j j j

j j j j

t x t y t θ t t x t y t θ t

t V t F t N t t V t F t N t
− −

− −= =

= =d d

f f
 (4) 

where superscript “T” denotes transpose. Argument (t) is omitted in Fig. 9 as same as in Fig. 
8. The displacements xj(t), yj(t) and xj−1(t), yj−1(t) should be represented in a polar coordinate 
as shown in Fig. 8 because the jth beam element connects with the rigid bodies of node j and 
j−1. However, inertia forces of polar coordinate do not act on the jth beam element because 
the beam elements are assumed to be massless. In addition, the curvature of xj(t) and xj−1(t) 
are negligible since xj(t) and xj−1(t) are sufficiently smaller than the diameter of the helix dh. 
Hence, the displacements are approximately treated in a local orthogonal coordinate, and 
the relationships of the state variables are represented in following simple forms.  

 T
1( ) ( ) ( )j jj j jt t t−= +d L d F f   (5) 

 1( ) ( )jj jt t− =f L f   (6) 

where 

( )
3 21 0 0 0 0

0 1 0 , 0 , ( , , , ) , , ,
3 20 1 0

x

j j y x y j
jjj

α l l l lα γ α α β γ
EA EI EI EIl γ β

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

L F  

where lj, (EA)j and (EI)j are length, tensile rigidity and flexural rigidity of the jth beam 
element. Eqs. (5) and (6) are arranged as follows:  
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T

T

1 1
1 1

1 1

( ) ( )

( ) ( )
j j j j jj j

j j jj j

t t

t t

− −
− −

− −

−⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦−⎣ ⎦

f dL F L L F
f dF L F

  (7a) 

The coefficient matrix of the right-hand side of Eq. (7a) represents a stiffness matrix of jth 
beam element, and it also represents the rigidity of the cable. In addition, since the cable 
shows a considerable damping property, we introduce a damping term associated with the 
velocity vectors ( )j td  and 1( )j t−d . In this study, a proportional viscous damping 
(proportional coefficient δ ) is adopted. Thus, the relationship of the state variables at both 
ends of the jth beam element is represented as follows:  

 
T T

T T

1 1 1 1
1 1 1

1 1 1 1

( ) ( ) ( )
( ) ( ) ( )

j j j j j j j j j jj j j

j j j j j jj j j

t t t
δ

t t t

− − − −
− − −

− − − −

− − ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

f dL F L L F L F L L F d
f dF L F F L F d

  (7b) 

The second term of the right-hand side of Eq. (7b) corresponds to a proportional viscous 
damping.  
A following couple (moment of force) due to the axial force is generated. 

 , 1 1 1 ]( ) ( )[ ( ) ( )] ( )[ ( ) ( )V j j j j j j jN t V t y t y t V t y t y t− − −= − = −   (8) 

However, this couple is not considered in Eq. (7b). Since the axial force generated in the 
cable is very large, the effect of this moment of force is not negligible. It is substituted by a 
moment of force , ( )V jN t  which equilibrates NV,j(t) and acts on the jth beam element from 
node j as shown in Fig. 9(a). A reaction of , ( )V jN t  also acts on the node j. Assuming that the 
elastic deformation of the beam element is small, the following approximation is available:  

 , 1[ )]( ) ( ) ( ) ( ( ) ( )V j j j j j j jN t V t y t y t V t l θ t−= − ≅   (9) 

State variables at node j are shown in Fig. 9(b), where the node is regarded as a float so that 
a virtual sphere and forces acting on the sphere are also depicted in Fig. 9(b). Since node 
j possesses mass and moment of inertia, inertia forces of polar coordinate, such as a 
centrifugal force and Coriolis force, act on node j. Hence, displacements xj(t), yj(t) and 
rotational angle θj(t) are treated in the polar coordinate as shown in Fig. 8.  
Drag force ( )j jD x  acting on the float by air flow, which is the driving force of the probe, is 
represented as follows:  

 = −( ) (1 2) ( ) ( )| ( )|j j D f f c rel j rel jD x c ρ A A v x v x   (10) 

where ( ) /( ) ( )rel j c jv x Q a A u x t= − − − , cD = 0.44 is the coefficient of drag force, ρf is the air flow 
density, 2 /4f fA πd=  is the cross-section of float, df is the diameter of float, 2 /4c cA πd=  is 
the cross-section of cable, Q is the supply rate of air flow, 2 /4ina πd=  is the cross-section of 
heating tube and din is the inner diameter of heating tube.  
The loss of the pressure head is not considered here.  
A contact spring, of which spring constant is k̂ , is assumed to exist between the floats and 
the inner wall of the heating tube as shown in Fig. 9(b). The float contacts with the inner 
wall through the contact spring when the radial displacement yj(t) < 0, and a reaction force 
Sj(yj) acts on the float from the inner wall of the heating tube. Positive direction of Sj(yj) is 
defined as shown in Fig. 9(b) and hence Sj(yj) is represented as:  
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where the spring constant k̂  is assumed to be common to all floats. The Coulomb friction 
( , , )j j j jR y x θ , which is proportional to Sj(yj), also acts on the float. Since the direction of 

Coulomb friction is determined by the relative velocity at the contact point between the float 
and the inner wall, Coulomb friction is represented as follows:  

 

( , , ) ( , ) ( ) ( , ) ( ) ( )

: ( ) ( ) /2 0
( , )

: ( ) ( ) /2 0

j j j j j j j j j j j j j j j

d j j f
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d j j f

R y x θ μ x θ S y μ x θ k y y t

μ u x t θ t d
μ x θ

μ u x t θ t d

= =−

+ + ≥⎧⎪⎪=⎨⎪− + + <⎪⎩

  (12) 

where the coefficient of kinetic friction μd is also assumed to be common to all floats.  
In addition, node j is subjected to axial forces ( ), ( )j jV t V t , shearing forces ( ), ( )j jF t F t  and 
moment of forces ( ), ( )j jN t N t  from the beam elements connecting to the node j as shown in 
Fig. 9(b). Furthermore, the moment of force , ( )V jN t  due to the axial force, which is treated as 
a time varying rotational spring [see Eq. (9)], also acts on the node j. Since the movement of 
the rigid body is represented in a polar coordinate (Fig. 8), accelerations of the rigid body at 
node j are represented as:  

 Xj-direction : 2j j j jr ψ r ψ′ ′+ ,  Yj-direction : 2
j j jr r ψ′ ′− ,  rotation : j jθ ψ−  (13) 

where ( )j jr r y t′= + , 0 ( )/j jψ ω t x t r= + , 0( ) ( )/j j j jψ ω x ω x t r= = + , ( ) ( )/j j j jψ ω x x t r= = .  
Thus, the equation of motion of the rigid body at node j is expressed as follows with respect 
to Xj-, Yj-directions and rotation.  
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Eq. (14) is arranged as follows with an approximation: 1 ( )/ 1jy t r+ ≅ . 

 ( ) ( ) ( ) ( , , , ) ( ) ( ) ( ) ( )j j j j j j j j j j j j j jt x t y x V t x t tθ+ + = + −Md C d K d q f f  (15) 
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The matrix ( )j jxC  does not represent a damping matrix here, but a kind of Coriolis force as a 
term of ( ) ( )j j jx tC d . As for a damping, a proportional viscous damping, the second term of 
the right-hand side of Eq. (7b), is considered. An element 2( )j jmrω x  of the vector ( )j jxq  
represents a centrifugal force in a polar coordinate. 
If the rigid body of node j does not correspond to a float, it does not contact with the inner 
wall of the heating tube and is free from the drag force ( )j jD x . The equation of motion of 
such a rigid body is similarly represented as Eq. (15) by setting ( )j jD x , k̂  and μd to be zero.  

3. Step-by-step time integration scheme by utilizing the Transfer Influence 
Coefficient Method 
3.1 Step-by-step time integration scheme 
Time historical response of the probe can be computed by applying a step-by-step time 
integration scheme to the equation of motion obtained in Section 2. Displacement ( )j td , 
velocity ( )j td  and acceleration ( )j td  vectors are successively computed at an interval of time 
step size ∆t. For a large scale structure, the Newmark-β method and the Wilson-θ method 
(Belytschko and Hughes, 1983) are usually employed as the step-by-step time integration 
scheme. Velocity and acceleration vectors at time ti = i∆t are usually expressed as a linear 
function of displacement vector in an implicit method such as the Newmark-β and the 
Wilson-θ methods. The formulation is given as follows:  

 − −= + = +, 1 , 1( ) ( ) ( ), ( ) ( ) ( )j i a j i a j i j i v j i v j it B t t t B t td d h d d h  (16) 

where the coefficients Ba, Bv are the constants decided in each step-by-step integration 
scheme and ha,j(ti−1), hv,j(ti−1) are functions of displacement, velocity and acceleration 
vectors before the time ti−1 (see Table 1). The coefficients for the Newmark-β and the Wilson-
θ methods are listed in Table 1.  
Substituting Eq. (16) into Eq. (15), the equation of motion is transformed into following 
formula:  

 − −= + −1 1( ) ( ) ( ) ( ) ( )j i j i j i j i j it t t t tP d q f f  (17) 

where 

1 1 1 1 1 , 1 1 , 1( ) ( ) ( ), ( ) ( ) ( ) ( ) ( )j i a v j i j i j i j i a j i j i v j it B B t t t t t t t− − − − − − − −= + + = − −P M C K q q M h C h  

The state variables yj(ti), ( )j ix t , ( )j iθ t  and ( )j iV t  in the ( )j jxC , ( , , , )j j j j jy x θ VK  and ( )j jxq  of 
 

 
Table 1. Coefficients for step-by-step solution scheme.  
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Eq. (15) are replaced by the ones of one time step before 1( )j iy t − , 1( )j ix t − , 1( )j iθ t −  and 
1( )j iV t − , respectively. Thus, the coefficients ( )j jxC , ( , , , )j j j j jy x θ VK  and vector ( )j jxq  are 

known at the time ti. These are expressed as 1( )j it −C , 1( )j it −K  and 1( )j it −q  in Eq. (17). It 
implies that time delay components are generated in Eq. (17). 
Substituting Eq. (16) into Eq. (7b), we have transformed relationships of state variables 
between both ends of a beam element.  

 − − − −= + + −
+ +

T T
1 , 1 1 , 1

1( ) ( ) ( ) [ ( ) ( )]
1 1j i j j i j j i j v j i v j i

v v

δt t t t t
δB δB

d L d F f L h h   (18) 

Solving Eqs. (17), (18) and (6) simultaneously with respect to all nodes ( j : 0 – n) yields 
displacement vectors ( )j itd  of all nodes. Velocity and acceleration vectors ( )j itd  and ( )j itd  
are given by Eq. (16) according to the obtained displacement vector ( )j itd . The obtained 

( )j itd , ( )j itd  and ( )j itd  yield ha,j(ti), hv,j(ti), (see Table 1), then displacement, velocity and 
acceleration vectors at the next time step 1( )j it +d , 1( )j it +d  and 1( )j it +d  are similarly obtained. 
Step-by-step time integration scheme proceeds in the same way.  
However, numerical instability possibly happens in the step-by-step time integration 
because the reaction force Sj(yj) and the frictional force ( , , )j j j jR y x θ  involve the time delay 
components in addition to the strong non-linearity in Eq. (17). Although the Newmark-β 
method (β = 1/4, γ = 1/2) and theWilson-θ method (θ = 1.4) are absolutely stable to linear 
systems, numerical instability often happens in the both methods in the treatment of non-
linear systems (Crisfield and Shi, 1996; Xie, 1996). A way to avoid the numerical instability is 
to use a small time step size but it takes a great deal of computational costs. Furthermore, 
Eqs. (17), (18) and (6) are solved as simultaneous equations of which the degree of freedom 
corresponds to that of the whole system. The total computational costs will be extremely 
large.  
The TICM, which was developed by one of the authors, is a useful method to solve Eqs. (17), 
(18) and (6). The TICM does not solve Eqs. (17), (18) and (6) simultaneously, but solves them 
through a recursive algorithm. It makes the computation very fast. The concept of the TICM 
is based on a transmission of physical quantities from one end of structure to the other end 
of structure. This concept is similar to the Transfer Matrix Method (Pestel and Leckie, 1963, 
hereafter: TMM). However, the TICM has an advantage in computational speed since the 
dimensions of matrices and vectors used in the algorithm are smaller than the ones of the 
TMM. In addition, the TICM also has an advantage in computational accuracy. The TICM is 
free from a numerical instability, which sometimes happens in the TMM under a certain 
condition, for example, treatment of rigid supports, computation of high frequency range, 
etc. The TICM is good at a longitudinally extended structure, which includes the probe 
discussed here, according to its concept. Therefore, we employ the TICM as a device to 
compute the displacement vectors ( )j itd . Even a standard computer can perform efficient 
computation by utilizing the TICM.  

3.2 The Transfer Influence Coefficient Method 
The concept of the TICM is illustrated in Fig. 10. The structure enclosed with a broken line in 
Fig. 10(a) schematically shows a connection of rigid bodies, from node 0 to node j−1, by 
means of beam elements. A curvature of the probe, spheres (floats) and contact springs are 
omitted in Fig. 10. Connections of jth beam element and node j follow as shown in Fig. 10(a). 
The repetition of the connection brings to the completion of the whole structure (probe). 
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Fig. 10. Concept of the TICM: (a) connections of jth beam element and node j. (b) After the 
connection of jth beam element, and (c) after the following connection of node j. 

This is the concept of the TICM. A structure after the connection of jth beam element, and 
following connection of node j are illustrated in Fig. 10(b and c), respectively. In the 
formulation of the TICM for a step-by-step time integration, a relationship between the 
displacement vector ( )j itd  and the force vector ( )j itf  illustrated in Fig. 10(b), before the 
connection of node j, is defined as follows:  

 = +( ) ( ) ( ) ( )j i j i j i j it t t td T f s   (19) 

We call the 3×3 square matrix ( )j itT  and three-dimensional vector ( )j its  a dynamic influence 
coefficient matrix and an additional vector of the left-hand side of node j, respectively. The 
additional vector ( )j its  represents an influence of external forces, which act on the preceding 
nodes 0 to j−1, to displacement vector at node j.  
Similarly, a relationship between dj(ti) and fj(ti) illustrated in  Fig. 10(c), after the connection 
of node j, is defined as:  

 = +( ) ( ) ( ) ( )j i j i j i j it t t td T f s   (20) 

where the matrix Tj(ti) and the vector sj(ti) are called a dynamic influence coefficient matrix 
and an additional vector of the right-hand side of node j, respectively. The additional vector 
sj(ti) represents an influence of external forces, which act on the preceding nodes 0 to j−1 and 
newly connected node j.  
In the algorithm of the TICM, the matrices ( )j itT , Tj(ti) and vectors ( )j its , sj(ti) are 
successively computed from node 0 (root of the probe) to node n (top of the probe) at first. 
Subsequently, the displacement vectors are computed in the reverse order from node n to 
node 0. Substituting Eq. (20) with subscript j−1 and Eq. (6) into Eq. (18) yields  
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Comparing Eq. (21) with Eq. (19), we have  

 −= +
+

1
1( ) ( )

1
t

j i j j i j j
v

t t
δB

T L T L F   (22a) 
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+

1 , 1 1 , 1( ) ( ) [ ( ) ( )]
1

t t
j i j j i j v j i v j i

v

δt t t t
δB

s L s L h h   (22b) 

Multiplying both sides of Eq. (17) by ( )j itT  and utilizing the relationship ( ) ( )j i j it tT f = dj(ti) − 
( )j its  [Eq. (19)] yields  

 − −+ = + +3 1 1[ ( ) ( )] ( ) ( ) ( ) ( ) ( ) ( )j i j i j i j i j i j i j i j it t t t t t t tI T P d T f s T q   (23) 

Comparing Eq. (23) with Eq. (20), we obtain  

 −+ =3 1[ ( ) ( )] ( ) ( )j i j i j i j it t t tI T P T T   (24a) 

 3 1 1[ ( ) ( )] ( ) ( ) ( ) ( )j i j i j i j i j i j it t t t t t− −+ = +I T P s s T q   (24b) 

where I3 is a 3×3 unit matrix. We call Eqs. (22a), (22b) and (24a), (24b) “field transmission 
rule” and “point transmission rule”, respectively. Supposing that the dynamic influence 
coefficient matrix and additional vector of the right-hand side of node j−1, Tj−1(ti) and sj−1(ti), 
are known, the ones of node j, that is Tj(ti) and sj(ti), are obtained through the field and point 
transmission rules Eqs. (22a), (22b) and (24a), (24b). In other words, if the dynamic influence 
coefficient matrix and additional vector of node 0 are known, the ones of other nodes are 
successively computed from node 1 to node n because the field and point transmission rules 
represent a recurrent formula to yield Tj(ti) and sj(ti). Since the root of the probe, node 0, is 
assumed to have no relative movement with respect to the unstretched probe, the 
displacement and force vectors at node 0 are regarded as d0(ti) = 0 and f0(ti) ≠ 0. Substituting 
the d0(ti) and the f0(ti) into Eq. (20) with subscript j = 0, we obtain the dynamic influence 
coefficient matrix and additional vector of node 0.  

 0 3 0( ) , ( )i it t= =T s0 0   (25) 

where 03 is a 3×3 zero matrix.  
Node j slantingly connects with the jth and (j+1)th beam elements as shown in Fig. 7. 
Therefore, coordinate transform is necessary through the point transmission rule. The 
transform of coordinate from jth beam element to node j is operated as:  

 T
cos sin 0

( ) ( ), ( ) ( ), sin cos 0
0 0 1

j i j i j i j i

φ φ
t t t t φ φ

−⎡ ⎤
⎢ ⎥⇒ ⇒ = ⎢ ⎥
⎢ ⎥⎣ ⎦

ΦT Φ T Φ s s Φ   (26a) 

The transform of coordinate from node j to (j+1)th beam element is operated as:  

 T( ) ( ), ( ) ( )j i j i j i j it t t t⇒ ⇒ΦT Φ T Φ s s   (26b) 

The dynamic influence coefficient matrix Tj(ti) and additional vector sj(ti) are successively 
computed from node 0 to node n through Eqs. (22a), (22b), (24a)–(26b).  
The right-hand side of the system (top of the probe) is free, it follows that the force vector at 
the right-hand side of node n is zero, that is fn(ti) = 0. Substituting fn(ti) = 0 into Eq. (20), we 
obtain the displacement vector of node n as:  

 ( ) ( )n i n it t=d s   (27) 
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Displacement vectors of other nodes are recursively obtained from node n−1 to node 0 by 
applying the following equations, which are derived from Eqs. (17), (6) and (20).  

 1 1 1

1 1 1 1

( ) ( ) ( ) ( ) ( ), ( ) ( )

( ) ( ) ( ) ( )
j i j i j i j i j i j i j j i

j i j i j i j i

t t t t t t t

t t t t
− − −

− − − −

= + − =

= +

f q f P d f L f
d T f s

  (28) 

where j : n → 1. The following coordinate transform is also necessary for ( )j itf  and fj−1(ti) in 
the process of Eq. (28) because of the slanting connection of jth beam element with node j−1 
and node j.  

 T T
1 1( ) ( ), ( ) ( )j i j i j i j it t t t− −⇒ ⇒Φ f f Φ f f   (29) 

Velocity and acceleration vectors ( )j itd  and ( )j itd  are given by Eq. (16) after the 
computation of displacement vectors dj(ti).  

4. Numerical computations 
4.1 Reproduction of the experimental results  
Numerical simulations were implemented by using the analytical model obtained in Section 
2. A standard computer (CPU 2.4 GHz, 512MB RAM) was used in the computation. The 
compiler was Fortran 95 and double precision variables were used. The Newmark-β method 
(β = 1/4, γ = 1/2) was employed as a step-by-step time integration scheme. We confirmed  
 

 
Table 2. Parameters of numerical simulation 
that the results by the Wilson-θ method (θ = 1.4) were almost the same as the ones by the 
Newmark-β method.  
Parameters of the numerical simulation are listed in Table 2. Since probes of constant length 
are treated, five probes with different length are provided for numerical simulation. The five 
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probes are different in length of carrier cable, l = 10, 20, 30, 40 and 50m as listed in Table 2. 
The total length of the cable L is the length of carrier cable l plus that of guide cable lG = 2.5 
m. As mentioned in Section 2.2 (b), numerical simulation of the probe is approximately 
regarded as a momentary situation in which the inserted length of the probe into the helical 
part of the heating tube reaches L. An initial condition was assumed to be static. The drag 
force of Eq. (10) simultaneously began to act on the all floats at the beginning of the 
simulation. At the same time, the probe began to move at a feeding speed u. Time step size 
∆t = 0.0001 s was chosen for the step-by-step integration and time historical responses 
during t = 0 – 8 s were computed. The numerical simulations were impossible because of a 
numerical divergence when the time step size was larger than 0.0001 s in both the 
Newmark-β and the Wilson-θ methods.  
Displacements of the node corresponding to the sensor are shown in Fig. 11. Axial 
displacement xj(t) and radial displacement yj(t) are shown in Fig. 11(a and b), respectively. 
The vibration of the probe increases as the length of probe become longer. Particularly, the 
radial displacement rapidly increases between l = 30 and 40 m. Since the vibration of probe 
in experiment rapidly increased after the sensor passed through the middle point of the 
helical part (see Fig. 4), the results of the numerical simulation agree with the experimental 
results. 
 

 
Fig. 11. Vibration of probe in insertion process: (a) axial and (b) radial displacements. 
Finally, the inserted length of the probe into the helical heating tube reaches 55–60 m. 
Magnifications of the axial and the radial vibrations of l = 55 m (total length L = l + lG (2.5m) = 
57.5 m) are shown in Fig. 12(a and b). Other parameters were the same as the ones listed in 
Table 2. The vibrations during t = 1.0–2.5 s are plotted. It is confirmed that the axial and the 
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radial vibrations are weakly coupled. The locus of the vibration is plotted in Fig. 13(a). The 
horizontal axis indicates a fixed coordinate along the inner wall of the heating tube and the 
vertical axis shows the radial displacement. The probe is leaping around and shows an 
inchworm-like motion. The motion of the sensor in the experiment, where the inserted 
length of the probe into the helical part was about 57 m, is shown in Fig. 13(b). It was given 
by a tracing of the images of sensor, which was taken by a high-speed camera. Although 
both the axial and the radial motions in the experiment are larger than that of the 
simulation, the result of the simulation qualitatively agrees with the one of the experiment. 
The Fourier analysis of the axial and the radial vibrations of L = 57.5 m are shown in Fig. 
14(a and b), respectively. The vibrations during t = 0.5–4.5 s, which are free from the 
transient response, are provided to the Fourier analysis. It is confirmed that the axial and the 
radial vibrations are coupled since an identical peak of 14 Hz appears in both vibrations. 
The frequency of the coupled vibration in the experiment was about 20 Hz, as mentioned in 
Section 2.1 c. There is a discrepancy between the experiment and the numerical simulation 
in this point. However, the results of numerical simulations are qualitatively similar to the 
ones of the experiment. 
 

 
Fig. 12. Vibration of probe; l = 55 m, t = 1.0–2.5 s: (a) axial and (b) radial displacements. 
 

 
Fig. 13. Locus of probe; (a) numerical simulation of l=55 m, t=1.8–2.2 s and (b) in experiment, 
inserted length around 57 m.  
 

 
Fig. 14. Frequency analysis of vibration; l = 55m : (a) axial and (b) radial displacements. 
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A numerical simulation of the probe without feeding (feeding speed u = 0 mm/s) was 
implemented. The length of carrier cable was l = 50 m, which showed a severe vibration with 
feeding speed u = 200 mm/s as shown in Fig. 11. Other parameters were the same as the 
ones listed in Table 2. This simulation corresponds to the experiment that the dry 
compressed air streamed in the heating tube but the probe was not fed as mentioned in 
Section 2.1 d. Displacements of the node corresponding to the sensor are shown in Fig. 15. 
Both the axial and the radial displacements converged at constant values after an initial 
transient response. This result is similar to the experiment. It follows that the experimental 
result without feeding is also supported by the numerical simulation.  
 

 
Fig. 15. Response at u = 0 mm/s; l = 50m : (a) axial and (b) radial displacements.  

More numerical simulations were implemented in order to enhance the validity of the 
analytical model. Numerical simulations with variation of feeding speed, diameter of the 
helix and air supply rate were implemented. Only one parameter (feeding speed, diameter 
of the helix or air supply rate) was changed, and the other parameters were the same as 
Table 2. The length of carrier cable was l = 50 m as well as the simulation of the non-feeding 
probe, Fig. 15. The simulations of feeding speed u = 100 and 400 mm/s, diameter of the helix 
dh = 2.5 m and air supply rate Q = 40m3/h are shown in Figs. 16–18, respectively. In Fig. 
16,the vibration of the probe became small at low feeding speed u = 100 mm/s, but large at 
high feeding speed u = 400 mm/s, compared with the result of l = 50 m in Fig. 11 (u = 200 
mm/s). The vibration also became small in the case of large helical diameter (Fig. 17) and 
low supply rate of the air flow (Fig. 18). These results are similar to the experiments 
mentioned in Section 2.1 f. Note that in the case of Q = 40m3/h, an ability to insert the actual 
probe is not guaranteed for lack of a drag force (Inoue et al., 2007). 
 

 
Fig. 16. Vibration of probe; l = 50m: (a) axial and (b) radial displacements at feeding speed  
u = 100 mm/s, (c) axial and (d) radial displacements at u = 400 mm/s.  
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Fig. 17. Vibration of probe; diameter of helix dh = 2.5 m, l = 50m: (a) axial and (b) radial 
displacements.  
 

 
Fig. 18. Vibration of probe; air supply rate Q = 40 m3/h, l = 50 m: (a) axial and (b) radial 
displacements.  
The numerical simulation was qualitatively able to reproduce the experimental results. 
Thus, the validity of the analytical model obtained in this study was confirmed through the 
numerical simulations. It was demonstrated that the vibration of probe was caused by 
Coulomb friction between the floats and the inner wall of the heating tube.  

4.2 Entire behavior of probe 
A numerical simulation of the insertion process to the length of carrier cable l = 55 m is 
implemented, and the entire probe behavior is shown in Fig. 19. The other parameters are 
the same as the ones in Table 2. The total length of the cable is L = l (55 m) + lG (2.5 m) = 57.5 
m. Momentary shapes of the entire probe during 1.56–1.65 s are displayed at an interval of 
0.01 s. Axial and radial displacements are shown in Fig. 19(a and b), respectively. Each of the 
horizontal axes in Fig. 19(a and b) indicates a distance from the entrance of the helical 
heating tube. It is a fixed coordinate along the helical heating tube. The root of the probe, 
which is supposed to be located at the entrance of the helical heating tube, corresponds to L 

= 0 m, and the top of the cable is situated at L = 57.5 m. The vertical axes in Fig. 19(a) indicate 
the axial displacements, and the ones in Fig. 19(b) indicate the radial displacements. 
Although the direction of the axial displacement in the ordinate of Fig. 19(a) is the same as 
the coordinate along the heating tube L, it is displayed at right angles with the coordinate L. 
The sensor position is indicated as broken lines both in Fig. 19(a and b). The following 
characteristics are found in Fig. 19. 
a. A shaded area in Fig. 19(a) indicates a segment in which a gradient of the axial 

displacement along the heating tube (dx/dL) obviously shows a negative value. The 
identical areas are also shaded in Fig. 19(b). We are able to observe a radial 
displacement in the shaded area. Furthermore, it becomes larger as the negative 
gradient of the axial displacement (dx/dL < 0) becomes steeper.  

b. Local maxima of the axial displacement, points “A” and “B” in Fig. 19(a), move toward 
the top of the probe as the time step goes forward. This is a wave-like motion rather 
than a vibration. A reflection of the wave is not clearly observed in Fig. 19(a and b). It 
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seems that the noticeable peak at 14 Hz in Fig. 14 signifies the frequency of 
repetitiveness of the wave-like motion. 

  

 
Fig. 19. Entire behavior of probe in the insertion process: (a) axial and (b) radial displacements.  
c. Large amplitudes in the radial displacement are limited in the area near the top of the 

cable.  
The countermeasures against vibration, which include a long guide cable and a large float of 
guide cable, were devised in order to reduce the RF sensor noise. It was confirmed that the 
countermeasures are effective in suppressing the vibration in the experiments. Although the 
countermeasures were empirically obtained, the entire behavior of the probe shown in Fig. 
19 implies the mechanism of the countermeasures as follows:  
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a. The amplitude in the radial displacement is small at a position away from the top of the 
cable as shown in Fig. 19(b). The long guide cable keeps the sensor part away from the 
top of the cable, and the radial (displacement) vibration at the sensor position becomes 
small. Since the RF sensor noise is highly correlated to the radial vibration, it is reduced 
by means of the long guide cable. This effect has been also confirmed in the 
experiments (Inoue et al., 2007a). 

b. In the shaded area in Fig. 19, where the gradient dx/dL<0, the driving force (drag force) 
acting on the probe is smaller than that of the non-shaded area. Originally, a tensile 
force acts on the probe in the insertion process. However, a “compressive force” is 
generated in the shaded area because of the lack of driving force, and the shaded area is 
pushed from the backward non-shaded area. Consequently, a kind of buckling happens 
and the probe in the shaded area, which is supposed to move in contact with the inside 
of the helical tube, rises off the inner wall of the heating tube. This phenomenon travels 
toward the top of the cable and makes the wave-like motion. At a fixed point, for 
example the sensor position, it appears as a vibration. This is the mechanism of the 
probe vibration. Similar rising (lift-off) phenomena were reported in previous studies 
(Bihan, 2002; Giguere et al., 2001; Tian and Sophian, 2005), but significant vibration was 
not reported in these studies. Relatively severe vibration induced by this rising 
phenomenon is a peculiar characteristic of this study. Since the shaded area is generated 
in the forward section of the probe, the large float of guide cable makes the driving 
force acting on the forward section large, and it reduces the “compressive force” acting 
on the shaded area. As a result, the large float of guide cable works to suppress the 
vibration at the sensor part. 

 

4.3 Improvement of the countermeasure 
The empirical countermeasures to suppress the vibration at the sensor part are supported by 
the numerical simulations. On the basis of the mechanism which suppresses the vibration, 
the following improvements are suggested:  
a. Use of a longer guide cable. This acts on the principle that the vibration becomes 

smaller as the length between the sensor position and the top of cable becomes longer.  
b. Further increase of the driving force of the guide cable. This makes the “compressive 

force” acting on the forward section of the probe relatively weak, and prevents the 
probe from rising off the inner wall of the heating tube.  

c. Decrease the driving force of the carrier cable. This is similar to suggestion b. It directly 
reduces the “compressive force” toward the forward section of the probe by reducing 
the driving force of the backward section.  

In reference to suggestion a, it makes the probe length inserted into the heating tube longer. 
Since the steam generator of the “Monju” has 140-layered heating tubes, use of an 
excessively long guide cable would negatively affect maintenance efficiency. Thus, a guide 
cable longer than 10m is undesirable in actual use. Suggestions b and c involve control of the 
drag force acting on the floats. There are two means to vary the drag force: One is to alter 
the float size, where the float is spherical. The other is to replace the float shape. However, it 
is difficult to practicably use a non-spherical float as it would compromise the smooth 
passage of the probe. Hence, control of the drag force by alteration of the float size is 
considered here.  
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The inner diameter of the heating tube is 24.2 mm, and some points are smaller than 24.2mm 
because of projections caused by welding. Consequently, a float diameter of 20 mm, which 
has been utilized in the countermeasure, seems to be the upper limit since a larger float 
would probably clog the heating tube. Thus, only suggestion c is adopted. The probe is fed 
into the upper side of the steam generator (see Fig. 1), goes down the heating tube, passes 
the helical part, goes up the straight part and reaches the upper side again. A strong driving 
force is needed when the probe passes the helical part and goes up the straight part of 
heating tubes. Thus, there is also a minimum float diameter in order to guarantee the 
driving force needed to propel the probe to achieve the inspection of the heating tubes. We 
choose the diameter for the float attached to carrier cable df = 16 mm.  
The numerical simulation with these improvements, where the length of guide cable lG = 10 
m, the diameter of the float attached to guide cable df = 20 mm and the one to carrier cable df 
= 16 mm, is implemented. The length of carrier cable l = 50 m, (total length L is 60 m) and the 
other parameters are the same as the ones in Table 2. The vibration at the sensor part is 
shown in Fig. 20. Suppression of the vibration at the sensor part is almost accomplished in 
the radial direction. Comparing this result with the one of l = 50 m in Fig. 11, the validity of 
this improvement is indisputable. We can assess that the performance of the improved 
probe is satisfactory to suppressing the vibration.  
 

 
Fig. 20. Vibration of probe in the insertion process with the proposed improvement, 
diameter of the float attached to the guide cable 20 mm, carrier cable 16mm and length of the 
guide cable lG = 10 m : (a) axial and (b) radial displacements.  
In 2010, the fast breeder reactor “Monju” in Japan resumed work after a long time tie-up of 
operation. The tie-up was cause by a leakage accident of sodium in a heat exchanging 
system. The resumption of “Monju” was the target of public attention. An improved probe 
based on this study practically come into service for the defect detection of heating helical 
tubes installed in “Monju”. A reliable inspection is performed and it has kept a safe 
operation of “Monju”.  

5. Conclusions 
A defect detection of a helical heating tube installed in a fast breeder reactor “Monju” in 
Japan is operated by a feeding of an eddy current testing probe. A problem that the eddy 
current testing probe vibrates in the helical heating tubes happened and it makes the 
detection of defect difficult. In this study, the cause of the vibration of the eddy current 
testing probe was investigated. The results are summarized as follows:  
a. The cause of the vibration was assumed to be Coulomb friction and an analytical model 

of the vibration incorporating Coulomb friction was obtained. 
b. An effectual algorithm for the numerical simulation of the eddy current testing probe 

was formulated by applying the Transfer Influence Coefficient Method to the equation 
of motion derived from the analytical model. 
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c. The results of numerical simulations qualitatively reproduced the several characteristics 
of the vibration of the eddy current testing probe, which were obtained by experiments. 
The validity of the assumption that the vibration is cause by Coulomb friction was 
confirmed by an agreement between the results of experiments and numerical 
simulations. 

d. The probe’s motion in its entirety under the vibration conditions was obtained by the 
numerical simulation. The mechanism of the vibration and the countermeasures were 
revealed through a discussion on the probe’s entire motion.  

e. An improvement of the countermeasure was proposed based on the probe’s entire 
motion. The validity of the proposed improvement was demonstrated through a 
numerical simulation. The improvement was effective both in the insertion and the 
return processes.  
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1. Introduction 
Many kinds of mechanical systems are often modeled as spatial multibody systems, such as 
robots, machine tools, automobiles and aircrafts. A multibody system typically consists of a 
set of rigid bodies interconnected by kinematic constraints and force elements in spatial 
configuration (Flores et al., 2008). Each flexible body can be further modeled as a set of rigid 
bodies interconnected by kinematic constraints and force elements (Wittbrodt et al., 2006). 
Dynamic modeling and vibration analysis based on multibody dynamics are essential to 
design, optimization and control of these systems (Wittenburg, 2008 ; Schiehlen et al., 2006). 
Vibration calculation of multibody systems is usually started by solving large-scale 
nonlinear equations of motion combined with constraint equations (Laulusa & Bauchau, 
2008), and then linearization is carried out to obtain a set of linearized differential-algebraic 
equations (DAEs) or second-order ordinary differential equations (ODEs) (Cruz et al., 2007;  
Minaker & Frise, 2005; Negrut & Ortiz, 2006; Pott et al., 2007; Roy & Kumar, 2005). This kind 
of method is necessary for solving the dynamics of nonlinear systems with large 
deformation. 
However, there are two major disadvantages for vibration calculation of multibody systems 
by using the conventional methods. On one hand, the computational efficiency is very low 
due to a large amount of efforts usually required for computation of trigonometric 
functions, derivation and linearization. Many approaches have been proposed to simplify 
the formulation, such as proper selection of reference frames (Wasfy & Noor, 2003), 
generalized coordinates (Attia, 2006; Liu et al., 2007; McPhee & Redmond, 2006; Valasek et 
al., 2007), mechanics principles (Amirouche, 2006; Eberhard & Schiehlen, 2006), and other 
methods (Richard et al., 2007; Rui et al., 2008). On the other hand, despite sensitivity analysis 
of multibody systems based on the conventional methods are well documented (Anderson & 
Hsu, 2002; Choi et al., 2004; Ding et al., 2007; Sliva et al. 2010; Sohl & Bobrow, 2001; Van 
Keulen et al. 2005; Xu et al., 2009), the formulation is quite complicated because the resulting 
equations are implicit functions of the design parameters.  
Actually, what people concern, for many kinds of mechanical systems under working 
conditions, are eigenvalue problems and the relationship between the modal parameters 
and the design parameters. And the designer needs to know the results as quickly as 
possible so as to perform optimal design. From this point of view, fast algorithm for 
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vibration calculation and sensitivity analysis with easiness of application is critical to the 
design of a complex mechanical system. A novel formulation based on matrix 
transformation for open-loop multibody systems has been proposed recently (Jiang et al., 
2008a). The algorithm has been further improved to directly generate the open-loop 
constraint matrix instead of matrix multiplication (Jiang et al., 2008b). The computational 
efficiency has been significantly improved, and the resulting equations are explicit functions 
of the design parameters that can be easily applied for sensitivity analysis. Particularly, the 
proposed method can be used to directly obtain sensitivity of system matrices about design 
parameters which are required to perform mode shape sensitivity analysis (Lee et al., 1999a; 
1999b). 
Vibration calculation of general multibody system containing closed-loop constraints is 
investigated in this article. Vibration displacements of bodies are selected as generalized 
coordinates. The translational and rotational displacements are integrated in spatial 
notation. Linear transformation of vibration displacements between different points on the 
same rigid body is derived. Absolute joint displacement is introduced to give mathematical 
definition for ideal joint in a new form. Constraint equations written in this way can be 
solved easily via the proposed linear transformation. A new formulation based on 
constraint-topology transformation is proposed to generate oscillatory differential equations 
for a general multibody system, by matrix generation and quadric transformation in three 
steps: 
1. Linearized ODEs in terms of absolute displacements are firstly derived by using 

Lagrangian method for free multibody system without considering any constraint. 
2. An open-loop constraint matrix ′B  is derived to formulate linearized ODEs via quadric 

transformation = =′ ′ ′T ( , , )E B EB E M K C  for open-loop multibody system, which is 
obtained from closed-loop multibody system by using cut-joint method. 

3. A constraint matrix ′′B  corresponding to all cut-joints is finally derived to formulate a 
minimal set of ODEs via quadric transformation = =′′ ′′ ′ ′′T ( , , )E B E B E M K C  for closed-
loop multibody system. 

Complicated solving for constraints and linearization are unnecessary for the proposed 
method, therefore the procedure of vibration calculation can be greatly simplified. In 
addition, since the resulting equations are explicit functions of the design parameters, the 
suggested method is particularly suitable for sensitivity analysis and optimization for large-
scale multibody system, which is very difficult to be achieved by using conventional 
approaches. 
Large-scale spatial multibody systems with chain, tree and closed-loop topologies are taken 
as case studies to verify the proposed method. Comparisons with traditional approaches 
show that the results of vibration calculation by using the proposed method are accurate 
with improved computational efficiency. The proposed method has also been implemented 
in dynamic analysis of a quadruped robot and a Stewart isolation platform. 

2. Fundamentals of multibody dynamics 
2.1 Description of multibody system 
As shown in Fig. 1, considering a multibody system which consists of n  rigid bodies and 
the ground 0B , each two bodies are probably interconnected by at most one joint and 
arbitrary number of spatial spring-dampers. A spatial spring-damper means an integration 
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of three spring-dampers and three torsional spring-dampers. Each joint contains at least one 
and at most six holonomic constraints. iB  denotes the thi  rigid body, and ijJ is the joint 
between iB  and jB , where =, 1,2, ,i j n and ≠i j . ijs denotes the total number of spring-
dampers between iB and jB , among which ijsK is the ths one, where = 0,1,2, , ijs s . = 0ijs  
means there is no spring-damper between iB and jB . 
Four kinds of reference frames are used in the formulation. The global reference frame, 
namely the inertial frame, i.e., -o xyz , is fixed on the ground. The body reference frame, e.g., 

-ic xyz for iB , is fixed in the space with its origin coinciding with the center of mass (CM) of 
the body. For simplicity without loss of generality, all body reference frames are set to be 
parallel to -o xyz in this paper. The spring reference frame, e.g., ′ ′ ′-ijsu x y z  for ijsK , is located at 
one of the spring acting points. The joint reference frame, e.g., ′′ ′′ ′′-ijv x y z  for ijJ , is located at 
one of the joint acting points. 
 

 
Fig. 1. Elements and reference frames in multibody system 

Define im the mass of iB , iJ the inertia tensor of iB with respect to -ic xyz , and I the 3×3 
identity matrix. Then the mass matrix of body iB with respect to -ic xyz  is given by 

 = diag( )i i imM I J  (1) 

The mass matrix of the free multibody system can be organized as 

 = 1 2diag( )nM M M M  (2) 

The translation of CM of iB is specified via vector = T[ ]i i i ix y zr . The rotation of iB is 
specified via Bryan angles α β γ= T[ ]i i i iθ . The absolute angular velocities can be written as 
(Wittenburg, 2008) 
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where μ μS =sin , μ μ μ α β γ= =C cos ( , , )i i i .  
Due to small angular displacements of bodies, i.e.,α β γ ≈, , 0i i i , the absolute angular 
velocities and displacements can be linearized as (Wittenburg, 2008) 

 α β γ≈ =T[ ]i i i i iω θ  (4) 
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 Θ = ≈ =∫ ∫d di i it tω θ θ  (5) 

The spatial displacements of iB can be unified as 

 α β γ= =T T T T[ ] [ ]i i i i i i i i ix y zq r θ  (6) 

The displacements and velocities for free multibody system can be organized as 
= T T T T

1 2[ ]nq q q q and = T T T T
1 2[ ]nq q q q . 

The stiffness and damping coefficients of ijsK are defined in spring reference frame ′ ′ ′-ijsu x y z  
as ( )α β γ= diagu

ijs x y zk k k k k kK , ( )α β γ= diagu
ijs x y zc c c c c cC . ijsP and jisP are the acting 

points of ijsK on iB and jB . = T[ ]ijs ijs ijs ijsx y zr denotes the original position of ijsP relative to 
-ic xyz . = T[ ]jis jis jis jisx y zr  denotes the original position of jisP  relative to -jc xyz . 

α β γ= T[ ]ijs ijs ijs ijsθ  denotes the original orientation of ijsK relative to -ic xyz . 
Most of the joints that used for practical applications can be modeled in terms of the so-
called lower pairs, including revolute, prismatic, cylindrical, universal, spherical, and planar 
joints. Each joint reduces corresponding number of degrees of freedom (DOFs) of the distal 
body (Pott et al., 2007; Müller, 2004) between two connected bodies. Assume there is an 
ideal joint ijJ between body iB and jB . The acting points of ijJ on iB and jB are marked as ijQ  
and jiQ , respectively. = T[ ]ijq ijq ijq ijqx y zr denotes the original position of ijQ relative to -ic xyz . 

= T[ ]jiq jiq jiq jiqx y zr  denotes the original position of jiQ relative to -jc xyz . α β γ= T[ ]ij ij ij ijθ  
denotes the original orientation of J ij relative to -ic xyz . v

ijq and v
jiq are absolute joint 

displacements of ijQ and jiQ with respect to ′′ ′′ ′′-ijv x y z . A 6×6 diagonal matrix H is introduced 
for each kind of joint to formulate the constraint equations in terms of absolute joint 
displacements. For example, the constraint equations for joint ijJ can be written as 

 =v v
ij ij ij jiH q H q  (7) 

The meaning of matrix H can be explained as follows: the value of each diagonal element in 
H  is either one or zero, representing whether the DOF along the corresponding axis is 
constrained or not. In order to reduce the number of constraint equations, another 
matrix D is introduced for each kind of joint to extract the independent variables, e.g., for 
joint ijJ it turns to be =′ v

j ij qjiq D q . Matrix D is obtained from matrix −I H  by removing those 
rows whose elements are all zero. Matrices for some common joints are shown in Table 1. 
Transmission mechanisms are another kind of constraints widely used in mechanical 
systems, such as gear pair, rackandpinion, worm gear pair, screw pair, etc. They are usually 
related to a pair of joints, therefore the constraint equations can be written in terms of 
absolute joint displacements. Suppose there is a transmission mechanism krT between body 

kB and rB , krT is related to joint jkJ and mrJ . The joint acting point of jkJ on kB is marked as jkQ , 
and that of mrJ on rB is marked as mrQ . The constraint equations for krT can be expressed as 

 + =v v
k jk r mrG q G q 0  (8) 

where v
jkq is the absolute joint displacement of jkQ with respect to ′′ ′′ ′′-jkv x y z , and v

mrq is that of 
mrQ with respect to ′′ ′′ ′′-mrv x y z . Matrices kG and rG  are used to extract variables relative to 

transmission mechanism. Matrices for some common transmission mechanisms are shown 
in Table 2, in which i is the transmission ratio. 
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Joint type Free axes Matrix H  Matrix D  

Fixed none 6I  null matrix 
revolute γ  ( )diag 1 1 1 1 1 0  [ ]0 0 0 0 0 1  

prismatic z  ( )diag 1 1 0 1 1 1  [ ]0 0 1 0 0 0  

cylindrical γ,z  ( )diag 1 1 0 1 1 0  ⎡ ⎤
⎢ ⎥⎣ ⎦
0 0 1 0 0 0
0 0 0 0 0 1  

universal α β,  ( )diag 1 1 1 0 0 1  ⎡ ⎤
⎢ ⎥⎣ ⎦
0 0 0 1 0 0
0 0 0 0 1 0  

spherical α β γ, ,  ( )diag 1 1 1 0 0 0  
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 

planar γ, ,x y  ( )diag 0 0 1 1 1 0  
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

 

… … … … 

Table 1.  Mathematical definition of some common joints 

 
Transmission Constraint equation Matrix 1G  Matrix 2G  

Gear pair γ γ+ =1 2ˆ ˆ 0i  [0 0 0 0 0 1]  [0 0 0 0 0 ]i  

Worm gear pair γ γ+ =1 2ˆ ˆ 0i  [0 0 0 0 0 1]  [0 0 0 0 0 ]i  

Rackandpinion γ + =1 2ˆ ˆ 0i z  [0 0 0 0 0 1]  [0 0 0 0 0]i  

Screw pair γ + − =1 1 2ˆ ˆ ˆ 0i z i z  [0 0 0 0 1]i  −[0 0 0 0 0]i  
… … … … 

Table 2. Mathematical definition of some transmission mechanisms 

2.2 Linear transformation of vibration displacements 
Transformation of displacements of two points on a same rigid body is fundamental to the 
dynamics of a multibody system. The transformation can be divided into two steps. Firstly, 
the displacements of spring acting point are formulated by using the displacements of CM 
on the same body, with respect to the same reference frame. And then the resulting 
displacements are transformed from body reference frame to spring reference frame. A 
linear transformation is proposed for vibration displacements based on homogeneous 
transformation. 
Assume that there are two reference frames, -c xyz  and ′ ′ ′-u x y z . The direction cosine matrix 
from -c xyz  to ′ ′ ′-u x y z is determined by α β γ= T[ ]θ as follows 

 
β γ α γ α β γ α γ α β γ

β γ α γ α β γ α γ α β γ

β α β α β

−⎡ ⎤
⎢ ⎥= − −
⎢ ⎥−⎣ ⎦

C C C S +S S C S C S C
C S C C S S S S C +C S S
S S C C C

cu

S
A  (9) 
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where μ μS =sin , μ μ μ α β γ= =C cos ( , , ) . 
The translational and rotational displacements of a same rigid body can be integrated as a 
spatial vector, as shown in Fig. 2. And its transformation between different reference frames 
can be expressed as 

 ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
C C

C C
C C

u cu c
u cu c

u cu c

r A 0 rq R qθ 0 A θ  (10) 

Suppose C and P are two different points on a same rigid body. As shown in Fig. 3, 
= T[ ]CP CP CP CPx y zr  denotes the position of P relative to C. = T T T[ ]C C Cq r θ denotes the vector of 

displacements of point C. Notice that point mentioned in this paper is actually mark that has 
angular displacements. The translational displacements of point P can be expressed as 

 ( )
-1

T

( )
P OP OP

OC C C P OC CP

C CP CP

C CP

′

′ ′

= −
= + + − +
= + −
= + −

r r r
r r r r r
r A r r
r A I r   

(11)
 

The rotational displacements of different points on a same rigid body are equal to each 
other, i.e., =P Cθ θ . It means that the translational and rotational displacements of point P 
can be integrated as 
 

 
Fig. 2. Finite displacements of the same rigid body in two frames 

 

 
Fig. 3. Finite displacements of two points on a same rigid body 
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 ( )+ −⎡ ⎤⎡ ⎤= = ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

T
P C CP

P
P C

r r A I rq θ θ  (12) 

Due to small angular displacements for vibration analysis, i.e.,α β γ ≈, , 0 , the direction 
cosine matrix in Eq. (9) can be linearized as (Wittenburg, 2008) 

 
γ β

γ α
β α

−⎡ ⎤
⎢ ⎥≈ −
⎢ ⎥−⎣ ⎦

1
1

1
A   (13) 

Substitute Eq. (13) into Eq.(11), it yields 

 ( )
γ β α

γ α β
β α γ

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ≈ − = − =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

T

0 0
0 0

0 0

CP CP CP

CP CP CP CP CP C

CP CP CP

x z y
y z x
z y x

A I r U θ  (14) 

Therefore Eq. (12) can be linearized to formulate the relationship between fine 
displacements of two points on a same rigid body as follows 

 ⎡ ⎤≈ =⎢ ⎥⎣ ⎦
CP

P C CP C
I Uq q T q0 I  (15) 

According to description in Section 2, the displacements of spring acting point ijsP in 
′ ′ ′-ijsu x y z can be figured out using fine displacements of CM of the body in -c xyz as follows 

 =u cu
ijs ijs ijs iq R T q   (16) 

where cu
ijsR  can be formulated using ijsθ  according to Eqs. (9) and (10), and ijsT can be 

formulated using ijsr according to Eqs. (14) and (15). 
Similarly, displacements of joint acting point Qij in ′′ ′′ ′′-ijv x y z can be expressed as 

 =v cv
ij ij ij iq R T q  (17) 

where cv
ijR can be formulated using ijθ according to Eqs. (9) and (10), and ijT can be formulated 

using ijr according to Eqs. (14) and (15). 

3. Topology-based vibration formulation of multibody systems 

Generally, there might be none or more then one joint in a multibody system. As shown in 
Fig. 4, the topologies of constraints in multibody systems can be classified into five groups: 
(a) free, (b) scattered, (c) chain, (d) tree, and (e) closed-loop. Free multibody system means 
that there is no constraint in the system. Groups (b), (c) and (d) can all be regarded as 
general open-loop multibody system. Since the spring-dampers do not change the topology 
of constraints in a multibody system, spring-dampers between two nonadjacent bodies are 
not displayed in the figure. 
Considering a general closed-loop multibody system as shown in Fig. 4(e), body iB , jB , kB  
and rB are connected with joints ijJ , jkJ and rkJ , whereas jB , mB and rB are connected with 
joints jmJ and mrJ . Without loss of generality, assume that ≤ < < < < ≤1 i j k m r n . Firstly, 
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linearized ODEs in terms of absolute displacements are derived by using Lagrangian 
method for free multibody system without considering any constraint, as shown in Fig. 4(a). 
Secondly, an open-loop constraint matrix is derived to formulate linearized ODEs via 
quadric transformation for open-loop multibody system, which is obtained by ignoring all 
cut-joints  (Müller, 2004 ; Pott et al., 2007), e.g., if krJ is chosen as cut-joint and one can obtain 
open-loop multibody system as shown in Fig. 4(d). Finally, a cut-joint constraint matrix 
corresponding to all cut-joints is solved to formulate a minimal set of ODEs via quadric 
transformation for closed-loop multibody system. 
 

 
Fig. 4. Topologies of constraints in multibody system 

3.1 Vibration formulation of free multibody system 
The total kinetic energy of the system as shown in Fig. 4(a) is the summation of translational 
energy and rotational energy of all bodies, i.e., 

 ( )
= =

= + ≈∑ ∑T T T

1 1

1 1 1
2 2 2

n n

i i i i i i i i i
i i

T mr r ω Jω q M q   (18) 

The fine deformation of spring ijsK can be formulated as difference of displacements between 
ijsP  and jisP in ′ ′ ′-ijsu x y z  

 Δ = − = −u u u cu cu
ijs jis ijs ijs jis j ijs ijs iq q q R T q R T q  (19) 

Set the potential energy of the system at equilibrium positions to be zero. Then the potential 
energy of spring ijsK can be formulated as 

 ( )= Δ ΔT1
2

u u u
ijs ijs ijs ijsV q K q  (20) 

The potential energy of the entire system is the sum of gravitational potential gV and elastic 
potential kV , i.e., 

 
−

= = = + =
= + = +∑ ∑ ∑ ∑

1
T

0 0 1 0

ijsn n n

g k i i ijs
i i j i s

V V V Vq M g  (21) 
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where [ ]= T0 0 0 0 0gg is the vector of gravitational acceleration. Since there might be no 
spring-damper between two bodies, a “virtual spring-damper” which has no effect on the 
system is introduced between each two bodies for consistency in formula. For example, 

0ijK is the “virtual spring-damper” between body iB and jB , and =0
u
ijK 0 , =0

u
ijC 0 . 

The Lagrangian equations of the system take the form 

 ⎛ ⎞∂ ∂− = +⎜ ⎟∂ ∂⎝ ⎠T T di ei
i i

d T V
dt f fq q  (22) 

where = 1,2, ,i n , dif and eif denote the damping forces and other non-potential forces 
acting on body iB . 
Due to property =T

i iM M , it yields 

 ( )⎛ ⎞∂ = + =⎜ ⎟∂⎝ ⎠
T

T
d 1
d 2 i i i i i

i

T
t M M q M qq  (23) 

Substitute Eqs. (19) and (20) into Eq. (21), and derivate V with respect to T
iq , it yields 
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(24)

 

Denote 

 
= ≠ =

= ∑ ∑ T T

0, 0
( ) ( )

ijsn
cu u cu

ii ijs ijs ijs ijs ijs
j j i s

E T R E R T  (25) 

 
=

= ∑ T T

0
( ) ( )

ijs
cu u cu

ij ijs ijs ijs ijs jis
s

E T R E R T  (26) 

Let =E K , then Eq. (24) can be rewritten as 

 
= ≠

∂ = − +∑∂ T 0,

n

ii i ij j i
j j ii

V K q K q M gq  (27) 

The dissipation power due to damping forces can be formulated as  (Wittbrodt, 2006) 

 ( )
−

= = + =
= − Δ Δ∑ ∑ ∑

1 T

0 1 0

1
2

ijsn n
u u u
ijs ijs ijs

i j i s
P q C q   (28) 

Similarly, the damping forces acting on iB with respect to -ic xyz can be evaluated as 

 
= ≠

∂= = − + ∑∂ T 0,

n

di ii i ij j
j j ii

Pf C q C qq  (29) 
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It can be proved that iiC and ijC are also determined by Eqs. (25) and (26) for =E C .  
The linearized ODEs for a free multibody system turn to be 

 + + = −e gMq Cq Kq f f  (30) 

where quantities = T T T T
1 2[( ) ( ) ( ) ]g nf M g M g M g and = T T T T

1 2[ ]e e e enf f f f  denote gravity 
forces and other non-potential forces. The damping matrix C and stiffness matrix K in Eq. 
(30) take the same form 

 
−

−

− −⎡ ⎤
⎢ ⎥−= =⎢ ⎥−⎢ ⎥
− −⎣ ⎦

11 12 1

21 22

1,

1 , 1

( , )
n

n n

n n n nn

E E E
E EE E C KE
E E E

  (31) 

The block matrices iiK  and iiC  contain parameters of all springs and dampers that 
connected with iB . ijK  and ijC contain parameters of all springs and dampers that connected 
between iB and jB . Matrices C and K contain explicitly damping coefficients and stiffness 
coefficients, and reveal clearly the topology of spring-dampers. 
By using the system matrices M , C and K , Eqs (18), (21) and (28) can be reformed as 

 = T1
2T q Mq  (32) 

 = +T T1
2 gV q Kq q f  (33) 

 = T1
2P q Cq   (34) 

3.2 Vibration formulation of open-loop multibody system 
Select rkJ  in Fig. 4(e) as cut-joint and one can obtain open-loop multibody system as shown 
in Fig. 4(d). The constraint equations for joint ijJ can be written as 

 = =v cv v
ij ij ij ij ij i ij jiH q H R T q H q  (35) 

where v
ijq  and v

jiq  denote the displacements of joint acting points ijQ  and jiQ  with respect 
to ′′ ′′ ′′-ijv x y z , respectively. cv

ijR is determined by ijθ according to Eqs. (9) and (10). ijT  is 
determined by ijr  according to Eqs. (14) and (15).  
Due to properties − = −T( )ij ij ij ijI H D D I H  and − =1( )cv vcR R , Eq. (35) can be reformed as 

 
− −

− −

= + −
= + −

1 1

1 1 T

( ) ( ) ( )
( ) ( ) ( )

vc cv vc v
j ji ij ij ij ij i ji ij ij ji

vc cv vc v
ji ij ij ij ij i ji ij ij ij ij ji

q T R H R T q T R I H q
T R H R T q T R I H D D q   (36) 

Define 

 −= 1( ) vc cv
ij ji ij ij ij ijP T R H R T  (37) 

 −= −1 T( ) ( )vc
ij ji ij ij ijQ T R I H D  (38) 
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Considering that =′ v
j ij jiq D q , Eq. (36) can be written as 

 = + ′j ij i ij jq P q Q q  (39) 

Similarly, the constraint equations for joint J jk are 

 = + +′ ′k jk ij i jk ij j jk kq P P q P Q q Q q  (40) 

The constraint equations for all the rest joints can be formulated similar to Eq. (40). The 
constraint equations for the entire open-loop system can thus be integrated as 

 ′ ′=q B q  (41) 

The open-loop constraint matrix ′B  corresponding to system shown in Fig. 4(d) takes the form 

 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢
⎢
⎢
⎢=′
⎢
⎢
⎢
⎢
⎢
⎢
⎣ ⎦

6

a

b

ij ij

c

jk ij jk ij jk

d

jm ij jm ij jm

e

mr jm ij mr jm ij mr jm mr

h

I 0 0 0 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0 0 0
0 P 0 Q 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0 0 0
0 P P 0 P Q 0 Q 0 0 0 0 0B
0 0 0 0 0 0 I 0 0 0 0
0 P P 0 P Q 0 0 0 Q 0 0 0
0 0 0 0 0 0 0 0 I 0 0
0 P P P 0 P P Q 0 0 0 P Q 0 Q 0
0 0 0 0 0 0 0 0 0 0 I

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (42) 

where = −6 6a i , = − −6( 1)b j i , = − −6( 1)c k j , = − −6( 1)d m k , = − −6( 1)e r m , and = −6( )h n r . 
The subscript of each identity matrix I denotes its dimension. Obviously, matrix ′B contains 
information about all joints and reveals constraint topology of open-loop multibody system. 
In Eq. (41), ′q are the general displacements of open-loop multibody system, which are the 
combination of absolute displacements of CM of unconstrained bodies and absolute joint 
displacements of constrained bodies, i.e., 

 =′ ′ ′ ′T T T T
1 2[( ) ( ) ( ) ]nq q q q  (43) 

where =′ v
j ij jiq D q , =′ v

k jk kjq D q , =′ v
m jm mjq D q , =′ v

r mr rmq D q , ε ε=′q q ( ε = 1,2, ,n  and ε ≠ , , ,j k m r ). 
Substitute Eq. (41) and its time derivation, i.e., ′ ′=q B q , into Eqs. (32)-(34), it yields 

 ⎛ ⎞∂ = =′ ′ ′ ′ ′⎜ ⎟∂ ′⎝ ⎠
T

T
d
d

T
t B MB q M qq  (44) 

 ∂ = + = +′ ′ ′ ′ ′ ′ ′∂ ′
T T T

T g g
V B KB q B f K q B fq   (45) 

 ∂= = =′ ′ ′ ′ ′ ′∂ ′
T

Td
Pf B CB q C qq   (46) 

It then follows a minimal set of linearized ODEs for an open-loop multibody system 
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 ( )+ + −′ ′ ′ ′ ′ ′ ′= T
e gM q C q K q B f f  (47) 

where ′M , ′C  and ′K  are determined via the same quadric transformation 

 = =′ ′ ′T ( , , )E B EB E M K C  (48) 
 

Eq. (47) can be regarded as obtained by multiplying Eq. (30) with ′TB and replacing q  by 
′ ′B q . It indicates that the solution of constraint equations for open-loop multibody system 

can be directly obtained via quadric transformation upon system matrices for free 
multibody system, by using the corresponding open-loop constraint matrix ′B . 

3.3 Vibration formulation of closed-loop multibody system 
Considering closed-loop multibody system as shown in Fig. 4(e), similar to Eq. (35), the 
constraint equations for joint krJ can be expressed as 

 =v v
kr kr kr rkH q H q  (49) 

where v
krq and v

rkq denote the displacements of points krQ  and rkQ  with respect to ′′ ′′ ′′-krv x y z , 
respectively. 
Rewrite matrix ′B with each six rows as a block, i.e., =′ ′ ′ ′T T T T

1 2[ ]nB B B B . According to 
Eqs. (41) and (17) one can obtain ′=v cv

kr kr kr kq R T B  and ′=v cv
rk kr rkq R T B . Then Eq. (49) can be 

rewritten as 

 ( )−′ ′ ′ =cv
kr kr kr k rk rH R T B T B q 0   (50) 

 

If the number of cut-joints in a general spatial closed-loop multibody system is c , the 
constraint equations for all cut-joints can be integrated as 

 ′ = 0Bq  (51) 

where = T T T T
1 2[ ]cB B B B , and iB  is the coefficient matrix of constraint equations for the 

thi  cut-joint. 
Transmission mechanism can be treated as cut-joint. Suppose the constraints between body 

kB  and rB  in Fig. 4(e) is not a joint krJ as mentioned before but a transmission mechanism 
krT . The details of krT can be seen in section 1. Similar to Eq. (50), constraint equations 

specified as Eq. (8) can be rewritten as 

 ( )+ =′ ′ ′R T R Tck cr
k jk kj k r mr rm rG B G B q 0   (52) 

If the number of transmission mechanisms in a general multibody system is t , the 
constraint equations for all transmission mechanisms can be integrated as 

 ′ = 0Zq  (53) 

where = T T T T
1 2[ ]tZ Z Z Z , and jZ is the coefficient matrix of constraint equations for the 

thj  transmission mechanism. 
Equation (51) and (53) can be integrated as constraint equations for cut-joints as follows 
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 ⎡ ⎤ ′⎢ ⎥⎣ ⎦
= 0B qZ  (54) 

Since there might be redundant constraints in closed-loop system, Eq. (54) can be solved to 
form independent constraint equations 

 =′ ′ ′′q B q  (55) 

where ′′q is a vector of all independent variables in ′q , and ′q is that of dependent ones. 
Considering that the elements in ′′q or ′q are not necessarily consecutive variables in ′q , they 
are reordered by introducing a matrix S as 

 =′ ′′ ′T T T[ ]q S q q  (56) 

Substituting Eq. (55) into Eq. (56), and let =′′ ′ T T[ ( ) ]B S I B , it yields 

 =′ ′′ ′′q B q  (57) 

Here we call matrix ′′B the cut-joint constraint matrix. Considering Eq. (41), one can obtain 

 =′ ′ ′ ′′ ′′=q B q B B q  (58) 

Similar to formulation of open-loop multibody system, substitute Eq. (58) and its time 
derivation, i.e., ′ ′′ ′′=q B B q , into Eqs. (32)-(34), a minimal set of linearized ODEs for closed-
loop multibody system can be expressed as 

 ( )+ + = −′′ ′′ ′′ ′′ ′′ ′′ ′′ ′T T
e gM q C q K q B B f f  (59) 

where ′′M , ′′C  and ′′K  are determined via the same quadric transformation 

 = = =′′ ′′ ′ ′′ ′′ ′ ′ ′′T T T ( , , )E B E B B B EB B E M K C  (60) 

Equation (59) can be regarded as obtained by multiplying Eq. (47) with the transposed cut-
joint constraint matrix ′′TB and replacing ′q by ′′ ′′B q . It indicates that the solution of constraint 
equations for cut-joints can be directly obtained via quadric transformation upon system 
matrices for open-loop system, by using the corresponding cut-joint constraint matrix ′′B . 
Complicated solving for constraints and linearization are unnecessary in this method, and 
the resulting equations contain explicitly the design parameters. The suggested method can 
be used to greatly simplify the procedure of vibration calculation. Furthermore, the 
suggested method is particularly suitable for sensitivity analysis and optimization for large-
scale multibody system. 
The proposed algorithm has been implemented in MATLAB, and is named as AMVA 
(Automatic Modeling for Vibration Analysis). The eigenvalue problem is solved using 
standard LAPACK routines. The flowchart of the proposed algorithm is illustrated in Fig. 5. 

3.4 Comparison with the traditional methods 
The procedure of most of the conventional methods for vibration calculation can be 
concluded as follows. Firstly, the general-purpose nonlinear equations of motion, in most 
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Fig. 5.  Flowchart of the proposed formulation 

cases DAEs, are formulated in terms of coordinates of all bodies. Secondly, the Jacobian of 
constraint equations is calculated to transform DAEs into ODEs by eliminating the 
Lagrange’s Multipliers. Thirdly, a minimal set of nonlinear ODEs in terms of independent 
generalized coordinates are obtained. Finally, the resulting equations are linearized at small 
vicinity near the equilibrium position. A large amount of computational efforts are required 
for computation of trigonometric functions, derivation and linearization. Many kinds of 
software such as ADAMS employ this kind of method for obtaining a minimal set of linear 
ODEs for vibration analysis. 
As shown in Fig. 5, there are three steps in the proposed method to generate a minimal set 
of second-order linear ODEs for vibration calculation. Firstly, system matrices for linear 
ODEs of free system are directly generated by using linear transformation. Secondly, an 
open-loop constraint matrix is formulated to obtain linear ODEs for open-loop system. 
Finally, a cut-joint constraint matrix is solved to formulate a minimal set of second-order 
linear ODEs for closed-loop system. 
Considering the definitions for vibration calculation, the major difference between the 
proposed method and previous studies lies in the definition and formulation of constraint 
equations. Conventionally, the constraint equations are defined in terms of coordinates of 
bodies or joints. The constraint equations and the Jacobian of constraint matrix are usually 
nonlinear ones. It is difficult, particularly for large-scale multibody system, to obtain the 
transformation matrix from the generalized coordinates to the independent coordinates. In 
this paper, however, the constraint equations are defined in terms of fine displacements of 
two acting points of the joint. The resulting linear constraint equations can be easily resolved 
to obtain the transformation matrix, i.e., the open-loop constraint matrix and the cut-joint 
constraint matrix. 
There are two major differences between the proposed method and most of the traditional 
methods. One is that the linearization is carried out before generating ODEs with small 
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motion assumption which is satisfied for vibration. The other is that the formulation of a 
minimal set of second-order linear ODEs for constrained system is achieved by directly 
generating five matrices, i.e., mass matrix, stiffness matrix and damping matrix for free 
system, an open-loop constraint matrix ′B  for open-loop system, and a cut-joint constraint 
matrix ′′B  for closed-loop system. 
Notice that Kang et al. have also proposed a similar method in which the linearization is 
carried out before generating ODEs with small motion assumption (Kang, 2003). The results 
of system matrices for free system are actually the same as those derived by our method. 
The difference between Kang’s method and ours lies in the formulation of a minimal set of 
ODEs for constrained system. They employ the partition of the Jacobian of constraint matrix, 
which is time-consuming to be obtained for multibody system with a large amount of 
constraints, to derive the relationship between generalized coordinates and the independent 
coordinates. We use the linear transformation matrix to directly formulate linearized 
constraint equations and then derive the relationship between generalized coordinates and 
the independent coordinates. Most of all, since the final system matrices can be directly 
obtained by only a few steps of matrices generation and multiplication, the computational 
efficiency can be significantly improved for large-scale multibody system with a large 
amount of constraints. 

4. Topology-based sensitivity formulation of multibody systems 

Besides the promise in improving the computational efficiency, the proposed method can be 
applied in sensitivity analysis because the resulting equations depend on the design 
parameters explicitly. As is known to all, the eigen-sensitivity is based on the derivatives of 
the system matrices, which are denoted as ′′M , ′′C  and ′′K  in this paper, with respect to the 
design parameters  (Lee et al., 1999a; 1999b). Conventionally, the system matrices are solved 
numerically and they depend on the design parameters implicitly. Therefore the derivatives 
of the system matrices with respect to a certain parameter p  are usually obtained by using 
finite difference method. However, it can be seen that each kind of design parameters can be 
easily traced in different system matrices obtained by using the proposed method. For 
example, the stiffness coefficients of spatial spring ijsK  only exist in matrix u

ijsK in Eqs. (25) 
and (26) ( u

ijsE refers to u
ijsK  for spring ). The position parameters of ijsK  exist in ijsT  and jisT , 

and its orientation parameters exist in cu
ijsR . Similarly, the position and orientation 

parameters of joint exist in ′B  and ′′B . Therefore the derivatives ′′d dpM , ′′d dpC  and 
′′d dpK  can be further derived analytically. 

4.1 Conventional sensitivity formulation 
The eigenvalue sensitivity can be expressed as 

 λ λ λ∂ ∂ ∂ ∂′′ ′′ ′′= − − −∂ ∂ ∂ ∂
2 T T Tr

r r r r r r r rp p p p
M C Kψ ψ ψ ψ ψ ψ   (61) 

where λr  is the thr  eigenvalue, ϕ ϕ ϕ= T
1 1[ ]r r r Nrψ  ( = ′′rank( )N M ) is the thr unitary 

eigenvector, and p  represents the considered parameter. Denote ′′ijm , ′′ijc and ′′ijk the elements 
at row i and column j in matrices ′′M , ′′C and ′′K , respectively, eigenvalue sensitivity can be 
formulated as 
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The formulation is very simple. However, matrices ′′M , ′′C and ′′K generated by using 
conventional methods are implicit functions of design parameters, such as mass and inertia 
of bodies, stiffness coefficients and damping coefficients of spring-dampers, position and 
orientation of spring-dampers and joints, and etc. That is to say, ′′ijm , ′′ijc and ′′ijk  are 
intermediate quantities instead of original design parameters. Therefore, the existing 
sensitivity formula can not be directly used for optimization. 

4.2 Proposed sensitivity formulation about physical design parameters 
Since matrices ′′M , ′′C and ′′K generated by using the proposed method are explicit functions 
of design parameters, sensitivity analysis about design parameters can be easily carried out. 
Considering that = =′′ ′′ ′ ′ ′′T T ( , , )E B B EB B E M K C , eigenvalue sensitivity about design 
parameter p in Eq. (61) can be expressed as follows 

 ( ) ( )

λ λ λ

λ λ λ λ

∂ ∂ ∂ ∂′′ ′′ ′′= − − −∂ ∂ ∂ ∂
∂ ′ ′′⎛ ⎞∂ ∂ ∂= − + + − + +′′ ′ ′ ′′ ′′ ′⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

2 T T T

T T T 2 T T T 22

r
r r r r r r r r

r r r r r r r r

p p p p

p p p p

M C Kψ ψ ψ ψ ψ ψ

B BM C Kψ B B B B ψ ψ B B M C K ψ   (62) 

As pointed out in previous derivation, the mass matrix M of free system contains only mass 
and inertia parameters of each body. The damping matrix C of free system contains only 
damping coefficients and position and orientation of dampers. The stiffness matrix K of free 
system contains only stiffness coefficients and position and orientation of springs. Matrices 
′B  and ′′B  contain information such as position and orientation of all joints. Therefore 

eigenvalue sensitivity about specific design parameter can be obtained. 
a. Eigenvalue sensitivity about mass or inertia parameter 
If p is the mass or inertia parameter of body Bi , one can obtain that 

 
= =

∂∂ = =∂ ∂ 1, 0diag( )=
rest

i
spp pp p

MM 0 0 0 0 M M                      (63) 

where restp  stands for all parameters except p  in the system. It means that sensitivity of 
mass matrix M  about mass or inertia parameter p can be directly obtained by reevaluating 
M under condition that all parameters being equal to zero except = 1p . There is no need for 

calculating derivatives. Accordingly, eigenvalue sensitivity can be formulated as 

 λ λ∂ = − ′ ′′ ′ ′′∂
2 T( )r
r r sp rp B B ψ M B B ψ  (64) 
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Considering that spM is a sparse matrix because most elements in M are irrelative to 
parameter p , eigenvalue sensitivity can be significantly simplified by reducing dimension 
in matrix multiplication. Denote = ′ ′′r rφ B B ψ , and rewrite it by integrating each six rows as a 
block, i.e., = ′ ′′,i r i rφ B B ψ , it yields 

 [ ]= TT T T
1, 2, ,r r r n rφ φ φ φ  (65) 

where n is the number of bodies in the system. 
Eigenvalue sensitivity specified by Eq. (62) can be simplified as 

 λ λ λ∂ ∂∂= − = −∂ ∂ ∂
T 2 2 T

, ,
r i

r r r r i r i rp p p
MMφ φ φ φ  (66) 

It can be seen that computational cost in Eq. (66) has been reduced by 2n times in compare 
with that in Eq. (64). 
Generally, there might be several components with identical structure used in a multibody 
system. That is to say, p is used as mass or inertia parameter for a set of bodies numbered as 

[ ]= ∈1 2
n

ke e e Re . Eigenvalue sensitivity is difficult to be resolved by using traditional 
method because many elements in ′′M are determined by p and therefore they are correlative 
with each other. However, it can be directly formulated similar to Eq. (62) 

 λ λ λ
=

∂∂ ∂= − = − ∑∂ ∂ ∂
T 2 2 T

, ,
1

s
s s

k er
r r r r e r e r

sp p p
MMφ φ φ φ  (67) 

b. Eigenvalue sensitivity about stiffness parameter 
Eigenvalue sensitivity about stiffness and damping coefficient can be calculated in the same 
way. If p is the stiffness coefficient of spring-dampers interconnected between Bi and B j , one 
can obtain that 

 λ∂ ∂ ∂= − = −′′ ′ ′ ′′∂ ∂ ∂
T T T Tr

r r r rp p p
K Kψ B B B B ψ φ φ  (68) 

The variation of p affects only iiK , jjK , ijK and jiK , it can be obtained that 
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 = =
= = = =⎧∂ = ⎨∂ ≠ ≠⎩

1, 0 ( & , or & )
( or )

restab p pab
a i b j a j b i

p a i b j
KK
0

 (72) 

 

Combine Eq. (71) with Eq. (72) and it yields 

 
= =

∂ = =∂ 1, 0rest spp pp
K K K  (73) 

Considering that spK is usually a sparse matrix, eigenvalue sensitivity about stiffness 
parameter used in springs between Bi and B j can be formulated as 

 [ ]λ
∂⎡ ∂ ⎤−⎢ ⎥∂ ∂∂ ⎡ ⎤∂= − = − ⎢ ⎥ ⎢ ⎥∂ ∂∂ ∂ ⎣ ⎦⎢ ⎥− ∂ ∂⎣ ⎦

,T T T
, ,

,

ijii

i rr
r r i r j r

j rji jj

p p
p p

p p

KK
φKφ φ φ φ φK K  (74) 

 

Generally, there might be several spring-dampers sharing the same stiffness or damping 
coefficient p in a multibody system. If p is the stiffness coefficient of spring-dampers 
interconnected between Bi and B j , and B j and Bk , it can be obtained that 

 [ ]λ

∂⎡ ∂ ⎤−⎢ ⎥∂ ∂
⎡ ⎤⎢ ⎥∂ ∂ ∂∂ ⎢ ⎥⎢ ⎥= − − −∂ ∂ ∂ ∂ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥∂ ∂−⎢ ⎥∂ ∂⎣ ⎦

,
T T T
, , , ,

,

ijii

i r
ji jj jkr

i r j r k r j r

k r
kj kk

p p

p p p p

p p

KK 0
φK K Kφ φ φ φ
φK K0

 (75) 

 

If p is the stiffness coefficient of spring-dampers interconnected between Bi and B j , and Bk  
and Bl , it can be obtained that 

 [ ] [ ]λ
∂⎡ ∂ ⎤ ∂ ∂⎡ ⎤− −⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂∂ ⎡ ⎤ ⎡ ⎤= − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂∂ ⎣ ⎦ ⎣ ⎦−⎢ ⎥− ⎢ ⎥∂ ∂∂ ∂ ⎣ ⎦⎣ ⎦

, ,T T T T
, , , ,

, ,

ijii kk kl

i r k rr
i r j r k r l r

j r l rji jj lk ll

p p p p
p

p pp p

KK K K
φ φφ φ φ φφ φK K K K  (76) 

 

c. Eigenvalue sensitivity about damping parameter 
Similarly, if p is the damping coefficient of spring-dampers interconnected between Bi  and 
B j , eigenvalue sensitivity about p can be formulated as 

 [ ]λ λ λ

∂⎡ ∂ ⎤−⎢ ⎥∂ ∂∂ ⎡ ⎤∂= − = − ⎢ ⎥ ⎢ ⎥∂ ∂∂ ∂ ⎣ ⎦⎢ ⎥− ∂ ∂⎣ ⎦

,T T T
, ,

,

ijii

i rr
r r r r i r j r

j rji jj

p p
p p

p p

CC
φCφ φ φ φ φC C  (77) 

 

If p is the damping coefficient of spring-dampers interconnected between Bi and B j , and B j  
and Bk , it can be obtained that 
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If p is the damping coefficient of spring-dampers interconnected between Bi and B j , and Bk  
and Bl , it can be obtained that 

 [ ] [ ]λ λ λ
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CC C C
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4.3 Proposed sensitivity formulation about geometrical design parameters 
The position and orientation of connection such as spring-damper and joint affect the 
dynamics of multibody system too. Eigenvalue sensitivity about these geometrical design 
parameters will be derived in this section. 
If p is the position and orientation of spring-dampers, eigenvalue sensitivity can be 
formulated as 

 λ λ∂ ⎛ ⎞∂ ∂= − +⎜ ⎟∂ ∂ ∂⎝ ⎠
Tr
r r rp p p

C Kφ φ  (80) 

If p is the position and orientation of spring-dampers interconnected between Bi and B j , 
similar to Eq. (74), it can be obtained that 
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In addition, if p is the position of spring-dampers interconnected between Bi and B j , it can be 
obtained that 
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If p is the orientation of spring-dampers interconnected between Bi and B j , it can be 
obtained that 

 ( )
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Generally, p  may be used as position and orientation of spring-dampers among a set of 
bodies in a multibody system. For example, if p is the position and orientation of spring-
dampers interconnected between Bi and B j , and B j and Bk , it can be obtained that 

 [ ]

λ λ

λ λ λ λ
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 (86) 

If p is the position and orientation of spring-dampers interconnected between Bi and B j , and 
Bk  and Bl , it can be obtained that 
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The above-mentioned sensitivity formulations are based on the topology of the multibody 
systems. Particularly, eigen-sensitivity with respect to design parameters of mass and 
inertia, coefficients of stiffness and damping, position and orientation of connections are all 
derived analytically in detail. These results can be directly applied for sensitivity analysis of 
general mechanical systems and complex structures which are modelled as multibody 
systems. 

5. Numerical examples and applications 
5.1 Numerical verification 
The computational efficiency for vibration calculation can be significantly improved by 
using the proposed method, in comparison with most of the traditional approaches. A 
multibody system with n  rigid bodies and m  DOFs is taken as an example to demonstrate 
it. Suppose there are p  constraints for the open-loop system and q  ( ≤ − ≤6p n m q ) 
constraints for the entire system. There are mainly four factors that can help to improve the 
computational efficiency. 
1. Relative small scale of matrix computation. Traditionally, a matrix with size 

− × −(12 ) (12 )n m n m  must be generated and solved to obtain system matrices with size 
×m m . In addition, in order to express the −6n m  dependent coordinates in terms of m  

independent coordinates, it is necessary to get the inverse of a matrix with size −6n m , 
according to the Kang’s method (Kang et al., 2003). However, there are only matrices 
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M , C , K  with size ×6 6n n  and an open-loop constraint matrix ′B  with size 
× −6 (6 )n n p  need to be easily generated for the proposed method. And then a cut-joint 

constraint matrix ′′B  with size − ×(6 )n p m  needs to be resolved to perform simple 
matrix multiplication for obtaining the final system matrices. In addition, there are only 

− −6n p m  dependent coordinates in terms of m  independent coordinates, the size of 
matrix to be inversed is − −6n p m . It can be easily concluded that less computational 
efforts are required for the proposed method. 

2. Reduction of trigonometric functions computing. Conventionally, the variations of 
coordinates and postures between two acting points of a connection, such as spring-
damper or joint, are computed based on homogeneous transformation. Instead, the 
linear transformation in the proposed method can significantly reduce computational 
efforts due to calculation of trigonometric functions. Obviously, the more connections 
there are, the more computational efforts can be reduced. 

3. Avoidance of complex calculation of Jacobian of constraint equation which usually 
contains many trigonometric functions. It is time-consuming for the calculation of 
Jacobian of a matrix with size − × −(6 ) (6 )n m n m . Instead, the constraint matrices ′B  and 
′′B  can be easily obtained by using the presented definition of constraints for the 

proposed method. 
4. Avoidance of linearization of nonlinear equations of motion. The ODEs generated by 

conventional methods are nonlinear ones that need to be linearized before perform 
vibration calculation (Cruz et al., 2007;  Minaker & Frise, 2005; Negrut & Ortiz, 2006; 
Pott et al., 2007; Roy & Kumar, 2005). Instead, the ODEs obtained by using the proposed 
method are a minimal set of second-order linear ODEs which can be directly used for 
vibration calculation. 

In this section, numerical experiments were carried out to verify the correctness and 
efficiency of the proposed method. It is unsuitable to compare straightforwardly the results 
of system matrices with theoretical solutions for they are usually very large in size. Normal 
mode analysis (NMA) and transfer function analysis (TFA) for the same model were 
performed in AMVA and commercial software ADAMS. The results of natural frequencies, 
the damping ratios, and the transfer function were compared to verify the correctness of the 
proposed method. Solution time was compared to testify the efficiency of the proposed 
method. The experiments were performed on a PC with CPU Pentium IV of 2.0 GHz and 
memory of 2.0 GB. Models with chain, tree, and closed-loop topology were taken as case 
studies, as shown in Fig. 6. 
 

 
Fig. 6. Topologies of models used for numerical test 
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A. Chain topology MBS. As shown in Fig. 6(a), n moving bodies and the ground 0B are 
connected by joints and spatial spring-dampers in a chain. The position and orientation 
of CM of body Bi are −[0 0 0.2 0.1 0 0 0]i . The position and orientation of 
joint −1,J i i are −[0 0 0.2 0.2 0 0 0]i . 

B. Tree topology MBS. As shown in Fig. 6(b), the bodies are connected by joints and 
spatial spring-dampers in form of binary tree with N layers. There are −= 12 i

in bodies in 
the thi layer, among which the thj one is denoted as Bij . The position and orientation of 
CM of body Bij are [ 0 0 0 0]j i . The position and orientation of joint between body 

+ −1,2 1Bi j  and Bij are − + −[(3 1) 2 0.5 0 0 0 arccot( 1)]j i j , and that between body +1,2Bi j  
and Bij are +[ 3 2 0.5 0 0 0 arccot( )]j i j . 

C. Closed-loop topology MBS. As shown in Fig. 6(c), the bodies are connected by joints 
and spatial spring-dampers in form of ladder with N layers. There are three bodies in 
the thi layer, among which the thj one is denoted as Bij . The position and orientation of 
CM of Bij are − −[0.2 0.3 0.2 0.1 0 0 0 0]j i  (for = 1,2j ) or π[0 0.2 0 0 0 2 ]i  
(for = 3j ). The position and orientation of joint between ,3Bi and ,Bi u  ( = 1,2u ) are 

− −[0.2 0.3 0.2 0.1 0 0 0 0 ]u i . The position and orientation of joint 
between ,3Bi and +1,Bi u  ( = 1,2u ) are − +[0.2 0.3 0.2 0.1 0 0 0 0]u i . 

The rule of name for each kind of models is specified as follows. The first letter, i.e., ‘C’, ‘T’, 
and ‘L’, means model with chain, tree, and closed-loop topology, respectively. It then 
follows the number of bodies (for models with chain topology) or layers (for models with 
tree or closed-loop topology). The letter before ‘F’ means the type of joint in the model, e.g., 
‘R’ , ‘P’, ‘C’ and ‘S’ means revolute, prismatic, cylindrical and spherical joint. The figure at 
the end means the number of spring-dampers between two bodies connected by joint. 
For simplicity without loss of generality, the mass and inertia tensor of all bodies, the 
stiffness and damping coefficients of all spring-dampers, as well as the position and 
orientation of joint and spring-dampers between each two bodies were set to be equal to 
each other, as specified in Table 2, where s is the number of spring-dampers between the 
two bodies considered.. The results of NMA and TFA (force input at CM of body 6,1B  in X-
direction, displacement output at CM of body 6,32B in Y-direction) for model TL7SF1 are 
shown in Fig.7 and Fig.8, respectively. 
 

Parameter Symbol Value 
Mass (kg) m  1.0 

Inertia ( ⋅ 2kg m ) [ ]xx yy zz xy xz yzI I I I I I [1.0 1.0 1.0 0 0 0]  

Stiffness ( −⋅ 1N m ) [ ]k k k
x y zk k k  × 4[1.0 1.0 1.0 ] 10 s  

Torsion stiffness ( −⋅ ⋅ 1N m deg ) α β γ[ ]k k kk k k  × 4[1.0 1.0 1.0 ] 10 s  

Damping ( −⋅ ⋅ 1N s m ) [ ]k k k
x y zc c c  × 1[1.0 1.0 1.0 ] 10 s  

Torsion damping ( −⋅ ⋅ ⋅ 1N m s deg ) α β γ[ ]k k kc c c  × 1[1.0 1.0 1.0 ] 10 s  

Table 3.  Parameters of bodies and spring-dampers in all case studies 

Solutions in Fig.7 indicate that the results of eigenvalue calculated using AMVA are 
identical to those in ADAMS. The mean and maximal errors of natural frequencies between 
the two groups of results are 1.02×10−6 Hz and 5.00×10−5 Hz. The mean and maximal errors 
of damping ratios of the two groups of results are 1.73×10−10 and 5.00×10−8. Comparisons in 
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Fig.8 indicate that solutions of transfer function calculated using AMVA coincide well with 
those in ADAMS. 
 

 
Fig. 7. Comparison of NMA results for model TL7RF1 
 

 
Fig. 8. Comparison of TFA solutions for model TL7RF1 

5.2 Applications in engineering 
A quadruped robot and a Stewart platform were taken as case studies to verify the 
effectiveness of the proposed method for both open-loop and closed-loop spatial mechanism 
systems, respectively. Simulations and experiments were further carried out on a wafer 
stage to justify the presented method. 
a. Quadruped robot 
The proposed method has been applied in linear vibration analysis of a quadruped robot, 
which is an open-loop spatial mechanism system. As shown in Fig. 9, the body is connected 
with four legs via revolute joints along z direction. Each leg consists of three parts which are 
connected by two turbine worm gears. The leg mechanism can be modeled as three rigid 
bodies connected by two revolute joints and torsion springs along x direction. Each flexible 
foot is modeled as a three dimensional linear spring-damper, then the quadruped robot 
becomes an open-loop spatial mechanism system with 13 bodies and 18 DOFs.  
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Fig. 9. Quadruped robot 
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Fig. 10. Comparison of NMA results for quadruped robot 

Normal mode analysis and transfer function analysis were both performed in ADAMS and 
AMVA for such a quadruped robot. As shown in Fig. 10, natural frequencies and damping 
ratio solved in two tools are equal to each other. Fig. 11 shows that results of transfer 
function computed in two packages are identical. It indicates that dynamic analysis of open-
loop spatial mechanism system can also be solved using the proposed method. 
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Fig. 11. Comparison of TFA results for quadruped robot 
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b. Stewart platform 
The proposed method has also been applied in linear vibration analysis of a Stewart isolation 
platform, which is a closed-loop spatial mechanism system with six parallel linear actuators, as 
shown in Fig. 12. The isolated platform on the top layer is connected with linear actuators via 
flexible joints. The lower end of each actuator is also connected with the base via flexible joint. 
Based on previous finite element analysis, each flexible joint is modeled as spherical joint 
together with three-dimensional torsion spring-damper. And each linear actuator is modeled 
as two rigid bodies connected with a translational joint together with a linear spring-damper 
along the relative moving direction. Therefore the system can be modeled as a closed-loop 
spatial mechanism system with 14 rigid bodies and 12 DOFs.  
 

 
Fig. 12. Stewart platform 
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Fig. 13. Comparison of NMA results for Stewart platform 
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Fig. 14. Comparison of TFA results for Stewart platform 
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Normal mode analysis and transfer function analysis were both performed in ADAMS and 
AMVA to acquire vibration isolation performance of such a Stewart platform. As shown in 
Fig. 13, natural frequencies and damping ratio solved in two tools are equal to each other. 
Fig. 14 shows that results of transfer function of displacement computed in two packages 
are identical. Fig. 15 shows that results of time response of displacement computed in two 
packages are identical. It indicates that dynamic analysis of closed-loop spatial mechanism 
system can also be solved using the proposed method. 
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Fig. 15. Comparison of TRA solutions for the Stewart platform 

7. Conclusion 
A new formulation based on constraint-topology transformation is proposed to generate 
oscillatory differential equations for a general multibody system. Vibration displacements of 
bodies are selected as generalized coordinates. The translational and rotational 
displacements are integrated in spatial notation. Linear transformation of vibration 
displacements between different points on the same rigid body is derived. Absolute joint 
displacement is introduced to give mathematical definition for ideal joint in a new form. 
Constraint equations written in this way can be solved easily via the proposed linear 
transformation. The oscillatory differential equations for a general multibody system are 
derived by matrix generation and quadric transformation in three steps: 
1. Linearized ODEs in terms of absolute displacements are firstly derived by using 

Lagrangian method for free multibody system without considering any constraint. 
2. An open-loop constraint matrix is derived to formulate linearized ODEs via quadric 

transformation for open-loop multibody system, which is obtained from closed-loop 
multibody system by using cut-joint method. 

3. A cut-joint constraint matrix corresponding to all cut-joints is finally derived to 
formulate a minimal set of ODEs via quadric transformation for closed-loop multibody 
system. 

Sensitivity of the mass, stiffness and damping matrix about each kind of design parameters 
are derived based on the proposed algorithm for vibration calculation. The results show that 
they can be directly obtained by matrix generation and multiplication without derivatives. 
Eigen-sensitivity about design parameters are then carried out. 
Several kinds of mechanical systems are taken as case studies to illustrate the presented 
method. The correctness of the proposed method has been verified via numerical 
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experiments on multibody system with chain, tree, and closed-loop topology. Results show 
that the vibration calculation and sensitivity analysis have been greatly simplified because 
complicatedly solving for constraints, linearization and derivatives are unnecessary. 
Therefore the proposed method can be used to greatly improve the computational efficiency 
for vibration calculation and sensitivity analysis of large-scale multibody system. Sensitivity 
of the dynamic response with respect to the design parameters, and the computational 
efficiency of the proposed method will be investigated in the future. 
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1. Introduction

Due to the fact that non-linear dynamical structures are encountered in many areas of science
and engineering, strong developments in the treatment of non-linear differential equations
have been proposed and various computational techniques are commonly applied in a wide
range of mechanical engineering problems.
The most common techniques for predicting the non-linear behaviour of systems are based on
numerical integration over time. However, the use of these methods for non-linear systems
with many degrees of freedom can be rather expensive and requires considerable resources
both in terms of computation time and data storage. Due to the complexity of non-linear
systems and to save time, approximate methods for the study of non-linear oscillating systems
described by ordinary non-linear differential equations are usually required. In this category,
the most popular methods for approximating the stationary non-linear responses of systems
are the harmonic balance methods. The principal idea for these non-linear methods is to
replace the non-linear responses and the non-linear forces in the dynamical systems by
constructing linear functions such as Fourier series. The main objective of these non-linear
methods is to extract and characterize the non-linear behaviours of mechanical systems by
using non-linear approximations.
In this chapter, the general formulation and extensions of the harmonic balance method will
be presented. The chapter is divided into four parts. Firstly we propose to present the
general formulation and the basic concept of the harmonic balance method to find periodic
oscillations of non-linear systems. Secondly a generalization of the method is exposed to treat
quasi-periodic solutions. Thirdly, a condensation procedure that keeps only the non-linear
degrees of freedom of the mechanical system is described. This technique may be of great
interest to reduce the original non-linear system and to calculate the dynamical behaviour
of non-linear systems with many degrees of freedom. The last part presents the classical
continuation procedures that let us follow the evolution of a solution as a system parameter
varies. For these two steps procedures, several prediction methods (secant, tangent and
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Lagrange polynomial methods) and correction methods (arc length, pseudo arc length and
Moore-Penrose methods) are detailed.

2. General theory of the harmonic balance method

The most general formulation for a non-linear dynamical system is

Mq̈ + Cq̇ + Kq + f̂ (t, q, q̇) = f
e
(t) (1)

where M, C and K are respectively the mass, damping (including gyroscopic effects if any)

and stiffness matrices, f̂ (t, q, q̇) stands for the non-linear effects in the system and f
e
(t) the

external forces. q is the displacement vector with size n. Looking for periodic solutions q(t)
with a determined period T, it is legitimate to look for the signal as a Fourier series which
is truncated for the sake of the numerical application. Thus we assume that the non-linear
dynamical response of the system may be approximated by finite Fourier series with ω = 2π

T
the fundamental pulsation:

q(t) =
a0√

2
+

m

∑
k=1

(ak cos(kωt) + bk sin(kωt)) (2)

where m is the order of the Fourier series. a0, ak and bk define the unknown coefficients of the
finite Fourier series. It should be noted that these coefficients define q̇ and q̈ too.
The number of harmonic coefficients is selected on the basis of the number of significant
harmonics expected in the non-linear dynamical response. Generally speaking, harmonic
components become less significant when m increases. This formulation includes only
harmonic and super-harmonic responses of the system. Some terms can be added to take
sub-harmonics (with pulsation k′

l ω) into account. So as to keep simple equations these terms
will not be included in the following sections.
In order to determine the value of the n × (2m + 1) unknowns, the decomposition (2) is
reinjected in (1); the time variable is then removed by projecting the resulting system onto
the basis (1/

√
2, cos(kωt), sin(kωt))(k=1,...,m) using the scalar product:

< f , g >T=
2
T

∫ T

0
f (t)g(t)dt (3)

This leads to a set of n × (2m + 1) non-linear (non-differential) equations that can be solved
using a dedicated algorithm such as Broyden method (Broyden, 1965):

H(x̃) = Hl x̃ + Ĥ(x̃)− He = 0 (4)

where x̃ regroups the unknowns a0, ak and bk,

x̃ =
{

aT
0 aT

1 bT
1 . . . aT

m bT
m

}T
, (5)

Hl contains the contribution of the linear part of (1), Ĥ(x̃) is the projection of the non-linear
part and He the one of the external forces. For further use, the following quantities are
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defined: first, the blocks of the Hl (block diagonal) matrix

Hl =

⎡
⎢⎢⎢⎢⎣

Λ0 0 . . .
0 Λ1 0 . . .

. . . 0 Λk 0

. . . 0 Λm

⎤
⎥⎥⎥⎥⎦ , (6a)

Λ0 = K ∈ Mn(R) (6b)

∀ k ∈ {1, . . . , m}, Λk =

[
K − (kω)2M (kω)C
−(kω)C K − (kω)2M

]
∈ M2n(R) (6c)

Then, the approximation of the non-linear contribution using its projections c0, ck and dk onto
1/

√
2, cos(kωt) and sin(kωt) respectively is written as follow:

f̂ (t, q, q̇) ≈ c0√
2
+

m

∑
k=1

(ck cos(kωt) + dk sin(kωt)) (7)

Using this notations, Ĥ(x̃) is the vector

Ĥ(x̃) =
{

cT
0 cT

1 dT
1 . . . cT

m dT
m

}T
(8)

Cameron and Griffin (Cameron & Griffin, 1989) suggested to compute these quantities using
an alternate frequency/time domain (AFT) method. First, an Inverse Fast Fourier Transform
(IFFT) is used to recompose q(tj) and q̇(tj) from a0, ak, bk coefficients for some tj ∈ [0, T]. Then,
for each time step tj the f̂ (tj, q(tj), q̇(tj)) vectors are computed and c0, ck and dk projections
are finally obtained using a Fast Fourier Transform (FFT) to switch back into the frequency
space.
Usually, the external forces are T-periodic and there is no numerical computation required to
obtain the He vector.

3. Extension of the Harmonic Balance Method for multiple excitations

Now, the general case in which the structural system is excited by several incommensurable
frequencies ω1, ω2, . . . , ωp is discussed. The previous non-linear dynamical equation (1) is
considered with multiple excitations contained in the external excitation forces f

e
(t). So,

non-linear responses are no longer periodic when oscillatory systems are subjected to p
incommensurable frequencies. The non-linear oscillations contain the frequency components
of any linear combination of the incommensurable frequency components

k1ω1 + k2ω2 + · · ·+ kjωj + · · ·+ kpωp

with kj = −m,−m + 1, . . . ,−1, 0, 1, . . . , m − 1, m (9)

where m defines the order for each fundamental frequency and p the number of
incommensurable frequencies.
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Thus the approximation of the dynamic non-linear response of equation (1) can be expressed
with a generalized Fourier series in the following form

q(t) =
m

∑
k1=−m

m

∑
k2=−m

· · ·
m

∑
kp=−m

⎛
⎝ak1,k2,...,kp

cos

⎛
⎝ p

∑
j=1

kjωjt

⎞
⎠ bk1,k2,...,kp

sin

⎛
⎝ p

∑
j=1

kjωjt

⎞
⎠
⎞
⎠ (10)

where ak1,k2,...,kp
and bk1,k2,...,kp

define the unknown Fourier coefficients of any linear
combinations of the incommensurable frequency components ω1, ω2, . . . , ωp. For the reader
comprehension, it may be noted that a definition for retaining m harmonics in a multiple
Fourier series can be given by (Kim & Choi, 1997)

p

∑
j=1

|kj| ≤ m (11)

Considering that all harmonics at negative combination frequencies can be replaced by
harmonic terms at positive combination frequencies due to the following trigonometric
relation

cos

⎛
⎝ p

∑
j=1

kjωjt

⎞
⎠ = cos

⎛
⎝ p

∑
j=1

−kjωjt

⎞
⎠ (12)

sin

⎛
⎝ p

∑
j=1

kjωjt

⎞
⎠ = − sin

⎛
⎝ p

∑
j=1

−kjωjt

⎞
⎠ (13)

it may be concluded that only terms at positive combination frequencies (i.e.
p

∑
j=1

kjωjt ≥ 0)

can be retained in the non-linear response and non-linear force expressions.
So, the previous expression (10) can be rewritten in a condensed form

q(t) =
a0√

2
+ ∑

k∈Zp

ak cos (k.ω) t + ∑
k∈Zp

bk sin (k.ω) t (14)

where the (.) denotes the dot product, k is the harmonic number vector of each frequency
direction and ω is the vector of the p incommensurable frequencies considered in the solution.
The contributions ak and bk contain the new Fourier decomposition of cosine and sine terms
corresponding to the positive frequency combinations.
For convenience, it is wise to deal with a multiple time parameter. By introducing a non
dimensional multiple time parameter τ = ωt that refers to hyper-time concept proposed by
(Kim & Choi, 1997), the approximated non-linear expression (14) is composed from elements
of cosine and sine terms such as

q(τ) =
a0√

2
+ ∑

k∈Zp

ak cos (k.τ) + ∑
k∈Zp

bk sin (k.τ) (15)
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Injecting this in Eq. (1), one gets

K
a0√

2
+ ∑

k∈Zp

((
K − (k.ω)2 M

)
ak +

(
(k.ω) C

)
bk

)
cos (k.τ)

+ ∑
k∈Zp

((
K − (k.ω)2 M

)
bk −

(
(k.ω) C

)
ak

)
sin (k.τ)

+ f̂ (x̃) = f
e
(t) (16)

where the non-linear forces vector f̂ (t, q, q̇) is approximated by the generalized Fourier series
in a condensed form

f̂ (t, q, q̇) =
c0√

2
+ ∑

k∈Zp

ck cos (k.ω) t + ∑
k∈Zp

dk sin (k.ω) t (17)

Thus, the non-linear equations (16) can be rewritten in the form of an algebraic equation
system similar to (4) for unknown vector of harmonic coefficients with only terms at positive
frequency combinations. In this case x̃ denotes the unknown vector of harmonic coefficients
a0, ak and bk

x̃ =

{
aT

0√
2

aT
1 bT

1 aT
2 bT

2 . . . aT
N bT

N

}T

(18)

where N represents the total number of frequency components including all harmonic terms
up to m of each frequency direction and all the coupling frequencies chosen by using (11). He
and Ĥ(x̃) contain the projection of the external forces f

e
(t) and the non-linear part f̂ (t, q, q̇),

respectively. Ĥ(x̃) is given by

Ĥ(x̃) =
{

cT
0√
2

cT
1 dT

1 cT
2 dT

2 . . . cT
N dT

N

}T

(19)

The non-linear treatment of Fourier coefficients is performed by extending the generalization
of the AFT to a p-dimensional frequency domain with a p-dimensional FFT. Hl contains the
contribution of the linear part of (1) and refers to the block diagonal matrix:

Hl =

⎡
⎢⎢⎢⎢⎣

K 0 . . .
0 Λ1 0 . . .

. . . 0 Λk 0

. . . 0 ΛN

⎤
⎥⎥⎥⎥⎦ (20)

with

Λk =

[
K − (k.ω)2 M (k.ω)C

− (k.ω)C K − (k.ω)2 M

]
for k ∈ [1, N] (21)
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4. Condensation procedure

If the considered non-linear system has n degrees of freedom but only q of them are used in
the formula of the non-linear forces f̂ (t, q, q̇), then it is possible to work with a system similar
to (4) but with size q(2m + 1) instead of n(2m + 1). For systems with localized non-linearities,
this kind of condensation is very interesting (Hahn & Chen, 1994; Sinou, 2008). To achieve
this, one has to partition the variables into the p linear ones, denoted ql, and the q non-linear
ones, denoted qnl. This implies later a partition of x̃ into x̃l and x̃nl, reflecting the harmonic
components of linear degrees of freedom and non-linear ones respectively. A relation can
then be established that let us express x̃l as function of x̃nl. First, this relationship is exposed
and used to get the reduced non-linear system to solve. In a second part, the link between
q partition and x̃ partition is detailed in order to get the expressions of the partitioned HBM
elements. The procedure is exposed in the case of a simple Harmonic Balance Method but can
easily be extended to the case of quasi-periodic solutions.

4.1 Working with a smaller system
Once the partition is achieved, (4) can be rewritten[

Hll
l Hlnl

l
Hnll

l Hnlnl
l

]{
x̃l

x̃nl

}
+

{
Ĥl

(x̃nl)

Ĥnl
(x̃nl)

}

−
{

Hl
e

Hnl
e

}
= 0 (22)

The first set of lines provides a relationship between x̃l and x̃nl:

x̃l = Hll
l
−1 [

Hl
e − Hlnl

l x̃nl − Ĥl
(x̃nl)

]
(23)

This expression is used to replace x̃l in the second set of equations, leading to a non-linear
system with size q(2m + 1) depending on x̃nl only:

[
Hnlnl

l − Hnll
l Hll

l
−1

Hlnl
l

]
x̃nl +

(
Ĥ

nl
(x̃nl)− Hnll

l Hll
l
−1

Ĥ
l
(x̃nl)

)
−
(

Hnl
e − Hnll

l Hll
l
−1

Hl
e

)
= 0 (24)

For any solution x̃nl∗ of (24), x̃l∗ is obtained thanks to equation (23).

4.2 Getting the expressions of the partitioned elements
Let us denote R the matrix that reorders the degrees of freedom from the partitioned ones to
the initial ones:

q = R

{
ql

qnl

}
(25)
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Injecting this in (1) and pre-multiplying the equation by RT to reorder the equations, one can
write

[
Mll Mlnl

Mnll Mnlnl

] ¨̂{
ql

qnl

}
+

[
Cll Clnl

Cnll Cnlnl

] ˙̂{
ql

qnl

}

+

[
Kll Klnl

Knll Knlnl

]{
ql

qnl

}

+

⎧⎨
⎩ f̂

l
(t, qnl, ˙qnl)

f̂
nl
(t, qnl, ˙qnl)

⎫⎬
⎭ =

{
f l

e
(t)

f nl
e
(t)

}
(26)

Projecting this set of equations onto the basis (1/
√

2, cos(kωt), sin(kωt))(k=1,...,m), one obtains

a set of equations relative to x̃
′

vector of unknowns while equation (4) is relative to x̃ and
partitioned equation (22) uses x̃

′′
:

x̃ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a0
al

1
b1
...

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, x̃
′
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

al
0

anl
0

al
1

anl
1

bl
1

bnl
1
...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

and x̃
′′
=

{
x̃l

x̃nl

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

al
0

al
1

bl
1
...

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

anl
0

anl
1

bnl
1
...

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(27)

This vector is related to x̃ by
x̃ = (I2m+1 ⊗ R)x̃

′
(28)

where ⊗ denotes the Kronecker product.
The last step consists in linking x̃

′
to the vector x̃

′′
where all the linear unknowns harmonics

are at the top and all the non-linear unknowns are at the bottom:

x̃
′
=

[
I2m+1 ⊗

[
Ip

0q,p

]
, I2m+1 ⊗

[
0p,q

Iq

] ]
x̃
′′

(29)

Finally, partitioned and initial harmonics vectors are linked by a matrix T with the following
expression:

x̃ =

[
I2m+1 ⊗

(
R

[
I p

0q,p

])
, I2m+1 ⊗

(
R

[
0p,q

Iq

]) ]
︸ ︷︷ ︸

T

x̃
′′

(30)
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The partitioned elements of equation (22) are obtained from the initial elements of equation
(4) using [

Hll
l Hlnl

l
Hnll

l Hnlnl
l

]
= TT Hl T (31a)

{
Ĥl

(x̃nl)

Ĥnl
(x̃nl)

}
= TT Ĥ (31b)

{
Hl

e
Hnl

e

}
= TT He (31c)

5. Path following: continuation

It may be useful to track the evolution of the system behaviour as one of its parameter, μ,
varies. For instance in the field of rotating machinery, the behaviour of systems is often
calculated for different operational speeds of interest while all the other parameters are kept
constant. Special algorithms should then be implemented for two main reasons: first, such
methods let us take advantage of the fact that if two values of the parameter are close,
solutions of the non-linear system have good chances to be close from one another too.
Second, following the path in the (x̃, μ) space helps to find coexisting solutions for the same
μ parameter value. This case is illustrated on Fig. 1 which depicts the evolution of maximum
cycle amplitude versus a continuation parameter. This curve can be obtained by studying the
classical Duffing oscillator which has a cubic stiffness, μ being the excitation frequency. The
resonnance peak is bent on the right: this oscillator belongs to the hardening systems. Plus,
there are two points B and E - turning points - at which the path folds, creating a range where
multiple solutions can coexist. Without a proper continuation scheme, one would obtain at
best parts A to B and C to D by looking for solutions with a positive increment in μ or parts D
to E and F to A with a negative one. The B-E part of the curve would be missed in every case.
Continuation algorithms are based on two main steps applied recursively for each point: first
a prediction is done based on the point(s) previously obtained, then a correction step provides
the new point. Different methods exist for these two steps and are exposed in the next
subsections; the third subsection is dedicated to the step length adaptation techniques which
basically control the distance between two consecutive points. The last part summarizes the
steps and gives a global overview of the entire procedure.
The following notations will be used throughout the current section:

• y(i) = (x̃(i), μ(i)): i-th converged point;

• y(i+1,0) = (x̃(i+1,0), μ(i+1,0)): prediction for (i + 1)-th point;

• y(i+1,j) = (x̃(i+1,j), μ(i+1,j)): (i + 1)-th point after j correction steps.

Moreover, to emphasize the dependency of the equation set (4) with the parameter μ, H(x̃)
will be noted H(x̃, μ).
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μ

x̃

A

B

C
D

E

F

Flat path

High curvature
range

Path
folding

Fig. 1. Continuation applied to a typical hardening oscillator

5.1 Prediction methods
To predict a point, one needs a direction and a distance. The usual way to mesure the
distance between two points is to use the following approximation of the curvilinear abscissa
increment:

Δs(i+1) =
√
(x̃(i+1) − x̃(i))T(x̃(i+1) − x̃(i)) + (μ(i+1) − μ(i))2 (32)

The way to optimize this length is discussed in subsection 5.3.
Different methods provide a direction. Among all of them one finds the secant method, the
tangent method and the use of Lagrange polynomials. For most methods, one needs to have
a few points already converged. To obtain these points, different values μ(i), 1 ≤ i ≤ iini are
chosen and usual algorithms are applied to find the corresponding solutions x̃(i). The three
methods exposed are illustrated on Fig. 2.

5.1.1 Secant method

The secant method (Fig. 2 (a)) uses the two previous points (x̃(i−1), μ(i−1)) and (x̃(i), μ(i)) to
predict (x̃(i+1,0), μ(i+1,0)):

(x̃(i+1,0), μ(i+1,0)) = (x̃(i), μ(i)) + Δsi+1
(
(x̃(i), μ(i))− (x̃(i−1), μ(i−1))

)
(33)

It is a very cheap predictor but it does not suit paths with small curvature radii.

5.1.2 Tangent method

This predictor (Fig. 2 (b)) uses only one previous point (x̃(i), μ(i)) to predict (x̃(i+1,0), μ(i+1,0))
but requires the evaluation of derivatives which can have a prohibitive cost. To evaluate the
tangent vector

−→
t = (

−→
tx̃ , tμ) to the curve at point (x̃(i), μ(i)) the following steps can be used.

First, get the −→z vector:

Dx̃ H(x̃(i), μ(i))
−→
tx̃ + Dμ H(x̃(i), μ(i))tμ = 0
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⇔ −→
tx̃ = − Dx̃ H(x̃(i), μ(i))

−1
Dμ H(x̃(i), μ(i))︸ ︷︷ ︸

−→z

tμ (34)

where Dx̃ H(x̃(i), μ(i)) and Dμ H(x̃(i), μ(i)) denotes the derivatives of H with respect to x̃ and
μ variables respectively at point (x̃(i), μ(i)).
Then normalize the tangent vector:

−→
tx̃

T−→tx̃ + t2
μ = 1

⇔ tμ = ±1/
√

1 +−→z T−→z (35)

The sign depends on the direction chosen to depict the curve; the positive direction is usually
used. The next point can finally be predicted using

(x̃(i+1,0), μ(i+1,0)) = (x̃(i), μ(i)) + Δsi+1(
−→
tx̃ , tμ) (36)

5.1.3 Lagrange polynomials
This last predictor uses Lagrange polynomials of degree d to extrapolate the curve defined by
the d + 1 previous points (Fig. 2 (c)). The variable used for this polynomials is the curvilinear
abscissa s. Let us redefine it locally by taking its origin at the last converged point:{

s(i) = 0,
∀k ∈ {1, . . . , d}, s(i−k) = s(i−k+1)− Δs(i−k+1) (37)

where s(i) denotes curvilinear abscissa of point (x̃(i), μ(i))). The Lagrange polynomials define
then the unique polynomial Pd with degree d such that Pd(s(i−k)) = y(i−k), 0 ≤ k ≤ d. A
classical expression of these polynomials is

Pd(s) =
d

∑
k0=0

⎛
⎜⎝ d

∏
k=0
k 
=k0

s − s(i−k)

s(i−k0) − s(i−k)

⎞
⎟⎠ y(i−k0) (38)

(a) Secant predictor (b) Tangent predictor (c) Lagrange polynomials

y(i)

y(i)

y(i)

y(i−1)

y(i−1)
y(i−2)

y(i+1,0)

y(i+1,0) y(i+1,0)

μ μμ

x̃ x̃x̃

Fig. 2. Predictors illustration
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The predicted point whose curvilinear abscissa is 0 + Δs(i+1) is finally evaluated using

(x̃(i+1,0), μ(i+1,0)) = Pd(Δs(i+1)) (39)

Orders d greater than 2 or 3 are usually avoided because they require more operations and
draw oscillating paths.

5.2 Correction methods
The aim of the correction step is to move from the predicted point that usually does not satisfy
H(x̃(i+1,0), μ(i+1,0)) = 0 towards y(i+1) = (x̃(i+1), μ(i+1)) that does. This is done recursively
by writing

(x̃(i+1,j+1), μ(i+1,j+1)) = (x̃(i+1,j) + Δx̃, μ(i+1,j) + Δμ) (40a)

H(x̃(i+1,j+1), μ(i+1,j+1)) ≈ H(x̃(i+1,j), μ(i+1,j))

+Dx̃ H(x̃(i+1,j), μ(i+1,j))Δx̃
+DμH(x̃(i+1,j), μ(i+1,j))Δμ

(40b)

The second equation linearizes the problem around y(i+1,j) to get a linear approximation that
algorithms can solve to get corrections Δx̃ and Δμ:

Dx̃ H(x̃(i+1,j), μ(i+1,j))Δx̃ + Dμ H(x̃(i+1,j), μ(i+1,j))Δμ = −H(x̃(i+1,j), μ(i+1,j)) (41)

This provides n(2m + 1) scalar equations but there are n(2m + 1) + 1 unknowns to determine
(the additional unknown being Δμ). To get a square system, one has to add an equation. The
name of the corrector depends on this equation.
Moreover, one usually limits the number of correction steps allowed to move from the
predicted point towards a converged one; if this number jmax is reached, the correction process
is aborted and a new prediction, closer to the previous one is made.

5.2.1 Constant continuation parameter
The easiest equation to add is

∀j ≥ 1, μ(i+1,j) = μ(i+1,0) (42)

That is, the continuation parameter is kept constant and equal to the predicted value. This
very simple additional constraint does not suits folding paths: using such a corrector, the path
portion between the two turning points on Fig. 1 would be missed.

5.2.2 Arc length constraint
This method adds a distance condition between the corrected point and the previous
converged point:

∀j ≥ 1, ||x̃(i+1,j+1)− x̃(i)||2 + |μ(i+1,j+1)− μ(i)|2 = (Δs(i+1))2 (43)

As illustrated on Fig. 3 (a), it forces the successive point y(i+1,j) to lie on the (hyper)sphere

with center y(i) and radius Δs(i+1).
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This constraint being quadratic, it is not verified exactly and it is in fact the tangent system
that is used to complete (41):

2Δx̃T(x̃(i+1,j) − x̃(i)) + 2Δμ(μ(i+1,j)− μ(i)) =

(Δs(i+1))2 −
(
||x̃(i+1,j) − x̃(i)||2 + |μ(i+1,j)− μ(i)|2

)
(44)

5.2.3 Pseudo arc length constraint

This method adds an orthogonality condition between the prediction vector y(i+1,0)− y(i) and
the corrected points as depicted on Fig. 3 (b):

∀j ≥ 1, (x̃(i+1,0) − x̃(i+1,j+1))T(x̃(i+1,0) − x̃(i))

+ (μ(i+1,0)− μ(i+1,j+1))(μ(i+1,0) − μ(i)) = 0 (45)

In terms of Δx̃ and Δμ it gives the exact linear condition:

∀j ≥ 1, Δx̃T(x̃(i+1,0) − x̃(i)) + Δμ(μ(i+1,0)− μ(i)) = 0 (46)

5.2.4 Moore-Penrose pseudo-inverse
A last way to add a constraint is to use the Moore-Penrose pseudo-inverse matrix. This
matrix provides a way to solve underconstrained systems Ax = b where A has less rows
than columns. The pseudo-inverse matrix of this system is

A+ = AT(AAT)−1. (47)

In fact, no explicit extra condition is added but it adds implicitely an orthogonality condition
with the kernel of matrix A; this is illustrated in Fig. 3 (c) where

−→
kj are representative of the

kernel for the j-th correction step.
In the case of the studied system (41),

A =
[

Dx̃ H(x̃(i+1,j), μ(i+1,j)), Dμ H(x̃(i+1,j), μ(i+1,j))
]

. (48)

(a) Arc length (b) Pseudo arc length (c) Moore-Penrose pseudo-inverse

y(i)y(i) y(i)

y(i+1,0)y(i+1,0)
y(i+1,0)

y(i+1,1)
y(i+1,1)

y(i+1,1)

y(i+1,j)y(i+1,j)
y(i+1,j)

μμ μ

x̃x̃ x̃

C
D

D1
D2

−→
k1

−→
k2

Fig. 3. Correctors illustration
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5.3 Step length adaptation
As mentionned in subsection 5.1, a prediction distance has to be decided. Using a constant
distance does not suit paths with regions of different curvature. Within a region of low
curvature (“Flat path” on Fig. 1), the distance can be great because x̃ does not vary a lot
with μ; on the contrary, it is more efficient to make small steps in regions with high curvature
(“High curvature range” on Fig. 1) in order to avoid a lot of correction steps.
The step length Δs(i) is adapted in two cases: if the correction procedure did not converge
towards a point on the path or everytime a point is obtained. Different methods can be used
to determine the step length correction (Allgower & Georg, 2003). One of the cheapest but still
efficient is to monitor the number of correction steps j used to get y(i+1):

• if j = jmax, a new prediction is made with a smaller step length;

• if j ≤ j1, the correction process converged very quickly and Δs(i+1) can be increased;

• if j2 ≤ j < jmax, the correction process converged slowly and a smaller step length is used
for the next prediction;

• if j1 < j ≤ j2, step length is left unchanged for the next prediction .

The ratios used to increase or decrease Δs(i+1) are arbitrary, as j1, j2 and jmax values. A typical
set of values would be j1 = 2, j2 = 10, jmax = 15 and divide Δs(i+1) by 2 to decrease it or
multiply it by 2 to increase it.

5.4 Sum up
Fig. 4 summarizes the different steps of a continuation algorithm. Besides the choice of
the prediction and correction methods, a few parameters have to be chosen: initial step
length Δs(1), maximum number of correction iterations jmax, as well as parameters j1 and
j2 mentionned in section 5.3 that drive the recast of the step length. Note that the proposed
convergence criterion can be slightly different. Anyhow a convergence criterion requires the
choice of an ε value.
Finally, one needs to add a criterion for stopping the algorithm: usually a range of interest
for μ is known and the algorithm is stopped as soon as a point outside this range is obtained.
This is then checked each time a new point is found.

6. Conclusion

This chapter aims to provide a comprehensive overview of the basic theory of the harmonic
balance methods and continuation for non-linear periodic and quasi-periodic vibrations
in mechanical systems. In the past decades, these approaches have been at the focus of
attention of many researchers in order to obtain very efficient tools of great importance for
mechanical engineering communities. This is why, in recent years, various developments
of the harmonic balance techniques have been extensively published not only to estimate
the non-linear vibration of mechanical systems but also to better assess and understand
some specific non-linear behaviors in mechanical systems. Moreover, the need to be able to
propose more practical and commonly implemented techniques in the early stage in complex
mechanical structures has led to the increase of the harmonic balance methods and new
developments. Giving an exhaustive list of illustrative examples and applications showing
efficiency and robustness of the harmonic balance methodology is not possible. However,
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Initialization:
y(0) = (x̃(0), μ(0)), Δs(1), i ← 0

�
Prediction:
y(i+1,0) = (x̃(i+1,0), μ(i+1,0))

j ← 0

�
||H(x̃(i+1,j), μ(i+1,j))|| < ε ?�

True

�
Steplength adaptation: Δs(i+1)

New point:

y(i+1) = (x̃(i+1), μ(i+1))

i ← i + 1

�

False

�
j < jmax ?

�

True

Correction:
y(i+1,j+1) = (x̃(i+1,j+1), μ(i+1,j+1))

�

j ← j + 1

�

False

Fig. 4. General algorithm of a continuation procedure

for the interested reader, some non-exhaustive studies that have been previously published
by the authors, can be found in practical cases of mechanical applications, aeronautics and
car manufacturers communities, rotating machinery or structural health monitoring such as:
the non-linear periodic vibration of a flexible rotor supported by ball bearings (Sinou, 2009;
Villa et al., 2008), multi-dimensional harmonic balance applied to rotor dynamics (Guskov
et al., 2008), the steady-state responses of autonomous mechanical systems with frictional
interfaces for single or multiple input frequencies linked to unstable modes (Coudeyras,
Nacivet & Sinou, 2009; Coudeyras, Sinou & Nacivet, 2009), damage detection in mechanical
systems from changes in the measurement of non-linear vibrations (Sinou, 2007; 2008; Sinou
& Lees, 2005; 2007), periodic non-linear response of blisks with friction ring dampers (Laxalde
et al., 2007), periodic non-linear vibration for bolted structures (Jaumouillé et al., 2010), use
of the Harmonic Balance Method to realize a global analysis of the dynamical behaviour of a
simplified rotor supported by a squeeze-film damper (Sarrouy & Thouverez, 2010).
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7. Nomenclature

q displacement vector
q̇ velocity vector
q̈ acceleration vector
M mass matrix
K stiffness matrix
C damping matrix (including gyroscopic effects if any)
f

e
(t) vector of external forces

f̂ (t, q, q̇) vector of non-linear forces
m order of the Fourier series
ak Fourier coefficients of the cosine function for the kth order
bk Fourier coefficients of the sine function for the kth order
ql p linear degrees of freedom of the system
qnl q non-linear degrees of freedom of the system
A ⊗ B Kronecker product of matrices A and B
Dx̃ H(x̃, μ) Derivatives of H function with respect to x̃ at point (x̃, μ):[

Dx̃ H(x̃, μ)
]

ij =
∂Hi
∂x̃j

(x̃, μ)

Dμ H(x̃, μ) Derivatives of H function with respect to μ at point (x̃, μ):{
Dμ H(x̃, μ)

}
i =

∂Hi
∂μ (x̃, μ)

xT vector or matrix transposition
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1. Introduction 
Voice is invaluable for our livelihood, as it takes place in humans everyday lives, like 
talking, laughing, crying, singing, screaming, shouting etc. Over the past 200 000 years, 
humans use the lung, larynx, tongue, and lips, to produce and modify the highly intricate 
arrays of voice (Titze, 2006) for realizing verbal communication and emotional expression. 
Among the participating tissues, the vocal folds within the human larynx have evolved to be 
a key organ in the creation of human voice. Their vibrations serve as origin of the primary 
voice signal. The process of voice production is called phonation (Titze, 2006), and is the 
preliminary stage for speech. 
In our knowledge-based societies, communication skills have become more and more 
important. Communication disorders became a socio economic factor: A study in the year 
2000 estimated losses within the Gross National Product of the USA being up to $186 billion 
annually (Ruben, 2000), on the basis that approx. 10% of the entire population suffers from 
communication disturbances. To increase the quality of life of the people concerned on one 
hand and to keep the economic costs under control on the other, appropriate technologies 
have to be developed to disclose all factors conducive to communication disorders. Also, 
analysis methods have to be applied to objectively quantify grades of disease, document 
therapy, and to guide surgical interventions. A high number of communication disorders 
are due to a disturbance in voice, i.e. disturbed vocal fold vibrations. 
Examination of vocal fold vibrations (100 Hz – 300 Hz) and the acoustic signal are the basic 
components of clinical voice assessment. It is widely held that vocal fold vibration 
irregularities lead to an impairment of the voice signal. Irregularities being present in vocal 
fold vibrations during sound production can be determined by direct (i.e. endoscopic 
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laryngeal imaging) or indirect (i.e. acoustic and aerodynamic) assessment techniques. 
However, detailed quantitative knowledge about interrelations between acoustic signal and 
vibrations of the voice generator is still in its infancies. 
Currently, videostroboscopy is a commonly used clinical laryngeal imaging tool to 
investigate the vocal fold vibratory dynamics. However, videostroboscopy is just suitable 
for periodic vocal fold vibrations since the image sensor captures only one frame per 
oscillation cycle and thus does not fulfil the Nyquist sampling theorem (Kendall et al., 2005; 
Svec et al., 2008). Hence, videostroboscopy has severe limitations when it comes to 
investigating pathological voices which frequently exhibit non-periodic vibrations. State-of-
the-art technology in investigating of vocal fold vibrations is high-speed digital imaging 
(HSI). Current systems are equipped with a 2D image sensor delivering images at frame 
rates up to 2,000-8,000 fps, which can capture the vibration patterns of vocal folds at their 
usual frequencies of up to 300 Hz along the entire visible glottal length (Schade & Mueller, 
2005; Hertegard, 2005; Bonilha & Deliyski, 2008; Deliyski, et al., 2008). Thus, HSI allows 
visualizing regular and irregular vibration patterns which are found in normal and 
pathological voices (Kendall et al., 2005; Doellinger, 2009), Fig. 1. 
 

 
Fig. 1. Schematic representation of performing endoscopic high-speed recordings. Left, the 
recording situation including camera and endoscope are shown. On the left, the recorded 
area (vocal folds and opening and closing glottis) can be seen. 

Even though high-speed videos deliver a novel insight into laryngeal vibrations, the 
investigation of vocal fold vibrations demands a sophisticated quantitative analysis of the 
video data (Doellinger, 2009). To reach this objective, different approaches have been 
developed to analyze vocal fold vibrations (Doellinger, 2009). Commonly, from the 
endoscopic HSI data the time varying opening between the vocal folds (i.e. glottis) is 
analyzed or trajectories are extracted at specific positions of the vocal folds (Braunschweig et 
al., 2008). To quantify the obtained motion data, several measures have been introduced 
describing the symmetry and regularity of vocal fold vibrations (Qiu et al., 2003, Yan et al., 
2005). Instabilities of fundamental frequencies, amplitude and phase asymmetries as well as 
regularity parameters were detected in pathological voices (Bonilha & Deliyski, 2008). Other 
approaches automatically adapt biomechanical models to vocal fold vibrations extracted 
from HSI videos applying parameter optimization strategies (Doellinger et al., 2002; 
Doellinger et al. 2003; Tokuda et al., 2007, Yang et al., 2010). These obtained parameters 
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represent the degree of laryngeal asymmetry and vibration stability (Schwarz et al., 2008; 
Wurzbacher et al., 2006; Wurzbacher et al., 2008). However, up to the present there is still no 
established feature extraction strategy describing the entire vibration patterns of vocal fold 
dynamics adequately. 
Recently, the novel Phonovibrogram (PVG) approach was suggested to quantify the entire 
visible vocal fold vibrations (Lohscheller et al., 2007; Lohscheller et al., 2008a) expanding 
formerly introduced spatio-temporal plots (Westphal & Childers, 1983; Neubauer et al., 
2001). In the PVG approach, contours of the oscillating vocal folds are segmented from 
video data and are transformed into a single colour coded PVG image. Depending on the 
underlying vocal fold vibrations, characteristic geometric patterns occur within a PVG 
which can be used for further clinical interpretation (Lohscheller & Eysholdt, 2008). PVG 
images can be regarded as fingerprints of vocal fold vibrations, enabling intuitional 
assessment of vocal fold vibrations (Eysholdt & Lohscheller, 2008). PVG analysis 
demonstrates that the complex two-dimensional vibratory patterns of vocal folds can 
robustly be described (Eysholdt & Lohscheller, 2008). It further establishes an objective basis 
for novel automatic analysis and classification approaches (Doellinger et al., 2009; 
Lohscheller et al. 2008b, Kunduk et al. 2010).  
Within this work we propose a novel approach to achieve a fully automatic analysis of PVG 
images for detecting even slight alterations within underlying vocal fold vibrations: After 
segmenting the vocal fold vibrations from HSI and computing the appropriate PVG image 
matrix a set of novel PVG features will be introduced which describe the main 
characteristics of vocal fold dynamics. For investigating the sensitivity of the proposed PVG 
analysis approach the following physiological conditions were considered: 
Vocal fold vibrations show individual patterns for each subject and can thus be highly 
variable between different patients. However, during voice production for a single subject 
the vocal fold vibrations show at specific voice intensity and fundamental frequency a 
reproducible dynamical behaviour. Within a subject, alterations of the fundamental 
frequency and/or intensity result into slight changes within vocal fold vibrations (Rovirosa 
et al., 2008). To obtain clinically relevant information about the physiology of a subject’s 
voice the changes of vocal fold vibrations need to be traced. Accordingly, a computerized 
analysis procedure has to be sensitive enough to capture the individual changes within a 
subject. Hence, the validation of sensitivity of a computerized analysis approach needs to be 
performed within one single subject as changes of vocal fold vibrations between different 
subjects are not comparable. 
According to the fulfilments above the sensitivity of PVG analysis was investigated by 
applying the PVG approach extensively to data sets obtained from a single healthy female 
subject. For data acquisition the subject was instructed to phonate at nine specified 
combinations of fundamental frequencies (low, normal, and high) and voice intensities (soft, 
normal, and loud). For each of these nine phonatory tasks twelve different high-speed 
sequences were obtained. Totally, 108 HSI sequences from this single subject could be 
processed. To obtain reliable results it is further of great importance to examine a healthy 
subject with no signs of voice disorders. Only for a single healthy subject it can be 
assumed that during the repeated examinations of a phonatory task the vocal fold 
vibrations are reproducible and do not change. Hence, the presence of pathologically 
caused and thus arbitrarily induced alterations of vocal fold vibrations can be excluded 
between recordings.  
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For further validation, simultaneously to the video data the emitted acoustic signal was 
recorded. From the acoustic data clinically used acoustic quality measures like Jitter, 
Shimmer, HNR, and SNR (Murphy, 1999; Zhang & Jiang, 2008) were computed allowing 
indirect conclusions about the vibrational behavior of vocal folds.  
The results of this work will show that using PVG features in combination with a Support 
Vector Machine (SVM) even minor changes of vocal fold vibrations - caused by frequency 
and intensity alterations - can be highly robustly detected. Comparing the classification 
results gained by PVG features with results obtained from conventionally applied glottal as 
well as acoustic features will show the superiority of the novel PVG analysis approach. 

2. Methods 
2.1 Data collection 
The KAY Elemetrics, High–Speed Digital Video System, Model 97, was used for data 
collection. Recordings were performed at a 2,000 fps rate by using a specially designed, 
multi-port, super sensitive camera for eight seconds of recording. Gray scaled images were 
captured at 384Mb/sec into high-speed video RAM with a spatial resolution of 128 x 256 
pixels. Images were obtained with a rigid 70° endoscope (KAY Elemetrics, 9106) with a 300-
watt-coldlight source (Olympus CLV-U20). The rigid laryngoscope was coupled to the high-
speed digital camera head and endoscopy was performed as in conventional 
videostroboscopy. A microphone was placed 15 cm from the lips to obtain the acoustic 
signal. This signal was fed through the KAY Elemetrics System for simultaneous recording 
of the endoscopic and acoustic signals (50 KHz). KAY Elemetrics, Rhino-Laryngeal 
Stroboscope (RLS 9100 B) and its microphone was used to determine Fo and the volume of 
the voice signal. The visual display on the system directed the subject for the maintenance 
and consistency of the desired Fo and volume for each phonatory task. 

2.2 Subject and phonatory tasks 
One female subject’s voice was recorded with HSI for this study. The subject was non 
smoker and had no known history of neurological disease, laryngeal surgery, prior/or 
existing laryngeal disorders, voice problems at the time of data collection nor observed 
neither reported speech/language impairment. The HSI and acoustic recordings were 
simultaneously acquired while the subject was producing the vowel /i/ at the following 
fundamental frequency (F0) / intensity (I) combinations: 
• low F0 (F1) at soft (I1), normal (I2), and high (I3) intensity, 
• normal F0 (F2) at soft (I1), normal (I2), and high (I3) intensity, 
• high F0 (F3) at soft (I1), normal (I2), and high (I3) intensity, 
resulting in 9 different phonatory tasks. For all F0/I combinations four phonation trails were 
performed. Within each recorded trail three different intervals of phonation were present. 
Each interval contained a voice onset followed by sustained phonation of at least one second 
being divided by short periods of silence. Hence, for each F0/I combination 12 phonation 
sequences were available. For later analysis purposes the following class system is 
introduced (F  Frequency, I Intensity): 
3 Frequency classes  

 CF1:={F1I1, F1I2, F1I3}; CF2:={F2I1, F2I2, F2I3}; CF3:={F3I1, F3I2, F3I3}. (1) 
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3 Intensity classes  

 CI1:={F1I1, F2I1, F3I1}; CI2:={F1I2, F2I2, F3I2}; CI3:={F1I3, F2I3, F3I3}. (2) 

9 Combined Frequency/Intensity classes 

 
{ } { } { }
{ } { } { }
{ } { } { }

CS1 : F1I1 ;  CS2 : F1I2 ;  CS3 : F1I3 ;
CS4 : F2I1 ;  CS5 : F2I2 ;  CS6 : F2I3 ;
CS7 : F3I1 ;  CS8 : F3I2 ;  CS9 : F3I3 .

= = =

= = =

= = =

 (3) 

2.3 Selection of sequences 
Within the acoustic signals the intervals of sustained phonation were identified by visual 
inspection. Within each interval a time section of 1 second was selected. The identical 
section was analyzed in high speed video data. The sequence length of one second time (> 
150 glottal cycles) was in accordance with previous studies who suggested approx. 130 - 190 
cycles (Karnell, 1991). Thus, altogether 108 pairs of high-speed and acoustic data sets were 
available (Tab. 1), reflecting isochronal information about vibratory characteristics of the 
voice generator (high-speed data) and the acoustic outcome (voice signal). Only in four 
cases the video data could not be further processed due to low image quality. To ensure, 
that possible occurring differences between recordings were only induced by the different 
phonation task, the recordings were performed within a day. As far as we know these data 
represent the most exhaustive examination of a single subject’s vocal fold dynamics using 
HSI. 
 

Intensity/F0 Low(F1) Normal(F2) High(F3) CI1-CI3 
Soft(I1) 4(12) 4(12) 4(12) 12(36) 
Normal(I2) 4(9) 4(11) 4(12) 12(32) 
Loud(I3) 4(12) 4(12) 4(12) 12(36) 
CF1-CF3 12(33) 12(35) 12(36) 36(104) 

Table 1. Applied Data. Overview of the performed 36 recordings which equals 108 
sequences. From these sequences 104 could be analysed for acoustic and dynamical data. 

2.4 PVG parameters describing vocal fold dynamics  
2.4.1 Image processing  
The vibrating edges of both vocal folds were extracted alongside their entire glottal length to 
analyze the laryngeal vibrations during phonation (Lohscheller et al., 2007). Information at 
each specific position of vocal folds is required to obtain detailed information about the 
vibration characteristics at dorsal, medial and ventral parts of vocal folds. For this purpose 
an extensively evaluated image segmentation procedure was applied (Lohscheller et al., 
2007). The procedure delivers the left/right vocal fold edge contours cL/R(t), the glottal area 
a(t), the location of anterior/posterior glottal ending A(t) and P(t) as well as the glottal main 
axis l(t). A typical result of a segmented high-speed image is shown in Fig. 2.  
Since the segmentation accuracy highly affects the following analysis, the quality of the 
results was visually monitored. For this purpose, within a movie viewer the segmented 
vocal fold contours were displayed. Further, for identifying potential faulty segmented 
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images (outliers) the glottal area a(t) was displayed within a diagram, see Fig. 2. Thus, in 
case of imprecise results, a re-segmentation of the high speed videos could be performed. 
 

 
Fig. 2. Glottal area function. Left: Segmented image of a high-speed video. The extracted 
vocal fold edges are superimposed and are used to verify visually the accuracy of the 
segmentation results. Right: The glottal area waveform a(t) is monitored to detect faulty 
segmented images within a segmented video sequence. 

In this study, the image processing procedure was applied only when the glottal length was 
fully visible during one second. From all 108 data sets 104 sequences each containing 2,000 
consecutive images were successfully processed resulting in 208,000 segmented images. In 
all cases satisfactory segmentation accuracy were obtained, which are comparable to the 
example shown in Fig. 3. 

2.4.2 Generation of phonovibrograms 
For visualizing the entire vibration characteristics of both vocal folds the Phonovibrogram 
(PVG) was applied which was described in detail before (Lohscheller et al., 2008a). The 
principles of PVG computation are shortly summarized in Fig. 3. For each image of a high-
speed video, the segmented glottal axis is longitudinally split and the left vocal fold contour 
is turned 180° around the posterior end. Following, the distances dL,R(y,t) between the glottal 
axis and the vocal fold contours are computed; y ∈  [1,…,Y] with Y=256 denotes the spatial 
sampling of glottal axis. The distance values are stored as column entries of a vector and 
become color coded. The distance magnitudes are represented by the pixel intensities and 
two different colors. If vocal fold edges cross the glottal axis during an oscillation cycle the 
pixel is encoded by the color blue, otherwise the color red was used to indicate the distance 
from the glottal axis. A grayscale representation (black: vocal fold edges are at the glottal 
midline, white vocal fold edges have a distance to the glottal midline) of the originally 
colored PVG is given in Fig. 3. The entire vibration characteristics of both vocal folds are 
captured within one single PVG image by iterating the described procedure for an entire 
sequence and consecutively arranging the obtained vectors to a two-dimensional matrix. 
The left vocal fold is represented in the upper and the right vocal fold in the lower 
horizontal plane of the PVG, respectively. The PVG enables at the same time an assessment 
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of the individual vibration characteristics for each vocal fold and gives evidence about 
left/right and posterior/anterior vibration asymmetries as well as predications about the 
temporal stability of the vibration pattern. 
 

 
Fig. 3. PVG generation. 1) Segmentation of HS video. 2) Transformation of extracted vocal 
fold contours and computation of the distance values dL,R(y,t) which represent the distances 
from the vocal fold edges to the glottal midline. 3) Color coding of distance values for an 
entire high-speed video result into a PVG image comprising the entire vibration dynamics 
of both vocal folds in a single image (PVG is shown as grayscale image). 

2.4.3 Analysis of vocal fold vibrations 
PVG pre-processing: Phonovibrograms obtained from high speed sequences contain 
multiple reoccurring geometric patterns representing consecutive oscillation cycles of vocal 
folds. In order to describe the vibratory characteristics of vocal folds objectively, the 104 
PVGs were pre-processed as follows: Firstly, for the left and right vocal fold unilateral PVGs 
are computed, denoted as uPVGL/R which are in the following regarded as two-dimensional 
functions vL(k,y) and vR(k,y) with k∈ {1,…,K} and K=2,000 representing the number of frames 
within a sequence. From the unilateral PVGs the Glottovibrogram (GVG) is derived vG(k,y)= 
vL(k,y) + vR(k,y) which represents the glottal width (distances between the vocal folds) at 
each vocal fold position y over time, Fig. 4. In a subsequent step, the uPVGs and the GVG are 
automatically subdivided into a set of single PVG/GVG cycles, Fig. 4 right. A frequency 
analysis and peak picking strategy in the image domain is performed for the cycle 
identification (Lohscheller et al., 2008a). 
Finally, the obtained single cycle PVGs are normalized to a constant width and height which 
are denoted sPVGLi, sPVGRi, sGVGi, with i∈ {1,…,IL,R,G} and IL,R,G  representing the number of 
cycles within the corresponding Phonovibrogram. Hence, vocal fold vibrations can be 
described by a set of the three functions 

 ( , ) :L L
i id t y sPVG= , ( , ) :R R

i id t y sPVG= , ( , ) :i ig t y sGVG=  (4) 

with t∈ {1,…,T} where T=256 represents the normalized cycle length. In the following, the 
index α:={L,R}  is introduced to distinguish the functions dαi(t,y)  representing the left and 
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right vocal fold. Both, the unilateral as well as the normalized PVGs form the basis for the 
following analysis to obtain detailed information about vocal fold dynamics. 
 

 
Fig. 4. Pre-Processing. From a raw PVG (left) so-called unilateral PVGs are computed 
(middle) which are further subdivided into a set of normalized single cycle PVGs (right). 
Extraction of symmetry features: In order to describe the overall behavior of vocal fold 
dynamics the PVGs are analyzed as follows. At each glottal position y the 1D-power 
spectrum  

 ( , ) : | { ( , )}|f y FFT v k y yα α= ∀P  (5) 

is calculated by Fast Fourier Transform algorithm (FFT). Due to settings, corresponding 
frequency resolution of the spectral components were 1 Hz. Fundamental frequencies 0

αf  are 
estimated by identifying the maxima within the discrete power spectra 

 0 : arg max ( , ) .
f

P f y yα α= ∀f  (6) 

By defining the feature vector 

 0

0
: ( ) :

L

Ry yθ= = ∀
fθ
f

 (7) 

frequency differences between the left and right vocal fold as well as differences alongside 
the glottal axis are captured. If lateral (i.e. left/right) fundamental frequencies are identical 
the feature vector  

 0 0: ( ) : { ( , )} { ( , )}L L R Ry y y yυ ϕ ϕ= = − ∀υ P f P f  (8) 

describes the phase delays between the left and right vocal fold. 
The left/right vibration asymmetry is further described by introducing the mean relative 
amplitude ratios ( )a y  which are computed as follows. Within the sPVGL,R the points in time  

 max
, : arg max ( , ) , ,iy i

t
d t y y iα α α= ∀T  (9) 



Support Vector Machine Classification of Vocal Fold Vibrations Based on Phonovibrogram Features   

 

443 

along the vocal fold length are identified when the maximum vocal fold deflections occur. 
By identifying the time points of minimal vocal fold deflection  

 min
, : arg min ( , ) , ,iy i

t
d t y y iα α α= ∀T  (10) 

the relative peak-to-peak amplitudes  

 max min
, , ,: ( , ) ( , ) , ,y i i iy i y id y d y y iα αα α α α= − ∀Α T T  (11) 

can be defined which are independent from the absolute position of the glottal axis. The 
mean relative amplitude ratios 

 ,

,
: ( )

L
y i
R
y i

a y y
⎛ ⎞
⎜ ⎟= = ∀
⎜ ⎟
⎝ ⎠

A
a

A
 (12) 

and corresponding standard deviations a:=a(y) serve as features to describe left/right 
asymmetries as well as the stability of vibrations at each position of the vocal folds. The 
obtained parameters are merged to the symmetry feature vector s (Eqs. (7),(8),(12)): 

 : [ , , , ].= as θ υ a σ  (13) 

Extraction of glottal features g: In order to capture characteristics of the glottal dynamics 
within the oscillation cycles, the following parameters are extracted from the normalized 
GVG matrices gi(t,y). Firstly, the maximum glottal area of each oscillation cycle i is 
determined as 

 
1

max ( , ) , .
Y

i i
t y

g t y t i
=

= ∀∑ρ  (14) 

The feature 

 ( )iVarρσ = ρ  (15) 

describes the stability of the glottal vibratory cycles over time. Subsequently, the open 
quotients OQy,i  are defined for each glottal position i as duration of open phase divided by 
duration of complete glottal cycle and are computed as 

 , ˆ ( , ) / , ;y i i
t

g t y T y i
⎛ ⎞

= ∀⎜ ⎟
⎝ ⎠
∑OQ   (16) 

with  

 
1 ( , ) 0 .ˆ
0 .

i
i

g t y t
g

otherwise
> ∀⎧

= ⎨
⎩

 (17) 

The mean values  
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 ,
1 I

y i
i

y
I

= ∀∑oq OQ  (18) 

and standard deviations 

 ,( )oq y iVar y= ∀σ OQ  (19) 

are used as features describing the stability of the glottal opening behavior at each position 
alongside the glottal axis (Var symbolizes the variance). Analogously, the mean speed 
quotients sq  and the corresponding standard deviations sq are computed describing the 
mean glottal vibratory shape and its stability over time (Jiang et al., 1998).  
Finally, the glottal closure insufficiencies 

 

ˆmin ( , )
, .

Y

i
t y

i

h t y
t i

Y
= ∀

∑
gci  (20) 

are derived using  

 
1 ( , ) 0 .ˆ
0 .

i
i

g t y y
h

otherwise
> ∀⎧

= ⎨
⎩

 (21) 

which are identifiable for each oscillation cycle i. The supplemental features gci  and 
gciσ describe the mean glottal closure insufficiency and its stability for the entire high-speed 

sequence. The glottal parameters are merged to the glottal feature vector (Eqs. (15),(18),(19)): 

 : [ , , , , , , ].oq sq gcigci σρσ=g oq σ sq σ  (22) 

Extraction of geometric PVG feature ω: Besides the conventional symmetry and glottal 
parameters we propose a novel way for describing vocal fold vibrations by quantifying the 
geometric structure within sPVGα images. The main vibration characteristics of a vocal fold 
can be described by extracting representative contour lines from the sPVGα images. This is 
done by determining the oscillatory states n during the opening ( max

,y it α< T ) and closing 
( max

,y it α> T ) phases where vocal folds reach a certain percentage of relative deflection  

 ,, : , [0,100].
100

n
y iy i

n nα α= ∈Α Α  (23) 

Hence, the set of vectors 

 max
, ,: arg( ( , ) ), with , , .n n

iy i y i i
x

d x y t y iα α αα α= = < ∀O Α t  (24) 

 max
, ,: arg( ( , ) ), with , , .n n

iy i y i i
x

d x y t y iα α αα α= = > ∀C Α t  (25) 

describe temporal and spatial propagation of each vocal fold at different oscillation states 
during glottal opening ,

n
y i
αO  and closing ,

n
y i
αC . In order to get a comprehensive 
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understanding of the entire vibration cycle, multiple contour lines are extracted at different 
oscillation states. Fig. 5 shows exemplarily extracted contour lines at n=(30,60,90) for the left 
and right vocal fold during a single oscillation cycle.  
The functional characteristics 

 , ,: ( , ) : ( , ) , ,nn
ii

n n
i iy i y id t y d t y y iαα

α αα α α= = ∀
co

ΡO ΡC  (26) 

of sPVGα  at positions ,
n

y i
αO  and ,

n
y i
αC  of the contour lines give precise information on actual 

deflection of the vocal folds. As features which describe the average vibratory pattern of 
vocal folds, the means for the contour lines n=(30,60,90), the deflection characteristics and 
their time indices 

 
n
iy

α
,O , ,

n
y i
αPO  ,

 
n
iy

α
,C , ,

n
y i
αPC , (27) 

are computed for all cycles i. The vibration stability is captured by the corresponding 
standard deviations 

 ,( )n
y i
ασ O , ,( )n

y i
ασ ΡO , ,( )n

y i
ασ C  , ,( )n

y i
ασ ΡC . (28) 

The Euclidian-Norm 2 between the mean positions of the contour lines 

 
nN nR

iy
nL
iy

n
CO ∀−=

2
,,, OO

 
(29) 

describes deviations between the mean left and right vocal fold vibration patterns. Finally, 
all parameters (Eqs. (27),(28),(29)) are merged to the PVG feature vector 

 ,, , , , , , , ,: [ , , , , ( ), ( ), ( ), ( ), ].n n n n n n n n n
O Cy i y i y i y i y i y i y i y i Nα α α α α α α α=ω O PO C PC σ O σ PO σ C σ PC  (30) 

The entire vocal fold dynamics extracted from one high speed sequence can be described by 
merging the introduced features for left-right symmetry, glottal and PVG characteristics 
(Eqs. (13),(22),(30)) to the feature vector  

 ].,,[: ωgsβ =  (31) 

The feature vector β represents vocal fold dynamics at each position y along the glottal axis 
with y∈ {1,…,Y}. In order to reduce the dimensionality of the parameter space for further 
analysis, the feature vector is reduced to y∈ {1,…,12} by computing average values. Hence, 
for an effective vocal fold length of 1 cm the feature vector represents the average oscillation 
dynamics within 0.9 mm sections of the vocal length which constitutes sufficient accuracy.  
Acoustic voice quality measures: For the nine frequency/intensity phonatory tasks also 
the acoustic voice signals were analyzed. The selected acoustic sequences correspond to 
the time intervals of the analyzed video data. From the selected intervals 10 voice quality 
measures were derived using Dr.Speech-Tiger-Electronics/Voice-Assessment-3.2 software 
(www.drspeech.com). The computed parameters describe temporal voice properties as cycle 
duration stability (Jitter, STD F0, STD Period, F0 tremor), amplitude stability (Shimmer, STD 
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Ampl., Amp. Tremor), harmonic to noise ratio (HNR), signal to noise ratio (SNR), and 
normalized noise energy (NNE). The nine different frequency/intensity classes are given by 
the measured sound pressure level (SPL[dB]) and mean fundamental frequency (Mean 
F0[Hz]), Tab. 2. 
 

 
Fig. 5. The contour lines O (opening phase) and C (closing phase) describe the main 
characteristics of sPVGα geometry. The contours represent the spatio-temporal positions of 
vocal fold edges at the oscillation states n=(30,60,90) for the left and right vocal fold. The n 
value corresponds to the percentage of open and closed positions. 

 
 CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 CS9 
No.Sequ. 12 9 12 12 11 12 12 12 12 
SPL(dB) 59,0 

±0,8 
63,3 
±0,5 

72,5 
±1,7 

58 
±0 

63 
±0 

75 
±0 

58,3 
±0,5 

64,3 
±1,4 

71 
±0,9 

Mean F0 
(Hz) 

153 
±3 

160 
±4 

201 
±2 

182 
±4 

193 
±4 

231 
±8 

318 
±5 

328 
±8 

328 
±5 

Table 2. Mean values and standard deviations for the different fundamental frequencies 
[mean F0] and voice intensities [sound pressure level (SPL[dB])] representing the nine 
different phonatory tasks CS1-CS9. 

Classification of different phonation conditions: Due to the high number of PVG 
parameters conventional statistics and correlation analysis is not appropriate to identify 
potential parameter changes between the different phonation conditions. Thus, to explore 
the influence of intensity and frequency alterations within the parameter sets a nonlinear 
classification approach was applied (Hild et al., 2006; Selvan & Ramakrishnan, 2007; Lin, 
2008). 
The following hypothesis was investigated: if a classifier is capable of distinguishing 
between different phonatory classes it can be concluded that intensity and frequency 
variations are actually present within the observed vocal fold dynamics represented by the 
introduced feature sets. 
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For classification of the PVG features, a nonlinear support vector machine (SVM) was used 
(Duchesne et al., 2008; Kumar & Zhang, 2006). For the SVM, a Gaussian radial basis function 
kernel (RBF) was chosen (Vapnik, 1995). Appropriate SVM parameters were determined by 
an evolutionary strategy optimization procedure (Beyer & Schwefel, 2002). The parameter 
space of SVM, cost parameter and the width of the RBF kernel was automatically searched 
in order to obtain best classification results (Hsu et al., 2003). The models' classification 
accuracy was evaluated via 10-fold cross-validation with stratification (Kohavi, 1995). 
In order to compare PVG result with conventionally used measures the classifier was also 
applied to traditional glottal and symmetry parameters as well as to the ten acoustic voice 
quality measures.  

3. Results 
3.1 Validation of data acquisition  
For a reliable interpretation of the later classification results it is essential to verify that the 
data acquisition representing the nine different phonatory tasks effectively succeeded. Tab. 
2 shows the means and standard deviations for the different sound pressure levels (SPL) 
and fundamental frequencies (mean F0) for all nine phonatory tasks. Already the very small 
standard deviations of the SPL and mean F0 within the classes CS1-CS9 prove the high 
consistency of the data acquisition which included the repeated recording of the different 
phonatory tasks. Applying statistical analysis (Kolmogorov-Smirnov-Tests following t-Tests 
or Mann-Whitney-U-Tests) it could be shown that for frequency classes LOW (CF1), 
NORMAL (CF2), and HIGH (CF3) (Eq. (1)) the fundamental frequencies were significantly 
(p<0.05) different. Also for intensity classes SOFT (CI1), NORMAL (CI2), and LOUD (CI3) 
(see Eq. (2)) the intensity values were computed significantly (p<0.05) different. 

3.2 SVM classification of vocal fold vibrations 
Exemplarily, Tab. 3 shows SVM classification results obtained for frequency classes CF1-
CF3. The Class Precision reflects the percentage of the correct allocation: 30 out of 104 
sequences were predicted as low (CF1). From these 30, three sequences were wrongly 
assigned to the class low (being actually in class CF2) resulting in 90% Class Precision. In 
contrast, the Class Recall reflects the percentage of how many members of the class were 
allocated towards the class. Here, 35 out of 38 normal sequences were correctly assigned to 
class CF2 whereas three sequences were predicted to class CF1. This results in a Class Recall 
accuracy of 92.1%. The Overall Accuracy for all classes is 94.18% ±6.53% which represents the 
mean performance of the classifier which is in the following used for interpretation purpose. 
 

 True Low True Normal True High Class Precision 
Low (CF1) 27 3 0 90.0% 
Normal (CF2) 3 35 0 92.1 
High (CF3) 0 0 36 100.0% 
Class Recall 90.0% 92.1% 100.0%  

Table 3. Classification result of the SMV of the intensity class problem CF1-CF3 using the 
entire feature vector from eq. (31). The overall classification accuracy amounts approx. 94%. 

Using the parameters captured within the feature vector β:=[s,g,ω] (Eq. (31)) the SVM 
reached a classification accuracy of 95.1%±6.7% for the frequency class problem (CF1-3), 
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97.3%±4.2% for the intensity class problem (CI1-3), and 94.2%±9.1% for the nine class 
problem (CS1-CS9). This very high classification accuracy was obtained just by parameters 
describing vocal fold dynamics extracted from the high speed videos. 
In order to investigate which parameters can be made responsible for the high performance 
of the classifier, the SVM was individually applied to components [s], [g] and [ω] as well as 
to the combinations [s,g], [g,ω], [s,ω]. The results are summarized in Fig. 6. The conventional 
symmetry [s] and glottal parameters [g] achieved classification accuracy of only 15.5%±4.9% 
and 40.5%±10.5% for the nine class problem. Likewise, the classification accuracies for the 
frequency and intensity class problems were significantly reduced. Contrarily, very high 
classification accuracy was obtained using the new introduced PVG features [ω]. Applying 
exclusively the PVG features [ω] a classification accuracy of 85.5%±7.7% for the nine class 
problem, 96.2%±4.7% for the frequency class problem, and 91.6%±7.6% for the intensity class 
problem was obtained.  
 

 
Fig. 6. Mean classification accuracies and standard deviations achieved by applying 
conventional symmetry [s], glottal [g] and PVG [ω] parameters using a support vector 
machine (SVM) classification approach with stratified 10-fold cross-validation. The highest 
classification accuracy is obtained by the new introduced PVG features [ω].  

As the PVG feature vector contains information derived from different oscillation states 
( ,

n
y i
αO , ,

n
y i
αC ) it was further investigated which oscillation state delivers the most valuable 

information needed for classifying vocal fold vibrations. For this purpose, the SVM was 
applied to different oscillation parts n={30,60,90} of the feature vector [ω]. Fig. 7 summarizes 
the achieved classification accuracies obtained by n={[30,60],[60,90],[30,60,90]}. Using the 
single oscillation states n={[30],[60],[90]}, already a mean classification accuracy of 
58.2%±9.9% could be obtained for the nine class problem which exceeds considerably the 
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classification rates obtained by the conventional symmetry [s] and glottal [g] parameters as 
shown in Fig. 6. The classification accuracies by applying combined oscillation states 
n={[30,60],[60,90] ,[30,60,90]} are significantly improved. 
 

 
Fig. 7. Mean SVM classification accuracies and standard deviations achieved by applying 
part of the PVG features vector [ω] representing different oscillation states n={30,60,90}. 
Highest classification accuracy is obtained by a combination of the different oscillation 
states. 

In a final step it was investigated which PVG components contribute most to the 
classification accuracy. For this purpose the feature vector [ω] (eq. (30)) was divided into 

parameter groups representing the average vibration type [ω1] : , ,(  )n n
y i y i
α α= O C , the average 

deflection characteristics [ω2] := ( ,
n

y i
αPO ,

n
y i
αPC ), the average lateral vibration symmetry 

[ω3]:=( ,
n
O CN ), and the average temporal stability of vocal fold vibrations 

[ω4]:=( ,( )n
y i
ασ O , ,( )n

y i
ασ ΡO , ,( )n

y i
ασ C  , ,( )n

y i
ασ ΡC ). Figure 8 shows the classification accuracies 

obtained by the different parts of the feature vector [ω].  
The isolated consideration of the average vibration type [ω1] results into the highest 
classification accuracy of 52.8%±6.8% for the nine class problem and a mean accuracy of 
85.1%±10.58% for the frequency and intensity class problems. By comparing the results in 
Fig. 6 and Fig. 8, it can be seen, that information about the mean vibration type (Fig. 8) 
already gives better classification results than information about the conventional 
parameters as speed quotient, open quotient, glottal closure insufficiency (Fig. 6). 
Information about vocal fold deflection amplitudes [ω2], left/right discrepancies [ω3] and 
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vibration instabilities [ω4] do not reach the same level of classification accuracy. However, 
combining all PVG features increases considerably the classification accuracy of up to 
96.2%±4.7% for the frequency class problem.  
 

 
Fig. 8. Results show the comparison between the different features within the PVG 
parameters. The PVG parameters are split into groups representing the spatio-temporal 
vibration type, information about vibration amplitudes and symmetry as well as vibration 
instabilities. Fusing all information ω1-ω4 to a common feature vector results highest 
classification performance (i.e. frequency classes). The performance of the different 
classification results shows that the more precisely the vocal fold dynamics is described 
using a combination of several PVG features the better the dynamical changes of vocal fold 
dynamics can be captured. 

3.3 SVM classification of the acoustic signal 
To give an overview of the acoustic measures, Tab. 4 shows the means and standard 
deviations for all 10 computed acoustic voice quality parameters used for classification. 
Table 5 summarizes the classification results for acoustic parameters. The best classification 
performance (93.45%) was achieved for the frequency class problem (CF1-CF3). The 
accuracy for the three class intensity problem (85.64%) was just slightly higher than accuracy 
for the combined nine class problem (83.73%). In contrast to the classification results 
obtained using the PVG parameters the acoustic parameters reached lower classification 
accuracies. Nevertheless, for the nine class problem still a classification accuracy of more 
than 80% could be achieved. It proves that even for a single subject frequency and intensity 
changes of the voice signal influence voice quality outcome measures. 
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 CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 CS9 
Jitter  
(%) 

0,30 
±0,06 

0,13 
±0,02 

0,12 
±0,03 

0,21 
±0,04 

0,21 
±0,08 

0,10 
±0,03 

0,21 
±0,05 

0,11 
±0,02 

0,12 
±0,05 

Shimmer 
(%) 

2,17 
±0,44 

1,07 
±0,17 

0,98 
±0,35 

1,69 
±0,36 

1,48 
±0,25 

0,88 
±0,45 

1,68 
±0,42 

0,85 
±0,22 

0,84 
±0,11 

HNR 
(%) 

23,4 
±1,6 

30,2 
±1,0 

33,2 
±1,7 

27,6 
±1,9 

28,8 
±1,3 

32,4 
±3,0 

28,6 
±2,2 

34,6 
±1,7 

28,4 
±1,6 

SNR  
(%) 

23,4 
±1,6 

30,2 
±1,0 

33,2 
±1,7 

27,6 
±1,9 

28,8 
±1,3 

32,4 
±3,0 

28,7 
±2,2 

34,6 
±1,7 

28,4 
±1,6 

NNE  
(%) 

-3,0 
±1,5 

-13,6 
±1,9 

-17,1 
±2,7 

-8,6 
±4,0 

-11,1 
±2,9 

-21,2 
±1,1 

-9,3 
±2,6 

-13,1 
±2,5 

-21,5 
±2,3 

STD F0  
(Hz) 

1,4 
±0,5 

1,0 
±0,3 

1,4 
±0,5 

1,4 
±0,4 

1,5 
±0,7 

1,5 
±0,4 

2,8 
±1,5 

2,3 
±0,6 

1,6 
±0,3 

STD Period 
(ms) 

0,06 
±0,02 

0,04 
±0,01 

0,04 
±0,01 

0,04 
±0,01 

0,04 
±0,02 

0,03 
±0,01 

0,03 
±0,01 

0,02 
±0,01 

0,02 
±0,01 

Mean Amp 
(%) 

86 
±4,8 

92 
±2,1 

91 
±3,1 

86 
±4,1 

90 
±3,1 

90 
±3,1 

85 
±5,5 

88 
±4,3 

93 
±2,3 

STD Amp. 
(%) 

5,9 
±1,7 

3,5 
±1,3 

4,4 
±1,5 

6,1 
±1,5 

5,4 
±2,1 

4,8 
±1,8 

6,2 
±2,1 

5,1 
±1,5 

2,7 
±0,9 

F0 Tremor 
(Hz) 

4,0 
±2,6 

2,6 
±1,2 

2,8 
±1,3 

3,3 
±1,3 

2,7 
±1,3 

2,1 
±0,8 

2,8 
±1,5 

2,5 
±1,8 

1,8 
±0,7 

Amp. 
Tremor (Hz) 

2,5 
±1,3 

2,1 
±1,2 

2,4 
±1,5 

2,6 
±1,0 

3,0 
±1,3 

2,2 
±1,1 

2,6 
±1,4 

2,4 
±1,2 

4,9 
±3,8 

Table 4. Mean values and standard deviations of the 10 acoustic measured parameters 
(Dr.Speech 3.2) grouped for the nine paradigms. The vertical grey shadings correspond to 
the frequency classes. 
 

SVM accuracy for acoustic parameters 
 Intensity Frequency Frequency/Intensity 
Accuracy (%) 85.64 93.45 83.73 
STD (%) 6.14 8.25 8.60 

Table 5. Overall accuracy of the acoustic SVM classification results. 

4. Discussion 
The endoscopic imaging of vocal fold vibrations is an essential part of clinical examination 
of voice disorders. Digital high-speed videolaryngoscopy is the state-of-the-art technology 
for investigation of asymmetric and irregular vocal fold vibrations (Doellinger, 2009). 
Similar to stroboscopy, high-speed videos are frequently evaluated by visual inspection 
relying on the experience of the investigator. There is still no objective or standardized 
procedure for describing the entire vibration patterns of vocal folds. Besides the description 
of vocal fold vibrations, the acoustic analysis of the voice signal gives valuable information 
for describing the severity of voice disorders. However, in most of the applied methods the 
acoustic properties and the laryngeal vibrations are separately examined. Thus, there is still 
little knowledge about the direct relation between the acoustic voice signal and the vibration 
pattern of vocal folds.  
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In this work, we presented a novel approach, called Phonovibrography, allowing an 
objective analysis of the visible vocal fold dynamics. Here, quantitative features are derived 
from PVG images which describe precisely the entire characteristics of vocal fold dynamics. 
For validation purpose Phonovibrography was applied to 108 high-speed sequences 
recorded from a single healthy female subject with normal voice. The female subject was 
instructed to produce 9 different phonatory tasks, i.e. phonation at different frequency and 
intensity combinations. A sequence length of one second time (> 150 glottal cycles) was 
chosen. The simultaneously recorded acoustic signals were analyzed using established voice 
quality measures (www.drspeech.com). Thus, besides evaluating the PVG analysis 
approach the effect of different phonation conditions on both the laryngeal vibrations and 
the acoustic voice signal could be studied.  
Choosing just a single subject for validating the accuracy of the proposed PVG approach is 
mandatory as only within a healthy subject the phonatory tasks related changes of vocal 
fold vibration patterns can be interpreted in a correct way. For a single subject the extensive 
data acquisition comprising the recording of 108 repeated phonatory tasks is very time-
consuming and potentially incriminating for the subject. Thus, collecting such a full data set 
from several subjects is difficult to achieve. As far as we know this examination presents the 
worldwide most detailed analysis of vocal fold vibrations within a single subject. Besides 
evaluating the performance of novel analysis approaches, the data set can further be used to 
investigate very precisely the fundamental principles of voice production in normal voice. 
In the present study we applied methods from the field of machine learning towards 
recognition of different phonatory tasks within vocal fold dynamics as well as within the 
simultaneously recorded acoustic signals. Even though endoscopic and voice data represent 
different physical properties describing voice production (tissue vibrations vs. acoustic 
sound pressure), both modalities could be used to individually classify the nine different 
phonatory tasks within normal voice of one female.  

4.1 Classification of vocal fold vibrations  
The results given in Fig. 6 clearly show that a very high SVM classification accuracy (up to 
96%) could be obtained using the new introduced PVG features. Even the classification of 
the nine class problem showed a very high performance of 85.5% which is in the same range 
as the results obtained using the acoustic measures, Tab. 5. It can be concluded from the 
results that the investigated frequency and intensity variations can be quantitatively traced 
back to alterations of the laryngeal dynamics. Furthermore, changes of vocal folds dynamics 
induce alterations of the acoustic signal as shown in Tabs. 4 and 5. To our knowledge, this is 
the first time that vocal fold vibrations could be quantitatively described so precisely during 
different phonation tasks and that the different phonatory task could automatically be 
classified at the vocal fold level. 
The results obtained by the PVG parameters were further compared to symmetry/glottal 
parameters (Eqs. (13) and (22): [s], [g]) which are frequently used to describe vocal fold 
vibrations. Fig. 6 shows, that using the conventionally used glottal and symmetry 
parameters the performance of the classification is highly reduced. Using the feature vector 
[s] only a classification accuracy of approx. 15% for the nine class problem could be 
obtained. The glottal features [g] show a better performance with approx. 40% but are still 
far worse than the classification accuracy (94%) obtained using PVG parameters ω. The low 
classification results obtained by the glottal parameters show, that the reduction of the 
complex 2D vocal fold vibration pattern to a few parameters based on 1D glottal area 
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waveform signal is not sufficient for analyzing the laryngeal vibrations completely. 
Likewise, putting the focus only onto specific features as vocal fold symmetry (amplitude, 
phase, frequency) – which is frequently evaluated within the subjective assessment of 
stroboscopic or high speed movies - is not sufficient to fully describe vocal fold vibrations.  
Having a closer look at PVG features at different oscillation states n={30,60,90}, similar 
results were found for n=30 and n=60 state (Fig. 7). While the three class problems could still 
be classified with a high accuracy, for the nice class problem a classification accuracy of only 
approx. 60% was obtained. For n=90 the classification results show a similar behavior with a 
slightly reduced performance. However, when fusing all information obtained from the 
three oscillation states, the highest classification results were obtained. The increase of the 
performance documents that a precise analysis of vocal fold dynamics demands to describe 
the entire vibration pattern very comprehensively as it is done by PVG parameters which 
describe the temporal and spatial propagation of vocal fold vibrations.  
Splitting up PVG parameters in different features ([ω1]: vibration type, [ω2]: deflection 
information, ω3: symmetry, and ω4: instabilities) further proves the benefit of including all 
extracted parameters together. Considering the parameter features separately (Fig. 8) the 
classification accuracy is reduced. Nevertheless, despite the feature reduction the 
classification accuracy using PVG parameters ω1 - which comprises only information about 
the mean spatio-temporal vibration propagation of vocal folds - still shows a better 
performance than glottal [g] and symmetry [s] parameters together. Combining all features 
together results into highest classification accuracy of up to 96%. This again suggests the 
necessity of considering a combination of all features types as deflections, discrepancy, and 
instability.  

4.2 Comparison of acoustics and vocal fold vibration classification 
The highly consistent results obtained from acoustic and motion data show that within a 
subject vocal fold vibrations as well as the acoustic voice signal obtained from different trials 
can only be compared if they are recorded at similar intensity levels and similar 
fundamental frequencies. Recordings at significantly different intensity levels or frequencies 
will definitely cause different perturbations measures (e.g. Jitter, Shimmer, HNR, SNR, 
NNE) as well as changes within the laryngeal vibrations (Rovirosa et al., 2008). The results 
suggest that in clinical practice the repeated examination of a subject’s voice needs to be 
performed at a comparable phonatory condition. Otherwise, the clinical value of 
measurements as objective and representative voice quality measures is highly limited. 
In this work it could be shown that PVG analysis is a sufficiently sensitive approach to 
successfully identify even subtle changes in vocal fold vibratory characteristics induced by 
different phonatory tasks. As the sensitivity of the PVG approach could successfully be 
demonstrated, it can be used in ongoing studies to investigate vocal fold vibrations in 
presence of voice disorders. For studying pathologically induced alterations of vocal fold 
dynamics within a subject it must be considered that the examinations should be done 
under similar phonation conditions to exclude examination dependent influences.  

5. Conclusion 
Digital high-speed videolaryngoscopy is the state-of-the-art technology for investigating 
normal and pathological vocal fold vibrations. However, without adequate image analysis 
there is hardly an additional benefit comparing to the currently used stroboscopy technique 
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in sense of evidenced based medicine. The Phonovibrogram (PVG) has the potential to 
overcome the subjective or semi-automatic assessment of high-speed videos (Kunduk et al., 
2010). Within this study it was proven that PVG image analysis has the necessary sensitivity 
to capture even minor alterations within vocal fold vibrations induced just by frequency and 
intensity variations. It was further shown that alterations of vocal fold vibrations are also 
detectable within acoustic perturbation measures. The high accordance between the results 
further proves that changes within the acoustic signal can directly be traced back to 
alterations of vocal fold vibrations. In respect to future clinical application, PVG analysis 
may be a useful tool to standardize the description of healthy and abnormal vocal fold 
vibrations. Objective Phonovibrography can directly be applied after examination and the 
obtained PVG images can easily be documented and stored on a hard-disc-drive using a 
lossless image data format which is essential for evidenced based medicine. An objective 
endoscopic image analysis tool, such as PVG, describing the vocal fold dynamics, could not 
only enhance voice assessment techniques but also help to objectively determine the 
outcome following an intervention in voice disorders (Voigt et al., 2010).  
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