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Preface

The study of electromagnetic radiation (EM) can be divided into two distinct areas: full
solution of Maxwell's Equations relevant to the specific boundary conditions in a
special general case and into application of EM radiation that results in modern life
e.g. medicine, telecommunication, electromagnetic compatibility (EMC) etc. The
reader should have a specific scientific background and must be familiar with the
fundamental ideas of EM theory for the first area. Basic understanding of applying the
radiation techniques in modern life is needed for the second. The book chapters are
based on the scientific achievements of contributors in these two different areas
mentioned above.

Special thanks to Ms Romana, publishing process manager, and to InTech publisher
for choosing me to be the editor for this book.

Prof. Saad Osman Bashir
Neelain University, Republic of the Sudan International Islamic University,
Malaysia






Generalized Orthogonality Relation
for Spherical Harmonics

A. Draux!and G. Gouesbet?

nstitut National des Sciences Appliquées (INSA) de Rouen, Département de Génie
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Rouen et Institut National des Sciences Appliquées (INSA) de Rouen BP12,

Avenue de I'Université, Technopole du Madrillet, 76801, Saint-Etienne-du Rouvray
France

1. Introduction

One of us (G.G), with collaborators, has been involved in the study of generalized Lorenz-Mie
theories (GLMTs) describing the interaction between electromagnetic arbitrary shaped beams
(typically laser beams) and a class of regular scatterers for which solutions to Maxwell’s
equations can be found by using the method of separation of variables, e.g. Gouesbet &
Gréhan (2000a), J.A.Lock & Gouesbet (2009), Gouesbet (2009a), and references therein. It
has, at a certain time, been found interesting to examine whether the knowledge gained
in the effort of developing electromagnetic GLMTs could be, at least partially, adapted to
quantum mechanical problems. The examination of the issue of quantum scattering of
quantum arbitrary shaped beams produced several papers devoted to (i) the description
of quantum arbitrary shaped beams Gouesbet (2005), Gouesbet & J.A.Lock (2007) (ii) the
evaluation of cross-sections in the case of quantum arbitrary shaped beams interacting with
radial quantum potentials Gouesbet (2006a), Gouesbet (2007a) and (iii) the exhibition of
formal cross-sectional analogies between electromagnetic and quantum scatterings Gouesbet
(2004), Gouesbet (2006b), Gouesbet (2007b). During the development of this work, the
evaluation of two integrals, based on spherical harmonics, has been required. These integrals
may be obtained from a generalized orthogonality relation for spherical harmonics which is
established in this paper. Another recent application concerns the optical theorem and non
plane wave scattering in quantum mechanics Gouesbet (2009b).

Section II is devoted to the demonstrations used to reach the generalized orthogonality
relation mentioned above. Section III is a conclusion.

2. Demonstrations
2.1 Lemma 1

Let X(b) denote the following expression :

X(b) = sinasinf cos(¢ — b) + cosacos 1)
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Then :

/Pn e~ im(g=b) dq) /Pn )) cos(|m| ¢)de )

where Py, is the Legendre polynomial of degree n,i = /—1and m € Z.

As a remark for further use, let us insist on the fact that the r.h.s. of Eq.2 does not depend on
b nor on the sign of m.

2.2 Proof of Lemma 1

The integrand P, (X (b))e~™(9=b) in the Lh.s. of Eq.2 is a linear combination of terms reading
as:

[cos(p — b)[e=™(@=b) i —0..n 3)
Therefore, to demonstrate Eq.2, it is sufficient to prove that :
2 2
/ [cos(p — b)[ e~ ™M@=t gy = /(cos @) cos(|m| ¢)de,Vj € N 4)
0 0

Let us introduce a symbol to denote the Lh.s. of Eq.4, setting :

21
K= [ leostp ~ ) e (0P ®
0

We then make a change of variables from (¢ — b) to ¥, use the Leibniz formula, and establish:

—b+2m
Kjm = /(cos‘I’)fe_i'"Yd‘F (6)
—b
—b+2m

j . ;
_ 21 Z( ) / i (2k—j—m)¥ g
b
( )502k jom k= 0..j

where ¢ denotes the Kronecker symbol.

Let us introduce :
27

ij = /(cos (p)j cos(|m| ¢)de (7)
0
Converting cosines to exponentials and using again the Leibniz formula, it readily becomes :

Ry = 2J+1 Z ( )/[ (@l 4 (@kitlnbe] g ®)
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leading to :

= 2 (1§
Kim = 57 (,]{) [50,2k7j7\m| + 00,2k j+|m| )

We can then deduce the following results :

(i) If (j—m)isodd, orj < |m|, then:
ij = K]m =0 (10)

(i) If (j — m) is even, and |m| < j,
_ 27 j j
Kjm = Kjm = 57 [(Hm) + (]m)} (1)
2 2

By using Eqs.10 and 11, we obtain the following fairly obvious corollary : if n < |m|, then :

then :
2.3 Corollary 2

/ Pu(X(b))e M0V dg = 0 (12)

We are now going to establish two identities to be used in the sequel.

24Lemma3

For any integers r,s,n such that s < r < [n/2], in which [i] denotes the integer part of i, we
have:

)

S 2m(Dy — 2m - n—r
Z _2 (,2_2,) = H2]—1 [T @i-1 @3
=0 (n—m)!(s —m)!(r —m)! i

i=n—r—s+1
with the convention that H?:il =1ifi, <ij,and:

(ii)
Kk 1 _ (2(n—r—5))!
L 2o =) 20— — )i —29)1(n 25! (14)

with the convention that Z?: W= 0ifip < iy.

2.5 Proof of Lemma 3
)
Let us denote by S; the Lh.s. of Eq.13. But we have :

— 2n —2m)! ”’m
=
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Hence, S1 can be rewritten as :

s . IT @i-1
Si=[1@-1) ¥ (-yrar I (16)
il o m!(s —m)!(r —m)!

n—m

S zzm (2)(r) T a-2

j=n—s+1
From the rh.s. of Eq.16, we introduce a polynomial S; (x) reading as :
S s 7 n—m
o= £rm(3)(0) 1T eorn "
m=0 m m j=n—s+1
We observe that S1(x) is a polynomial of degree s written in the Newton basis {N;(x)};_,

with Ng(x) = 1and Nj,1(x) = (x — x;)N;(x) fori > 0, where xg = 2n — 25+ 1,x; = xo + kh
and h = 2. Thus :

n—m
I] (x+1-2j) = Ns—m(x) (18)
j=n—s+1
Let us prove that :
n—r
S1(x) =Q(x) = H (x—2i+1) (19)
i=n—r—s+1
It is sufficient to verify that S1(x;) = Q(xx) for k=0...s. We have :
s (4K
Q(xk) =2 (1’+k—S)! (20)
Since :
S e ! r
S0 = 3 22 () e1)
m=0 :
and : "
Nm (Xk) =" m (22)
we obtain : .
k'r! s\ (r—s+k
__nS
S1(x) =2 (r—s—i—k)!mzz"o(m)( k—m ) 23)

in which the summation is originally found to range from m = 0 to s, but can afterward be
reduced from m = 0 to k. By using the following identity (Abramowitz & Stegun (1964), p822)

mi::O (';) (n—sm) - (TZS)'V(”S)Z” (24)

25k!r! (r+k) _ 2(r4k)!
(r—s+k)!\ k )/  (r+k—s)!

we have :

S1(xx) = = Q(xx) (25)
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But:

571—

[1@i—1)s(0 (26)

j=1

[

r's‘
Hence, it is readily seen that the first identity holds.
(ii)
On one hand, we introduce the quantity B, according to :

1 n—r—s

1 n— f_/IZ]fs( ) nhr—s ( )
=0 2i—1 2i—1
2¥s(n=2s)! g i=n—[n/2)-s+1

Next, let R(x) denote the polynomial of degree [n/2] —r, given by :

1 ”*[ﬁ]*s nhr—s
R(x)= 0 — (2i—-1) (x+2i—1) (28)
rHs(n=28)! g i=n—[n/2)—s+1

so that :

(n—2r)!B; = R(0) (29)
On the other hand, we have :

t—1 t—1
wa ] an]Hn—ZJ—l

j=r =r

(n—2r)!S; = t; o = (30)

One of the two products only involves even integers while the other only involves odd
integers. Thus, we can write them as :

t—1 —1
1‘[ ([n/2] —j H (2n—2[n/2]-2j—1) (31)
J=r

Therefore, with fairly obvious changes of variables :

[n/2]—r 1 t—1 t—1 )
(n—2r)1Sy = ;) R ']1_12 ([n/2] ,],r)]:()[ (n—[n/2]—j—r)—1]
) (32)
Let Sp(x) denote the polynomial :
_ [n/2]-r 1 t-1 =1
Sy(x) = t;) 22Wﬂ(tﬂ_s)!jzoz([n/z]—j—r ]]3) x+2(n—[n/2]—j—r)—1] (33)

so that : N
(n—2r)!S; = $,(0) (34)
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The polynomial S;(x), which is of degree ([1n/2] — r), is written in the Newton basis
{Nu(x) ,[Zﬁ)]fr, withxg =1—-2(n—[n/2] —r) and xy, = xg + mh,m = 0...[n/2] —r,h = 2.
Let us now prove that 5, (x) and R(x) are identical, which is equivalent to verify that Sy (x,;) =
R(xp),m=0..[n/2] —r.

We have :
-1
. e
~ B i=0 m!
S2(xm) = ;) 2242r  H(tt+r—s)!  (m—t)! 35)
B ii ([n/2) —r)im!
S22 H (4 r—s)([n/2] —r —t)!(m —t)!
B m! i (/2] —r\ (m+r—s
S22 (mA4r—s)! = t m—t
By using Eq.24, this becomes :
~ B m! (/2] +m—s\ _ ([n/2] +m —s)!
Sz(xm)iﬂr(m—i—r—s)!( m ) C 22 (n+r—s)!([n/2] —s)! (36)
Next, we have :
1 n—[n/2]—s [n/2]—r
_ 1 (2(n—[n/2] —s))([n/2] +m —s)!
o 02r+n=2[n/2] (n — 28)!(n — [n/2] —s)!(r + m —s)!
For any integer n, even or odd, we readily have :
2(n — [n/2] —s))!([n/2] —s)! = 2" 22 (0 — 25)1(n — [n/2] —s)! (38)
Therefore : B
R(xm) = Sa(xm),m=0...[n/2] —r (39)
Hence, because : _
__5(0) _ RO
52 = (n—2r)!  (n—2r)! (40)
the second identity holds.
2.6 Theorem 4
We can now prove a first theorem reading as :
27
/Pn(sina sin6 cos ¢ + cosacos )dg = 2P, (cos a) P, (cos ) (41)
0

where Py, is the Legendre polynomial of degree 7.
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2.7 Proof of Theorem 4

By using an expansion of Legendre polynomials (e.g. G.B.Arfken & H.].Weber (2005), p744),
we obtain :

Py, (sinasin 6 cos ¢ + cos a cos 6) (42)
1 (/2] )
=— ) (—1)"’<n>< " m) (sinasin 6 cos ¢ + cos a cos §)" 2"
2" = m n
But we have :
27
/(sinasin@cosq)+cosacos 0)"2"dgp (43)
0
n—2m 2r
_9 . .
=) (n . m)/(SinasinGcosq))](cosacosﬂ)”fsz]d(p
=0 N T /g
27

L

) /(sinu sin 8 cos @)% (cos a cos 8)" 2" %y
k=0
0

in which we have used (see Eq.6) :
2r
/ (cos ¢)ldg = 0, for any odd integer j (44)
0

Using again Eq.6 for j even, we obtain :
27
/(sinasinGcosq)+cosacos 0)"2"dgp (45)
0

[H—ZZm}
2 -2 2k
=Y Trli (n . m) ( B ) (1 — cos? a)¥ (1 — cos? 0)¥ (cos a cos §)" 22k
=0 2 2

Eq.45 implies that fozn Py (sinasin® cos ¢ + cosacosf)dg is a polynomial g, (cosa,cosf),
symmetrical with respect to the two variables cosa and cos, of degree n with respect to
each variable. We then invoke the Leibniz formula to develop (1 — cos?a)¥ and (1 — cos? §)*
involved in Eq.45 leading to :

11/2 k m i
gn(cosa,cosb) 2 Z Z Z 22k "~ (r;:z> (211;2711) (46)

0 k=0 j=0i=0

I ot

We now intend to identify Eq.46 and the expansion of 27tP, (cos a)P,(cos ) with respect to
the variables cosa and cos 6.
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For a fixed integer r such that r = m + jand r < [n/2], and a fixed integer s such that s = m + i
and s < [1/2], the factor of (cos a)"~2*(cos #)"~2" in Eq.46 can be obtained and compared with
its counterpart in 27tP, (cos a) P, (cos ). This counterpart reads as :

Br(OEEY e

Since gy is a symmetrical polynomial, it is sufficient to carry out the comparison for s < r. To
approach the aim, we interchange k— and j— summations in Eq.46, according to :

(2] 2]

)y (48)
=

I

[ 11—22m ]

P

T
=

Therefore, for m + j = r, the factor of (cos )"~ 2" is

k
Z (49)

l<:;5" )6

(cosa)~

Next, we interchange k— and i—summations, according to :

[/1 Zm] k —m [n Zm] [n Zzn} [n Zm]
Y = Z Y+ X L (50)
k=r—mi=0 i=0 k=r—m i=r—m+1 k=i
Thus, for m +i = s < r, the factor of (cosa)"~2*(cos 8)" 2" is :

s [%] m-+r+s
27 (-1) n\ (2n—2m\ (n—2m
#rL e )0 .

() (i) (i)

which is equal to :

s (2n —2m)!

_ r+52£ _1\m

(=1) 2n MZ::O( 1 m!(n —m)!(s —m)!(r —m)! (52)
[n/2] 1

k:;m 22k(n —2m — 2k)!(m 4+ k — r)!(m + k — s)!

By using the two identities 13 and 14 from Lemma 3, this result may be rewritten as :

(,1)r+52i1ﬁ(2]', D ﬁ (2 - 1)2”(11 —r(f(sn) an—_ZSr)))'(n—Zs)! (58)

Ig!
ris: j=1 i=n—r—s+1
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which is equal to the expression 47. Hence, the proof is done.

2.8 Corollary 5. Reproducing kernel

A new expression of the reproducing kernel of Legendre polynomials can be readily derived
from Theorem 4. We then obtain a Corollary 5 as follows.

The reproducing kernel Ky (x, ) of Legendre polynomials P;(x):

=y 2 n R 54)
i=0

has the following integral representation :

2

1 2i+1

2—/2 5 Pi(xt+cospV1—x2y/1—t2)de (55)
0

i=0

2.9 Jacobi polynomials

For further use, we now recall some results concerning Jacobi polynomials P,Ea’ﬁ ) (x),a > —1
and 8 > —1Abramowitz & Stegun (1964), T.S.Chihara (1978), Szeg6 (1939).

Jacobi polynomials are orthogonal with respect to the linear functional :

+1
/.(1—x)“(1+x)ﬂdx, 0B > 1 (56)

-1

They have the following L2—norm :

+1 1
e Blph) N2, 2P Ttat+ Y(n+p+1)
.{(1 (1 +x) [P" (x)] = e at PFiTnt DTnratprn) O
where I' is the Gamma function.
The derivative of P,E“"S ) (x) is another Jacobi polynomial :
d p(ap) 1 (a+1,+1)
EP” (x) = E(n+oc+ﬁ+1)Pn (x) (58)
We now provide relations valid for « = g > —1.
Jacobi polynomials, for « = > —1, satisfy a three-term recurrence relation :
(1 +a +1)(2n + 20 + 1)xP (x) (59)

= (n+ 1) (n+2a+ )P () + (n +a) (n+ a + 1)P) (x)

with P{** = 1and P4 = 0.
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Furthermore :
(@n+ 20~ )PV () (60)
_ (420 1(n4+28) ) ) (8= 1) pan)
B 2(n+a) P (x) 2 P75 (x)
M‘*‘zﬂ(l _ 2y plattatl) 4 @D
= (et B () - DA D) plos)
d +2a+1
(1 _ XZ)EPISIX,GC) (x) _ (1 _ XZ)%PHDL-;I,&(-FD(JC) (62)

) (x)

= —nxP,ga"x)(x) + (n+a)P

We now know enough to prove the main theorem.

2.10 Theorem 6

For any integer m € Z and any integer n € N :

2r
/Pn(sina sinf cos(¢ — b) 4 cosacos B)e Pt dg (63)
0
= ZHMP‘ml(cosa)P‘m‘(cose)
(n+|m)"" "

where i = /-1, P, is the Legendre polynomial of degree n, and P,‘lm‘ is the associated
Legendre function of order |m| defined by :

i dlm]
—x%)7T —

|m| _ m
Pn (x)*(_l)‘ ‘(1 dx‘m| n

(%) (64)

2.11 Proof of Theorem 6
We conveniently introduce, for further use, a specific notation for the Lh.s. of Eq.63 :

27
Dpm = /Pn(sina sin6 cos(¢ — b) + cosacos §)e "V dg (65)
0

Now, it happens that Eq.63 of Theorem 6 is already proved for m = 0 (Theorem 4) and for
n < |m| (Corollary 2). Moreover, by using Lemma 1, Eq.63 is equivalent to :

2

_ !
/Pn(sinasinecos @ + cosacos ) cos(|m| )de = ZHEZ?:Z:));P,W (cos a)Pr‘,m| (cos®) (66)
/ !
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But P]!m‘ (x) possesses an expression in terms of the Jacobi polynomial plmhim) (x). Indeed, by

j=lm
using Eqs.58 and 64 :
m (j+1) )
B"l(a) = (~1) (- F o p e () (67)
where (c); is the Pochhammer symbol :
(c)j=clc+1).(c+j—1),VjEN
(co=1 (68)

We now prove Eq.63 for m = 1. From Eq.59 with « = 0 and Eq.67, we have :

(2n + 1) X Py (X) (69)
= (2n+41)sinasin @ cos 9P, (X) + (2n + 1) cos a cos 6P, (X)
— (14 1)Py1(X) + 1B, 1(X)
in which we conveniently used X = X(b = 0). Hence, by using Theorem 4, and remembering
Lemma 1 and its associated remark :

(2n+1)sinasin6D,; (70)
= (n+1)Dy110— (2n+1) cosacos0D,g + nDy_1
=21t(n+1)P,1(cosa)P,1(cosf) — 27t(2n + 1) cos a cos 0P, (cos a) P, (cos )

+27nP, _1(cosa)P, _1(cosb)

With Eq.59 for a = 0, this expression becomes :

% [(2n+ 1) cosaPy(cosa) — nP,_1 cos(a)] (71)
[(2n + 1) cos 0P, (cos ) — nP,_1(cos )]

—27(2n+ 1) cosa cos 0P, (cos a) Py (cos0) + 2nnP, 1 (cosa)P,_1(cosH)

which can be factorized to :

(2n+1)

nm [-ncosaPy(cosa) + nP,_1(cosa)] [—n cos 0P, (cos @) + nP,_1(cos0)]  (72)

This expression is identical to :

27t(2n+ 1) sinasin @ EZ jr 3: P} (cosa)P}(cos ) (73)

This result is obtained by using Eq.62 with « = 0 and Eq.64 for m = 1, namely :

(sina)? Py(cosa) = —ncosaPy(cosa) + nP,_1(cosa) (74)

4
dcosa

P}(cosa) = —sina Py (cosa) (75)

4
dcosa



12 Electromagnetic Radiation

Therefore, Eq.63 holds for m = 1. Now, we can complete the demonstration of Eq.63 by
recurrence, assuming that it is satisfied by any integer n € N up to (m —1) > 1 (we can
assume that m is positive).

We have :
cos(me) =2cos ¢ cos((m—1)¢) — cos((m —2)¢) (76)

From Eqgs.76 and 69, we obtain :
sinasin 0P, (X) cos(me) (77)
2
= cos((m—1)¢) [(n+1)Py11(X) — (2n + 1) cosacos 0P, (X) + nP,;_1(X)]

2n+1
—sinasin 6P, (X) cos((m —2)¢)

Hence :

sinasin 0Dy, = [(n+1)Dyy1m—1— (2n4+1) cosacos 0Dy, 1 + nDy_1,1](78)

2n+1
—sinasin®D,, ;>

We now use the recurrence assumption, yielding, from Theorem 6 :

A [(n+1) (n—m+2) P~ 1(cos a)P:l”Jll(cos 0) (79)

(n+m)l ~ntl

— !
% cosacos OP" ! (cosa) P (cos 6)

n—m)! _ _
—&—nﬁngl(cos a)PZill(cos 0)]

_ !
7271'% sin a sin GP,T_Z (cos a)P,T_2 (cos )

sinasinf@Dyy,, =

—(2n+1)

Every P;”il and P}”72 is replaced by using the expression 67, leading to :
(n—m)! (sinasinf)™1 2 1
e T e AR b To ey

n—m+1)y (m-1,m-1 “1m-1
(L Y (cosa) (", Y (cos )

_ 1 1 o
—(2n+1) % COS 4 cos 9Pr<lrfm3:71" b (cos a)Py(leiT b (cos )

(80)

sinasinfDy,;, = 271

3

e P cosa)p Y (cos )]

n—m+1 —2,m—2 —2m—2
‘ﬁpf&mﬁ N(cosa)P" 25 (cos )}

by using Eq.60 and cos ap(m-1m=1) (cosa)

for n—m+1

. (m—2,m—2)
We afterward substitute P, i)

for P].(m_l’m_l) by using Eq.59. We then obtain :

P(mfl,mfl)
j
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L _ _(n—m)! (sinasing)" ! oy 1
sinasin 0Dy, = 27‘((n+m)! Yom—i (n+1)m) {2(2n+1) @81)
(Tl—m—|—1)2 —1,m-1 —1,m-1
R D cosa) b, 1 (cos)
_ n—m-+1 B (m—1m—1)
rmm D@y (o Eme - m k2P, 0 (cosa)
+n(n+ 1)P(m 1,m—1) (cosa))((n+m)(n—m+ z)pgf;ig*l) (cosf)
+1’l(1’l + 1)P7(lmm1 m—1) (COS 6)) +
3
n m—1m— m—1,m—
Gy, P (cosa) B,V (cos )

_ (ﬂ—m—|—1)2 (n+m_1)2 (m—1m-1)
(2”+1)2(H+m—1)2( 2(n+1) P,”, o (cosa)

1 plm-Lm-1) (cosa))

an

ntm—1 m=1m= n o (m—1,m—
(W WiV (cos) = SR (cos0)))
becoming :
sinasin6Dy,;,, = ZHEZ . Z; (Slnuzi:nni) ((n + 1)m)2 (82)

((”*m+1)2)2 —1,m—1 CLm1
[4(71 +1)2(2n +1)2 r(zn:m-s-’; )(COS‘J)P,ET,”_,_? >(COS 6)

o nn—m+1); (m—1,m—1) (m—1,m—1)
4(n+1)(2n+1)2( nomia (COSA)PT,, (cos §)

+P£"f;l+’7;_1)(c059)P,gmmlm 1)(COSIZ))
n? (m—1,m—1) (m=1,m—1)
— ! P
4(2” _|_ 1)2 n—m (COS{Z) n—m (COS 9)]
which factorizes to :
L (n—m)! (sinasin®)"™ 1 ((n+1),)?
sinasin@Dy;; = 27‘(( ey 2m 2 2n+1)? (83)
1,m—1 n—m+1 —1,m—1

[nP ,(,m " )(cos a) — % ,Yfm;'; )(cos a)]

7(11 —m+1), plm=1m-1) (cos9)]

1,m-1
[Py, " (cos) - S ES R

We then invoke Eq.61, with @ = m — 1,n +— n — m, to obtain :

(m,

m+1
(1 +1)m)2P" ) (cos a) P\ (cos 0)  (84)

. . n—m)! (sinasin@
sinasin 6Dy, = ZHEner;! ( 3T )
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Therefore, recalling the definition of D, we find that Eq.63, i.e. Theorem 6, holds for any
integer m € Z.
2.12 A consequence

An important consequence of Theorem 6 concerns the spherical harmonics Y]’” (6, ¢) which
are defined as :

m _ (2j+1) (j_m)! m ime
Yi"(6,9) = i (jrm) Pi"(cosf)e (85)
When m < 0, Pj’” (cos ) is defined as :
m _(_1\m (] +m)! —m
Pi"(cosf) = (-1) G—m) m)'PJ (cos ) (86)

Therefore, we may uniquely define Pj’" (cos 8) for any integer m € Z, according to :

P]m(cos 0) = (—1)m = (é]iig)P‘m‘(cos 0) (87)

in which P|"!(x) is defined by Eq.64.

Eq.85 can then be given an unique form for any integer m € Z, reading as :

Y(6,0) e \/mm ]—Iml le\ (cos 0)¢™® (88)

m il 2]—|—1 (j— |m|)!
(j + [m])!

simplifying to :

Y'(6, 9) P"“‘ cos §)ei™? (89)

From these equations, the complex conjuguate of Y]m (0,9)is

Y7(8,9) = (~1)"Y; (6, 9),Vm € Z (90)

2.13 Corollary 7
For any integers 1,j € N, and any integer m € Z:

T [2m
/ /Pn(sinasinecos(q) —b) + cosa cos G)Eim((/’b)dcp] (91)
0

Pj"(cos 6) sin 66

47
2]+1

Pm (cosa)dy;
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2.14 Proof of Corollary 7
>From Theorem 6 and Eq.87, the L.h.s. of Eq91is:

LHS = 27'((71)%2""‘ EZ; }ZB: ({j__lzg)'!P,‘qml(cos u)/.P,Lml(cos G)PJml(cos 0)sin0do (92)

But, using Eqs.67 and 57 :
T
/P,Ilm‘ (cos G)P)m‘ (cosB) sin 0d6 (93)
0

+1
! 1 mi,|m m|,|m
- W(HH)""‘(]H)‘m'/P’SLIQ\ ‘)<X>Pf(1\;l1‘| D (x)(1 - )l ax
-1

= 1 (g, 22 (T(n+1)) s 2 (nfmt
= p2fm] 1 T(n— [m|+ D (n+ [m[+ 1)~ 2n+1 (n— [m|)1°"

Therefore, Eq.92 becomes :

_ 4m monl (10— |m|)! ) jm| A,
LHS = M1 (—1) 2 WPH (COS a)&n] = 2]+ 11:)] (COSLZ)(SW (94)
in which we invoked Eq.87. This ends the proof.
2.15 Corollary 8
For any integers 1, j € N and any integer m € Z :
T27
//Y}”(O, @) Py (sinasinf cos(p — b) + cos a cos 0) sin 0d6d ¢ (95)
00
4r L T RAY
— (1" —m Jp— m .
=(-1) 2j+1 7 (arb)(sn] 2]~+1Y] (a/b)(sn]

2.16 Proof of Corollary 8
Corollary 8 is a simple consequence of Corollary 7. Invoking also Eqs.88-90, we indeed have :
27

T
//Y].’”(Q, @)Py(sinasin® cos(¢ — b) + cosa cos 6) sin 0d0d ¢
00

B - 2j+1 [(j—|m|)!
= (-1) \/: G+ [m)!
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2

T
//P] (cos@)e™ ™M P, (sinasinf cos(¢ — b) + cosa cos §) sin BdOdp
00

— (15 ""‘ —imb \m| j = |m| m AT m .
=(-1)" P; (cosa) \/2+1\/]+m|'"] (-1) 2],+1Yj (a,0)0,; (96)

2.17 Additional remarks

In the series of papers Gouesbet (2006a), Gouesbet (2006b), Gouesbet (2007b), Gouesbet
(2007a), one of the integrals required for use in the considered physical issues is Eq.95 of
Corollary 8, with however b = 0.The second integral required in the same series of papers
was given under the following form :

7'(2717 (i—€)/2
L = // 0(smasm9cosgo—l—cosacosB)YO( )sin6dbdg = | ) C,fi(cosa)Zk*e 3;j (97)
00 k=0
in which (ime)/2
—1)li—e i+2k+e)!
C]il = ( )21 (_1)k i—e€ (] |)i+€ 1 (98)
(55 = k)!1(2k +€)!(5E + K)!

where € = 0, 1 for i even,odd, respectively.

We again use the expansion of Legendre polynomials already invoked at the beginning of the
proof of Theorem 4 (Eq.42), and establish that Eq.97 becomes :

I,-]-(a) = Pi (COS a)(Si]- (99)
Then, by using :
Yo(0) = /2 4“7: 1 b (cos 6) (100)

it is easily established that Eq.100 is a special case of Eq.98 (Corollary 8) for m = 0.

2.18 Summary

In the framework of a study examining analogies between electromagnetic and quantum
scatterings, the evaluation of two integrals were required. One integral is given by Corollary
8, for b = 0, namely :

27
//Y]m (0, ¢) Py (sinasin 6 cos ¢ + cos a cos 0) sin 0dOd¢p (101)
00
4 4T
_ (_1\m —m R m X

The second integral can be obtained as a special case of this result, and can be written as :

7T 27T
//YT.O(sin asin 6 cos @ + cos a cos G)Y]Q(Q) sin 0dfd¢p = P;(cosa)d;; (102)
00
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3. Conclusion

Legendre polynomials, associated Legendre polynomials and associated Legendre functions,
are widely used in physics, and particularly in light scattering. One of the most famous
occurrences of associated Legendre functions is to be found in the Lorenz-Mie theory
describing the interaction between an illuminating electromagnetic plane wave and a
spherical particle defined by its diameter and its complex refractive index Mie (1908).
However, in this theory, only associated Legendre functions P! (or P!) do appear. In
a generalized Lorenz-Mie theory describing the interaction between an electromagnetic
arbitrary shaped beam and (again) a spherical particle defined by its diameter and its complex

refractive index, all P]’s (or P,Lm"s) may appear, e.g. Gouesbet et al. (1988), Maheu et al.
(1988).They actually appear in several places, first of all in the basis functions on which
the electromagnetic fields are expanded. Second, expansion coefficients (called beam shape
coefficients) can be evaluated by numerical integrations involving the expressions of the
electromagnetic fields and associated Legendre functions, e.g. Gouesbet, Lock & Gréhan
(2011). Associated Legendre functions also appear in many expressions generated by the
theory, for the evaluation in particular of various cross-sections, under the form of yet other
quadratures which, however, may be analytically performed, e.g. appendices in Gouesbet
& Gréhan (2011). Homogeneous spheres defined by a diameter and a complex refractive
index are not the only cases of light scattering theories in which associated Legendre functions
are involved. They are actually involved whenever the symmetries of the scattering particle
require the use of spherical coordinates, such as for multilayered spheres Onofri et al. (1995),
assemblies of spheres and aggregates Gouesbet & Gréhan (1999), or for a spherical particle
with an eccentric host sphere Gouesbet & Gréhan (2000b). May be more surprisingly,
associated Legendre functions also play an important role in spheroidal coordinates insofar
as, at the present time, beam shape coefficients in spheroidal coordinates are best expressed
in terms of beam shape coefficients in spherical coordinates Gouesbet, Xu & Han (2011).
Motivated by the successes of generalized Lorenz-Mie theories and by their numerous
applications, an effort has then been devoted to the examination of analogies between
electromagnetic arbitrary shaped beams and quantum arbitrary shaped beams, somehow
culminating in a generalized optical theorem for non plane wave scattering in quantum
mechanics Gouesbet (2009b). During this effort, one of us (G.G) encountered quadratures
involving associated Legendre functions which he never encountered before in the framework
of generalized Lorenz-Mie theories. This paper provides an analytical evaluation of these
quadratures. The reader might be interested in playing with the obtained results, using a
symbolic computation software like Maple, as we did to extensively check our derivations.
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Retarded Electromagnetic Interaction and
Symmetry Violation of Time Reversal in High
Order Stimulated Radiation and Absorption
Processes of Lights as Well as Nonlinear Optics
— Influence on Fundamental Theory of Laser
and Non-Equilibrium Statistical Physics

Mei Xiaochun
Institute of Innovative Physics, Department of Physics, Fuzhou University, Fuzhou,
China

1. Introduction

Based on the perturbation method of quantum mechanics and retarded electromagnetic
interaction, it is proved that the transition probabilities of light's high order stimulated
radiation and absorption are not the same [1]. It indicates that the processes of light's
stimulated radiation and absorption as well as nonlinear optics violate time reversal
symmetry actually, although the motion equation of quantum mechanics and the interaction
Hamiltonian are still invariable. This result can be used to solve the famous irreversibility
paradox in the evolution processes of macro-systems which has puzzled physics community
for a long time.

Einstein put forward the theory of light’s stimulated radiation and absorption in 1917 in
order to explain the Planck blackbody radiation formula based on equilibrium theory.
According to the Einstein’s theory, the parameters of stimulated radiation and absorption
are equal to each other with B, = B,,, . The same result can also be obtained by means of the
calculation of quantum mechanics for the first order process under dipole approximation
without considering the retarded interaction (or multiple moment effect) of radiation fields
[1]. Because light’s stimulated radiation process can be regarded as the time reversal of
stimulated absorption process, the result means that light’s stimulated radiation and
absorption processes have time reversal symmetry.

Nonlinear optics was developed in the 1960’s since laser was invented. Also by the dipole
approximation without considering the retarded interaction of radiation fields, nonlinear
susceptibilities in nonlinear optics are still invariable under time reversal [2]. So the
processes of light’s radiation and absorption as well as nonlinear optics are considered to be
time reversal symmetry at present. In fact, it is a common and wide accepted idea at present
that all micro-processes controlled by electromagnetic interaction are symmetrical under



20 Electromagnetic Radiation

time reversal, for the motion equations of quantum mechanics and the Hamiltonian of
electromagnetic interaction are unchanged under time reversal.

However, most processes related to laser and nonlinear optics are actually high non-
equilibrium ones. As we known that time reversal symmetry will generally be violated in
non-equilibrium processes. It is proved in this paper that after the retarded effect of
radiation fields is taken into account, the time reversal symmetry will be violated in light’s
high order stimulated radiation and absorption processes with B,; # B, , although the
Hamiltonian of electromagnetic interaction is still unchanged under time reversal.

The transition probability of third order process is calculated and the revised formula of
nonlinear optics polarizability is deduced in this paper. Many phenomena of time reversal
symmetry violation in non-linear optics just as sum frequency, double frequency, different
frequencies, double stable states, self-focusing and self-defocusing, echo phenomena, as well
as optical self-transparence and self absorptions and so on are analyzed.

The reason to cause symmetry violation is that some filial or partial transition processes of
bounding state atoms are forbidden or can’t be achieved due to the law of energy
conservation. These restrictions can cause the symmetry violation of time reversal of other
partial transition processes which can be actualized really. These realizable filial or partial
processes which violate time reversal symmetry generally are just the practically observed
physical processes. The symmetry violation is also relative to the initial state’s asymmetries
of bounding atoms before and after time reversal. For the electromagnetic interaction
between non-bounding atoms and radiation fields, there is no this kind of symmetry
violation of time reversal. For example, in the experiments of particle physics in accelerators,
we can not observe the symmetry violation of time reversal.

At last, the influences of symmetry violation of time reversal on the foundation theory of
laser and non-equilibrium statistical physics are discussed. The phenomena of producing
laser without the reversion of particle population and transition without radiation can be
well explained. The result indicates that the irreversibility of evolution processes of macro-
systems originates from the irreversibility of micro-processes. The irreversibility paradox
can be eliminated thoroughly. By introducing retarded electromagnetic interaction, the
forces between classical changed particles are not conservative ones. Based on them, we can
establish the revised Liouville equation which is irreversible under time reversal. In this
way, we can lay a really rational dynamic foundation for classical non-equilibrium statistical
mechanics.

2. The transition probability of the first order process

For simplification, we consider an atom with an electron in its external layer. Electron’s
mass is u, charge is q. When there is no external interaction, the Hamiltonian and the wave
function of electron are individually

R 2

7 . g
Hy==3-V2+U(r)  |yo)=2e "
n

t

n) 1)
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After external electromagnetic field is introduced, the interaction Hamiltonian is

v 4 7
H=-—FAp+ A%+
AT @)

Because the charge and current densities of radiation field are zero, we can take the gauge
condition V-A=0 and ¢=0 and write H' = H] + H; with

=9 4.5 U Y
1 p Hy=——A ®3)
CH 2ctu

Where ﬁ{ has the order v/c and H % has the order v /c*. In the current discussion for
light’s stimulated radiation and absorption theory, Hj is neglected generally. Because H)
has the same order of magnitude as the second order effects of nonlinear optics, it is
remained in the paper. Suppose that electromagnetic wave propagates along k direction.
Electric field strength is E=E,sin(ot—k-R). Here R is a direction vector pointing from
wave source to observation point. Both H ; and H 5 can also be written as

272 - S0 2 272 - _
A, E i(wt-k-R)  —i(wt-k-R E i2(wt-k-R)  -i2(wt-k-R
=T P ) 4ol )} -7 {A ) 4o >+2} @
u o u
we can write
H/ :ﬁleiwt+F1+ —iw t
in which
ﬁl __4k _efiEARﬁ 131+ __4qE _eil?-Rf) ®)

Because we always have EJ.E"O for electromagnetic wave, we have the commutation
relation

{m, Eoﬁ}_ihﬂﬁo_o ©

So it can be proved that E,-p and exp(ik - R) are also commutative. In this way, (6) can also
be written as

~ qEy . iR o qEy . iR
F =— - pe F+ —_ 0 . el 7
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By using perturbation method in quantum mechanics to regard H as perturbation, we
write the motion equation and wave function of system as

t

E,

i Zly)=(Fo+ 7' )ly) | )=Zaul) B¢ 1™ ) ®)

Let
a,(£)=ad? (t)+aD(t)+a? (t)+--, E, ~E, =ha,,,

Substituting them in the motion equation, we can get

ih%[uf,?)(t)-r ol (1) + aﬁ,f)(t)+..} = > (Hi, +ﬁ5mn)[u,g°>(t)+ oV (1) + a(f>(t)+..} eomt (9)

n

The items with same order on the two sides of the equation are taken to be equal to each
other. The first four equations are

ih%uf,?)(t) =0 ih%uﬁ,}) (£)= 2 Hip) (£) et (10)
n

Zhia ZHZWW a, W t+ZHlmn ay )( )ela),,,,,t (11)

Zhia ZHZmn n lwm”t +ZHlmn n )(t)elwm"t (12)

Suppose that an electron is in the initial state |I) with energy E, at time t=0, then the
electron transits into the final state |m) with energy E, at time t, we have aE,? )(t) =0,

from the first formula of (10). Put it into the second formula, the probability amplitude of
first order process is

S i(o+@,)t :| e+ [ i(@-o )t _ :|
T h(w+a,) h(e )

Where
ﬁlml =<m\ﬁ1\l> ’ ﬁfmt =<m\151*\l> :

The formula represents the probability amplitude of an electron transiting from the initial
state |I) into the final state |n) . In current theory, the so-called rotation wave approximation
is used, ie. only the first item is considered when ®w=-w,; and the second one is
considered when @ =@, in (13). But up to now we have not decided which one is the state
of high-energy level and which one is the state of low-energy level. In fact, electron can
either transit into higher-energy state |m) from low-energy state |I) by absorbing a photon,
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or transit into low-energy state |m) from high-energy state |I) by emitting a photon.
Because photon’s energy is always positive, by the law of energy conservation, it is proper
for us to think that the condition w=w,, corresponds to the situation with E, >E;, in
which an electron transits into the high-energy final state |m) from the low-energy initial
state |I) by absorbing a photon with energy ha,, =E, —E >0. This is just the simulated
absorption process with the transition probability in unit time

1 27|
Wi, =] 6(0-0,) (14)
Therefore, the condition ® =-®,,; corresponds to the situation with E,, <E;, in which an

electron transits from the high-energy initial state |I) into the low-energy final state |m) by
emitting a photon with energy -fw,, =%, =E —-E, >0. This is just the simulated

ml =
radiation process with the transition probability in unit time

1 271 |2
W(f)—)—a),,,, - hT‘Flml

S(w+ay,) (15)

So W{f} )m , and Wa(,_)w represent the different physical processes. It is necessary for us to

distinguish the physrcal meanings of W‘g )[ and W  clearly for the following

o W=—0,,
discussion. As shown in Fig.1, we image a system with three energy levels: medium energy

level E;, high energy E, (up) and low energy E, (down). The difference of energy levels
between E; and E, (up) is the same as that between E,,(down) and E;. Suppose that the
electron is in medium energy level at beginning. Stimulated by radiation field, the electron
can either transit up into high-energy level or down into low energy level. In this case,

1

(7—14),

Wb represents the probability the electron transits up into high-energy level and W

W=0y,
represents the probability the electron transits down into low-energy level.

Y En (up)
Vo-aw, B i Bin WTm:m,,”
X Ei
W‘ﬂ == W :nl ’|m WT W == Wy
- Ew (down)

Fig. 1. Electron’s transitions among three energy levels.

For visible light with wavelength 2~107m and common atoms with radius R~107"

we have k-R~107 <<1. So in the current theory, dipolar approximation expik-R~1 is
used. However, it should be noted that the ratio of magnitude between the first order
processes and the second order processes in nonlinear optics is just about 10~ . Meanwhile,
for the interaction between external fields and electrons in atoms, such as the situations of
laser and nonlinear optics, we have R~0.1~1m so that k-R=10°~10" with the macro-
order of magnitude. In fact, factor k-R represents the retarded interaction of
electromagnetic field. It can’t be neglected in general in the problems of laser and nonlinear
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optics. It will be seen below that it is just this factor which would play an important role in
the symmetry violation of time reversal in light’s absorption and radiation processes

Let R, represents the distance vector pointing from radiation source to atomic mass center,
7 represents the distance vector pointing from atomic mass center to electron, we have
R=R,+7 . For the interaction process between external electromagnetic field and atom in
medium, we have R,=01~1m, k-R;=10°~10" >>1 and k-7 <<1. If radiation fields
come from atomic internal, we have R;~0, k-7<<1. In the following discussion, we
approximately take:

e R R 5 o7 Ro {1—1'12 7-(k7)? /2} (16)
Here k =w7 /c, 7 is unit direction vector. By considering relations @, =-®,,, p =—-ihV and
(1) = o 1) =27, 1] 11 = s, (o 10 17

as well as (7), we can get

~ _ o= . h _ik-R
b | B, 1)+ By Gl o) SR8, (-7 VI |5

A 190, - qn_z uihw 22 R
F = E )——/—E,- 7V|l E -7) VIl 0
T { Al 7l1) =5 Fo {771 - =» Eq - (m|(7-7) >} (19)

The first item is the result of dipolar moment interaction. The second item is the result of
quadrupolar moment interaction and the third item is the result of octupolar moment
interaction. The wave functions of stationary states |m) and |/) have fixed parities. The
parities of operator 7 and (7 -?)2 V are odd and the parity of operator 7-7V is even. So by
the consideration of symmetry, if matrix element <m‘?‘l> #0, we would have
<m‘f~?V‘l>:0 and <m‘(f~?)2V‘l>¢0. Conversely, if <m‘?‘l>:0, we would have

(m|7 - ?V\l);ﬁO and  (m|(z- ?)ZV\Z> . Suppose (m|F|l)#0, (m|7-7V|[)=0 and
(m|(7-7 V‘l>¢0 we have Flml ¢F1mz but ‘Flml‘ ‘Flml‘ So after retarded interaction is
taken into account for the first order processes, we still have W{(U )wz = V\/(f}:)f o, ie., the

transition probabilities of stimulated radiation and stimulated absorption are still the same.

3. The time reversal of the first order process

Let’s discuss the time reversal of the first order process below. According to the standard
theory of quantum electrodynamics, the time reversal of electromagnetic potential is
A(%,t)—>—A(%,~t). Meanwhile, we have p ——p when t — —t. The propagation direction
of electromagnetic wave should be changed from k to —k under time reversal (Otherwise
retarded wave would become advanced wave so that the law of causality would be
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violated.). Let subscript T represent time reversal, from (3), (5) and (6), we have
Hip(%,t)=Hi(%,t) and Hyp(%,t)=Hj(%,t). The interaction Hamiltonian is unchanged
under time reversal. On the other hand, when t — —f, (8) becomes

9 . . Ip
_Zha‘w>T :(H0T+HT) ‘W>T ‘V/>T :zun(_t)eh

n) (20)

Let a,(-t)= af,?)(—t)-t-af,})(—t)+a,(112)(—t)+-~-and put it into the formula above, the motion
equation becomes

i) o)) -0 )

3 (it Hi) | 7 (0 (02 ) ] e

Take index replacements m —[ and n—k in the formula, then let the items with same
order to be equal to each other, we get

—ih%al(o) (~t)=0 —ih%a}”(—t) = Hypyal) (~t)e ot 22)
T
. d e —im, "1 —iw,
—zhEaf) (-t)= ZHZTZkuIEO) (—t)e " + szk“S) (—t)e 't (23)
T T
od e —iw, e —ia,
_lhE“§3)(—t) = Hyma) (<£)e ™ + 3 Ayl (—) e 24
p P

On the other hand, under time reversal, the initial state becomes ‘m) with a,(f))(—t) =04y -
Put it into the second formula of (22), we get

16n 15,
0 (o) =~ [ Hiye 't = — [y o't (25)
0 0

Because H ; is the Hermitian operator with

Ay, = (1| Hy | m) = (m| B3 |1) = A7,

we can write
o ot | P+ —iot
Hlml _Flmle +F1ml€

and get

B =(Fo) = LB 7|1y LBy (| 7V L)+ L E | (77 V] | (26
o =) =| Sl = B9+ B Gl 7[R



26 Electromagnetic Radiation

SOz )zvz>*}"ﬁ-ﬁo @)
c*u

A, ~ #* 1 il & Wt h - o *
Er=(R) = %EO~<m\r\l> +2‘7C7EO.<m\T.rv\z>

Let a,r(t) represent the time reversal of amplitude a,(t). Because the original final
state becomes |I) and the original initial state becomes |m) under time reversal, we have

(1)

ayg (£)= al(l) (—t) . So according to (25), after time reversal, the transition amplitude becomes

o 1t .. o ﬁl’mI |:ei(“’+0)mz)f _1:| Flml|: i(0—@y )t _1:|
amT(t):—.*J.Himle odt = =
ihy h(o+o,) ho-o,,) -
et o] [t a] )
- w(o-ay,) n(w+ oy, )

So the condition w=-®y,, = @,,; corresponds to the situation with E,, > E;, indicating that an
electron emits a photon with energy —hamy,, =E,, —E; >0 and transits from the initial high-
energy state |m) into the final low-energy state |I). This process is the time reversal of
stimulated absorption process described by (14). By considering (27), the transition
probability in unite time is

(1)

To=a, ~ hz

21~ |2
5(a)+ a)lm) = ?Z‘Fln1l

o ( 0=y, ) (29)

Comparing with (14) and considering the result ‘Flml , we still have

Y
1 = ‘F 1J;nl

W}{U):w = W( ) . Because we define the time reversal of stimulated absorption process as the

stimulated radlatlon process, the result shows that the transition probability of stimulated

absorption is equal to that of stimulated radiation after time reversal for the first order process

when retarded interaction is considered. The process is unchanged under time reversal.

Similarly, the condition @ = ,,, = —®,,, corresponds to the situation with E,, < E; > indicating
that an electron emits a photon with energy %a,, =E, —E, >0 and transits from the initial
low-energy state |m) into the final high-energy state |I) . This process is the time reversal of
stimulated radiation process described by (15). By considering (26), the transition
probability in unite time is

1 2, 2 2
T(w):-wmz T2 S(o-ay,)= S(o+a,) (30)
After retarded effect is considered, we also have WT(;):?@, :Wa(}:)w / for the first order

process. The process is unchanged under time reversal.

The transition relations can be seen clearly in Fig.1. There are two stimulated absorption
The initial and
and Bj,, are opposite. So they are time reversal states. The initial and final

parameters B,;, B, and two stimulated radiation parameters B, ,

ml 7 ml

final states of B,
states of B;; and Bj,, are also opposite, so they are also time reversal states. Therefore, if

B,, is defined as stimulated absorption parameter, B;, should be defined as stimulated
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radiation parameter for their initial final states are just opposite. Similarly, if B;,; is defined
as stimulated absorption parameter, B, should be defined as stimulated radiation
parameter. Meanwhile, if B,
B, (or B, ) should not be defined as stimulated radiation parameter, for they have same

(orBy, ) is defined as stimulated absorption parameter,

initial and final states and do not describe corresponding stimulated radiation and
absorption processes. For the first order process, we have B,,=B,, =B, =B,,. But as
shown below that in the high order processes, this relation can’t hold.

4. The transition probability of the second order process

The second order processes are discussed below. We write H 5= ﬁZEZi‘”l + ﬁ; e 2ot 4 ﬁo , in which

j 67253 efizkja B = q2E§ eiziE-R 2 LIZES (31)
2 2 2
200°p1 201 lony7;

When m=1 we have (m|l)=0. Suppose (m|7-F|[)=0, we have <m‘(?~?)2‘l>:
According to (16), we have

c 22 R C 22 .
B ==L R R e rl) By =0 e Al Fou=0 @)

Similarly, we suppose the initial condition is aﬁl‘)) =0, . Substituting (13) into (13) and taking
the integral, we can obtain the transition probability amplitude of the second order process

m

t t
a(z)(t):%fﬁém,ei”m’tdt+%Zjﬁﬁmna9 (t )e @unt It
0 no

ﬁ27'nl [ei(ZaHa)ml 3 1} 132+ml |:efi(2(z)7a)m1 )’ 1}

+
n(20+w,,) n(20-w,,)

. _
T (o+aw,)| 20+0,+0,, o+,

A 2 i(2o+o,+o,,) t i(o+aw,,) t
+Z FlmnFlnl € -1 e -1
)

_Z FlmnFlnl {ei(a}nﬂrwmn) t 1 ~ ei(w+wmn) t _ 1}

h2 a) Wy Wy + 0, w0+ ®,,,

A+ B (@ @y, ) (0t ) ¢
+z FlmnFlnl {e e | + e mn)
)| o

2
w (w+wnl i T Oy D= Oy

r+ T —i(20-w0,~@,, ) t )
+z o ){e (2000 =) -1 e Si(e-om) —1} (33)

2
i (a)_wnl zw_wnl_a)mn 0= Oy
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The formula contains the transition processes of single photon’s absorption and radiation
with w=xw,, as well as the processes of double photon’s absorption and radiation with
2w =*wm,,. We only discuss the absorption process of a single photon here. By rotation
wave approximation, only the items containing factor (¢ (@) _1)/ (0-w,,) are
remained. Let n=1I in the fifth and sixth items of the formula, the transition probability
amplitude is

a2 (1) _ £, (ﬁlzz - I:“ﬂz)[e-i(w-wmz)t _ 1} _ B (ﬁw - ﬁﬁl)[ (oot _ 1}
m 0=,

i no(o-w,) W20 (0= @,)

(34)

Therefore, after the second order process is considered, the total transition probability
amplitude is

e tomom)t _q f py
an(t), :“(1)(t)(0=m +a(2)(t)a)=w _t ’[ J[lJer Fuzj 35)

ml mn ml mn mi h ( O~ W,y ) ha)ml

Because we have @, =0 and (I|7|[)=0, when m =1, the first item in (18) and (19) are equal
to zero, but the second items are not equal to zero in general. By the consideration of
symmetry, the third item are also zero, or can be neglected by comparing with the second
item. So it is enough for us only to consider quadrupole moment interaction in this case. We
have

~ A h - o - = .
En-Hy :Z—yEO-<l‘r-rV‘l>cosk~Ro =B,; +iBy; (36)
Let

22 2
A} =Bj +2hw,, By + By (37)

When o =w,; we get the transition probability of the second order stimulated absorption
process

(2) 272
W, _hT‘Flml

D=y,

2 A?
1+—5L-t5(0-w, 38
{ hzwfd} ( l) 8)

The magnitude order of the revised value of the second order process is estimated below.
The wave function of bounding state’s atoms can be developed into series with form
1)~ an (0,¢)r" in  general. If (I|7-7V|}#0, we have 7-FV|I)~rd/(or)|l)~])
approximately, or (I|7-7V|l)~(I|l)~1. By taking @,, = 10", we have

2
A st B3 e P (cun ~14x10E] )

ml
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In weak electromagnetic fields with E, <<10"V /m, the revised values of the second order
processes can be neglected. When the fields are strong enough with E, ~10"2 ~10"V /m,
the revised value is big enough to be observed. The revised factor A; of the second order
processes is only related to initial state, having nothing to do with final states. On the other
hand, if the retarded effect of radiation fields is neglected with k-7~7-7=0, we have
<l‘ T- T’V‘ l> =0, the revised value of the second order process vanishes.

5. The time reversal of the second order process

The time reversal of the second order process is discussed now. Under time reversal, the initial
state becomes ag(o)(ft) =8, - By means of relations Hjp,, = H},, and Hby, =Hb,,, we get
the time reversal of transition amplitude for the second order processes according to(11)

t .
Al ()= —%Iﬁlznmeiwm dt - ZJHlleak et
0
t .
—.l_[ﬁé*mlelw'"l dt - ZJHlklak e tdt (40)
ih o
Let
“rr* o i2 —i2 o
Hb,y = F,e! +F2m13 ot + Fop 7
when m =1, we have (m|l)=0 and
.22 - 2102
N E2 .ia N E2 . .- A
By =20 2R (2 p (1) Byt = 20626 R (| 7 F 1) By, =0 (41)
cou cou

So the time reversal of transition probability amplitude of the second process is

ﬁzlml |:ei(2(u+(u,,,,)t _ 1:| Fzml |: i(20-w,)t 1:|

o2)() = ()=

h(20+w,,;) h(20-w,,)
—i(20-w, o) t —i(0-wy) t
+z 1mk Fu e " -1 e -1
w wmk) 20 = @y — 0y D=0y

ﬁ{;kﬁ{m ei(mmkﬂo,(,) b 1 ei(w+wk,) t 1
_Z 2 ) B

C I (0- o Oy + Dy w+ay

N Pt (@ +oy) t —i(o-awy) t
+z FiFi {3 -1 + 8 -1

2
T (@t o) | Ouct oy ®—ay

13,, 1:",, i(2w+a}mk+wk,) t_1 i(aH—a)k,) t_1
+Y S Lnk 1 ){3 _¢ (42)

2
T (0t o) | 20+ 0, +oy O+ wy
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When o=

ml 7

we take k=m in the third and fifth items of the formula. Also by rotation
wave approximation, the time reversal of probability amplitude is

. (t) Flml (F{mm Flmm)|: r(w—w,,,l)f _ 1:| Flnﬂ (Flymm Flmm)|: I(w wml)t _ 1:| (43)
a,
mT'\")p=w,, ~ h2a)(a) -, ) hza)ml (Cl) - a)ml)

The time reversal of the total stimulated absolution process is

| (-
1 2
I T i e e B

#F; , we have

#a,, (t)w:wm/ ,

the transition probability amplitude can not keep unchanged. Similarly, by considering
®,,, =0 and from (26) and (27), we have

mm

Comparing with (34), because of F

amT (t)a) o,

‘ml

o qh r = . 7 * . R H
B — B = aEO -(m|7 -7V|m) cosk-R,=-By,, +iB,, (45)
Let
2 _p2 2
Am Blm - 2h(omlBlm + BZm (46)
When o =w,,; , the time reversal of stimulated absorption probability of second process is
0 _2mpe )y, A | L2 Rl A s 47
To=0,, — h2 hzwil (a) - wml) - hT 1ml‘ + hzwfﬂ (w - wml) ( )

The revised factor A,, is also only relative to initial state. Because A;, # A;, we have

W(Z) (ﬁlmerl) * W}w) ®,, (ﬁlml,A;n) (48)

W=y,

The second process of stimulated absolution violates time reversal symmetry. The
parameter of symmetry violation of the second order process can be is defined as

W @ (a2 a2
ﬁ = To= mml(Z) D=0 ~ ( m2 ) ~ 10726 E[% (49)
Ww:wml o ml

When the radiation fields are strong enough with E, = 102 ~10%V /m, the time reversal
symmetry violation of the second order process would be great.

Meanwhile, by means of (33) and (42), for the second order process with o=- the

ml 7/
transition amplitude and probability can be obtained with
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a a a i mi t
2) _ Flml(Flll _Fﬂz)[31(wm /) _1}

(
a:’(t 50
" ( )wz—wm, hza)ml (0) + a)ml) ( )
2 271 |2 A?
W, - ?\Flm, {1 + 7h201)2 }5(@ + @) (51)
ml
Their time reversals are
(2) ﬁ{ml (ﬁlymm - ﬁ{;zm ) |:ei(m+wml)t - 1i|
[ 5 (52)
OOt h (2] (a) + a)ml)
2 27 P2 A"
7("ru)=—wm1 = hT Flml {1 + hz(’:zl }5((0 + wml) (53)

Also, the process violates time reversal symmetry. It is easy to prove that for the second
order processes of double photon absorptions with 2w =+w,,, the transition probabilities
are unchanged under time reversal. The symmetry violation appears in the third order
processes.

6. Accumulate solution of double energy level system and its time reversal

What has been discussed above is that the radiation fields are polarized and monochromatic
light. It is easy to prove that when the radiation fields are non-polarized and non-
monochromatic light, time reversal symmetry is still violated after the retarded effect of
radiation field is taken into account in the high order processes. But we do not discuss this
problem more here. The approximation method of perturbation is used in the discussion
above. In order to prove that symmetry violation of time reversal is not introduced by the
approximate method, we discuss double energy level system below. The wave function of
double energy lever system can be written as

i

i
) =a(t)e " 1)+ b(t)e 7 |2) (54)
Thus the motion equations of quantum mechanics are
iha(t) = Hya(t)+ Hipe 'b(t)  inb(t) = Hye''a(t)+ Hab(t) (55)

For simplicity, we only consider the first item of the Hamiltonian (2) to take H 1#0, H 5=0
and H'=H). By taking dipolar approximation with k-R=0, we have
(1/A'|1)=(2|A’|2) =0 . By the rotation wave approximation again, the motion equations
becomes

i(t)—i(0—oy )a(t)+ A2a(t)=0  b(t)+i(@—ay)b(t)+A%(t)=0 (56)
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A2

Here A:‘Fﬂ‘ / h?. These two equations have accurate solutions, i.e., the so-called Rabi
solutions. Suppose that atom is in the state |1) at beginning with a(t=0)=1 and
b(t=0)=0, we can get [1]

2 4A%sin? (a)—a)21)2+4A2t/2

b(t 57

‘ ( )‘ (a)—a)21)2+4A2 ©7)
If the atom is in the state |2) at beginning with b(t=0)=1 and a(t=0)=0, we have

‘a(t)‘z _ 4A%sin® (0 - @y )2 +4A%t)2 8)

(0- a)21)2 +4A?

So for the Rabi process, the probability that atom transits from |1) into |2) is the same as
that atom transits from |2) into |1) . The processes are symmetrical under time reversal. In
fact, let t — —t in (56), we get

(=) +i(@—y )a(~t)+ Via(=£) =0 b(-t)=i(@=-0y)b(-t)+V?b(-)=0  (59)

Comparing these two formulas with (56), we know that as long as let a(—t)=b(t) and
b(—t)=a(t), the motion equations are the same under time reversal.

However, if retarded effect is considered with k-R#0, we have <1\I:I’ 1>¢O and
(2|H"|2) # 0. By taking H; #0, Hj =0 similarly, we have
. . 1 it o —iot 1 rr a1 .
a(t)—z{ﬁ[(a)—a)zl)ﬂze —(@+ @y ) Fpe ]—h(Hll+H22)}a(t)
12
H, | ~
_{hﬁlilz [(a)—a)m)l:ue’“’t —%(a)+ @y ) Fpe ’“’t}
D2 ot Pt —iw 1m0 o1y
7(525 F_Ehe ’)+?(H11H22—H12H21)}a(t)=0 (60)

1 . 1 ~ — 1 I~ i g r 3
b(t)+z{I:F[(a)—a)21)Ffze O (@+ oy Fpe™ |- (Y +sz)}b(t)
12

’

_{ Hy [(ﬁ)—wn)ﬁfze_w _%(a)+w21)ﬁlzeiwt:|

hH.,

i =i 1 yr Ly Sy 1y
+%(F12€ “ ~Fpe lwt)+h7(H11sz _H12H21)}b(t)20 (61)
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The equations have no accurate solutions in this case. Under time reversal, we have t — —t,
Hpp=Hy > Epp=Ey » B, =5, the formulas above become

T —io rr i 1o yr* .
. [(“"%1)51‘3 '~ (o+an)Ee tJ—h(Hn““sz)}”(_t)

iz'(—t)+i{ﬁl*

21

_{hHl; [(a) w21)F21e “’t—g(a)-ra)m)l—“me’“’t}
@2 _iw 1+ i 1 rr* Lt et Lyt
+;(F21€ "~ Fe t) hT(HllHZZ_HﬂHZl)}u(_t):O (62)

[(a) oy ) Bje (a)+w21)132’16i“”}—(ﬁﬁ+ﬁ’£)}b(—t)

i;(_t)_i{Hl

21

lAi '2*2 |: 1+ jiot 1 o —ia)t:l
- — - F e w + @ E.e
{hHZl ( 21 ) 21 7 ( 21 ) 21

D (2 i ’ 0] 1 Cprt Lyt Cprt Lyt
+;(le“—’1 ' inrel t) ;(H11H22—H21H12)}b(_t):0 (63)

Because of Hj, #Hy,, Fy #E5 and Fy # B, even by taking a(~t)—b(t), b(~t)—a(t),
the motion equations can’t yet keep unchanged under time reversal. So after retarded effect
of radiation field is considered, the double energy level system can’t keep unchanged under
time reversal. It means that symmetry violation of time reversal is an inherent character of
systems, not originates from the approximate method of perturbation.

7. The time reversal of the third order process of double photons

According to (33), by considering rotation wave approximation, when 2o = w,,; we have the
transition probability amplitude of the second order process of double photon stimulated
absorption

e—i(Zw—wmI )t -1

a(Z)(t)Z(u w, _|:

" = n(20-w,,)

(64)

So the total transition probability of stimulated absorption of double photons in the first and
second processes in unit time is

2) 2
W2(0)=(Umz - 7"12 {

o+
FZml - Flmm

4 o+
i n2w?
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ha) Re‘:(FZmZ) ﬁltnl(ﬁﬁl _ﬁltnm)}}é‘(zw_wml) (65)

Here “Re” represents the real part of the function. Similarly, we can obtain the time
reversal of transition probability of stimulated absorption of double photons in the second
process

|: e 1(210—wn,,)t _1i| 21: I(F F1’+ )
2 A 1m mm
( )( )Zm o, = F

i ow n(20-w,,) 2mt + ho,, (66)
We have relations
‘ﬁz';l “- ‘ﬁzmz‘z ‘ﬁf:nl‘z =|E ﬁl’ml = (ﬁltnl)*
2 Tt = 2 1*ml E 2ml = (ﬁ 2 ) E Sl = E 2*ml (67)

The time reversal of total transition probability of stimulated absorption of double photons
in the first and second processes is

2 2 4 A 121A ~ 2
WT("Z)a):w - h { FZml + 71270),2711‘1:1’”1 ‘Flll - Flmm
ha)m, Re|:F2mlFlml (Flll - Flmm):|}5(za) - a)ml) (68)

According to the formulas (18), (19) and (32), we have

(FZerl) Fu (Ffzz - Flerm) = By Frm (Fuz - Flmm) (69)

SR e 2 A 2 e 12 a2 qa oA P2
as 2W€H as ) FZml‘ = ’ ‘Flml - ’ ‘Flll _lem = _lem , we have
W}Z)mz o :W2( a))= o, 50 there is no symmetry violation of time reversal in the first and

second order processes of double photons. We should consider the third order process.
According to (12), the transition probability amplitude of the third order process is

ZIHZWW n € mtdt"' ZJ.Hlmn n e m"tdt (70)

By taking the integral of the formula, we can obtain the probability amplitude of the third
order processes. The result is shown in appendix. For the double photon absorption
processes with 2@ = w,,;, by rotation wave approximation, the probability amplitude and
transition probability in unit time are individually
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Comewl 1| pe (pr g+ V(R _F
{ ¢ 2ot 1} 4F1+,411(F1+ll _Flt”m)(Fl” _Ff”)

() _ 71
am ( )Zlu:mml h(zw_wml) h2 m] ( )
4(1+4A2?
() _27 a0 2 ( ! ) B+ PIp
20=0,, _hT F;ml‘ + thjﬂ Ffml Y _Fltnm
Re|(1+i24 V(B ) B (B, — B 5(2w-
ho, e[( 1 z)( 2ml) 1ml( 11 1mm)i|} (20-0,) (72)

Here iA; = ﬁw - ﬁfzz . On the other hand, by taking k — j in (24), we can get the time reversal
of (70)

a(Tig(t): ZIHsz]] —t)e' " dt - - mej ])( ) -
j

By C0n51dermg relations Hm] Hz]zl Hm] Hl],, Flm, _(Flml) ﬁlm,—ﬁfm,, ﬁ2ml —(ﬁZm,)
and Fjf,=F, , as well as by the same method to do integral and take rotation wave
approximation,, we get the time reversals of probability amplitude and transition
probability in the third order process of double photon absorption individually

—i(20-m,, )t _ . ., R
a " (t) =
T 20=0,, h(Za)— a)ml) 202

Dr]

*

i(20-a, )t A A . A N
e -1 % % %
|: :| 4Flml (Flll - Flmm )(Flmm - Flerm)

— h(20) o l) hZWil (74)
2
WO 2T p 4(1+4Am)ﬁ T
T20=0,, h2 2ml hzaﬁﬂ 1ml 1mm
- Re{(l +i2A,,) ByiFry (Ffl, ~Fom mﬁ(zm ~ @) (75)
ml

Here iA, =F,,, —F',, . Comparing with (72), we know that the difference A, # A, leads
to time reversal symmetry violation. But if the high order multiple moment effects are
omitted, symmetry violations of time reversals in the third order processes would not
exist.
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8. Sum frequency process and its time reversal

The process of sum frequency process in non-linear optics is that an electron translates into
higher energy lever |m) from low energy level |I) by absorbing two photons with
frequencies @; and @, individually, then emits out a photon with frequency @; =, + ®,
and translates from higher energy level |m) into low energy level |I) again. Suppose that
incident light is parallel one containing frequencies @;, @, and w; =, +®,, and the
strength of electrical field is EO, the interaction Hamiltonians between electron and
radiation field are

S n et A e 3 e i n
Hi:;(lfue B ) '2:2( ’»t+Fﬁe"“"A‘t+FM) (76)
Here
A E ik, R ~ A E A+ ik, R
k= _217 e Ry = - T pretk 77)
wH 20,1
N 2p2 ) 22 2p2
FZ/?. — q Eg e—szﬂ 2—*—1 _ q 2[) EIZk‘-'R FO/?. _ q . 0 (78)
207 2051 wyu

When we calculate probability amplitude, the result corresponds to let @ - ®; and take
sum over index A in (33) and the formula in the appendix of this paper. For the process an
electron absorbs two photons with frequencies @, and @,, transits from low energy level
|1} into high energy level |m), transition probability corresponds to let 2w = w, + @, = @,, in
(33) of double photon absorption process. When the electron transits back from high energy
level |m) into low energy level |I) by emitting a photon with frequency @, after the
retarded effect and high order processes are considered, according to (47), the transition
probability is

@ _27;
Wa’3=“’ml - hz

A/Z
{l + PER }5(503 - a)m,) (79)
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Therefore, for the sum frequency process that an electron translates into state |) from state
|I) by absorbing two photons with frequencies @, and ,, then translates back into
original state |I) from state |m) by emitting out a photon with frequencies ; = w, + , , the
total transition probability is
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Meanwhile, according the calculation in (38), after the retarded effects and high order
processes are considered, the transition probability that an electron transits from state |I)
into state |m) by absorbing a photon with frequency ; is

P 27 A
WY("wiza)m, = hT‘Flml
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So for the time reversal of sum frequency process that an electron absorbs a photon with
frequency ; and transits from state |I) into state |m), then emits two photons with
frequencies @, and ®,, and transits back into original state |I), the total transition
probability is
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Similarly, because of A; # A,,, sum frequency process violates time reversal symmetry.

By the same method, we can prove that the other processes of non-linear optics just as
double frequency, difference frequency, parametric amplification, Stimulated Raman
scattering, Stimulated Brillouin scattering and so on are also asymmetric under time
reversal. The reason is the same that the light's high order stimulated radiation and
absorption processes are asymmetric under time reversal after retarded effect of radiation
fields are taken into account.

9. Non-linear polarizations and symmetry violation of time reversal

What is discussed above is based on quantum mechanics. But in non-linear optics, we often
calculate practical problems based on classical equations of electromagnetic fields. So we
need to discuss the revised non-linear polarizations when the retarded effect of radiation
field is taken into account. According to the current theory of nonlinear optics, polarizations
are unchanged under time reversal. This does not coincident with practical situations. The
reason is that current theory only considers the dipolar approximation without considering
the high order processes and the retarded effects of radiation fields. We now discuss the
revision of non-linear polarizations after the retarded effect of radiation fields and the high
order perturbation processes are taken into account.
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Let B,, represent the stimulated absorption probability of an electron (unit radiation
density and unit time) transiting from initial low-energy state |I) to final high-energy state
|m), By, represent the probability of stimulated radiation of an electron (unit radiation
density and unit time) transiting from the initial high-energy state |n) into the final low-
energy state to |I), we have

B,, \D

ml 1+Z’ ) Blm :(Bml)T ‘Dml‘ ;,nI) (83)
Here D,, is the dipolar moment of an electron. We have 4, # A, and B,, # B,,, in general,
i.e., the parameters of light’s stimulated radiation and absolution are not the same. It also
means that the nonlinear optical processes would violate time reversal symmetry in general.
Let D, =+1+4,D
considered, Dj, =1+ 4,D,, representing the time reversal of D,

.1 Tepresenting the revised dipolar moment after retarded effect is

we have 4, # 4, and

(n)

e of

ml 7
D, #D;,, in general. Therefore, as long as we let D,; — D,,; in the current formula Zi

non-linear polarizations, we obtain the revised formula after the retarded effect of radlatlon
fields and the high order perturbation processes are taken into account. Correspondingly,
we let D,, — D}, and obtain the time reversal formula ;(g})k . It is obvious that non-linear
polarizations can not keep unchanged under time reversal. For example, for the non-linear
polarizations of the second order processes, we have
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In general, we have D,, =D, and Zz(;i) # Z%i;“ so we have ;(1(1"),( # ;(%])k Therefore, the

polarization formula of electrical medium and its time reversal are
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We have Pr #P in general. So the motion equation of classical electrical field and its time
reversal are also asymmetrical in general with forms
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Because (86) ~ (88) are the basic equations of nonlinear optics, we can see that the general
nonlinear optical processes violate time reversal symmetry.
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In fact, by analyzing nonlinear optics phenomena without complex calculations, we can
know the irreversibility of nonlinear optical processes. Although the irreversibility concept
is not completely the same as that of the asymmetry of time reversal, they coincide in
essence. So let’s analyze some practical examples to exposure the irreversibility of nonlinear
optics processes below.

10. Irreversibility of nonlinear optics processes

As we know that the processes of linear optics such as light’s propagations, reflection,
refraction, polarization and so on in uniform mediums are reversible. For example, light’s
focus through a common convex mirror shown in Fig.6. When a beam of parallel light is
projected into a convex mirror, it is focused at point O . If we put a same convex mirror at
point B and O is also the focus of convex mirror B, light emitted from point O will
become a beam of parallel light again when it passes the convex mirror B. The process that
light moving from O — B can be regarded as the time reversal process of light moving from
A — O. It is obvious that the process is reversible. The second example is that a beam of
white sunlight can be decomposed to a spectrum with different colors by a prism. When
these lights with difference colors are reflected back into prism along same paths, white
sunlight will be formed again. The third example is that a beam of light can become two
different polarization lights with different propagation directions when the light is projected
into a double refraction crystal. If these two polarization lights are reflected back into the
crystal along same path again, the original light is formed. All of these processes are
reversible. But in the processes of non-linear optics, reversibility does not exist. Some
examples are shown below.

10.1 Light’s multiple frequency, difference frequency and parameter amplification

As shown in Fig.2, a beam of laser with frequency o is projected into a proper medium and
proper phase matching technology is used. The light with double frequency 2 is found in
out going light besides original light with frequency @ . If the lights with frequencies @ and
2w are reflected back into the same medium, as shown in Fig.2, they can’t be completely
synthesized into the original light with a single frequency ® . Some light with frequency o
will become light with multiple frequency again by multiple frequency process and some
light with frequency 2@ will become the light with frequency @ by difference frequency
process. Meanwhile, some light with frequencies @ and 2@ will penetrate medium without
being changed as shown in Fig. 3. So the original input light can” be recovered and the
reversibility of process is broken. The situations are the same for sum frequency, difference
frequency and parameter amplification processes and so on.

10.2 Bistability of optics [3]

As shown in Fig. 4 and 5, the processes of optical bistability are similar to the polarization
and magnetization processes of ferroelectrics and ferromagnetic. In the processes the
hysteretic loops are formed between incident and outgoing electrical field strengths. In the
polarization and magnetization processes of ferroelectrics and ferromagnetic,
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electromagnetic fields changing along positive directions can be regarded as the time
reversal of fields changing along negative directions. There exists electric and magnetic
hysteresis. The hysteretic loops are similar to heat engine cycling loops. After a cycling, heat
dissipation is produced and the reversibility of process is violated.

Fig. 2. Process of light’s multiple frequency

20 +— — 2

) +— lj—— (@

Fig. 3. Time Reversal process of Light’s multiple frequency

L 7,=20.09MW/em? .

107/ 1

Fig. 4. Optical bistability of nitrobenzene
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0.5uW

Fig. 5. Optical bistability of mixing type

10.3 Self-focusing and self-defocusing processes of light [4]

Medium’s refractive index will change nonlinearly when a beam of laser with uneven
distribution on its cross section, for example the Gauss distribution, is projected into a
proper medium. The result is that medium seems becoming a convex or concave mirror so
that parallel light is focused or defocused. This is just the processes of self-focusing and self-
defocusing of lights. The stationary self-focusing process is shown in Fig.7. Parallel light is
focused at point O . Then it becomes a thin beam of light projecting out medium. We
compare it with common focusing process shown in Fig. 6. If the self-focusing process is
reversible, the light focused at pint O would become parallel light again when it projecting
out the medium as shown in dotted lines in Fig.7. But it dose not do actually. So the self-
focusing process is irreversible. And so do for the self-defocusing process of light.

Fig. 6. Focusing process of light.

Fig. 7. Self-focusing process of light.
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10.4 Double and multi-photon absorption [5]

In double absorption process of photons, an electron in low-energy level will absorb two
photons with frequencies @, and ®,, then transits to high-energy level. But if the electron
at high-energy level transits back to low-energy level, it either gives out only a photon at
frequency ;= +@,, or two photons at frequencies @; # @, , @) # ®,in general. It will
not produce two photons with original frequencies @, and ®,. Double photon absorption
process is irreversible. And so is for multi-photon absorption.

10.5 Photon echo phenomena [6]

Under certain temperature and magnetic field condition, a beam of laser can be split into
two lights with a time difference by using a time regulator of optics. Then two lights are
emitted into a proper crystal. Thus three light signals can be observed when they pass
through the crystal. The last signal is photon echo. This is a kind of instant coherent
phenomena of light. If these three lights signals are imported into same medium again, they
can’t return into origin two lights. Either three signals are observed (no new echo is
produced) or more signals are observed (new signals are produced). In fact, besides photon
echo, there are electron spin echo, ferromagnetic echo and plasma echo and so on. All of
them are irreversible and violate time reversal symmetry.

10.6 Light’s spontaneous radiation processes

As we known that there exist two kinds of different processes for light’s radiations, i.e.,
spontaneous radiation and stimulated radiation. However, there exists only one kind of
absorption process, i.e., stimulated radiation without spontaneous absorption in nature. An
electron can only transform from high energy level into low energy level by emitting a
photon spontaneously, but it can not transform from low energy level into high energy level
by absorbing a photon spontaneously. So the processes of light's absorptions themselves are
obviously asymmetrical under time reversal.

11. Influence on the fundamental theory of laser

The influence of higher order revision on the fundamental theory of laser is discussed
below. Let us first discuss the double energy level system. Let N; represent the number of
electrons on lower energy level and N, represent the number of electrons on higher energy
level. With higher order revision, we have B;, # B,; . Under the circumstance of having no
electron population revision N, <N, as long as B, is larger enough than B;,, we still
have B, N, > B;,N; . This means that without the reversion of electron population, laser can
still be produced. At present, many experiments have verified this result [7]. In fact, the
number of electrons on an energy level can not be determined directly at present. What can
be determined by experiments is the number of photons emitted by atoms. And the
numbers of photons are calculated by utilizing pB,;N,, pB;,N; and A, N, . By considering
the high order retarded effect of radiation fields, the condition of stimulated amplification to
produce laser should be changed from N, > N; to BN, > B;,N; .
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Secondly, according to the current theory, we must have at least three energy levels to
produce laser. For the systems with two energy levels, there is a so-called fine balance with
B,Nyp(v) = Ay Ny + By Nyp(v) . If By =B,y and Ay =ky; By, we have

N, P
2 <1 89
Ny (P+K21) (89)

That is N, <Nj. In this case, we do not have population reversion, therefore no laser is
produced. According this paper, suppose we still have A, =k,;B,;, when the balance is
reached, we still have

N, _ pBp

90
Ny (P+K21)Bz1 ©0)

Because of By, #B,, as long as relation pBj, >(p+ky )By is satisfied, we still have
N, >N; so that population reversion can still be caused. But in this case, we have
B,;N, < B;;,N; . That is to say, for the steady system of double energy levels, even under the
condition of population reversion, laser can still not being produced. For the non-steady
system of double energy levels, we have two cases

dN
7dt2 =B;,N1p—AyN, =By Nyp >0 91)
dN
th = B1N1p = Ay Ny =By Nyp <0 92)

When dN, /dt>0, we have B;,N;p>AyN,+ByN,p, so B;,N;p>B,N,p, no laser is
produced. When dN, /dt<0, we have B;,N;p<AyN,+ByN,p. In this case, if
BN p < By N,p, laser can be produced. If B;,N;p > B,;N,p , laser can be produced.

Next, we discuss the influence on the system of three energy levels. The standard stimulated
radiation and absorption process in the system of three energy levels is shown in Fig.8. In
the current theory, however, the processes to produce laser is actually simplified as shown
in Fig 9. By analyzing the difference between them, we know the significance of this paper’s
revision. According to Fig.8, when particles which are located on ground state E; at the
beginning are pumped into E; energy level, they can transit into E, energy level through
both radiation transition and non-radiation transition. The population reversion can be
achieved between E; and E,, so that the laser with frequency @, can be produced.
Comparing with Fig.8, the process shown in Fig.9 omits the spontaneous radiation and
stimulated radiation transitions, as well as particle’s transition from E, level into E; level.
According to the Einstein’s theory, we have B;; =By . The possibility is the same for a
particle transiting from ground state into E; energy level and transiting from E; energy
level back into ground state. Suppose that the number of particles transiting in unit time
from ground state into E; energy level is p(v;3)B;3N; . There will be pByN; particles
transiting back to ground state from E; energy level by stimulated radiation, and
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A3 N; =k3B31N; particles transiting back to ground state from E; energy level by
spontaneous radiation. Therefore, most particles which have transited to E; energy level
will come back to original ground state by emitting photons with frequency s, so that
population reversion between E; and E, energy levels will be affected greatly. Meanwhile,
because of By = Bj,, some particles on E, energy level coming from E; energy level will
transit back into E; energy level by stimulated absorption, so that population reversion
between E; and E, will also be reduced. These results indicate that the Einstein’s theory is
only suitable for equilibrium processes, rather than the non-equilibrium process of laser
production.

The current theory of laser uses a fussy method to avoid theses problems. The probability a
particle transits back to ground state from E; energy level is not considered directly. In
stead, we use a pumping speed R replaces p;3B3 N — (013 + k31 ) B3y N3 . On the other hand,
the non-radiation transition is used to replace (py; + k3,) B3, N3 — p3B3, N, . In this way, the
complexity of process is simplified.

Ez
Bza| Baz| Aaz
Ez
Bis| Bay| Aag| Biz| Bay| Agy
Ei
Fig. 8. Transition among three energy levels.
Ea
Ez
Bia| Bai| Apy
E1

Fig. 9. Simplification of Fig.8.

According to the revision in this paper, we have B,; # B,,, . We can provide a simpler and
rational picture for the production of laser in the system of three energy levels. In this case,
we can have By <<Bj3 and (p3 +&3;)B3 N3 << p13B3 Ny, so that only a few particles can
transit back to ground state from E; energy level by stimulated radiation and spontaneous
radiation after they transit from ground state into E; energy level. Most of particles on Ej
energy level will transit into E, energy level. On the other hand, because of B,; << By, , we
have py3ByN, << (3 + k3, )Bs,N3 . Most of particles can not transit back into E; energy
level after they transit to E, energy from E; energy level. Meanwhile, because of
B,, << By, it is difficult for particles on ground state to transit into E, energy level from
ground state by stimulated absorption, but is easy to transit to ground state from E, energy
level by stimulated radiation. Therefore, a high effective and ideal laser system of three
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energy levels should satisfy the conditions B, <<Bj,, Bs; <<Bjz and By <<Bj,. It is
obvious that as long as B, # B;,,, we can simply and rationally explain the production of
laser of the system of three energy levels.

In this way, we can also well explain the phenomenon of optical self-transparence and self
absorptions [8]. Experiments show that in strong electric fields, some medium can have the
saturated absorption of light, so that the medium will become transparent for light. The
current explanation of saturated absorption is that the number N, of particles located on
low energy level becomes smaller and the absorption of light is proportional to the number
of particles located on low energy level, therefore the stimulated absorption becomes
smaller. Meanwhile, the transmission light increases due to the stimulated radiation of
particles located on high energy level, i.e., the self-transparence phenomena of saturated
absorption appears. The problem of this explanation is that if the number N; of particles
located on low energy level decreases and the number N, of particles located on high
energy level increase, the spontaneous radiation will also increase. When stationary states
are reached, we always have A, N, photons emitted in the form of spontaneous radiation
in unit time. Because spontaneous radiation is in all directions of space, it is difficult for
medium to achieve real transparence.

~E;. If a,;<0,in
strong field, we may have ¢,,; ~-1 for some mediums, so that the stimulated absorption

According to the revised theory of this paper, the revised factor is ¢,

parameter B, is very small even becomes B,,; ~ 0. In this case, even though a great number

ml
of particles are still located on low energy level, the saturated absorption of light is still
possible so that the medium become transparence. However, according to current theory,
we have B,, ~ E5 . When E, increases, the stimulated absorption parameter will increase so
~E; - light's
absorption for some mediums will increase greatly in strong field. This is just the

that it is impossible for us to have B,; ~0. Conversely, if «,;>0 with «,,
phenomena of self absorption. In the current non-linear optics, we explain the phenomena
of self absorption with the absorptions of double photons or multi-photons, as well as
stimulated scattering. Based on this paper, besides the absorptions of double photons or
multi-photons, the process of single photon can also cause trans-normal absorption. It is
obvious that the revised theory can explain theses phenomena more rationally.

12. Discussion on the reasons of symmetry violation of time reversal

We need to discuss the reason of the symmetry violation of time reversal In the paper, semi-
classical method is used, i.e., quantum mechanics is used to describe charged particles and
classical electromagnetic theory is used to describe radiation fields. The limitation of this
method is that spontaneous radiation can not be deduced automatically from the theory.
The spontaneous radiation formula has to be obtained indirectly by means of the Einstein’s
theory of light's radiation and absorption. Strictly, we should discuss the problems using
complete quantum theory, from which we can deduce spontaneous radiation probability
automatically.

However, as we known, except the spontaneous radiation, the results are exactly the same
by using both the semi-classical method and the complete quantum method to calculate
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light's stimulated radiation and absorption probabilities. It also means that if we use
complete quantum mechanics to discuss light’s stimulated radiation and absorption, time
reversal symmetry will also be violated after the retarded effects of radiation fields are taken
into account. It is just the spontaneous radiation which indicates the asymmetry of time
reversal in the processes of interaction between light and charged particles, for there exits
only light’s spontaneous radiation without light's spontaneous absolution in nature. This
result is completely asymmetrical.

In fact, in complete quantum mechanics, we use photon’s creation and annihilation
operator @* and 4 to replace the factor —gE, /2wu in semi-classical theory. This kind of
correspondence does not change the results of time reversal symmetry violation in
calculation processes. The problem is that if photon’s creation or annihilation operators are
used, some complexity and problem will be caused in high order processes so that it may be
too difficult to calculate. So in the problems of light’s stimulated radiation and absorption
and nonlinear optics, we use actually semi-classical or even complete classical theory and
methods and always obtain satisfied results at present.

Because the interaction Hamiltonian and the motion equation of quantum mechanics keep
the same under time reversal, what causes the symmetry violation of time reversal? The
method of rotation wave approximation is used in the paper. Does this approximation
method cause the symmetry violation of time reversal? Let’s discuss this issue in the
following.

Suppose that micro-states are described by ‘1//) and ‘¢> . Their time reversal are ‘y/T> = T‘y/>
and|¢;)=T|¢). Suppose that the interaction Hamiltonian remains the same under time
reversal, according to quantum mechanics, we have the so-called detail balance formula

(wflg)=(or | Alyr) (93)

It indicates that the probability amplitude keeps the same under time reversal in the
quantum transition process. For the problem of light’s stimulated radiation and absolution,
if the radiation field is only one with a single frequency, the interaction Hamiltonian is

H=F+Fe®! +Fe ™! +F et 4 Fre20! (94)
Meanwhile, if only a single particle state is considered, we have
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Substitute (94) and (95) into (93), we obtain
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The formula is the sum of multinomial. It means that the total probability amplitude is
unchanged under time reversal. However, by the constraint of energy conservation law, in
the formula above, only a few items which satisfy the condition E,, -E, =+nhio
can be realized really. Those items which do not satisfy the condition are forbidden actually.
Keeping the items which satisfy the condition of energy conservation and giving up the
items which do not, the procedure is just the so-called rotation wave approximation. It is
obvious that the two sides of equation (96) will not equal to each other after going through
the procedure, i.e., the symmetry of time reversal will be violated.

The paper calculates the transition and time reversal problems of partial items
corresponding to the operators Fe™® and Ffe under the situation n=1. Because (68)
can not be accurately calculated, we use approximation method and let
a,(t)= agg)(t)-ra,(;)(t)-ra,(j )(t)+~-~ . For the first order approximation, we have
a,(t)= al? )(t)+u$ )(t). Suppose that an atom transits from state /) into state m), we get
transition probability (14) and its time reversal (29). It indicates that the first process is
unchanged under time reversal after retarded effect of radiation field is considered. For the
(2

second processes, let a,(t)= al?) (t)+ all (t)+a,

N )(t) and assume in the same way that an

atom transits from state [) into state m), we get (38) and its time reversal (47). The result
violates the symmetry of time reversal and the symmetry violation is relative to the
asymmetry of initial states of bounding state atoms before and after time reversal. The
uniform values of the Hamiltonian operator for the initial states of an atom before and after
time reversal are not equal to each other. Therefore, one reason that causes the symmetry
violation of time reversal is that the condition of energy conservation forbids some
transition processes between bounding state atoms, so that realizable processes violates time

reversal symmetry with

Wa):ia),,,, (Flml) + WZw:iwm, (Flml’Al) + WSw:ia)m, (Flml’Al) e

A ~ , o ,
# WTa):irom, (Flml) + WTZa):ia)ml (Flml /Am) + WT3a):irum, (Flml 'Am ) +e (97)

Meanwhile, for concrete atoms, the other restriction conditions just like the wave function’s
symmetries should be also considered. So only a few and specific transitions can be
achieved actually. Most processes in (96) can not be completed. These realizable processes
are just what we can observe and measure. They are irreversible in general. Therefore, the
symmetry violation of time reversal in the filial or partial processes of light’s stimulated
radiation and absolution do not contradict with the fine balance formula (93) actually.

On the other hand, the symmetry violation of time reversal is also related to the asymmetry
of initial states of bounding state’s atoms before and after time reversal. For the interaction
between radiation fields and the non-bounding state’s atoms with continuous energy levels,
there exists no symmetry violation of time reversal. In this case, there is no the asymmetry
problem of the initial states before and after time reversal. This is why we can not find
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symmetry violation of time reversal in the particle collision experiments for changed
particles created by accelerators are non-bounding ones.

Meanwhile, there is a difference of negative sign between A; shown in (37) and A;, shown
in (46). This difference is caused by the interference of amplitudes between the first order
and the second order processes before and after time reversal. But if the retarded effect of
radiation field is neglected, the processes of light’s stimulated radiation and absolution will
be symmetrical under time reversal. So the reasons of symmetry violation of time reversal
are caused by multi-factors and are quite complex.

13. Influence on non-equilibrium statistical mechanics

As well-known that although classical equilibrium state statistical physics has been a very
mature one, the foundation of non-equilibrium state statistical physics has not be
established up to now day. The key is that the evolution processes of macro-systems
controlled by the second law of thermodynamics are irreversible under time reversal, but
the processes of micro-physics are considered reversible. Because macro-systems are
composed of micro-particles, there exists a sharp contradiction here. This is so-called
reversibility paradox which has puzzled physics community for a long time [9]. Though
many theories have been proposed trying to resolve this problem, for example, the theories
of coarseness and mixing current and so on [10], none is satisfied.

The significance of this paper is to provide us a method to solve this problem. We
known that macro-systems are composed of atoms and molecules, and atoms and
molecules are composed of charged particles. By the photon’s radiations and
absorptions, charged particles of bounding states and radiation fields interact.
According to the discussion in the paper, after the retarded effects of radiation fields are
considered, the time reversal symmetry of light’'s stimulated radiation and absolution is
violated, even though the interaction Hamiltonian is unchanged under time reversal.
Only when the system reaches macro-equilibrium states, or the probabilities of micro-
particles radiating and absorbing photons are the same from the point of view of
statistical average, the processes are reversible under time reversal. Therefore, it can be
said that irreversibility of macro-processes originates from the irreversibility of micro-
processes actually.

By introducing retarded electromagnetic interaction, the forces between charged particles
will become non-conservative ones. Based on it, we can establish the revised Liouville
equation which is irreversible under time reversal. In this way, we can lay a really rational
dynamic foundation for classical non-equilibrium statistical mechanics. The united
description can be reached for classical equilibrium and non-equilibrium statistical
mechanics. The detail will be provided later.
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15. Appendix

15.1 The transition probability amplitude of the third order process for light’s
stimulated radiation and absorption
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Ampeére’s Law Proved Not to Be
Compatible with Grassmann’s Force Law

Jan Olof Jonson
Stockholm University
Sweden

1. Introduction

Efforts have frequently been made to create links between different approaches within
electromagnetism. Names like Ampeére, Coulomb, Lorentz, Grassmann, Maxwell et.al. are
all linked to efforts to create a comprehensive understanding of electromagnetism. In this
paper the very focus is on breaking the alleged links between Ampeére’s law and the
Grassmann-Lorentz force. Thanks to extensive mathematical efforts it appears to be possible
to disprove earlier assumed links. That will tend to lead the further investigation of the
subject effectively forwards

2. The fallacious derivation of Lorentz’s law made by Grassmann
2.1 Finding the conceptual roots of the Lorentz force

Graneau discusses the assumption that the Ampere and the Lorentz forces are
mathematically equal, claiming that this is not true [1]. He further makes the statement that
the magnetic component of the Lorentz force was first proposed by Grassmann [2],[3]. This
author shows that when Grassmann makes the derivation beginning with Ampére’s law, he
commits faults, which finally results in a term that is similar to the Lorentz force.

2.2 Grassmann on the electromagnetic force between currents

Grassmann himself discusses the conceptual problems that arise when studying Ampére’s law
[2],[3]. He says that the complicated form of Ampere’s law arouses suspicion. [4] Among
others he complains over the fact that the formula in no way resembles that for gravitational
attraction, indicating thereby the lack of analogy between the two kinds of forces

(2cose —rcosa.cos f8).ab / r? 1

It ought to be mentioned that in the time of Grassmann and Ampere the electron has not yet
been discovered and hence, the concept of what constituted a current must have been rather
vague. It is therefore understandable that neither of them were able to apply Coulomb’s law
on the problem a law that by form fulfills the requirement to resemble the gravitational
force. This author has been successful in doing so, beginning in his first paper on the subject
in 1997 [5].
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Applying Ampere’s law on a configuration [6] consisting of two current carrying
conductors, with the elements a and b respectively, an angle & between the currents,  and
[ are the angles formed by the elements a and b respectively with the line drawn between
the two mid-points, the current from the attracting element being i and its length ds, [
being the perpendicular from the midpoints of the attracted element on the circuit element
b on to the line of the attracting one, or

I=rsina 2
gives the force between the two elements
—(ids.b / r*)cos B(2 cos & — 3cos ar.cos f3) ©)
which develops into
ds =—d(Icota)=lLda /sin®a = r*.da /1 @)
Where
c=a-p ©
and df =da (6)
This leads the development of eq. (4) into:
~(ib / 1)(cos® B.cosar.da — 2sin a.sin f.cos f.d3) (7)

After he has arbitrarily chosen to put df at the end of the second term, due to the statement
(6) above.

He thereafter integrates over the whole attracting line, thereby getting nothing from the second
term. This is not mathematics. If there were originally undertaken an incremental step
da attached to both terms, the integration along « can of course not be avoided by stating
that df =da and choose to change da into df on the second term.

He continues the treatment of the two currents by deriving the force perpendicular to the

attracted element b due to the attracting one

—(ib; / I)(cos .cos B + cosa.sin” f3) 8)

This time, when performing the integral, he does it not with respect to « this time; instead
he does it with respect to §. He further claims the values of ¢ and £ now to be those of
the “initial point’ of the line. This indicates that he has not treated the necessary rest of the
closed circuit.

(ib; / 1)(1+ cos&.cos § + cosa.sin® f) )

Now it has appeared a new term ‘1" at the very beginning. At infinity he states that «
becomes 180°, and S becomes 180°- ¢
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Hence, the expression (9) may after recalling that
e=a-p (10)
be rewritten
(ib; / I)(cot(*2ax) + sin f.cos ) (11)

Thereafter he neglects the second term of eq. (11), while leaving no indication of the reason
for doing so and attains after using eq. (2)

(ib, / r)(cot(Yaa) (12)

In the following a passage is cited from his paper in order to make it easier to understand
his way of thinking [8]

“From this expression he now at once attains the mutual interaction of two current elements,
as he prefers to express it. It happens, since he is regarding the attracting current element
ids as the combination of the two lines through which the current is passing, “these
possessing the direction and intensity (i) of this element, and one of them having its current
flowing in the same direction as that in the element, and the other in the opposite direction,
while the first of them has its starting point in the initial point of the element , and the
second has its starting point in the end of the element. We then obtain (ab, / r?).sina as the
effect exerted by a current element a on another b, distant r from it”

This term proportional to sine is apparently that which has impelled people to name him
as the first to define “Biot-Savart’s law”.

Fig. 1.

2.3 Some comments on the method of Grassmann

If following the derivation Grassmann has made, at several occasions there are clear cases of
confusion concerning what he is doing and why. The mathematical steps recall more an ‘ad-
hoc” way of using mathematical terminology than a real logical way of working. Hence, his
results seem to be of no value with respect to factual electrodynamics.
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It seems to be totally irrelevant to use the theoretical treatment by Grassmann in order to
construct any links between Ampére’s law and Biot-Savart’s law and related Lorentz force.
They must be kept apart from each other.

3. Analysis of the results by Assis and Bueno in comparing Lorentz’s force
law and Ampére’s law

Assis and Bueno have written a paper [9] in which he claims Ampeére’s law to be consistent
with Grassmann’s force law. They derive expressions for the force between the support and
the bridge within a set of Ampere’s bridge, using both laws. Conceding that the laws are not
equal at every point of the circuit, they claim that the result for a whole closed circuit is equal.
One special point of observation that they make is that Bi6t-Savart's law and the related
Lorentz force do not obey Newton’s third law, whereas Ampeére’s law does [10] The set of
Ampére’s bridge is described by detail in two consecutive figures, with respect to the
definitions of the integration domains [11]. The width of the conductor is small relative to the
lengths of the branches. The bridge is described by two variables, the laminar thickness is
being ignored. The shape is rectangular, the branches being of length I; (along the x direction)
and [, (along the y direction). The branches along the y axis are cut off at the distance I; the
segments thus attained have been numerated from one to six counterclockwise, beginning
with the part of the support being situated along the x axis, where presumably the supporting
battery is practically applied. Thus, the cuts appear between segment 2-3 and 5-6 respectively.
In this paper it is especially being focused on the force that appears from segment 5 onto
segment 4, since the Lorentz force from segment 6 to segment 5 (and similarly between
segment 2 and 3) is zero, whereas Ampere’s law is not. Interestingly, the Lorentz force from
segment 5 onto segment 4 differs from zero, contrary to the force in the opposite direction. The
authors claim that this net force within this branch (the bridge) is able to account for the force
that otherwise Ampere’s law produces from segment 6 to 5. Normally, according to Newtons’s
third law, there cannot be any net force, if there is no acceleration, since during conditions of
balance, no net force is active. Bi6t-Svart’s law and the Lorentz force law implies a single-
directed force, that if it were to be real would immediately blow up the circuit, which does not
happen. The force that Ampere’s law produces between the two segments corresponds to an
internal tension that is made visible when cutting of the bridge, thereby creating two equal
forces, but of opposite direction, that exactly cancel.

To conclude, this discussion seems to verify that the Lorentz force is by nature unphysical,
whereas Ampere’s law is physical. Furtheron, the derivation that will follow in the next
chapter, gains momentum to this conclusion, since it will appear that the derivation by Assis
and Bueno that constitutes a fundamental basis for their claim, has been fallaciously
performed.

3.1 Basic formulas for the derivation

Assis and Bueno defines the Grassmann force as follows:

- L dl. x7 LI.- - _ _
27 G B-S H Ho Li ~ _
d Fﬁ = LdI, de]- =Ldl; x(ﬁlj ]r )=—i rzj [(dl,» -dl]-)r —(dl; -r)dl]} (13)
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Since the integration involves four variables, a change of the name of the left hand variable
will be done according to: d4IEﬁG

It must be mentioned that the Assis and Bueno mention the law as “Grassmann’s”, without
showing the reference. The reference that this author has found is that given by Peter
Graneau [13], [14], [15]. It would be preferred to be used the name “Lorentz’ force law
(based on Biodt-Savart’s law)”. For the reader’s convenience, also Ampere’s law is given here:

- 7 . -
4°F = 7% LI r—z(Z(dli odl;)-3(7 o dL)(7 e L)) (14)

3.2 Result of the calculations with respect to segment 5-4

The integrations can usually be performed straightforwardly, thereby using the normal
rules for integrations. At some points, however, it appears necessary to make
approximations, when a term is extremely small as compared to the others, for example
terms oc w in the numerator. That has been dome at every actual occasion in this work. This
is the precondition for attaining a closed expression at the end.

3.3 The result according to Assis and Bueno

Assis and Bueno have been using two ways to approximate the integrals that have to be
performed. In the first case they assume the circuit to be divided into rectangles (21), in the
second case they let a diagonal line at the corners define the border between two segments
(22). In the first case they claim that the result of the calculation of Grassmann’s force on
segment 4 due to segment 5 is:

l-1 L=1L)+((—1)" +15)"? 3 V21
(FG54)y;f—;(ln2wl—ln(2 1) ((213 1)+l +In2-2In(1+42)+ 7 40)  (15)

In the second case their result is

2, 12\1/2 (12,1 2\1/2
(FS,) ;&(lnl;_lnlz+(lz +7) 7 (LT +l)
54/y
27w Iy I,

1
+In2+ E) (16)

a result that they identify as equal to that which Ampére’s law gives rise to.

3.4 The result according to the analysis of this author, first approach

However, the intention with this paper is to judge the claims by Assis and Bueno. In order
to attain that goal, the Grassmann force they have been using will be used in this paper in an
independent derivation, by this author.

The first step in the calculation procedure is to give the problem a strict formulation in the
shape of an integral, thereby identifying as well the variables of the integrations as the
boarders. Applying Eq.(13) above to the segments 5-4 will give rise to the following integral
equation:
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G pl ¢ 2 R b X4 —X
(Fos4)y = dxs|dxy | dys | dy, =2 17)
' A’ E[ '([ lJl. IZ'LU (x4 =x5) + (s —ys))?
3.5 The first step: Integration with respect to x,
Integrating first with respect to x,, gives the result:
2 L-w I, w
o] 1 1
(Fs4), = dys | dy, | dxs(- + ) (18
i | ) s AT )

3.6 The second step: Integration with respect to y;
The subsequent integration with respect to y5 gives rise to the following expression:

12w L
(FOs)y =20 [dxs [ dyy(n(yy — 1 + @+ vy~ + )2 + (1 —x5)?)
0

2
4w bw

=In(y, -1 +\/(]/4 —11)2 +(l —x5)2)—1n(y4 “htw+y(ys—hL+ w)2 + xé 19
+In(y, =1 ++/(v4 _11)2 + x%)

For convenience, the four terms may be named (19a), (19b), (19¢c) and (19d) in consecutive
order.

3.7 The third step: Integration with respect toy, and x;
3.7.1 The first term of Eq.(19) above treated, (19a)

In order to solve the integration, some integration formulas must be used:

1 1
[In(z+(z* £1)2)dz = zIn(z + (2> £1)?) - (2 £ 1) (20)
1 1 1
j(x2+a2)5dx=§(x2+a2)5 iéln(ﬁ(ﬁiaz)i) (1)
Ilnzdz:zlnz—z (22)

In order to solve Eq. (19a), the substitution

Yamhrw_, (23)
Iy = x5

will favorably be used. This makes eq. (19a) transform into:
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w

2w I3=x5
(F%y), = ﬁ#jd%(g -x5) | (~dz)(In(l3 —x5) +In(z +z> +1))
0

z=0

This expression contains two terms: The first term becomes after integration:

2
Mol
(FOsu)ya = —Inks

The second term

w

ly—x5
~x5) [ (-dz)In(z+V2" +1)

z=0

(FGS4 )y

Solving with respect to z, thereby using formula [10] gives:

2w

(F%4)y 0 2jdx5(l3 ) (-D(zln(z+Vz2 +1) -z +1

Straightforward integration accordingly gives, provided also the approximation

w<<ly—x5

(24)

(25)

(26)

(27)

(28)

is used in the final stage, both terms of the integral equal zero in the limit. The second term
of those also requires the usage of an integration formula, Eq. [20], before the null result can

be achieved. Hence,

2
(F5)! {(190)) =2 (n,)

3.8 The second term of Eq.(19) above treated, (19b)

In order to solve Eq. (19b), it is at first reasonable to use the substitution

t=y, -1

which gives rise to

I—1
(FC55)" ((19b)) = ’:’I jdx5 [ dtin(t+(# + (5 - x5)7)

x5=0 t=l, —w-1I;

Preparing to perform the substitution

I3 — x5

(29)

(30)

(31)
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an intermediate step will be to write

P 2w Ll ; ¢
(FGS4)~V<(19b)>=:7{— [ axs | dtln((l3—x5)(ﬁ+ ( T

A1) (33

x5=0 t=l, —w-1

Here it appears to be evident that this expression might simply be divided into two,
according to the logarithm product law (Eq. (61) later in the text):

12711
Iz w I3—x5
(Fs) (90) =2 (- [ ds(ls—x5) In(ly-x) [ de-
T k=0 L -w
- l3—x5
bl
w b—xs
- J dxs(ly — x5) J. dzIn(z +~2* +1)} (34)
x5=0 z:IZ_ll —-w

I3 —x5

These terms will hereafter be denoted (F%5,)" ((19b)), and (F%5,)" ((19b)), respectively.

Solving straightforwardly, and using series expansions of the In function, thereby neglecting
terms of higher order of w, gives for the first term of the expression (34) above:

2
(Fs0)! ((19b)), = %{‘1“’3} (35)

The second part will demand some more computational work, as will appear below:

Evaluating now the integral with respect to z, leads directly to the following, rather
complicated expression:

Z2_11 + (ZZ_ll

2
+1)-—
I3 = x5 l3—x5) )

(Fe) (190)), = L0 (- [ st~ )ing
54 2 47zw2 o 5\\"2 1

L-lL-w IL,—lL —w
1
( Iy —xs5 " Iy — x5 Fr)+ (36)

dxs(ls —x5><J(12‘ll‘w)2 +1 —J(Hf +1))

—(, -, —w)In

+

4zw?

#012 T
-] 1 I
o= 3~ X5 37 X5

0
The three terms on the right hand expression will be called (36a), (36b) and (36c)
respectively.

Now, instead of evaluating the expressions straightforwardly, it appears to be favorable to
find suitable combinations of terms that would be able to make the solution simpler.
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3.9 The sum of the first two terms of Eq. (36)

In order to solve the integral (36) it will be favorable to make the following variable
substitution:

_b-h
87 T xs (37
Applying this on the first term above (36a) gives:
L=h
2 L-w
Hol
—— (= dg(l, -1 ln + +
po—ll II . 2(l, ) g+’ +1) (38)
=
Applying a similar variable substitution on the second term above (36b) gives:
L—l,—w
Lo 12 L—w , 1 5
o [ dg(ly—l —w) 5 In(g+4/g* +1) (39)
drw” 1% 8

Iy

The treatment of the third term (36c) will be postponed, until the first two have
been developed and simplified. Doing so, leads to the result with respect to the first term
(36a)

2
Aol S = 1)l - w)ln(ll(l +lg)(lz - +\/(12 - 11)2 +(5 - w)2 ) -

4w
B O R T R B A (e AR DA
—@—hﬂmb%hu+<ﬁiﬁf+nm
and for (39):
ol

e e h ){(ls—W)ln(%(H%)(lz— —w (-l -0+ (- w)?) +

HIn( (b~ w0+ b—h—wf+§»—@—h—wﬂml%;w @+ [0 gy
3 27h—w ly—w
Hlo—h —w)in(—— (14 [ZIZ0R L)

2 7h W L

In the next step the two results above, (40) and (41) will be added. The result is:
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l

Iy —w

2 f—
Lf:leuz{(lz11)(13w)(ZHn(lell+\/(lzl3 ) +( L )~
(1211w)(lsw)(w+ln(lz_ll_w+\/(lz_ll_w)2+(l3_w)2))

Iy L I L
—~(l, — 1))l ln(l —h, (712_11 2

+(, -1, —w)l3ln( 1 f ) +1))+
I (42)
+(l, —1;)? ln Y1+ f 1)2 4+1))
_ll 3
~(l =k =)’ In(; -
" ,/ .
I }
—(I, l) ln(l 0 1+ (
+(1, = I - w)? ln 2 1+ / D)2 +1))
L -1, -

It has been used the series expansion of In(1+x)=x for 0<x <1 [22]

Since the ‘x’ is very small, only the first term in the expansion has been taken into account.
The terms within expression (42) will for practical reasons be denoted (42:1) until (42:8).

The next step will be to simplify the expression (42).This must be done in a deliberate way in
order to succeed. A practical method is to separate out the dominant terms first, thereafter
put the terms of first order in w thereafter those of second order, neglecting the terms of
even higher order. The reason for this is that the numerator in the very first term of the
expression contains w? in the numerator.

In the following this integral formula will again be usable:

1 1
[In(z+(2* £1)2)dz = zIn(z + (2 +1)2) - (2> +1)? (43)
Following this procedure gives for the terms of expression (29) respectively:

2
L 1)t - w)(fin(2 1+( CIRUICREN
4rw I,

w 1 S W (42:1)
lS lz_ll+ (12_11)2+1 (12_11)2+1 13
l3 l3 l3
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12 L -1 L -1
HO (=~ 1y ~w) (s~ w)(In(E—L+ (1) +1)—
4w 13 13
1L —1
L=l +(1+ [(21)+1 :
2 —h+15( ( A ) ) 1 w (42:2)

- ~ +0)
l3 12_11 + (12_11)2+1 (l2_ll)z+1 l3
l3 l3 13

2
Aol 4~ —w)

I? I, -1 I, -1
ﬁ{_(lz =1l 11’1(% + W)} (42:3)

drw?
I, -1
h=l+h, (2= +1 (42:4)
“ 3 . 1 i
lS 12 ll \/(12 11)2+1 \/(12 11)2+1
L3 Ly 3
I, -1 +1
o {(2 7 fIn(—2 11 ) 1)-
+ (42:5)
I,-1)
2 —l1 1

(L-L)? 1
S zizl+ (12—11) \/(12—11) .

/101
I, =li=w)” -{In
o 2 ( —11 / —11

by~ 1)+ (5~ ~ L)~ 1),

_ 5 .
(12_11) 13 +\/( lS )2+1 \/( lS )2+1
lz_ll lZ_ll lZ_ll

2

ol 2 l3 13 2
——{—(,-1,)" - In(—— 1
pmal RURUNR L N e

(42:7)
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2
Hol”
I, -1 {In( 241)+
s (2~ hm0) G —l1 —l1
L%+ 1, -1)
P bkl —11 1 ) (42:8)

(-1, I 2
ST jll+\/(12—11) \/(lzjll) +l

The sum of these eight expressions is equal to expression (42). Now, it will be easier to
perform the addition of the terms of Eq. (42), by adding the eight separate terms above to
each other. An important key to success has been to approximate every In and root
expression with a series expansion for every case when a ‘small’ term is appearing besides
the big ones. By using this method it has been possible to restrict the complicated In and
root expression to the ‘standard’ones, without ‘small” terms. In doing so it is possible to
gather similar terms from the different expression, even when there have been ‘small” terms
added inside the In and root expressions.

The result is:

2
/jlo—l{—lnl3 ll+ / )} +1-
T
{ l
L -1 +1L2+(,-1) 1y +1
(2 1) 3 1 ) 1 1

~ . +
h=h 2mhyp gy omhy
13 l3 l3
2
(S T (A W Y (L B )
L-L, \'L-L L-h
1 (4 ~L+1L)* (L, -] +2l3)
2 (b =h)’
3 B(h-L) 1L (h-h) + P +1}+ (44)
20ty 4 (L) l—ll
1 1
— z O ) )+
(2 P )PP 2T
L-1, \'L-1L l—11
1
o (=4 L)+ (= 1))~
1 .2,2 o 1 40 L L\ L’ Ly
LA (LA (1, =1 - L) - : +1- ’ +1
5 37 (" + (L —h)7) > 3) L1, (12—11) (12_11)3 (12_11) }

Comment: The four last rows above (in Eq.(44)) arise due to the “other terms” of Eq. (42.5) to
(42.8). To be
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3.10 The third term of Eq.(36)

The third term of Eq. (36) was denoted (36c) is repeated here for convenience.

sl - xs)(\/dz‘ll‘“’)z +1 —\/Ufllf +1)  (360)

4w? Iy — x5 I3—x5

(FOs,) (190)), = 4ol f
x5=0

It can be simplified easily by recognizing that the integrand may be written approximately
2 —
IUOI 5 (l2 _ l1)2 T l32 ( w(ZZ > ll) 2) (45)
4w (L=-L) +13

after having neglected terms of higher order than one in w, since the integration implies a
multiplication with w.

The result is

Hol® L-hL (46)
47 (1, - 1) +152

3.11 The sum of all terms due to the second term of Eq.(19) (i.e. 19b)

Now all the partial results due to Eq.(19b) have been attained and the task remains only to
sum them together. In order to do so, Eq. (35), (44) and (46) must be added. The result is
accordingly:

2 a— —
A ng izl e mhye gy
3
4z L I
[,
(lz—ll)z+l32+(lz—ll)l3 (21 1)2““1
3 . 1 . 1
l,—1

1,2

+

21 +J(12 “hy g J(ZZ “hy g
l3 l3 l3

2
. 1 . I

5472 2t
G +\/( : )2+1>'\/< Bopar 2 4G

L=l N'L-1 L=
+1.(11—12+ls)2(lz;ll+2l3)+§.l32(lz—l;)_l.134(lz—lé)+ ( I 2 1)+
2 (L, -1) 2 (L-h) 4 (L-h) L-h (47)

+ \/ ! (@2 + (L)) )+
+

L5 (173)2+1)2.((l Iy ) +1) (b =1y)

(7
lZ_ll 12_11 2_ll

=B B
l2_ll lZ_ll

1 1
+5‘(11 -+ 13)2(132 +( *11)2)*5‘132032 +(1l, *ll)z) -

133 ( 13 2+1+ 12_11

C(h-h) L1, JO —1)? +12 )

1
2
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3.12 The third term of Eq.(19) above treated, (19c)

Straightforward integration leads again to a result, requiring first a long chain of partial
integrations:

In order to solve the third term, Eq. (19¢), it is at first reasonable to use the substitution

Ya—lhtw (48)
X5

This makes it possible to write the integral (19¢):

LIZ I dxsxs T dzIn(xs(z +~z2 +1))} 49)

47”’0 x5=0 z=0
This expression may be dissolved into two terms:

w
X5

2
4“71 j dxsxs [ dzIn(xs+In(z+z +1))} (49a) and (49b)
Tw x5=0 z=0

The first term simply becomes

2

‘gf (~Inw+1) (50)

The second term can be rewritten:

,uolz( I dxsw(In(w +Jw* +x2) —Inxs) - j dxs\w? +x2 + .[ dxsxs) (51)

4z x5=0

These three terms will now be denoted (51a), (51b) and (51c) respectively. In order to solve
these integrals, it appears practical to make the variable substitution

(52)

w
X5 =—
u

Having done this, Eq.(65) may be rewritten:

0
j du(- lnu+\/u +1))+ j du—\/u +1- duu—ls} (53)

U—>+0 U—>+%0 u—>0+00

Well, straightforwardly performing variable substitution, and, using the integral formula:

1

2. 2\2

J- dx lnu-#(x +a°) (54)
a x
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finally leads to the result: Term (53a) becomes

‘;Oilz(zma ++/2)) (55)

The same procedure is repeated with the next term, which leads to:

Term (53b) becomes

2
Hl~, V2 1
e (——-=-In(1+~2 56
o (- In1+V2) (56)
Finally, term (53c) becomes
2
Hol” 1
(= 57
) 7)

The total result of term (6¢) then will be attained, if adding (50), (55), (56) and (57) to each
other.

The result is:

2
(F%,),((19¢)) :%(—lnw+%—%+%ln(l+ﬁ)) (58)

3.13 The fourth term of Eq.(19) above treated, (19d)

Straightforward integration leads again to a result. Many partial integration to be done, but
in a rather straightforward way. In order to solve the fourth term, Eq. (19¢), it is at first
reasonable to use the substitution

ya—h _
X5

z (59)

This makes it possible to write the integral (19d) :

L-hL
X5

2 w
Aol >{ I dxsxs I dzIn(xsz +J(x52)* + 2 )} (60)
x5=0

4rw Z_lz—ll—w

X5

This expression may be dissolved into two terms, using the logarithmic product formula:

In{A-B}=InA+InB (61)
The first term simply becomes
ol ’
(-Inw+1) (62)
4r

The second term can be rewritten:
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oo L-1, [L-1
A (] ()2t (22 4 1) =, ) 42 -
S *s s (63)

L—-1—w L=l -w
(F—L—+ )+ D)+l — |, —w)* + x5}

—(, -, —w)In
X5 X5

In order to perform the evaluation successfully, the integral formulas [20] and [25] will be
needed. Further series expansions have to be done with respect to root and logarithmic
expressions that will arise during the work, namely [28], [29] and [30]. It is the hope that
these advices will lead the reader successfully to the result, which is

2
(Fos), <(19d)>:%{—lnw+%+ln(lz ~1)+1n2) (64)

3.14 The sum of all contributions

In order to attain an expression for the total sum of the integrations above, it would be
favorable to gather them in consecutive order below:

1'2
(Fsa)" (19)) =72"—(in) 29)
2
(PG54)V<(1%)>:M)I {—1n13+1n(@+ (@)2+1)+1—
A I; 3
(h=h) + 524 (0~ L)l (2212 41
132 l2_ll+ (l2_ll)2+1 (l2_ll)2+1
L Iy L
2
T 1 : 1 '(%_%'12 113 L2
( 3 4 ( 3 )2+1). ( 3 )2+1 3 +(2_1)
12_11 12_11 lz_ll
+1.(ll—l2+l3)2(12;114—213)4_%'132(12—1;)_1.l34(12—l;)+ ( I3 P 1)+
2 (lL=h) 2 (L-h) 4 (L,-L)° \'h-h
1 1
+ ; ] I .(l ~ 4((2132+(12_ll)2)(12_ll)2+
(-5 \/< 1By TR
lZ_ll l2_ll 2_11

1 1 1
+E'(11 ) +l3)2(l32 +(h —11)2)—5’132(132 +(l, —11)2)—5'134)—

_ 13 . ( 13 )2+1_ 133 . ( 13 )2+1 +L
L-1, \'lL, -1 (L-0L)?° \'L-1 (I —1,)* + 1,

(Fos0), ((190)) = ZO—:(—lnw N % - % +%In(1 +42)) (58)
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2
(F), (194)) =22 (-Inw+ 2+ I ~ 1) + In2) (64)
Vs
The sum of all these four terms (omitted here) (65)

3.14.1 The sum of all contributions, simplified expression

After having performed the summation, some simplification occurs and gives rise to the
following result:

2
(FG54)y<(19)>:tuOI {—ln(lz_ll+ (12—11)2+1)+1_
4r I I
I, -1
(12—11)2+132+(12—11) (%)2*‘1
— 3 . 1 . 1 +
l32 lz—l1+ (l2_ll)2+1 (l2_ll)2+1
Ly I l
+ 1 {1_1¢+
L= By (L)zﬂ 2 4 1)
L= L=l L=
+1.(11—12”3)2(12_11*213)+§_l32(lz_ll)_1.l34(lz—ll)Jr ( Ly )2+1}+
2 (L) 2 (L-L)Y 4 (L-LY L=k (66)
1 1
A l l .(l = 721+ (=L — L) +
(B BBy TR
L-h L-1 L-5
1 1 1 l l
#2 (=l + B+ (=)= B (b))~ )~ R ¢
2~ h 2~k
L - b opiqebzh )—2lnw+2—g+
(L-5L) \V'h-h (I, —1,)? +12 2

%111(1 ++/2)+1In(l, —1;) +In2}

4. The result according to the analysis of this author, second approach

The first step in the calculation procedure is to give the problem a strict formulation in the
shape of an integral, thereby identifying as well the variables of the integrations as the
boarders. Applying Eq.(13) above to the segments 5-4 will give rise to the following integral
equation, now in this case with a diagonal line at the corner, defining the border between
two segments. The change appears at the upper border in the integral over ys: I, —x;
instead of I, —w of Eq. (4) above.

w Iy I, —x5 1
Hol® ‘ f Xy~ X5
(F G54) = dxs | dx, dys | dy, (67)
! dnw? ‘([ I‘)‘ 1"1‘ 12.[70 (x5 =x5)* +(ys —y5))) 2
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4.1 The first step: Integration with respect to x,
Integrating first with respect to x,, gives the result:
2 bh-x5 L,

Mol h
(F654) = days dy, | dxs(—
T Anw? ,j ,j ! (13 = %5)" +(va —vs))

1 . 1
V2 (a2 + (ys—ys))

75) (68)

This corresponds to the procedure in section 4.5 and the integration result here (Eq.(68)) is
equal to that (Eq.(18)). The border line at the corner has namely not yet been involved.

4.2 The second step: Integration with respect to y;
The subsequent integration with respect to y5 gives rise to the following expression:

2w

ol
(FG54)1/ = > .[de
T ArwT

L
I dy,(In(y, =1 + x5 +\/(y4 —l +x5)" + (I3~ x5)°)

I—w

—ln(y4—ll+\/(y4—ll)2+(13—x5)2)—ln(y4—lz+x5+ (ya—lp+x5)* +23 (69)
+In(yy - + (y4—ll)2+x§)

Here, at this level, the border line has begun to affect the integration result, now when
integrating with respect to ys .

The second and the fourth term of Eq.(69) are different than the corresponding terms of
Eq.(19). For convenience, it might appear suitable to denote the terms of Eq.(69) (69a) etc
until (69d). The terms which must be further integrated here are accordingly (69a) and (69c¢).
Eq.(69b) and (69d) are equal to Eq.(19b) and (19d) respectively.

4.3 The third step: Integration with respect to y, and x;

4.3.1 The first term of Eq.(69) above treated, (69a)
In order to solve Eq. (69a), the substitution

Ya—l+xs -y (70)
ly - x5

will favorably be used. This makes eq. (69a) to transform into:

X5

L=xs5,

2w
(F), = 4“01 [drs(ly—x5) [ (~dz)(In(z(ly ~x5) 422 (15 —x5)* +1)) (71)
0

2
w _X5-w

2=
l3=x5
This expression must be separated into several separate terms in order to be solved.

The first term will be:
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ﬂolz T
pp—; J.de In(l; —x5)-w (72)

Integration and, finally, series expansion of the In function gives the result

2
A i) 73)
drw
The second term will accordingly be:
X5
I3 —x5
Hol” j drs(lh-x5) [ (-dz)in(z+z*+1) (74)
4rw? dg-w
Z_ls X5

The second terms appears to give a zero result, hence the total result may be written

(FC5.)" ((69a)) = ‘jffz {InL,} (75)

4.4 The second term of Eq.(69) above treated, (69b)

As discussed above, the integration of the second term of Eq.(69) must be equal to the result
of the integration of Eq.(19b) in section. 3.12, i.e. Eq.(47). Hence,

? L-1

(FG54)y<(69b)>=“0 {(~Inl, ~In(2—L + (@)hl)}n—
a 3 3
(=1 12+ (y ~ 1), (2l 41
132 lz_ll + (12_11)2+1 (12_l1)2+1
Iy Iy Iy
1 1 1 1,2
T I, {E_Zz%(; ByRC
(l 31+\/(l l) 1)\/( ) +1 3o
271 271 2
+1,(ll—12+13) (12;11*'213) 3 ls (L-h) 1 ls (lz—ll) + L5 )2+1}+
2 (L-1) 2 (- 4 (L-L) L= (76)
1 1
+ I L {(l 4((213 +(12—11)2)(12—11)2+
_3 +1 1 274
(lz—ll+ (z —11) )? (( ) +1)
1 1
E'(ll_lz +13)2(132+(lz_l1)2)—5‘132(132+(lz—l1)2)—§'l34)—
L [ L i1 5 ( A Pl L-1

L-L \'L-h (b-h) \'L-1h (L, — 1) + 157
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4.5 The third term of Eq.(69) above treated, (69c)

Due to the rather complicated expressions that will follow, the integral that has to be solved
will be repeated here for convenience (from section 5.3.):

12 w
(FG54)y ((69c)) = £o 3 J.dx5{—ln(y4 —ly+ x5+ (Y~ +x5)? + 3} (69¢)
0

drw
In order to solve Eq. (69¢c), the variable substitution

- +x
Ya—h+Xs _

. 77)
may appear suitable
In doing so, the following two terms will result:
p 12 w 1
- { J. dxsxs '[ dz(Inx5 +In(z +~/22 + 1))} (78)
drw om0 aemw
z= -
The first term gives
2
AL
o {-Inw+1} (79)

Using the integral equation [19] the second term develops to

12 w _ _ _ _
F [ g xs{-In(1+42) 42 + 2 (B2 (22 4 1) - (BT +1) (50)
4w’y X5 X5 X5

This integral apparently consists of three separate terms, which may be treated separately
from each other.

The first term is only a constant term, which has to be integrated with x5 .over the variable
x5 . Hence, the result is easily written

I In(1+42) 2
rpy e (81)

The second term of Eq. (80) causes a real difficulty when trying to integrate the expression,
since no approximations in using seres expansions are allowed. That is so, since the terms
are all of the same order. Instead, it is possible to estimate the limits, between which the
result must lay. The method is given by the expression
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b
m(b—a)< [ f(x)dx < M(b - a) 23] 62

a

By analyzing the asymptotic behavior of the integrand, it may thus be stated that the result
has to be within the interval

2 w
1ol 2, 2
(0/43{7 J'odx5{lnx5+ln(—w+ w”+xs ) ) (83)
X5=

which may be simplified to

2
(0,%(—(1+1n(1+\/§)) } (84)

The last term of Eq.(80) implies a straightforward integration of a square root expression
with the variable squared. A suitable table solution may be used [24]

The result may be written

wl* 11
:7{E+mln(\/§ +1)-In(v2 -1} (85)

Now it is possible to write the total result of the integral of Eq.(69c¢):

(FC5,)" ((69¢)) = 'Ljf—:{—lnw+%+%+ (ﬁ—%)ln(ﬁ i)+ .
+ﬁln(\/§—1)+(0,—(1+1n(1+x/§)} )

4.6 The fourth term of Eq.(69) above treated, (69d)

As discussed above (in section 4.3), the integration of the fourth term of Eq (69) must be
equal to the result of the integration of (19d), i.e. Eq.(64) in section 3.14. Hence,

I’ 1
(FCs,), ((694)) = %{—mw +5+In(h~1) +In2) ®7)
4.7 The sum of all contributions

2
(Fs)!{(690)) =22 n,) 75)
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G ﬂol L -1
(F54)? ((690)) = in {-Inl; —In (174_

3 3

I, -1
(12—11)2+l32+(12—11)13 (21 1)2+1
3 . 1 . 1

12 12_11+\/(12-11)2+1 \/(12—11)2+1
I3 Iy I3

2
. 1 A1k

(S T T N S ) (B N 2_1'1324—(12_11)24—

L-L \'L-L L-1

+1 (4 —lz+13) (lz—ll+213) 3 la (L-h) 1 13 (lz—ll) + )2+1)+
2 (I -1L) "2 (-1 4 (,-1) l_ll

" ! (— (@b (o)) s

(oo b e hopey TR
l2_ll lZ_ll

1

1
(=L + B+ (=1 =5 B0+ (1)) -

l33 ( l3

oG L
(L=hL) N'h-h Vi =1)* +1, 76)

(FCsy) ((69¢)) = /Uoi {~Inw+ ; +g+( ln(x/E+ N+— \/_ In(v2-1)+ 56

(0, - (1+In(1++2)}

a2

(FC54), ((694)) = ZO,I, - lnw+%+1n(12—ll)+ln2} 87)

The sum of all these four terms (omitted here) (88)

4.8 Numerical check with the Assis/Bueno result necessary
4.8.1 The first approach

By reasons of comparison the result by Assis and Bueno (Eq. (3) above) is repeated here.
Obviously, they have not attained the same result as this author (66). Some features are
similar, but the differences are also apparent. Therefore it is adequate to claim that the laws
are not equal.

_ _ IR AY 2\1/2
(Fy), =20 n2 =y (o=l (B b 4 ) +ln27§lnl+x/_ L2,
4w A 2 2
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A numerical check for one case shows also that not even an integral gives rise to equal
result. It was chosen a wire width w=3mm, [;=07m, [,=12m and, finally,
I, =0.7m

The result thus attained is

(FCs,), = %)r -10.8 (89)

Using, however, the calculation by this author, based on Eq. (76) above, the result will be:
Gy =Ho.
(Fs), = 40126 ©0)

4.8.2 The second approach

Since it was not possible to attain a solution on closed form, a numerical check for one case
can be sufficient, provided the result is not in accordance with the formula. It was chosen a
wire widthw =3mm, I, =0.7m, I, =1.2m and, finally, I; =0.7m

The result thus attained is

(FCs,), = 5—2(8.4,10.3) 1)

whereas the formula used by Assis and Bueno gives

(FCs,), = %’[ 128 @)

Hence, Assis and Bueno are wrong in their claim that the Grassmann force gives the same
result as Ampére’s law [1]. To conclude, it seemed to be rather wise to reject the claim of
coincidence between these two laws, as they did not coincide before integrating. To be
stated again,

5. Discussion and conclusions

From the rigorous analysis that has been performed above it is evident that Grassmann’s
law is not equal to Ampere’s law. It is also evident that the very roots of the idea of their
equality by Grassmann is false, too. However, it does not exist any need to regard them as
equal. It was only one idea among many invented by science in its search for a better
understanding of physics. In this respect it constitutes a progress for physics that it has been
possible to reject one of the speculative ideas that must inevitably arise in the search for the
truth. More seriously, it is of course grave for the proponents of the Lorentz force (identified
as the Grassmann force), if it cannot be justified by referring to preceding established ideas
but must stand as a mere ad-hoc invention.
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6. List of variables

6.1 Variables specified in chapter 3

a,b infinitesimal elements of respective current
r the distance between any two points of two respective electric currents
l the perpendicular from the midpoints of the attracted element on the circuit

element b on to the line of the attracting one, or

b, cosine component of the b element on the perpendicular

£ the angle between two electric currents

a,f  the angles formed by the elements a and b respectively with the line drawn
between the two mid-points

6.2 Variables specified from chapter 4 onwards

dzﬁﬁc the electromagnetic force between two infinitesimal elements of two electric
currents (Assis and Bueno: Grassmann’s force)

d4?jic the same force as dzﬁﬁc above, but with a more adequate notation, indicating the
four variables being differentiated

FS;), they component of the Grassmann force due to two segments
jily y P 8
(F© iy (...) the y component of the Grassmann force due to two segments, for a specific term
dzﬁﬁA the force between two electric currents according to Ampere’s law
7 unit vector along the line connecting the two conductors
the currents of respective conductor

dl;, dfj length elements of respective conductor

L the position of the cut-off point at the y branch
I, length of Ampere’s bridge along the y axis

I length of Ampere’s bridge along the x axis

w the width of branches of Ampere’s bridge
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1. Introduction

In the geometrical optics limit of light propagation, light travels from a source to an observer
along straight lines, known as optical rays. On the other hand, the energy in an
electromagnetic field flows along the field lines of the Poynting vector. It can be shown
(Born & Wolf, 1980) that in the geometrical optics limit, where variations in the radiation
field on the scale of a wavelength are neglected, the optical rays coincide with the field lines
of the Poynting vector, and both are straight lines. In nanophotonics and near-field optics,
where sub-wavelength resolution of the energy transport is of interest, the optical rays lose
their significance. Energy flows along the field lines of the Poynting vector, and these field
lines are in general curves. When sub-wavelength resolution is required, we need the exact
solution of Maxwell’s equations. In order to study the fundamental aspects of energy
propagation, we consider the simplest and most important source of radiation, which is the
electric dipole. When a small object, like an atom, molecule or nanoparticle, is placed in an
external electromagnetic field (usually a laser beam), oscillating with angular frequency @,
a current will be induced in the particle, and this gives the particle an electric dipole
moment of the form

d(t)=d,Re(ue™"), 1)

with d,an overall (real) constant, and u a complex-valued unit vector, normalized as
u-u*=1. The oscillating dipole moment emits electromagnetic radiation. The electric field
will have the form

E(r,t) = Re[E(r)e '], @

with E(r) the complex amplitude, and the magnetic field B(r,t) has a similar form. We
shall allow for the possibility that the dipole is embedded in a linear isotropic homogeneous
medium with relative permittivity ¢, and relative permeability ., and both are complex in
general. The imaginary parts of ¢, and g, are non-negative, as can be shown from causality
arguments. The index of refraction n of the medium is a solution of 1 = ¢,4, , and we take
the solution with Imn>0. When ¢, and g, are both positive or both negative, we have
n? >0, and this leaves the sign of n ambiguous. It can be shown with a limit procedure
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(McCall et al., 2002) that we should take n>0 when &, and g, are both positive and n <0
when &, and g, are both negative. The time-averaged Poynting vector in such a medium is
(Jackson, 1998)

S(r):—1 Re{1 E(r)*xB(r)} 3)
2p, |ty
2. Electric dipole radiation

Let the dipole be located at the origin of coordinates. The complex amplitudes of the electric
and magnetic fields are then found to be (Li et al., 2011b)

2 . . ink,r
E(r) = 280 |y w4 [u - 3G wpi]——| 1+ —— |15, 4
4re, nk,r nk,r r
2 . ink,r
B(r):w(fxu) 14| , (5)
47e c nkyr) r

for r#0 . Here, k,=w /c is the wavenumber of the radiation in free space and t=r/7 is
the unit vector in the radially outward direction. With these expressions for E(r) and B(r),
the Poynting vector from (3) can be worked out. First we introduce

_ cdgkg

127, '

o ©)
which equals the power that would be emitted by the same dipole in free space. As we shall
see, the field lines of the Poynting vector scale with k,, so we introduce q=k,r as the
dimensionless position vector of a field point. Similarly, we set X =k.,x, etc.,, for the
dimensionless Cartesian coordinates of a field point. Therefore, in dimensionless
coordinates, a distance of 27 corresponds to one optical free-space wavelength. Then, the
field lines of a vector field are determined by the directions of the vectors at each point in
space, but not by their magnitudes. So when we set

3P _
80 =5 | P e ™ol )

then the field lines of o(q) are the same as the field lines of S(r), since the overall factor that is
split off in (7) is positive. We shall simply refer to o(q) as the Poynting vector. We find

o(q) =[1-(&-u)(F- u*)]Re[”[l + iﬂf
g

2
1

i
qlnf Y

nq

+ {[1-3(r-u)(t-u*)]Im(g, )t + 2Im[ ¢, (t - u*)u]} 8
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Vector o(q) is dimensionless, and only depends on the field point through its
dimensionless representation q. It furthermore depends on the polarization vector u of the
dipole moment, and it depends in a complicated way on the material parameters ¢, and

Hy -

3. Field lines of the poynting vector

A field line of the vector field o(q) can be parametrized as q(u), with u a dummy variable.
Since at any point q on a field line the vector o(q) is on the tangent line, the field lines are a
solution of

dq

=g 9
@ ©)
Given an initial point q;, equation (9) determines the field line through this point. The
dimensionless position vector q has Cartesian coordinates (x,1,z), in terms of which (9)
becomes

dx - -
?ZG;(X/]//Z) r T (X,y,z) (10)
u
Here, o,(X,y,z) is the x component of o(q), expressed in the variables ¥, y and z . The
field line pictures in this chapter are made by numerically integrating the set (10). For

further analysis it is useful to express (9) in spherical coordinates (g,8,¢) . This gives

d .
FRLCIE (1)
099 _o(q)-e, - (12)
du
gsin 0% =0(q)-es (13)
du

At a large distance from the dipole, compared to a wavelength, we have g>>1. Then the
Poynting vector (8) simplifies to

o() =[1- (i w)(- u*)]Re[”]f (14)
Hy
It can be shown (McCall et al., 2002) that Re(n / 1,) is positive, and therefore the Poynting
vector is approximately in the radially outward direction. We shall not consider the limiting
case where n / y, is imaginary. Therefore, at a large distance from the dipole the field lines
are approximately straight lines, running away from the dipole. Conversely, any curving of
the field lines can only occur close to the dipole, e.g., within a distance of about a
wavelength. All terms in (8) are proportional to t, except for the term containing the factor
Im[e,(t-u*)u] . Therefore, any curving of the field lines is due to this term. This can happen,
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for instance, when u is complex, or when &, has an imaginary part due to damping in the
material.

4. Dipole in free space

Let us first consider a dipole in free space, so that &, = ¢, =n=1. The simplest case is when
the incident field is linearly polarized, say along the z axis. Then the dipole moment will
oscillate along the z axis, and we have u=e, . With (1) we have

d(t)=d,e, cos(wt) (15)
The Poynting vector (8) becomes
o(q)=tsin’ @ , (16)

which is in the radially outward direction at all points. Therefore, the field lines are straight
lines coming out of the dipole. Figure 1(a) shows the field line pattern.

@
Fig. 1. The figure on the left shows the field lines of the Poynting vector for a dipole which
oscillates linearly in the direction of the arrow. In the figure on the right two field lines of
the Poynting vector are shown for a dipole which rotates in the xy plane. The field lines
wind around the z axis in the same direction as the direction of rotation of the dipole
moment. The x and y axes in the figure have been lowered for clarity of drawing. The
constant 6, is 7 /4 for the upper field line, and this angle is the angle of the cone around
the z axis on which the field line runs. For the lower field line this angleis 37 /4.

When the incident field is circularly polarized, with the electric field vector rotating in the xy
plane, the unit vector u is

u:—%(exﬁ-iey) , 17)
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and the dipole moment becomes

d .
dt)= —T;[ex cos(wt) + e, sin(wt)] (18)
This dipole moment rotates in the xy plane, and the direction of rotation is counterclockwise
when viewed down the positive z axis. The Poynting vector becomes

o(q) = (1-1sin? 6)f+3](1 +;2Jsinee¢ (19)
The first term on the right-hand side is in the radially outward direction, and the second
term is proportional to es. For g large, this second term vanishes, so at large distances, the
field lines run radially outward. For small g, this second term dominates, and the field lines
run approximately in the e, direction. Since ¢ is the angle around the z axis, we expect the
field lines to rotate around the z axis. Equations (11)-(13) for the field lines become

%:1-%@29 , (20)
de
=~ -0
du ! @1
dg 1 1
L= |1+ — 22
du qz[ qz] ( )

From (21) we see that @ is constant along a field line, and we shall indicate this constant by
0, . Therefore, a field line lies on a cone with its axis as the z axis. Field lines run into the
direction of increasing u, and since the right-hand side of (22) is positive, angle ¢ increases
along a field line. Therefore, the field lines wind around the z axis in a counterclockwise
direction when viewed down the positive z axis. From (22) and (20), and with 6=6,, we
have

dg¢ 1 1
:Z(GO)[l-i—] , (23)
dg P\ 7
where we have set
20,)= ———— (29)
" 1-Lsin?g,

We now see g as the independent variable, and then the solution of (23) is

¢@—%—ﬂ%f@+lJ, (25)
AN
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where ¢, is the integration constant. A field line starts at the location of the dipole, so at
g =0. The function ¢(q) increases with g, and for g — « it reaches the asymptotic value of
&, - The field line spirals around the z axis in the counterclockwise direction, when viewed
down the positive z axis, and this spiral lies on the cone 8 =6, . Two field lines are shown in
Fig. 1(b). The resulting field line picture has a vortex structure, and this was called “the dipole
vortex’ (Arnoldus & Foley, 2004). The spatial extent of this vortex is less than a wavelength,
as can be seen from the figure. On this scale, a distance of 2z corresponds to one
wavelength.

Fig. 2. A field line of the Poynting vector approaches asymptotically a line ¢ at a large
distance from the source. This field line appears to come from a point in the xy plane with
position vector q, . Therefore, the dipole seems to be displaced over vector q,, when

observed from the far field.

5. Virtual displacement of the source

For the circular dipole in free space, the field lines form a vortex structure, as illustrated in
Fig. 1(b). Close to the source, the field lines wind around the z axis numerous times, and
then they run away to the far field, while remaining on a cone. In the far field, a field line
approaches asymptotically a straight line, and this line is the optical ray from geometrical
optics. In geometrical optics, a sub-wavelength spatial structure like the vortex is not
resolved, and it would appear as if the optical ray comes from the location of the dipole.
However, when sub-wavelength resolution is of interest, this is not the case anymore. Due
to the rotation of a field line near the source, it appears as if the ray comes from a point in
the xy plane which is displaced with respect to the position of the dipole, as shown in Fig. 2.
The line ¢ is the asymptote of the field line, and this is the optical ray. This line intersects
the xy plane at a location indicated by the displacement vector q4, so this vector represents
the apparent location of the source.
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The dimensionless Cartesian coordinates (X,y,z) for a point on the field line are
parametrized as

X =qsind, cos¢(q) , (26)
Y =qsind, sing(q) , (27)
zZ =gcosb, (28)

Here, 6, is the angle of the cone on which the field line lies, and ¢(g) is given by (25). The
free parameter is g. In order to obtain a representation of the line ¢/, we expand the right-
hand sides of (26)-(28) in an asymptotic series in 1/4. Due to the overall factors of g, we need
to expand cos¢(gq) and sing(q) up to order 1/g, so that the combination yields a constant.
From (25) we have

$a) =4y 2(0) . 9)

and this gives
cos@(q) = cos g, +%Z(¢90)sin¢o oy (30)
sing(g) = sing, —iZ(@O)cosqzﬁD +.. (31)

Then we substitute the right-hand sides of (30) and (31) in (26) and (27), respectively, and
omit the ellipses. We then obtain

X =sing,[tcosg, + Z(6,)sing,] , (32)
¥y =sin6,[tsing, —Z(6,)cosd,] , (33)
z =tcosb, (34)

Here we have replace g by ¢, since this parameter does not represent the distance to the
origin anymore. Equations (32)-(34) are the parameter equations for the line ¢ . This line is
the asymptote of the field line that runs into the observation direction (6,,4,), and this
direction is indicated by the eye in Fig. 2.

The unit vector in the observation direction (6,,4,) is
1, =sing,(cosde, +sing.e, ) +cosbe, , (35)

and the position vector of a point on the line is q =xe, + e, +ze, . The parameter equations
(32)-(34) can then be written in vector form as



86 Electromagnetic Radiation

l: q:ti'0+qd ’ (36)

where we have set
qq =sin6,Z(6,)(e, sing, —e, cosd,) (37)

It follows from (34) that z=0 for =0, so the line ¢ intersects the xy plane for t =0 . From

(36) we see that for t =0 we have q=qq4 so vector qq is the displacement vector from Fig.

2. From (35) and (37) it follows that qq-%, =0, and therefore the displacement is

perpendicular to the observation direction. The magnitude of the displacement vector is
2sin 6,

- 38
fa 1+cos® 6, %)

Fig. 3. Illustration of the image plane and the coordinate system in this plane.

The displacement is zero for observation along the z axis, and has its maximum for
6,=m/2,e.g., for observation in the xy plane. The maximum displacement is g4 =2 . Since
27 corresponds to one wavelength, this displacement equals A1 /7, with 1 =27 /k, the
wavelength of the radiation. For visible light, this is of the order of about 150 nm. In
nanophotonics, where structures with dimensions of a few nanometers are studied, this
displacement is not negligible.

6. Displacement in the far field

In the far field, the line ¢ is the asymptote of the field line that runs into the observation
direction (6,,4,). The virtual displacement of the source in the xy plane is then inferred
from an extrapolation of the line ¢ from the far field to its intersection with the xy plane. We
shall now consider this from a different point of view (Shu et al., 2008). For a given vector
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r,, we define the observation plane, or image plane, as the plane which is perpendicular to
r,, and which contains the point r,. We shall take the direction of r, as specified by
(6,,4,), so that t, is given by (35). Therefore, we can view the image plane as the tangent
plane of a sphere with radius r, around the dipole, and located at the spherical position
(6,,9,) - So the position of the image plane is specified by its angular location (6,,4,), and
by its distance r, to the origin of coordinates. The point r, is taken as the origin O’ in the
plane, as illustrated in Fig. 3. The spherical-coordinate unit vectors e, and e, lie in the

image plane, and are given explicitly by

e, =(e,cosg, +e, sing )cosd, —e_ sinf, (39)

e, =-e.sing +e, cosg, (40)

We then introduce a 4 and a u axis in the image plane, as shown in Fig. 3, so that a point
in the image plane is represented by the Cartesian coordinates (4, ) in the plane. A point r
in the image plane can therefore be written as

r=r,+A1e, +ue, (41)

A field line of the Poynting vector for the radiation emitted by a circular dipole in free space
is parametrized by the angles 6, and ¢,, which are the asymptotic values of & and ¢
along the field line. We now consider an image plane which is located at the angular
location (6,,4,), and we assume that the image plane is located in the far field, so r, is
much larger than a wavelength of the radiation. Then the field line is approximately along
the asymptote /. This line intersects the image plane at the location of the black dot in the
figure. This point is represented by vector r; in the image plane, as shown, or by the
dimensionless vector q; =k,r;. The parameter equation for ¢ is given by (36), and qq can
be written as

qq =-sin6,Z(6,)e, (42)
Since this is a vector in the image plane, we see immediately that

qr =94 (43)

If the field lines were straight, then the field line in the (6,,4,) direction would intersect the
image plane at O’. Due to the rotation of the field lines, a field line intersects the image plane
at q¢, so q; is the displacement of the field line in the far field. Apparently, this
displacement is the same as the virtual displacement of the source in the xy plane. This
conclusion holds for a circular dipole in free space, but not in general, as we shall see below.
The dimensionless coordinates in the image plane are 1 =k,A and z=k,u. We then see
from (42) that the intersection point of ¢ and the image plane has coordinates

=0, F=-sin0,Z(0,) (44)
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7. Image of the dipole

A single field line may not be directly observable by a detector. Usually, an image is formed
on an image plane, and the intensity distribution over the plane is determined by a bundle
of field lines that hit the plane. We shall take the plane of Fig. 3 as the image plane, and we
consider the image formed on the plane by the radiation emitted by the circular dipole.
Since 1, is the unit normal on the plane, the intensity (power per unit area) at a point r on
the plane is

15,2, ) = S(1) 3, (45)

The Poynting vector S(r) is evaluated at point r on the plane, with r written as in (41). The
intensity depends on the position of the image plane, represented by r,. This position is
determined by its angular location (6,,4,) and by its distance r, to the dipole. We shall
write g, =k,r, for the dimensionless representation of this distance. The dependence on
(4,4) then gives the intensity distribution over the plane.

With the Poynting vector given by (7) and (19), the intensity distribution can be evaluated
immediately. We obtain (Shu et al., 2009)

3
I(ro;ﬂ,y)zlo(qq"} {1—2372[(qosin90+lcos€0)2+,u2]—1(1+L712]ysin00} , (46

Fig. 4. The figure shows a 3D view of the image plane, the coordinate system, and several
field lines. The bold field line is the field line that runs into the direction (6,,¢,) and it
intersects the image plane under 90° if the image plane is located in the far field. Angle y is
the angle under which the point r on the image plane is seen from the location of the dipole.
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where we have set

q:wlq§+iz+ﬁ2 , 47)

for the dimensionless distance between the point r in the image plane and the position of the
dipole, and

1=t (48)

2
8rr;

The overall factor (g, /)’ has two contributions. A factor of (g, /q)* comes from the fact
that S(r) is proportional to 1/ and a factor of ¢, /q comes from the dot product of S(r)
with 1, in (45). So this comes from the projection of S(r) onto the normal direction, and
therefore this factor accounts for the fact that a field line crosses the image plane under an
angle other than 90°. We see form Fig. 4 that g, /q=cosy, with y the angle under which
the point r on the image plane is seen from the location of the dipole. An intensity
distribution I,(q, /q)°> would be a single peak at the origin of the image plane, and this
peak is rotational symmetric around the normal vector f,. The angular half-width at half
maximum of the peak, as seen from the location of the dipole, would be 37°. The expression
in braces in (46) accounts for the angular dependence of the emitted power and for the
rotation of the field lines near the site of the dipole.

04
o

0.0 }

04 F

Fig. 5. The location of the peak of the intensity distribution is (Zp, 4y) , and /Tp =aq, . The
solid line in the figure shows the dependence of aon 6,, and the dashed line is an
approximation (Shu et al., 2009).

It can be shown that the intensity distribution (46) has a single peak in the (4,x) plane,
when the image plane is located in the far field (g, >>1). Let (Zp, 4,) be the dimensionless
coordinates of the position of the peak. If we write 4, =aq,, then a depends on the
observation angle 6, , and can be computed numerically. The result is shown in Fig. 5. Since
/Tp scales with ¢, , the location of the peak in the A direction is a result of the angular
distribution of the radiated power, and not of the rotation of the field lines near the dipole.
More interesting is the location of the peak in the z direction. We obtain
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2sin 6,
8(1+a?)—5(sind, +acosb,)?

iy =—(1+a®)’"? (49)
This shift depends on 6, , and this dependence is shown in Fig. 6. It is independent of g,
and it is a direct result of the rotation of the field lines near the source. The shift is maximum
for 6, =7 /2, and the maximum shift is 2/3. Figure 7 shows the intensity distribution for
this case.

The field line that runs into the (6,,¢,) direction intersects the image plane at 4 =0 and

=51

Fig. 6. The figure shows the dependence of 7z, and z on 6, .

Fig. 7. The figure shows the intensity distribution over the image plane for 4, =z /2. The
coordinates of the peak are (4,,, ) =(0,-2 / 3), and this represents the largest possible shift
from the origin due to the rotation of the field lines.
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_ 2sin 6,

_— — o, 50
H 1+ cos?6), 0)

according to (44). The value of z; is also shown in Fig. 6, and we see that it does not
coincide with the location of the maximum of the intensity distribution. The displacement of
the field line is larger than the shift of the peak of the profile. So, the displacement is a good
indicator of the position of the image, but due to subtle effects the position of the image is
not exactly at the same location where the field line for this (6,,4,) direction intersects the
image plane. Figure 8 illustrates how a bundle of field lines forms the image, rather than the
field line for this direction only.

8. The difference profile

The shift of the peak in Fig. 7 is of the same order of magnitude as the spatial extent of the
dipole vortex, and it is independent of the distance between the dipole and the observation
plane, provided the image plane is in the far field. An experimental observation of this shift
would confirm the existence of the vortex near the source. In this fashion, a property of the
near field is observable through a measurement in the far field. However, the magnitude of
the shift is less than a wavelength, and in the visible region of the spectrum, this is
extremely small. Any observation of this shift would also require a very precise calibration
of the experimental setup, since the shift is measured with respect to the origin O" of the
image plane. Furthermore, the profile has a large background, as can be seen from Fig. 7,
and the shape of the background depends on the observation angle 6, .

Fig. 8. The figure shows several field lines for a dipole that rotates counterclockwise in the
xy plane. The image plane here is located at q, =4, and at 6, =¢, =7 /2, so perpendicular
to the y axis. The field line in the (6,,¢,) direction intersects the image plane at x =2 and
the maximum of the intensity profile is located at x =2 /3.
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We see from Fig. 8 that the shift is due to the spiraling of the field lines. If we would reverse
the rotation direction of the dipole, by reversing the helicity of the driving laser, the peak in
the profile would move to ¥ <0 in Fig. 8, and the background would remain approximately
the same. When changing the direction of rotation of the dipole, expression (46) for the
intensity remains the same, except that the term with zsiné, picks up a minus sign. We
therefore introduce the difference profile Al as the intensity from (46) minus the same
intensity for the radiation emitted by a dipole which rotates in the reverse direction. We
then find (Li & Arnoldus, 2010a)

AI(rO;/I,y)——i{1+12],uSin6’0 , (51)
q q
where
3P k>
;=00 (52)
4z

In (51), q is given by (47), so we see that Al depends on gq,, 4 and % .The dependence on
the observation angle 6, only enters through the overall factor siné, . For a given 6, , the

Fig. 9. The figure on the left shows a 3D view of the intensity difference profile for g, =20,
and the figure on the right shows the profile as a function of z. The extrema have an
angular location of y =30°.

difference profile in the image plane is a function of 1 and #, with g, fixed. It is easily
verified from (51) that Al has two extrema on the # axis, and since Al is antisymmetric in
4, there is a maximum and a minimum. This difference profile is shown in Fig. 9 for
g, =20 . The coordinates of the extrema are

go=t+de, (53)
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for g, >>1, e.g., in the far field. The location of the peak in Fig. 7isat z=-2 /3, and this is
a displacement of about one-tenth of a wavelength with respect to O’. The extrema of the
difference profile are proportional to g,, and therefore these extrema are located at
macroscopic distances from O’. As viewed from the dipole, they appear under an angle of
y=30°, as follows from (53). Therefore, the extrema in the difference profile are a
macroscopic feature of the intensity distribution. They appear in the far field due to the
rotation of the field lines in the near field. Even though the vortex is of microscopic
dimension, the location of the peaks in Al is macroscopic. This opens the possibility to
observe the dipole vortex through a measurement in the far field. Such an experiment was
performed recently (Haefner et al., 2009). The small particles were polystyrene spheres with
a diameter of 4.6 um, the laser light had a wavelength of 532 nm and the observation angle
was 6, =90°. The results of the experiment were in good agreement with Fig. 9(b).

9. Linear dipole in a medium

So far we have considered the radiation emitted by a dipole in free space. We shall now
consider the effect of an embedding medium with relative permittivity ¢, and relative
permeability s, , both of which are complex in general. When a plane electromagnetic wave
travels through a material, say in the positive z direction, then the magnitude of the
Poynting vector decays exponentially along the direction of propagation. This magnitude is
proportional to exp(—2k,zImn), so energy is dissipated when the imaginary part of the
index of refraction is finite. Since the field lines of the Poynting vector are determined by the
direction of S(r), and not its magnitude, the damping by the material does not affect the
field lines of the Poynting vector (which are straight lines, parallel to the z axis, for this case).
Let us now consider a linear dipole, oscillating along the z axis. In free space, the Poynting
vector is given by (16), and the field lines are straight lines, coming out of the dipole, as
shown in Fig. 1(a). One may expect that the result of damping by the medium is a
diminished power flow in the radially outward direction, but with a field line picture that is
the same as in Fig. 1(a). This reduced power flow was already split off in (7) as the factor
exp(—2gImn) . We shall now show for dipole radiation the result of the damping is far more
dramatic.

When we set u=e, in (8), we obtain for the Poynting vector

o(q) = tsin’ Re n[l + Z]
Hy nq

2

1+-L
nq

1

+m [£(1-3cos’ §) +2e, cosf]Ime, (54)

For a dipole in free space, this simplifies to a(q) = tsin® @, giving field lines that run radially
outward. When the dipole is embedded in a medium, this gets multiplied by Re]...]. It can be
shown that this factor is positive (unless n / g, is imaginary, which we shall not consider
here), and therefore this would still give field lines that run radially outward. Furthermore,
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in the far field the second line in (54) vanishes, and we have o(q) ~ tsin?dRe(n / 4,) . So, in
the far field, the field lines run approximately radially outward. When the imaginary part of

& 1s non-zero, the second line of (54) contributes to the Poynting vector. This term

r
dominates in the near field, where g is small, and it has a part which contains e, . This part
is responsible for a deviation of the field lines from the radially outgoing pattern. Since this
part only contributes when Ime, #0, any deviation from the radial pattern is due to

damping.

The vector field o(q) from (54) is rotationally symmetric around the z axis and reflection
symmetric in the xy plane. Therefore we only need to consider the field lines in the first
quadrant of the yz plane. In this quadrant, cosé is positive, and therefore the part of o(q)
containing e, is in the positive z direction. As a result, the field lines will bend away from
the radial direction, and upward. The factor in square brackets in (54) is

#(1-3cos® 0) + 2e, cos @ = sin Ole,(1- 3cos® 0) +3e,sinfcosb] , (55)

from which we see that the y component vanishes for cos¢=1/ NEY ,50 0@ =>54.7°. Therefore,
when 6 equals 54.7°, the part of the Poynting vector that contains Img, is in the positive z
direction. Consequently, the field lines in the near field cross the line 8 =54.7° in a vertical,
upward direction. Furthermore, for field points with a smaller angle &, the y component of
o(q) is negative, and this means that the field line through such a point is headed towards
the z axis. At the z axis we have =0, and it follows from (55) that the z component
vanishes, relative to the y component, and therefore each field line in the near field
approaches the z axis under 90°. The resulting field line pattern is illustrated in Fig. 10.

Z
0.6 .
8=54.7
0.4
0.2
0 Y
0 0.2 0.4 0.6

Fig. 10. The figure shows field lines of the Poynting vector for a dipole oscillating along the z
axis and embedded in a material with &, =1.7+0.06; and y, =1. These are the values for
water at 3 pm . The index of refraction is n=1.3+0.023; .
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Interestingly, we see that very close to the dipole some field lines form semiloops. The
energy that flows along such a semiloop comes out of the dipole and is then entirely
dissipated by the material. The field line ends at the z axis. A more careful analysis (Li et al.,
2011a) shows that all field lines start off horizontally, so along the xy plane. Therefore, all
energy is initially emitted along the xy plane. Some field lines form semiloops and some run
to the far field where they eventually run approximately in the radial direction. This
situation is in sharp contrast to the emission in free space, where the energy is emitted in all
directions (except along the z axis), as shown in Fig. 1(a). Another remarkable difference is
the near the z axis all field lines approach the z axis under 90°, whereas for emission in free
space the field lines near the z axis run parallel to the z axis.

When a linear dipole is embedded in a medium, the field lines of energy flow are curves,
rather than straight lines, when the imaginary part of the relative permittivity is finite.
Because of the damping, the energy flow is redistributed in the material. The effect of the
dissipation is not only a weakening of the power transported along a field line, as for a
plane wave, but the absorption during propagation results in a dramatic change in the
direction of power flow in the near field.

10. Circular dipole in a medium

Let us now consider a rotating dipole moment, embedded in a medium. With u given by
(17), the Poynting vector (8) becomes

o(q)= (1 ~1sin? 6) Re{n[l +iﬂf'

Hy nq

1 2
i
1+ >

+7 —_
Infq| nq

{ [ (1 —~1sin® 0) T+ lsin(26?)ngIm & +ey(sind)Re «S‘r} (56)

The right-hand side of the first line of (56) is proportional to . This is the leading term in
the far field, so far from the dipole the field lines run approximately in the radially outward
direction. The term on the second line of (56) has a part proportional to e,(sin¢)Ree, , and if
the imaginary part of ¢, is zero, this is the only additional term. In that case, the Poynting
vector has no e, component, and therefore € is constant along a field line, according to
(12). Consequently, a field line lies on a cone around the z axis, as in Fig. 1(b) for &, =1.
When there is damping in the material due to the imaginary part of ¢,, the vector o(q) has
an e, component. This will lead to a redirection of the field lines, and hence the field lines
will not lie on a cone anymore. In other words, the flow of energy will be redistributed due
to the damping, just like in the previous section.

The field line equations (11)-(13) become with (56)

d
L= 3(0,0) - 7
du
o 1 i [
7:ﬁl+i sin(26)Ime, , (58)
du 2|n|g nq
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d0_ 1 hi | Res, (59)
du |n|"q nq
with
. 1 .12
3(9,0)=(1-1sin>0) 4 Re ”(1+ZJ +—— |1+ Img, (60)
u\ nq)] [nl"q] nq

A field line runs into the direction of increasing u. Since Imeg, 20, the function g(g,0) is
positive, and it then follows from (57) that g increases without bounds along a field line.
Therefore, field lines start at the dipole, and run away to the far field. For the linear dipole,
some field lines form semiloops, as seen in Fig. 10, but for a circular dipole this can not
happen. For g large, the right-hand sides of (58) and (59) vanish, and therefore angles § and
¢ for points on a field line approach the constant values 6, and ¢, just like in section 4 for
the circular dipole in free space. Therefore, field lines approach asymptotically a straight line
¢, as illustrated in Fig. 11.

Fig. 11. Two field lines of the Poynting vector for a rotating dipole moment, embedded in a
material with &, =1+0.2i and g, =1. Field lines approach asymptotically a straight line,
and this gives rise to a virtual displacement q4 of the source.

10.1 Rotation of the field lines

Angle ¢ is the angle around the z axis, and we see from (59) that d¢ /du is positive when
Reg, is positive. Then ¢ increases along a field line, and the field line swirls around the z
axis in the counterclockwise direction when viewed down the z axis. However, when Ree,
is negative, angle ¢ decreases along a field line, and the field line rotates clockwise around
the z axis. In this case, the direction of rotation of the field lines is opposite to the direction of
rotation of the dipole moment. A material with Ree, <0 (and g, =1) is metallic, and the
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index of refraction is approximately imaginary. We see from (7) that this gives a very strong
damping in the medium, and therefore hardly any radiation will be emitted. However, for
materials known as double negative metamaterials the real part of the permeability is also
negative, and then the index of refraction becomes approximately real (and negative). In
that case the material is transparent, and the dipole radiation can propagate away from the
site of the source with little damping. Among the many peculiar features of these
metamaterials, this reversal of rotation of the dipole vortex is certainly noteworthy (Li &
Arnoldus, 2010c).

Because g increases monotonically along a field line, we can consider g as the independent
variable rather than u. We then find from (57)-(59)

2
do 1 1 i
—=—————|1+—| sin(26)Ime, , 61
dg  g(q.0)2|nf q*| nq (D
d¢ 1 1 i
—_—=— +—| Reg, 62
dg  g(.0)|nfq*| ng (62)

Let us now consider the solution for g small. For Ime, =0 we see from (61) that & is
constant, and so a field line lies on a cone. Then we expand the right-hand side of (62) for g
small, and integrate. This yields

(63)

For g—0, the value of ¢(g) goes to « or —o very quickly, and this leads to a large
number of rotations of a field line around the z axis, as can be seen in Fig. 1(b). For Ime, #0
we find in a similar way

%lnq+0(1) , z=0

o= : (64
—Ing+0(1) , z#0
a

where we have set

o = e (65)
Reg,

r

For Ime, #0, the approach of ¢(q) to +wo is logarithmic, so much slower than for the case
Ime, =0 . Consequently, the windings around the z axis are much thinner than in Fig. 1(b).
Due to the damping, it appears as if the field lines wind around the z axis only a few times,
as can be seen in Figs. 11 and 12.
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Fig. 12. The figure on the left shows two field lines of the Poynting vector for &, =-1+0.1i
and x, =1. We see that the direction of rotation is reversed, as compared to the direction of
rotation in Fig. 1(b). The figure on the right shows two field lines of the Poynting vector for
& =1+0.07i and g, =1. The field lines swirl around on a funnel surface, rather than a
cone.

10.2 The funnel vortex

When Ime, =0, field lines lie on a cone, as in Fig. 1(b), and they are very dense near the
location of the dipole. We see from Figs. 11 and 12 that when Ime, # 0 the field lines are not
only less dense near the source, but they also do not lie on a cone anymore. We see from the
figures that due to the damping the field lines now lie on a funnel-shape surface. It follows
from (62) that ¢ increases or decreases monotonically along a field line. We shall now
consider ¢ as the independent parameter, and we consider & to be a function of ¢ . From
(61) and (62) we then find

4o _ %asin(Zﬁ) . (66)
dg¢
The solution of this equation is
tanf =e¢*Y ¥ tang, , (67)

with (6,,¢4,) coordinates of the initial point. We now consider again the behavior of a field
line for 4 >0, when Imeg, #0. It follows from (64) that ¢ - - for >0, and to « for
a <0, in the limit ¢ — 0 . Therefore, a¢ — —o in both cases, and so tangd -0 for g —0.If
the initial point is in the region z>0, so 0<6, <7z /2, this implies that § >0 for 0.
Similarly, if 7 /2<6, <z we have § — . For an initial point in the xy plane we have
6,=r /2, and it follows from (58) that then #=7x /2 for all points along the field line.
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Therefore, the field line lies in the xy plane. It follows from (64) and (67) that tané = O(q) for
6, # = / 2 . Consequently, we have for 4 — 0

O(g) , z>0
0(q)=<7/2 , z=0 (68)
7+0(q) , z<0

It follows from (68) that §=0, =7 /2 or =7 for g — 0. Because the radiated energy is
emitted along a field line, we come to the remarkable conclusion that due to the damping all
energy is emitted along the z axis or along the xy plane, and this is illustrated in Fig. 12(a).
This is in sharp contrast to the situation for Ime, =0, because then field lines lie on any
cone around the z axis. In that case, the energy is emitted into the direction 8, , with 6, the
angle of the cone.

10.3 The displacement

As shown in Fig. 11, a field line approaches asymptotically a straight line ¢ in the far field.
The field line runs in the (6,,¢,) direction, but the line ¢ does not go through the origin of
coordinates. In order to find the line ¢, we expand the right-hand sides of (61) and (62) in a
series in 1/ g, and integrate the result. We then obtain

0(q) =6, —Z(ao)%hngr o, (69)
q
1
¢(q):¢o _Z(go)gRegr +o.y (70)
where
1
Z(6,) = (71)
|n]* Re(n / /,zr)(l —1Lsin? 00)
Along similar steps as in section 5, we now find
0o q=11,+q¢, (72)
with
qf =—sin n9oZ(6’0)[e¢0 Re(s,) + e, Cos 6,Im(s,)] (73)

Vector q; is perpendicular to &, so it is a vector in the image plane. It represents the
displacement in the far field, and it corresponds to the intersection of ¢ with the image
plane, as in Fig. 3. For a dipole in free space, the virtual displacement in the xy plane, qg, is
the same as the displacement q; of a field line in the far field. With damping, this is not the
case anymore. The intersection of ¢ with the xy plane is now found to be
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Qg =-sin6,2(6,)le, Re(z,)+e, Im(z,)] | (74)
with

e, =e cos¢, + e, sing, , (75)
the radially outward unit vector in the xy plane. The magnitude of the displacement is

B 2sin 6,
| 14, | Re(1 / p)(1+ cos6,) *

9a (76)

which generalizes (38). In free space, the maximum value of g, is 2, and this occurs for
6,=nr /2. For a dipole embedded in a material, the factor Re(n/ x,) in the denominator
can become small, and this would give a large g,. This could happen, for instance, for
u#.=1 and &, approximately negative. Then n is approximately imaginary, and the
displacement is very large.

11. Linear dipole near a mirror

We have studied the field lines of energy flow for an electric dipole with a linear and a
rotating dipole moment, both in free space and in an embedding medium. In this section we
shall consider the effect of the presence of a boundary. Let the dipole be located on the z
axis, a distance H above a mirror. The surface of the mirror is taken as the xy plane. We shall
consider a linear dipole, oscillating under an angle y with the z axis, so

u=e, siny +e,cosy 77)

In the region z>0 the field is identical to the field of the dipole plus the field of its mirror
image (which is the reflected field at the interface). The mirror dipole is located a distance H
below the xy plane, and it has a dipole moment represented by

ul™ = —e,siny +e, cosy (78)

The setup is shown in Fig. 13. Let r; be the location of a field point, measured from the
location of the dipole, and r, be the same field point but measured from the image dipole.
The electric and magnetic field amplitudes are then given by (4) and (5) with r replaced
by 1, and for the amplitudes of the image fields we replace r by r, and u by u™ . The
Poynting vector can then be constructed, and field lines can be drawn with the method
outlined in section 3 (Li & Arnoldus, 2010b). Figure 14 shows the field lines for a
perpendicular (y=0) and a parallel (y =z /2) dipole, both for h=k,H =2z . For these
cases, the field line patterns are rotationally symmetric around the z axis. Without the
interface, the field lines are straight, as in Fig. 1(a). For the perpendicular dipole, Fig.
14(a), the field lines are more or less straight near the dipole. The field lines that run
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towards the mirror bend at the mirror, and then run off more or less horizontally. For the
parallel dipole, Fig. 14(b), the pattern is much more complex. We see that singularities
appear, which are indicated by small white circles. At such a singularity the Poynting
vector vanishes. We see from the figure that several field lines end at a singularity, and
other field lines bend such as to avoid the singularity. The case of y =45 is shown in Fig.
15. The field line pattern is not rotationally symmetric around the z axis anymore. At the
right of the z axis, the pattern is similar to Fig. 14(a). On the left of the z axis we see
numerous singularities, and we now also observe the appearance of three optical vortices
in the energy flow pattern. The points labeled a4, b and ¢ in the figure are singularities at
the centers of the vortices. At the other singularities, except for d, field lines abruptly
change direction. It is also interesting to see that there are field lines which start at point a
and end at point b. These field lines represent a local energy flow where the energy does
not directly originate from the location of the dipole. At point e, some field lines seem to
collide, and this leads to a singularity. At singularities f, ¢ and F, field lines split in two
directions.

Fig. 13. Setup of the dipole near the mirror.

The vortices and singularities in Figs. (14) and (15) are a result of interference between the
radiation that is emitted by the dipole and the radiation that is reflected off the surface.
Close to the dipole, the field that is emitted directly by the dipole is much stronger than the
reflected field, and it may seem that therefore this field dominates the energy flow pattern.
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Fig. 14. The figure on the left shows the field line pattern for a dipole oscillating
perpendicular the the surface. Field lines that are headed towards the surface bend when
they come close to the surface. For the figure on the right, the dipole oscillates parallel to the
surface, and we see the appearance of singularities. The distance between the dipole and the
interface is one wavelength for both figures (h =27 ).

L

Fig. 15. Field line pattern for a dipole oscillating under 45° with the z axis, and for h =27 .
Numerous singularities are present, and three vortices appear.
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In other words, we may expect that close to the dipole the field lines are straight lines, as in

Fig. 1(a), and that away from the dipole interference sets in, leading to complicated flow
patterns as in Figs. (14) and (15). We shall now show that this is not the case. In order to
study the emission of the radiation, we consider a region close to the dipole. We assume
g1 <<1 and g; <<h . This means that we consider field points that are close to the dipole,
compared to a wavelength, and we assume that the distance between the mirror and the
dipole is much larger than the distance between the dipole and the field point. The
expression for the Poynting vector can be expanded in a series in ¢, , and we obtain

o(q)= snr o(h)[(3cos® & —1)u'-3cosa(q; -u'yu]+q; sin® @ + O(1) (79)
N1

Here, o is the angle between u and q, , vector u' is defined as

u'=-e, cosy+e,siny , (80)
and
1 | sin(2h)
h) =—| ——~ —cos(2h 81
o01) = 5 S22 - cos(an)| o

Without the mirror, this would be o(q)=q,sin®«, and this is exact at all distances. The
corresponding field lines are straight, as in Fig. 1(b). Due to interference, the first term in
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Fig. 16. Field line pattern close to the dipole for y =45° and h =27 .
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Fig. 17. Field line pattern close to the dipole for y =45° and /=27, in 3D. It appears that
the radiation is emitted as a set of four vortices.

(79) appears, and this term is proportional to 1/g;. Close to the dipole, this term
dominates. The field line picture close to the dipole is shown in Fig. 16. We see that some
field lines are closed loops, and a singularity appears very close to the dipole. When we
graph the field lines in 3D, we obtain the result shown in Fig. 17. In front of the yz plane,
there are two vortices which come out of the dipole. Two other vortices are behind the yz
plane, but these are not shown in the figure. The dashed curves in the figure are closed
loops from Fig. 16 in the yz plane. Therefore, radiation is emitted as a set of four vortices,
and this is a result of interference between the directly emitted radiation and the reflected
field by the mirror. These vortices are present no matter the distance between the dipole and
the mirror, but the spatial extent of the vortices diminishes with distance.

12. Conclusions

Energy in an electromagnetic field flows along the field lines of the Poynting vector. We
have considered the radiation emitted by an electric dipole. For a linear dipole in free space,
the field lines are straight lines coming out of the dipole. When the dipole moment rotates in
the xy plane, the field lines are curves that lie on cones around the z axis. Close to the source,
the field lines wind around the z axis a large number of times, and at larger distances, in the
far field, the field lines approach asymptotically straight lines. Such a line is displaced, as
compared to a line that would start at the location of the dipole, and this gives a virtual
displacement of the position of the source in the xy plane. Also in the far field, this line is
displaced as compared with the radially outward direction, and this gives rise to a shift of
the image of the dipole when projected onto an observation plane. When the dipole is
embedded in a medium, the damping in the material gives rise to a redistribution of the
power flow, as compared to emission in free space. For a linear dipole, the field lines are not
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straight anymore, and for a circular dipole a field line has a funnel appearance, rather than
lying on a cone. Also the spacing of the field lines near the source becomes much less dense
due to the damping. It is also shown that when the real part of the permittivity is negative,
the field lines reverse in rotation direction, and the flow of energy counterrotates the
rotation direction of the dipole. The virtual displacement of the location of the source and
the displacement of the image in the far field can be much larger than in free space. When
the dipole is located near the surface of a mirror, a host of new phenomena appear due to
the interference of the dipole radiation with the reflected radiation by the mirror. In the flow
field, singularities and vortices appear in the neighborhood of the dipole and in between the
dipole and the mirror. For a linear dipole in free space, the field lines come straight out of
the dipole, but when this dipole is located near a mirror, the mechanism of emission is
drastically altered. In the oscillation plane of the dipole, all radiation is emitted in a direction
perpendicular to the dipole moment, and some field lines form closed loops. Energy flowing
along these field lines returns to the dipole. For emission off this plane, the radiation is
emitted as a set of four vortices, emanating from the dipole.
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Institute of Microelectronics Technology and High Purity Materials RAS,
Russia

1. Introduction

Many successes in physics of 20th century associated with quantum mechanics in the
statement, which was given by the N. Bohr, W. Heisenberg, M. Born, W. Pauli and others. It
is known as “Copenhagen interpretation”. It bases on the statement that the purpose of
quantum theory is the description of results of observation, instead of getting knowledge
about reality and the processes occurring in material systems in an interval between the first
observation and the next. Moreover: “Any attempt to find such a description would lead to
contradictions” (Heisenberg, 1958). Canonization of this opinion considerably changed a
view at the purpose of researches, led to the confidence accepted today by the majority of
physicists that “the quantum mechanics has rejected usual classical mechanics determinism
in behavior of microobjects”, and that “the aim of quantum mechanics to give a method for
finding probability distributions for various physical values in various states of
microobjects” (Akhiezer & Polovin, 1973). Postulation a fundamental nature of quantum
mechanics “obscurity” has led to the statement on completeness of quantum mechanics, i.e.
that there are no parameters (probably hidden) which define physical sense of processes in
quantum system and give fuller description of the nature, than are based on probability
functions or a density matrix.

This radical change of the research concept was denied by many of those who stood at the
basis of the quantum theory - M. Planck, A. Einstein, E. Schrédinger, M. von Laue, and L. de
Broglie. In second half of 20th century, dispute over reality and search of physical reasons,
causing the quantum phenomena, has led to various formulations of quantum mechanics -
the theories containing hidden variables, describing behavior and evolution of quantum
systems in space and time. Herein D. Bohm mechanics, based on de Broglie idea about a
“pilot wave” directing electron movement (Bohm, 1952), and the semiclassical or
neoclassical electrodynamics theory developed by E. Jaynes and his colleagues (Crisp &
Jaynes, 1969), based on Schrodinger idea (supported by E. Fermi) that square of wave
function describes not probability, but actual charge density distribution in atom
(Schrodinger, 1926). In the same years J. Bell demonstrated, that contrary to belief of the
majority of physicists about impossibility of hidden variables existence, the nonlocality of
quantum mechanics reflects nonlocality of hidden variables (Bell, 2004). Nevertheless,
today, in spite of enough numerous researches directed on revision of view of Copenhagen
interpretation founders, the disputes round the purposes of physical researches and the
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essence of hypotheses and postulates, containing in the theory, majority of physicists are
perceived as the philosophical debates representing only historical interest. “...truth does
not triumph by convincing its opponents and making them see the light, but rather because
its opponents eventually die...” (M. Planck). Such point of view is grounded usually by
impossibility to offer any significant experiment distinguishing this realistic theory from
canonical quantum mechanics. This opinion is deeply erroneous. Quantum mechanics from
the very beginning developed as an empirical science. Its formulations, models were formed
by only trial and error method. Any discrepancies of quantum models with experimental
results were removed by imposing of “exclusion principle” for any processes, which should
be observed according to the logic of classical physics, were removed by acceptance of
postulates on principles of matter behavior in quantum world and hypotheses about a
structure and properties of quanta. As a result of such “development” was creation of
purely mathematical theory with the logic which is initially not reduced to the logic of
classical physics. Such theory necessarily should meet difficulties in definition of physical
sense some the phenomenon: “Quantum electrodynamics is not a perfectly consistent
theory” (Dirac, 1965). “It is plagued by divergences, some of which are carried over from the
classical theory of electromagnetic fields, and some of which are introduced by the
procedure of quantizing the electromagnetic field. Quantizing a field that has an infinite
number of degrees of freedom seems to lead unavoidably to an infinite amount of energy in
the zero-point oscillations. Furthermore, the usual QED derivation of spontaneous decay,
the Lamb shift, and the calculation of the anomalous moment of the electron seem to require
these zero-point oscillations. Nevertheless, it is difficult to rationalize that these zero-point
oscillations actually exist in nature” (Crisp, 1990).

Other fundamental difficulty of quantum mechanics in explaining of an interference of
particles - photons, electrons etc. R. Feynman wrote about an interference problem on two
slits: “Impossible, absolutely impossible to explain it any classical way ... has in the heart of
QM. Really, it contains the only mystery” (Feynman, 1965).

Usually considering, the mysticism inherent in quantum description of some experiments is
eliminated by replacement of the Copenhagen interpretation most popular in quantum
physics by one of equivalent interpretations. It is considering, that all formulations (and
them more than 10) despite “differ dramatically in mathematical and conceptual overview,
yet each one makes identical predictions for all results” (Styer et al., 2002).

Perhaps, firm belief in correctness of quantum mechanics conclusions is connected with
considering in quantum mechanics simple enough phenomena isolated from others. We will
below analyze complex experiments in X-ray physics where the various effects are the
consequence of the same process but for its explanation till now theory formulates
assumptions, not agreed among themselves, and by that we will prove, all mysticism of
behavior of quantum particles is connected only with the theory. Important, that a lot of
troubles and “obscurities” inherent in quantum physics, are concentrated in physics of X-ray
scattering.

In this chapter, results of experimental research of hard x-ray radiation scattering will be
compared to those theories, which have arisen for their explanation. It is interesting to note,
already in the early twenties of last century the common theory of scattering of
electromagnetic radiation could be created. Instead of it, unique process of radiation
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scattering by atoms of matter began to be considered as consisting of the several
independent phenomena described by various mechanisms of scattering. Theories
describing the scattering are:

Classical (Thomson) theory: electromagnetic wave scattering by point electrons. All
electrons of atom scatter incoherently with each other. Frequency of a scattering wave
coincides with incident frequency. Possibility of existence of the “big” electron having the
certain size and the form is supposed.

Quantum (Compton) theory: the photon interact with the point electron in atom in the state,
defined at the moment of scattering in coordinate and momentum corresponding to the
solution of Schrodinger wave equation. This scattering named as Compton or incoherent
because frequency of scattering radiation (new photon frequency) depends on a scattering
angle and an initial momentum of an electron which it has at the moment of collision with a
primary photon.

Neoclassical theory of scattering (NCT) - base for X-ray diffraction theory and X-ray
crystallographic analysis: electromagnetic wave scattering by electron distribution in atom.
This distribution is set by Schrédinger function, which is understood not as function of
probability distribution of point electron in atom but as the real charge density. It is coherent
(Bragg and Rayleigh) scattering without frequency changing.

The listed theories - classical, quantum and NCT are applied not to the description of
scattering of X-ray radiation by atomic electrons, but for the description of separate
fragments of scattering spectrum in various models of an atom structure and radiation
properties.

From here follows singlevalued, though also a paradoxical conclusion. In the modern
physics, there is no theory of scattering of hard electromagnetic radiation not only by
bound, but also by free electrons.

Situation with treatment of x-ray radiation scattering on matter reminds the story about an
elephant and the group of blind men. They touch an elephant at different parts to learn what
it is like. As a result each of them formed his own “the theory of an elephant”. Disputes
what theory more correct are useless. Everyone reflects only a part of the general essence. It
is necessary to see “elephant” entirely. For this purpose, in the case of X-ray scattering
phenomena, it is necessary to rethink available experimental data, recognizing, that all of
them reflect uniform process of scattering, and all theories existing for today describing its
separate fragments are not perfectly correct, and provide some misrepresentation about a
matter structure.

Basic concept of quantum electrodynamics is the concept about a photon and electron as a
point-like particle. The most convincing, but actually, the first and unique proof of photon
existence is Compton effect: changing and angular dependence of the scattered (secondary)
x-ray radiation wavelength in comparison to the incident radiation.

For Compton effect explaining by photons scattering it is necessary, that the electron in
atom: 1) was point-like, 2) had a certain momentum - instant velocity and a direction of
movement in atom (theory of impulse approximation), explaining broadening of Compton
line.
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On the other hand, as noted above, X-ray diffraction method bases on the assumption that
electromagnetic wave scatters not on separate point electrons, but on a charge distributed
in atom. This mechanism of scattering is put in a basis of methods of atoms and molecules
structures definition, research of crystal real structure. Clearly, that it cannot be realized
from quantum mechanics point of view. Imagine, that the distance between slits (electrons
in atoms) quickly changes in time under some probability law in a big area defined by
Schrodinger function, then named Feynman “mystical” process of an interference of
photons on two slits becomes inconceivable. Thus it is clear, in experiments on x-ray
diffraction (i.e. at coherent scattering), X-rays, scattered by electrons of a crystals, is
electromagnetic radiation, and the charge occupies certain volume in atoms, instead of
consists of point electrons. However, if it so, what conclusion should be made about
plausibility of quantum origin of Compton effect, and other effects arising at X-ray
scattering?

For the answer to this question, at the analysis of results of X-ray radiation scattering
experiments we will base on representations about mechanisms of scattering, that are used
in the neoclassical theory. We will see, both effects of scattering, “coherent” (Rayleigh) and
“incoherent” (Compton), represent in a spectrum only phenomenon: scattering of
electromagnetic radiation on a volumetric electron charge which structure is deformed in
the field of atomic forces. In such understanding of scattering process Thomson theory plays
the role of the theory of wave scattering on the elementary charge contained in small
volume dV of electronic density.

2. Classical theory of scattering (1903-1923)

To develop new theory on x-ray scattering we are used the technology suggested by J. Dodd
at a classical treatment of Compton effect (Dodd, 1983): «I should like to include a little
fantasy: to presented that we stand near the beginning of the 20th century and attend to
discover the lands for the interaction between light and matter using the classical theory of
the day being guiding by experiments which in principle could be performed near that
time».

2.1 Basic conceptions and models of scattering used at first two decades in 20™
century

The view of physics at the time we consider is dominated by theories of J. Maxwell
(explanation of electromagnetic fields) and H. Lorentz (force equation explained how
electrical charges and current interact). We have learned, that light propagation as a wave of
electromagnetic fields described by these equation. Einstein’s “lichtquanten” hypothesis did
not obtain wide acceptance from the physicists at the time. Von Laue, for example, was
opposed the light quanta and suggested that quantization resided in matter, not radiation
(at least in x-ray wave region). Though, Einstein in 1918 wrote “I do not doubt any more, the
reality of radiation quanta”, in 1921 he complained to P. Ehrenfest that “problem of quanta
was enough to drive him to the madhouse” (Kidd et al., 1989).

Discussions of size and shape of electron followed from point of view of different physical
properties such as magnetic properties, possibility of electron to be compressed because
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external force to produce Lorentz radiation force for it compensation. The most popular
model was electric charge compressed to shape of sphere of radius is equal to

82

r,=—5=282-10"m
mc
Later Dirac suggests mathematic point like model of electron for quantum
electrodynamics theory. Results of some experiments on the X and y rays led to
assumption that electron may be flexible ring or spherical shape distributed charge of
electricity with radius order

A, = N 24210 m
mc
(Bergman, 2004). From point of view of investigation of any real body structure and form, it
is logical to use electromagnetic radiation with length of a wave, comparable with
assumptive size of structure details of investigated object. Usual X-ray radiation satisfies to
such criterion for atomic structure of matter: in X-ray experiments typical investigation
radiation with wave length 0.5A - 2A are used. From this point of view, for the theory of X-
ray scattering it was reasonable to start with assumption about point electron.

2.2 Thomson theory — Scattering by point elementary charge

In 1903 J. Thomson published the theory of scattering of electromagnetic radiation by point
charge of an electricity. As noted above, the model of a point electron with radius r. was
offered along with model of an electron with the size of an order A

In this case, it is necessary, that “elementary charges”, parts of the “big” electron, scatter
coherently and independently, and relation of charge quantity to mass in volume dV in each
part remains constant and equal to e/m, where e and m charge and mass of electron
(Compton, 1919a). Assume charge distribution in a free electron! p(r) = e|y(r) |2 mass -

m|y(r) |2

In the classical theory of scattering is assumed, that electron can have the sizes of an order of
21012 m and can consist of elementary charges in which the relation e/m is constant. It
means, that

E:£,016=e‘l//‘2dV,(Jlmzm‘(//‘zdV,J.‘(//‘zalV:1 (1)
dm m

On Fig. 1 the scheme of scattering plane electromagnetic wave with wavelength Ao and
frequency vp on an electron consisting of elementary charges. Any “elementary” volume
dV<< (h/mc)3 inside distribution of p(r) looks as elementary electronic charge with constant
charge to mass relation.

1 In QM, for free electron y(r)=5(r). For the electron in atom probability of its position in any point are
calculated and presented by Schrodinger function |y (r) |2. Acceptable distribution of electron density
in NCT is under discussion in the paragraph 3.
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Fig. 1. To the theory of electromagnetic wave scattering by electron. Charge electron density
p is presented by distribution described by function |y |2.

Each charge oscillates in a direction of electric field E under the influence of force:

F= —del% (2)
c ot

where

104 _ g,
c ot

A - vector potential of a field. The movement equation of an elementary charge is:

= Ey(t) or 9(t)=———A(t) 3)
m me

Here $(t) - velocity of fluctuations of an electron. Thus along an electron in direction 7, of
distribution of an electromagnetic field current J(r,f) flows. Thus:

J(r, ) = el () 8(t) (4)

Further we consider only spherical symmetric functions y(r) for which it is convenient to
use polar co-ordinates - radius vector 7 and polar angles: ¢ - an angle between vectors i,
and - #,, 7y - a direction of propagation of a scattering wave, a - an angle between vectors
E and iy, in this case dV = dxdydz = r*sinadrdedyp = r*drdQ

Let’s define parameters of scattering radiation for a point electron when |y (r)|2 is 6-
function. This condition is satisfied at radiation wavelengths A>102A, most widely used in
X-ray crystallographic analysis. Besides, the equation (3) is valid in small fields A, with
oscillation amplitude Xmax < A..

Easy to show, scattering of a polarised wave by a point charge leads to dipole waves,
intensity equation

2
d|A] = (5P |Af sin® ado
mc
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Then differential cross section doy and cross section oy is:

dGO 2 .2 8 2

—=r."sin“a; o©y,=—nr 5
do e 0 3 e ( )
Notice one essential circumstance. At making above assumptions of structure and
properties of the “big” electron, the value of scattering cross section is proportional to re.

Therefore, for the “big” charge easy to write the equation for amplitude and intensity
scattered in direction n, in limit far field diffraction zone R>>r. (R - distance from an
electron to a point of observation). Assume big electron scattering function in a direction n,:

Fulkg =kg) = [l () 7 ® 5  av ©)
@
_ 2sin—
ko*kw=n0 To_p, ‘—‘= 2
P %

H - vector in space of reciprocal wave vectors.

In this case scattering cross section:

do(H . - - -

) r2sino | ()P do(i) = doy | £, ()] )
According to Rutherford atomic model each electron in atom scatter short-wave radiation
independently (incoherently) from other electrons. Thomson model also suggest, that
intensity of scattering by each atom is proportional to amount of atomic electrons Z:

I=0,Z ®)

In his experimental researches, C. Barkla demonstrates that electrons actually scatter
independently and incoherently (Barkla, 1911), at least, in atoms of light elements (the neat
result of this researches was definition the number of electrons in atom). Barkla also
discovered polarization of X-ray radiation and validity Maxwell theory for calculation of X-
rays scattering, thus identified it with the electromagnetic waves, having very short length
in comparison with a visible region. P. Evald took for the basis of the wave propagation
theory in crystals and assumed that wavelengths of X-ray radiation are comparable with
interplane distances. This hypothesis was the basis for Laue experiment (performed by
W .Friedrich and P. Knipping in 1912) for discovering X-rays diffraction on crystals. A year
later, the father and son Braggs created the theory of Bragg diffraction, and the device for
spectral analysis of scattering radiation. Discovering of diffraction of X-ray radiation has
allowed to draw a remarkable but paradoxical conclusion that, in our opinion, was a
forerunner of the subsequent “obscurity” the quantum physics. In spite of the fact that the
majority of experiments shows, that electrons in each atom scatter independently from each
other, the lattice atoms in a crystal, under certain conditions (Bragg conditions), become
coherent scatterers for X-ray radiation.
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2.3 Compton theory — Scattering by finite size electron

Among other important experimental results it is necessary to mention one more result, that
did not become discovery but should become. D. Florance showed, that the angular diagram
of X-rays scattering I(¢) is asymmetric. I(0°)>I(180°), and dependence I(180°)/I(0°) rapidly
decreases with Ag decreasing (Florance, 1910).

These results allow to suppose that the electron has the size comparable to x-ray radiation
wavelengths. These years Mie and Debay already created the theory of light scattering on
dielectric and metallic small diameter spherical particles, with diameter comparable to
radiation wavelength (Mie, 1908; Debye, 1909). Rigorous solution problem of diffraction
plane wave on homogeneous sphere of any diameter and structure was obtained. The next
years many authors analyzed various aspects of this problem. In present paragraph,
consider such researches in x-ray wavelength region.

In 1918-1919 Compton dedicate theoretical researches to analysis of experimental data of x-
ray scattering on electrons (Compton, 1919a,b). Fig.2 represents experimental measurement
(circles) of relative intensity radiation scattered at different angles when the hard X-ray (A
=0.09 A) from radium bromide traverse a plate of iron (Florance, 1910), and calculated
curves of angular scattering dependence of unpolarized wave (Compton, 1919a). In figure,
calculated curves for “big” spherical shell electron with radius r =210-0cm - internal
continuous line; for an electron in the form of a ring (ring electron, r =2 10-1%cm) - dashed
line; for point charge - an external continuous line.

0 40°

180

120 0

Fig. 2. Experimental (Florance, 1910) and theoretical (Compton, 1919a) angular
dependencies integral scattering intensity from point-like and “big” electron with different
charge distribution p(r) (spherical shell and ring electron with radius 2-10-12m), see text
above.

Compton for the definition of distribution p(r) has analyzed not only results of
measurements of angular diagram of scattering. Analyzing measurements of dependence an
absorption coefficient by various materials, he demonstrated, that y, - factor of atomic
absorption of energy in an electron distributed in some volume, is defined by the sum
consisting of fluorescent absorption, and scattering o, depending on wavelength A:
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Mo =kZ 25 O(r, 2) + (1, 4) ©)

k=const, r-electron radius, functions ® and o calculated for flexible ring electricity, are
expressed approximately by the equations

0= 14.8(%)2 + 93.6(%)4 +oy o=0y(1- 26.6(%)2 + 524(%)4...)

Formula (9) demonstrated, that experimental data well coincide with calculated at
r~0.81010cm.

Absorption measurements were less precise, than scattering measurements, but values of
the calculated radiuses of an electron according to these various methods of measurements
showed, that the electron is a particle with radius of an order 1012 m. Such coincidence of
experimental values of scattering and absorption, obtained at determination of electron
radius, is especially important in view of dispute, continued more than centuries on
character of interaction of radiation with matter. In conclusion review of first two decades
results obtained by theory of scattering hard electromagnetic radiation, it is necessary to
discuss in brief a problem of absorption and radiation by the charged particle of
electromagnetic impulse and energy. This problem has been solved in classical
electrodynamics more than 100 years ago. Compton in 1923 has offered the new decision, in
fact reducing a problem of an exchange of energy and an impulse between field and electron
to a mechanical problem of particles collision. His suggestion leads to dramatic
consequences, especially for physics of X-ray radiation scattering.

2.4 Absorption of an impulse of an electromagnetic field, Lorentz forces — Impulse
and energy conservation laws

Consider scattering of an electromagnetic wave by an elementary charge. Force Fs, acting
from a field on an electron, is equal to average value of an impulse absorbed in unit of time.

8z , E’
Fo=—r’— i (10)
° 3 " 4rm
A charge particle on being accelerated by the force (10) recover electromagnetic energy and
itself losses energy. H. Lorentz point to occurrence of braking force of an electron at radiation
of X-ray electromagnetic wave (Lorentz, 1905). Loss of energy is interpreted by him as caused
by a force Fy. acting on the particle given in value equal to Fs and opposite to it:

F =-K (11)

The sense of the equations (11) and (10) that the elementary charge in the electromagnetic
field gets and loses energy and an impulse simultaneously. Therefore neither an electron at
rest, nor a moving electron with constant velocity, does not change the kinetic energy at
radiation scattering. Equality of forces Fr and Fs - is a consequence of equality of energy of
the waves absorbed and reradiated by an electron at scattering by it of an electromagnetic
wave. Presence of Lorentz force was checked experimentally though the physical sense of it
origin remains till now not clear. In 1945 discussing this problem J. Wheeler and R. Feynman
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wrote: “The origin the force of radiative reaction has not been really so clear as its
existence”. Lorentz, explaining the mechanism radiative reaction forces found the cause in
final size of electron and particle elasticity. Under the influence of external forces the sizes of
a particle change, there are internal pressure, resistance to external forces. Dirac offered
method of its calculation, come from point particle model and not trying to explain physical
origin of radiation damping. On base of Dirac solution Wheeler and Feynman offered the
scheme of creation braking forces in that the electron simultaneously radiates a spherical
wave (out, retarded wave) and accepts another wave (in, advanced wave). In this case the
semidifference of forces acting on an electron is equal to Lorentz force of any elementary
charge (1). Therefore, equation (11) also as (7), is universal and correct at any form of an
electron. The electron scatter the energy proportional to its cross section, and
electromagnetic field loses the energy equal to the same value. The energy lost by a field
comes back in the form of the sum dipole electromagnetic waves radiated by elementary
charges of the big electron. The electron, absorbing energy, absorbs also proportional
amount of an impulse that leads to occurrence of Lorentz force equal and opposite Fs,

Note fundamental meaning of a conclusion that follows from the above consideration. The
equation (3) of charge transverse oscillation describes the mechanism of energy extraction
from primary wave field and simultaneously returning back this energy by radiation dipole
waves. The equation (11) confirms: absorption of an impulse of a field at energy absorption
causes force acting on an electron in opposite direction at energy radiation.

2.5 Classical theory: Short “Golden age” and swift break-down
In conclusion of the section we will underline some important statements:

e X-rays are electromagnetic radiation, the hypothesis about radiation quanta was
discussed, but did not find support in the scientific community up to 1923;

e  Electron is a main reradiating matter. Cross section of scattering proportional to the size
2
e . .
7, =— named classical radius;

e

mc

¢  The main part of radiation scattered by individual electrons in atom are incoherent;

e Electrons in the atoms from a crystal lattice is a coherent scatter under certain
conditions (Bragg diffraction conditions);

e Hard X-ray radiation scattering experiments shows the possibility for electron to have a
radius in order to h/mc.

These years were developed methods of the x-ray analysis of molecules and crystals
structure, were outlined methods electronic structure analysis of atoms and electrons
structure itself. Development of common theory of hard radiation scattering by electrons
has been interrupted in 1923. Compton, and, independently, Debay, offered the theory
explaining effect “softening” by scattering of particles of light (photons) on point electrons
(Compton, 1923; Debye, 1923). “Softening” effect (found out earlier many authors (Eve,
1904; Barkla, 1904)) was: “back” scattering radiation (on large angles ¢) absorbs more
strongly, than “forward” scattering radiation (on small angles). In experiments Gray and
Compton, executed independently, has been shown, that this effect is caused by scattering
radiation wavelength increasing with increase in scattering angle ¢ (Gray, 1920; Compton,
1922). This effect is known today as Compton effect.
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Fig. 3 presents Compton spectra of synchrotron radiation (Bessy-2) Ao = 0.88 A scattered on
carbon crystal.

- Compt
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Fig. 3. Experimental scattering spectra 14 keV on diamond at ¢ = 75°, 95°. Center of
Compton line at ¢ = 95° approximately corresponds to AA=A. (see equations (12)). 0 - angle
of Ge crystal analyzer.

At scattering by electrons of carbon atoms, the spectrum contains a weak narrow line with
wavelength which occurrence was expected according to the classical theory of scattering. It
is surprising, that intensity of this unmodified line (named coherent or Rayleigh line), makes
some percent from full intensity of scattering. This part of spectra is responsible for
diffraction phenomena and widely used for the structural analysis, X-ray optics and
interferometry. This line responsible also for formation of atomic scattering factor and
refraction. Much more intensive part of scattering spectrum contains the wavelengths A>\o.
This is “Compton” part of scattering spectra, considered in quantum theory as incoherent.
Experimentally, with very high accuracy, it has been established, that line centre (its
wavelength and frequency) determinate by equations:

Yo

1 —m(l —Cos Q)
v

e

A(@)=72 +A,(1-cosp) vi(p)=

AV A AvV'
A _ £(1-cosg), —Y:fﬁ(lfcosq)) (12)
ho A v e
2
A:h,V:mc ,ﬁ_/\c

The Compton line is very wide 6A = AN" and from this point of view it is partially coherent.
Value of d\ of “incoherent” Compton line is only 1-2 orders more than it is for coherent
Rayleigh line.
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Main part of the radiation energy, scatter by an electron, is contained in a wide spectrum
with wavelengths N” > Ay. Contrary to the standard opinion, the explanation of this
remarkable fact is not found till now. The evidence to that of hundred publications in which
various variants of the theory of effect under discussed up to day. Theoretical and
experimental investigations of the Compton scattering mechanism, attempts to understand
physical sense, proceed already almost century. This is unique phenomenon, since the effect
has not obtained any significant practical application. In the theory of x-ray radiation
scattering, this effect mention only with necessity to correct calculated atomic and structural
scattering factors (along with other just incoherent effects - absorption, diffuse scattering,
etc).

Such attention to Compton effect among experts is caused by two factors. The first:
Compton effect has made the enormous influence on formation of quantum mechanics
and quantum electrodynamics (Glauber, 2006). As it was already mentioned in
introduction, it became a turning point in physics development, therefore any attempt to
revise quantum physics inevitably should lead to attempts of revision of the accepted
standard theory of Compton effect. The second factor. An explanation “softening” effect
by collision of particles of point electron with photons broke the describing X-ray
scattering theory of into "puzzles". Whole “image of an elephant” has broken up to images
of its “foot”, “trunk” and “body”. Instead of common theory of scattering three various
theories which are only formally agreed among themselves have come. Actually, in them
are used various representations about entity of matter, various theories of atom
structure, various mathematical apparatus. In the next paragraphs we will consider the
theory based on de Broglie representation about the electron occupies all space and
Schrodinger wave y-function as real fields. We will name this theory neoclassical (Crisp,
1990). This name reflects its essence more successfully than semiclassical theory, used
various authors.

3. Neoclassical theory of coherent X-ray scattering by bound electrons

For an explanation of results of electromagnetic scattering on the bound electrons,
Schrodinger, for the first time, interpreted the wave function i found him as the function
defining density of a charge in atom. According to his “electrodynamic” hypothesis, the
charge density in atom in stationary condition is defined by the formula p =e|y(r) |2 The
elementary charges representing an electron in atom, oscillate under the influence of
electromagnetic radiation. At such understanding of a charge, scattering on an electron in
atom is reduced to a problem defining the function of scattering f(H) for the big electron (7).
Because all electrons in atom are in the central field and all charges density distributions are
symmetric about centre, it is obvious, that scattering of each electron is coherent with others.
The factor of atomic scattering f, = Zi ,fi » where Z - atomic number. Usual opinion: there is
exist experimental prove that all electrons scatter coherently according to Schrédinger
| p(r) |2 representation for each electron. This opinion is widely used in X-ray structure
analysis. At the same time, as already was point above, it has been shown, that electrons in
atoms of easy elements scatter incoherently with each other, and their size much less than
defined for an electron by function |y(r)|2.
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Actually, as we can see from analysis of the Fig. 3, all electrons simultaneously participate
both in Rayleigh, and in Compton scattering. It is possible to consider approximately, that
factor of coherent scattering by electrons in atoms of light elements is Ran= I/ I, where I,
and I, intensity of coherent and Thomson scatterings.

Evidently, the same electrons participate in forming both part of spectra. It is obvious, that
charges in atom scatter coherently should remain motionless and occupy great volume of
atom. So there are no alternatives of function interpretation |y(r) |2 except real distribution
of charge density.

It is necessary to assert, that electrons in atom remain motionless. Therefore standard model
of atom, with electrons are point particles having an impulse corresponding to velocity 10-2c
- 10-1c where ¢ - velocity of light, is incorrect from point of view of X-ray diffraction
experiment. Otherwise, coherent, unmodified part of spectrum would not be observed at all
for moving electrons. In the case of standard model, separate atoms even united in a crystal
lattice, will give smoothed diffraction picture (like diffuse thermal scattering), as for it
formation it is necessary synchronous moving electrons in atoms of a crystal lattice. But also
in this case the atomic scattering factor will be differs from calculated from formula (6),
because instead of addition scattering amplitude it is necessary to sum up intensity of it
scattering from points, defined by function? |y(r)|2 “Electrodynamic interpretation”gives
some distribution of electronic density in atom, but does not explain loss more than 90 % of
a scattering matter in atoms of light elements (intensity of “incoherent” scattering much
higher than “coherent” one). Above noticed, the condition (1) - basic condition both valued
for classical electrodynamics and NCT. Hence, only a part of the electronic mass, located in
an electron, provide Rayleigh scatterings. Designate this mass m,. It is obvious, that it makes
a small part of a lump of an electron. Other part, we name “dark matter” m, scatter
“incoherent”, forming Compton spectrum.

Quantum theory of scattering explain existence this “dark matter” in atom only that the part
of electrons is pulled out from the position determined by function |y |2 for very short time,
an order t ~ 1/vo (Cooper, 1985). Other electrons “do not notice” this loss and keep the
previous position. The pulled out electron scatter radiation on the mechanism of incoherent
scattering, which we will discuss in the next paragraph. We will notice only, that this
electron “recollects” an impulse, which ostensibly was in atom. This is one more “ad hoc”
hypothesis of quantum theory of x-ray scattering.

Let's quote Compton reasoning about the discrete electrons scattering concept which reflects
the standard point of view on the mechanism coherent scatterings: “According to the wave-
mechanics theory, under the influence of the field of the incident electromagnetic wave the
characteristic functions for higher energy states of an atom assume finite values and the
radiation which it emits has the frequencies described by hv, =hv+W, -W, (where WV; and
Wrare the initial and final energies). If the final state of the atom is identical with the initial
state 7, the frequency is unchanged, and coherent radiation is emitted. In calculating this part
of the scattering, only the y functions of the normal state 0 of the atom are therefore
concerned. That is, the coherent scattering is identical with that from an atom having a

?The similar situation considered Bosanac in article where analyzed application consequences
semiclassical theories for the analysis of Compton lines (Bosanac, 1998).
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continuous distribution of electric charge of density p=-ew,w,” (Compton, 1935). Such
reasoning naively reduced to false statement, that the probability of a finding of a point
electron in volume dV is equivalent to distribution of a scattering charge. From the point of
view of the quantum theory of a structure of atom, neither orbital movement, nor any
another movement of electrons in atom outwardly should not be shown, as the electron
cannot lose energy, being in a stationary condition. From experiments on coherent scattering
it is possible to draw a conclusion, that movement of electrons in atom actually is not exist
and invisible. We will show now, how it is possible to “remove” electron movements in
atom, having real, explicit physical sense “nonobservability” of them.

Schrodinger to find y-function placed the electron in a force field of atom, and electron get
an impulse

p=+2m(e-V),
where V - a force field potential.

Lets the stationary condition has some energy E;. Electron-binding energy E; defines an
impulse p; =./2mE,; or de Broglie wavelength

h h
Apgj=—=—o
p; m$

We will consider, that “coherently” scattering “part” of an electron, mass m,, is proportional
to Re . It is natural to suppose, that this relation is equal to

_m, _pi _ A, _ |2E
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For “incoherent” (“dark”) mass m’, forming a Compton spectrum part, it is possible to
obtain, using the same logic, the result: the bound electron gets impulse p,=2mE, .
Compton wavelength A. and mass m of a free electron changes on the values A’. and m” in
the manner:

A=A e, w=m(lta) a3
mc+p;

Try to estimate factor of scattering by atoms of easy elements:
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3 The value R was estimated by Compton and other authors (Compton, 1935) from the consideration of
quantum derivation for “incoherent” part scattering spectra. Their results rather differ from ours.
Significance and sense of this fact will be explain in the next paragraphs.
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This estimation is valid only for the scattering angles outside of Bragg conditions. In the case
of Bragg diffraction on crystal structure only coherent radiation in ¢ direction is observed.

Thus, coherent Rayleigh scattering of electromagnetic radiation is possible only by bound
electrons. Bound energy of electrons in atoms of light elements is small in comparison with
mc2 and it is enough to localise near to atom only small part of electronic mass of each
electron. Interpretation ‘l//(}’)‘2 as a real function lead to necessity to replace momentum
representation p,on de Broglie wavelength Ap; representation. Distribution y(p) -
momentum distribution in atom, is a Fourier transformation of y/(r) function (Dirac, 1926),
also necessary replace by de Broglie wavelength distribution:

3
= h h )2 T
z(p)—z(AB>—(2ﬂ] jw(r)exp[ zerAB]dr (15)
This equation gives clear physical sense to why “momentum” of electrons being in atom
is not visible at coherent scattering of x-ray radiation. Such understanding of “coherent”
x-ray scattering give us possibility to regard “incoherent” scattering actually as partly
coherent and changes a view at structure of a free electron. We will consider this
questions in details.

4. Wave-particle model of free electron in “electrodynamic interpretation” as
real wave packet electrical charge density

In the previous section we pointed to the contradiction between an explanation of coherent
scattering in " electrodynamic interpretation » |y(r)|2 function with concept of point
electron. We made a choice in favour of Schrodinger |y(r)|2 interpretation as the main
concept, in spite of usually auxiliary considering, helping to understand physical sense of an
event. Even Crisp, one of authors of the neoclassical theory, writes: “Schrodinger’s
interpretation of y was found to be seriously flawed when used to explain the behavior of a
free particle. The general spreading of a particle’s wave packet made it too transient to be as
stable as particles that are found in nature. Furthermore, the application of this
interpretation of quantum mechanics to a scattering experiment suggest a splitting, or

division, of particles which is not experimentally observed” (Crisp, 1990).

The true reason of seeming “splitting” of an electron in experiments on x-ray radiation
scattering lays in misunderstanding of the free electron state description. Schrodinger
equations can be received in nonrelativistic approach at vg<< v, (or A >> A.), where

vp - any frequency of function y(r,t). In this case it is possible to consider, that i function is
slow envelop function of high-frequency relativistic function exp(i2rve).

It is known, that each electronic de Broglie wave satisfies Klein-Gordon equation

1 o*®
Vi -—
c? or

= (mTC)Z‘D (16)
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Plain wave decision of this equation is

D =D (r,t) =expri(k,x —v,t),

k,=0,v,=v,

Let's ©(r,t) =y (r,t)exp2ziv,, then at the conditions v, <<v,, we can neglect member y and
write down approximately:

2 2
==V () =Ly (17
2m mc 2m

Let's pay attention to that difficulty (“serious flaw”) in Schrédinger interpretation connected
with interpretation i as a real wave of electronic density at excitation of an electron at rest
by an electromagnetic wave. The frequency v. in this case are not localised, but synchronous
everywhere. In such interpretation of the wave process inherent to a rest electron, de Broglie
wave of a moving electron automatically become waves of probability, which describe
electron movement at a big distance R from it (R>>A,) in a far zone, and do not give the
information on its real position. At movement of an electron with a velocity ¢ in a direction
rin fixed coordinate system, the de Broglie wave is:

t— ﬁr
sin2zv, (— <) = sinzn%(i L (18)
= - A, A
1-py =gy
Phase velocity of process of field propagation V, de Broglie wavelength A. and P are:
¢ h 9
V=" A =—, =2,
8" mg d c

By analogy with paragraph 3, replace time fluctuations with frequency vea of a rest electron,
on the spatial fluctuations formed by real waves. For this purpose it is necessary to image,
that two counter electronic waves - outgoing and ingoing, entering in a point =0, and
formed a standing wave of electronic density. If the length of each of this waves is equal to
2/, the electronic density for a free electron at rest is described by set of plane waves. In
any direction 7 is a wave of charge density:

p(R)dr = ely(R)[ R*ARAC,

r dv 19
=—,dr=—
Al’ AES
where
Sinz(f) in?zR  (1-cos2zR
| (R) = . :smzﬁz _( —COZS 27[ ) (20)
(ﬂ‘)z 7 R 27°R
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It means, that in any direction 7 atr >> A. the wave de Broglie a rest electron with spatial
frequency k£ =A, "' are exist. At electron movement with a velocity 9 wave process is
described by both representation in the formula (18), but physical sense has only real wave:

sin27——— (i - i)
1-p> A, A

This movement are described by standing wave of electronic density movement and by “in”
and “out” waves moving with relative velocity 3= ¢ each of them receive usual Doppler
shift (Wolf, 1998).Phase velocity in a movement direction in a far zone corresponds to usual
de Broglie waves as in (18), but now concrete sense is given to these waves. Electron
movement in this consideration should be described not by single plane wave spreading in
x direction, but by all plane waves, in a point x = & t, y =0, z=0. In such representation both
moving and rest electrons as de Broglie waves, Klein-Gordon equation gets sense of the
equation of a real plane waves. It is obvious, that all wave structure of an electron scatter an
electromagnetic field under the complex law, and leads to a two-part spectrum. “Coherent”
part is formed as a result of deformation phase periodic structure of an electron. This elastic
deformation leads to appearance of small homogenous electron charge distribution
described by Schrodinger equation. In the next paragraph, we try to consider Compton
effect as effect of unusual coherent scattering. At the same time, wave structure of atomic
electron is deformed according (15).

5. Compton effect as effect of coherent scattering

Fig 4 represents the scheme, suggested by Compton, explaining effect as incoherent
scattering. The primary photon with energy hvp is absorbed by a point electron. The new
particle, possessing total energy and an impulse of a photon and an electron is formed. For a
short time interval (it is sometimes supposed about time of an order 1/vp) this quasiparticle
breaks up on two - a new photon with energy hv <hwy and an electron with some kinetic
energy. Writing down the energy and impulse conservation laws it is easy to connect energy
and impulses of the new particles. In case of scattering by free electron formula (12)
describes relationship between frequencies and wavelengths of the primary and secondary
photons. Formula (12) allow to define only centre of line, explanation of wide width of
scattered lines, not envisioned in Compton scheme, offered Jauncey (Jauncey, 1925). In 1933
DuMond has published the theory is known as impulse approximation in which the width
of the line is compared with those impulses p , which the electron has in atom in the bound
state, as he guess (DuMond, 1933).

In his theory, Doppler shift provide line spreading. In common, most physicists grounded in
classical electrodynamics were a grudging acceptance for Compton explanation of
“incoherent” scattering effect. However, the twentieth of 20 century was turbulent period in
the evolution of physics. Compton effect was “turning point of physics” (Stuewer, 1975) and
pull the trigger of a general acceptance of quantum ideas. It is possible to agree with this
estimation of Compton effect, its treatments by Compton, but possible to ask a question:
whether on a correct way physics development, since this point has gone. For this purpose
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once again we will analyse Compton, DuMond and other founders of the theory
“incoherent” scattering effect arguments from the neoclassical theory point of view. It is
necessary “to combine all puzzles” experimental results X-ray radiation scattering from
Barkla to Compton in a whole picture.

Incident gquantum
momentumn = n‘vfc

Fig. 4. An X-ray photon is deflected through an angle ¢ by an electron, which in turn recoils
at an angle 6, taking a part of the energy of the photon. (Compton, 1923, 1927)

5.1 Scattering by a free electron (early models of Compton effect)

Behind seeming simplicity and grace of the modern Compton effect theory, stand some “ad
hoc” hypotheses, which has put difficulties, contradictions and “obscurity” the quantum
physics, mentioned in introduction. Was used the hypothesis: reduction or a collapse of
wave function (in this case, an x-ray electromagnetic wave), i.e. instant transformation wave
in a particle. It contradicted to previous physical experience: this particle-photon get not
only the energy received by it at a “birth” but impulse p, directed from a source to a
concrete electron. Clearly, already at this analysis stage theory need to add two new, very
strong new hypotheses to the earlier quantum hypotheses: Planck (atom radiates quanta of
energy E = hip) and Einstein (absorption of energy by matter occurs also discretely to energy
hvy, equal some resonant energy).

First from new hypotheses: absorption of energy is accompanied by absorption of impulse
quantum.

Second hypothesis: electron radiate just new photon, but not radiation, and wave function of
the photon is only the function describing probability of its occurrence in concrete point of
space - a collapse at a “birth”.

Compton theory is a remarkable example of replacement in quantum electrodynamics of the
physical sense in interaction of an electromagnetic field with charged particles, by the
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mathematical fictions, and hypotheses. Really, in Compton theory electromagnetic
interaction between photon an electron is considered only at determination of probability
photon scattering by an electron which is proportional to the scattering cross section oo,
calculated in the classical theory. Wonderfully, in Compton theory there is no consideration
of the processes occurring in a time interval between the beginning of interaction of
radiation with an electron and its finishing. In introduction it was noticed, ignoring of
transient process typical for all quantum electrodynamics and is very important feature
influencing on interpretation of particles interaction process. In the case of Compton effect,
removed the process occurring at interaction of radiation with electrons, we removed such
physical processes, as: electron acceleration, appearance of Lorentz force radiating braking.
Their account in classical electrodynamics leads to a conclusion that the electron should
remain motionless at scattering of a wave.

Schrodinger criticized the Compton scheme of formation radiation spectrum with the
shifted wavelength and pointed out the discrepancy with the electromagnetic theory
(Schrodinger, 1927). He offered model in which the electromagnetic wave scatters on
moving de Broglie real wave. In this model, at correctly chosen velocity of an electron,
frequency of a primary wave gets the shift corresponding to the formula (12). Later Dodd
investigated this problem as the problem of plane electromagnetic wave scattering on a
moving electron (Dodd, 1983).

According to the Dodd model of Compton scattering, the electron moves with a velocity

ho
), where 9, =—2
mc

e

9=39(

c+38,

The plane electromagnetic wave with frequency vy propagate in a direction parallel to
movement of electron. Lorentz transformations at scattering on such electron lead to
frequencies and wavelengths value equal to (12). Neither Schrodinger, nor Dodd, did
discuss reason of electron movement. They only postulated necessity of electron movement
to receiving angular distribution of frequency of scattering wave.

As we demonstrate above, scattering on a free electron should not lead to absorption -
neither energy, nor an impulse. The free electron has no possibility to take impulse from
electromagnetic radiation, it should remain motionless, making under the influence of
radiation only periodic oscillations. All experience of X-ray structural analysis shows,
electrons in atoms keep the position at scattering. The photoeffect, other effects of incoherent
scattering at which there is a displacement of electrons from stationary position, are
connected with interatomic absorption. These secondary effects are absent at scattering on
free electrons and are small at scattering of hard radiation on atoms of easy elements.
Compton effect is effect of scattering on a free electron and dominates at scattering on atoms
of easy elements, but nevertheless looks like effect being in close connection with point
electron movement. From that consideration we have to confirm: Compton effect have to be
regarded evidently as a experimental argument in favor of conclusion about real wave
particle model of free electron, taking some volume in space. Linear sizes and details of it
structure are comparable to X-ray radiation wavelengths.
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5.2 Neoclassical theory of scattering by free electrons

Let's note once again: the base for Thomson’s classical theory of X-ray scattering on a
free electron is the assumption about physical pointness an electron as particle with the
size re.

The theory admits also possibility of existence of the “big” electron with the sizes of order
A, with relation of a charge to mass in each elementary volume equal to e/m (1). Quantum
electrodynamics starts with mathematical model of a point electron, though the condition
Schrodinger equation is derived limits the size of “point” equal to Ae.

This restriction is known as a Heisenberg uncertainty principle, and it reflects not character
of basic impossibility to define coordinate of an electron (more precisely, than this size), but
fundamental statement, that the charge and mass of an electron which occupies all space (as
represented still de Broglie) can mainly take place in the particle with diameter A..

In the previous paragraph we represent the function cos2zR as function for describing of
electronic density distribution in a free electron in any direction 7. Let electromagnetic
wave propagates along periodic distribution of electronic density in direction 7, . In this
case, oscillation along electronic structure moves with a velocity c followed electromagnetic
wave in direction 7, . Such scheme is completely equivalent Dodd scheme, but electron
movement replaced by propagation electronic waves along electronic structure. It means
that along standing wave electron density moves toward each other with a velocity of light

two waves. Phase shift between them is equal to 47A./ Ao.

In other words, along an electron two transverse waves (excitations) propagate with a
velocity of light, that causes two dipole electromagnetic waves, shift of phases between
them in directions #,leads to angular change of wavelength (the same shift received in
theories Compton, Dodd and Schrodinger):

1 cosg
A= CAE(C . ) (1)
Note, at derivation an equation (21) we explain both Compton shift and also physical
sense of mechanism of formation Lorentz radiating force (11). Along an electron with
periodically distributed electronic density the phase wave do not transfer an impulse - the
electron remains motionless. Fig.5a presents model of an electron (19) - a standing wave
of electronic density with spherical symmetric periodic distribution. Let’s now the plane
electromagnetic wave 7, propagate under any angle ¢ to the plane electronic wave in
direction 7, (Fig. 5b). It causes in direction #n, two opposite transverse electronic waves
and two sets of dipole electromagnetic waves. Phase shift between in-out dipole waves

formula (21) describes.

Thus, the electronic structure with distribution of electronic density (19) radiates unusual
“composite” dipole wave. The wavelength of this radiation depends on an angle ¢. The
width of spectrum 64 =A,(1-cosg), that is coherency, is defined by a spectrum of spatial
frequencies of function sinc 217 at any direction ¢.
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20
Fig. 5. a) Schematic radial distribution of charge density in electron p(r) (19), (20). De Broglie
wavelength in any direction 7i, is equal to A, ; b) wave scattering in one of direction 7, . In-
out electronic waves run along 7, direction. Phase velocity of propagation of electron
excitation is equal to ¢/ cos ¢.

5.3 Neoclassical theory of scattering by bound electrons in light atoms

Theoretical distribution of intensity Compton line for free electron at the angle ¢ = 90° and
angular interval 0°<p<180° is presented on Fig.6a,b.
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Fig. 6. a) Black line: Fourier spectra for |y |2 color line: intensity distribution |f (¢, 64) |2for
“incoherent” scattering by free electron at ¢ = 90° b) Theoretical dependence |f (¢, 6A) |2 for
“incoherent” line in angular range 0°<¢<180°

On Fig.6a black line is Fourier spectra of |y(r) |2 function for free electron (20):

Flvor]-1 [Ajf@];

at @ = 90°, AN'(¢) = Ae; color line is intensity of this spectra |f (¢) |2

Integral intensity of scattering at Ao >> A. equal to classical one (scattering factor R=1) both
for point-like and wave-particle (20) electron, and independent of angle ¢. Fig.6b presents
calculated distribution |f (¢, 64) |2
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At calculations we assumed, that 4, >> A, (we compare calculation to experiments results
with Ao= 0.88A). A case A > A. we consider later. Let’s remind, since work DuMond, width of
Compton lines someone try to explain as electron (has been beaten out from atom) save
velocity that it had in the bound state, i.e. impulse p from distribution y(p) (15). New
photon, forming by scattering on such free electron has Doppler shift of frequency.
Since p,,.. =+/2E;m the width of a line should be defined by size a;Ag. This width in case of
scattering on carbon comparable to the width of the Compton line for free electron.
Therefore, DuMond, theory seemed plausible, and experimental checks of “impulse
approximation” continue in the same spirit till now. Actually, the change of width of
Compton line from bound electron comparable with a width of line from free electron. The
difference have to be very small and is order to 61 =A.~A'=aiA. (See (13)). This value is
much less than in the quantum theory accepted today. In the case of scattering on carbon
atoms, even for K-electron (E; ~ 280 eV), a, ~3-107. It means, that the width and the
spectrum form of Compton line on carbon is defined by scattering on free electron within
several percent accuracy. Fig. 7 represents the spectrum of scattering on a diamond
monocrystal in angular interval 10° - 160°. We see, line form qualitatively coincides with the
calculated (Fig 6b).
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Fig. 7. Experimental spectra at \o=0.88A on a diamond single crystall, at various angles ¢
from 10° to 160°. Among “coherent” (elastic) and “incoherent” (Compton) lines, is weak
Raman (J-line; about reason for term hvy for Raman-line more detailed in paragraph 6).
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Fig. 8a presents dependences: theoretical (color line) and experimental (points) full width at
half intensity of a line|f (¢, 6A)|2. Fig.8b presents theoretical (color line) and experimental
results (points) intensity in a Compton lines maximum |f (¢, 0) |2
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Fig. 8. a) Full width at half intensity of a line |f (¢, 6A) |2 of “incoherent”

line (for Fig.7) (in arbitrary unit). Points - experimental date; color line theoretical
dA~(1-cosgp)l/2; b) Intensity dependence in maximum (center) of “incoherent” line (for Fig.7) .
Points —experimental date; color line - theoretical intensity dependence Iy~ (1-cosg)-. Y-axis
in arbitrary units.

It is clear, these dependences well coincide. However, similar measurements on
monocrystals Si show much less coincidence from calculated for a free electron (for k-
electrons in Si, & = 1.2-10™).

Theory of impulse approximation evaluate some displacement (Ross & Kirkpatrick, 1934)
for centre of Compton line on value

This estimation show, that impulse approximation theory predicts for displacement of
Compton shift
M AV v

- 1
Ao Vo Vo

This value derived under assumption of short collision of photon with electron. From
another point of view, according to energy conservation law this line displacement have to
be equal to usual equation for position of Raman X-ray line (J-line) (Raman, 1928; Pimpale &
Mande, 1984) and do not observed as Compton line shift. In this case frequency change:

hvy =hvy —E; =h(vy —v;); Av=v;(vy —vy) (22)
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At the analysis of Compton scatterings consider, that frequency change Av (¢) should be
much less v;. This condition is necessary to explain experimental fact, that the shift of a line
given by the formula (22), not observed. Experimentally we see J-line (Raman line) inside
the Compton scattering spectra (see Fig.7). It means, at all angles, Av (¢) comparable to v;.
Frequency v; for K -electron in carbon corresponds to energy excitation 280 eV. Frequency
change Av at ¢=90°, corresponds to energy change approximately equal to 380 eV.

According to table data (Alexandropoulos et al., 2004) under the experimental condition
incoherent scattering factor is more than 5 in wide angle ¢ interval. It means, that all 6
electrons in carbon should give the contribution to “incoherent” scattering. Nevertheless, the
line centre is not displaced, that once again to get support to discussed model of scattering.

The mechanism of formation of a Compton spectrum, considered above, has been offered
for the first time by V.Aristov in 2008 (Aristov, 2009b) and discussed in a conferences
(Aristov, 2010, 2011). At first sight, suggested mechanism is unusual. However, in optics of
visible light, radio optics, it is possible to find examples of formation of the angular
wavelength radiation dependence. The nearest analogy to Compton effect - Purcell-Smith
effect (Smith & Purcell, 1953), and especially inversed Purcell-Smith effect, was suggested
for electron accelerators (Kim, 1993). Purcell-Smith effect is a radiation caused from electron
movement with a velocity 9 along a dielectric lattice with the period b. Angular
dependence radiated electromagnetic wavelength is:

b
A=—(1-Pcosy) (23)
B
The wavelengths difference between direction ¢ =0, and all others is equal to:

M@)= A = AL =b(1-cosp) (24)

5.4 Compton scattering cross section

One of the achievement of the quantum theory of x-ray radiation scattering is the theory
explaining angular dependence of scattering factors from wavelength, based on works Klein
and Nishina, Tamm (Klein & Nishina, 1929; Tamm, 1930).

This dependence was discussed already in paragraph 2 (Fig 2). There is nothing surprising
that results of the quantum theory correspond to that have been received by Compton in
1919 in frame of classical scattering theory. The quantum theory operates in space of
impulses. In the kinematical theory of scattering (in the first Born approximation) the
interference is described in space of reciprocal wave vectors also.

In the neoclassical theory scattering in each directions ¢ is defined by independent
oscillation by elementary charges. Each of them scatters as in classical electromagnetic
theory. As was mentioned above, integral intensity at any angle ¢ is constant at A.<< Ay, as
well as in case of a point charge. In approximation of Av(¢)<<v; it is possible to conclude
that classical theory is true, an electron is point, and the scattering factor is proportional r; .
Moreover, "core" of an electron in the interval between the two first zero of function sinc2rR
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forms an angular spectrum of quasi-monochromatic radiation in any direction. As a result of
an interference this spectrum leads to angular dependence of integral intensity, as though in
classical theory for “big” electron. Radius of “big” electron have an order of value A..
Possible to calculate a scattering spectrum using method, that Compton suggested in 1919,
using various models of a big electron. Note, at large angles ¢ “coherent” Rayleigh
scattering it is possible to neglect and consider that all electrons in atom scatter as free,
because |y(r) |2 area distribution much larger than A..

6. About true X-ray incoherent scattering

The special section of physics is devoted to this topic and its consideration is not task of this
chapter. However, we suspect the Compton “recoil” low-energy electrons do not connected
with Compton effect, but with real absorption, i.e. with “true” incoherent scattering. In this
chapter, under true incoherent scattering we consider X-ray Raman effect.

According to Einstein’s hypothesis, the photoeffect reason is absorption of energy of light
quantum hv, then electron overcome energy barrier that equal to binding energy and gets
kinetic energy

E,=—=hv,-E

: (25)
In this equation there are no suggestions about concrete mechanisms of absorption and
radiation. In this sense it nothing differs from the equations of conservation of energy and
an impulse, written by Compton. In connection with such extremely superficial similarity
“Compton” and “Einstein” effects are considered together not only in textbooks, but also in
serious researches. Such identification of effects is incorrect. Photoelectric resonance
absorption is responsible for photoelectrons. From this point of view, the photoeffect - is
effect of classical electrodynamics (Lamb & Scully, 1959). However, till now there is a
debatable question how accumulation of energy quantum is carried out (Aristov, 2009a).

Compton theory is a theory for an explanation of effects of radiation scattering by free
electron. However, any variants, except direct collision between point particles to transfer
energy from one to another do not considered (even at scattering on the bound electrons).
Instead of primitive billiard-like model, there is more complex and beautiful physical
effect - scattering by infinite size electron with spherically symmetric distribution charge
density. In this case, resonant absorption of radiation by bound electron is a more
complicated phenomena, that is considered in classical and quantum electrodynamics.
Excitation of electron gas produced due to photoelectric absorption lead to various
secondary processes, including photoemission “Einstein-electrons” and “Compton-
electrons”. Cross section of scattering and absorption by bound electron is determined by
radiation braking factor

2¢?
=] V2 _ Ei
371, Vi =—

" 3mc h

In this case, instead of (3) movement equation of an electron:
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~C AN

V(t)= S S
T A

(26)
The imaginary part of the equation (26) determines the photoabsorption, real part -
scattering cross section. Both scattering and absorption depends on frequencies vp and v; and
from their difference (vo - v;), that is equal of frequency of Raman scattering. Mechanism
formation of this radiation only formally reminds optical Raman effect. We named this line
as J-line. In our meaning, this line of radiation was observed Barkla and is named him a J-
line (Barkla, 1917) by analogy to lines K and M characteristic radiation of atoms. It is
remarkable, that Barkla and his opponents, including Compton, connected J-phenomenon
with Compton scattering (Compton, 1924; Alexander, 1930).

J radiation arises because of energy absorption at frequency vy - v;= v;(22), and not because
of exchange of energies between a photon hvy and quantum of orbital movement of an
electron (such movement does not exist). The equation (26) has been written at assumption
that electron is point-like. In our case, it is necessary to replace vpon v'(¢) (see (12)). It means,
that absorption occurs at frequencies v'(¢) -v, =[(v, = AV'(p)) -v,]=V;].

In this case, for J-line, conservation energy law equation, combining (22) and (25), is:

m9’

hv,'=hv, -E, + (27)
Here § - velocity of low energy “Compton” electrons, their appearance caused by
incoherent J'-line. Finally, it is possible to write down the equations for a J-line and low-
energy electrons born with it:

) (28)

m3 =—-amc—

ko |

values H,k, from (6). The equations (28) formally remind Compton equations. But physical
sense considerably differ from them. The form of a J-line does not depend on an angle ¢. It
has the maximum energy at frequency vy =vp- v;.

The J-line is wide, and its width AA remains in good approach by a constant, and
approximately equal to 2A.. With a J-line corresponding to K-electrons the lines
corresponding to L, M-electrons should be observed.

The spectrum of low-energy electrons according to the formula (28) is qualitatively close
predicted by Compton. Let’s pay attention, that in formulae (25) - (28) constant /i is used
only in the Planck sense. The bound electrons can radiate and absorb an electromagnetic
wave according to classical electrodynamics laws.
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7. Conclusion

In the chapter, we formed and proved general conceptions of the neoclassical theory of
interaction of electromagnetic radiation with matter on the free and weak bound electrons in
atom. Neoclassical theory unifies all experimental scattering fragments in whole picture by
means model infinite size electron. This model - standing spherical wave electron density
with wavelength A..

For such understanding all electromagnetic radiation scattered by an electrons, is coherent,
that allows to suggest new methods for X-ray analysis and electronic spectroscopy. In thin
films, can be realised methods of research similar Bragg diffraction, when incident radiation
with Ao wavelength is reflects by the crystal under an angle ¢ with 4, + AA(¢) wavelength
(Aristov & Shulakov 2010). It is interesting to measure Compton spectra (not only intensity)
in schemes of standing waves. It is necessary to return, certainly, to Compton idea:
investigation of the form and internal structure of an electron using hard radiation
scattering diagrams (Compton, 1919). Possible to measure of a phase of the atomic scattering
factor for integrated intensity of Compton spectra, as can see from (14).
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The Electromagnetic Field in Accelerated Frames
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Brazil

1. Introduction

Maxwell’s electromagnetic theory is more than a century old. It is a well established and
understood theory. Usually the theory is presented in standard textbooks as a field theory
in flat space-time (1; 2). The establishment of the theory in curved space-time (3) requires
the understanding of how exactly the Faraday tensor couples with the gravitational field,
and presently this is an open issue. In the ordinary description of electrodynamics in flat
space-time one almost always assumes that the sources and fields are established in an inertial
reference frame. Very few investigations (4) attempt to extend the analysis to accelerated
frames. Such extension is mandatory because most frames in nature are, in one or another
way, accelerated.

Until recently the attempts to describe the electromagnetic field in an accelerated frame
consisted in performing a coordinate transformation of the Faraday tensor defined in an
inertial frame in flat space-time. For this purpose one considers a coordinate transformation
from the flat space-time cartesian coordinates to coordinates that describe a hyperbola in
Rindler space, in case of uniform acceleration. This procedure is not satisfactory for two
reasons. First, a coordinate transformations is not a frame transformation. A coordinate
transformation is carried out on vectors and tensors on a manifold, and they just express
the fact that (i) a point on the manifold may be labelled by different coordinates in different
charts, and that (ii) one can work with any set of coordinates. On the other hand, a frame
transformation is a Lorentz tranformation, it satisfies the properties of the Lorentz group and
is carried out in the tangent space of the manifold.

The second reason is that by considering an accelerated frame as a frame obtained by
a coordinate transformation, one cannot provide satisfactory answers to situations that
are eventually understood as paradoxes, because the inertial and “accelerated" fields are
described in different coordinates. One of these paradoxes is the following: are the two
situations, (i) an accelerated charge in an inertial frame, and (ii) a charge at rest in an inertial
frame described from the perspective of an accelerated frame, physically equivalent?

The procedure to be considered here consists, first, in assuming that the Faraday tensor
and Maxwell’s equations are abstract tensor quantities in space-time. Then we make use
of tetrad fields to project the electromagnetic field either on an inertial or on a non-inertial
frame, in the same coordinate system, in flat space-time. Tetrad fields constitute a set of four
orthonormal vectors, that are adapted to observers that follow arbitrary paths in space-time.
They constitute the local frame of these observers. Since the fields in the inertial frame and in
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the accelerated frame are defined in the same coordinate system, they can be compared with
each other unambiguously.

Given any set of tetrad fields, we may construct the acceleration tensor, as we will show.
This tensor determines the inertial (i.e., non-gravitational) accelerations that act on a given
observer. For instance, a stationary observer in space-time undergoes inertial forces, otherwise
it would follow a geodesic motion determined by the gravitational field. A given frame (or a
given tetrad field) may be characterized by the inertial accelerations.

In this chapter we will obtain the general form of Maxwell’s equations that hold in inertial or
noninertial frames. The formalism ensures that the procedure for projecting electromagnetic
fields in noninertial frames is mathematically and physically consistent, and allows the
investigation of several paradoxes. It is possible to conclude, for instance, that the radiation
of an accelerated charged particle in an inertial frame is different from the radiation of the
same charged particle measured in a frame that is co-accelerated (equally accelerated) with the
particle. Consequently, the accelerated motion in space-time is not relative, and the radiation
of an accelerated charged particle is an absolute feature of the theory (5).

We will study in detail the description of plane and spherical electromagnetic waves in
linearly accelerated frames in Minkowski space-time. We will show that (i) the amplitude,
(ii) the frequency and the wave vector of the plane wave, and (iii) the Poynting vector in the
accelerated frame vary (decrease) with time, while the light speed remains constant.

Notation:

1. Space-time indices y, v, ... and Lorentz (5O(3,1)) indices 4, b, ... run from 0 to 3. Time and
space indices are indicated according to y = 0,7, a = (0), (i).

2. The space-time is flat, and therefore the metric tensor in cartesian coordinates is given by
Suv = (—1, +1,+1, +1)

3. The tetrad field is represented by e” ;. The flat, tangent space Minkowski space-time metric
tensor raises and lowers tetrad indices and is fixed by #7,, = eauep, 8" = (1,41, +1, +1).

4. The frame components are given by the inverse tetrads ¢, /, although we may as well refer
to {e?,} as the frame. The determinant of the tetrad field is represented by e = det(e” ;)

2. Reference frames in space-time

The electromagnetic field is described by the Faraday tensor F/*V. In the present analysis we
will consider that { F*V} are just tensor components in the flat Minkowski space-time described
by arbitrary coordinates x#. The projection of F/*V on inertial or noninertial frames yields the
electric and magnetic fields Ey, Ey, E, By, By and B;, which are the frame components of { F*'}.
The projection is carried out with the help of tetrad fields e ,. For instance, Ex = —cF(O)(l),
where ¢ is the speed of light and F @) = (0 He(l) vF*. The study of the kinematical
properties of tetrad fields is mandatory for the characterization of reference frames.

Tetrad fields constitute a set of four orthonormal vectors in space-time,
{e(o) H,e(l) ,,,e(z) H,e(e’) ,,}, that establish the local reference frame of an observer that
moves along a trajectory C, represented by functions x#(s) (6-8) (s is the proper time of the
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observer). The tetrad field yields the space-time metric tensor g;,, by means of the relation
et Heb vab = v, and e(0) pand eld) u are timelike and spacelike vectors, respectively.

We identify the 2 = (0) component of ¢, # with the observer’s velocity u* along the trajectory
C, ie, e = ul/c = dx!/(cdt). The observer’s acceleration a* is given by the absolute
derivative of u# along C,
. _ Dut _ Degy¥

alt = I = )
The absolute derivative is constructed with the help of the Christoffel symbols. Thus e *
and its absolute derivative determine the velocity and acceleration along the worldline of an
observer adapted to the frame. The set of tetrad fields for which ey # describes a congruence
of timelike curves is adapted to a class of observers characterized by the velocity field u# =
ce() " and by the acceleration a¥. If e ;, = &}, everywhere in space-time, then ¢” ; is adapted
to static observers, and a# = 0.

We may consider not only the acceleration of observers along trajectories whose tangent

vectors are given by €(0) #, but the acceleration of the whole frame along C. The acceleration

of the frame is determined by the absolute derivative of ¢, # along the path x" (7). Thus,

assuming that the observer carries a frame, the acceleration of the latter along the path is
given by (4;9),

M

2~ gt @

where ¢, is the antisymmetric acceleration tensor of the frame (¢,; = —¢3,). According to

Refs. (4;9), in analogy with the Faraday tensor we can identify ¢,, = (d/c, ﬁ), where 7 is

the translational acceleration (¢(g)(;) = a(;)/c) and Q) is the frequency of rotation @) =

€(i)( j)(k)Q(k)) of the spatial frame with respect to a nonrotating (Fermi-Walker transported
(6; 8)) frame. It follows from Eq. (2) that

Deg #
Foar

®)

$al =
Therefore given any set of tetrad fields for an arbitrary space-time, its geometrical

interpretation may be obtained by suitably interpreting the velocity field u" = e(y)# and the
acceleration tensor ¢,y,.

Using the definiton of the absolute derivative, we can write Eq. (3) as
deg dx?
b b a
= ( a Mﬁﬂ”)

dx’ ey M dx?
_ b ur0dtq U ur o
e”(d'r oxh +r Ao g G )

deg H
= e’ ut ( b+ TH \eq ‘7) = et ,utV e, t. 4)

oxM

Following Ref. (7), we take into account the orthogonality of the tetrads and write Eq. (4)
as ¢, b — _yhe, #V et u, Where Vel p = 0,6 p—T7 M,eb o Next we consider the identity
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b

9, et u—I7 /\yeb o4 OQwy boef u = 0, where 0w, b is the Levi-Civita spin connection given by

Eq. (21) below, and express ¢, ” according to

‘Pab:u/\eay(ow/\bcecy) :CE(O)H(Owyba)- ©)
Finally we make use of the identity Ow,, “p = —K, "y, where K, ", is the contortion tensor
defined by
1
K;mb = Eeﬂ Aeb V(TAW/ + Tv)\y + T;Mv)r (6)
where
TA v = e, M'T° w =, (0ue" v —dve 1), (7)

is the object of anholonomity. Note that T* uv is also the torsion tensor of the Weitzenbock
space-time. After simple manipulations we arrive at

C
Pab = 5 [T(O)ab + Th0pp — Tb(O)a] / (8)

where Ty = epec'Tauy. The expression above is not covariant under local Lorentz
(SO(3,1) or frame) transformations, but is invariant under coordinate transformations. The
noncovariance under local Lorentz transformations allows us to take the values of ¢, to
characterize the frame.

In order to measure field quantities with magnitude and direction (velocity, acceleration, etc.),
an observer must project these quantities on the frame carried by the observer. The projection
of a vector V¥ on a particular frame is determined by

Vi(x) = " u(x) Vi (x), ©)

and the projection of a tensor TH" is
T (x) = " u(x) €y (x) TH (). (10)
Note that the projections are carried out in the same coordinate system.

We consider now an accelerated observer that follows a worldline %#(7) in Minkowski
space-time and carries a tetrad e” ;, such that e(g) * = u¥/cand De, " /dt = ¢q be, 1. At each
instant T of proper time along the worldline there are spacelike geodesics orthogonal to the
worldline that form a local spacelike hypersurface. The observer can assign local coordinates
x? = {x(o),x(i)} = {cr,f’ } to an event, which is also described by Cartesian coordinates
x# = {ct, X} belonging to this hypersurface, where

x(0) — T, ¥ = [xF — f”]e(i) - (11)

The inverse transformation reads

XH = f” +€(i) ”x("). (12)
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If we differentiate both sides of this equation over the worldline, we find

- den . ;
it — <1dx+1 °(i) xm) dx©) 4 ;) Max()

cdt ¢ dt
= (8(0) " + %(P(l) a (7} H x(i)) dx(o) + E(i) de(i). (13)

Substituting Eq. (13) into the line element ds? = 1,,,dxdx", we obtain the metric in the local
coordinate system of an accelerated observer,

-\ 2
7. N
ds? = —(1+”sz> 5 () (dx<0J)2+(

N

0 x ) FROFNG
C

where we used ¢ ©)x() = (7 - ) /c and ;) (Vx0) = (() X ;?/) (0)

We see from Eq. (14) that 7g)g) = —1 only in the regions of space-time where
-, 2 - c
|X/‘ <L =, and \x’| L —= . (15)
4] [e]

Furthermore, some ¢t = constant surfaces will intersect each other if we extend the spatial
local coordinates far away from the observer’s worldline, which is not an admissible situation.
Since we cannot assign two sets of coordinates for the same event, the local spatial coordinates
have a limit of validity. In fact, the local coordinate system of Eq. (11) is valid only in those
regions in the neighborhood of the observer’s wordline in which Eqgs. (15) hold. We call
c2/|d| the translational acceleration length and c¢/|Q)| the rotational acceleration length. On
the Earth'’s surface, for example, we have (|d] =9, 8m/s?, |ﬁ| =Q0g)

¢ 15 ¢ 12

E =946-10"m~1ly and @ =4.125-10“m ~ 275 AU. (16)

Hence we can use the local coordinates x? with confidence in most experimental situations in

a laboratory on the Earth, where \;’ | is negligible comparing to the acceleration lengths.

3. The formulation of Maxwell’s theory in moving frames

The vector potential A¥, the Faraday tensor F,, = 9, Ay — dy Ay and the four-vector current
J# are vector and tensor components in space-time. Space-time indices are raised and lowered
by means of the flat space-time metric tensor g, = (=1,+1,41,+1). On a particular frame
the electromagnetic quantities are projected and measured according to A?(x) = e” ;,(x) A¥(x)
and F(x) = e, (x)e? , (x)FM(x).

An inertial frame is characterized by the vanishing of the acceleration tensor ¢,;,. A realization
of an inertial frame in Minkowski space-time is given by ¢* , (t,x,y,z) = (5,‘1. It is easy to verify
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that this frame satisfies ¢,;, = 0. More generally, all tetrad fields that are function of space-time
independent parameters (boost and rotation parameters) determine inertial frames. Suppose
that A” are componentes of the vector potential in an inertial frame, i.e., A* = (e ) A¥ =
0j Al The components of A” in a noninertial frame are obtained by means of a local Lorentz
transformation,

A(x) = A"y (x) A (x), (17)

where A?,(x) are space-time dependent matrices that satisfy
A" () A 4 (%) ab = e - (18)

In terms of covariant indices we have A,(x) = A,?(x)A,(x). An alternative but completely
equivalent way of obtaining the field components A,(x) consists in performing a frame
transformation by means of a suitable noninertial frame e ;,, namely, in projecting A" on
the noninertial frame,

A%(x) = " y(x)AF(x). (19)
Of course we have A%, 5;’, =A% (e win = €% .
The covariant derivative of A, is defined by

DgAb = e”yDHAb

= e " (3 Ap — wy AL, (20)
where
0 - Lle o 0 0
Wyahp = _Ee }t( abe = Qpac — Qeav) s
Qupe = eav(epHoyec” —ectouep”), (21)

is the metric-compatible Levi-Civita connection considered in Eq. (5). Note that we are
considering the flat space-time, and yet this connection may be nonvanishing. In particular,
for noninertial frames it is nonvanishing. The Weitzenbtck torsion tensor T* uv is also
nonvanishing. However, the curvature tensor constructed out of meb vanishes identically:

R? bw(ow) =0.
Under a local Lorentz transformation the spin connection transforms as

0wy, "y = A% (wy € ) Ay + A" DAL © . (22)
It follows from eqs. (17), (21) and (22) that under a local Lorentz transformation we have

DaAp = Ag(x)Ap 4 (x) DAy . (23)

The natural definition of the Faraday tensor in a noninertial frame is

Fup = DaAy — DyAq . (24)
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In view of eq. (24) we find that the tensors F,; and F,j, in two arbitrary frames are related by
Fop = Aa(x)Ap ! (x)Feq - (25)

The Faraday tensor defined by eq. (24) is related to the standard expression defined in inertial
frames. By substituting (20) in (24) we find

Foip = ea"(0uAp — "wp™ pAm) — ey " (9pAa — Cwy ™ s Am)
= ea" (3 Ap) — ey (0 Aa) + ("wapm — "Wpam) A™. (26)
We make use of the identity
C@abm = °Wpam = Tonav » 27)
where T, is given by eq. (7), and write
Fuy = eqtep " (0 Ay — 0y Ayp) + T 1y A
+ ea " (9uep V) Ay —ep M (9pe V) Ay (28)
In view of the orthogonality of the tetrad fields we have
duep’ = —ep ’\(ayeC et (29)

With the help of the equation above we find that the last two terms of eq. (28) may be rewritten
as
eat(Ouep ") Ay —ept (dpea ") Ay = =T" A (30)

Therefore the last three terms of (28) cancel each other and finally we have

Fab = €5 ”eb V(a;,AV — aVAH) . (31)

The equation above shows that given the abstract, tensorial expression of the Faraday tensor
we can simply project it on any moving frame in Minkowski space-time. This is exactly the
procedure adopted by Mashhoon (4) in the investigation of electrodynamics in accelerated
frames. Mashhoon is interested in developing the non-local formulation of electrodynamics.
However, if we restrict attention to the evaluation of total quantities, such as the integration of
the Poynting vector and the total radiated power (and not to pointwise measurements), then
the standard formulation suffices to arrive at qualitative conclusions.

We may obtain Maxwell’s equations with sources from an action integral determined by the
Lagrangian density

1
L=—ye FF,y, — poe Ay, (32)
where e = det(e” ), Joo=eb uJ# and pg is the magnetic permeability constant. Although

in flat space-time we have e = 1, we keep e in the expressions below because it allows a
straightforward inclusion of the gravitational field. Note that in view of eq. (31) we have

FF,, = F'Fyy . (33)
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Therefore L is frame independent, besides being invariant under coordinate transformations.
The field equations derived from L are

(e M) + e Fi (Pwy b c) = poe]’, (34)

or
ebv[ay(EF”b)+3FVC(OwybCH:VOE‘]Vr (35)

where FF¢ = ¢, "F'°. In view of eq. (33) it is clear that the equations above are equivalent to
the standard form of Maxwell’s equations in flat space-time.

The second set of Maxwell’s equations is obtained by working out the quantity D,Fp. +
DyFeq + DcFyp, where the covariant derivative of D, Fy, is defined by

DyFy. = eq "D;,FbC (36)
(7} H(aHFbC — Owy m meC — Owy m CFbm) .

Taking into account relations (27) and (29) we find that the source free Maxwell’s equations in
an arbitrary moving frame are given by

DaFye + DyFea + DeFap = ea ey Vec M (9uFyp + 9y Fay + 00 Fuy) =0, (37)
in agreement with the standard description.

We refer the reader to Ref. (5), where we consider an accelerated frame with velocity v(t) with
respect to an inertial frame, and describe Gauss law in the accelerated frame for the situations
(i) in which the source is at rest in the inertial frame, and (ii) in which the source is at rest in
the accelerated frame.

4. Plane electromagnetic waves in a linearly accelerated frame

In this section we consider an observer in Minkowski space-time that is uniformly accelerated
in the positive x direction. The wordline and velocity of the observer in terms of its proper
time T are

f"z{iésinh(?),%z [COSh(?)-l],0,0}, (38)
and ~

ut = % = {ccosh (%),csinh (%),0,0}, (39)
respectively.

A simple form of tetrad fields adapted to the observer with velocity u, i.e., for which e(g) * =
ut/cand e yeqy = 1y, is given by

cosh(at/c) —sinh(at/c) 00

I sinh(at/c) cosh(at/c) 00
e 0 0 10

0 0 01

(40)
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If we substitute the tetrad fields and the inverses into Eq. (4), we see that the only
nonvanishing component of ¢, is

¢V == (41)

The frame described by Eq. (40) is moving with uniform acceleration a in the positive x
direction, and its axes are oriented along the global Cartesian frame. In view of Egs. (12),
(38) and (40), it follows that

z=17. (42)

We note that Eq. (39) can be given alternatively in terms of the time coordinate ¢ of the inertial
frame by
ul'(t) = {ey(t), eb(t) v(#), 0, 0}, (43)
where
y(t) = V1+a2t2/c2, and  B(H)y(t) =at/c .
In terms of the coordinates (¢, x,y,z) adapted to the inertial frame, the Faraday tensor for a
plane electromagnetic wave that propagates in the positive x direction reads

0 0 —E,/cO
0 0 —-B; O
v _ z
F E,/cB. 0 0 (44)
0 0 0 0
where
Ey(t,X) = Egcos (kx — wt), (45)
B:(t,X) = % cos (kx — wt). (46)

In these expressions k is the wave number and w is the frequency of the wave, which are
related by k = \H = w/c. The speed of propagation of the electromagnetic wave is

w
o, = Y ¢ 47
PR (47)

The expression of the electromagnetic field in the inertial frame is formally obtained out of

Egs. (45) and (46) by means of the tetrad field e, = (5,’ﬁ. However we will consider that (45)
and (46) do represent the fields in the inertial frame.

In view of the expressions above we see that the only nonzero component of the Poynting
vector 1

S= —ExB, (48)
Ho
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is given by
Eq)2
Sy = @ cos? (kx — wt), (49)
Hoc
where g is the magnetic permeability constant. Thus the energy flux of the electromagnetic
wave points in the same direction of the wave propagation.

In order to obtain the electric and magnetic field components of the electromagnetic wave in
the uniformly accelerated frame, we insert Egs. (44) and (40) into Fb — ¢t Heb vFM. We obtain

at . at
E(y) = cosh (7) Ey — csinh (7> B, (50)
1 . art at
B, = = smh(7> Ey + cosh (7) B, (51)
where Ey and B; are given by (45) and (46), respectively.
In Egs. (50) and (51) E, and B; are expressed in terms of the coordinates (¢, x). In order to

present the electric and magnetic fields in terms of the coordinates (7, x") of the accelerated
frame we make use of Eq. (42). We arrive at

AN —at/c —at/c /I wce _ ,—at/c
E)(t,x') =Ege cos [k (e ) = (1 e )}, (52)
- Ey _ _ wce _
7y — =0 ,—at/c at/c\ ./ _ Yt _ ,—at/c
Biy(T,x') = ce cos [k (e ) X= (1 e )}, (53)
where we used
¢~7/¢ = cosh(at/c) — sinh(at/c).

The only nonzero component of the Poynting vector is

We see that the density of energy flux decreases in time by a factor e~2*7/€ in a frame that is
uniformly accelerated in the same direction of the propagation of the electromagnetic wave.

The amplitudes in Egs. (52) and (53) may be written as

E() = Eoe """, (55)

_ Eo e FO) (56)
c c

The identification of the wave number and of the frequency of the wave in the accelerated

frame is made by means of a projection of the wave vector k; = (—w/c,k,0,0) from the

inertial to the accelerated frame, according to k* = e ,k#. We recall that this procedure is

equivalent to performing a local Lorentz transformation where the coefficients A?}, of the

transformation satisfy e” , = A%, (eb win = A" (5,}1. Thus we have

Bg)

K =ke T/, (57)
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W =we /C, (58)

We conclude that the amplitude, wave number and frequency of the electromagnetic wave
decrease in proper time by a factor e~7/¢ in a frame that is uniformly accelerated in the
same direction of the wave propagation. We note that the observer will never reach the
speed of light. Considering Eqs. (57) and (58) we see that the speed of propagation of the
electromagnetic wave in the uniformly accelerated frame is

W' wefa'r/c
/o _ —
Up = = ematie = C (59)

Therefore the speed of the electromagnetic wave is independent of the observer’s acceleration.

5. Spherical waves in a radially accelerated frame

We will repeat the analysis carried out in the previous section and consider the measurement
of spherical electromagnetic waves, produced in an inertial frame, in a radially accelerated
frame. A spherical wave in an inertial frame may be characterized by the following
expressions for the electric and magnetic fields,

E(t,r,0,¢) = Eog [cos (kr — wt) — %sin (kr — wt)} P, (60)

= Ep sin6
B(t,r,6,¢) = —TT |:

cos (kr — wt) — kl—r sin (kr — wt)} 0, (61)

where the unit vectors ¢ and @ are defined in terms of the cartesian unit vectors by
$=—sinpR+cospy,
0 = cosfcospx + cosOsingy —sinf z. (62)

A set of tetrad fields in spherical coordinates, adapted to an observer that undergoes uniform
acceleration in the radial direction, is given by

v —yB0 0
-6 v 0 0
a —
bl =1t o o 4 o |’ (65)

0 0 Orsinf

a2t? at
'Y:\ll‘i‘c—z/ '713:?- (64)

The inverse components of Eq. (63) are such that €(0) H(t,r,0,¢) = (v,Bv0,0). Therefore the
frame is accelerated along the radial direction.

where
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We start with the Faraday tensor in cartesian coordinates,

0 —Ex/c —Ey/c —E;/c
Ex/c 0 —B; By
E,/c B. 0  —B
E./c —B, By 0

FM(t,x,y,z) = (65)

The electric and magnetic field components in the expression above are obtained out of Egs.
(60), (61) and (62). We must consider the expression above in spherical coordinates. So we
perform the coordinate transformation

x' 9x'P
dxH oxVv

F'*B(t,r,0,¢) = FM(t,x,y,2). (66)

After some algebra we obtain

F/Ol _ 0,
F/O2 _
Eo 1 1

03 _ =0+ _ o qi _
F' — o2 [cos (kr — wt) P (kr wt)} ,
FIIZ _ 0,
F/23 _ 0,
3= %%2 [cos (kr — wt) — % sin (kr — wt)} . (67)

The quantities in Eq. (67) represent both the abstract tensor components of the Faraday tensor
in spherical coordinates, and the components of the Faraday tensor in an inertial frame. Next
we project these tensor components on the accelerated frame defined by Eq. (63). We arrive at

oM — o
0@ — o,
06 = —@(7 —B) sinf {cos (kr — wt) — 1 sin (kr — wt)} ,
c r kr

D@ =,
@0 =,

1(3)(1) EO sin 0 1 .
F = (y— 7[3)7 cos (kr — wt) — i S0 (kr — wt)| . (68)

Note that the factor (¢ — ) may be rewritten as
_ [1=P

In order to verify how Egs. (60) and (61) are modified in the accelerated frame we just compare
the structure of Egs. (67) and (68), and indentify (60) and (61) in the latter expression. We
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obtain

E(t,1,0,¢) = Eo(y — ﬁv)g {cos (kr — wt) — % sin (kr — wt)} ¢, (70)

B(t,1,6,¢) = —%(’y - BY) ¥ {cos (kr — wt) — % sin (kr — wt)} 0, (71)

in the inertial frame coordinates.

By comparing Egs. (70) and (71) with (60) and (61) we see that the major qualitative difference
between these expressions is the emergence, in the former pair of equations, of the time
dependent Doppler factor (y — py) given by Eq. (69). If the accelerated frame is at the radial
position (r,6) at the instant #, then the measured amplitude of the wave in the accelerated
frame will be smaller by a factor (y — f7) than if the frame were at rest at the same position.
Thus the amplitude of the spherical wave in the accelerated frame varies with time, and
approaches zero in the limit t — oo, since in this limit § — 1.

6. Final comments

The tetrad field and its interpretation as a frame adapted to arbitrary observers in space-time
allow the formulation of electrodynamics in accelerated frames. The idea is to project the
electromagnetic vectorial and tensorial quantities in any moving frame by means of the tetrad
field. Specific issues regarding electromagnetic radiation were discussed in ref. (5).

Of course all the results derived from the procedure adopted in this chapter are valid as long
as the very concept of tetrad field and its interpretation are also valid. The justification behind
the usage of tetrad fields for this purpose is given by principle of locality (10). The idea is
the following. A physical measurement is considered to be reliable if it is performed in an
inertial reference frame. Normally it is admitted that the observer is standing in an inertial
frame. Measurements in accelerated frame are, in general, not easily performed. When
an electromagnetic field quantity is projected in a frame by means of the tetrad field, it is
assumed that this tetrad field is, at each instant of time, physically equivalent (identical) to
another frame that is inertial and momentarily co-moving with the accelerated frame. The
worldline of the two frames, the accelerated and the inertial, coincide at that instant of time.
To a certain extent, the hypothesis of locality, together with the concept of tetrad field, extends
the principle of relativity, since it relates inertial and non-inertial frames.

An interesting consequence of the present analysis is the following. Let us suppose that an
accelerated observer in the context of section 4 measures the frequencies w) and wj at the
instants of proper time 77 and 1, respectively,

—at/c
7

wy=we wh = we /e, (72)

according to eq. (58). By dividing the two frequencies of the electromagnetic waves we obtain

!/
c w)
a=—1In|— |, 73
AT (wé) @3)
where AT = 1 — 7y. Therefore the accelerated observer may determine the value of its
own acceleration provided the luminosity of the source is constant and the acceleration is
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uniform. This formula may be useful in the evaluation of the acceleration of the solar system,
for instance, with respect to the distant supernovas, provided it is verified that in the interval
AT the luminosity of the supernova is not substantially changed. Of course the resulting value
will provide just the order of magnitude of the acceleration of the expansion of the universe.

The final expressions of the electric and magnetic fields in the accelerated frames, Eqgs. (52-53),
and (70-71), for plane and spherical waves, respectively, are related to the expressions in
the inertial frame by means of simple time dependent functions. The simplicity of the final
expressions ensures that the present tehcnique is correct, and suggests that all manifestations
of electrodynamics may be investigated in any moving frame.
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Electromagnetic radiation generated by relativistic beams in electron storage rings is of
considerable current use. Today’s third-generation synchrotron radiation facilities are
designed with a number of straight sections to maximize the use of so-called insertion
devices (wigglers and undulators). Wigglers and undulators are magnetic devices
producing a spatially periodic (or slightly nonperiodic) field variation that cause a charged
electron beam to emit electromagnetic radiation with special properties. A wiggler magnet is
a succession of alternating polarity magnetic poles, each of which bends the electron beam
through an angle large compared with the natural opening angle of the synchrotron
radiation 1/y, where y = electron energy / mc? is the electron reduced energy, see Fig. 1.

Undulator magnetic system

Observation
f_>¢4_f_>+4_ screen
X  Electron trajectory Radiation
/\/ = A
AV |[>| 4] v]|>

5{0 ={x0,¥0,Do}

Fig. 1. Schematic of planar undulator and coordinate system. Arrows show magnetization

directions.

Wigglers provide a strong magnetic field resulting in broadband emission of a fan-shaped
beam of photons. Wiggler radiation is similar to standard synchrotron radiation produced
by an individual bend magnet, but 2N times as intense due to 2N repetitive emission over
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the length of a 2N pole wiggler. The design principle of undulator magnets is basically the
same as of wiggler magnets. The difference comes from the magnetic field strength.
Undulators, having relatively weak magnetic field, cause small beam deflection. In this case
the photons emitted by an individual electron at the various poles in the magnet array
interfere coherently. Due to the constructive interference, the undulator radiation beam’s
opening angle is reduced by JN and thus radiation intensity from one electron per solid
angle goes as N?. A great body of publications is dedicated to undulator/wiggler radiation.

Over the last two decades considerable attention has been focused on the edge radiation as a
bright source in infrared - ultraviolet spectral range. Edge radiation is produced when a
relativistic charged particle passes through a region of rapid change of magnetic fields at the
edges of storage ring bending magnets, see Fig. 2.

BM1 ER [ BM?2

|
A L

Electron beam

Fig. 2. Edge radiation setup: BM1, BM2 - bending magnets, ER - edge radiation, L - straight
section length, I - length of the bending magnet fringe field.

It was discovered independently at the SPS proton synchrotron at CERN (Bossart et al.,
1979, 1981) and the Tomsk electron synchrotron “Sirius” (Nikitin et al., 1980, 1981). Notice
that the physics of edge radiation in proton storage rings (Coisson, 1979; Smolyakov, 1985,
1986) differs essentially from that in electron storage rings (Bessonov, 1981, Chubar &
Smolyakov, 1993; Bosch, 1997; Geloni et al.,, 2009) though some similarities in their
properties can be found. An important property of edge radiation from an electron beam is
that its intensity substantially exceeds the standard synchrotron radiation intensity (from
the regular bending magnetic field) in the long-wave spectral range, where its wavelength is
much more than the corresponding synchrotron radiation critical wavelength. This feature
has been confirmed experimentally (Shirasawa et al., 2003; Smolyakov & Hiraya, 2005).

The thorough simulations of radiation characteristics in real experiments call for the special-
purpose computer codes. This chapter deals with the problem of how to calculate incoherent
electromagnetic radiation, generated by a relativistic electron beam in external magnetic
field.

Practically the measured magnetic field data, electron beam emittance, its energy spread,
near-field effects (Hirai et al., 1984; Walker, 1988) as well as the finite width of the band-pass
filter should be taken properly into account. We consider here the electron beam as an
incoherent source, since it is assumed that electrons radiate independently from each other.
Therefore, overall spectral intensity is determined by the sum of all the individual
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intensities. Generally speaking, the spectral-angular distribution of energy radiated by one
electron is dependent upon the following nine parameters: the electron initial transversal
coordinates and velocities (both horizontal and vertical), its energy, radiation wavelength
and the horizontal, vertical and longitudinal coordinates of the observation point. Let us
briefly review numerical methods used for simulation of a single-electron spectrum.

It has been suggested that the ideal undulator has a perfect sinusoidal magnetic field, as
with the planar (Alferov et al., 1976), helical (Alferov et al., 1976; Kincaid, 1977), elliptical
(Yamamoto & Kitamura, 1987), two-harmonic (Dattoli & Voykov, 1993) and figura-8
(Tanaka & Kitamura, 1995) undulators. In this case, the spectral-angular density of
undulator radiation in the far-field region involves a series of Bessel functions. This method
is used in the computer codes SMUT (Jacobsen & Rarback, 1986; Rarback et al., 1988),
URGENT (Walker, 1989; Walker & Diviacco, 1992) and US, which is incorporated into the
software toolkit XOP (Sanchez del Rio & Dejus, 1998).

Radiation from an ideal undulator can also be calculated by going into a drift frame where
an electron, on average, is at rest (Anacker et al., 1989). Both of these approaches have a
fast speed of computation as their main advantage; however, they cannot be used for real
undulators with imperfect magnetic fields, nor can they take into account near-field
effects.

The most recently developed computer codes are able to use a real magnetic field map and,
hence, compute the Fourier transformation of the radiation field numerically, using one of
three ways. The spectral integrals may be evaluated by the saddle point method (Leubner &
Ritsch, 1986a, 1986b; Steinmuller-Nethl et al., 1989). This method is used in the computer
code RADID (C. Wang & Xian, 1990; C. Wang et al., 1994). This approach provides formulae
similar to those for standard synchrotron radiation and, by its asymptotic nature, is
applicable to insertion devices with strong magnetic fields (C. Wang & Jin, 1992; Walker,
1993). The second method involves the calculation of the radiation field in the time domain
followed by the Fourier analysis in order to find the radiation spectrum. Such an approach,
with minor modifications, is employed in the codes B2E (Elleaume & Marechal, 1991, 1997),
UR (Dejus, 1994; Dejus & Luccio, 1994), YAUP (Boyanov et al., 1994) and SPECTRA (Tanaka
& Kitamura, 2001) and is also integrated in the code RADID (C. Wang & Jin, 1992; C. Wang
& Xiao, 1992; C. Wang, 1993). It gives direct insight into the physics of radiation and enables
the calculation of radiation in a wide spectral range simultaneously, although requiring a
huge amount of memory for angular distribution computation (Boyanov et al., 1994). The
third method involves the direct integration of the Lienard-Wiechert retarded potentials in
the frequency domain. This method is used in the computer codes SpontLight (Geisler et al.,
1994), SRW (Chubar & Elleaume, 1998), SMARTWIG (Smolyakov, 2001), WAVE (Bahrdt et
al., 2006) and in a number of others programs (Tatchyn et al., 1986, Chapman et al., 1989;
Elleaume & Marechal, 1991, 1997; Ch. Wang et al., 1992; Yagi et al., 1995). The main problem
of this approach comes from the fast oscillating factor in the integrand, requiring the use of
extreme care in integration routines. Comparative studies of these algorithms can be found
in (C. Wang & Jin, 1992; Dattoli et al., 1994).

Emittance effects are usually simulated by one of two ways: the Monte Carlo technique or
the off-axis approximation method (Jacobsen & Rarback, 1986; Rarback et al., 1988), also
known as the shift-invariant property of the radiation pattern (Chapman et al., 1989).
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The Monte Carlo method, generally considered to be the most accurate, is employed in a
number of computer codes, such as RADID (C. Wang & Xian, 1990; C. Wang & Jin, 1992; C.
Wang & Xiao, 1992; C. Wang, 1993; C. Wang et al., 1994), UR (Dejus, 1994; Dejus & Luccio,
1994) and SpontLight (Geisler et al., 1994) (see also (Tatchyn et al., 1986; Yagi et al., 1995)).
The problem with this approach is that the large number of individual computations for
single-electron radiation can sometimes be too time consuming and impractical (Tatchyn et
al.,, 1986; C. Wang, 1993; Lumpkin et al., 1995). Indeed, it needs generally the 5-dimantional
sampling (two for electron position, two for electron deflection and one for its energy). It
should be also mentioned that usually the simulations are carried out for a large number of
observation points (or spectra). As a result, a total amount of individual simulations is huge.

The off-axis approximation method is based on the concept that spatial distributions of
radiation from different electrons are essentially identical and are related to each other by
the simple coordinate shifts arising due to angular and spatial electron spreads in the beam.
If this is so, there is no need to compute the radiation for each electron separately and,
hence, the computational task is simplified considerably. To our knowledge, paper (Nikitin
& Epp, 1976) was the first to pioneer the application of this method. Owing to
computational speed, this method is used extensively in a number of computer codes such
as SMUT (Jacobsen & Rarback, 1986; Rarback et al., 1988), URGENT (Walker, 1989; Walker
& Diviacco, 1992), B2E (Elleaume & Marechal, 1991, 1997), YAUP (Boyanov et al., 1994), US
(Sanchez del Rio & Dejus, 1998), SRW (Chubar & Elleaume, 1998), SPECTRA (Tanaka &
Kitamura, 2001) and SMARTWIG (Smolyakov, 2001) (see also (Anacker et al., 1989;
Chapman et al., 1989; Ch. Wang et al., 1992)). The validity of the off-axis approximation
method has, however, been proven in the far-field region only (Jacobsen & Rarback, 1986;
Rarback et al., 1988; Chapman et al., 1989), since the equations controlling the pattern of
radiation in the near-field region are rather cumbersome. Because of this, it has been argued
that in a real-life geometry, when the distance to the observer is limited and does not tends
to infinity, the radiation does not have the scale properties of standard synchrotron
radiation (Chapman et al., 1989) and thus, the off-axis approximation method fails in the
near-field region (C. Wang & Xiao, 1992; C. Wang, 1993). This point is particular important
for edge radiation simulation (Chubar & Elleaume, 1998; Shirasawa et al., 2003; Smolyakov
& Hiraya, 2005) since the straight section length usually is of the same order as the distance
to the observer (edge radiation is generated by ultrarelativistic charged particles in the
region of magnetic field change at bending magnets edges).

In fact, as it is demonstrated in this chapter, this statement is wrong. The off-axis
approximation is valid in near-field region. It has been additionally proven in this chapter
that electromagnetic radiation generated by relativistic particle in arbitrary transversal
magnetic field (bending magnet fringe fields for edge radiation, undulator or wiggler field
and so on) offers the radiation scale property. It means the following. The derived
expressions clearly show that the electron energy does not appear explicitly in the formulas
for radiation intensity distributions, but implicitly only, through a set of three new variables.
These three variables can be called as reduced angles (horizontal and vertical) and reduced
wavelength of radiation. By this is meant that the electron energy variation leads to
variation of these listed above three reduced parameters only. These variations can be
effectively reduced to the proper variations of observation point position and radiation
wavelength. As a result, we can make the following statement. The variations of the eight of
the nine parameters (usually the distance to observer is constant) can be reduced to the
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correspondent variations of three parameters only: observation point position (horizontal
and vertical) and radiation wavelength. This property simplifies considerably the simulation
of electromagnetic radiation in a real situation. We did not employ any particular features of
the external magnetic field in this study, except for taking the field to be uniform in the
transversal directions. Therefore, the presented results are very general in nature.

We use the Gaussian unit system in this chapter.

2. Shift invariance of electron trajectories

Let us consider the motion of a single electron in the external transversal magnetic field B.
We choose the right-hand coordinate system in the usual fashion (Fig. 1): Z -axis is aligned
with the electron beam propagation (straight section axis, undulator axis etc.), the X -axis is
directed horizontally and the Y -axis is directed upwards. For simplicity the origin of the
reference system is placed at the starting point of the magnetic field. In the vicinity of the
Z -axis, the magnetic field can be approximated as:

B(2)={B.(2),B,(2),0] (1)

It follows from (1) that the magnetic field is presumed to be homogeneous in the transversal
plane (i.e., its components do not depend on the coordinates x and y ). The longitudinal
component of the magnetic field B, is ignored too. This means that the focusing properties
of the undulator magnetic field are excluded from our analysis. This simplification is well
suited for high-energy electron beams with relatively small transversal sizes and is a
working standard for the simulation of spontaneous radiation. All the computer codes cited
above in the introduction employ such approximations (or even a much higher degree of the
undulator fields” idealization). Among the approximations that have been used in this
study, the most radical limitations arise from expression (1). At the same time, there are no
additional assumptions about the field profile so that its transversal components B, ,(z) can
be considered to incorporate the correction fields at the ends of the undulator. These
functions may also include magnetic system fabrication errors.

The electron motion in the magnetic field is governed by the Lorentz force equation:

dp(t S
ipﬁ%MWww] @

where c is the speed of light, e, m, 7(t), c[f(t) and y are the electron’s charge, mass,
trajectory, velocity and reduced energy respectively: y=1/41-/% . We assume here that
the radiated energy is negligible as compared to the electron kinetic energy, hence leaving
y constant. It readily follows from Egs. (1) and (2) that:

ap.,(t) + dz(t
D2, et D ®)

where Q =(—e)/ (mc?) . Remember, an electron has the negative charge so Q is positive.
Since the magnetic field is given as a function of the longitudinal coordinate z, it is natural
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to express the electron trajectory in terms of its longitudinal position as well. Integrating (3)
with respect to time and using z as an independent variable instead of ¢, we get the
following exact formulae:

B.(2)=Q[B, ()i (4)
0
B, (2)=-Q[ B.()z ®
0
Bon(@)= B0 B2 ©)
B.(2)=\B - B(2)- B (2) )

Similarly, we can now express the horizontal and vertical components of the electron
trajectory 7(z) ={r,(z),7,(z),2z} as functions of its longitudinal position z:

8.,
rx,y (Z) = rx,y (O) + _gﬁd‘z (8)

The time-dependence of the electron longitudinal position is implicitly governed by the
equation:

V4 dzf
&= ©)

Let us suppose that the electron beam and the external magnetic field satisfy the following
conditions:

i.  The beam is relativistic with reduced energy y>>1.

ii. The angular spread of the electron beam is small and the magnetic field slightly
deflects an electron from its initial direction, i.e. ,Bw(z)‘ <<1. For wiggler or
undulator, this condition is equivalent to K/y<<1, where K is the undulator
deflection parameter.

Notice that this set of requirements is of a general nature and is fulfilled in practically all
modern electron storage rings.

](E);panddzn)g the function f.(z) in terms of the small quantities 772, ﬁgy(z) , we will get from
8) and (9):

oy (2) =rx,y(0)+ﬂx,y(0)-z%fm(z) (10)
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Z

Hz)=— [1 +2;J L j (B2(2)+ B} ())dz (11)

Foy(2)=[ B, (2)dz (12)
0

Since the functions Bx,y(z) and 7, (z) are independent of the initial conditions £, ,(0),

r,(0) and 7, they are the same for all electrons from the beam. The Egs. (4) - (6), (10) - (12)
express the electron trajectory in terms of the longitudinal coordinate z. These formulae
relate all electron trajectories to a reference (ideal) orbit through a simple linear
transformation, thus displaying the shift invariant property of electron trajectories. It is also
important to note that the transversal components of the velocity, which are of fundamental
importance to the density of electromagnetic radiation, are given by exact expressions. It
should be noted that the simplicity of the equations defining the trajectory is a result of the
fact that the magnetic field heterogeneity in transversal directions as well as its longitudinal
component B, are negligible. This leads to the separation of the problem into two
independent equations, which can be integrated explicitly and independently from each
other by the change of variables from f (time) to z (longitudinal position).

3. Spectral and angular distributions of radiations

Let us consider the radiation field of a moving electron, which is seen by the observer at
time 7 and at the observation point X, with coordinates X, = {x,, 1o, Dy} . Notice that D,
is the longitudinal distance between the starting point of the magnetic field and the
observer, and is generally comparable to the magnetic field length L, although keeping in
mind that Dy > L . The electrical component of the radiation field is given by the following
exact expression:

E(e) = C_ [HOXIG0 - BO)<fON e i -f)

= . +

R()  (A-G0) B ROF (1-G0) BO) (13)

Here, the vector R(t)=X,—7#(t) with absolute value R(t) represents the distance between
the emission point and the observer, the unit vector i(t / R(t points from the
instantaneous position of the electron to the observer, and acceleratlon cp(t) is calculated
by Eq. (2). The quantities 7i(t), B(t), B(t) and R(t) on the right-hand side of Eq. (13) are to
be evaluated at the retarded time ¢t which must obey the equation:

cr =ct+R(t) (14)

Differentiating the last relation, we find:

d - =
=TG- () (15



158 Electromagnetic Radiation

Upon integrating (15) with respect to the retarded time we obtain the alternative
relationship between observer time 7 and retarded time £ :

t

o(t) = 7(0) + [ (1= (i(t) - A(t')at (16)

0

The first term in (13) arises from the electron acceleration and varies as R™ . The second
term in (13) is the so-called velocity field, which is independent of acceleration and
essentially arises from static fields falling off as R™. At large distances this term is
negligibly small and is often ignored. However in some cases of the long wavelength
radiation simulation both terms in Eq. (13) should be considered (Roy et al., 2000). Thus we
will include the velocity term into our analysis and furthermore will prove that its inclusion
does not violate the shift-scale properties of radiation.

Let us consider the electromagnetic radiation with wavelength A passing through an
infinitesimal surface area ds located at the observation point X, perpendicular to the Z -
axis, as it shown in Fig. 1. The general expression for the number of photons dN, , with
horizontal (x ) and vertical (y ) polarization, emitted by one electron in its passage through
the magnetic field per relative bandwidth d4/4 and per area ds can be written as follows:

2
AN _ﬁ(dﬂ)ac 7

xy = T
" D} 4%

E.,

ﬂ 17)

where o is the fine structure constant and l:jw(ﬁ) is proportional to the Fourier-transform
of the radiation field:

~ D, 7 .27c
Ex,y(/i):70 j exp(zTT)Ex,y(T)dT (18)

—oo

A comprehensive study of electromagnetic radiation includes the simulation of its
polarization, which is usually calculated via the Stokes parameters:

So=A(EE +E,E)),
S, =A(EE, -E,E,),
S, =A(EE, +E,E),
S, =—-iA(E,E, —E,E;) (19)

where

2
A_ﬁ(dj)ac e

- L 7
D} 4r%e?

thus normalizing S, to the photon flux density (17).
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One additional comment is necessary. The far-field approximation, which is extensively
used in radiation simulations, implies that the distance between the source and the observer
is vastly larger than the magnetic field length, so that the source of radiation is considered
point-like. At this level of approximation, the variables 7i and R in (13) may be considered
as constants, which uniquely determine the position of the observation point. The radiant
energy in this case can be expressed conveniently in terms of angular coordinates of the
observation point n, and n,. However, as it is shown in (Walker, 1988), the near-field
effects that are caused by the finite distance to the observer can significantly change the
properties of undulator radiation and hence should be properly taken into consideration. It
means that the time-dependence of the unit vector # must be taken into account. That is
why we specify the observer position by its Cartesian coordinates and consider the photon
flux per small surface area rather than per a small solid angle.

In order to calculate the Fourier transform of the field in the frequency domain, we
substitute the expressions (13) and (16) for electric field E(z) and observer time 7
respectively, in Eq. (18). Furthermore, we change the variable of integration from retarded
time t to the particle longitudinal coordinate z with the help of Eq. (9), thereby obtaining
the following exact expression:

£,y () =28 zexp(@(z))(ﬁv,y(zwx(z) 80y 2B,() —Q}(ZDQ(_))JD’ODQ =, )
fo)= [ﬁ(?;;igﬁ <(§))z>x-[§<(zz>);jm R 21

= )—_<ﬁ(()) B '(Dlg(;)zjz’ =

0= 22000+ 2 [0~ B 5 o @

where i and | are the unit vectors along the axis X and Y respectively. Since the first
term (27c¢/A)7(0) in phase (24) is z-independent, it can be dropped out because the
constant phase factor leaves the physical quantities (17) and (19) unaltered.

It should be noted that in many papers the other expression is used instead of (20), see
(Rarback et al., 1988; Chapman et al., 1989; Boyanov et al., 1994; Dattoli et al. 1994; Chubar &
Elleaume, 1998; Tanaka & Kitamura, 2001). This expression has a more simple analytical
form and can be derived from (20) as a result of integration by parts accompanied by the
omitting of the boundary terms. It has been pointed out, however, that this simplification is
not generally valid (Tatchyn et al., 1986) and ignoring the boundary terms may introduce
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considerable errors in computer results (Walker, 1989). Thus we will use the expressions
(20) - (24) here.

We will consider the radiation at small observation angles: |n,(z)|<<1 and ‘ y( ‘<< 1.1f

so, let us expand R, 1, and f, in power series of the small quantities 3 n., and f, ,:

n,(z)=1-0.5- (ni(z) + nﬁ(z))

B.(2)=1-05-(y + B} (2)+ B} (2))

Using these expansions and keeping only the leading terms, it is easily found that:

(- B)=05-(y > +(n,— B> +(n, - B,)°) (25)

Expanding the triple cross products in (21) and (22), using (25) and keeping again the
leading terms, after a rather long computation we finally get:

fo=(f)7)=— D (26)
(1+u2(2)+ 13 (2))

1+ u?(2) - u?(2)

fy(Z)=(]—”(Z)-j) i (1+u§(z)+u§y(2))2 @
0. ()=(3(2) T)=— ZUlE) 1) (29)
(1 +ul(z)+ ui(z))2
8,(2)=(32)7)=f.(2) (29)
2u, ,(2)
hx’y(Z) ) (1 + u?(z)y-k uﬁ(z))2 0

1+12(2) +u)(2))dz (1)

0= e

ux,y (Z) = mx,y(z) - }ﬁx,y(z) (32)

The values of f, , g, and h,,  are rapidly varying functions of the instantaneous
electron angles f,  (z) and the observatlon angles n, ,(z) . The peak values are 0.25 for f,
and g,, 1.0 for fy and g,, and 0.375\/3 for hy, The values of these functions differ
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noticeably from zero only within a small angle +1/y from the electron velocity direction,
which is common to electromagnetic radiation emitted by a relativistic charged particle.
More detailed calculations show that correction terms for the expressions (26) - (31) are *
times smaller than the leading terms and hence may be safely discarded.

All the functions f, ,(z), §,(z) and h, ,(z) in (20) are of the same order of magnitude and
have a similar scale of variation. Thus the relative contribution of the velocity term h, ,(z) is
determined by the ratio between magnetic field amplitude and factor 1/(QD,). For an
undulator with a sinusoidal magnetic field, the ratio is equal to 4,/(27KD,), where 4, is
the undulator period length and K is the undulator deflection parameter. Usually this
quantity is negligibly small and thus the velocity term can be dropped out. However, at the
level of approximation used in this paper, only those correction terms, which are
proportional to the 72, niy and ﬁxz,y , are disregarded. Thus the velocity term has been
retained here for generality.

4. Shift-scale invariance of radiation

Detailed theoretical investigations of electromagnetic radiation are certain to include
simulation of radiation intensity for a great number of observation points and photon
wavelengths. This means that we should repeat the individual calculations for a wide range
of the following radiation’s three parameters: its wavelength A4 and transversal coordinates
of the observation points x;, and y,. The longitudinal coordinates of the observation points
D, are essentially the same since the observation plane is aligned perpendicularly to the Z -
axis. To include the multi-electron effects into simulation, one must then repeat the
calculation of single-electron radiation for a huge number of different electrons, each
moving in its own trajectory. The trajectory is determined uniquely by the following five
parameters: initial transversal positions of the electron r, ,(0), its initial angles 3, (0) and
its reduced energy 7 . So, we have to compute single-electron radiation for a wide variety of
values for each of just listed eight parameters by itself. Though this straightforward way is
conceptually satisfying (and it is used in Monte-Carlo sampling), it is computationally
formidable since the needed number of individual calculations is multiplicatively
accumulated and the simulation quickly becomes too time consuming. That is why the
reduction in number of independent variables is of fundamental importance.

Let us now proceed to analyze how the radiated fields Ew are controlled by the following
eight parameters: r, ,(0), £,,(0), 7, x,, y, and 4. It should be noted that the radiated
fields depend on these eight parameters only implicitly through the variable A =1y and
two functions, u,(z) and u,(z) (see Egs. (20) and (26) - (31)).

In the case of small observation angles

nx,y(z)‘ <<1, we can write:

_ X r.(z) 33

()=t o)
Yo —1,(2)

m()="p = - (34)
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By putting these relations and Egs. (6) and (10) for the electron trajectory into Egs. (32) for
uy(z) and u,(z), we have after some simple algebraic manipulations:

() =0y 2 Pra(?) 5)
o022 B ) &0
6, - "‘D—’(O) ~8,0) (37)

0, =% 040 (38)

[

where ©, , =70, , . The quantities 6, , are the angles between the initial electron’s velocity
and the direction of observation. It is clear that the functions v, ,(z) are the same for all
electrons in the beam being dependent only on the magnetic field B, ,(z) and longitudinal
coordinate of the observation points D, (see Egs. (4), (5) and (12)). By substituting Egs. (35)
into the integral (31) and performing integration, we have:

D(z) =Dy (z) +DP1(2), 39)

@y (z) = i{z(l +07+07)-20,7(2) - 20,7, (2) + j( B2 (2)+ E&(z’))dz’} , (40)
0

)= (0 (0, 53| )

where A =4y*. These three relations show explicitly that the phase ®(z) depends on the
electron initial parameters, its energy and radiation parameters only through the following
four variables: ©,,, A and D,. The first term in (39) is explicitly independent of D,
although implicitly it is D, -dependent through the variables ©, , .

The foregoing allows us to express the main result of this study through the following
compact relation:

E,, (r(0),7,(0),8,(0),8,(0),7,%, Yo, 4 Dy:{B., B, }) = E, , (©.,0,,A,D,;{B,,B,})  (42)

where {B,,B,} denotes the appropriate set of parameters, which uniquely determines the
external magnetic field along. In the general case, this is an experimentally measured
magnetic field mesh. For the case of ideal planar undulator with a sinusoidal field, it may be
the following three parameters: number of the undulator periods, the length of period and
magnetic field amplitude (or an undulator deflection parameter).
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Expressions (37) and (38) for 6, , show explicitly that photon density (17) as well as the
Stokes parameters (19) possess the shift-invariant property. It means that any changes in the
electron initial parameters r, ,(0) and f, ,(0) may be reduced to the corresponding shift of
the observer transversal coordinates x, and y,. Hence there is no need to repeatedly
simulate the radiation from a great number of electrons with different trajectories. The
desired radiation distribution for any electron can be obtained from the corresponding
distribution of radiation that has been calculated for the electron with the same energy but
following the equilibrium trajectory.

One can see from expression (42) that the functions l:fx'y are also scale-invariant relative to
the reduced energy y . Let us consider changing the electron energy y — ky such that the
restriction y >>1 remains intact. Such a change of energy results in the following variations
of arguments: A —k*A and O, , > kO, , . These variations may be thought of as rescaling
of the radiation wavelength 4 — k*1 and the observation angles 6., — k6, , , which in turn
can be boiled down to the corresponding shifts of the observer coordinates x, and y, . It
means again that the simulation of radiation from electrons of differing energy may
effectively be reduced to the simulation of radiation from a single electron with energy and
trajectory in equilibrium, but with different radiation wavelengths and at different
observation points.

It follows from the expressions (17) and (42) that photon density is also scale-invariant,
which is to say that the number of photons is invariant under the following transformation:

y—ky,
6,, > k‘lew ,

Ak,
dA—k2dA,
ds — k™*ds (43)

These transformations leave the Stokes parameters also unchanged.

Since the parameters

- -7,(0
@X 279,( :}/[xo Drx(o) _IBX(O)]I @y :Wy :}/[}/ODry()—ﬂy(O)] and /\=/1}’2

0 0

are of primary importance in describing the shift-scale invariant properties of electromagnetic
radiation, we can call these variables “reduced angles” and “reduced wavelength”
respectively.

Assuming the electron proceeds along an equilibrium trajectory which passes through the
origin (i.e. r,,(0)=0), the correction term @(z), which is primarily responsible for near-
field effects, may be written as:

2 2
D,(z)= S — {[zm— 7rx(z)] + (z Yo 7ry(z)j ] (44)

D, D,

[
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For undulators with deflection parameter K and period length 4, the functions yr, (z)
oscillate with the amplitudes of the order of KA,,/(27), what is typically much less than the
undulator length L, which is the maximum value for z. If so, we can safely omit the terms
7ry,y(2) in (44). Let us consider the radiation at a large distance D, >>L, which enables us
to substitute D, for (D, —z) in (44). As a result, the phase term (44) can be approximated

by:

T
y(2) =5 (3 v )2 (45)

This is in agreement with the correction term derived by (Walker, 1988).

To get the corresponding expressions in far-field approximation, we should proceed to limit
D, =, x, > and y, — o while the ratios

are kept constant and become new transversal angular coordinates of the observation point.

Then the ratio
ds
D;

is turned to the infinitesimal solid angle dQ . In that event the initial transversal positions of

the electron r,  (0) are irrelevant and the correction term @,(z) in (39) tends to zero.

It is notable that the shift-scale invariance of electromagnetic radiation, which is given by
Eq. (42), is identical to those of standard synchrotron radiation. Indeed, the spectral -
angular density of synchrotron radiation in far - field region depends on the ratio 4./,
where 4. = 47zp/ (37°) is the critical wavelength and p is the bending radius. However, as
Eq. (42) shows, bending magnetic field B, should appear in this ration explicitly, rather
than implicitly through p . Using the relation eB,p =mc*y, we get:

)

C

A _ dzxme® 1

A 3eB, 1 (46)

thus displaying the A - dependence of synchrotron radiation spectra.

A comprehensive theoretical analysis of edge radiation in sharp-edge approximation has
been recently done (Geloni et al., 2009). Sharp-edge approximation means that the magnetic
field at the bending magnet edge has supposedly a stepwise change from its regular value
B, to zero. In other words, the fringe field length =0, see Fig. 2. In this case we have two
parameters completely defining the magnetic system: magnetic field amplitude B, and
straight section length L, or {B,,B,}=(By,L) in terms of Eq.(42). It has been shown
analytically and verified numerically that in this case the edge radiation distributions have
the property of similarity. Two dimensionless parameters



Shift-Scale Invariance of Electromagnetic Radiation 165

and

_ 2L

A

were defined, where p is the radius of the trajectory bend. The property of similarity means
that data for different sets of edge radiation parameters corresponding to the same values of
J and ¢ reduce to a single curve when properly normalized (Geloni et al., 2009).

This result is in complete agreement with the shift-scale property of electromagnetic
radiation presented here and furthermore, it is the particular case of the more general shift-
scale property. As suggested by Eq. (42), in the sharp-edge approximation the Fourier-
transform of the radiation field Ex,y(/l) depends on six parameters, namely, two reduced
angles ©, and ©,, reduced wavelength A, distance to the observation screen D, bending
field amplitude B, and straight section length L . The use of parameter

TVZC2

P= eB,
with dimension of length rather than B, is more convenient for analysis. Since the electron
charge e, its mass m and the speed of light ¢ are the fundamental constants, the parameter
p is equivalent to By. By virtue of the relation eByp =mc?y, where p is the radius of the
bend in the field B,, we get: p=7p. Radius of the trajectory bend p is much more
convenient in practical use, but we should start our analysis with the parameter p because
it depends on B, only, while p depends bothon B, and y.

So, we can say that Ex,y(/l) depends on the set of parameters
(le Gy/ A/ ,[j/ DO/ L)

It is clear that the alternative set of the following parameters:

271 .| p*A
{ex’@y'A'\/Zan'D[”L]

is mathematically equivalent to the previous one. Using the relations A= AY* and p=9p,
we get:
2zL 2zl 4
A Ay

and
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PN | PP _s
il >=0,
2xL 2rL

thus deriving the parameters ¢ and ¢ obtained by (Geloni et al., 2009) for the property of
similarity.

5. Conclusion

The results of the theoretical analysis presented here show that electromagnetic radiation,
generated by relativistic charged particles in external magnetic fields, offers shift-scale
invariance properties which are analytically best expressed by the Eq. (42). It is significant to
note that all previous analyses were based on assumptions which were very general in
nature and the great bulk of insertion devices match these assumptions without any loss in
generality. Let us list here the all constrains we have imposed.

A relativistic charged particle (y>>1) has small transversal components of its reduced
velocity: \¢/3§(2)+/1’y2(2) <<1. Electromagnetic radiation is observed at small angles:

”?(Z)‘F";(Z) <<1. The external magnetic field is taken to be uniform in a transversal
plane, and its longitudinal component is zero. This last requirement is the most essential one
and there is no way of applying the results obtained here if the undulator focusing
properties is to be included into consideration. In our study we did not consider any specific
features of the external magnetic field such as its periodicity, etc. This means that any
radiation, generated by relativistic charged particles in an external magnetic field under
conditions just mentioned, is shift-scale invariant.

It is important that the Fourier-transform of the radiation field Ex,y(/i) defined by Eq. (18)
depends on the electron energy y only implicitly, through the reduced angles ©, , and
reduced wavelength A, see Eq. 42. This fact is not evident at first glance because reduced
energy y is a dimensionless parameter and dimensional analysis cannot be applied here. In
addition, the electron trajectory depends explicitly on its reduced energy y while the
dependence of the radiation field E,  (7) on trajectory parameters is fairly intricate, see Eqs.
(13), (20-24) (recall that the unit vector 7i(z) is trajectory-dependent).

The shift-scale property of electromagnetic radiation suggests the following elements in the
algorithm for the simulation of radiation from an electron beam in a real-life experimental
setup. With knowledge of external magnetic field (undulator field, fringe field at the ends of
storage ring bending magnets and so on), it is possible to find four parameters r,  (0) and
B.,(0), such that the electron with a mean energy is moving along the equilibrium
trajectory. In particular, these parameters are zero if the correction fields are included in the
undulator magnetic field map. For this single electron, we can compute the spectral-spatial
distribution of radiation for a number of wavelengths A and at different observation points
x, and y,. With knowledge of this radiation distribution, the effects of electron beam
emittance, its energy spread and finite width of the spectral device may be included in the
simulation via numerical convolution. To do this would require no more than a three-
dimensional integration.
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For undulators with large number of periods N >>1, further simplifications can be made
on the following qualitative grounds. The spectral width of the i -th harmonic is equal to

_2
A= TNy -

which yields the corresponding range

AN =D/

From this, it follows that variation in y through the range

A= %IN)

can radically alter the distribution of undulator radiation.

The cone of the i -th harmonic has the angular size

g1 [1+05K>
"\ 2iN

This means that the variables ©, , change of the order of 9, which will alter the undulator
radiation distribution. On the other hand, ©,, vary directly with the energy
A®,, =Ay-6,,. We will consider the radiation not far from the undulator axis
0., =0, 6., where §, , are of the order of 1. The following range for y variation is thus

INER/Z/
4 ﬁw
v/
iy

This means that y variation affects the spectral-angular distribution of undulator radiation
much more through the resulting change in variable A rather than through ©, . If this is
so, when averaging the radiation distribution over the energy spread, we only need to
consider the y variation for the variable A and use the mean value of y for the variables
©,,. As a result this averaging process can be reduced simply to the corresponding
integration over the radiation wavelength 4.

which is considerably more than

The shift-scale invariance of radiation distributions can be effectively employed in the
raytracing computer codes such as RAY (Erko et al., 2008). For more sophisticated analyses,
based on wavefront propagation simulation (Erko et al., 2008), it has been necessary to
amplify the results presented here by the proper studying of the term (27¢/4)7(0) in the
phase (24). This term is z-independent, has no effect on the radiation intensity and thus it
was eliminated from our analysis here. At the same time it depends on the observation point
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and therefore plays an important role in wavefront propagation calculations. Such kind of
theoretical analysis has been performed for the particular case of standard synchrotron
radiation (Smolyakov, 1998). Some results of numerical simulations can be found in (Chubar
et al., 1999), while the general case of radiation has yet to be analyzed.
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1. Introduction

It is well-known that oscillations of electron density of metal nanoparticles have resonant
frequency in the visible or in the near IR spectral region: this is the localized plasmon
resonance (LPR). New and rapidly developed branch of modern physics called
“Nanoplasmonics”, is dedicated to investigations of optical and electro-physical phenomena
related with the excitation of LPR and others similar resonances in metal nanoparticles and
nanostructures. Appearance of LPR is caused by the charge on the surface of nanoparticles
(Brongersma & Kik, 2007; Klimov, 2009; Maier, 2007; Novotny & Hecht, 2006): the surface of
the nanoparticle builds “potential well” for oscillations of the electron density of the metal. For
small particles (which typical size is less than or about 40 nm) the frequency of LPR depends
weakly on the size of nanoparticles and strongly on their shape, metal and external
environment. LPR can be excited by the external electromagnetic field (EMF). Energy of LPR is
stored in oscillations of the electron density of nanoparticles and in the EMF induced by
oscillations of the electron density. When LPR is excited, the density of energy of EMF inside
the nanoparticle and near it, on the distance of the order or less than the wavelength of EMF, is
approximately Q times greater (Wang, 2006) than the energy density of the external FMF. Here
Q is the quality factor of LPR, Q depends on losses due to absorption of EMF by the metal of
nanoparticle and on the radiation of EMF from the nanoparticle to the environment. Usually
Q<10 in experiments (Brongersma & Kik, 2007; Hovel et al., 1993; Klimov, 2009; Maier, 2007;
Novotny & Hecht, 2006; Schuller et al, 2010), though some theoretical estimations predict the
maximum value of Q about several tens (Khlebtsov, 2008). With the excitation of LPR
nanoparticle behaves as a “nano-cavity” for EMF. However in a difference from the usual
cavity, as Fabri-Perot cavity, a near-field presents in the “nano-cavity”. Near field is bounded
with charges, near field zone is located on the distance <1, where 1 is the wavelength of
EMF. Resonant (or ,plasmonic” (Brongersma & Kik, 2007; Khlebtsov, 2008; Klimov, 2009;
Maier, 2007; Novotny & Hecht, 2006)) properties of metal nanoparticles and the concentration
of EMF near and inside particles are reasons for prediction and experimental observation a
number of new phenomena (Brongersma & Kik, 2007; Khlebtsov, 2008; Klimov, 2009; Kneipp
et al., 2006; Maier, 2007, Novotny & Hecht, 2006) as, for example, giant Relay scattering
(Kneipp et al., 2006). New optoelectronic devices with plasmonic nanoparticles were designed
and created, as sensors (Brongersma & Kik, 2007; Homola, 1999; Klimov, 2009; Kneipp et al.,
2006; Maier, 2007; Novotny & Hecht, 2006), nano-scaled lasers (Bergman & Stockman, 2003;
Noginov et al. 2009; Oulton et al., 2009; Protsenko et al., 2005), high efficient solar cells
(Atwater & Polman, 2009; Catchpole & Polman, 2008; Pors, 2011).
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Nanoparticles in optical devices can be considered as , nano-antennas” (Brongersma & Kik,
2007; Greffet, 2005; Klimov, 2009; Maier, 2007; Miihlschlegel et al., 2005; Novotny & Hecht,
2006). It is important and interesting to investigate also electrophysical properties of contacts
of plasmonic nanoparticles with environment (for example, a surface) surrounding
(supporting) nanoparticles. Transport of carriers (electrons or holes) or transport of the
energy from the nanoparticle to the environment and back may cause noticerable influence
to properties of the device with nanoparticles. Such influence may be positive or negative up
to complete destruction of LPR and related phenomena. For example the effect of increase of
photo-luminescence due to addition of metal nano-particles in luminescing media (as
solutions of dye moleculas) is well-known. However if the distance between the nano-
particle and the luminescing obgect is small (less than few nm) the luminescence can be
fully dumped due to non-radiated recombination (Brongersma & Kik, 2007; Klimov, 2003,
2009; Maier, 2007; Novotny & Hecht, 2006).

Various constructions of “plasmonic” solar cells have been suggested. Both optical and
electro-physical properties of metal nanoparticles are used in such solar cells, for example,
for commutation (electrical connection) of cascades of the solar cell through metal
nanoparticles using also ,plasmonic” concentration of the light arround nanoparticles (Rand
et al., 2006). Solar cell efficiency can be increased due to injection of carriers, photo-induced
in metal nanoparticles, to the semiconductor substrate, while LPR is excited in nanoparticles
(Westphalen et al., 2006). However the transport of carriers through the contacts of metal
nanoparticles with the substrate are less studied than optical properties of metal
nanoparticles. It is related with complexity of problems arisen in theoretical and
experimental studies of electro-physical properties of nano-scaled objects. Investigation of
the carrier transport and other electrophysical properties of junctions between substrates
and metal nanoparticles must be carried out together with investigation of optical properties
of nanoparticles. This is necessary for modeling plasmonic optoelectronic devices as solar
cells (Monestier et al., 2007), photodetectors, nano-scaled LEDs and nano-lasers. This work
gives an example of such ,joint” study of optical and electro-physical phenomena in
plasmonics.

An example of phenomena appeared at the interface between the nanoparticle and the
environment is a photoemission from the nanoparticle studied here theoretically. The
photoemission from the nanoparticle may be quite different from the photoemission from
“large” (respectively to the wavelength of EMF) metal structures (as, for example, continues
metal films widely used in photodetectors). One can note three major differences. First, the
EMF inside the nanoparticle and near it is enhanced at the excitation of LPR. Second, the
ratio of the area of surface of the nanoparticle to the volume of the nanoparticle is greater
than for large “bulk” metal structures. This is important because of the “surface” photo-
effect is more important for the photoemission than the “bulk” photo-effect (Brodsky, 1973).
The “surface” photo-effect is occurred when the photon is absorbed at the collision of the
electron with the surface, while the “bulk” photo-effect takes place when the photon is
absorbed inside the metal at the collision of the electron with the lattice (i.e. with the
phonon) or with another electron. Usually the “bulk” photo-effect is not taken into
consideration at calculations of photo-emission as, for example, in the case of photo-
emission from metal films (Brodsky, 1973). Third, in order to provide the surface
photoemission the electric field must be non-parallel (perpendicular, at best) to the surface
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of the metal. This condition can be easily satisfied for nanoparticles than for continues metal
films. Thus for metal nano-particles one can expect to obtain larger number of photo-
electrons per unit of mass that it is obtained for bulk metal structures as metal films in well-
known photo-detectors (She, 1981; Soole & Schumacher, 1991). Increase of the efficiency of
photo-detectors by metal nano-particles helps, in particular, to increase the sensitivity of
photo-detectors in the near and far IR spectral regions, which is important practical problem
(Piotrowski et al., 1990; Yu et al., 2006).

For the study of photoemission from nano-particles and, in particular, for determination of
conditions of the maximum of photoemission one has to know the cross-section of the
photoemission from the nanoparticle, which is the main subject of calculations presented
below. We present results for the case of the surface photo-emission from metal nano-
particle at the excitation of LPR and show, as an example, that the photo-emission from
metal nano-particles into p-doped Si is much more efficient that the photo-emission from
the bulk metal film. It is worth to note that micro- and nano-structures on surfaces of metal
photo-detectors is widely used for enhancement of the photo-emission, in particular, in
photo-cathodes based on AIIBY semiconductors appeared at the beginning of 70-th years. It
was shown in several publications (see, for example, the bibliography in (Schelev, 2000))
that the photo-emitting metal film of such photo-cathodes has dispersed structure. It is also
well-known that all such photo-cathodes have larger photo-current respectively to photo-
cathodes with photo-emission from flat metal layers. However LPR can be hardly excited in
“dispersed” metal structures on surfaces of such photo-cathodes. These structures have
good electric contact with surfaces, but LPR can be excited in metal nanoparticles electrically
isolated from the environment. Thus the increase of the photo-emission due to the
“concentration” of EMF at nano-structured surfaces of well-known photo-cathodes is hardly
possible. Larger photoemission current of well-known photo-cathodes with dispersed
surfaces was obtained due to lager surface, available for the photoemission. If LPR can be
excited in nano-structures at surfaces of photo-cathodes, it will lead to more increase in the
photoemission; this is why it is interesting and important to study photo-cathodes with LPR
excited in nanoparticles. It was already suggested to use plasmonic properties of nano-
particles for increase of the efficiency of photo-detectors (Hetterich, 2007), however without
consideration of photoemission from nano-particles. Increase of the efficiency of photo-
emission to vacuum from nano-particles has been observed experimentally (Nolle, 2004,
2005), it was suggested to use this effect for increase the efficiency of photo-detectors.

Here we carry out the analysis following by the well-known theory of photoemission
(Brodsky, 1973). In particular we will find general expression for the probability amplitude
and calculate the cross-section of the photoemission from metal nano-particle. Calculation
shows the two order of magnitude increase of the photoemission current from gold
nanoparticles to p-doped Si in comparison with the photocurrent from continues film of Au.
We generalize the result of (Brodsky, 1973) for the probability of photoemission by taking
into account changes (jumps) of EMF and electron mass at the surface of the nanoparticle.
Taking into consideration these surface phenomena we see that the cross-section of photo-
emission is changed (increased) several times with the respect to the case, when these
“jumps” on the surface are neglected. Careful consideration of surface phenomena is
important particularly for the photoemission from nanoparticles because of their large
surface to volume ratio.
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The probability and the cross-section of the photoemission found here let us to calculate the
photocurrent from the layer of metal nanoparticles. We use analytical approach following
details of physics of the increase of the photoemission from nanoparticles at LPR. It is
shown, for example, that the increase of the cross-section of the photoemission is related not
only with “concentration” of EMF but also with changes of EMF and free electron mass on
the surface of nano-particle. It turns to be that quantum-mechanical interference phenomena
in the dynamics of electron passing through the interface became important at the
photoemission. Analytical approach lets us to separate three contributions in the
photoemission: (1) the increase of the probability of photoemission, (2) the increase of EMF
due to the excitation of LPR and (3) the factor of the shape of the surface of the nanoparticle.
In principle, one can control photo-emission by changing these three factors. For example,
by changing the shape of the nanoparticle one can shift the maximum of the photocurrent
spectrum. However detailed analysis of possibilities of controlling the photoemission is out
of the scope of this paper. Analytical approach lets us to take into consideration many
peculiarities of optical “plasmonic” phenomena, for example, dynamical depolarization and
radiation dumping phenomena. Analytical results can be used as test models for verification
of numerical results found for more complex cases of photoemission as, for example, non-
dipole approach at the interaction of nanoparticles with EMF.

Here we discuss the photoemission to vacuum or to the homogeneous medium surrounding
nanoparticle. However the same approach may be applied for the analysis of other more
complicated cases of the carrier transport at presence of nanoparticles. For example the
nanoparticle may catch the carrier from the environment; the photoemission may occur as
the tunnelling through the potential barrier (Nolle, 2007) also when the nano-particle stays
near the surface of the semiconductor and separated from it by the tunnel layer. The last
structure is typical for problems related with the increase of the efficiency of solar cells by
meal nanoparticles (Atwater & Polman, 2009; Catchpole & Polman, 2008; Pors, 2011).

General expression for the probability amplitude of the photoemission with taking into
account changes in the EMF and the mass of electron at the nanoparticle-environment
interface is derived in the next subsection. Explicit expression for the probability amplitude
is found for the step potential at the metal-environment interface. This result is used for the
calculation of the cross-section of photoemission in the following sub-section. Example of
the photoemission from spherical gold nano-particles into p-doped Si is considered after
that. Results are summarised and directions for future studies of the photoemission from
nano-particles are discussed in conclusion.

In order to calculate the probability of the photoemission from the metal we, following
(Brodsky, 1973), use standard quantum-mechanic perturbation theory (Landau & Lifshitz,
1997) where the perturbation is the interaction of the electron with classical electromagnetic
field at the metal-environment interface. We neglect by the curvature of the surface of the
metal with the respect to de Broglie wavelength of the electron, i.e. we consider metal-
environment interface as a flat surface. The key point is the calculation of “unperturbed”
wave functions of the electron in order to insert them into the ready expression for the
probability amplitude found from the perturbation theory. We found wave functions
analytically supposing a step potential barrier between the metal and the environment. This
lets us to obtain final expression for the cross-section of the photoemission “in quadratures”
i.e. as an explicit expression containing the integral. The electromagnetic field causing the
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photoemission appears as a multiplier in this expression. Then we calculate the
electromagnetic field in the nanoparticle and in the vicinity of it using the approach of
classical electrodynamics well-known in plasmonics (Klimov, 2009).

2. Probability amplitude of the photoemission accounting “jumps” on the
interface

2.1 General expression for probability amplitude of photoemission

Expression for the probability amplitude C, () of the photoemission of the electron was
found in (Brodsky, 1973) by the perturbation theory. Electron moves in the medium (in the
metal) along axes z perpendicular to the interface with the external environment. The
electron interacts with the EMF of frequency o,

C.(w)=lelm = dz(Em A% +%1pl_lp dEm] (1)

hoW, dz  dz

Here e is the (negative) charge of the electron, m is the mass of the electron. The interface
of the medium with the environment is described by the one dimentional potential barrier
V(z), see Fig.1. Effective mass of the electron is changed on the interface, so that m = m(z) ;

V(z)

0

Fig. 1. Potential barrier where the electron moves.

¥,, ¥,, are wave functions of the electron in states with the energy E., i=0,1 below and
above the barrier respectively, E, =E /m(z), E is the amplitude of the component of the
electric field polarized along axes z,

W, W)=, S
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Final expression for the probability of the photoemission was obtained in (Brodsky, 1973) at
the assumption that electric field E is constant along axes z. However this is not true at the
interface where the normal component of E is changed due to the surface charge, so that
one has to consider E=E(z). Using the approach of (Brodsky, 1973) with E=E(z) and
m =m(z) , one can replace Eq. (1) by
lelm . dz
C,(0)=———— | —(cy tcy+c.), 2
)= W e e ) @
where c¢,, c¢; and cp, describes the photoemission taking into account jumps in the
potential, in the electric field and in the effective mass of the electron in the interface,
respectively,

2

oy =-EVW W, , ¢ =F ;LIP'UIP'L + (EO SV }ZD]‘PU‘PL} ®)
m

m

Em (EO SV+ hﬂj yy

2
Eq.(2) is integrated below for the case of step functions V(z), E(z) and m(z) with the step
at z=0. For such functions V'=V6(z), E'=(E, -E_)5(z), m'=(m, - m)d(z), where E,, are
values of E to the right and to the left regions from z=0 respectively; m and my are effective

electron masses in the metal and outside it, respectively. Quantities V(0)=V /2,
EQ)=(E,+E)/2, m0)=(m,+m)/2, ¥'=d¥ /dz

2.2 Wave functions at the absence of perturbation

Let us find wave functions of the electron moving perpendicular to the interface between the
metal and the environment, the interface is described by the step potential barrier, see Fig.2.

4

Fig. 2. Step potential barrier. The break in the electric field at z=0 is shown where the
dielectric function &. of the metal is changed to the dielectric function &+ of the environment.
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Electron of the charge e and the effective mass m at z<0 and mg at z>0 moves in the step
potential

0 z<0
V(z)=1V/2 z=0 4)
\% z>0

Hamiltonian of the electronis H=H_ atz<0and H=H, atz>(,

n* 4 2 g
= r SV ®)

mdr’ T o &z

We solve Schrodinger equation in(0p,,/ot)=H,yp,, and find the wave function
¥, = VY exp[—i(E, / h)t] of the state of the electron with total energy E, <V, this electron
falls on the barrier and is reflected from: it,

W, =[exp(ik,z) + Ajexp(-ik,z)],, + [Boexp(ilzoz)]po, (6)

here wave numbers
1 ~ 1
K, =—@mE,)"?, K, =—{2m,(E, - V)] 7)

Because V >E,, the value (E,-V)"*=i(V-E,)"* is purely imaginary. The wave function
Y, is normalized such that the coefficient in front of the termexp(ik,z) describing initial
electron state at z=-c is 1. Coefficients Ag and By in Eq.(6) are determined from conditions
of regularity at z=0

W (z=-0)=W,(z=+0), m" (0¥, /82),_, =m; (0¥, /0z),,, ®)
Eqs.(8) are equivalentto 1+A; =B, and 1-A;=0,B,, so that

A = 1-6, 2

0 1+90' 0=1+90,60=[(m/m0)(1—V/E0)]1/2 )

Similar way we find wave functions @,, =¥ .exp[-i(E, / h)t] of the electron state with the
energy E, >V, where

IPl+ = [A1+exp(iklz) + B1+exp(_ik1Z)]z<0 + exp(iklz)pl]’ (10)

WY, = [A1.exp(i121z) + BLQXP('ﬂzlz)]po +exp(-ik,z),<, (11)

and real wave numbers

1 ~ 1
k, = %(szl )1/2/ k, = %[2m0(E1 - V)]l/z (12)
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Coefficients A,, and B,, are determined from conditions of regularity of the wave function
at z = 0, analogous to Eq. (8), which leads to equationsA,, +B,, =1, A,,-B,,=0,, and
0,(B, -A,)=1, where 6, =[(m /m,)(1-V /E,)]/*. One can find that

A, =(1+0,)/2, B, =(1-8,)/2, A, =(0,-1)/20,, B, =(1+8,)/20, (13)

Wave functions Egs. (10) and (11) make the fundamental set of solutions of Schréodinger
equation with Hamiltonian (5).

2.3 Expression for probability amplitude of photoemission

We follow the procedure of (Brodsky, 1973) and consider the monochromatic EMF of
frequency o as a perturbation

U,n(z,d / dz)cos(@t) = (1/2)U . (z,d / dz)(e™ +e")

for the motion of the electron in Hamiltonian Eq. (5). If we apply operator U,,, to the wave

function W,, i=0,1+ of the state of the electron we obtain

dw.
Alp_J+A1} +epW.,
m ! 1

pert

y. —
dz

t
Lo ST m dz

~ _ ihe{ d
Where e is (negative) electron charge, c is the speed of light in vacuum, A is z-component of
vector potential of EMF in the medium, ¢ is scalar potential of EMF. Calculations with
wave functions (10) and (11) lead to expression

Wi W =ik1(1+91)=i[k1+k1} (14)
mi,, my,, m m m,
Taking  z=0 and that v, p have discontinuity so that
W,.(0)= 1/ 2)[F'y,.(-0)+ ¥, (+0)] we find
L —2
py = 2 , Py = M, (15)
1+0, mym(1+0,)

Here and below m=(m,+m)/2, Am=m,-m, E=(E, +E.)/2, AE=E, -E_. Inserting
Egs.(14) and (15) into Eq.(2) and proceeding some calculations we find explicit expression
for the probability amplitude of the photoemission

2|e|m =, AEr 1) 1/2
C, ()= VE+2E R 4 E, -V
+() ik1m<hco>2<1+eo><1+el>{ 7 B+ Eo-V)]

PN, -w} (16)
2m

Now we express Eq.(16) through the variable x=(fik,)*/(mV)=E,/V . Taking

into account that k, =(2mV / h)(x+ho / V)2, 0, =[(m /m,)(1/x-1]"?,

0, ={(m /m,)[1-(x+ho /V)']}'/> we find final expression for the probability of the

photoemission
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| C4(0) [*= CuU) | Ky (), 17)
where the dimensionless coefficient

_2|eP|E_V

E mh’e!

/ (18)

Ux=_ M . , (19)
(r,+1) [x+r, (1-X)|{(x+ho/ V)" +[r, (x+ho /V-1)]/*}

r, =m/m, and

K, (0= 148 | 1+ o4 2 g4 1) 5

2 €, 1+r, \Y 2 €,
Factor Kgis describes both the influence of the break of EMF and the break of the effective
electron mass at the interface at z = 0; however Eq.(19) for U(x) also depends on the effective
electron mass. In order to came back to the case of (Brodsky, 1973), where jumps of EMF and

effective mass at the interface did not taken into account, one can set r, =1 and s_=¢, in
Egs., (19), (20) which leads to K, (x)=1and

2

["*?]l/zﬂa-xw (20)

X
[(c+ho / V)2 + (x+ ho / V-1)2 T

Ux) =

Thus the probability of the photoemission of the electron in the case of the step potential in
the interface and with account for the jumps of the electron effective mass and EMF in the
interface is determined by Eq. (17), where Cp is given by Eq. (18) and expressions for U(x)
and K (x) are determined by Egs. (19) and (20), respectively. These expressions will be
used below for calculation of the cross-section of photoemission from the nano-particle.

3. Cross-section of photoemission from nano-particle for step potential.
3.1 Expression for cross-section of photoemission

Cross-section o of photoemission from the nano-particle is, by definition,

ph-em
] h-em
0ph~cm = PI , (21)
where J, ... is the total photocurrent from the nanoparticle in electrons per second, I is the

intensity of the external monochromatic EMF causing photoemission in photons through
cm? per second. Photocurrent from the nanoparticle is

]ph-em = J’surface ]ds = J-surface ](6’ (2 r)rdrSinededqj’ (22)

where j is the photocurrent density in electrons through cm? per sec, the photocurrent is
normal to the surface of the nanoparticle in the point of the surface determined by polar
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angle 6 azimuth angle ¢ and by the distance r from zero of coordinate system to the
surface of the nanoparticle, see Fig.3.

Fig. 3. The density j of the photocurrent in the point of the surface determined by angles 6
and ¢ for spheroid nanoparticle excited by the external electric field of the amplitude E. The
length of two semi-axes of the particle are the same, the length of the third semi-axes is c.

Now we came from the one-dimensional model of motion of electron to the three-
dimensional model. Then in accordance with Eq. (2.30) of (Brodsky, 1973) we can write the
photocurrent density dj of electrons with the energy in the interval E; +E; +dE, as

dj="kx |, R Ok, +@m / #)(ho - V)]dn,, (23)
m

where A, /m is the speed of such electrons above the interface barrier,
dn, = 2f; (k,)dk,dk, dk,, / (27)’ is the number of such electrons,

fi (ko) =[1+exp{[(fk,)* / (2m) -] / k, T)]"

is Fermi distribution function, ko is the wave vector of the electron before absorption of the
photon, ki =kg +kj +ki,, k

the nanoparticle, ¢, is Fermi energy of the metal of the nanoparticle kg is Boltzmann
constant, T is the temperature. Because of 2mE, /%> =k; then for the step potential

- components of the wave vector parallel to the surface of

Ox,y

{o =@M / 72)(E, + 1o - V) - (k, +K2)) = k2, +@m / 1%) (e - V) (24)

is z-component of the wave vector of the electron above the barrier (it was denoted as [, in
one-dimentional case), ko, is the component of the wave vector of the electron inside the
nanoparticle perpendicular to the interface, |C,['=|C,(»)[> is the probability of
photoemission and ©® is theta-function. The density j of the photocurrent of electrons of all
energies is

. 2 iy,
j=—3% [dkg,dko, dko, fr (o) 1r<n“|c+|2®[1<3z+(2m /1) (ho-V)] (25)

27)
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Taking into account that only fr depends on koyy in Eq.(25) one can take there the integral
over dkowdkoy with replacement k_+ kéy =i* and using [ dx(1+e* /b)" =In(1+b), so that

2

N dp =
T I expl[72 (07 +K2,) / (2m) -2, 1/ KT

M;#ln{l + ol&77K3, /(2m)]/ (6 T),

IdexdkOyfF (120

(26)

Inserting Eqs. (23), (24), (26) into Eq. (25) and taking into account that according with Egs.
(17), (18) | C, *~|E_ |, we obtain the density of the photoemission current in some point of
the surface of the nanoparticle

j = Cemission | E- |2’ (27)
leP k,TV? g
e 1/2
emission T;ﬁ)zlf;,l»hm/vdx[l + (hﬁ) / V- 1) / X] Injl+e ™ U(X) | Kdis(x) |2/

where the low limit of the integration is 0 if 7o >V anditis 1-he /Vif ho <V ; x<1 due

to Eg<V; U(x) and K, (x) are determined by Egs. (19) and (20), respectively. If we neglect by

the thermal excitation of electrons above Fermi surface, i.e. take in Eq. (27) the limit T — 0

then, using e "Y/®" _ o we write instead of Eq. (27)
2 3

BV a1+ (e / V-1) /]

emission 2 5 .4 J0,1-n0/V
7t o o/

1/2

(& / V-U) Ky ([ (28)

It must be here that 7w >V —&, and the low limit of integration is 0 if 7@ >V . Thus the
photocurrent from the nanoparticle is

]ph-em -

emision Jurtcel E- | IS, (29)
where the integral is taken over the surface of the nanoparticle and Cemission does not depend
on the point on the surface; normal component of the field E_ = (g, i), where E, is the
field inside the particle, i is the unit vector normal to the surface. Components of EMF
tangential to the surface have no influence to the photoemission. In principle, the motion of
the electron along of the surface of the nanoparticle depends on tangential components of
EMF and, therefore, has the influence to the distribution function of electrons. However the
EMF at the photoemission is relatively weak, so that such influence is negligibly small with
the respect, for example, to the heating of the particle at the absorption of EMF. EMF inside
the nanoparticle is related with external EMF E incident to the nanoparticle by the relation
B = F()E, where F(f) is tensor. Spheroidal nanoparticles considered below have
homogeneous EMF inside them so for such particles F is constant and does not depend on
f . For simplicity we suppose that E 1is parallel to one of the main axes of the spheroidal
particle then §,,=FE, where F does not depend on 7. For non-spherical particles F
depends on which main axes of the particle is parallel to g . Thus



184 Electromagnetic Radiation

]ph~cm = Ccmission | F |2 ngomctry | E |2’ (30)

where Koy =l (1€) , € is unit vector parallel to the polarization of the external field,

see Fig.3. Taking into account Eq. (21) and the intensity I of external EMF (in photons
through cm? per sec), which is

1 cng |EP
87 ho

I=

’

we find the cross-section of the photoemission

_ 8nhw C

oph-em - |F |2 K (31)

emission geometry /

Ny
where c is the speed of light in vacuum, n, =Re,fe, is the refractive index of the medium
outside the nanoparticle.

3.2 Parameters F and Kgeometry
According with (Meier & Wokaun, 1983)

1 €4

. x 7
dep ~ erad £+ + (S_ - €+)L

F= 32
1+R (52)

for spheroidal particles, where the second multiplier is the result of calculations in quazi-
static approach,

L=1 [ du
290 (utr2)2(u+1)/2’

aspect ratio r=a / c, a is the length of one of two equal semi-axes of ellipsoidal particle, c is
the length of the third semi-axes, see Fig.3; the second multiplier in Eq. (32) takes into account
dynamic depolarization (factor Rqep) and radiative losses (factor Rraq) (Bottcher, 1952)

€

dep

-8 2 2 4 167° ni(ajs & -84
=~ (A +B , R4 = — | 33
S+ +(€_ -S+)L( 8-+-y S+y ) rad 9 r }\ €+ +(£_ -£+)L ( )

A =-0.4865L - 1.04617 +0.848L°, B=0.01909L +0.199917 +0.6077L°,

where y=7a /X, N is the wavelength of EMF in vacuum. Factor Ryep is characterized the
nonhomogeneity of EMF inside the particle. Collisions of electrons with the surface of the
nanoparticle lead to the deviation of the dielectric function €. of metal of nanoparticle from
the dielectric function epyix of the macroscopic (bulk) piece of the same metal. This difference
can be taken into account according with (Brongersma, 2007)

®’ w?

e.=¢g . + LI ol , 34
Mo +Hioy, o +io(y, +iAv, /a) 54)
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where ®, and y,, are plasma frequency and the dumping increment, respectively, v; is
the rate of electrons near Fermi surface; A is constant of the order of 1 depending on the
shape of the particle. According with (Meier, 1983)

2 2
za r 1-2r . 2\1/2
=+ arcsin(l-17)
geometry r |1- r2 (1 B r2 )3/2

(35)
Thus the cross-section of the photoemission is determined by expression (31) where
coefficient Cemission is determined by Eq. (27), factors F and K, .., are given by Egs. (32)
and (35), respectively. One can compare the cross-section of the photoemission with cross-
sections o, and o, of absorption and scattering of the light by nanoparticle (Meier &
Wokaun, 1983)

8z%a’n, 1287°a°n?
= Ima, o, =—"—"———*

o 2 1 e -g,
abs 3rA s 27¢?

a= x
1+R,, -iR e, t(e -¢,)L

|a

(36)

’

dep rad

Numerical estimations of the cross-sections of the photoemission from metal nanoparticles
will be carried out in the next Subsection.

4. Photoemission from gold nanoparticles into Si

Let us calculate the cross-section of photoemission from the spherical gold nanoparticle into
p-doped Si. We chose Si as the environment of the nanoparticle because of the work
function x, for electron coming from Au to p-type Si is small x, =0.34 eV (Dutta, 2009).
Because of Fermi energy for Au e, =5.1 eV (Dutta, 2009), the height of the barrier in Au - p-
Si interface is V=g, +x, =544 eV. The electron effective mass in Au and in Si is,
respectively m =0.992m, = m, and m, =0.25m, (Kittel, 1996), where m, is the mass of free
electron in vacuum; so that r, =0.992 /0.25=3.968. The data for the dielectric function
€4, Of Au are taken from (Weber, 2002). It is convenient to write the dielectric function (34)
of Au as a function of the wavelength A of EMF in vacuum:

2
A 1 1
N =g, N+ — - , 3
=M= [)\J Lm\/)\f 1+ /N, /a+1) 7
we take A, =0.142 pm and A; =55 pm, they correspond to the best approximation
Y1
N=12+| — | ———— 38
SAu() (}\p] 1+i}\/}\f ( )

in the region of A from 0.6 to 1.2 pm where LPR of spherical Au nanoparticle in Si is
located; a, =Av,\; / (27c,) is the parameter characterizing the collision of the electron with
the surface of the nanoparticle, A = 0.7, v, =(2E;|e|/m,)"? ~1.3x10° m/sec; it is
supposed that effective electron mass in Au is equal to free electron mass. Fig.4 shows Re
and Im parts of €,,(}), its approximation according with Eq.(38) is quite close to ¢,,(\) and
e (\) found from Eq.(37) for a = 10 nm. One can see that Im[e_(\)] is noticeably greater than
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Im[e,,(\)], which points out to the necessity of taking into account collisions of electrons
with the surface of the nanoparticle. We can use approximation (Adachi, 2002) for the
dielectric function e, () of Si

20 T T T T T T T
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Fig. 4. Imaginary 1 and real 2 parts of the dielectric function of Au according with (Weber,
2003) are shown by dashed lines; according with Eq.(37) - by solid lines. Dotted horizontal
line means 0.

. . ; 1- i)
e,N)=¢, + ! -E X7 MIn| 1- x; (V) |- F, X3 W)In—21F
;1-{1'242]2-11'242 DI W]-Fo -0

\E. Yi

i i

where

xm(?\){%ﬂfmjé and e, =02, C,=0.77, C,=296, C, =03, F, =522, F, =4,

m

y, =005, y,=01, y,=01, E, =338, E, =427, E,=53, T, =008, I, =0.1

Fig.5a shows cross-sections (36) of absorption and scaterring of Au nanoparticle in Si in 7a’
units. One can see that the absorption cross-section is greater than za> more than one order
of magnitude near A=\ ,; =0.857 pm. Fig. 5b shows the factor ‘F‘zappeared in Eq.(31),
that is the factor of increase of intensity of EMF in the nanoparticle with the respect to the
intensity of ENF outside the nanoparticle, F is determined by Eq.(32). At the excitation of
LPR the intensity of EMF inside the nanoparticle is 150 times greater than the intensity of
the external EMF outside the nanoparticle.

Cross-section 0, o,
nm in Si is shown in Fig.6a, together with o,

of the photoemission from spherical Au nanoparticle of radius a =10
and o, as function of the wavelength of

S
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the incident radiation, as it was found from the formula (31) with the use of Egs. (27), (32)
and (35).

o
na’

Fig. 5. (a) cross-section of absorption o, (solid line) and scattering o (dashed line) of
spherical Au nanoparticle in Si. (b) The factor of the enhancement of EMF in the nanoparticle.
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Fig. 6. (a) Cross-section of photoemission (curve 3), absorption (2) and scattering (1) in units
of the geometrical cross-section za* of spherical Au nanoparticle; (b) the ratio Opnom / Ot
at the maximum of LPR for various radii of spherical nanoparticles; (c) cross-section of
absorption of spherical Au nanoparticle versus its radius.
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It can be seen from Fig.6a that o, ,, reaches approximately the half of the geometrical
cross-section za” of the nanoparticle, which is about 4.2% of the maximum value of o,,,.
The ratio 0, ., / O, at the resonance, i.e. at A=A, is shown in Fig.6b, it characterizes
relative part of the energy absorbed by nanoparticles and converted to the photocurrent.
Though this relative part is not so large (about few percents), it is much bigger than for the
case of continues Au film (see below). Fig.6b shows that the ratio o, ,, /0, is decreased
almost linearly from 9% to 1% at the increase of the radius of nanoparticle from 1 to 20 nm.
Thus the photoemission is relatively more effective for small particles. However the
absorption cross-section itself is small at small radius a of the nanoparticle. This is because
of the broadening of LPR due to collisions of electrons with the surface of the nanoparticle.
Cross-section 0,,, reaches the maximum, for large a it goes down because of de-phasing and
radiative losses, see Fig.6b. The optimum value of the radius of the nanoparticle can be
estimated from calculations of the photoemission current made below.

Collective phenomena, as the interaction of particles with each other through EMF, may be
quite important at the photoemission from the ensemble of nanoparticles. Detailed
description of the influence of collective phenomena on the photoemission from
nanoparticles is outside the score of present study; here we restrict ourselves only by some
estimation. Noting that the number of photons absorbed per unit of time in the metal film
can’t exceed the number of photons falls per unit of time down to the surface of the film
outside, one can write o, /(7a’)<1/1n where 1 is relative surface density of
nanoparticles, i.e. 0,,, must decrease with the increase of 1 if o,,, > 7za’. In practice o,,, is
decreased with 1 due to the broadening of LPR caused by collective phenomena. Quite
possible that the broadening of LPR leads to the decrease of the factor F and the cross-
section of photoemission for narrow spectrum of LPR, when A is close to A, , however it
does not mean that the photoemission from the ensemble of nanoparticles will be decreased
with increase of 1) at broad spectrum of EMF as, for example, the solar spectrum. Note that
narrow high-quality LPRs have been predicted and observed at certain conditions in
ensembles of nanoparticles (Hicks, 2005), which means that the factor F may be quite big in
encembles of nanoparticles even if o,

abs abs

. is not large. Thus one can’t say a-priori that collective
phenomena allways decrease the photoemission from nanoparticles. Detailed investigation
of the influence of collective phenomena on the photoemission from nanoparticles will be
carried out in future, here we compare the photoemission from the layer of nanoparticles
with the photoemission from the continues metal film by using formulas obtained above
without taking into account collective phenomana.

We estimate now the surface density of the photoemission current. We use Eq.(27) in order
to estimate the density j,, ., of the photoemission current from thin continues film of Au; in
Eq.(27) E. is the component of EMF normal to the surface of the metal film. For simplicity
we suppose that that E. =E this way we rather overestimate the photoemission current
from the continues metal film.

Suppose that we have the layer of spherical Au nanoparticles in Si with relative surface
density 1 ; we estimate the surface density of the photocurrent if the layer is illuminated by
solar radiation. Normalized solar spectrum is
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A*/0.128

W= @616 N1

where A is the wavelength in pm. The surface density j,, ., of the photocurrent normalized
to the total intensity I of solar radiation is

e = I [, (000 )IA 39)
Fig.7a shows the ratio of the surface density of photoemission versus the radius of the
nanoparticle, - from the layer of spherical Au nanoparticles to the surface density of the
photoemission current from continues Au layer for n=0.3, i.e. when 30% of the surface is
covered by Au nanoparticles. We take the spectral range of solar radiation from 0.32 to 2
nm, with about 80% of total energy of solar radiation.
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Fig. 7. (a) The ratio of the surface density of the photoemission current from the layer of
nanoparticles with n=0.3 to the surface density of the photoemission current from
continues Au layer in Si for solar radiation for different radiuses of nanoparticles; (b) the
same for monochromatic EMF at LPR.

Fig.7b shows the same quantity as Fig.7a but for the monochromatic EMF at the wavelength
of LPR. One can see from Fig.7a that the photoemission current from the layer of
nanoparticles is several times greater than from continues metal film for the case of solar
radiation. There is optimal value of radius of nanoparticles when the photocurrent has
maximum. For the monochromatic EMF near LPR the photocurrent from the layer of
nanoparticles exceeds two orders of magnitudes the photocurrent from continues layer, see
Fig.7b. Optimum radius of nanoparticles in this case is 10 nm. We consider here the
“internal” efficiency of the photoemission from nanoparticles. The efficiency of collecting of
the photocurrent into the external circuit is not considered. Estimations here do not take into
account several factors as, for example, tunneling of photo-curriers through the potential
barrier on the interface between the particle and the environment (Nolle, 2007); we can also
note that the probability of the above barrier transition for the photo-carrier may be larger
than the probability for the photo-induced carrier to leave potential well. Account for the
potential barrier instead of the potential well can be done by using the approach presented
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above, it can be done analytically for step potential or numerically for more realistic smooth
potentials also with an account for image forces. The photoemission from the volume of the
nanoparticle may bring additional, but may be not so large, contribution to the
photocurrent; it may be done following, for example, the approach of (Fowler, 1931).

In a difference with (Brodsky, 1973) here we take into account the change in the normal
component of the electric field and in the electron effective mass at the interface between the
metal and the environment. Let us estimate how important are these changes (“jumps”) for
the case of the photoemission from Au nanoparticle to p-doped Si. In order to came back to
results of (Brodsky, 1973) (i.e. without “jumps”) one can follow the procedure described
after Eq. (20). Fig.8 show the cross-section of photoemission neglecting by the change of the
effective mass of the electron, i.e. when r, =1, of neglecting by the change of EMF, when
e /e, =1, of when we neglect by both of them, when 1,, =¢ /¢, =1. For comparison Fig.8
displays the cross-section of photoemission for 1, #1 and e /e, #1, that is the same as the
curve 3 in Fig.6a.

K3
nat

Fig. 8. Cross-sections of the photoemissions. We neglect by changes: of the effective mass of
the electron at the interface (curve 1); EMF (2); the effective mass and EMF (3) that is the
result of (Brodsky, 1973); all changes are taken into account (4).

According with Fig.8 account for the jump in EMF and in the effective mass considerably
changes (increases) the value of the cross-section of photoemission. It is interesting to note
that the maximum value of the cross-section is reached when all jumps are taken into
account. The jump in the mass, without the jump in the EMF reduces photoemission
(compare curves 2 and 3 in Fig.8), the jump in the EMF without the jump in the mass
increases photoemission (compare curves 1 and 3 in Fig.8), but both of them lead to the
maximum in photoemission (compare curves 4 with others in Fig.8). Such “non-additive”
influence of jumps of EMF and electron mass to the cross-section of photoemission is the
consequence of quantum-mechanical interference. Indeed, complex terms cy, cg and cm
describing, respectively, the photoemission with account for jumps in the potential, EMF
and the electron mass at the interface appear as linear (additive) combination in Eq. (2) for
the probability amplitudeC,() of the photoemission. However the probability



Photoemission from Metal Nanoparticles 191

., and noticerable quantum-mechanic

Comisson ~|C. ()] appears in Eq. (31) for o,
interferience between contributions from cy, cg and ¢, is. This interferience leads to incease
of 0, .., when all three terms are taking into account, but it leads to increase or to decrease
of 0, .. when there are only two or only one term. In practice it means that various

interfaces may have quite different and unusual influence to the photoemission.

5. Conclusion

We calculated the probability amplitude and the cross-section of the photoemission from
metal nanoparticles. It is shown that the cross-section of photoemission from metal
nanoparticles is about the half of the geometrical cross-section of the nanoparticle, see
Fig.6a; an example of the photoemission from Au spherical nanoparticles into p-doped Si is
considered. It turns to be that if the surface density of nanoparticles in the layer is =0.3
then about 15% of all photons can be converted to photoelectrons at the excitation of the
localized plasmon resonance (LPR), so that 15% is the internal quantum efficiency of
photoemission at A =\, ,; . The photoemission current from the layer of nanoparticles is two
orders of magnitude greater than from continues layer of Au at the monochromatic EMF
exciting LPR. For the case of the broad spectrum of EMF (as solar spectrum) the
photoemission from nanoparticles is several times more intensive that from continues metal
layer, see Fig.7, there is the optimum radius of nanoparticles corresponding to the maximum
of the photoemission current. Increase of the photoemission from nanoparticles with the
respect to continues metal layer is occurred due to the increase of EMF inside and near
nanoparticle at the excitation of EMF (see Fig.5) and due to relatively large surface of the
nanoparticle, which surface is non-parallel to the polarization of the incident EMF.

We generalize the theory of (Brodsky, 1973) of the photoemission from metals by taking into
account breaks in the EMF and in the electron effective mass in the interface of the metal
and environment. It is shown that such breaks may considerably change the cross-section of
photoemission from metals, as one can see from the example of photoemission from Au
particles to p-doped Si considered here.

We do not take into account the volume photo-effect, which can increase the photocurrent
even more; the potential in the metal-environment interface was approximated by
rectangular potential well. However in reality there is a barrier in the interface. Account for
the potential barrier in the interface and for the tunneling through the barrier will lead to
more increase in the photoemission current. Calculations with more complicated potentials
on the interface may be proceeded by direct generalization of the approach presented above.
In the future one has to take into account collective phenomena as the interaction of nano-
particles with each other through EMF, however it influences only the factor F describing
the increase of EMF inside nanoparticle with the respect to EMF outside it. Approach of this
work can be useful for description and study of recombination of carriers (also photo-
induced carriers) on metal nanoparticles.

Results of this work can be used for creating of new high-sensitive photo detectors and
photo converters of solar radiation into electric energy. There is important question about
the minimum time of the photo effect related with the sensitivity of photodetectors (Schelev,
2000). It is possible, that the increase of the efficiency of the photoemission at the excitation
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of LPR lets to reduce the minimum time necessary to observe the photo effect. For example,
if the femto-second laser pulse can excite LPR in the nanoparticle, then the photo detector
with such nanoparticles can provide femtosecond time resolution even if the time of the
photo-responce of the metal of the nanoparticle is larger than femtosecond. This way the
question about shortest time of photo-response of the metal is replaced, therefore, by the
question of the shortest time of the excitation of LPR.
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1. Introduction

A man is exposed to electromagnetic fields in his environment. Electromagnetic fields
always exist in nature - atmospheric static electric field, the Earth's magnetic static field, the
fields of a wide range of frequencies due to the outbreaks in the atmosphere, etc. However, a
man is today the most exposed to the artificial field, due to progress in technology and
widespread use of electrical devices. Currents, induced by electric field of surface charges
are the greatest if external electric field is parallel to the length of the body. Magnetic field
induces a currents inside the body as well. Variable magnetic field acting by force on
charged particles in the body and creates eddy currents according to Faraday's law. Such
induced currents in the low frequency area can stimulate electrically excitable tissues, such
as nerve and muscle fibers, through the mechanism of action potential triggering. The area
of occupational exposure includes people who are exposed to electromagnetic fields in
known circumstances during usual performing of work tasks in and around power facilities,
but they are educated to take protective measures and they have all the tools and
instructions provided. These people are aware of potential risks and take appropriate
protective measures. The environment around the power facility falls within the area of
increased sensitivity, which includes people of different ages and health conditions,
including those particularly sensitive. In many cases people are not aware of exposure to
electromagnetic fields and can not be expected to take protective measures to reduce
exposure. Therefore, the restrictions for that area are stricter than those for area of
occupational exposure. The most efficient way for reliable operation of the devices in high
voltage substation is the calculation and measurement of low frequency electromagnetic
fields in the substation, together with appropriate measurement procedure. Contemporary
research of electromagnetic fields is based on the concept that complex theoretical research
results in appropriate design solution, and developes almost exclusively as applied research.
Generally, there are two directions; the first one based on calculation model development,
and the second one based on models of objectivized physical measurements in hard
conditions. In both cases, the goal is the same and can be summarized as follows: create the
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optimal variant of the electromagnetic fields calculation, in both the existing and in new
substations. Research of the way of calculation, for low frequency electromagnetic fields
area (Extra Low Frequency), in stationary regimes in distribution substations in urban areas,
is performing in order to obtain the level of electric and magnetic field in the areas where
primary power and secondary electronic equipment is located and where the temporarily or
permanently stay people within one segment of the regulations of protection against
electromagnetic fields. Pragmatically, it can be concluded that power equipment causes
electromagnetic effects, and electronic equipment is subject to the activity of these
influences. Routes of transmission of these influences, in such complex facility, are possible
through conductors, inductive and capacitive links and radiation. The specific
characteristics of electromagnetic field sources in power systems are: field intensity,
frequency, waveform ( content of harmonics ), polarization, spatial and time variation of the
field. The main sources of influence for this research are induced voltages, as consequence of
variable electric, magnetic and electromagnetic fields. In the low frequency area
(wavelength 6000 (km) at frequency 50 (Hz) ) the irradiation is happening exclusively in
closer zone, in which does not worth mutual perpendicularity of electric and magnetic field
in the direction of wave propagation, constant ratio of amplitudes of the electric and
magnetic field and dependence of the electric and magnetic field amplitudes of the distance
from the source by the law 1/r, and power density by the law 1/r2. Low frequency electric
and magnetic fields can be observed separately, because at these frequencies the shifted
currents are negligible. Mathematical models and numerical solving, as well as the method
of experimental measurements of low frequency electric and magnetic fields of power
facilities are presented in this research. Calculation and measurement of low frequency electric
and magnetic fields, as well as their interconnection, are the main problems in electricity
transmission and distribution, in terms of standardized electromagnetic compatibility and
human exposure to non-ionizing electromagnetic radiation. For solving the electromagnetic
influences with complex geometry in the low frequency area, the system of Maxwell's
equations that fully describe the electromagnetic field is used. Maxwell's equations can be
analytically solved only for a narrow class of one-dimensional problems of static and
quasistatic fields. Each two-dimensional (2D) and three-dimensional (3D) geometric
arrangement requires the application of numerical methods for solving of the field by using
some of the famous software packages (for example MAXWELL 3D, EFC-400, FLUX 3D,
MATLAB...) and other appropriate tools necessary for successful implementation of the
research, and for which is necessary to make a detailed mathematical models of transformer
stations with all geometrical and electrical parameters. For 3D distribution calculation of low
frequency electric field the charge simulation method is applied (CSM-Charge Simulation
Method) as well as the source element method (SEM-Source Element Method) that is usually
considered as a special variant of the indirect boundary element method (IBEM-Indirect
Boundary Element Method). For 3D distribution calculation of low frequency magnetic field,
inside and around the transformer stations, a procedure based on the application of Biot-
Savart's law for magnetic flux density of straight streamline of finite length and a principle of
superposition is used. Based on the analysis of theoretical calculation, a detailed operational
measurement program that includes all measurements in steady state with measurement
location is shown. The measurement have to be conducted in accordance with the norm HRN
IEC 61786-2001 - Measurement of low frequency magnetic and electric field with regard to
exposure of human beinges-Spacial requirements for instrumants and quidance for
measurements and the instructions given in the European recommendations ENV 50166
(People exposure to the electromagnetic radiation on low frequencies). For measurement
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methods under stationary conditions a modern measuring equipment (EFA-300 Field
Analyzers) was used, which find application in researches and environmental studies for
assessment of electric and magnetic fields in transmission and distribution power networks
and facilities with belonging equipment. It is made to provide a sophisticated tool for precise
researches of power low frequency influences for the engineers, experts in the field of health
care, work protection and other profiles. Selection of the measurement points was made on the
basis of the field intensity assessment, respectively the measurement is performed in places
where the greatest intensity of electric and magnetic field was expected. The analysis of
measurement results and their comparison with numerical calculations indicated the places in
which the standards for people protection from electromagnetic fields are disturbed and gave
suggestions for elimination of electromagnetic influences and their reduction to acceptable
level. Confirmed satisfactory accuracy of the results obtained by calculations in comparation to
the results of experimental measurements indicates the validity for introducing and
developing a calculations for such practical problems related to design and reconstruction of
substations, which is extremely important from an economic point of view, since, in this way,
the demands for expensive experimental measurements and reparations are reduced.
Presented mathematical models, calculation, measurement and visual 3D distribution of
electric and magnetic field is a realistic assumption for research of interactions between
electromagnetic fields and human bodies on the macroscopic and static level, with finding the
certain optimization criteria in order to develop a new technology and process solutions and
design methods. The research results are important from the scientific point of view but also
they are important because of possibility for their practical application.

2. Background theory of models

Low frequency electromagnetic field around the substations is quasistatic. It has a
conservative component of the electric field caused by charges and eddy component of the
magnetic field caused by currents. The calculation of electric and magnetic fields at the
points located far from the source (charges and currents) is obtained with thin-wired
approximation and by representation of conductors with linear segments with current
distribution calculation, and based on that, in the selected point of the space located in the
air or in any ground layer the calculation of potentials is also obtained. The potentials and
electromagnetic fields are firstly expressed in the form of components of the vector
potentials, as a functions of the current in each segment of conductors network. The currents
in the conductors segments are determined based on the voltage drop between a pair of
network points, based on their own impedance. The ground influence on the conductor
potential was taken into account by using a method of mirrors. The phasor of the electric
potential at some point in the space is obtained by applying the superposition theorem, as a
finite sum of potentials of elementary, time-varying charges on the surface of the conductor.
The total value is represented as the integral of electrical potentials caused by charges
density, which is located in the point given by a positional vector that is located on all thin-
wired parts, including original conductors and their images, respecting land-air
discontinuity, and given by the following integral equation:

. 1 p(rHdr 1 p(rHdr
o=1 4L f et (1)

r=r’| 4me |r—r"|

It is necessary to discretize the equation by discretizing the field of the source with
unknown distribution, for example, density of line charge by using appropriate combination
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of N linear, independent fundamental functions. Then, the discretization of conductor
length on N segments and the discretization of observed points will be connected. We
obtain the conductor division into segments of finite lengths and approximate the unknown
distribution of the field with appropriate number of fundamental functions by following
expression:

where: pj is a fundamental function on segment j of the original conductor and pj' a
fundamental function on segment j of the conductor in the mirror. Selected constant aj' =1 in
the segment j is valid for that segment, while in other segments is 0. In that case, the
potential equation can be represented as:

ajp; @HdI®

[r—r”]

®)

In order to solve the expression, N observed points which are corresponding to energized
conductors are selected in the space of known potential. It establishes a system of N
equations with N unknown values, which is defined in the matrix form as:

[e] = M][p] )

where the elements M;; of matrix system [M] represent the potential of the observed point i,
located on the conductor surface with current density p;. Gauss-Seidel's method is used for
solving this matrix equation. When the approximation of current density on the conductors
is obtained, the vector-phasor of conservative component of the electric field intensity, at the
observed point with position vector r, can be determined by using the equation:

apy(r)dl 1
ity 2 ¥vN N
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In the 3D calculation, the vector of the electric field is in each point elliptically polarized, i.e.
the peak of the vector E describes an ellipse in time. Each of three components have a
different size and phase shift:

1 yN
+ EZH fAl‘j‘

Ex(t) = Exmaxcos(wt + @)
Ey () = Eymaxcos(ot + ¢) (6)

E,(t) = Ezmaxcos(wt + @)

The vector of the electric field is elliptically polarized and rotates in time. The effective value
(RMS) of the absolute value of the electric field is used for the electric field presentation
according to:

Fer = I CB2 (0 + B30 + E2(0) ?

Generally, the size of the magnetic field or magnetic flux density can be decomposed into
three components that are perpendicular to each other in the space. Each of these
components is time-dependent:
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B(t) = B4(t) + By(t) + B,(D) ®)

The largest number of magnetic fields, around power facilities, are generated by basic
harmonic with dominant frequency of 50 Hz, and have a negligible contribution of higher
harmonics. The components are time-dependent by sinus dependence:

B(t) = V2B, sin(wt + @,) T+ V2B, sin(wt + @, )7 + V2B,sin(wt + ¢,)k 9)

The effective value of magnetic flux density is expressed mathematically:

Bos = J%fOT[B(t)]Zdt= \/B)Z( + BZ + B2 (10)

where are: t - time variable
T - period of time change
B, By, B, - effective values of time-variable orthogonal components B

The absolute value of magnetic field intensity is determined by the equation:

[H| = — (1)

where are: I - electric current intensity through conductor
r - distance from the conductor

Three-phase AC system of 50 Hz generates elliptically polarized fields. The field vector
rotates around a fixed ellipse whose radiuses of semi-axis represent the peak values. In the
case of different frequencies existence, contribution to the field of individual segments are
added together and integrated in time. The degree of polarization is defined by the ratio of
the magnetic flux densities values between the, so-called, minor and major ellipse:

Bmin

- (12)
This axial ratio can take values between 0 (the magnetic field is linearly polarized) and 1 (the
magnetic field is circularly polarized). For a particular value of frequency (50 Hz), the
effective value of the magnetic induction can also be determined by the effective values of
the magnetic flux density components along the two axis of the polarized magnetic field:

Ber = /Bfmx+ B2, (13)

Calculation of magnetic flux density distribution is performed based on the application of
Biot-Savart's law for the induction of straight streamline of finite length and the law of
superposition. Magnetic flux density at any point in the space can be calculated by
superposition of contributions of each conductor in which current flows. The spatial
position of conductor segments, their currents and phase angles represent the input sizes for
the calculation of magnetic flux density at the desired points in the space. The direction of
magnetic flux density vector is determined by the unit vector in cylindrical coordinate
system related to the observed segment. As the position of segments is different in the space
and so the directions of the induction vectors, it is necessary to decompose a vector of
magnetic flux density to the components in the direction of each coordinate axis of the
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global system that is not tied to a particular segment. The direction of magnetic flux density
vector is perpendicular to the boundary plane and defined as:

dB() = “d“rla) (14)

Sizes dB and I are generally time-dependent and are transformed into complex values for
easier calculation. Suppose that the i-th segment of length 1 is located at the origin of the
coordinate system, parallel to the x-axis, its contribution to the field at point P (x, y, z) is

Bi(D) = 2210

v (15)

l\[(L—xp) +r2 J 5+ 12

Vector components are:

By =0

Byi(t) = — |B(®)]
v+ 2z}

- B
,yg + z]%

This method divides each condustor into segments whose number is determined in
advance. When working with computer programs for the electric and magnetic fields
calculating, the number of segments is determined by the user. If the conductors have
overhangs (for example transmission lines), the programs usually simulate this situation
with equivalent parable. Sufficiently high accuracy is usually achieved by selecting 10 - 20
segments. For verification, the number of segments can be increased so the accuracy of that
calculation is higher than in cases with 2, 3 or 4 segments. The difference between the actual
situation and model depends on the division of conductors to a finite number of segments.
When calculating the field intensity, the coordinates of the considered point are
transforming to the local coordinate system of a given segment. The calculation gives the
contribution of a given segment to the field that is transforming back to the original
coordinate system. Vector sum of field contributions gives the total amount of magnetic flux
density vector, which is caused by currents of N segments and obtained by adding the
contributions of all segments:

(16)

Bzi(t) =

2 2 2
B(t) = J(E}\]:1 Bx,i(t)) + (Zi\]:1 By,i(t)) + (Zi\]:1 Bz,i(t)) (17)
where By (t), By,i(t) and B,i(t) are the components of magnetic flux density of i-th segment.

For magnetic field presentation the effective value (RMS) of magnetic field density is used,
according to:

Bur = [0 (B2 + B30 + B(0)ae (18)
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3. Calculation of low frequency magnetic and electric fields of transformer
station

The application of computer program EFC-400LF for calclulation of the electric and
magnetic fields is presented on the example of typical compact, concrete transformer station
KBTS 10(20)/0.4 kV, 630 kVA. Transformer station equipment consists of:

e switchable power transformer, nominal ratio 10(20)/0,4 kV, rated power up to 630
(kVA), frequency 50 (Hz), Dyn5, shortcut voltage 4 %, voltage regulation + 2 x 2,5 %,

¢ medium-voltage (MV) distribution switchgear, insulated by SF6 gas, completely
shielded and protected from dangerous contact voltage, “ Ring Main Unit “ (RMU) type
CCF 12/24 (kV), 400 (A), “ SafeRing “ with 3 fields, transformer and 2 conductive fields.
Conductive fields are equipped with a three pole switch disconnector with the earthing
switch, rated voltage of 24 (kV), rated current 400 (A), with auxiliary switch 2NO + 2
NC. Transformer field is equipped with a three pole switch disconnector 24 (kV), 200
(A), 16 (kA), fuses 24 (kV), 50 (A),

o low-voltage (LV) distribution switchgear, which consists of three fields, namely: load
field and two distribution fields. Rated current is 1250 (A), shortcut withstand current
25 (kA), peak withstand current 52.5 (kA), the degree of protection is IP 21. In the load
field the main three-pole switch disconnector is located, type OETL 1250, 1250 (A), 690
(V),“ ABB”,

e the connecting line between the MV side of transformer and the field of MV switchgear,
that is derived from three single-core cables, XLP insulated, of rated voltage 20 (kV),
unit designation of the cable is 3x(XHE 49-A 1x50/16 mm?2) or 3x(XHE 49-A 1x150/25
mm?2), allowable current load is 210 (A). The space between clamps for fixing the cable
is 600 (mm) maximum. Cables are at a distance of 1.00 (m), wrapped with plastic tapes
and make a bundle,

e the connecting line between the LV side of transformer and LV distribution field that is
derived from single-core cables, insulated with PVC which is resistant to temperatures
up to 378.15 K/105 °C, rated voltage up to 1 (kV), unit designation of cable for phase
conductors is 3x(2 x P/MT1 x 240mm?2 1 kV) and for the neutral conductor 1x(P/MT1 x
240mm? 1 kV).

Since the main electrical equipment (MV and LV switchgears) is tested and certified in
accordance with the applicable IEC standards (IEC439 for LV switchgears and IEC298 for
MV switchgears), and considering that power transformer satisfies the requirements of
standard IEC76, it can be concluded that listed technical parameters are consequently
verified. Calculations of the magnetic and electric field were carried out by using a
computer program EFC-400LF according to DIN VDE(0848-1, which allows the simulation in
3D space. The corresponding MV 12 (kV) distribution switchgear is modeled with a
maximum load current I'y, of 36.4 (A) at rated voltage of transformer secondary 0.4 (kV) and
the maximum load current I', of 909 (A). The load value of 909 (A) rarely occurs, but the
calculations are carried out for the worst case scenario, so on the basis of this case the other
cases can be determined as cases that meet safety standards. It follows that the maximum
current load of the LV side of transformer stations is evenly divided into four outputs, 227
(A) each. Significant sources of electric field in transformer station are MV and LV buses and
MYV outlets of power transformer, while the MV and LV circuit equipment is surrounded by
grounded housings, shields or cable screens and is a negligible source of the electric field
due to its complete obscurance. Calculation of the electric field was performed inside and
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outside the substation, with negligence of substation housing, due to the additional increase
in safety with regard to the protection rules for electromagnetic fields. 2D and 3D views of
the substation disposition in EFC-400LF are shown in Fig. 1, where the difference between
reality and model depends of redistribution of conductors to a finite number of segments.
Redistribution of substation conductors was performed on 635 segments, on resolution size
dx = dy = dz = 0.10 (m). EFC-400LF program is able to solve a set of differential equations
for the matrix with 16000 x 16000 elements (Methods: LU-decomposition or conjugate
gradient). For given example calculation was done with a 261 x 261 matrix elements, which
gives the values of electric and magnetic fields in the 68.121 points of the observed plane,
surface 169 (m?2), with the resolution size dx = dy = dz = 0.05 (m) and matrix of 261 x 101
elements, which gives values of electric and magnetic fields in the 26.361 points of the
observed plane, surface 65 (m2), the resolution size dx = dy = dz = 0.05 (m). Visual view of
the obtained results of magnetic flux density and electric field intensity was made in the
computer program “Matlab”, using “Runal.B“ and “Runal.E“ while subroutines
“Crtajgraf.B” and “Crtajgraf.E” serve to open, load and display the results of calculations of
magnetic flux density and electric field intensity.

Y+Position [m)
200

00 X-Positon [m] 43

Fig. 1. 2D and 3D view of substation disposition in EFC-400.
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The calculation of the electric and magnetic field was made:

i. InXY plane of transformer station at -5 (m) < x <8 (m) and -5 (m) <y <8 (m)
e ataheight z=1.75 (m) from the ground. It is a plane with greatest values of electric
and magnetic field outside the substation, in which a human head can be found,
ii. In XZ plane of transformer station at -5 (m) <x <8 (m) and 0<z <5 (m)
e fory=-0.20 (m), accordingly 0.20 (m) of the longitudinal south side of substation,
e fory =210 (m), accordingly 0.20 (m) of the longitudinal north side of substation,
iii. In YZ plane of transformer station at -5 (m) <y <8 (m) and 0<z <5 (m)
e for x=-0.20 (m), accordingly 0.20 (m) of the eastern side of substation,
e for x=23.10 (m), accordingly 0.20 (m) of the western side of substation.

3.1 Distribution calculation of electric and magnetic field in xy plane for z = 1.75 (m)
(-5(m)sx<8(m),-5(m)<y<8(m))

The values of magnetic flux density and electric field intensity are observed in the areas I, II,
III and IV of XY plane, at distances 0.20 (m), 1.00 (m), 1.50 (m) and 2.00 (m) from the walls of
the substation, at height z = 1.75 (m) from the ground level, and shown in Fig. 2 and 4.
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Fig. 2. The maximum magnetic flux density values calculated for areas I, II, Il and IV at XY
plane of observation (z=1.75m)

The maximum values of magnetic flux density in area I are in the range from 10.712 (uT) to
54.863 (pT), in area II from 6.918 (uT) to 32.161 (uT), in area III from 3.759 (pT) to 16.579 (uT),
and in area IV from 2.246 (pT) to 10.198 (uT). Densities of magnetic flows inside the
substation reache their maximum values at the intersection of XY plane with the primary
transformer outlets, achieved by cable connections to buses of MV and LV switchgears,
which, because of substation construction, can not be avoided, and are in the range from
0.05 (mT) to 6.40 (mT), while outside the housing they decreasing to the values from 100
(pT) to 50 (pT). Calculation results show that the value of magnetic flux density outside the
substations do not exceed 54.863 (uT), in certain points of the area I, at a distance 0.20 (m)
from the western cross side of the substation, at the level of transformer box. But, already at
a distance from 0.50 (m) to 1.50 (m) from the substation the values decreasing to level from
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32.161 (pT) to 2.246 (uT). Respecting the fact that magnetic flux density is proportional to the
load force, and taking into account the usual loads of transformer station in normal
operation of approximately 50 % of rated power, the maximum amount of magnetic flux
density will not exceed the prescribed limit for the area of increased sensitivity. 2D and 3D
distribution of magnetic flux density in the continuous distribution is given in Fig. 3 by
using isolines. The maximum values of the electric field in area I are in the range from 0.052
(kV/m) to 0.352 (kV/m), in area II from 0.060 (kV/m) to 0.177 (kV/m), in area III from 0.023
(kV/m) to 0.081 (kV/m), and in area IV from 0.019 (kV/m) to 0.061 (kV/m). The maximum
values of the electric field inside the substation are visible at the intersection of XY plane
with a MV transformer outlets and cable connections of MV switchgear with the primary
side of power transformer, and are in the range from 415.302 (kV/m) to 452.363 (kV/m),
and with transformer box in the range from 2.194 (kV/m) to 16.912 (kV/m), while outside
the housing they falling to the values between 1.00 (kV/m) and 0.50 (kV/m). 2D and 3D
view of electric field distribution in the continuous distribution is shown in Fig. 5.

Fig. 3. Continuous distribution of magnetic flux density at XY plane (z=1.75m)
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Fig. 4. The maximum electric field values calculated for areas I, II, IIl and IV at XY plane of
observation (z=1.75m)
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Fig. 5. Continuous distribution of electric field at XY plane (z=1.75m)

3.2 Distribution calculation of electric and magnetic field in xz plane for y = - 0.20 (m)
(-5(m)<x<8(m),0<z<5(m))

At a distance 0.20 (m) from the longitudinal south side of the substation (y = - 0.20 m), for
observed XZ plane (-5 (m) £ x <8 (m), 0 < z <5 (m)), the value of the magnetic flux density at z
=0.50 +1.75 (m) across the LV switchgear, is in the range from 14.051 (uT) to 10.686 (uT), while
across the MV distribution switchgear the value is 8.111 (pT). The values of magnetic flux
density across the power transformer are from 10.095 (pT) to 12.539 (pT) at z =1.00 + 1.50 (m).
The highest values of the electric field are from 0.180 (kV/m) to 0.186 (kV/m) across the power
transformer at z = 1.50 + 1.75 (m). 2D and 3D view of magnetic flux density and electric field
distribution in the continuous distribution is shown in Fig. 6 and 7.
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Fig. 6. Continuous distribution of magnetic flux density at XZ plane (y =-0.20m )

3.3 Distribution calculation of electric and magnetic field in xz plane fory = 2.10 (m)
(-5(m)<x<8(m),0<z<5(m))

At a distance 0.20 (m) from the longitudinal north side of the substation (y = 2.10 m), for
observed XZ plane (-5 (m) < x <8 (m), 0 < z <5 (m)), the value of magnetic flux density is in
the range from 101.102 (pT) to 145.202 (pT) at z = 1.00 (m) across the LV distribution
switchgear, from 51.521 (pT) to 80.082 (pT) at z = 1.00 + 1.75 (m) across the MV distribution
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switchgear, respectively from 35.197 (pT) to 74.145 (uT) across the power transformer. The
highest values of the electric field are in the range from 0.500 (kV/m) to 0.795 (kV/m) at z =
1.00 + 1.75 (m) across the power transformer and implemented MV and LV cable
connections. 2D and 3D view of magnetic flux density and electric field distribution in the
continuous distribution is shown in Fig. 8 and 9.
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Fig. 8. Continuous distribution of magnetic flux density at XZ plane (y =2.10m )
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Fig. 9. Continuous distribution of electric field at XZ plane (y =2.10m )
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3.4 Distribution calculation of electric and magnetic field in yz plane for x = - 0.20 (m)
(-5(m)<y<8(m),0<z<5(m))

At a distance 0.20 (m) of the western side of substation (x = - 0.20 m), for observed YZ plane
(-5 (m) £y <8 (m), 0 <z <5 (m)), the value of magnetic flux density is in the range from
96.238 (pT) to 131.326 (pT), at z = 0.20 + 0.50 (m) across the LV distribution switchgear, while
at z = 1.00 + 1.75 (m) the value decreases to 54.843 (uT). The highest values of the electric
field are in the range from 0.049 (kV/m) to 0.050 (kV/m) at z = 1.75 (m) across the LV
distribution switchgear, and implemented cable connections with LV power transformer
outlets. 2D and 3D view of magnetic flux density and electric field distribution in the
continuous distribution is shown in Fig. 10 and 11.
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Fig. 10. Continuous distribution of magnetic flux density at YZ plane (x =-0.20 m)
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Fig. 11. Continuous distribution of electric field at YZ plane (x =-0.20m )

3.5 Distribution calculation of electric and magnetic field in yz plane for x = 3.10 (m)
(-5(m)sy<8(m),0<sz<5(m))

At a distance 0.20 (m) from the western side of substation (x = 3.10 m), for observed YZ
plane (-5 (m) <y <8 (m), 0 <z <5 (m)), the value of magnetic flux density is in the range
from 40.194 (pT) to 68.846 (uT), at z = 0.20 + 1.00 (m) across the MV distribution switchgear
and connecting MV network cables, while at z = 1.00 + 2.00 (m) toward the buses it falls to
27.954 (pT). The highest values of the electric field are in the range from 0.083 (kV/m) to
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0.097(kV/m), at z = 1.00 + 1.55 (m) across the MV switchgear and implemented cable
connections with MV power transformer outlets. 2D and 3D view of magnetic flux density
and electric field distribution in the continuous distribution is shown in Fig. 12 and 13.
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Fig. 12. Continuous distribution of magnetic flux density at YZ plane (x =3.10 m)
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Fig. 13. Continuous distribution of electric field at YZ plane ( x =3.10 m )

In XY plane for z = 1.75 (m) and XZ plane for y = - 0.20 (m) calculated values of magnetic
flux density satisfy limited values for area of occupational exposure (Bmax = 500 (pT),
Emax = 10 (kV/m)) and area of increased sensitivity (Bmax = 100 (pT), Emax = 5 (kV/m)) in
accordance with ICNIRP (1998) Internacional commission on non-ionizing radiation
protection.

In XZ plane for y = 2.10 (m) and YZ plane for x = - 0.20 (m) calculated values of magnetic
flux density do not satisfy limited values according to ICNIRP. Based on the above, the
conclusion can be, that for reduction of magnetic field, it is necessary implementing of high-
permeability protection in the form of shielding of LV switchgear with metal plates of steel
and aluminum, thickness from 1 (mm) to 5 (mm). The values of the electric field are less
than the maximum allowed according to ICNIRP.

In YZ plane for x = 3.10 (m) calculated values of magnetic flux density satisfy limited values
for area of occupational exposure, and for most part of the observed area at a height z = 0.80
+1.00 (m) do not satisfy limited values for area of increased sensitivity, but it is also very



Calculation and Measurement of Electromagnetic Fields 209

unlikely that people will stay longer in this area. The values of the electric field are less than
the maximum allowed according to ICNIRP.

4. Measurements of low frequency magnetic and electric fields of transformer
station

Calculations of the values of low frequency electric and magnetic fields in electric power
networks and facilities are usually limited by configurations, for which a fields sources can
be quite simplified. Generally, when calculating, observing of all relevant emissions of
individual supplements is carried out to be able to estimate their contribution to the
resulting field. To calculate the electric field of electric power networks the voltage must be
known, while magnetic fields are defined by currents. The phase voltage is generally
constant, but the phase currents can vary within a wide area, depending of the load. Modern
computer programs can calculate the distribution of the field of very complex power
systems, and there is a need for confirmation of the results by measurements.When
measuring the magnetic and electric fields it is necessary that the source of electromagnetic
radiation and its environment in which measurements take place be precisely defined. The
source of the field is each conductor flowed by current. Extremely dangerous are the sources
which have winding conductors flowed by current (inductors, transformers). Shielding of
such devices in ferromagnetic materials significantly reduces the field in their vicinity. The
magnetic field can easily penetrate into buildings from external sources and therefore is
considered as more dangerous than the electric field, which is usually attenuated by the first
physical obstacle. Selection of points where the measurement will take place should be
made based on assessment of the field intensity, or in the way that measuring have to be
done in places where the largest values of electric and magnetic fields are expected.
Measurement is necessary to be done in accordance with the regulations of the HRN IEC
61786-2001 - Measurement of low-frequency magnetic and electric field with regard to
exposure of human beinges - Spacial requirements for instrumants and quidance for
measurements and the instructions given in ENV 50166 European recommendations (People
exposure to electromagnetic radiation on the low frequencies). For measuring the magnetic
and electric fields intensity a digital measuring instrument EFA-300 is used, which finds
application in researches and environmental studies for assessment of the electric and
magnetic fields of electric power transmission and distribution networks and facilities with
appropriate equipment and devices. It is designed to provide a sophisticated tool for precise
studies of low-frequency energy impacts for engineers, experts in the field of health, safety
and other profiles. The best choice to measure the fields that have one frequency component
is the broadband mode. Broadband measurement in the range from 5 (Hz) to 32 (kHz) is
performing by using the built-in isotropic probes. In the broadband mode, large display
allows simultaneous viewing of measurement results and frequencies. There is a possibility
of adding option, so-called “plug-in“ which will extend the measurements possibilities.
Smaller, “sniffer” probe, has a radius of 3 (cm) while a larger, more sensitive probe, has a
surface of 100 (cm?). The user selects between the measurement of the effective or peak
value in dynamic range from 1 (nT) to 31.6 (mT) for magnetic fields and from 1 (V/m) to 100
(kV/m) for electric fields.

The construction of the instrument can cause the error in measuring in a number of ways:
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e measuring probe and a source of electromagnetic field can be capacitively coupled,
which causes the increased values of the field on the instrument up to 100 times higher
than the actual values. Such phenomenon can be caused by the parasitic capacitance
between the mass of the instrument and the Earth,

e problem of instrument frequency band. It happens that instrument is sensitive outside
of the nominal frequency area or even has a higher sensitivity. Then the signal, which is
not expected, because it is outside the measurement range, creates the appearance of
large values of the measuring field,

e dispersion phenomena that occurs on the surface of the irradiated object. Due to the
reflection of the secondary radiation caused by the induced currents, on the uneven
surfaces of the irradiated object field is deformed. The problem is particularly expressed
in the electric field due to perturbations in the vicinity of any conductive object,
including humans. Be sure to measure the electric field using dielectric tripods and
probes holders. During measuring of the magnetic field the problem is less expressed,
because the field perturbation occurs only in the vicinity of ferromagnetic materials,
and the presence of people in the measuring field (metrologist) has no effect on his
perturbation.

Uncertainty in measuring of the electric and magnetic field intensity with these instruments
is complex measuring. Uncertainty consists of two components:

¢ uncertainty of calibration of the instrument (ucai) - establishing a relationship between
the values of parameters shown by the instrument and the corresponding values
realized by standards. It is expressed by calibration certificate (certificate of
calibration),

e uncertainty of instrument digital indicator resolution (ure;) - caused by the resolution
(the largest number of decimal places) of image of the instrument digital pointer.

When assessing the overall uncertainty, some partial uncertainties are taken for the range at
which the measurement was made, and the total measurement uncertainty is expressed by

the equation:
U= ’uﬁal + uZ,

4.1 Measuring results of magnetic and electric field (KBTS 10(20)/0.4 kV, 630 kVA )

During the measurement preparations, based on project documentation according to which
the subject substation is constructed (KBTS 10(20)/0.4 kV, 630 kVA), a total number of 36
measuring points was selected, outside the substation, where the maximum level of electric
and magnetic field was expected, as well as 7 measurement points inside the substation. At
distances 0.50 (m), 1.00 (m) and 1.50 (m), outside the walls of substation, and heights 1.75
(m), 1.50 (m) and 1.00 (m) above the ground level, corresponding to the head, chest and
lower human extremities, a 108 measurement points were located. Inside the substation, a
measurement points were chosen in the vicinity of MV and LV switchgears, transformer and
transformer outlets, as well as in the vicinity of the implemented cable connections to the
MV and LV buses (Fig. 14).
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Fig. 14. Measurement points of electric and magnetic field outside and inside the substation

Measurement area was related to occupational exposure area and an area of increased
sensitivity. The measurement was performed from 14:05 AM to 16:25 PM, at a temperature
20.9°C and relative humidity 28.4 % in the substation, and air temperature 22°C and relative
humidity 27 % outside the building, with constant substation load. After locating the
measurement points, measuring instrument EFA-300 Field Analyzers has been checked,
climatic conditions were collected, and measurements and analysis of the magnetic and
electric fields were performed in the substation that is connected to 50/60 Hz power
transmission system and distribution network with devices that use such an energy (Fig.
15). The results of the measured values of magnetic flux density and electric field intensity at
measurement points are related to the currently load of substation of 40 % of rated power,
with measured current at LV side of 375 (A) and MV side load current of 15 (A). The highest
values of magnetic flux density outside the substation at a heights 1.75 (m), 1.50 (m), and
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1.00 (m) above ground level (Table 1) were measured at the lateral of the LV side of
transformer station, at a distance of 0.50 (m), and were in the range from 57.699 (puT) to
24892 (pT), while by increasing the distance from the substation to 1.00 (m) that values were
falling to the range from 27.750 (uT) to 16.937 (uT), and at a distance of 1.50 (m) they droped
to 8.378 (uT). Magnetic flux density measured inside the substation reaches its maximum
values at LV and MV transformer outlets, implemented cable connections with MV and LV
switchgears, in the point “a” 172.150 (uT) and in the point “b” 195.100 (uT), while in the LV
switchgear, at a height 1.00 (m) above the ground level, the maximum value of magnetic
flux density at point “g” is 119.185 (pT). Measurement results prove the statement obtained
by numerical calculations of substation magnetic flux density, under maximum load, that
the value of magnetic flux density outside the lateral of LV side of substation exceed the
value of 57.699 (uT), but even at a distance of 1.50 (m) from the substation they are falling to
the value of 2.897 (uT). The measured values of magnetic flux density outside the
substations satisfy the limited values for area of occupational exposure according to
ICNIRP. The measurement results of the electric field intensity outside the substation walls,
at distances from 0.50 (m) to 2.00 (m) do not exceed the value of 0.176 (kV/m), and are far
less than the maximum allowed values for the area of increased sensitivity and the area of
occupational exposure according to ICNIRP. The measured values of electric field inside the
substation are at point “a” 8.120 (kV/m), point “b” 10.155 (kV/m), and point “c” 6.550
(kV/m) but outside the equipment housing they are falling to the values from 0.583 (kV/m)
to 0.087 (kV/m), and thus satisfy limited values for the area of professional exposure.

Fig. 15. The measurement of magnetic and electric fields in KBTS 10(20)/0.4 kV
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4.2 Calculation results of magnetic and electric fields ( KBTS 10(20)/0.4 kV, 630 kVA)

For a given substation loaded with 40 % of rated power, with measured current at LV side
of 375 (A) and on the MV side of 15 (A), the numerical calculation of the magnetic field
distribution was performed in the XY plane of the substation and at a heights 1.75 (m),
1.50 (m) and 1.00 (m) from the ground level. Calculation of the electric field distribution in
the XY plane of the substation, at -5 (m) < x <8 (m) and -5 (m) <y < 8 (m), at a height
z = 1.75 (m) from the ground level is identical to the calculation of the electric field
outside the walls and inside the substation at full load, because the electric field depends
on the voltage which does not change its value at any substation load. Calculated values
of magnetic flux density satisfy limited values for area of occupational exposure
(Bmax = 500 (uT), Emax = 10 (kV/m)) and area of increased sensitivity (Bmax = 100 (puT),
Emax = 5 (kV/m)) in accordance with ICNIRP (1998) Internacional commission on non-
ionizing radiation protection. The obtained calculation results are presented in different
variants of graphical formats that describe 2D and 3D continuous distribution of magnetic
flux density (Fig. 16 to 18).

4.2.1 Calculation results of magnetic field distribution in xy plane for z = 1.75 (m)
(-5(m) <x <8(m)and -5 (m) <y < 8(m))

The values of magnetic flux density for z = 1.75 (m), at a distance of 0.50 (m) from the
substation sites are in the range from 4.932 (pT) to 18.240 (uT), at a distance of 1.00 (m) are in
the range from 3.125 (puT) to 14.355 (uT), and at a distance of 1.50 (m) are in the range from
3.041 (uT) to 10.634 (uT). Magnetic flux density inside the substation reaches its maximum
values at the intersection of XY plane with the primary transformer outlets, implemented
cable connections to MV and LV switchgears and is in the range from 0.150 (mT) to 0.366
(mT). Calculation results show that the values of magnetic flux density outside the
substation do not exceed 22.433 (uT) in certain points at a distance of 0.20 (m) from the
northern transversal side of the substation, in the level of transformer box. Already, at a
distance from 0.50 (m) to 2.00 (m) from the substation they are decreasing to the value from
18.240 (pT) to 7.810 (pT).
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Fig. 16. Continuous distribution of magnetic flux density at XY plane (z=1.75m)
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Fig. 17. Continuous distribution of magnetic flux density at XY plane (z=1.50m)
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Fig. 18. Continuous distribution of magnetic flux density at XY plane (z=1.00m)

4.2.2 Calculation results of magnetic field distribution in xy plane for z = 1.50 (m)
(-5(m)sx<8(m)and-5(m)sy<8(m))

The values of magnetic flux density for z = 1.50 (m), at a distance of 0.50 (m) from the
substation sites, are in the range from 5.299 (uT) to 26.518 (puT), at a distance of 1.00 (m) are
in the range from 4.032 (pT) to 18.876 (uT) and at a distance of 1.50 (m) are in the range from
3.169 (uT) to 12.672 (uT). Magnetic flux density inside the substation reaches its maximum
value at the intersection of XY plane with the primary transformer outlets, implemented
cable connections with MV switchgear and the block of MV buses, and is in the range from
1.067 (mT) to 3.671 (mT). Calculation results show that the value of magnetic flux density
outside the substation does not exceed 33.461 (pT) in certain areas points, at a distance of
0.20 (m) from the western lateral side of the substation, in the level of LV switchgear.
Already, at a distance from 0.50 (m) to 2.00 (m) from the substation it falls to the value from
26.518 (uT) to 8.706 (puT).
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4.2.3 Calculation results of magnetic field distribution in xy plane for z = 1.00 (m)
(-5(m)sx<8(m)and-5(m)<y<8(m))

The values of magnetic flux density for z = 1.00 (m), at a distance of 0.50 (m) from the
substation sites are in the range from 5.742 (pT) to 60.964 (uT), at a distance of 1.00 (m) are in
the range from 4.293 (uT) to 29.109 (uT) and at a distance of 1.50 (m) are in the range from
3.333 (puT) to 16.367 (uT). Magnetic flux density inside the substation reaches its maximum
value at the intersection of XY plane with the primary transformer outlets, implemented
cable connections with MV switchgear, where is in the range from 1.184 (mT) to 3.610 (mT),
and at the LV cable outlets and LV busbar connections, where is in the range from 1.048
(mT) to 2.015 (mT), while outside of the equipment housing decreases to the value from 100
(1T) to 50 (puT).

4.3 Comparison of calculation results and measurements of low frequency magnetic
and electric fields (KBTS 10 (20)/0.4 kV, 630 kVA )

If we want to make a comparison of calculation results and measurements we will note
certain differences. By calculation a distribution of magnetic and electric fields is obtained
in the XY, XZ, YZ planes of the substation, while measuring only give distribution of
magnetic and electric fields in XY plane at a height 1.75 (m), 1.50 (m) and 1.00 (m)
from the ground level. From above, follows the importance of calculation for determining
the levels of emitted magnetic and electric fields, caused by the substation. It is also
important to notice the importance of projection of diagram parts that connects the points
at which the magnetic flux density or electric field intensity are approximated. In this
way, this ensures that in any case, human bodies will not lead to a situation that they are
exposed to the values of magnetic and electric fields that exceed the limits prescribed by
the Regulations on Non-lonising Radiation. In addition, it is interesting to observe where
can be terminate the consideration of substation as a significant source of magnetic
and electric fields, because this releases substation from the prescribed periodic
measurements. From a comparison the problem that appears in the measurement of
magnetic and electric fields of the substation can be noted. By measuring, the value of
magnetic and electric field can be obtained only at a certain height. But, for a precise view,
the field should be measured at a different heights, and only then a data that would be
relevant to determine the nature and level of magnetic and electric fields will be obtained.
In addition, there is a problem with number of suitable places at which measuring can be
done. Number of places is limited because sometimes the field conditions greatly
complicate the implementation of measurement. Beside, the measurement of magnetic
field is performed under certain substations load, which changes according to the daily
and annual load diagram, so that comes into play only measuring of the electric field that
is mostly constant. In Tables 1 to 4, the measured and calculated values of electric and
magnetic fields are shown, as well as the percentage measurement error in relation to the
calculation.

Diagrams on Fig. 19 to 22 present calculated and measured values of magnetic flux density
inside and outside the substation, as well as the errors of measured relative to the calculated
values.
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Mark of Calculated B above Measured B above
measurement p]ace ground of TS ground of TS Error
outside transformer | z=1.75 | z=1.50 | z=1.00 | z=1.75 | z=1.50 | z=1.00
station m m m m m m
(m) B (uT) B (uT) (%)
1 |x=0.50|y=0.00|15.183 |33.291 |20.395 |14.304 |31.450 |19.280 |5.79 553 |5.47
2 |x=050|y=1.05|16.853 |60.772 |26.486 |15.720 |57.699 |25.176 |6.72 5.06 |4.95
3 |[x=050|y=210 |15.533 [26.433 |19.131 |14.570 |24.892 |18.186 |6.20 5.83 |4.94
4 |x=0.00|y=260|13.219 |17.187 |14.952 |12.376 |15.996 [13.950 |6.38 6.93 |6.70
5 |x=145|y=260]9989 |14.108 |11.822 |9.263 [13.139 |11.050 |7.27 6.87 |6.53
6 |x=290|y=260|5236 (6392 |5731 |4.897 |[6.056 |5.436 |6.47 526 |5.15
7 |x=340|y=210|4932 |5742 |5299 |4.613 |5391 |4.990 |6.47 6.11 |5.83
8 [x=340|y=105|6.001 [6.720 [6.370 |5.607 |6.305 |5.980 |[6.57 6.18 |6.12
9 |[x=340|y=000 (5275 |5.747 |5513 |4.954 |5.386 |[5.168 |6.09 6.28 |6.26
10 |x=290 |y=-050|5845 |6.437 |6.122 |5492 |(6.120 |5.824 |6.04 492 |4.87
11 [x=145 |y=-050|10.297 [14.981 |12.287 |9.644 |14.174 |11.555 |6.34 539 |5.96
12 |x=0.00 |y=-050|13.700 |25.061 |17.217 |12.801 |23.758 |16.356 |6.56 5.20 |5.00
13 |x=1.00 [y =0.00 |12.073 |[20.467 |14.891 |11.464 |19.247 |14.128 |5.04 596 |5.12
14 |x=1.00 [y =1.05|14.355 [29.025 |18.863 |13.644 |27.750 |18.052 |4.95 439 |(4.30
15 |x=1.00 |y =210 |11.755 |17.939 |13.932 |11.246 [16.935 |13.248 |4.33 5.60 |4.91
16 [x=0.00 [y=3.10 |9.067 [11.102 |9.971 |8.514 |10.490 [9.365 |6.10 551 |6.08
17 |x=1.45 |y=310 7494 |9.525 |[8379 |6.942 |8.804 |7.790 |7.37 7.57 |7.03
18 [x=290 |y=3.10 [4.361 |[5.171 |4.517 |4.087 |4.865 |[4.242 |6.28 592 |6.09
19 [x=390 |y=210 |3.825 [4.293 |4.032 |3.565 |(4.029 |(3.775 |6.80 6.15 |6.37
20 |x=390 |y=1.05|4373 (4903 |4.581 |4.147 |[4.615 |4.315 |5.17 5.87 |5.81
21 [x=390 |y=0.00 [4.031 [4.355 |4.181 |3.822 |4.085 |[3.951 |5.18 6.20 |5.50
22 |x=290 |y=-1.00|4.867 [5.316 |5.073 |4.516 |4.922 (4705 |7.21 741 |7.25
23 |x=145 |y=-1.00|8.347 [10.481 |9.328 |7.886 |9.828 |8.827 |5.52 6.23 |5.37
24 |x=0.00 |y=-1.00|9.985 |14.406 |11.568 |9.296 |13.655 [10.920 |6.90 521 |5.60
25 |x=1.50 |y=0.00|9.186 |13.155 |10.645 |8.731 [12.381 |10.185 |4.95 5.88 |4.32
26 |x=1.50 |y=1.05|10.630 [16.328 |12.661 [9.980 |15.350 [11.910 |6.11 599 |5.93
27 |x=150 |y=210 |8.863 |[11.974 [10.059 |8.378 |11.274 |9.460 |5.47 585 |5.95
28 |x=0.00 |[y=3.60 6540 |7.642 |7.036 |6.125 |7.143 |6.628 |6.35 6.53 |5.80
29 |x=145|y=3.60 5690 [6.781 |6.169 |5277 |6.286 |5.725 |7.26 730 [7.20
30 |x=290 |y=3.60|3.667 (4221 |3.899 |3.426 [3.942 |3.650 |6.57 6.61 |6.39
31 [x=4.40 |y=210 |3.041 |[3.333 |3.169 |2.895 |3.148 |[3.011 [4.80 555 |4.99
32 |x=4.40 |y=105|3.352 |[3.625 |3.480 |3.158 |3.397 |3.276 |5.79 6.29 |5.86
33 [x=4.40 |y=0.00|3.170 [3.373 |3.268 |3.028 |3.189 |[3.095 |4.48 546 |5.29
34 [x=290 |y=-150|4.690 [4.396 |4.220 |4.386 |[4.090 |[4.005 |6.48 6.96 |5.09
35 |x=1.45|y=-150|6372 |7.517 |6.838 |6.013 |[7.072 |6.493 |5.63 592 |5.05
36 [x=0.00 |y=-150|7.305 [9.278 |8.070 |6.802 |8.652 |7.515 |6.89 6.75 |6.88

Table 1. Comparison of measured and calculated values of magnetic flux density outside TS
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Mark of measurement place inside Measured Calculated E

transformer station value value tror

(m) B (uT) (%)

A x=1.30 y =1.10 z=175 172.150 183.498 6.18
B x=1.70 y =110 z=1.75 195.100 211.018 7.54
C x=1.45 y =180 z=0.30 5.876 6.385 7.97
D x =280 y =1.00 z=1.00 17.152 18.401 6.79
E x =2.50 y =1.05 z=215 5.858 6.355 7.82
F x =2.50 y =1.00 z=1.50 16.155 17.304 6.64
G x=0.15 y =1.05 z=1.00 119.185 129.367 7.87

Table 2. Comparison of measured and calculated values of magnetic flux density inside TS

Mark of measurement place outside Calculated Measured
transformer station value value Error
z=1.75m
(m) E (kV/m) (%)
1 x =0.50 y =0.00 0.015 0.014 6.67
2 x =0.50 y =1.05 0.028 0.030 -7.14
3 x =0.50 y =210 0.033 0.035 -6.06
4 x =0.00 y =2.60 0.046 0.043 6.52
5 x =145 y =2.60 0.176 0.164 6.82
6 x =2.90 y =2.60 0.057 0.055 3.51
7 x =3.40 y =210 0.046 0.043 6.52
8 x =3.40 y =1.05 0.057 0.060 -5.26
9 x =3.40 y =0.00 0.039 0.040 -2.56
10 x =2.90 y =-0.50 0.037 0.035 5.41
11 x =145 y =-0.50 0.083 0.085 -2.41
12 x =0.00 y =-0.50 0.020 0.019 5.00
13 x =1.00 y =0.00 0.010 0.010 0.00
14 x =1.00 y =1.05 0.017 0.016 5.88
15 x =1.00 y =210 0.022 0.020 9.09
16 x =0.00 y =3.10 0.031 0.028 9.68
17 x =1.45 y =3.10 0.079 0.080 -1.27
18 x =2.90 y =3.10 0.038 0.035 7.89
19 x =3.90 y =210 0.030 0.028 6.67
20 x =3.90 y =1.05 0.033 0.030 9.09
21 x =3.90 y =0.00 0.025 0.025 0.00
22 x =2.90 y =-1.00 0.022 0.020 9.09
23 x =145 y =-1.00 0.033 0.030 9.09
24 x =0.00 y =-1.00 0.011 0.010 9.09
25 x =1.50 y =0.00 0.010 0.011 -10.00
26 x =1.50 y =1.05 0.011 0.010 9.09
27 x =150 y =210 0.001 0.001 0.00
28 x =0.00 y =3.60 0.021 0.020 4.76
29 x =145 y =3.60 0.050 0.047 6.00
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30 x =2.90 y =3.60 0.024 0.025 -4.17
31 x = 4.40 y =210 0.020 0.020 0.00
32 x =4.40 y =1.05 0.021 0.020 4.76
33 x =4.40 y =0.00 0.015 0.014 6.67
34 x =2.90 y =-1.50 0.014 0.015 -7.14
35 x =1.45 y =-1.50 0.018 0.020 -11.11
36 x =0.00 y =-1.50 0.009 0.010 -11.11
37 x =1.45 y =-2.00 0.011 0.010 9.09
38 x =2.00 y =1.05 0.008 0.008 0.00
39 x =1.45 y=4.10 0.023 0.021 8.70
40 x =4.90 y =1.05 0.014 0.015 -7.14

Table 3. Comparison of measured and calculated values of electric field intensity outside TS

Mark of measurement place inside Measured Calculated

transformer station value value L7

(m) E (kV/m) (%)

A x =130 y =110 z=1.75 8.120 8.757 7.27
B x=1.70 y =110 z=1.75 10.155 10.957 7.32
C x =145 y =1.80 z=0.30 6.550 7.105 7.81
D x =2.80 y =1.00 z=1.00 0.001 0.001 0.00
E x =250 y =1.05 z=215 0.001 0.001 0.00
F x =250 y =1.00 z=1.50 0.001 0.001 0.00
G x=0.15 y =1.05 z=1.00 0.085 0.090 5.56

Table 4. Comparison of measured and calculated values of electric field intensity inside TS

Caleulated and measured values of magnetic flux density
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Fig. 19. Diagram of calculated and measured values of magnetic flux density outside the
substation
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Calculated and measured values of magnetic flux density
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Fig. 20. Diagram of calculated and measured values of magnetic flux density inside the
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Fig. 21. Errors between measured and calculated values of magnetic flux density outside the

substation

From the diagrams it is evident that the values of magnetic flux density obtained by
calculation appropriately follow changes in the measured values. The presented calculation
gives the percentage error between measured and calculated values for some measuring
points, and which ranges from 4.32 % to 7.25 % outside, or from 6.18 % to 7.97 % inside the

substation.
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Fig. 22. Errors between measured and calculated values of magnetic flux density inside the
substation

Calculated and measured values of electric field intensity inside and outside the substation
are presented at a diagrams on Fig. 23 to 26, as well as the errors of measured in relation to
the calculated values. From a diagrams it is evident that the value of electric field intensity
obtained by calculation appropriately follow changes in the measured values. The presented
calculation gives the percentage error between measured and calculated values for some
measuring points outside the substation, which ranges from -11.11 % to 9.68 % and 7.81 %
inside the substation.

The calculation results give a satisfactory coincidence with the results of experimental
measurements, indicating the validity of implementing and developing such a calculations
for practical purposes related to the design and reconstruction of existing substations. From
the economic point of view, it is possible to achieve significant savings because an expensive
experimental measurements and repairs can be reduced. For evaluation the field
distribution both procedures are necessary, as they supplemented each other and thus allow
a safe assessment of fields sizes. Interestingly, the maximum value of magnetic flux density
is calculated and measured at a height z = 1.00 (m), the area of human hips, so this height is
imposed as a referece regarding the allowable sizes of exposure to the non-ionizing
radiation of electromagnetic fields. When measuring the values of the magnetic field density
around the substation, some differences in values measured at different transformer station
walls were detected. The reason for this is the way of placement of the main sources of
magnetic field inside the substation which are the MV and LV transformer outlets and LV
distribution outlets.
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Calculated and measured values of electric field
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Fig. 23. Diagram of calculated and measured values of electric field intensity outside the

substation
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Error between calculated and measured values of electric field

-15.00

-10,00

-5,00

(ufain]

Error (%)

5,00

10,00

15,00
12345678 9101112131415 1617 1619202122 23 24 25 25 27 25 2930 31 32 33 34 35 36 37 33 39 40
Measurament points outside TS
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5. Conclusion

Calculation and measurement of LV electric and magnetic fields and their interconnectivity
are the main problems in transmission and distribution of power energy in terms of
standardized electromagnetic compatibility and human exposure to non-ionizing
electromagnetic radiation. Solving of these problems is reduced to solving nonlinear
differential equations by modeling and application of numerical methods and experimental
measurements of low-frequency electric and magnetic fields. The research presents the
application of mathematical models and charge simulation method (CSM) for calculating of
low-frequency electric field distribution, while the calculation of magnetic flux density
distribution inside and around the substation, which indicates the level of low-frequency
magnetic field, is performed by the procedure based on the application of Biot-Savart's law
for the induction of straight stream line of finite length. The original scientific contribution
of this research is determining the 3D distribution of low-frequency electric and magnetic
fields, their interaction under conditions of complex geometry and standardized substation
electromagnetic compatibility (EMC) in the area of biological effects of electromagnetic
fields. Obtained 3D models represent very complex functional dependence of electric and
magnetic fields distribution, as the basis for the objectified physical measurements to
develop an optimal variants for solving electromagnetic compatibility (EMC) in existing and
new power facilities. Satisfactory accuracy of the results obtained by calculations with the
results of experimental measurements of EFA-300 Field Analyzers instrument is confirmed,
which indicate validity of implementation and development of such calculations for the
executable solutions of transformer stations. From an economic point of view this method of
calculation could reduce the need for expensive experimental measurements and repairs of
power plants, providing confirmation that complicated theoretical researches resulting in
appropriate executable solutions. Presented mathematical models, calculation, measurement
and visual 3D distribution of electric and magnetic fields represent a realistic assumption for
the study of interactions between electromagnetic fields and human bodies at the
macroscopic and static level, with finding of certain optimization criterias, in order to create
a new technological, process solutions and design methods. The research results are
important both from the scientific point of view and from the standpoint of possibilities for
practical applications.
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1. Introduction

Cryptographic modules (software or hardware implementations of cryptographic algorithms)
are widely used in our daily life in different applications in order to secure digital
transactions and exchanges. In particular, cryptographic hardware is essential in smartcards,
identification systems, mobile phones, pay television set-top boxes, transportation services
and so on. This hardware component embeds cryptographic algorithms that are deemed
safer and unbreakable from a mathematical point of view, and thus increases the confidence
and robustness of cryptographic functions. However, the hardware implementation is
still vulnerable to physical attacks. Side Channel Analysis (SCA) is a major threat for
crypto-systems as they disclose some information about the internal process and the sensitive
data. An electronic circuit needs some time to produce its results (such as a ciphertext
in the case of encryption) and an amount of energy to switch states at each clock period.
The operating times, the power dissipation, or the electromagnetic radiations are directly
modulated by the data that are processed. Consequently the cryptographic device leaks
some clues about the inner secrets and an attacker can retrieve secrets computed by the
cryptographic device, just by analysing these externally measurable quantities without
touching the component. Thus, those unintentional physical emanations can be analysed in a
view to derive some sensitive information from them. Such analyses are altogether referred
to as Side-Channel Attacks.

Since the mid-90s, side channel attacks have attracted a significant attention within the
cryptographic community. In 1999, Kocher et al. described a side channel attack suitable
for smart-cards: the power line, supplied from the card reader, is spied. This kind of
attack is named Simple or Differential Power Analysis (SPA or DPA). With this cryptanalysis
method an attacker can successfully reconstruct the secure data (Kocher et al., 1999a),
either with one single measurement (SPA) or with many of them (DPA), using a statistical
analysis. Two years later, Gandolfi et al. introduced the principles of the EMA, ie. the
ElectroMagnetic Analysis (Gandolfi et al., 2001). In fact Gandolfi applied the method of
the DPA to electromagnetic emanations. EMA exploits correlation between secret data and
variations in the emitted electromagnetic radiation. The EM radiation becomes an important
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source of leakage because it can be conducted without tampering with the power supplies
when the circuit under analysis is soldered on a printed circuit board (PCB). Such EM
radiation has been studied as noise in the field of EMC (Electromagnetic Compatibility). Many
studies on noise suppression or reduction have been conducted because noise interference
can cause damage to other electronic devices in the vicinity. Some EMC-related committees
have summarized the aforementioned knowledge and experiences, and have established
guidelines on standardized acceptable values of EM radiation during device operations.
Current electronic devices are usually designed so as to satisfy these EMC standards.
However, these standards mainly aim to suppress and reduce EM radiation that disturbs
other devices, but not necessarily the radiation that leaks secret information. Even if the EM
radiation (i.e., common-mode current) is below the value specified in the guidelines, extraction
of secret key information from the radiation would remain a possibility. In fact, some previous
studies (Kuhn, 2005) have demonstrated EM information leakage from electronic devices that
are in compliance with the guidelines.

Addressing the above mentioned problem, this chapter investigates the possibility of EM
information leakage at a distance from cryptographic devices. We first describe conventional
side-channels, namely voltage drop and electromagnetic field, and then discuss how the
common-mode current happens, contains the secret information and has a possibility of
information leakage outside of cryptographic hardware. After briefly explaining the test
device and the conventional SCA techniques, we present some measurement methods
of common-mode current including those at a distance from the test device and their
experimental results. Then we propose a method to investigate and characterize the EM
radiation in frequency domain. With this characterization based on information theory we
are in position to say which frequencies are carrying information. That helps us evaluate the
possibility of EM analysis at a distance from cryptographic devices.

2. Side-channels

In this section, conventional and possible side-channels are described. As conventional
side-channels, (i) voltage drop at an inserted resistor and (ii) electromagnetic fields close to
the module are described. A mechanism behind EM propagation and radiation by ground
bounce is also explained as a possible side-channel.

2.1 Conventional side-channels

Fig. 1 shows an overview of the conventional power-measurement method using a
resistor (Kocher et al., 1999b). In this measurement, the transient current I released from the
power pins of the LSI is assumed to contain information leakage. The mechanism behind
the leakage based on the switching behavior of CMOS gates is discussed in (Mangard et al.,
2007). The current I must be transformed into voltage units as general instruments (e.g., digital
oscilloscopes) which accept voltage signals. For this purpose, a small resistor is inserted in
series between the pin and the PCB. The voltage observed at the resistor R is V = RI according
to the Ohm’s law. Then the attacker can measure the voltage V which is proportional to
the current I. Many studies have been using the above method due to its simplicity and
reproducibility. When we consider the availability of measurement, however, the method
involves manipulation (i.e., insertion of a resistor) of the PCB and requires a contact to the
PCB.
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Fig. 1. Conventional side-channel: voltage drop.

The measurement method of EM field for SCAs is proposed in (Gandolfi et al., 2001),
(Quisquater & Samyde, 2001) and is also being widely used. For the measurement, a magnetic
field probe is placed very close to the chip. The probe transforms the magnetic field (or
magnetic flux) into a voltage output based on the Electromagnetic Induction. Here, the output

voltage V is
do

V=-N ar (1)
where @ represents the magnetic flux within the closed loop comprising the probe and N
is the number of the loops. Since ® o I, it follows that V o dI/dt. A magnetic probe
directly outputs V, while a current probe outputs the value proportional to I because of its
loop integration. Although the output of the magnetic field probe is proportional to dI/dt
but not to I, a number of experiments have shown that the attack using the magnetic probe is
feasible and efficient (Peeters et al., 2007). This method also requires close access to the PCB
since the electromagnetic near field decreases in amplitude in proportion to 1/73, where 7 is
the distance between the target and the probe. Therefore, signals measured from a distance
suffer from the effects of external noise, resulting in a low S/N ratio.

2.2 Common-mode current

The above information leakage can be leaked via a different side-channel, which has a
possibility that cryptographic modules can be attacked at distance. In the classical circuit
theory, the level of the ground plane is assumed to be constantly zero. However, in reality, the
ground level can change. Such transient voltage fluctuation in the ground plane is referred
to as ground bounce. A transient current released from a digital circuit is a major source of
ground bounce. Here, the released transient current I is transformed into a voltage fluctuation
AV through inductance.

Fig. 2 shows an image of ground bounce. The above inductance is distributed over the
PCB since conductors with finite length (e.g., pins and lead lines) have parasitic inductance.
When a transient current I is fed into such inductance, an electromotive force occurs due to
electromagnetic induction (Sudo et al., 2004), which results in generating a voltage fluctuation
AV in the ground plane. The fluctuation is expressed as the following equation (Sudo et al.,
2004):

AV = LeffM%, 2
where L, is the effective parasitic inductance, M is the number of simultaneous switching
outputs, and dI/dt is the rate of the current change. The amount of L, ¢ depends not only on
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Fig. 2. Image of common-mode current.

the self-inductance within the cryptographic chip but also on the mutual inductance between
the chip and the PCB. The voltage fluctuation caused by ground bounce can be modeled as an
alternate voltage source as shown in Fig. 2. The model suggests that the voltage fluctuation
can propagate to peripheral circuits through a common ground. Consequently, peripheral
circuits, such as attached cables, are driven as antennas, which causes unintentional radiation
via them (Hockanson et al., 1996).

Such radiation based on ground bounce is even more important since it generates
common-mode current (Paul, 2006). If there is only differential-mode current as shown in
Fig. 1, the electromagnetic fields radiated from the current pair (current with forward and
reverse directions) are ideally canceled out since they are equal in amplitude and inverse in
direction. The resulting radiation would be limited. In the case of common-mode current,
on the other hand, the electromagnetic fields from the current pair are not cancelled out since
their directions are the same. As a consequence, the common-mode current can cause strong
radiation even if it is weak in amplitude. Assuming a transient current I released from a
cryptographic module causes a voltage fluctuation AV. AV contains information leakage due
to AV o« dI/dt. As a result, EMA would be possible by measuring the radiation driven by
ground bounce. The mechanism also suggests that peripheral circuits interconnected to a
cryptographic module can be an antenna responsible for information leakage.

3. Cryptographic devices

For the following experiments we employ a Side-channel Standard Evaluation Board
(SASEBO-G) which is widely used as a uniform testing environment for evaluating the
performance and security of cryptographic modules. Until now, various experiments
associated with side-channel attacks are being conducted on the SASEBO boards, and many
useful results are being expected to support the international standards work!. Fig. 3 shows
the SASEBO-G used in these experiments, which employs two Xilinx FPGAs ; one FPGA is
used to implement a cryptographic module in hardware or software and the other FPGA is
dedicated to communicate with a host computer through either RS-232 or USB cables.

Two kinds of major cryptographic algorithms are implemented in one FPGA for the
experiments: RSA crypto-system and AES (Advanced Encryption Standard) block encryption.

1 http://www.rcis.aist.go.jp/special/SASEBO/index-en.html
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Fig. 3. Overview of SASEBO-G.

3.1 RSA crypto-system and SPA/SEMA

The RSA crypto-system, proposed by Rivest, Shamir, and Adleman in 1977, is one of the most
popular public-key ciphers. The encryption and decryption operations are given by simple
modular exponentiation:

C = PE mod N, (3)
P =CP mod N, 4)

where P is the plaintext, C is the ciphertext, E and N are the public keys, and D is the secret key.
Modular exponentiation is also used in other public-key ciphers such as ECC (Elliptic Curves
Cryptography), and thus the following analysis technique can be widely applied to other
public-key ciphers. The binary method (aka the square-and-multiply method) is known to be
the most efficient exponentiation algorithm and is frequently used for actual applications,
such as smartcards and embedded devices, because of its simplicity and low resource
consumption. This algorithm performs multiplication and squaring sequentially according
to the bit pattern of one exponent (E or D). There are two variations of the algorithm.
The left-to-right binary method starts at the exponent’s MSB and works downward. The
right-to-left binary method, on the other hand, starts at the exponent’s LSB and works
upward. ALGORITHM I shows a left-to-right binary method for scanning the bits of the
exponent from MSB to LSB. Each multiplication (or squaring) operation requires a large
number of clock cycles due to the large length of the operand. This algorithm always performs
a squaring at Line 3 regardless of the scanned bit value, but the multiplication at Line 5 is
executed only if the scanned bit is equal to 1.

The basic sequence in the binary method is not changed even when major acceleration
techniques such as Montgomery multiplication (Montgomery, 1985) and the Chinese
Remainder Theorem (CRT) (Menezes et al.,, 1996) are applied to the exponentiation
computation.

With this algorithm for the next experiment, we perform SPA/SEMA (SEMA is the
electromagnetic counterpart to SPA) in order to distinguish between multiplication and
squaring in the power/EM waveform. Fig. 4 shows an image of the SEMA on an RSA
module using the left-to-right binary method. When the difference between multiplication
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ALGORITHMI
MODULAR EXPONENTIATION (LEFT-TO-RIGHT BINARY METHOD) FOR A SECRET KEY OF BIT LENGTH k.

Input: |X, N,
E = (ek_l,...,el,e())z
Output:|Z = XF mod N

1: Z:=1;

2: fori=k—1downto0

3: Z:=7Z%*Zmod N; —squaring

4: if (¢; = 1) then

5: Z:=7Z%*XmodN; -multiplication
6: end if

7. end for

and squaring appears as shown in this figure, the key bit pattern “10100” can be derived from
the knowledge of the algorithm.

Key Bits 1 0 1 0 0 0

TN

Operation Square  Mutiply ~ Square  Square Mutiply Square Square  Square

Waveform /,/\A,\ b~

Fig. 4. Image of Simple Electromagnetic Analysis (SEMA) on RSA module.

If RSA is simply implemented with binary methods, definite vulnerabilities could exist.
For example, differences between a conditional branch or an instruction sequence could be
observed in the power/EM waveforms, giving strong clues about the value of the secret
exponent. Even if the squaring and multiplication are performed using the same processing
unit controlled by the same sequencer logic, chosen-message approaches that use specific data
(Novak, 2002)-(Fouque & Valette, 2003)(Schramm et al., 2004)(Homma et al., 2008) can further
enhance these differences.

One simple idea is to choose a message that has a large number of 1s (or 0s) in the bit
sequence Miyamoto et al. (2008). For example, an input value of 27% mod N or R~ (with
R = 2F mod N) may produce large differences between the multiplication and the squaring
operations for implementations using Montgomery multiplication because R~ is converted
into the Montgomery domainin Y = R™'R = 1 mod N and an input of 1 is always multiplied
in the modular multiplication operations. The power consumed by the multiplier for modular
multiplication should be much lower than that for modular squaring that does not have an
input of 1.

3.2 AES crypto-system and differential analysis

The AES is a symmetric encryption algorithm based on a SPN (Substitution Permutation
Network) structure, which has a fixed block size of 128-bits and a key size of 128-bit,
192-bit, or 256-bit, that determines the number of encryption rounds (to respectively 10,
12 or 14). For our experiments, we consider the 128-bit block version that consists in 10
rounds encryption. It operates on a 4 x 4 array of Bytes termed the state. The AES cipher
is specified as a certain number of operations per round that convert the input plain-text
into cipher-text. One round of encryption consists of four operations: SubBytes, ShiftRows,
MixColumns and AddRoundKey. The encryption period starts with a single AddRoundKey
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operation followed by nine identical encryption rounds. The final encryption round operates
without any MixColumns operation. These adaptations removes cryptographically ineffective
operations and allows for a decryption process that is very close to the encryption process.
Simultaneously the key schedule is computed: it derives enough keys to provide for each
round a different subkey.

An attacker uses an hypothetical model of the device under attack to predict its
electromagnetic radiation. These predictions are correlated with the measured samples. The
DPA was proposed by P. Kocher in (Kocher et al., 1999b) and is based on Hamming Weight
model. For our attacks, we have chosen to use the CPA (Correlation Power Analysis). This
approach is based on the Hamming distance model proposed by E. Brier et al. in (Brier et al.,
2004) for the first time. For this CPA, the outputs of S-Box are targeted on the last round of the
AES to reveal one Byte of the secret key. Given the cipher and the results of the tenth round,
the attacker can predict the leakage by computing the Hamming distance model between two
states of the register. An hypothesis can be made for eight bits of the key that corresponds
to output of the S-Box. To perform this attack some measures of electromagnetic emanation
of the device are collected. For one hypothesis of 8 bits of the subkey the attacker has to
calculate 256(= 28) differential traces for all the subkey candidates. After that, the attacker
has to predict the electromagnetic radiation when the bits of the register toggle. Let X; and
Xit1 be two consecutive values inside a register. An estimation of the radiated emanation
at the time of the transition could be provide by the computation of the selected function
HD = HW(X; ® X;.1) where HD is the Hamming Distance and HW the Hamming Weight.
After that the attacker estimates the maximum likelihood between the theoretical predictions
and the measurements by the Pearson correlation factor p(W, HD) between the Hamming
distance model and the measured power. It is defined as:

cov(W,HD)

P(W,HD) = o o (HD)

where W represents the measurement and HD the Hamming distance. We notice that
o(W, HD) follows the Cauchy-Schwarz inequality: —1 < p(W, HD) < +1. The correct key is
obtained when the right key hypothesis provides the largest or smallest values of p(W, HD).
In other words, a spike is observed in the differential curve when the correct partial subkey
bits have been used and where the selection function is correlated to the value of the bit
being manipulated. The success of this attack depends on the number of the measured traces.
Obviously this number will be changed with the distance between the component and the
probe, with the selected element of the hardware implementation (S-Box) and with the leakage
model used in selected function.

4. First experiments
4.1 Electromagnetic analysis based on common-mode current

Fig. 5 and Fig. 6 show a block diagram and overview of the measurement setup, respectively.
The measurement system consists of the SASEBO, a digital oscilloscope, and a personal
computer (PC). The SASEBO is equipped with two FPGAs, namely FPGAI and FPGA2.
These two FPGAs work by using power supplied from on-board regulators and clock signal
provided by an external function generator. Experiments are conducted by implementing
cryptographic cores (circuits) on FPGAT.
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Fig. 5. Block diagram of measurement setup.
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Fig. 6. Overview of four measurement methods.

Four types of measurements are conducted: (i) the voltage drop across a resistor, the current
flowing in (ii) the attached power cable and (iii) the communication cable (RS232C cable),
and (iv) the magnetic field around the power cable. Hereafter, these are referred to as (i)
Resistor, (ii) Power cable, (iii) RS232C cable, and (iv) Antenna. It is important to emphasize
that the measuring points (ii) and (iii) are not directly connected to FPGAI; there are
circuit components (e.g., voltage regulators and an RS232C level converter) between the
measurement points and FPGAI. In addition, the locations of the measurements are about
50 cm away from the board.

Measurement instruments are summarized in Table 1. The details of the measurement
methods are as follows. In measurement (i), the voltage drop across a 1-Ohm resistor
inserted between the ground pin of FPGAT and the ground plane of the PCB is measured
using a differential voltage probe. Note that the 1-Ohm resistor is short-circuited during the
measurements (ii)-(iv) by using jumper pins.

In the measurements (ii) and (iii), the current flowing in cables is measured by the current
probe clamping the cables as shown in Figs. 6(ii) and (iii). The measured voltage is
proportional to the flowing current as described above. In measurement (ii), both lines (for
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Oscilloscope Agilent MSO6104A
(with 25 MHz low-pass filter)

Voltage probe for (i) Agilent 1130A differential (voltage) probe with
SMA probe head

Current probe for (ii) and (iii) | Fischer F-2000 current probe

(10 MHz - 3 GHz)

Current probe for (ii) and (iii)| AOR LA380 Wideband Active Loop Antenna

(10 kHz - 500 MHz)

Pre amplifier for (ii)-(iv) MITEQ AM-1594-9907 (+51 dB, 300 kHz - 3.0 GHz)

Table 1. Measurement instruments

V = DD:3.3V and GND: 0 V) of a twisted pair cable are clamped, while the whole body of
RS232C cable is clamped for measurement (iii). Since both of the current pairs are clamped,
radiation due to differential-mode current is cancelled out within the probe, and thus the
contribution only by the common-mode element is measured.

In the measurement (iv), a magnetic field around the power cable is measured using an
antenna. We used an off-the-shelf indoor loop antenna which is used for amateur radio. We
placed the antenna over the power cable at the height of about 20 cm and tuned it to maximize
the measured amplitude in the range of 3-40 MHz.

In each measurement, the frequency bands of measured signals are limited up to 25 MHz
by a low-pass filter equipped with an oscilloscope. This is because the measured raw traces
were highly contaminated by high-frequency noise that interfered with the measurements. In
addition, a trigger signal generated by the FPGA1 is used in order to align the measured traces
in time. As a probe for the trigger signal has a physical contact to the board, the measurements
are not exactly contactless. However, the setup is enough to examine information leakages
from the measuring points (i)—(iv). In practical scenario, an attacker would have difficulty in
taking a trigger without any contact to the target, yet it is still possible. One practical way is
to observe communication cables and then obtain a trigger from a specific binary sequence
on them. In addition, the attacker can consult signal processing techniques to achieve precise
waveform alignment (Homma et al., 2006).

4.1.1 SEMA on RSA implementation

A 1,024-bit RSA circuit using a left-to-right binary method is implemented on
FPGA1. Modular multiplication and squaring are performed by high-radix Montgomery
multiplication algorithm using a 32-bit multiplier (Cryptographic Hardware Project, n.d.).
In this implementation, one Montgomery multiplication requires 4,386 cycles, and the total
number of cycles for the modular exponentiation (1,024-bit RSA operation) is approximately
7 million cycles. The parameters (i.e., the key and the plaintext) are embedded into the
FPGAT1 in order to allow FPGA1 to operate as a standalone module. The goal of the attack
is to distinguish between multiplication and squaring in the measured trace. Since we are
interested in the difference between the measurements (i)—(iv), a chosen input message of
21024 s used to enhance the difference between the multiplication and squaring.

Fig. 7 shows the results of the SEMA. The traces are measured at a sampling frequency
of 400 MSa/s. Each of the traces is aligned in time, in which the modular exponentiation
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Fig. 7. Results of SEMAs on RSA.
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Fig. 8. Examples of measured waveforms.

starts at around 1.5 ms. Sequences of symbols 'S and "M’ shown in the figure represent the
corresponding squaring and multiplication operations, respectively.

The result of measurement (i) shows large difference between multiplication and squaring
with multiplication having lower spikes compared to squaring. Although the differences are
smaller than (i), they are still visible in results (ii)—(iv). The results indicate that it is possible
to reveal a secret key by using any of the measurements (i)—(iv).

4.1.2 DEMA on AES implementation

In the experiments, an AES circuit, retrieved from the reference (Cryptographic
Hardware Project, n.d.), supporting a 128-bit key is implemented on FPGA1. The circuit uses
a loop architecture, where one round operation is performed every clock cycle. As a result,
one encryption takes 10 clock cycles for round operations and an additional clock cycle for
data I/O. FPGA2 is configured as the control and communication circuits, and plaintexts are
fed from the PC into FPGA1 via FPGA2. During the encryption, the corresponding traces
are captured from the four measurement points at a sampling frequency of 500 MSa/s. The
measurements are repeated for 30,000 different plaintexts, and the corresponding 30,000 traces
are stored for each measuring points. Examples of the measured traces are shown in Fig. 8,
where the encryption process starts at around 400 ns and finishes after 11 clock cycles or 916
ns (=11x 1/12 MHz).
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Fig. 10. Results of DEMAs on AES.

CPA (or CEMA) is applied to these traces. The 128-bit (16-Byte) register containing
intermediate data is chosen as a target. The power (or EM radiation) estimates are calculated
by counting changed bits of the target register in the final round of AES encryption. Here,
Hamming distance model (Brier et al., 2004) is used as power model. Key candidates are
searched by Byte. In other words, we generated a total of 16 power estimates corresponding
to 16 Bytes of the round key. In the analysis phase, the linearity is evaluated by using Pearson’s
correlation coefficient.

The results are shown as error rates in Fig. 9 and Fig. 10. Fig. 9 shows the Measurement
to disclosure (MTD) graph of each result. On the other hand, Fig. 10 shows error rates
where the vertical axis represents the number of incorrectly predicted round-key Bytes and
the horizontal axis shows the number of traces. Since the length of the secret key is 16 Bytes
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(= 128 bits), the vertical value ranges between 0 and 16, where 0 indicates the successful
extraction of the whole key (i.e., completion of the attack).

In the analysis with the measurement (i), the key prediction is successful when the correlation
with the correct key is the highest among 28 candidates. On the other hand, in (ii)—(iv), the
difference between maximum and minimum coefficients is used instead of the maximum
coefficient since the results of (ii)-(iv) show correlation in both the positive and negative
directions as shown in Fig. 8.

As shown in Fig. 10, the result for (i) goes to zero (i.e., extract the whole key) fastest by 3,000
traces. In addition, the attack using the power cable (ii) also shows fast extraction. On the
other hand, the attacks using the R5232C cable and the antenna require much larger number
of traces. However, the error rate decreased gradually as the number of used traces increased.
Therefore, we can say that all the EMAs can successfully reveal the secret keys.

4.1.3 Discussion

As shown above, the contactless SEMAs and DEMAs worked well, but the traces from (ii)—(iv)
contained smaller amount of information leakage or larger noise in comparison to that from
(i). Various disturbing factors between the FPGA and the measuring points have effects on
the results. Such factors include the filtering effect of parasitic circuit, the compensation effect
of regulators, and external noise, and so on.

For example, there is an on-board regulator between the chip’s power supply pins and the
power cable. Since regulators are designed to stabilize their output voltage, they feature
buffering and feedback control in order to suppress voltage fluctuation. The results of (ii)
indicate that the voltage fluctuation containing information leakage was able to overcome the
effects of the regulator.

Measurement (iii) is also affected by such disturbing factors. In the experimental setup, the
RS232C cable is connected to FPGA1 via an RS232 level converter and FPGA?2. First, the RS232
level converter has the same effect as the voltage regulator. In addition, FPGA1, FPGA2, and
the RS232C level converter have their own separated ground planes and they are connected
via noise filters (inductors). This feature is used in SASEBO in order to measure side-channel
information only from FPGA1 without those from other components. The noise filters act as
low-pass filters for current through them. However, the success of measurement (iii) indicates
that the voltage fluctuation from FPGA1 can propagate to the other part of the board even if
such high-frequency current is filtered out. The results suggest that the propagation of the
voltage fluctuation is rather robust and should be prevented by countermeasures.

4.2 Attack at distance

Now we demonstrate that Correlation-based on ElectroMagnetic Analysis (CEMA) on
a hardware-based high-performance AES module is possible from a distance as far as
50 cm (Meynard et al., 2010). The aim of this experiment is to mount a successful Correlation
Power Analysis (CPA (Brier et al., 2004)) and retrieve cryptographic elements, without any
additional device, such as a demodulator or a TEMPEST receiver. The device whose EM
emanations are studied is cadenced by a clock running at 24 MHz. For these low frequencies,
the usage of a Faraday cage is not needed as it would induce some EM reflections and could
alter the measurements. Furthermore, the size of the absorber would be too large for this range
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of frequencies. Therefore, the material is placed on a plastic table that limits the reflection of
EM radiation and avoids the conducted radiation. A plastic rod is placed perpendicularly to

the board and is considered as a vertical axis to move the antenna by steps of 5 cm, as shown
in the figure 11.

Fig. 11. EM measurement test bench with its antenna on a plastic rod.

We take care of keeping far away the power supply from the chip board, in order to avoid any
coupling between the radiated waves and the power supply. We record the emanations on the

side with the decoupling capacitors, because the signal on this part of the board has the best
quality.

Firstly we check that for different distances, the curves for the same plaintext are scaled down,
according to an inverse power law. as illustrated in figure 12.
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Fig. 12. Quasi-homothetic downscale of the raw curves at different distances.

In practice, the signal was amplified of 60 dB and averaged by a factor of 4096. The attack
needs 51,519 measurements to break the Sbox #1, whereas only 1,000 are required at d =
0 cm. The correlation curve is represented in figure. 13. The correlation does not clearly stand
out. We assume that the attack requires so many traces to fully disclose the key because the

Hamming model is not holding anymore at this large distance. Then we propose to study the
distortion of the leakage model with the distance.

It has already been noticed in the literature that the Hamming distance is not the best model
in the case of very near-field analyses. For example, authors in Peeters et al. (2007) proves that
under some circumstances, an ASIC can have a transition-dependent leakage. In this section,
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Fig. 13. CEMA on Sbox #1 at a distance d = 50 cm.

we show that the Hamming distance model is adequate for intermediate distance fields EM
analyses, but that it distorts seriously in far-field analyses.

In near-field the leakage obeys a Hamming distance model: it is an affine function of the
number of bit transitions between two consecutive states. On one hand, the Hamming
distance is confirmed at d = 0 cm, as attested by figure. 14, at 15 cm, the model is chaotic
and not consistent with an identical amount of dissipation per bit making up the analyzed
Byte.
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Fig. 14. Hamming distance at 0 cm and at 15 cm.

We target the Sbox #1, which exercises all the 256 transitions and propose to characterize the
leakage to disclose the Sbox #1 on the tenth subkey of the AES. First we search the index ¢,
of the maximal correlation, that corresponds to the moment when the data are stored in the
register on the last round. Then we compute for this index the average and the variance for
the 256 possible Hamming distances, the key and the message being known. The figure 15
depicted the leakage model at 50 cm.
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Fig. 15. Model at 50 cm for the Sbox #1.
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We can observe that the standard deviation is almost independent of the Byte distances.
Therefore, most of the model information is contained in the mean leakage value.

We notice that the leakage model distorts more and more with the distance. Therefore,
we show that the leakage model change according to thresholds. Three regions can be
identified: in near-field, the switching distance is the most suited, as initially observed in
the article (Peeters et al., 2007); in medium-distance (4 € [0,5] cm), the Hamming model is
adequate; in long-distance (d > 5 cm), the model becomes less relevant.

We target in this topic situations where the difference of nature is not artificially due to a
countermeasure, but naturally by the distortion into the communication channel between the
leaking device and the side-channel sensor.

5. Characterization of the frequencies

EM radiations arise as a consequence of current flowing through diverse parts of the device.
Each component affects the other components” emanations due to coupling. This coupling
highly depends on the device geometry. Now we describe a measurement of EM radiation
from a cryptographic device, whose intensity is a major suppression target in the EMC
research field. We first generate an EM-field map on the entire surface of the device, and
then pinpoint the points being high in EM-field intensity. Fig. 16 shows an overview of the
EM measurement system in this experiment. The experimental scanner (WM?7400) employs a
micro EM probe whose bandwidth ranges from 1 MHz to 3 GHz, and scans the surface of the
SASEBO. The probe head is arranged precisely at 2-cm distance from a target device within
a tolerance of one micrometer. The system can measure the distance by the equipped laser
geodesy.

Magnetic field probe
(MT-545)

Camera

Fig. 16. EM measurement system.

Fig. 17 shows EM field maps on the entire surface of the SASEBO corresponding to the
frequency bands ranging between (a) 10-100 MHz, (b) 100-200 MHz, (c) 200-300 MHz, and (d)
300-400 MHz, where the red and blue areas indicate higher and lower intensities, respectively.

The result shows that specific areas around FPGA2 and a crystal oscillator, which is located
at the upper side of FPGA?2 in Fig. 3, have higher EM-field intensities than other areas. This
is because only the two components are active components on the board. We confirmed from
the result that the EM-field intensity at the clock frequency is relatively higher than those
of other frequencies. The phenomena of compromising signal has different origins such as
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radiation emitted by the clock, crosstalk or coupling. Traditionally, we differentiate the direct
emanations and the indirect or unintentional emanations. The first ones can be considered
at a very short distance and requires the use of special filters to minimize interference with
baseband noise. The direct emanations come from short bursts of current and are observable
over a wide frequency band. On contrary, indirect emanations are present in high frequencies.
According to Agrawal (Agrawal et al., 2002) these emanations are caused by electromagnetic
and electrical coupling between components in close proximity. Often ignored by circuits
designers, these emanations are produced by a modulation. The source of the modulation
carrier can be the clock signal or other sources, including communication related signals. Li et
al. provide in (Li et al., 2005) a model to explain such kind of modulation.

Therefore it is sometimes easier to extract information from signals unintentionally modulated
at high frequencies, which are not necessarily related to the clock frequency, than baseband
signals also referred to as direct emanations. The characterization of the frequencies that
modulate the leakage is a scientific challenge, since as of today no relevant tool allows to
distinguish which frequencies actually contain the sensitive information. For this reason, we
propose a methodology in the following based on information theory.

5.1 Characterization of the EM channel in frequency domain

For the same bit sequence as in Figure 4, we obtained the EM trace illustrated on Figure 18. No
difference appears between a square and multiply, even when messages are chosen to improve
the result. We have even tried to improve the analysis using pattern matching techniques but
without any satisfactory results in terms of contrast. First of all, the noise effect is decreased
if the frequency band is reduced. Secondly, the leaked information is properly digitized
whereas the strong carrier without relevant information is removed. Therefore it appears
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Fig. 18. Direct EM radiations emitted during an RSA computation.

strategic to find right modulated carrier. A straightforward technique consists in using a
spectral analysis in order to detect the strong carrier frequencies. Another possible technique
consists in scanning the frequency range of the wide-band receiver, but such demodulation
process is time-consuming and one may omit some significant compromising signal. Another
technique based on the STFT (Short Time Fourier Transform) has been proposed in (Vuagnoux
& Pasini, 2009), but it consumes a huge amount of time as well as memory resources. We
propose therefore a method based on information theory to characterize the leakage. After this
characterization we are able to select the frequencies and their associated optimal bandwidth.
The useful information is contained in these ranges of frequencies. Therefore, with a receiver
tuned on the right frequency, we can retrieve the compromising signal. To provide this
characterization, we propose an approach based on information theory. This method can be
managed as follows: First we gather a large number of measurements, by knowing the key
i.e. the operations that are computed by the chip. These EM measurements from the antenna
are noisy, distorted and the operations are not distinguishable. For this step, we chose a time
window where only one operation of square and one operation of multiply are performed as
shown on Fig. 19. After the measurements are cut according to the operation performed. The
number of samples is equal in each part of the signal, Each section of the signal is equal in
term of number of samples, we get as much parts of EM signal for the multiplication as for
the squaring, and we obtain two sets of measurements with the same number of traces.
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Fig. 19. EM measurement split into Square and Multiply parts.

Then, for each set, we compute: the FFT (Fast Fourier Transform) of every observation O Iz the
mean spectrum related to each operation; and the mean of all the observations. Therefore
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we obtain a specific spectral signature for each operation of the modular exponentiation
algorithm. Finally we compute the Mutual Information value for each frequency. Thus
we attribute a specific spectral signature to each operation of the modular exponentiation
algorithm. In few words, we follow the processing shown in ALGORITHM 3.
ALGORITHM 3

Input: |O = (O, ...,0,_1,0,) Observation in time domain,
S = (So,...,Sn—1,Sn) Secret (Operation)
Output:|Result of Mutual Information in frequency domain

fori =0ton

1

2 Sort O; Observation according to the Secret S;;
3: Compute the FFT of each Observation O;;
4:

5

endfor
Compute the mean (sguares muttiply)
and the variance (Csguares Ontuttiply)
6: Compute the Mutual Information in frequency domain.

As a distinguisher we take for instance an information theory viewpoint to retrieve the
relevant frequencies and to bring a mathematical proof that the information is not necessarily
carried by the clock frequency. In 2008, Gierlichs introduced in (Gierlichs et al., 2008) the
Mutual Information Analysis. This tool is traditionally used to evaluate the dependencies
between a leakage model and observations (or Measurements). We use MIA like in previous
chapter but in this case we compute for each frequency the Mutual Information (MI)
I(Of; Operation) between Observations O and Operation that corresponds to the operations
performed by the device (Meynard etal., 2011). Thereby, if I(O; Operation) is close to zero for
one frequency f, we can say that this frequency does not carry significant information. On the
contrary, if I(O; Operation) is high, the computed operation and the frequency are bound. As
a consequence if we filter the EM signal around this frequency, we can retrieve the operations
and the secret key using the SEMA.

The Ml is computed as:
1(Of; Operation) = H(Oy) — H(Oy|Operation), (5)

where H(Oy) and H(Oy|Operation) are respectively the entropies of all the observations in
the frequency domain and of the observations knowing the operations. Both these entropies
can be obtained according to:

“+o0
H(O;) = —/_w Pr(Oy) log, Pr(Oy),
H(Oy|Operation) = Y. Pr(j)H((Oflf)).

je{Multiply,Square}

400
with H(Oy[j) = — [ Pr(Of) log, Pr(O51)),

where Pr(Oy) denotes the probability law of observations at frequency f. Moreover we
consider that the computed operations are equi-probable events, for our time windowing
therefore Vj € Operation, Pr(j) = % And the distribution is assumed to be normal ~ Ny, 0?)
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of mean y and variance ¢, given by:

1 (OF —p)?
exp| ——~5"|.
V2mo? 207

We call it a parametric model. We approximate this model by a parametric estimation, and
we use the differential entropy defined like a 1-dimensional normal random variable Oy of

mean y and standard deviation ¢ as the analytical expression: H(Oy) = log,(cv27te). From
this value, the Mutual Information defined in Eqn. (5) can be derived, by computing for each
operation the differential entropy:

1(Of; Operation) = H(Oy)
1 )
= 5 (H(fIMultiply) + H(f|Square)),
that can be simplified as:

2
g, Oy

I(Of; Operation) = %log2 (6)

00y, Multiply90y,Square

The figure 20 represents the result of Eqn. (6). From this graph, we notice that the information
might be contained in a range of frequency between 5.0 and 60.0 MHz with the presence of a
large lobe spread over these frequencies.
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Fig. 20. Result of MIA in frequency domain.

This method provides a result with a quantity expressed in bit, that allows us to interpret
easily the leakage frequencies regarding the level of compromising signal. Consequently,
we are now able to fairly compare the level of compromising signal carried by different
frequencies. Such Mutual Information metric allows to quantify the level of protection against
SEMA attacks. Moreover it is worthwhile to underline that Mutual Information considers the
non-linear dependencies that occur during the computation, such as cross-talk that occurs
during the computation. The maximum in Magnitude is obtained for the frequencies around
24.0 MHz, that corresponds to the clock frequency of the component. We decide to pick up
three ranges of frequencies corresponding to three peaks in Fig. 20:

e around 24.0 MHz,
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e around 34.0 MHz,
e around 54.0 MHz.

and study the results of the demodulation at these frequencies to prove the efficiency of our
approach.

In (Agrawal et al., 2002) Agrawal used a demodulator to measure EM emanation from an SSL
accelerator. We apply a similar technique to the FPGA implementation which consumes far
less power than the SSL accelerator. The EM radiation is expected to be much weaker than the
previous one. We focus on a range of frequencies between 0.0 and 100.0 MHz and demodulate
at the frequencies exhibited by the previous methods at 24.0 MHz, 34.0 MHz and 54.0 MHz.
We employ the demodulation technique to investigate unintentional (or indirect)emanation.
Each time, the demodulated signal shows a peculiarity that allows to distinguish clearly the
two distinct operations.

The unintentional emanation described by Agrawal is the result of modulation or
intermodulation between a carrier signal and the sensitive signal. In particular, the ubiquitous
clock signal can be one of the most important sources of carrier signals. This assumption
is confirmed by our results on figure 20. We tune the receiver to the clock frequency (i.e.,
24MHz) with a resolution bandwidth of 1IMHz. Figure 21 shows one single demodulated
EM waveform at 24 MHz. Indeed, the receiver improves the differences between the two
operations dramatically as shown in Fig. 21.
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Fig. 21. One Single Demodulated EM waveform at 24 MHz.

We can obtain similar results by tuning the frequency of the receiver to the harmonics of the
clock frequency. Moreover we can enlarge the distance between the FPGA and the probe
despite a significant lose of S/N ratio. In order to obtain more powerful signals, we used an
increased resolution bandwidth and then performed the same SEMA attacks successfully at
least 5cm and more distance.

With the method developed previously we can focus on different frequencies that are not
necessarily related to the clock harmonics. To measure such emanation, the probe must be
placed close to the FPGA. Then an eavesdropper has to tune the receiver at every frequency
of the spectrum. Interestingly, we found that the best results were not always obtained by
demodulating the raw signal at the harmonics of the clock frequency.

Figures 22 and 22 show the single demodulated EM waveform at 34 and 54 MHz, which have
been identified by the peaks obtained on our MI analysis on figure 20. The same sequence is
replayed by changing only the demodulation frequency.
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Fig. 22. One single Demodulated EM waveform at 34 MHz and at 54 MHz.

If we compare the figures 21 and 22 we notice that sharp peaks appear at the beginning
of every square operation. These peaks are not present before a multiply operation and
thus we can easily distinguish the square from the multiply operations. We obtained the
same phenomena for the demodulation at 54 MHz on figure 22. Moreover it is important
to notice that the magnitude of the compromising signal decreases when the frequency
of demodulation increases. The magnitude of the compromising signal follows the trend
obtained in the previous section. These results confirm the results obtained during the
characterization as shown on the table 2.

Frequency |MI [bit]|Magnitude
240MHz | 25 0.5
34.0 MHz 1.7 0.03
54.0 MHz 1.0 0.02

Table 2. Comparison between the results.

6. Conclusions

In this chapter, we present firstly leakage mechanism behind Electromagnetic Analysis at
near and far distances with contactless probe on FPGA implementations of cryptographic
algorithms. The measurements are conducted with different techniques, the probe are
attached to a power cable or on communication link, free space around the power cable and
at distance from the electronic board. We show that an attacker from these measurements and
by computing SEMA and DEMA is in position to retrieve the secret key. Different types of
leakage radiation have been highlighted, such as Indirect and Direct emanation. Then we
investigate a relationship between the intensity of EM radiation and the geometry of the
board. In order to evaluate EM information leakage, we performed simple electromagnetic
analysis (SEMA) experiments on a cryptographic device with an RSA module. We first
measured EM radiations over the entire surface of a device including over the module, and
then evaluated which spots and frequencies are available for EM information leakage. On the
studied implementation the raw EM measurements show no obvious leakage. The result
suggested that the signal (information)-to-noise ratio should be suppressed for achieving
circuit and system security assuming that EM radiation can be interpreted as a signal encoding
secret information.
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In order to distinguish square and multiply operations in the SEMAs, we introduce a
method to detect and characterize a crypto-system in frequency domain, i.e a distinguisher
of frequencies that are carrying information. In addition we show that our method provides
exploitable results and allows us to retrieve the leakages frequencies for unintentional
emanations. The method proposed based on the mutual information analysis in frequency
domain allows to extract the leakage frequencies of the signal related to the square and
multiply operations. By following this method we are able to pinpoint the frequencies that
are leaking more information and their bandwidth. Thanks to this tool we demonstrate that
we are in position to give a quick diagnostic about the EM leakage of a device. Therefore an
attacker is able to perform SEMAs. The method of choosing a right demodulation frequency
is crucial; and thanks to our characterization based on the MI, information leaked through
indirect EM emanations can be detected and observed with one single demodulated EM
waveform.
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