
Programmable Logic Controller 





 

Programmable Logic Controller  
 

Edited by 

Luiz Affonso Guedes 

Intech  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Published by Intech 
 
 
Intech 
Olajnica 19/2, 32000 Vukovar, Croatia 
 
Abstracting and non-profit use of the material is permitted with credit to the source. Statements and 
opinions expressed in the chapters are these of the individual contributors and not necessarily those of 
the editors or publisher. No responsibility is accepted for the accuracy of information contained in the 
published articles. Publisher assumes no responsibility liability for any damage or injury to persons or 
property arising out of the use of any materials, instructions, methods or ideas contained inside. After 
this work has been published by the Intech, authors have the right to republish it, in whole or part, in 
any publication of which they are an author or editor, and the make other personal use of the work.  
 
© 2010 Intech 
Free online edition of this book you can find under www.sciyo.com 
Additional copies can be obtained from:  
publication@sciyo.com 
 
First published January 2010 
Printed in India 
 
      Technical Editor: Teodora Smiljanic 
      Cover designed by Dino Smrekar 
 
      Programmable Logic Controller, Edited by Luiz Affonso Guedes 
               p.  cm. 
      ISBN 978-953-7619-63-3 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Preface 
 
Despite the great technological advancement experienced in recent years, 

Programmable Logic Controllers (PLC) are still used in many applications from the real 
world and still play a central role in infrastructure of industrial automation. PLC operate in 
the factory-floor level and are responsible typically for implementing logical control, 
regulatory control strategies, such as PID and fuzzy-based algorithms, and safety logics. 
Usually PLC are interconnected with the supervision level through communication 
network, such as Ethernet networks, in order to work in an integrated form. 

The first PLC were computers designed to specific proposal that worked with simple 
digital inputs and outputs, and their programming language were based on relay logic. 
Currently there is a wide range of PLC manufacturers that offers products to automate from 
domestic activities up to large scale industrial processes. Thus, there is a PLC for each type and 
class of application. The most powerful PLC are equipped with sophisticated hardware and 
software infrastructure. But the small PLC have configuration software with good features too. 

Due to modern integrated automation concept, all components of the automation 
system must work interconnected through communication network and must be dotted of 
agile reconfiguration capability. Because PLC are the main equipments in several current 
automation solutions, there are a strong demand for standardized methodologies, 
technologies and software-based solutions to aid the various activities of the PLC programs 
development, such as modeling, validation, verification, test and automatic code generation. 
Other current demand is related with the difficulty in obtaining examples from the real 
world in order to explain how hard it is to develop application to PLC. 

In this context, this book was written by professionals that work and research in 
automation area and it has two major objectives. The first objective is present some advances 
in methodologies and techniques for development of industrial programs based on PLC. 
The second objective is present some PLC-based real applications from various areas such as 
manufacturing system, robotics, power system, communication system, and education. 

The book is organized in 10 chapters, where the first four are concerned with 
methodologies and techniques to develop PLC programs and the last six are PLC-based 
applications from the real world. We expect that the readers have basic knowledge of 



VI        

industrial automation and PLC programming. On the one hand, since this book presents 
some recent advances in methodologies and techniques to help the development of PLC 
programs, we believe that it is useful for engineers, practitioners, graduate students and 
researchers who are related in the automation area. On the other hand, the chapters of 
applications can be especially useful for undergraduate student and engineers from several 
areas, such as computer, communication, electrical and mechanic engineering. 

 

Editor 

Luiz Affonso Guedes 
Federal University of Rio Grande do Norte,  

Brazil 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Contents 
 

 Preface V 
   

1. Object-Oriented Modeling, Simulation and Automatic Generation  
of PLC Ladder Logic 

001 

 Kwan Hee Han  
   

2. Practice of Industrial Control Logic Programming  
using Library Components 

017 

 Oscar Ljungkrantz, Knut Åkesson and Martin Fabian  
   

3. Control and Plant Modeling for Manufacturing Systems  
using Basic Statecharts 

033 

 Raimundo Moura and Luiz Affonso Guedes  
   

4. The Java based Programmable Logic Controller. New Techniques  
in Control and Supervision of a Flexible Manufacturing Cell. 

051 

 Ramón Piedrafita and José Luis Villarroel  
   

5. Holonic Robot Control for Job Shop Assembly by Dynamic Simulation 071 
 Theodor Borangiu, Silviu Raileanu, Andrei Rosu and Mihai Parlea  
   

6. Centralized/Decentralized Fault Diagnosis of Event-Driven Systems 
based on Probabilistic Inference 

099 

 Shinkichi Inagaki and Tatsuya Suzuki  
   

7. New Applications Using PLCs in Access Networks 121 
 Lamartine V. de Souza, João C. W. A. Costa and Carlos R. L. Francês  



VIII        

8. Development of Customized Distribution Automation System (DAS)  
for Secure Fault Isolation in Low Voltage Distribution System 

131 

 M. M. Ahmed, W.L. Soo, M. A. M. Hanafiah and M. R. A. Ghani  
   

9. Computer Emulations to Support Training in Automation 151 
 Manuel E. Macías and Ernesto D. Guridi  
   

10. PLC based Structure for Management and Control  
of Distributed Energy Production Units 

161 

 Joao M. G. Figueiredo  
 



1 

Object-Oriented Modeling, Simulation and 
Automatic Generation of PLC Ladder Logic  

Kwan Hee Han 
Gyeongsang National University 

Republic of Korea 

1. Introduction     
Most enterprises are struggling to change their existing business processes into agile, 
product- and customer-oriented structures to survive in the competitive and global business 
environment. Among their endeavor to overcome the obstacles, one of the frequently 
prescribed remedies for the problem of decreased productivity and declining quality is the 
automation of factories (Zhou & Venkatesh, 1999).  
As the level of automation increases, material flows and process control methods of the shop 
floor become more complicated. Currently, programmable logic controllers (PLC) are 
mostly adopted as controllers of automated manufacturing systems (AMSs), and the control 
logic of PLC is usually programmed using a ladder diagram. More recently, manufacturing 
trends such as flexible manufacturing facilities and shorter product life cycles have led to a 
heightened demand for reconfigurable control systems. To cope with these challenges, a 
new effective and intuitive method for logic code design and generation is needed. 
However, currently there are no widely adopted systematic logic code development 
methodologies to deal with PLC based control systems in the shop floor. So, the control 
logic design phase is usually omitted in current PLC programming development life cycle 
though it is essential to reduce logic errors in an earlier stage of automation projects before 
the implementation of control logic. Moreover, fast customer requirement changes requires 
flexibility of manufacturing system. To deal with these frequent configuration changes of 
modern manufacturing systems, it is required that logic code can be generated 
automatically from the design results without considering complicated control behavior.  
To generate error-free ladder code, it is also essential to validate the designed control logic 
of an AMS in an effective way. Among many validation methods, computer simulation 
methods are widely used because mathematical formalisms have a problem of solution 
space explosion as the size of system increases. However, since current simulation methods 
have mainly focused on the overall performance evaluation of manufacturing systems such 
as factory layouts, resource utilization, and throughput time, they have limitations with 
regard to the modeling capabilities of detail logic for the input/output signal-level control of 
AMS. Therefore, current PLC ladder programming practices require a more integrated way 
to design, simulate, and generate the ladder control logic. 
The main objective of this chapter is to propose an object-oriented (O-O) ladder logic 
development framework integrating design, validation and automatic generation of ladder 



 Programmable Logic Controller 

 

2 

logic using extended UML (Unified Modeling Language). Proposed framework, as depicted 
in Figure 1, consists of three parts: first part deals with UML design of PLC-based control 
system. O-O design model consists of three models: functional model, structure model and 
interaction model. Second part is concerned with O-O simulation method for validating 
designed ladder control logic. By using the results of O-O design model, an O-O simulation 
model is constructed and is executed. During the execution of simulation model, factory 
automation (FA) engineers can evaluate the system performance and validate the PLC 
control logic simultaneously. Last part deals with automatic generation of ladder code from 
the validated design result. In order to show the applicability of proposed method, an UML-
based tool for the design and generation of ladder code is also developed. Proposed 
framework facilitates the generation and modification of ladder code easily within a short 
time without considering complicated control behavior to deal with current trend of 
reconfigurable manufacturing systems.  
The rest of the chapter is organized as follows. Section 2 reviews related works. Section 3 
describes UML design of control logic. Section 4 deals with O-O simulation of designed 
PLC-based control system for validating the correctness of control logic. Section5 describes 
the automatic generation and verification method of ladder logic. Finally, the last section 
summarizes results and suggests directions for future research. 
 

 
Fig. 1. Proposed object-oriented ladder logic development framework 

2. Related works 
In order to improve current PLC programming practices, significant efforts have been made 
in researches on object-oriented technologies in manufacturing systems. O-O modeling has 
been mainly used as a method for the analysis and design of software system.  Recently, it is 
presented that O-O modeling is also appropriate for the real-time system design like an 
AMS as well as the business process modeling.  



Object-Oriented Modeling, Simulation and Automatic Generation of PLC Ladder Logic 

 

3 

Several researches were made regarding the O-O modeling methods for the manufacturing 
system: Author of this chapter proposed AMS modeling framework called JR-Net (Job-
Resource relation Net), which consists of a layout model, a functional model, and a control 
model for the O-O simulation of AMS (Choi et al. (1996), Park et al. (1997)). But, since this 
work placed emphasis on the supervisory control level rather than the device control level 
in the control model, it did not presented the modeling results of device level control. An O-
O method for the design of automation system was proposed (Calvo et al., 2002), but it only 
showed the static structure comprised of a class diagram and a use case diagram. An UML 
modeling of AMS and its transformation into PLC code was proposed (Young et al., 2001), 
but it did not presented the method of PLC code generation. An UML modeling of flexible 
manufacturing system and its simulation implementation was proposed (Bruccleri & Diega, 
2003), but it restricted the control level to the supervisory control level.  
Among researches about design and validation tools for the PLC control logic, a simulation 
method integrating plant layout sub-model and control sub-model, and also a PLC code 
generation from simulation result was proposed (Spath & Osmers, 1996), but it omitted 
details of generation procedure. A procedure of control logic design was proposed by using 
IEC function block diagram (FBD) model, its transformation into Petri net, the validation of 
control logic using SIMULINK simulation system, and C code generation (Baresi et al., 2000). 
But, it confined their modeling scope to simple control logic which can be represented by 
FBD. Author of this chapter developed O-O design tool based on the extension of UML and 
showed usefulness of O-O design and simulation approach to ladder logic development 
(Han & Park (2007a), Han et al. (2007b)). 
In the area of automatic ladder logic generation method, there exist mainly three approaches 
as follows: First approach is Petri net-based (Peng & Zhou (2004), Lee et al. (2004), Frey & 
Minas (2001), Taholakian & Hales (1997)). Second approach is finite state machine-based 
(Jack (2007), Manesis & Akantziotis (2005), Sacha (2005), Liu & Darabi, (2002)). Last 
approach is flow chart-like-based (Jack (2007), Hajarnavis & Young (2005)). Among three 
approaches, first and second approaches have a state explosion problem when complexity of 
control logic increases.  
The third approach is relatively easy to use by its sequential and intuitive nature to control 
logic programmers. However, the result of ladder code generated by the third approach 
proposed by Jack (2007) is different from the code directly written by FA engineers due to its 
automatic generation features. Therefore, it is not natural to FA engineers and revealed 
difficulties to understand the generated ladder code. Research about functionalities of 
Enterprise Controls commercial package of Rockwell Automation was presented, in which 
FA engineers design the ladder logic in the form of flow chart within Enterprise Controls, 
and ladder code is generated automatically (Hajarnavis & Young, 2005). However, it did not 
show how the ladder code is generated. Proposed generation method in this chapter belongs 
to the third category, in which ladder logic code is generated from the extended UML 
activity diagram which is a kind of flow chart. 

3. Object-oriented design of control logic 
The most typical features of O-O modeling techniques include the interaction of objects, 
hierarchical composition of objects, and the reuse of objects (Maffezzoni et al., 1999). O-O 
design for ladder control logic is conducted based on system specifications such as drawings 
and problem descriptions. During the design phase, FA engineers develop three models for 



 Programmable Logic Controller 

 

4 

describing the various perspectives of manufacturing systems: 1) a functional model for 
representing functional system requirements of AMS, 2) a structure model for representing 
the static structure and relationships of system components, and 3) an interaction model for 
representing the dynamic behavior of system components.  
A functional model is constructed using an UML use case diagram in which each functional 
requirement is described as a use case. A use case diagram describes a top-level system 
view. A PLC as a plant controller is represented by a ‘system’ element, and input or output 
part of PLC such as a sensor, actuator, and operator is represented by an ’actor’ element of a 
use case diagram. Since the UML stick man icon of ‘actor’ is not appropriate for representing 
the resource of AMS, new icons are introduced in a functional model using UML stereotype 
property. Therefore, in the extended UML use case diagram, as depicted in Figure 2, four 
types of actor (i.e., operator, actuator, sensor and MMI) are newly used instead of standard 
stickman symbol. PLC input parts such as sensor and operator are located at the left side of 
‘system’ symbol, and PLC output parts such as actuator and MMI (Man Machine Interface) 
are located at the right side of ‘system’ symbol. 
 

 
Fig. 2. Use case diagram of example prototype 

The details of each use case are described in a use case description list. The use case 
description list includes the pre-/post-condition of a use case and interactions of a PLC with 
its actors such as sensors and actuators. For realizing a use case, related domain classes 
accomplish an allocated responsibility through the interactions among them. These related 
classes are identified in the structure model. And the system-level interactions in a use case 
description list are described in more detail in the interaction model.  
Figure 2 and 3 shows a functional model for the example system in the form of use case 
diagram and use case description list. This example application prototype, as depicted in 



Object-Oriented Modeling, Simulation and Automatic Generation of PLC Ladder Logic 

 

5 

Figure 4, is a kind of conveyor-based material handling system which identifies defective 
products according to their height, extracts defective products, and sorts good products 
according to their material property. It has 6 use cases for describing major functions from 
power control to product counting as depicted in Figure 2. Figure 3 shows the use case 
description of use case 4 (defects extraction) in Figure 2, and describes the high-level 
interactions between system (PLC) and its actors such as photo sensors and cylinders. 
 

 
Fig. 3. Use case description list of example prototype 

 
Fig. 4. Structure of example application prototype 

A generic AMS is comprised of 4 parts: there is a ‘plant’ for manufacturing products. A 
plant is controlled by a ‘controller’ (PLC) which is managed by an ‘operator’ who monitors 



 Programmable Logic Controller 

 

6 

plant through MMI. A ‘work piece’ flows through a plant. A plant is further decomposed 
into standard resource groups hierarchically.  
Any standard resources can be classified using 3-level hierarchy of resource group-device 
group-standard device: A plant is composed of ‘resource group’ such as mechanical parts, 
sensor, actuator, and MMI. A resource group consists of ‘device group’. For example, 
actuator resource group is composed of solenoid, relay, stepping motor, AC servo motor, 
and cylinder device group and so on. Sensor resource group is composed of photo sensor, 
proximity switch, rotary encoder, limit switch, ultrasonic sensor, counter, timer, and push 
button device group and so on. Finally, device group consists of ‘standard devices’ which 
can be acquired at the market.  
To facilitate the modular design concept of modern AMS, the structure of AMS is modeled 
using an UML class diagram based on the proposed generic AMS structure. By referencing 
this generic AMS structure, FA engineers can derive the structure model of specific AMS 
reflecting special customer requirements easily. Figure 5 represents a static structure model 
of an example application prototype. Various kinds of device group class such as proximity 
switch and counter are inherited from generic resource group class such as sensor. 
 

 
Fig. 5. Class diagram of example prototype 

Since the real FA system is operated by the signal sending and receipt among 
manufacturing equipments such as PLC, sensors, and actuators, it is essential to describe the 
interactions of FA system components in detail for the robust design of device level control. 
This detail description of interactions is represented in the interaction model.  
UML provides the activity diagram, state diagram, sequence diagram, and communication 
diagram as a modeling tool for dynamic system behaviors. Among these diagrams, the 



Object-Oriented Modeling, Simulation and Automatic Generation of PLC Ladder Logic 

 

7 

activity diagram is most suitable for the control logic flow modeling because of following 
features: 1) it can describe the dynamic behaviors of plant with regard to device-level 
input/output events in sequential manner. 2) It can easily represent typical control logic 
flow routing types such as sequential, join, split, and iteration routing. The participating 
objects in the activity diagram are identified at the structure model.  
In order to design and generate ladder logic, modification and extension of standard UML 
elements are required to reflect the specific features of ladder logic. First of all, it should be 
tested whether UML activity diagram is suitable for the description of control logic flow, 
especially for the ladder logic flow. The basic control flow at the ladder logic is sequence, 
split and join. Especially, three types of split and join control flow must be provided for 
ladder logic: OR-join, AND-join, AND-split. UML activity diagram can model basic control 
flows of ladder logic well.  
Basically, ladder diagram is a combination of input contact, output coil and AND/OR/NOT 
logic. Since ‘NOT’ (normally closed) logic flow in the ladder logic cannot be represented 
directly in standard UML activity diagram, new two transition symbols for representing 
normally closed contact and negated coil are added as normal arcs with left-side vertical bar 
(called NOT-IN transition) or with right-side vertical bar (called NOT-OUT transition) as 
depicted in Figure 6. In the extended UML activity diagram, logic and time sequence flow 
from the top to the bottom of diagram.  
 

 
Fig. 6. Extensions of transitions in AD 
Figure 7 represents the interaction model for the identification and extraction of defective 
parts according to the height of products at the example application prototype. (Refer the 
use case number 4 in Figure 2 and use case description in Figure 3) 
The control logic of Figure 7 for defects extraction is as follows: 1) High_Memory:= 
(High_Sensor + High_Memory) * !Extract_Cyl, 2) Low_Memory:= (Low_Sensor + 
Low_Memory) * !Extract_Cyl * !OK_LimitSwitch, 3) Extract_Cyl:= {(High_Memory * 
Low_Memory) + (!High_Memory * !Low_Memory)} * Extract_Sensor where “!” means 
negation (NOT), ‘*’ means conjunction (AND), and ‘+’ means disjunction (OR). 

4. O-O simulation for validating control logic 
In this phase, O-O simulation model is constructed, and is executed for validating the 
designed control logic. When logic errors are found during the simulation execution, FA 
engineers correct logic errors and run the simulation model again. After validating control 
logic through simulation, FA engineers modify UML design model for reflecting the 
simulation result. In this way, the design-simulation cycle is done iteratively for error-free 
control logic.  



 Programmable Logic Controller 

 

8 

 
Fig. 7. Extended activity diagram for use case 4 in Figure 2 of example prototype 

4.1 Construction of O-O simulation model 
Based on the results of the O-O design model described in the Section 3, the O-O simulation 
model is constructed. The Unigraphics emPLANT software is used as an O-O simulation 
tool (Unigraphics, 2006). 
First, for constructing an O-O simulation model, top-level functional requirements of 
automated manufacturing system are specified by using the use case diagram (Figure 2), 
and system-level interactions between the PLC and device actors (i.e., sensors and actuators) 
are identified by using a use case description list (Figure 3). 
Second, AMS classes at the structure model (Figure 5) are mapped to emPLANT classes 
using the system hierarchy and association/inheritance relations among AMS classes 
identified in the class diagram. The mapping between generic AMS classes and emPLANT 
classes is summarized in Table 1.  
Lastly, after determining the static system structure, control logic among system 
components is implemented for realizing each use case specified in the interaction model. 
The internal logic in the activity diagram is programmed in the simulation model by using 
SimTalk language of emPLANT software. For example, defects extraction of Figure 7 is 
executed by defect part identification and actuating extract cylinder. Detail control logic of 
this method is as follows: First, it inspects the product status according its height (a 
defective or good part). According to the inspection result, internal memories for high-level 



Object-Oriented Modeling, Simulation and Automatic Generation of PLC Ladder Logic 

 

9 

and low-level detection are updated. If the product is defective and the sensor for extraction 
point is ‘ON’, the controller actuates an extraction cylinder The SimTalk code of this logic is 
described in Table 2. 
 

Generic AMS class emPLANT class 

Controller Frame/ Method 
Workpiece Entity 

Sensor SingleProc/ Line-sensor 
Actuator SingleProc 

Mechanical parts Line/ SingleProc/ 
Transporter 

Plant 

MMI Frame/Method 

Table 1. Mapping between generic AMS classes and O-O simulation elements 

.Models.PLC.extract_cyd_ON 
{ 
is 
do 
if ((high_Sensor=1 or high_Memory=1) and 
(extract_Cyl=0)) 
then .models.conveyor_system.Plant.set_High_Memory; 
end; 
if ((low_Sensor=1 or low_Memory=1) and 
(extract_Cyd=0) and (OK_Limit_Switch=0)) 
then .models.conveyor_system.Plant.set_Low_Memory; 
end; 
if  ((high_Memory=1 and low_Memory=1) or 
(high_Memory=0 and low_Memory=0)) and 
(extract_Sensor=1) 
then .models.conveyor_system.Plant.set_Extract_Cyl; 
end; 
end; 
} 

Table 2. Example of SimTalk simulation code for Figure 7 

4.2 Execution of O-O simulation model 
The main characteristics of the O-O model is the easiness of a top-down modeling approach 
because extended new classes which share common properties can be created by inheriting 
the pre-defined classes, and a system can be decomposed into sub-systems hierarchically. 
The O-O simulation model of an example application prototype has two-level hierarchy. 
The high-level model for example prototype consists of a controller (PLC), a plant, a source 
of products, a storage of defective products, and a storage of good products (upper right 
part of Figure 8). Furthermore, this prototype can be abstracted to 2 components (i.e., a 
controller and a plant). The low-level model, which is a base model of simulation execution, 
decomposes the high-level model into more detailed elements such as sensors, actuators, 



 Programmable Logic Controller 

 

10 

and MMI (lower right part of Figure 8). After constructing a simulation model and 
preparing an experimental frame, a simulation model can be executed in which product 
flows are animated through the conveyor line.  
In parallel with the animation of products flow, the proposed O-O simulation model can 
show the animation of PLC operations in response to the various events about product 
flows (Left part of Figure 8).  When the sensing of a product by various sensors is signaled 
to the input port of a PLC (input ‘ON’ signal), a PLC executes corresponding control logic 
and sends a signal to the output port of a PLC (output ‘ON’ signal). The output ‘ON’ signal 
is transmitted to the actuator, so the actuator is enabled.  
As depicted in Figure 8, during the simulation execution, the ON/OFF animation of the PLC 
input/output ports is displayed in parallel with the product flows. Input ports are located at 
the left side of a PLC, and output ports are located at the right side of a PLC. The ‘ON’ signal 
of input/output ports is displayed by a red color at the screen display. 
 

 
Fig. 8. O-O simulation model for example application prototype 
Through the O-O simulation execution, PLC programmers can easily validate the internal 
logic of a PLC, and detect the logic errors at an earlier stage of the logic development by 
concurrent checking of product flows and PLC input/output port operations. Therefore, by 
adopting the proposed O-O simulation method, the validation of PLC control logic can be 
performed in parallel with the conventional performance evaluation. 

5. Automatic generation of ladder code and its verification 
The following two steps are conducted during the automatic generation phase: Firstly, 
ladder code is generated automatically using the interaction model result of design phase. 



Object-Oriented Modeling, Simulation and Automatic Generation of PLC Ladder Logic 

 

11 

Secondly, generated ladder code is verified by input/output port-level simulation. In this  
phase, a software tool developed by research group including author is also used.  
For the automatic generation of ladder logic, the mapping scheme of an UML activity 
diagram to a ladder diagram is established. IEC61131-3 standard ladder diagram have 5 
major elements: contact, coil, power flow, power rail and function block (FB). Contact is 
further classified to normally open and normally closed contact. Coil is further classified to 
normal and negated coil. Power flow is further classified to vertical and horizontal power 
flow. Power rail is further classified to left and right power rail.  
Elements of an activity diagram are classified to two types: an activity type and a transition 
type. Activity type is decomposed into start/stop activity, normal activity, special activity 
such as counter and timer, and block activity (Refer Figure 7). Transition type is 
decomposed into normal transition, NOT-IN transition for normally closed contact, NOT-
OUT transition for negated coil, and logic flow transition. Logic flow transition is further 
decomposed into OR-join, AND-join and AND-split.  
Figure 9 shows mapping scheme from an activity diagram to a ladder diagram. In order to 
store graphical activity diagrams and ladder diagrams in computer readable form, XML 
schema called AD-XML and LD-XML is devised for each diagram. In particular, LD-XML is 
an extension of PLCopen XML format (PLC Open, 2005). 
 

 
Fig. 9. Mapping scheme from AD to LD 

After the activity diagram for specific control logic is stored in the form of AD-XML, AD-to-
LD transformation procedure is conducted. Since basic ladder lung is a combination of input 
contact and output coil, an activity diagram is needed to be decomposed into several 
transformation units which having input(s) and output(s) corresponding to each ladder 
lung. This basic transformation unit is called IOU (Input Output Unit) which is a 1:1 
exchangeable unit to ladder lung except start/stop activity. For example, the activity 
diagram depicted in Figure 10, which describes of power control logic (use case number 1 in 
Figure 2), has three IOUs. The control logic of Figure 10 is as follows: Conveyor_Motor: = 
(PowerON_ Button + Conveyor_Motor) * !PowerOFF_Button. 
The transformation procedure is as follows: 1) After the creation of an activity diagram 
graphically, store it in the form of AD-XML. 2) Decompose an activity diagram into several 
input/output units called IOUs, and store it in the form of two-dimensional table called 



 Programmable Logic Controller 

 

12 

IOU-Table. IOU-table has four columns named input activity, transition, output activity and 
IOU pattern type. Each row of IOU-Table becomes a part of ladder lung after the 
transformation process.  3) Determine the pattern type for each identified IOU. There are 
five IOU pattern types of activity diagram from the start/stop IOU type to the concatenation 
of logic flow transition IOU type. Generated IOU table for Figure 10 is shown at Table 3. 4) 
Finally, generate ladder lungs using IOU table and node connection information of AD- 
XML. 

 
Fig. 10. IOU (Input Output Unit) decomposition 

 
Table 3. IOU table for Figure 10 (use case 1-power control in Figure 2)  

Figure 11 shows five IOU types and their corresponding LD patterns. IOU pattern type is 
classified to two types. One is simple type that is transformed to several basic ladder 
elements. The other is complex type that is a combination of simple types. Simple type is 
further classified to four types according to their corresponding lung structure: Type-1 
(start/stop IOU), Type-2 (basic IOU), Type-3 (logic flow transition IOU: OR-join, AND-join, 
AND-split), and Type-4 (basic IOU with function block).  
Since complex type is combination of several consecutive logic flow transitions, it has most 
sophisticated structure among 5 IOU types. Complex type is further classified to two types: 
Type 5-1 (join precedent) and Type 5-2 (split-precedent). Classification criteria is whether 
‘join’ logic flow transition is precedent to other logic flow transitions or ‘split’ transition is 
precedent.  



Object-Oriented Modeling, Simulation and Automatic Generation of PLC Ladder Logic 

 

13 

 
Fig. 11. Five IOU types 

 
Fig. 12. Transformation procedure of join-precedent type 5-1 

In order to transform the type-5 IOU to ladder pattern, hierarchical multi-step procedure is 
needed. The type-5 IOU is grouped hierarchically into several macro blocks for simplifying 
the consecutive control logic. A macro block is considered as a kind of block activity. Later, 
one macro block is transformed to one of five LD patterns. In other words, in order to 
simplify inputs for succeeding logic flow transition, firstly a macro block is built including 
precedent or succeeding logic flow transition. Later, a macro block is substituted by one of 5 



 Programmable Logic Controller 

 

14 

ladder lung pattern. Fig. 12 shows the example of transformation procedure for the join-
precedent type 5-1. 
Ladder code is automatically generated based on the IOU table and node connection 
information of AD-XML. The generated ladder code is stored in the form of LD-XML, and is 
graphically displayed by reading LD-XML file as depicted in Figure 13. After ladder code is 
generated, it is necessary to verify the generated code. The simulation for code verification is 
conducted by input/output port level.  
The ladder diagram in Figure 13 is generated from the control logic of activity diagram in 
Figure 7. As depicted in Figure 13, one can simulate the result of logic flow by closing or 
opening an input contact of specific lung, and monitoring the result of output coils and 
input contacts of other lungs. 
 

 
Fig. 13. Ladder code genration and port-level simulation of Figure 7 

6. Conclusion 
Currently, most enterprises do not adopt systematic development methodologies for ladder 
logic programming. As a result, ladder programs are error-prone and require time-
consuming tasks to debug logic errors. In order to improve current PLC programming 
practices, this chapter proposes an integrated object-oriented ladder logic development 
framework in which control logic is designed, validated, generated automatically, and 
finally verified.  
Proposed framework consists of three phases: First is the design phase. Second is the 
simulation phase. Third is the generation and verification phase. During the phase I, object-
oriented design model is built, which consists of three sub-models: functional sub-model, 
structure sub-model and interaction sub-model. Based on the design result, O-O simulation 
model is constructed and executed for validating control logic during Phase II. After 



Object-Oriented Modeling, Simulation and Automatic Generation of PLC Ladder Logic 

 

15 

correcting logic errors in Phase II, two steps are conducted during the phase III. Firstly, 
ladder code is generated automatically using the validated interaction model of design 
phase. Secondly, generated ladder code is verified by input/output port simulation. 
A framework in this chapter facilitates the generation and modification of ladder code easily 
within a short time without considering complicated control behavior to deal with current 
trend of reconfigurable manufacturing systems. In addition, this framework serves as a 
helpful guide for systematic ladder code development life cycle.  
As a future research, reverse transformation method from a ladder diagram to an activity 
diagram is needed for the accumulation of ladder logic design documents since design 
documents of control logic are not well prepared and stored in the shop floor. 

7. References 
Baresi L., Mauri M., Monti A., and Pezze M. (2000). PLCTools: design, formal validation, 

and code generation for programmable controllers, Proceedings of 2000 IEEE 
Conference on Systems, Man and Cybernetics, Nashville, USA 

Bruccoleri M., and Diega S. N. (2003). An object-oriented approach for flexible 
manufacturing control systems analysis and design using the unified modeling 
language, International Journal of Flexible Manufacturing System, Vol.15, No.3, pp.195-
216 

Calvo I., Marcos M., Orive D., and Sarachaga I. (2002). Using object-oriented technologies in 
factory automation, Proceedings of 2002 IECON Conference,  pp.2892-2897, Sevilla, 
Spain 

Choi B.K., Han K.H., Park T.Y., (1996). Object-oriented graphical modeling of FMSs, 
International Jouranl of Flexible Manufacturing  System , Vol.8, No.2, pp.159-182 

Frey G. and Minas M. (2001). Internet-Based Development of logic controllers using signal 
interpreted Petri nets and IEC 61131, Proceedings of the SCI 2001, Vol.3, pp.297-302, 
Orlando, FL, USA 

Hajarnavis V. and Young K. (2005). A comparison of sequential function charts and object 
modeling with PLC Programming, Proceedings of American Control Conference, 
pp.2034-2039 

Han K. H. and Park J. W. (2007a). Development of object-oriented modeling tool for the 
design of industrial control logic, Proceedings of the 5th International Conference on 
SERA, pp.353-358, Busan, Korea  

Han K. H. , Park J. W. and Choi Y. (2007b). Object-oriented modeling and simulation for the 
validation of industrial control logic, Proceedings of the 37th international conference 
on CIE, pp. 2377-2384, Alexsandria, Egypt 

Jack H. (2007). Automating manufacturing systems with PLCs. http://clay-
more.engineer.gvsu.edu/~jackh/books.html 

Lee G. B., Zandong H. and Lee J. S. (2004). Automatic generation of ladder diagram with 
control Petri net, Journal of Intelligent Manufacturing, Vol.15, No.2, pp.245-252 

Liu J. and Darabi H. (2002). Ladder Logic Implementation of Ramadge-Wonham 
supervisory controller, Proceedings of Sixth International Workshop on Discrete Event 
Systems, pp.383-389 

Maffezzoni C., Ferrarini L., and Carpanzano E. (1999). Object-oriented models for advanced 
automation engineering, Control Engineering Practice, Vol.7, No.8, pp.957-968 



 Programmable Logic Controller 

 

16 

Manesis S. and Akantziotis K. (2005). Automated synthesis of ladder automation circuits 
based on state diagrams, Advances in Engineering Software, Vol.36, No.4, pp.225-233 

Park T.Y., Han K.H., Choi B.K., (1997). An object-oriented modeling framework for 
automated manufacturing systems, International Journal of Computer Integrated 
Manufacturing, Vol.10, No.5, pp.324-343. 

Peng S. S. and Zhou M. C. (2004). Ladder diagram and Petri net based discrete event control 
design methods, IEEE Transactions on Systems, Man and Cybernetics-Part C., Vol.34, 
No.4, pp.523-531 

PLC Open (2005). XML formats for IEC 61131-3, http://www.plcopen.org 
Sacha K. (2005). Automatic code generation for PLC controllers, LNCS 3688, pp.303-316 
Spath D., and Osmers U. (1996). Virtual reality- an approach to improve the generation of 

fault free software for programmable logic controllers, Proceedings of IEEE 
International Conference on ECCS, pp.43-46, Montreal, Canada 

Taholakian A. and Hales W. M. M. (1997). PN <-> PLC: a Methodology for designing, 
simulating and coding PLC based control systems using Petri nets, International 
Journal of Production Research, Vol.35, No.6, pp.1743-1762 

Unigraphics (2006), emPlant, www.ugs.com/products/tecnomatix/plant_design/ 
em_plant.shtml. 

Young K. W., Piggin R., and Rachitrangsan P. (2001). An object-oriented approach to an 
agile manufacturing control system design, International Journal of Advanced 
Manufacturing Technology, Vol.17, No.11, pp.850-859 

Zhou M. C. and Venkatesh K (1999). Modeling, simulation and control of flexible 
manufacturing systems, World scientific publishing, Farrer Road, Singapore 



2 

Practice of Industrial Control Logic 
Programming using Library Components 

Oscar Ljungkrantz, Knut Åkesson and Martin Fabian 
Department of Signals and Systems 
Chalmers University of Technology 

Sweden 

1. Introduction 
This chapter discusses Programmable Logic Controller (PLC) programming practice, 
particularly the use of library components, in the automotive industry. A study of program 
structure and use of library components at two European car manufacturers is presented. 
The main purpose of the study is to provide understanding of current PLC programming in 
industry. 
PLCs are commonly used in mass-production for instance to coordinate robots and 
machines. The life-cycles of many mass-produced products, including automotive products, 
have decreased significantly during the last years, due to changing market demands and 
increased competition. This has put new requirements on PLC programs, which must be 
easily modifiable and quickly made fully operational, to decrease down-time and ramp-up-
time of the production system (Mehrabi et al., 2000). 
PLCs are traditionally manually programmed in any of the languages of the IEC 61131-3 
standard (IEC, 2003; Lewis, 1998). Especially Ladder Diagrams (LDs), derived from the time 
when physical relays where used to control the machines, are common (Johnson, 2002). To 
gain reusability and modifiability, PLC code can be encapsulated and reused as function 
blocks (FBs). Nonetheless, the traditional PLC programs tend to be difficult to modify and 
extend and not flexible enough to meet the new requirements (Lewis, 2001). 
A solution to the problems might be to use frameworks that facilitate the development of 
flexible and operational control programs. Hence, many researchers have developed new 
frameworks and tools to develop or automatically generate PLC code to meet the new 
requirements. Overview of such frameworks can be seen in (Lee et al., 2006; Ljungkrantz & 
Åkesson, 2007). In spite of the potential benefits of these academic frameworks, they have 
not been reported to be used in full scale industrial projects. One obstacle is that the 
generated code in practice often has to be modified by hand and integrated with working 
code already existing in industry. 
For any code generating framework to be industrially successful, it certainly has to fulfil the 
requirements of industry. Moreover, successful integration of the generated code with 
already existing code requires understanding of PLC programming practice. This chapter 
aims at providing this knowledge. The chapter focuses on FB usage since reusing FBs 
created at the manufacturing companies is a promising approach for performing the code 



 Programmable Logic Controller 

 

18 

integration. Most results and findings are based on a study performed 2007 at two Swedish 
car factories, which is reported in (Ljungkrantz & Åkesson, 2007) and is restated with some 
additional comments and findings in Section 2–5 of this chapter. A comparable study was 
performed at Lamb Technion in USA (Lucas & Tilbury, 2003). That study was however 
focused on the development process and not on library components. Furthermore, only LD 
programming was used in that study, while this chapter presents the use of other languages 
and programming constructs as well. 
This chapter describes three major observations: 
• The PLC programs in the studied companies were written mainly in Ladder Diagrams 

and Sequential Function Charts. These programs frequently reused function blocks. 
• The PLC programs handled, besides automatic control, also safety and supervision, 

human machine interface, product data, communication etc. The code for automatic 
control was a minor part of the total code. 

• Although the function blocks were frequently reused, their behaviours were only 
informally described. 

To improve the efficiency and reliability when reusing FBs, we think it’s crucial that the FBs 
are unambiguously specified and verified. The end of this chapter therefore shows how FBs 
can be formally specified and then verified using model checking. Model checking means to 
automatically check whether or not a model fulfils a specification (Clarke et al., 2000). Thus, 
model checking complements the traditional methods of testing and simulation. FBs can be 
augmented with formal specifications to form components we call Reusable Automation 
Components (RACs) (Ljungkrantz et al., 2008), which can be verified using model checking. 
An example FB is specified and verified as a RAC; an error is detected, the implementation 
is corrected and the final RAC is successfully verified. This shows the potential of using 
formal methods in function block development. 

1.1 Chapter organization 
This chapter is organized as follows: Section 2 describes the scope and methods of the study. 
In Section 3, the control program development at the studied companies is explained. In 
Section 4, the most frequently used library components are presented and discussed and in 
Section 5 a classification and statistics of the library components FBs, are presented. Section 
6 discusses formal specification and verification of FBs and applies these techniques on an 
example FB. Conclusions are given in Section 7. 

2. Study of control code and library components 
The program structure and the library components in PLCs used at two Swedish car 
companies were studied in (Ljungkrantz and Åkesson, 2007). Mainly the code used in the 
car body assembly factories located in Sweden was investigated, since the PLCs in those 
factories control many robots, conveyors and other machines and have quite standardized 
layout. Other PLC programs at the two companies may be different from those studied. Still, 
“Company 1” and “Company 2” will from now on be used to refer to the respective studied 
factories and “the studied companies” will be used when referring to both. The 
investigation was performed by 1) manually reading the code in the PLC program 
development tool, 2) discussing with PLC engineers and programmers at the studied 
companies and studying a master thesis performed at the companies (Bergqvist and Öberg, 



Practice of Industrial Control Logic Programming using Library Components 

 

19 

2007) and 3) writing a program that searches through PLC code and libraries and extracts FB 
usage statistics. At the time of the study, the studied companies used the same PLC program 
development tool, see Section 3.2. 
The PLC code investigated was structured as different projects, each representing the code 
that runs on one PLC. In many cases one PLC controls one manufacturing cell, but in some 
cases two or more PLCs are used for one cell. Normally a cell is divided into several stations 
and a PLC often controls more than one station. For a fair comparison between the studied 
companies nine similar projects were chosen at each company: two underbody projects, three 
respot projects, one side line project, one framing project and two transportation projects. In the 
underbody cells, robots weld/bolt parts together to form the floor of a car. In the respot line 
the car floor or body are transported between the cells by a conveyor system and in each cell 
robots perform extra welding/bolting to increase the strength and to add extra parts. In the 
side line cells the sides of the car are built. In the framing cells the car body is built by 
welding together the car floor with sides etc. In the transportation cells conveyors, lifts etc. 
transport the car floor or body. 
The projects and the libraries were exported to text files. The developed program reads 
those files and detects all instances of each FB. It detects both FB instances that are used 
directly in the projects and FB instances that are used indirectly. FBs are considered to be 
used indirectly if they are used inside an FB, which has instances directly used in a project 
or in turn is used indirectly. The program presents usage statistics of the FBs. 
All used FBs were also classified into nine different categories, see Section 5. The program 
presents the number of instances and proportion of each category. 

3. Control program development 
This section describes the development of PLC programs at the studied companies, by 
describing the development actors, programming environment and general program 
structure. 

3.1 Important actors of the development process 
The PLC programs are usually developed by firms contracted by the studied companies. 
These firms program in a certain structure by following guidelines at the studied 
companies. Company 1 has a written specification for control programming and a standard 
project to start from. Company 2 has a stricter standard and structure of the code for the 
developers to follow. Both of the studied companies also provide libraries with components 
to reuse. The consultants may add components into the library, but these components are 
reviewed by the studied companies. At the time of the study, Company 1 had one person 
responsible for the library but a team of people that could review the code. Most of the 
components had no documentation apart from comments within the components. Hence, to 
understand the behaviour of a component, its internal code and comments had to be 
examined. At Company 2 a single person reviewed and also documented all library 
components. The documentation at Company 2 was done using pictures and natural 
language and was connected to the library components (as help files in the PLC program 
development tool). In addition to these internally developed and maintained libraries, 
suppliers of certain equipment also provide libraries with components to use with that 



 Programmable Logic Controller 

 

20 

equipment. Finally, the supplier of the PLC hardware and the development tool also 
provided a number of libraries to use. 

3.2 Development environment and programming languages 
At the time of the study, PLCs from the same vendor were used at both of the studied 
companies. The development tool used to program these PLCs supports programming in 
the IEC 61131 standard (IEC, 2003). Hence the programs can be written in five languages: 
Sequential Function Chart (SFC), LD, Function Block Diagram, Instruction List and Structured 
Text (to be precise, SFC is not considered a language in the standard, merely a graphical 
technique or program structure). The standard defines components called POUs, Program 
Organisation Units, to be reused and stored into component libraries. POUs can be of three 
different types: functions, FBs and programs. Functions may have many inputs but only one 
output. They have no memory and are typically used for mathematical operations. FBs 
allow an algorithm or set of actions to be applied to a given set of data, including inputs and 
internal variables, to produce a new set of output data. The behaviour of the FBs can be 
implemented in any of the five IEC 61131 languages and FB instances can be used in code 
written in any of the five IEC 61131 languages. Note that although IEC 61131 allows it, the 
used PLC program development tool did not permit the behaviour of FBs to be 
implemented using SFC. 

3.3 General program structure 
Both Company 1’s and Company 2’s projects consisted of several programs. Typically most 
programs were written in LD, one in Instruction List and up to two programs per station in 
SFC. A main sequence SFC of each station normally controlled the main order in which the 
operations of robots, clamps, transportation systems etc. should be performed. At Company 
1 the robots also allocated resources (machines or virtual zones), before they for instance 
started welding, to avoid collision. This was done by having a separate LD program for each 
robot that handled interlocks and allocation of resources needed by the robot. At Company 
2 this resource allocation was not needed since the sequence itself guaranteed that no 
collisions and variations occurred. 
At Company 2 only nine types of programs were identified: two general programs 
(“Always” and “PLC_General”, both LDs), one program for the Profibus communication 
(Instruction List), four programs for each station X (two SFCs, “StnX_Auto” and 
“StnX_Homerun”, and two LDs, “StnX_Manual” and “StnX_General”) and finally two 
built-in supervision programs provided by the PLC supplier. Company 1’s projects were 
split into more types of programs: five to ten general programs (for communication, 
finishing the line, indication, communication with the safety PLC etc., all LDs), one program 
for the Profibus communication (Instruction List), many programs for each station X and 
robot Y (up to two SFCs, “SXMain” and “SXHomeRun”, and many LDs, for instance 
“SXMovement”, “SXTransport”, “SXSumMemories”, “SXBodyId”, “SXAlarms”, 
“SXRobotsY ” and “SXIndications)”. While Company 2’s projects for instance had alarm 
handling code inside the actions of the SFC, at Company 1 the actions of the SFC were 
mainly used to set variables that in turn were used in the LD programs. For simple 
transportation cells neither Company 1 nor Company 2 used SFC. 
Although most of the programs were implemented in LD many FB instances were used and 
called from the LD code. Some programs almost resembled Function Block Diagrams. The 
behaviour of almost all FBs was implemented in LD. 



Practice of Industrial Control Logic Programming using Library Components 

 

21 

The studied companies had few levels of hierarchy in the sense that FBs, apart from basic 
FBs, seldom were used inside other FBs. Company 2 argued that blocks inside other blocks 
make it hard to read and understand the code. Both of the studied companies put emphasis 
on the importance of having code that can be understood and used in trouble-shooting by 
the operators; this affected both the structure and naming of the code and the comments. 
Ideally, the alarms and indications of a PLC project are sufficient for the operators to solve 
problems but since this is not always the case, the code must be readable by the operators. 

4. Frequent library components 
At both of the studied companies programs were reused indirectly by starting from copies 
of standard projects or programs. Only the built-in supervision programs at Company 2 
were reused as is. Two built-in basic libraries provided with the PLC program development 
tool consisted of both functions and FBs for mathematical operations, bit-manipulating etc. 
The rest of the libraries almost exclusively consisted of FBs. Therefore the investigations 
focused on FB reuse. 
To illustrate the use of FBs at the studied companies, the five most frequently used FBs, 
according to the projects investigated, are briefly described here. Then some of the FBs are 
further described in an example of controlling two parallel clamps and the approaches 
chosen at Company 1 and Company 2 are compared. The most frequent FBs are presented 
in Table 1. They represented approximately 50 % of the total number of FB instances. 
 

 
Table 1. Most used FBs at the studied companies in the investigated PLCs. 

4.1 Company 1 
 

FB_Event 
FB_Event uses a counter to assure that its binary output signal is held high for a minimum 
time, when its binary input goes high. The purpose is to assure that signals sent to other 
systems keep their values long enough to be detected. It should be used for all signals sent 
via TCP/IP. Furthermore, in the study FB_Event was used at almost all binary status signals 
sent to actuators, supervision and HMI systems. 
 

FB_Move 
FB_Move, see Figure 1, controls the movement of actuators like clamps, fixation pins and 
lifts. It can be used for moving the actuator both backwards and forwards in either 
automatic or manual mode. If for instance a forward movement in automatic mode is 
ordered by signal AutoFwd, some conditions are checked and if those are fulfilled the output 
signal OutputFwd goes high. At the same time a timer is started and when the timer has 
reached the value of TimeValue the TimeOutFwd output goes high. 



 Programmable Logic Controller 

 

22 

 
Fig. 1. The principle of controlling two parallel clamps at Company 1. To increase 
readability, the components for one of the clamps and for backward movement are omitted. 
FB_Alarm_Clamps 
FB_Alarm_Clamps is used to send an alarm if the movement of any of up to four parallel 
clamps is not performed within a specified time, see Figure 1. The input signal 
TimeOutMovement is activated by an external timer and when this signal goes high 
FB_Alarm_Clamps sends alarms for all clamps that have not yet reached the end position. 
 

FB_Event_Clamps 
FB_Event_Clamps FB has the same purpose as FB_Event but can be used for up to four 
parallel clamps. It has five input signals: a move request for the whole clamp group and four 
signals telling whether the connected clamps have reached their end positions or not, see 
Figure 1. Inside FB_Event_Clamps the four signals each goes through an FB_Event. 
 

FB_AllocateZon 
FB_AllocateZon is used to handle interlocks between a robot and a machine or between 
different robots, to avoid collision. A robot FB sends a unique number, representing the 
resource that the robot wants to use, to the FB_AllocateZon. The FB_AllocateZon checks that 
the conditions are met and when so it sends back the number representing the resource. 

4.2 Company 2 
 

OUT_SVx 
OUT_SV and OUT_SVx (x = 2,..,6 is the number of parallel movements to supervise) are FBs 
included in the built-in supervision library provided with the PLC program development 
tool, see OUT_SV2 in Figure 2. These FBs are used to supervise movements by checking that 
the movement has stopped within a specified time after the Run signal is given. Otherwise 
alarms are given for the movements that are not finished. The output signal Out shall be 
connected to the component that shall be moved. 
 

ManAuto 
The ManAuto FB was in the study used once for every station at Company 2. The FB 
handles the choice for running in automatic or manual mode and has input signals for the 
desired mode and for emergency stop, acknowledge signals for Profibus communication etc.  
 



Practice of Industrial Control Logic Programming using Library Components 

 

23 

 
Fig. 2. The principle of controlling two parallel clamps at Company 2. To increase 
readability the components for one of the clamps and for backward movement are omitted. 
If all conditions are fulfilled, the desired mode is chosen. The Au and Ma output signals 
were used as conditions for conveyors, robots and actuators, either as a logic condition for a 
specific movement or as a condition for a whole program. The latter was used for the 
programs that handled only automatic or manual control of a station. When the ManAuto 
output FBX.Ma was true it activated a task, see (IEC, 2003), so that program StnX_Manual 
ran. When instead FBX.Au was true it activated a built-in function SFC_CTRL so that the 
SFC StnX_Auto ran. 
 

Valve_ctrlx 
Valve_ctrl and Valve_ctrlx (x = 2,..,13 is the number of parallel actuators) are FBs to control 
one or many actuators connected to one valve, see Valve_ctrl2 in Figure 2. The end position 
sensors, backwards and forwards, for each of the connected actuators are input signals to 
the block. If the Enable_F input signal is true the forward output EF is set if all actuators are 
in backward position. The FB also has output signals for each of the actuators stating if the 
actuator is in forward and not backward position, and vice versa. 
 

CycleTime 
The FB CycleTime calculates the cycle time for a station by increasing a counter each second 
when the station is not paused, and resetting every new cycle. 
 

EM_Status 
EM_Status identifies and sends an error message from an electric monorail conveyor. 

4.3 Example and comparison 
In this section the main control approach at the studied companies will be explained using a 
simple example, in which many of the above FBs will be used. The task is to close a clamp 
group, consisting of two clamps that are moved in parallel via one pneumatic valve 
connected to the cylinders of both clamps. Each clamp has sensors in both end positions. 
The components for controlling the clamps at Company 1 are shown in Figure 1. The 
movement is started when the main sequence of the station, implemented as an SFC, is in 
the position where the clamps should be closed. If some basic conditions are satisfied (for 
instance that the station cycle has not already been performed in manual mode) the 
FB_Move is told to start the movement of the clamps. If the station is in Auto, the clamp 
group is not already closed etc., FB_Move starts a timer and sends a signal to the valve to 
close the clamp group. This signal is also sent to the FB_Event_Clamps. If any of the two 
clamps is not closed within the maximum time allowed for the clamp group, the 
FB_Alarm_Clamps sends an alarm for that clamp. The AND operator is used to assure that 



 Programmable Logic Controller 

 

24 

both clamps are closed and not open. In the figure all FBs for one clamp and for closing the 
clamp are shown. Components for the second clamp (C1b) should be added in the same 
way, components for opening the clamp should also be added in a similar way. The FBs 
FB_Event_Clamps and FB_Alarm_Clamps can be used for up to four clamps. As seen, fewer 
clamps can be controlled by setting the unused input sensor signals to true and letting the 
corresponding output signals be unconnected. Four of the five most used FBs at Company 1 
in the study are used in the example (FB_Event is used inside FB_Event_Clamps). The signal 
out of the AND operator is a typical signal that can be used as an interlock for the fifth most 
used FB, FB_AllocateZon, for instance guaranteeing that the clamps are closed before the 
robot welds the part held by the clamps. 
The components for controlling the clamps at Company 2 are shown in Figure 2. When the 
clamp group is open this is known by the Valve_ctrl2, since all four end position sensors are 
connected to this FB, and the EF (enable forward) output is high and the FaF and FbF 
outputs are low since the clamps are not in closed position. The real movement is started 
first when the auto sequence of the station, implemented as SFC also at Company 2, is in the 
position where the clamps should be closed. Now the OUT_SV2 FB tells the clamps to close. 
If a clamp is not in forward position before the time _Time has passed, an alarm is raised. 
The approaches at the two companies in the study were quite similar, as exemplified above, 
letting an SFC start the movement and reusing common FBs, with LD to describe the logic. 
Nevertheless, there were also small but interesting differences. The function of the AND 
operator in the Company 1 example was instead included in the Valve_ctrlx FB using LD, at 
Company 2. At Company 2 different FBs were needed when different numbers of clamps 
were to be controlled, as indicated by the number succeeding the FB name (for instance 
Valve_ctrl2 and OUT_SV2). This means that Company 2, in this case, had to keep and 
maintain more FBs in the library, but on the other hand did not have to set unconnected 
inputs to true or false. The OUT_SVx FBs that were used at Company 2 are very similar to 
Company 1’s FB_Alarm_Clamps, but are included in the built-in supervision library 
provided with the PLC program development tool. A benefit of using OUT_SVx FBs is that 
they can be given a teach mode in which the supervision program detects the actual time 
before the stop signals are detected and updates the _Time parameter with the measured 
time plus the Margin, given in %. Finally, the FB_Event was very common at Company 1 but 
not used at Company 2. 

5. Classification and statistics of function blocks 
In 2007, Company 1 had recently started classifying their in-house libraries into function 
based categories. Company 2 had chosen a more equipment-based classification. To be able 
to compare the libraries we divided the FBs into nine categories. All FBs in frequent libraries 
and all used FBs have been classified. The categories are listed below. 
• Robot Control: Control of, and resource allocation for, robots. 
• Machine Control: Control of other machines than robots, e.g. actuators and conveyors. 
• HMI: FBs for indication, mode-choice and manual control. Interaction with the 

operators. 
• Safety and Supervision: FBs for alarm handling, communication with the safety PLC and 

automatic safety operations like emergency stop. 



Practice of Industrial Control Logic Programming using Library Components 

 

25 

• Product and Production Data: FBs for communicating with identification systems like 
barcodes and RFID, and for controlling the production by for instance choosing next 
product type. 

• Statistics: Data collection and calculations for analysis, for instance cycle time, product 
counters and mean time between failures. 

• Ethernet & Profibus Communication: Communication protocols, drivers etc. for Profibus 
and Ethernet. 

• General Functions: FBs like timers, clock settings and bit-manipulating, maintained by 
the studied companies. 

• Basic: The FBs in the two built-in libraries Manufacturer_Lib and Standard_ Lib, provided 
with the PLC program development tool. FBs for basic mathematical operations, bit-
manipulating etc. 

At Company 1, 249 FBs have been classified and 141 of those were used in the investigated 
projects, including basic FBs. At Company 2, 200 FBs have been classified and 80 were used 
in the investigated projects, including basic FBs. 
In the investigated projects Company 2 had 1338 FB instances and Company 1 had 4514 FB 
instances. Ignoring the Basic FBs they still used 1115 and 4128 FB instances respectively. At 
Company 1 FB_Event and FB_Event_Clamps accounted for almost 30% of all FB instances. 
Besides, they were not used at Company 2 and used in many different circumstances at 
Company 1, so placing them in a single category would be inaccurate. Hence, they have 
been excluded when counting how many FB instances that are used within each category. 
Even with FB_Event and FB_Event_Clamps excluded Company 1 used 2950 FBs which is 
significantly more than Company 2’s 1115. Although it was the intention to choose similar 
projects from Company 1 and Company 2, a reason for the difference may be more 
extensive PLC projects at Company 1. The difference might also be due to different structure 
and usage of FBs within the projects, at Company 1 and Company 2. This explanation is 
indicated by the clamp control example depicted in Figure 1 and 2, showing three directly 
used FB instances and one indirectly used FB instance (FB_Event inside FB_Event_Clamps) 
at Company 1 but only two FB instances at Company 2. The FB instances divided into the 
different categories can be seen in Table 2. 
 

 
Table 2. Percentages of used FB instances divided into different categories. 

The FB instances do not represent the complete code, neither do they directly correspond to 
the work done by the developers. For instance the Ethernet & Profibus communication 
instances were quite few in the study but each FB was often complex. Still, the FB instances 



 Programmable Logic Controller 

 

26 

do represent a rough estimation of how the PLC code was divided. For instance the code 
handling HMI, safety, supervision, communication etc. undoubtedly represents a great part 
of the code. In (Lucas and Tilbury, 2003; Richardsson and Fabian, 2006) it is reported that 
according to their experience at Lamb Technion and Volvo Car Corporation respectively, the 
part of the code representing automatic control is about 10 % of the total. However, no data 
supporting this was shown in the two papers. In the investigation reported here the code for 
automatic control was part of the categories robot control and machine control, accounting 
for in total 39 % at Company 1 and 21 % at Company 2. For instance, Company 1’s 
FB_Move, classified as machine control, was directly called from the SFC handling the 
automatic control. At Company 2 the EF output of Valve_ctrlx, classified as machine control, 
was directly used in the action logic of the SFC for automatic control. Nevertheless, some 
FBs classified as machine or robot control, especially at Company 1, handle low level control 
of the machines and robots and should not be considered code for the automatic control 
itself, rather help FBs for the code which handles the operation order for automatic control. 
Therefore we can not claim that the code representing automatic control is exactly 10 % of 
the total, but it is indeed fair to state that: the code for automatic control is a minor part of the 
total code. 
It is also interesting to compare the category distribution at the two companies. Robot 
control is a greater part at Company 1 than at Company 2, which could be explained by the 
fact that Company 1 assumes that the operations can be executed in different orders and 
therefore uses zones to allocate resources. Company 1 also uses FBs for lamp indication 
(HMI) more frequently. The proportion of FB instances for alarm handling (safety and 
supervision) is significantly greater at Company 2. This can be explained by considering an 
SFC with parallel branches. At Company 2, the alarm handling FBs were included in the 
SFC and thus two instances of the involved FB existed in an SFC with two parallel branches 
and so on. At Company 1, the SFC branches set variables that in turn were used in separate 
LD programs, containing only one instance of the involved FB. In this particular case, the 
choice at Company 1 resulted in more compact code, while the code at Company 2 may be 
considered easier to read. 

6. Formal specification and verification of function blocks 
With the above findings as starting point, it is the authors’ belief that the code reuse can be 
made more efficient and less error prone. Efficient code reuse indeed requires components 
with known behaviour. This can be achieved by developing clear and unambiguous 
specifications and by verifying that the specifications are fulfilled by the implementation (the 
code). The specification can be seen as an abstraction of the implementation, capturing 
important properties. 
As explained in Section 3.1, most FBs at Company 1 had no external documentation. The 
internal comments of the FBs are in principle insufficient as specification, since these 
comments are too strongly connected to the implementation (possibly violating the principle 
of abstraction) and reading the comments require access to the implementation (violating 
the principle of information hiding, see (Parnas, 1972)). The external documentation of the 
FBs at Company 2 does not have these disadvantages. Nonetheless, being based on natural 
language, both the comments of Company 1 and the documentation of Company 2 might be 
ambiguous and not suitable as a basis for verification. In particular, this natural language 
documentation is not suitable when using formal verification. 



Practice of Industrial Control Logic Programming using Library Components 

 

27 

Formal verification uses math-based models and algorithms to perform the verification and 
thus requires a formal and unambiguous specification. Model checking is an important set of 
formal verification methods that can perform the verification automatically and produce 
counterexamples if the specification is not fulfilled (Clarke et al., 2000). Model checking is 
promising in FB development, since compared to common field testing, model checking can 
be performed earlier in the development process. Model checking has also advantages 
compared to simulation, since in many situations it is too time consuming to simulate and 
test all different scenarios in which a component can be used. Model checking however 
typically performs exhaustive search of the models. 
Model checking PLC code can be done using many different methods and tools, see (Bérard 
et al., 2001; Frey and Litz, 2000). The Reusable Automation Component (RAC) method 
developed by the authors of this chapter is tailored for specifying and verifying PLC 
program components, such as FBs (Ljungkrantz et al., 2008). The RAC specification structure 
and language is intended to be understandable by PLC program engineers without prior 
knowledge on formal languages. A RAC prototype tool has also been developed with which 
the RACs can be specified and then automatically translated into inputs to the model 
checking tool Cadence SMV (McMillan, 1993, 1999). The RAC method and tool is used here 
to demonstrate the usefulness of formal specification and verification in FB development. 
Next, the basics of the RAC are explained, followed by an example component that controls 
actuators similarly to the examples seen in Figure 1 and 2. This example component is not 
very complicated but stills shows the advantages of using formal verification. Formal 
specification and verification of the more complex component FB_Move used by Company 1 
can be seen in (Ljungkrantz et al., 2008). 

6.1 Reusable Automation Components (RACs) 
The RACs were introduced in (Ljungkrantz et al., 2008). A RAC has an interface that includes 
inputs and outputs and a body that includes the implementation and internal variables. The 
main difference compared to FBs is that the RAC interface includes a formal specification. 
As help when developing and structuring the specification, five types of properties can be 
used, briefly described below: 
• Operation preconditions are requirements that the user of the component must satisfy in 

order to obtain certain functionality, expressed by the operation behaviours. 
• Operation behaviours are requirements, ensured by the developer of the component, that 

must be fulfilled when all operation preconditions are satisfied. 
• Exception conditions are prioritized inputs or combinations of inputs that lead to 

exceptions. When an exception condition is true none of the operation behaviours can 
be guaranteed. Instead the exception condition must always guarantee certain 
behaviour, which must be described as exception behaviours. 

• Exception behaviours are requirements, ensured by the developer of the component 
regardless of the operation preconditions. Each exception behaviour includes one or 
more exception conditions. 

• Invariants are requirements, ensured by the developer of the component regardless of 
operation preconditions. 

The operation preconditions and operation behaviours are grouped as operation specification 
and the exception conditions and exception behaviours are grouped as exception specification. 



 Programmable Logic Controller 

 

28 

The specification language is based on IEC 61131-3 (all four languages but not SFC) and Linear 
Temporal Logic (LTL), see for instance (Clarke et al., 2000). The reason for basing the 
specification language on IEC 61131-3 is that most PLC engineers are familiar with the IEC 
61131-3 languages but might not know other programming or specification languages. 
Augmenting the language with constructs for LTL is done to express relations over time. 
Temporal logic contains constructs to reason about the order in time without explicitly 
mentioning time; for instance it can state that something will always or eventually be true. 
LTL is a type of temporal logic that suits the input-output based relations of FBs well and is 
also supported by model checking tools. The specification language contains spelled out 
versions of the temporal operators but also short-hand notations for some basic constructs, 
like rising and falling edges of variables. For instance the rising edge of a boolean variable v 
can be expressed as v_risingEdge which is equivalent to (NOT v_previous) & v, using the 
Structured Text based variant of the specification language. 

6.2 Example 
As an example, the development of a RAC Control_BinaryActuator, implemented as a 
function block in LD, will be demonstrated. The RAC should control a binary actuator and 
should signal alarms if the movements are not performed within a maximum time. Hence 
this RAC will contain most parts of the components Valve_ctrl and OUT_SV from Company 
2, see Section 4.2 and many parts of the components FB_Move and FB_Alarm_Clamps, 
excluding interlocks and mode handling, from Company 1, see Section 4.1. 
Assume that the interface of the example component has already been determined. The 
inputs and outputs of Control_BinaryActuator can be seen in Figure 3, which also shows 
how the component can be used to control a cylinder. When the Move input is true, the 
actuator will move forwards by setting ActuatorFwds to true if the DesiredState is “Forward” 
and move backwards by setting ActuatorBwds to true if DesiredState is “Backward”. Move 
must be held true throughout the complete movement. When the movement has been 
performed, as indicated by the sensor inputs SensorFwd and SensorBwd, the State output will 
be set to the new state. The component also has checks to see if the actuator performs 
accurately and outputs alarm signals if not. If the movement is not performed within the 
maximum time allowed, MaxMoveTime, the corresponding alarm, TimeOutActFwds or 
TimeOutActBwds, will be set true. The AlarmUnauthMove alarm is set if the actuator moves 
when it is not supposed to. Finally, the alarms can be reset by the user, by setting 
ResetAlarms to true. 
 

 
Fig. 3. The inputs and outputs of the Control_BinaryActuator RAC. 
The specification of Control_BinaryActuator can be seen in Figure 4, using the Structured 
Text based variant of the specification language. 



Practice of Industrial Control Logic Programming using Library Components 

 

29 

 
Fig. 4. Specification of the Control_BinaryActuator RAC. 

The first operation precondition states the allowed input values for MaxMoveTime and 
DesiredState. The second operation precondition states that the user must not change the 
direction of the movement while moving. The operation behaviour MoveOrAlarm 
summarizes the main functionality of the RAC by stating that when the user of the RAC is 
trying to move the actuator, the actuator will eventually reach the desired state or an alarm 
is raised. More operation behaviours could be added, for instance to specify under what 
circumstances the operating outputs ActuatorFwds and ActuatorBwds are actually true, but 
for brevity only MoveOrAlarm is shown. The exception condition Reset states that none of 
the operation behaviours can be guaranteed if the ResetAlarms input is true. The 
corresponding exception behaviour ResetBhvr declares that the ResetAlarms input will 
always reset all three alarms. The invariant NotIllegalMove states that the RAC will never try 
to move the actuator in both directions simultaneously. Finally, Stop declares that the 
outputs that move the actuator will never be true when Move is false. Note that NOT Move 
could as well have been specified as an exception condition, depending on how “normal” 
operation of the component is viewed. If so, Stop would have been specified as an exception 
behaviour instead. 
 

Implementation and Verification 
A rather straightforward attempt of implementing the example component can be seen in 
Figure 5. The implementation makes use of the standard functions AND, EQ (tests equality) 
and MOVE_E and of the function block TON. TON is a standard timer that sets the output Q 
to true if IN is true at least as long as the time PT. The function MOVE_E that is used in the 
position control at the top of Figure 5, copies the string on the IN input to the output to 
which State is connected, when the EN input is true. The positive (P) and negative (N) 
transition-sensing contacts are used to detect rising and falling edges of the signals, 
respectively. 
The RAC can now be formally verified to check whether the implementation of Figure 5 
fulfils the specification of Figure 4 or not. The RAC can be translated into inputs to Cadence  
 



 Programmable Logic Controller 

 

30 

 
Fig. 5. An implementation approach of the Control_BinaryActuator RAC in Ladder Diagrams 
using standard functions and the timer FB TON. 
SMV by the RAC prototype development tool, and then Cadence SMV can be used to 
perform the verification. Doing this, the result is that the RAC is not valid, that is the 
specification is not fulfilled by the implementation. Both invariants are fulfilled, but not the 
operation behaviour MoveOrAlarm. SMV gives a counterexample to why the operation 
behaviour is not fulfilled to help understand and solve the problem. If the actuator should 
be moved forward but the sensors are broken so that both sensor inputs are true at the same 
time, the actuator will not be moved and unfortunately the TimeOutActFwds will not be set. 
The FwdTimer will not be started since the SensorFwd is already true, but the state will be 
reported as Backward (from the second MOVE_E function) and hence MoveOrAlarm is not 
fulfilled. The RAC could certainly be made valid by adding a precondition saying that the 
actuators and sensors may never be broken, but a much better alternative is to change the 
implementation so the alarms will actually work when the sensors are broken. 
To solve the problem, two internal variables InFwdPosition and InBwdPosition are used that 
are true only when SensorFwd and not SensorBwd are true and vice versa. Those internal 
variables are used as conditions to start the timers, as shown in Figure 6. Using this 



Practice of Industrial Control Logic Programming using Library Components 

 

31 

implementation the complete specification is fulfilled and the RAC is valid. Even for such a 
small and elementary component as Control_BinaryActuator, the error of the first 
implementation attempt might be hard to foresee. By studying the counterexample of the 
model checking tool though, the error can be easily solved. This demonstrates the potential 
of using formal specification and verification in the FB development process. 
 

 
Fig. 6. A valid implementation of the Control_BinaryActuator RAC in Ladder Diagrams. The 
part not shown is exactly the same as in Figure 5. 

7. Conclusions 
In this chapter a study of PLC programming and use of library components at two Swedish 
car manufacturers is presented. Both companies used several programs for each PLC, 
implemented mainly in LD and SFC. These programs included lots of instances of reusable 
function blocks, FBs. Some of the most frequent FBs were used for automatic control of 
actuators and conveyors but in total only a minor part of the used FB instances was for 
automatic control; the majority was for HMI, safety, supervision, production data, 
communication etc. This is important to consider when developing or modifying 
frameworks for control program generation, to cope with the new requirements of flexible 
manufacturing systems. Integrating industrial FBs with new frameworks for generating 
control sequences is an interesting direction for future research. 
It is also interesting to consider that although the FBs were frequently reused, their 
behaviours were only informally specified. In our opinion the FB reuse can be made more 
efficient by also using tools and methods for formal specification and verification. This is 
demonstrated by an example component, in which an error of the first implementation 
attempt is discovered and solved. 
For formal specifications to be used in industry it is important that the development of 
relevant specifications is not too troublesome or time consuming. We therefore currently 
research into developing guidelines for formal specification of PLC program components. 



 Programmable Logic Controller 

 

32 

8. Acknowledgment 
This research is financed by the ProViking research programme. Thanks also to all 
concerned staff at the studied companies for sharing their knowledge and code. Thanks to 
Isak Öberg and Olof Bergqvist for performing an interesting master thesis. 

9. References 
Olof Bergqvist and Isak Öberg. PLC function block survey of Swedish automotive industry. 

Master’s thesis, Dept. Signals and Systems, Chalmers Univ. Technol., Göteborg, 
Sweden, 2007. 

B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, Ph. Schnoebelen, and P. 
McKenzie. Systems and Software Verification – Model-Checking Techniques and Tools. 
Springer, 2001. 

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press, 2000. 
Georg Frey and Lothar Litz. Formal methods in PLC programming. In Proc. Int. Conf. Syst., 

Man, Cybern., pages 2431–2436, Nashville, TN, USA, 2000. 
IEC. Programmable Controllers—Part 3: Programming languages. International standard 

IEC 61131-3. International Electrotechnical Commission, second edition, 2003.  
Dick Johnson. Nano devices lead assault on traditional PLC applications. Control 

Engineering, 49(8):43 44, 2002. 
Seungjoo Lee, Mark Adam Ang, and Jason Lee. Automatic generation of logic control. 

Technical report, Ford Motor Co., Univ. of Michigan and Loughborough Univ., 
2006. 

Robert W. Lewis. Programming industrial control systems using IEC 1131-3 Revised edition. 
The Institution of Electrical Engineers, 1998. 

Robert W. Lewis. Modelling Control Systems Using IEC 61499. The Institution of Electrical 
Engineers, 2001. 

Oscar Ljungkrantz and Knut Åkesson. A study of industrial logic control programming 
using library components. In Proceedings of the 3rd Annual IEEE Conference on 
Automation Science and Engineering, pages 117–122, Scottsdale, AZ, USA, 2007. 

Oscar Ljungkrantz, Knut Åkesson, and Martin Fabian. Formal specification and verification 
of components for industrial logic control programming. In Proceedings of the 4th 
IEEE Conference on Automation Science and Engineering, pages 935– 940, Washington 
DC, USA, 2008. 

M.R. Lucas and D.M. Tilbury. A study of current logic design practices in the automotive 
manufacturing industry. Int. J. Human-Computer Studies, 59(5):725–753, 2003. 

Kenneth L. McMillan. Symbolic Model Checking. Kluwer, 1993. 
Kenneth L. McMillan. The SMV language. Cadence Berkeley Labs, 1999. URL 

http://www.kenmcmil.com/language.ps. 
Mostafa G. Mehrabi, A. Galip Ulsoy, and Y. Koren. Reconfigurable manufacturing systems: 

Key to future manufacturing. J. Intelligent Manufacturing, 11(4):403–419, 2000. 
David Lorge Parnas. On the criteria to be used in decomposing systems into modules. 

Communications of the ACM, 15(12):1053–1058, 1972. 
Johan Richardsson and Martin Fabian. Modeling the control of a flexible manufacturing cell 

for automatic verification and control program generation. J. of Flexible Service and 
Manufacturing, 18(3):191–208, 2006. 



3 

Control and Plant Modeling for Manufacturing 
Systems using Basic Statecharts 

Raimundo Moura1 and Luiz Affonso Guedes2 
1Federal University of Piaui – UFPI 

2Federal University of Rio Grande do Norte – UFRN 
Brazil 

1. Introduction 
Based on the IEEE Standard Glossary of Software Engineering Terminology (IEEE Std 
610.12-1990, 1990), “a system can be regarded as a collection of components organized to 
accomplish a specific function or set of functions”. The key point in this definition is the 
interaction among system components. Cassandras & Lafortune (2008) discuss systems 
classification, especially for Discrete Event Systems (DES). In their definition, DES are 
systems that have discrete state space and an event-driven dynamic, i.e., the state can only 
change as a result of instantaneous events occurring asynchronously over time. In this 
context, state-based methods such as Finite State Machines (FSM) and Petri Nets have been 
traditionally used to describe these systems. 
The automation area uses concepts of the theory of systems to control machines and 
industrial processes. Considering an industrial automation process based on Programmable 
Logic Controllers (PLC), the sensors are installed in the plant and generate events that 
represent input variables to the PLC. The actuators are associated with the actions produced 
by the PLC program and represent output variables. Industrial controller programming is 
currently performed by qualified technicians using one of the five languages defined by 
IEC-61131-3 (1993) standard and who seldom have knowledge of modern software 
technologies. Furthermore, controllers are often reprogrammed during plant operation life-
cycle to adapt them to new requirements. As a result, “for practically no implemented 
controller does a formal description exist” (Bani Younis & Frey, 2006). In general, PLC are 
still programmed by conventional “trial-and-error” methods and there is no written 
documentation on these systems. 
On the other hand, software reusability and composability have been discussed since the 
80’s, with the use of object-oriented methods (Boehm, 2006). In the Industrial area, the IEC-
61499 (2005) standard allows reuse of application parts (function block, sub-application) in 
different applications. Software reuse is a complicated problem and depends not only on the 
means provided by the modeling language, but also on the overall application structure. 
In the Computer Science area, several models guide the software development process such 
as the Waterfall Model (Royce, 1970), a sequential software development model in which 
development is seen as sequence of phases; the Spiral model (Boehm, 1988), an iterative 
software development model which combines elements of software design and prototype 
stages; and agile methods, which emerged in the 1990. Examples of the latter are: Adaptive 



 Programmable Logic Controller 

 

34 

Software Development, Crystal, Dynamic Systems Development, eXtreme Programming (XP), 
Feature Driven Development, and Scrum. B. Boehm (2006) presents an overview of the best 
software engineer practices used since 1950 (decade to decade) and he identifies the historical 
aspects of each tendency. 
In short, an application life-cycle can be divided in three phases: Modeling - Validation - 
Implementation (see Figure 1). Modeling is phase that demands more time in application 
lifecycle. The “Modifications” arc represents multiple iterations that can occur in software 
modeling processes. The “Reengineering” arc represents the research area, which 
investigates the generation of a model from legacy code. Our focus is in forward 
engineering, which investigate the model generation from requirements specified by users. 
 

 
Fig. 1. Application life-cycle: overview. 

In literature, there are several approaches that present methodologies, languages, and 
patterns for modeling industrial applications, especially for Discrete Event Systems (DES) 
(Cassandras & Lafortune, 2008). The two most common approaches are Finite State Machines 
(FSM) and Petri nets; both allow for formal verification of the correctness of a control system. 
However, despite significant research advances in recent years, these formal techniques 
have not been widely employed in industry (Endsley et al., 2006). We believe that such 
approaches are still low-level formalisms, resulting in large and unwieldy systems. The 
Statecharts formalism, described by David Harel (1987), makes the specification and design 
of complex DES easier. It extends conventional finite state machine with notions of 
hierarchy, concurrency, and communication. 
Owing to the aforementioned problems, this work discusses a methodology for plant and 
control modeling and validating of the manufacturing systems that include sequential, 
parallel and timed operations, using a formalism based on Statecharts, denominated Basic 
Statechart (BSC). For the validation phase, simulations were executed through the 
execution environment developed by the Jakarta Commons SCXML Project (SCXML, 2006), 
and, as the control software model does not represent the controller itself, a translation from 
this model into a programming language accepted by the PLC was also carried out. In this 
study, Ladder diagrams were used because it is one of the languages defined by international 
IEC-61131-3 standard most widely used in industry. However, these models can be 
translated into any IEC-61131-3 standard language. 



Control and Plant Modeling for Manufacturing Systems using Basic Statecharts 

 

35 

The remainder this work is organized as follows: Section 2 discusses about the main aspects 
of the Statecharts in modeling of automation systems and we introduce the semantic of the 
BSC using only characteristics relevant to the industrial area. Section 3 describes in general 
the methodology proposed by this contribution. In Section 4, we discuss an algorithm for 
translating the control model described in Basic Statecharts into Ladder diagrams, thereby 
enabling tests with actual PLCs. In Section 5, one typical example of application in the 
manufacturing area is discussed as case study to illustrate our ideas. In the last section, we 
conclude with a discussion about future projects. 

2. Basic statecharts 
Automata-based methods have been widely used to model DES, especially by the 
Supervisory Control Theory (Ramadge & Wonham, 1989). Automata represent mathematical 
abstractions that explicitly enumerate all the states of the system. To construct complex 
systems, the Automata are formally composed through systematic operations such as 
product and parallel composition. Moreover, they facilitate the analysis of system properties 
related to the validation and verification processes. However, the main drawback of the 
approach is inherent in the graphic representation of the model, due to the exponential 
growth of the number of states in the composition operations (Cassandras & Lafortune, 
2008). 
Statecharts formalism was described by David Harel in the 1980s and it extends conventional 
automata with notions of hierarchy, concurrency, and broadcast communication. Thus, 
Statecharts facilitate the specification and design of complex DES. Hierarchy and 
concurrency are represented through OR-decomposition and AND-decomposition, 
respectively. It is worth mentioning that Statecharts do not explicitly enumerate all the 
system states. Therefore, an implicit combination of the parallel states must be performed to 
obtain the real configuration of the model; that is, the real state of the system. Moreover, 
Statecharts have a compact graphic representation that can be translated into automata, 
according to the description in (Drusinsky & Harel, 1989). 
The absence of a formal semantic of the original Statecharts makes the verification of these 
models very complex to carry out. In an attempt to minimize this problem, several Statechart 
variants were defined. Michael von der Beeck (1994) makes a comparison between 20 
variants, and discusses a number of problems related to the original Statecharts. In addition, 
the broadcast communication of the Statecharts allows a triggered event in one state to affect 
another state that has no dependent relation with the former. Another drawback of the 
original Statecharts is that they allow interlevel transitions without imposing any constraints, 
a situation that can generate unstructured models. 
To incorporate the advantages of the original Statecharts and to avoid the aforementioned 
problems, we propose a formalism to model DES based on UML/Statechart diagrams, but 
with a more limited syntax and semantic, denominated Basic Statechart (BSC). 
The Basic Statecharts use the syntax of UML/Statecharts with some variations; for example: i) 
absence of history connectors; ii) inclusion of input/output data channels to allow explicit 
communication between the components and to avoid broadcast messages in the system; 
and iii) the transitions are represented by the expression “[condition]/action”, where the 
conditions are composed using variables, data channels and the logical operators AND, OR 
and NOT; and, the actions allow one to change the value of these variables. The semantic of 
Basic Statecharts is more restrictive than that of UML/Statecharts to avoid conflict and 



 Programmable Logic Controller 

 

36 

inconsistency in model evolution. We believe that this semantic is more appropriate for 
modeling industrial systems. 
A BSC is composed of a collection of components and a BSC component is a structure used 
to model the behavior of a system element. A component can contain states, input/output 
channels, internal variables, and other components, which can be called subcomponents. A 
data channel is a resource used to communicate between system components. The input 
data channels are implicitly associated with internal variables and thus their values are 
maintained during the entire execution cycle. They can be used to change the value of guard 
condition from the component or external entity, such as control software or a simulation 
environment. The output data channels are also associated with internal variables; 
however, their values are updated only at the end of the execution cycle. They are used to 
publish the status of internal elements from one component to another. 
The conceptual model describing the relationship between the elements that make up a BSC 
diagram is shown in Figure 2. 
 

 
Fig. 2. Basic Statecharts: conceptual model. 

The evolution of the BSC dynamic behavior is performed by sequential steps, called the 
execution cycle or macrostep. One constraint that is ensured by the BSC is that a component 
composed of basic states can only trigger one transition in each execution cycle (macrostep). 
As with original Statecharts, each macrostep in BSC can be divided into several microsteps; 
however, the actions performed when one transition is triggered only update the variables 
defined in the component data area. Moreover, the BSC run accordance with definition 
order of the components. Thus, in an execution cycle only one component can affect the 
components subsequently defined in the model. This point represents a difference between 
the proposed approach and the Harel diagrams specified by UML. Basic Statecharts make the 
definition of validation techniques more practical, because their syntax and semantic are 
more constrained than those of the original Statecharts. 
A macrostep of a BSC execution is finished when all the components have been analyzed. 
The BSC communication mechanism follows a publish/subscribe pattern: the variables 
associated to output channels are published in a global area, and the variables associated to 
input channels are consumers of these data. It is important to note that a component can be 



Control and Plant Modeling for Manufacturing Systems using Basic Statecharts 

 

37 

both publisher and subscriber of a same data item. However, the published value in one 
step is only consumed in the next step. It is also valid for different components. Moreover, 
one published value can be consumed by several components in a same step, but the value 
of all components is guaranteed to be the same. 

3. Plant and control: modeling and validation 
In industrial applications, normally the controller software is verified in conjunction with a 
model of the plant in which it operates. So, it is necessary to obtain an accurate model to 
maintain fidelity with the real plant (relation one-to-one). 

3.1 Plant: modeling 
For plant modeling, our methodology is based on the hybrid approach - bottom-up and top-
down. More specifically, it proposes to model the basic elements, grouping them into larger 
structures. This process is repeated until it generates the correct model of application. The 
methodology consists of three phases described as follows: 
1. Modeling the basic application elements or using models already defined in a 

component repository; 
2. Decomposing the basic states in substates, if necessary; 
3. Representing all automation plant components as parallel states; 
Phases 1 and 2 consist of modeling and refinements of the basic elements which compose 
the application. They can be run several times as an iterative process. In each iteration, we 
work with components which are more and more complex. Further, these components can 
be grouped in a repository. The third phase determines that all application components 
must be executed at the same time, in a parallel way, where the communication between 
them is made by input/output channels. 
We will present how our methodology works below. 

3.1.1 Basic components: patterns 
For automation systems, many components follow an On/Off pattern, for example, valves 
and sensors. Figure 3-a shows the dynamic behavior of this pattern, which can be in states: 
“Off” or “On”, and two transitions to change from state: “[g1]” from “Off” to “On” and 
“[g2]” from state “On” to “Off”. Other components require adjustment in modeling to 
include new characteristics. For example: a temporary state (Wait) between the states “On” 
and “Off” (see Figure 3-b). 
 

 
 

Fig. 3. On/Off patterns: basic model. 



 Programmable Logic Controller 

 

38 

3.1.2 Cylinder component 
In the manufacturing field, one of the most common components is the pneumatic cylinder 
that can be composed of more simple components (valves, arms and sensors) and can have 
displacement sensors/end-position initiators. 
Figure 4 depicts a single-action cylinder with advancing controlled by the valve, return 
carried through springs, and one end-position sensor which is triggered when the cylinder 
arm gets the full advance. The generic notation “[g]/A” in a transition means that: when a 
guard condition g is true, the action A will be executed. Therefore, if an action in a 
component X1 updating one variable used in guard condition of a component X2, then we 
will say that: X2 depends on component X1. According to figure, the transition “[ch]/v1=1” and 
“[v1]/tm1=1” indicate that: the cylinder arm depends on the valve, i.e., the arm advances 
while the valve remains open. When the valve is closed through the action “ch=0”, the 
cylinder arm gets “Returned”, in function of transitions “[¬v1]/tm1=0” or “[¬v1]/v2=0”.  
The cylinder arm has the following behavior: when the variable v1 gets true, the arm gets to 
“Advancing” in a specified time, which depends on technical characteristics and it is 
represented by “*” in the figure. If the valve is closed before this specified time (event 
tm1.tm), the cylinder arm gets to “Returned” and nothing happens to the sensor. If the event 
tm1.tm occurs, then the arm gets to “Advanced” and the active state of the sensor passes 
from “False” to “True”, implicitly. So, when the valve is closed, the arm gets “Returned” 
and the sensor passes from “True” to “False”. 
 

 
Fig. 4. Single-action cylinder: basic model. 

The scenario that describes the desired operation of the cylinder is very simple: one external 
event allows the opening of the valve when the channel gets equal 1 (ch=1); then the 
transition “[ch]/v1=1” is run; and after the sensor detects the total advance of the cylinder-
arm, the valve must be closed (data channel equals 0, i.e., ch=0); then the transition 
“[¬ch]/v1=0” is run. The events to open/close the valve represent the control police that is 
run by the model and define the dynamic cylinder. 

3.2 Control software: modeling 
In the manufacturing area, actuator components are controlled through events that are 
triggered by devices, such as buttons, sensors, and timers, which are defined in the control 
model using temporary variables. The controller is modeled through the composition of 
components; i.e., complex models are constructed from simpler models. The basic 



Control and Plant Modeling for Manufacturing Systems using Basic Statecharts 

 

39 

components are: a) actuators that are modeled using components with two states: OFF and 
ON; b) timers that are modeled using components with three states: OFF, START and ON - 
the state “START” starts the timer and the transition “[tm1.tm]” from state “START” to state 
“ON” triggers the end of the timer event; and c) variables that are associated with sensors 
and temporary elements. Figure 5 shows the basic model for these elements. In this figure, 
g1, g2, and g3 are guard conditions. The data model area in Figure 5-c defines two Boolean 
variables (s1 and s2), both with the “false” value, using the syntax of the SCXML 
specification that was implemented by the Jakarta Project Commons SCXML (SCXML, 2006). 
This project provides a generic event-driven state machine based on the execution 
environment, borrowing the semantics defined by SCXML, which represents the Statechart 
diagrams by a XML file. 
 

 
Fig. 5. Actuators: basic model. 

Operational requirements of the actuators are inserted into the model as transitions between 
the states, in the following general form: “[guard condition] / action”. The guard conditions 
are Boolean expressions composed of data channel and internal variables, interconnected 
through logical connectors ¬ (negation), || (disjunction) and & (conjunction). The actions 
can be, for example, an assignment statement to set a value in the variable and/or data 
channel. Therefore, operational requirements are constraints in the model to implement 
dependencies and/or interactions between the components. Such constraints allow us to 
define sequential and parallel behavior in the model; this will be described in the next 
subsections. 

3.2.1 Sequential operation 
Consider a plant composed of two actuators (Ai and Aj) that run sequentially one after the 
other, i.e., Ai;Aj. This sequence is run continuously in a cyclical way until user intervention. 
The sequential behavior of Ai and Aj is obtained through the execution of actions in actuator 
Ai, which generates internal event triggers in actuator Aj. In general, an action in an actuator 
can cause state changes in other actuators. 
Figure 6 shows the Basic Statechart diagram for modeling the sequential behavior between 
actuators Ai and Aj discussed above. In this figure, ch1, ch2 and ch3 are input data channels; 
ch1, Ai and Aj are output data channels, and “ev” is an internal variable. Note that a same 
channel can be both input and output channel in a model. This is possible because the 
channels are associated implicitly with internal variables. These elements are used to 
generate the desired model behavior. In this case, the “ev” variable is used as an action by 
actuator Ai, which indicates the end of its actuation. It is perceived by actuator Aj, which 
starts its operation, generating the sequential behavior between them. Note that the data 



 Programmable Logic Controller 

 

40 

model area is not represented in the figure. At the end of Aj actuation, data channel ch1 is 
updated, generating the cyclical behavior of the model. In its initial configuration, all the 
actuators of the model are set to “Off”. The system starts its operation when data channel 
ch1 is equal to 1 (Boolean value “true”), a situation that can be simulated when the operator 
pushes a “start” button on the Interface Human-Machine (IHM), for example. 
 

 
Fig. 6. Control model: sequential operation. 

3.2.2 Parallel operation 
Parallelism, an inherent characteristic of original Statecharts, is accomplished through AND-
decomposition. However, the component synchronism demands additional mechanisms. 
Consider a plant composed of three actuators (Ai, Aj and Ak), where Ai and Aj run in 
parallel, but Ak can only run after the execution of the two first components, i.e., 
(Ai||Aj);Ak. This sequence is run continuously in a cyclical way until operator intervention. 
The parallel behavior of Ai and Aj is obtained naturally; however, internal variables must be 
used to generate internal event triggers in actuator Ak to indicate the end of execution in 
other actuators. Thus, Ak must wait for these updates to start its operation. After the Ak run, 
these internal variables must be updated to allow the execution of a new cycle in the system. 
Figure 7 shows the Basic Statechart diagram for modeling the parallel behavior between the 
aforementioned actuators. In this figure, chi(i = 1..5) are input data channels, Ai, Aj and Ak 
are output data channels, evi and evj are internal variables. These elements are used to 
generate the desired application behavior. In this case, the variable evi is updated as an 
action by actuator Ai, indicating the end of its actuation, and the variable evj is updated to 
indicate the end of Aj actuation. These updates are perceived by actuator Ak, which starts its 
operation, generating the synchronism between them. At the end of Ak actuation, the evi 
and evj must be “reset” to generate the cyclical behavior of the model. In its initial 
configuration, the model must have all actuators set to “Off”. 

3.2.3 Timed operation 
Timers and counters are quite common in industrial applications; for example: i) an actuator 
must execute for a specific time; ii) an actuator must execute only after a specific time; iii) 
the system must execute k times before triggering an alarm; and so on. Timers and counters 
are modeled through basic components and their current values can be used to set the guard 
conditions of the transitions in BSC. Furthermore, they can be started and/or reset by some 
action of the model. 



Control and Plant Modeling for Manufacturing Systems using Basic Statecharts 

 

41 

 
Fig. 7. Control model: parallel operation. 

Timers are controlled by a global real-time clock that executes in parallel to the system 
model, and they are updated only at the beginning of each execution cycle. Thus, when a 
timer is enabled in a component, the timing process is initiated in the next execution cycle. 
When the timer reaches or surpasses its specified limit, an internal variable tm is made true 
(tm = true) to indicate end of timing. In the timer, creating must define the time limit value 
in time units. 
Consider a plant composed of an actuator Ai and a timer Tk, where Ai must act for t seconds 
before turning off. Figure 8 shows the Basic Statechart for modeling the temporal behavior of 
actuator Ai, controlled by timer Tk. In this figure, ch1 and ch2 are input data channels used to 
start the operation of actuator Ai and of timer Tk, respectively, and tk.tm is an input data 
channel used to indicate the timeout of Tk. It is important to mention that the timers are 
updated as a global action of the model, and the timer Tk is started when action tk = 1 is 
executed. 
 

 
 

Fig. 8. Control model: timed operation. 



 Programmable Logic Controller 

 

42 

The guard condition “ev” used to turn off actuator Ai becomes true when timer Tk reaches 
or surpasses the specified limit (condition tk.tm). Thus, the constraint that defines that 
actuator Ai must execute for a specific time is ensured. 

3.3 Control software: validation 
The approach for modeling the control software discussed in Section 3.2 maintains the 
description and specification aspects built into the Basic Statechart model. Transitions, guard 
conditions, and implicit actions are used to describe system constraints. Thus, the approach 
allows us to analyze some controller properties using the reachability tree of the formal 
model. Moreover, simulated environments can be used to validate the control model along 
with the plant model. 
The reachability tree of the model allows us to analyze a number of properties, such as: i) 
reinitiability – for each cfgi state configuration reached from the initial cfg0 configuration, is 
it possible to return to cfg0 by a sequence of events? ii) vivacity – does the controller act in 
all of the components in the model? iii) deadlock – is there a cfgi state configuration in 
which progress cannot be made because no transition can be triggered? 
Masiero et al. (1994) propose an algorithm to create a reachability tree for Statecharts. Here, 
we briefly discuss an adaptation of this algorithm to analyze the aforementioned structural 
properties. This algorithm was implemented using Java language and the SCXML execution 
environment, with the following modifications: 
• The set that contains all possible transitions for a given configuration includes only the 

transitions with events controlled by an external agent, and with timed events triggered 
automatically by the components. 

• To obtain a new configuration of the model by triggering a transition, the internal 
variables are implicitly updated and, therefore, can trigger other transitions 
automatically in the model. This characteristic decreases the number of states produced 
in the reachability tree. 

• The part of the algorithm that describes the history connectors is completely excluded, 
because Basic Statecharts do not include such characteristics. 

The use of this algorithm allows a formal analysis of system behavior (control + plant) to 
verify and validate a number of properties. It is important to note that a plant model is 
required, and it may be represented in a given formalism; for example, automata, Petri net 
or Statecharts. Moura et al. (2008) propose a systematic procedure for modeling complex 
plants using Statecharts and discuss some aspects of control modeling. However, they 
presented only a descriptive view of that process. 
In this work, we chose Basic Statecharts to model plant behavior, without losing generality. 
Therefore, the system (control + plant) can be described as parallel composition between the 
controller and plant. The main advantage of this approach is that sensor and actuator 
characteristics become internal events of the system. Thus, the intrinsic properties of the 
system, such as reachability, deadlock, and reinitiability become intrinsic and extrinsic 
properties of the controller. 
Another advantage of this approach owes to the fact that it maintains controller and plant 
functionality explicitly separated. Here, unlike other approaches, such as the R & W 
approach (Supervisory control), the controller synthesis produces more compact models. In 
the next section we present an algorithm for translating the control model described in Basic 
Statecharts into one PLC language (in this case, Ladder diagram). 



Control and Plant Modeling for Manufacturing Systems using Basic Statecharts 

 

43 

4. Control software: implementation 
Given that the control model does not represent the controller software itself, the translation 
from this model into a programming language accepted by the PLC must also be performed. 
Ladder diagrams were used because it is one of the languages defined by international IEC-
61131-3 standard most widely used in industry. The translation is performed systematically 
by a method that analyzes one component at a time, according to its type (actuator or 
timer). 
The states (“OFF” and “ON”) in the actuators are represented in the Ladder through 
auxiliary contacts (flip-flop Reset and flip-flop Set), respectively. Each control model transition 
results in a “rung” of the Ladder, as follows: the source state must be added to the condition, 
and the target state represents the action that must be executed. Let A be the generic 
actuator shown in Figure 5-a, where transitions “[g1]/A=1” and “[g2]/A=0” generate lines 3 
and 4, respectively, of the Ladder diagram, as shown in Figure 9. In this figure, c1, c2, and c3 
are auxiliary variables that are computed from the guard conditions of the model (i.e., g1, 
g2, and g3, respectively). This mapping is made because the guard conditions can be 
complex. 
The timers were translated as follows: one “rung” to transition from the “OFF” to “START” 
state, which allows us to start up the timing; one “rung” to specify the timer itself, with one 
element that indicates the end of the specified time, which can be used in other Ladder lines, 
 

 
Fig. 9. Actuators: Ladder diagram. 



 Programmable Logic Controller 

 

44 

according to the application; and another “rung” to reset the timer. The generic timer shown 
in Figure 5-b generates lines 5 to 8 of the Ladder diagram (see Figure 9). In this figure, the 
parameters “HAB” and “T” of the block TMR represent identifiers used to set up as follows: 
HAB lets it enable/disable, and T lets us define the time limit value of this block. The 
variables that represent the sensors and or auxiliary contacts can be freely used in the guard 
conditions and actions of the Ladder code, according to the transitions of the model. 
However, as the guard conditions of the transitions (in each Ladder line) must be guaranteed 
by at least one PLC-scan cycle, all conditions must be evaluated and stored in auxiliary 
variables at the beginning of each PLC-scan cycle (see lines 0, 1 and 2 in Figure 9). 
Moreover, it is important to note that to avoid non-determinism in the system, the guard 
conditions for a same source state must be mutually exclusive. This constraint can be 
established during model building and the user can be notified by warning messages. But, 
as the conditions must be mutually exclusive to a same source state, these Ladder lines 
specifically cannot be generated in any order, because inconsistencies can occur in one PLC-
scan cycle; for example, turning on/turning off an actuator. To avoid such inconsistencies, 
the temporary state of the actuators must be stored in auxiliary variables, and at the end of 
the cycle, these variables must be updated for the corresponding outputs (see lines 9 and 10 
in the Figure 9). 
 

 

Algorithm 1. Translation from the control model into a Ladder diagram 
{Let there be n actuators, m timers, t transitions} 
{Guard conditions analysis} 
for i = 1 to t do 

Compute guard(i) {Guard condition of the i-th transition} 
end for 
{Actuator’s logic} 
for i = 1 to n do 

for j = 1 to T[Ai] do 
if target( j) = Ai.ON then 

AiTemp.set := source( j) AND guard( j) 
else 

AiTemp.reset := source( j) AND guard( j) 
end if 

end for 
end for 
{Timer’s logic} 
for i = 1 to m do 

Tmi.set := guard(enableTimer(Tmi)) 
CreateTimer(Tmi, limit(Tmi)) {Function block: Timer} 
tmi.tm := Tmi.enable() AND Tmi.timeout() 
Tmi.reset := tmi.tm 

end for 
{Update actuators from temporary variables} 
for i = 1 to n do 

Ai.set := AiTemp 
Ai.reset := ¬AiTemp 

end for 



Control and Plant Modeling for Manufacturing Systems using Basic Statecharts 

 

45 

The complete algorithm used to translate the control model into Ladder code is presented in 
Algorithm 1. In this algorithm, some terms have been used to facilitate the understanding, 
such as: 
• guard(t) is the guard condition of the t-th transition; 
• source(t) is the source state of the t-th transition; 
• target(t) is the target state of the t-th transition; 
• T[Ai] is number of transitions of actuator Ai; 
• Ai.ON is a constant to represent the ’ON’ state of actuator Ai; 
• enableTimer(Tmi) is the transition that allows us to start up the timing of the i-th timer; 
• Tmi.limit(<value>) is the time limit of the i-th timer; 
• Tmi.enable() is a function to indicate if the i-th timer is enabled; 
• Tmi.timeout() is a function to indicate when the i-th timer reaches the end of the 

specified time. 
 

5. Case study: manufacturing cell 
This section presents a case study that realizes a simulation of a manufacturing cell (see 
Figure 10-a), which is a typical example of the manufacturing sector where the devices can 
run in a simultaneous mode. This example is well explored in Supervisory Control Theory by 
Queiroz & Cury (2002). The problem with to these systems is the need for synchronization 
points between parallel blocks. 
The execution flow, with a possible operation of the devices for this system, is shown in 
Figure 10-b. It is interesting to note that the four device actuators can run simultaneously 
and that the table must be run only after the execution of these devices. Thus, a 
synchronization point between devices and the table must be created to enable proper 
system operation. 
 

 
Fig. 10. Manufacturing cell: simulation environment. 

Consider the run scenario described below: 
• BELT: If there is a piece in the input buffer (initial position of the belt) and none in 

position P1, the belt must be turned on; later, when the piece is at position P1 the belt 
must be turned off. The if ... then clauses of this specification are: 
• If inputbuffer & ¬P1 then BeltOn; 



 Programmable Logic Controller 

 

46 

• If P1 then BeltOff; 
• DRILL: If there is a piece in position P2, the drill and a timer component timerT1 must 

be turned on; at the end of timeout, the drill must be turned off. The if ... then clauses of 
this specification are: 
• If P2 then DrillOn & tm1On; 
• If tm1.tm then DrillOff; 

• TEST: If there is a piece in position P3, the test and a timer component timerT2 must be 
turned on; at the end of timeout, the test must be turned off. The if ... then clauses of this 
specification are: 
• If P3 then TestOn & tm2On; 
• If tm2.tm then TestOff; 

• ROBOT: The robot removes a piece from position P4, and stores it. If there is a piece in 
position P4, the robot and a timer component timerT3 must be turned on; at the end of 
timeout, the robot must be turned off. The if ... then clauses of this specification are: 
• If P4 then RobotOn & tm3On; 
• If tm3.tm then RobotOff; 

• TABLE: The table rotation is controlled by the single-action cylinder and the total 
advance of the cylinder arm generates a 90 degree turn. Thus, after the execution of the 
four devices, the cylinder must be activated to obtain a new system configuration. The 
return of the cylinder-arm should occur when the sensor detects the total advance of the 
cylinder-arm. The if ... then clauses of this specification are: 
• If BeltEnd & DrillEnd & TestEnd & RobotEnd then ValveOn; 
• If SensorOn then ValveOff; 

The belt model follow the Alter On/Off  pattern (see Figure 3-b), whereas the drill, the test, 
and the robot models follow the On/Off pattern (see Figure 3-a). The table behavior is 
modeled through of single-action cylinder (see Figure 4). In each table position, there is one 
sensor for simulating piece in the place. Thus, the complete plant model is generated by 
representation, in parallel way, of the four devices and the cylinder, as can be shown in 
Figure 11. 
Other constraints imposed on the model are: 
1. Each device must execute only once before a table rotation; 
2. If in a configuration there is no piece in the input buffer or in positions P2, P3, and P4, 

then the belt, the drill, the test, and the robot must not be turned on; 
3. The table rotation must only be performed if there is at least one piece in positions P1, 

P2, or P3. 
The inclusion of these constraints in the controller model is carried out by determining new 
transitions between states and/or changes in the guard conditions of the existing transitions. 
Initially, to create the control model for this case study, extra variables must be included to 
ensure synchronism between the devices and, therefore, the constraint imposed on table 
rotation, i.e., the table cannot rotate while the devices are running. In this case, the variables 
E1, E2, E3, and E4 indicate the “end-of-operation” of the belt, drill, test, and robot, 
respectively. These variables must be set to “true” for each of the devices. According to cell 
operation, the table must only be rotated when all of devices have concluded their 
operations, i.e., when the variables Ei = true (i = 1,...,4). After the table rotates 90 degrees, 
these variables must be reset to allow new operations in the system. These variables are also 
used in the transitions to turning on/turning off the actuators; for example, the drill must 
only be turned on if the E2 control variable is equal to “false”. 



Control and Plant Modeling for Manufacturing Systems using Basic Statecharts 

 

47 

 
Fig. 11. Manufacturing cell: plant model. 

Extra transitions to ensure constraints 2 and 3 must be included in the model. For example, 
if there is no piece in position P2, then the drill must not be turned on, but the E2 variable 
must be set to “true” to indicate end-of-operation of the phase. Similar ideas are applied to 
other actuator devices. In the table model, if there is no piece in positions P1, P2 or P3, then 
the table must not rotate (constraint 3); however, variables E1, E2, E3, and E4 must be set to 
“false” to allow new operations in the devices. Thus, if there is no piece in the 
manufacturing cell, the model will continually alternate the value of E1,...,E4 between  
 

 
Fig. 12. Manufacturing cell: control plant. 



 Programmable Logic Controller 

 

48 

“false” and “true”. The complete BSC model of the controller software is shown in Figure 
12. Guard conditions g1, g2,...,g15 are presented in Table 1, where the variable IN indicates 
the presence or absence of a component in the input buffer. Note that the data area is not 
represented in the figure, but the IO channels can be easily identified; Ei (i = 1,...,4) are 
internal variables, and P1,...,P4, IN, S1 represent sensors installed in the plant. 
 

g1 ¬P1 & ¬E1 & IN 
g2 P1 
g3 ¬P1 & ¬E1 & ¬IN 
g4 P2 & ¬E2 
g5 tm1.tm 
g6 ¬P2 & ¬E2 
g7 P3 & ¬E3 
g8 tm2.tm 
g9 ¬P3 & ¬E3 
g10 P4 & ¬E4 
g11 tm3.tm 
g12 ¬P4 & ¬E4 
g13 E1&E2&E3&E4 & (P1 || P2 || P3) 
g14 S1 
g15 E1&E2&E3&E4 & ¬P1 & ¬P2 & ¬P3 

Table 1. Controller: guard conditions. 

This example is composed of the belt with three possible states, three devices with two 
states each, and one cylinder linked to the table, which also has three states. The model with 
no control has 72 states, i.e., 3 x 2 x 2 x 2 x 3 = 72 distinct configurations, and the controlled 
model (control + plant) has 210 different states, in function of three timers included in the 
control model for simulating the processes of drilling, testing and moving the piece to 
storage. However, these 210 configurations act only in 26 distinct configurations, where: i) 
24 possibilities of actuation of devices: 3 x 2 x 2 x 2 = 24 with the table in position stop 
(cylinder in configuration [Off, Returned, False]); and ii) 2 possibilities for rotating the table 
with the four devices in state Off. The reachability tree analysis has shown that the model 
ensures the properties of reinitiability, vivacity, and that there is no deadlock. But, this 
analysis is out of scope of this work. 

6. Conclusion 
In this work we presented a methodology for systematizing the process of plant and control 
modeling of manufacturing systems. Our proposal uses a formalism based on Statecharts 
diagrams, called Basic Statecharts (BSC). The plant modeling has three phases which can be 
executed as many times as necessary. In general, this methodology represents a hybrid 
approach - bottom-up and top-down, allowing components reuse and keeping a one-to-one 
relation between plant and model (i.e., it is faithful to the actual system). The control model 
is generated also using Basic Statecharts. Thus, the main contributions of this work are the 
following:  
• A methodology to model plants and industrial control logics using Basic Statecharts;  



Control and Plant Modeling for Manufacturing Systems using Basic Statecharts 

 

49 

• A procedure to integrate plant and control models in order to analyze and/or validate 
several structural proprieties of the modeled system, such as deadlock absence, 
vivacity, and reinitiability. This is very important in the project phase of every 
industrial controller;  

• An algorithm to translate the control logics described in Basic Statecharts into Ladder 
diagrams.  

One typical example of the manufacturing application was described as a case study to 
illustrate our proposal. 
A prototype using Java language is currently being developed to create and simulate 
models generated by our methodology. The aim is to test how much easier and natural the 
creation of industrial applications will become, as well as to produce more “user-friendly” 
documentation for the designers, giving more autonomy to the development and 
maintenance teams. 

7. References 
Bani Younis, M. & Frey, G. (2006). UML-Based Approach for the Reengineering of PLC 

Programs, in Proceedings of 32nd Annual Conference of the IEEE Industrial Electronics 
Society (IECON’06), pp. 3691–3696, Paris, France, November, 2006. 

Boehm, B. W. (1988). A Spiral Model of Software Development and Enhancement, Computer, 
Vol. 21, Issue 5 (May 1988), pp. 61 – 72, ISSN:0018-9162 

Boehm, B. (2006). A View of 20th and 21st Century Software Engineering, in Proceedings of 
the 28th International Conference on Software Engineering (ICSE’06), pp. 12–29, New 
York, NY, USA: ACM Press, 2006. 

Cassandras, C. & Lafortune, S. (2008). Introduction to Discrete Event Systems - Second Edition, 
Springer Science, ISBN-13: 978-0-387-33332-8, New York, (USA). 

Drusinsky, D. & Harel, D. (1989). Using Statecharts for Hardware Description and Synthesis, 
IEEE Transactions on Computer-Aided Design, Vol. 8, No. 7, pp. 798–807. 

Endsley, E.; Almeida, E. & Tilbury, D. (2006). Modular Finite State Machines: Development 
and Application to Reconfigurable Manufacturing Cell Controller Generation, 
Control Engineering Practice, Vol. 14, No. 10 (October 2006), pp. 1127–1142. 

Harel, D. (1987). Statecharts: A Visual Formalism for Complex Systems, Science of Computer 
Programming, Vol. 8, No. 3 (June 1987), pp. 231–274. 

IEC-61131-3 (1993). International Eletrotechnical Commission. Programmable Controllers 
Part 3, Programming Languages. 

IEC-61499-1 (2005). International Eletrotechnical Commission. Functions Blocks Part 1, 
Architecture, Geneva: IEC, 2005. 

IEEE Std 610.12-1990 (1990). Standard Glossary of Software Engineering Terminology, 
http://ieeexplore.ieee.org/ISOL/standardstoc.jsp?punumber=2238. 

Masiero, P.; Maldonado, J. & Boaventura, I. (1994). A reachability Tree for Statecharts and 
Analysis of Some Properties, Information and Software Technology, Vol. 36, No. 10, 
pp. 615–624. 

Moura, R.; Couto, F. & Guedes, L. (2008). Control and Plant Modeling for Manufacturing 
Systems using Statecharts, in IEEE International Symposium on Industrial Electronics 
(ISIE 2008), Cambridge, UK, July 2008, pp. 1831–1836. 



 Programmable Logic Controller 

 

50 

Queiroz, M. & Cury, J. (2002). Synthesis and Implementation of Local Modular Supervisory 
Control for a Manufacturing Cell, In Proceedings of the 6th International Workshop on 
Discrete Event Systems, IEEE Computer Society, pp. 377-382. 

Ramadge, P. & Wonham, W. (1989). The Control of Discrete Event Systems, in Proceedings of 
the IEEE, Vol. 77(January, 1989), pp. 81–98. 

Royce, W. W. (1970). Managing the Development of Large Software Systems, in Proceedings. 
of IEEE WESCON, pp. 1–9. 

SCXML (2006). The Jakarta Project Commons SCXML, http://jakarta.apache.org/ 
commons/scxml/. 

Von der Beeck, M. (1994). A Comparison of Statecharts Variants, in ProCoS: Proceedings of the 
Third International Symposium Organized Jointly with the Working Group Provably 
Correct Systems on Formal Techniques in Real-Time and Fault-Tolerant Systems. London, 
UK: Springer-Verlag, pp. 128–148. 



4 

The Java based Programmable Logic Controller. 
New Techniques in Control and Supervision  

of a Flexible Manufacturing Cell. 
Ramón Piedrafita and José Luis Villarroel 

Department of Computer Science and Systems Engineering, University of Zaragoza 
Spain 

1. Introduction 
In this chapter, we explain new techniques and technologies applied to the control of a 
flexible manufacturing cell. We have proposed a new control platform: a Java based 
Programmable Logic Controller (PLC). The Java PLC comprises several modules where the 
real time control, the communication with industrial fieldbuses and the supervision via web 
technologies have been developed. This control architecture (Piedrafita & Villarroel 2006) 
and development environment is based on Petri Nets (PNs), Sequential Function Charts 
(SFCs) and the Real Time Java programming language. Our objective is to explore the 
application of new control techniques of manufacturing systems, and to test the use of the 
Java programming language as a platform for those techniques. To demonstrate the 
practical utility of the techniques, we have applied them to the control of a flexible 
manufacturing cell. 
This research follows earlier studies at the University of Zaragoza on the software 
implementation of PN. In those studies, Ada95 was the implementation language (García & 
Villarroel 1996). For the current study, Java was chosen for the following reasons: 
• The possibility of executing the same code on different platforms. 
• To compare the Ada95 and Java implementations using the same concurrent and real-

time characteristics. 
• Java is a language that is beginning to be used in the development of control and 

embedded systems. 
• Java has a real time extension that allows the necessary time predictability required in 

these types of applications. 
From the perspective of the software implementation of Discrete Event Control Systems, we 
have translated into the Java language some classic PN implementation techniques such as 
Enabled Transitions or Representing Places. We have also developed SFC implementation 
techniques such as the Deferred Transit Evolution Model and Immediate Transit Evolution 
Model. 
In the execution of a Petri net, a task, the coordinator, makes the firing of transitions and 
updates the marking. We propose a new PN implementation technique called concurrent 
coordinators, in which centralized and decentralized ideas are merged. The net is 
decomposed into several subnets following, for example, a functional criterion, and a 



 Programmable Logic Controller 

 

52 

different coordinator implements each subnet in a centralized way. The communication 
between the different subnets is made using communication places that are implemented by 
monitors that use synchronized methods for marking and unmarking. 
The Java PLC can load PNs in PNML (Billington, Christensen et al. 2003) and can load SFCs 
in the PLCopen XML format (Open 2005). In the input/output module we have developed 
libraries for communication with bus Interbus, CANopen and Modbus TCP/IP. 
The hardware of the Java PLC is based on a PC equipped with several fieldbus master cards, 
where the input/output modules of the machines are connected. The software of the control 
system is based on a real-time control program that has several threads responsible for the 
concurrent execution of PN or SFC programs. The threads communicate through monitors. 
The development of this open platform has involved the development of an open 
framework of Java classes. This includes classes for the PN and SFC implementation, from 
the basic classes that model places, transitions, and the structure of a Petri net to the classes 
that execute the PN, and classes that allow communication with several fieldbuses. There 
are also classes for remote supervision via the RMI protocol or web Supervision. 
A practical application of the proposed approach, the control of a flexible manufacturing 
cell, was developed at the Department of Computer Science and Systems Engineering at the 
University of Zaragoza, Spain. 
The remainder of this chapter is organized as follows. In Section 2 we present the 
characteristics of the Java language relevant to the implementation of control systems and 
we present the Java PLC structure. In section 3 we review the different techniques for the 
implementation of PNs and SFCs. The flexible manufacturing cell is described in Section 4. 
In Section 5 the communication with the controlled system is explained. Section 6 describes 
the structure of the proposed control architecture and in section 7 we show a new technique: 
the Execution Time Controller. In Section 8, some details of the software implementation in 
the Java language are presented. The development environment we have created is 
described in Section 9 and, in Section 10 we present conclusions and suggest future lines of 
research. 

2. Java based programmable logic controller 
This research follows earlier studies at the University of Zaragoza on the software 
implementation of PN. In those studies, Ada95 was the implementation language (García & 
Villarroel 1996). 
Java has some of the characteristics required for the implementation of control applications, 
including the concurrent execution of threads; however, Java also has characteristics that 
impede its use as a programming language for control applications: 
• Although there exits compilers, Just in Time compilers, Virtual Machines with onthe- 

fly recompilation, Java mainly is used like interpreted language. 
• Programs written in Java link classes dynamically; thus, the load of remote classes can 

delay the execution of the program. 
• Java uses dynamic memory to create objects as needed, and the time to create an object 

depends on the memory state. 
• A high-priority thread performs the garbage collection, the process of automatically 

freeing objects that are no longer referenced by the program. 



The Java based Programmable Logic Controller. New Techniques in Control  
and Supervision of a Flexible Manufacturing Cell. 

 

53 

• The Java scheduler works with fixed priorities, but there is no guarantee that the 
highest-priority thread is running. To avoid starvation, the thread scheduler might 
choose to run a lower-priority thread. The thread priority affects the scheduling policy 
for efficiency purposes only. 

The first characteristic affects the run-time performance only, but the others imply time 
unpredictability, which prevents Java from being used in the development of real-time 
systems. These problems have been solved in the Real Time Java Specification (RTJS) (Bollella 
and Gosling 2000.) which has been implemented in some platforms, such as JamaicaVM 
(Aicas 2007 ) which includes the following: 
• The Real Time Virtual Machine executes "bytecodes," but programs are also compiled to 

machine code, which increases the speed of execution. 
• New thread classes, RealtimeThread and NoHeapRealtimeThread, which are 

unaffected or at least less heavily affected by garbage collection activity. 
• New memory classes (InmortalMemory and ScopedMemory) that are not under the 

control of the garbage collector. 
• A true fixed-priority pre-emptive scheduler that has an expanded range of priorities. 
• The incorporation of classes for the treatment of asynchronous events and to manage 

the asynchronous transfer of control. 
• The ability to work with high-resolution real-time clocks. 
These characteristics of real time Java provide the basic tools for the development of control 
applications. This has enabled the development of a platform for the real time 
implementation of discrete event control systems based on the Java language. We call this 
platform the Java PLC. Petri nets are used as a tool for modelling and implementing discrete 
event systems, and also their programmed implementation: the Sequential Function Charts. 
The Java PLC should be able to execute PNs or SFCs in real time. To develop the control 
function, it should be able to communicate with fieldbuses in such a way that it can read the 
signals of the sensors and write signals to actuators. It should also be able to communicate 
with the plant operators providing information about the controlled system. 
With these objectives, and in order to carry out the development correctly, the Java PLC has 
been structured in several modules, each one responsible for a function (control, 
communication, supervision…) and able to exchange information one with another. 
The Java PLC comprises several modules (see Fig. 1): 
• The control module is in charge of executing the PLC program. 
• The input/output module is in charge of communicating with several fieldbuses like 

Interbus, CANopen or Modbus TCP/IP. 
• RMI communication module. This allows communication with other Java virtual 

machines and for the Web Server to exchange information with the control module. 
• Web Server. This module is responsible for providing information about the state of the 

program and the input / output variables, allowing remote visualisation of the state of 
the program. 

3. The control module 
The control module is responsible for executing the PLC programs. These programs can be 
run using Petri nets in the PNML format or in the Sequential Function Chart language in the 
PLCopen XML format. The execution in the PLC is carried out in real time as a high-priority 
task. 



 Programmable Logic Controller 

 

54 

 
Fig. 1. Java based Programmable Logic Controller. 

Currently most industrial PLCs run their programs in an interpreted and centralized 
manner. The PLC reads the inputs, executes the program (i.e. runs an interpreter of SFCs, 
also called coordinator in this paper) and writes the outputs. 
In the execution of the program it is necessary to determine which transitions can fire, and 
then fire them so that the state of the SFC (or PN) will evolve. This will also include the 
actions programmed in the steps. The algorithm to determine which transitions are enabled 
and can fire is important because it introduces some overhead in the controller execution 
and the reaction time is affected. In the Java PLC we have implemented several algorithms 
in which different enabled transition search techniques are developed: 
• Brute Force (BF). PN implementation technique. 
• Deferred transit evolution model (DTEVM). SFC implementation technique. 
• Immediate transit evolution model (ITEVM). SFC implementation technique. 
• Static Representing Places (SRP). PN implementation technique. 
• Enabled Transitions (ET). PN implementation technique. 
In the Brute force algorithm all the transitions are tested for firing. Brute Force algorithms 
do not try to improve the search of enabled transitions. Works such as (Peng & Zhou 2004) 
(Uzam & Jones 1996) (Klein, Frey et al. 2003) belong to this implementation class. 
The IEC-61131 standard is not very precise in the definition of the SFC execution rules. 
Different execution models have been proposed to interpret the standard. As with BF, in the 



The Java based Programmable Logic Controller. New Techniques in Control  
and Supervision of a Flexible Manufacturing Cell. 

 

55 

Immediate Transit Evolution Model (ITEVM) algorithm all the transitions are tested for 
firing (Hellgren, Fabian et al. 2005). However, the Deferred Transit Evolution Model 
(DTEVM) (Hellgren, Fabian et al. 2005) only performs the testing of the transitions 
descending from the marked places, improving in this way the Brute Force operation. 
In (Lewis 1998) the IEC-61131 standard is interpreted and the following tasks are proposed 
to run an SFC: 
• Determine the set of active steps 
• Evaluate all transitions associated with the active steps 
• Execute actions with falling edge action flag one last time 
• Execute active actions 
• Deactivate active steps that precede transition conditions that are true and activate the 

corresponding succeeding steps 
• Update the activity conditions of the actions 
• Return to step 1 
These tasks are implemented in the DTEVM algorithm. In DTEVM, the transition conditions 
of all transitions leading from marked places are evaluated first. Then, the transitions found 
to be fireable are executed one by one. In ITEVM, the transition conditions of all transitions 
are evaluated one by one. In the case of a transition condition being true, i.e., the 
corresponding transition being fireable, this transition is fired immediately. 
In the Static Representing Places (SRP) algorithm, only the output transitions of some 
representative marked places are tested (Colom, Silva et al. 1986). Each transition is 
represented by one of its input places, the Representing Place. The remaining input places 
are called synchronization places. Only transitions whose Representing places are marked 
are considered as candidates for firing. 
 

 
Fig. 2. Flexible manufacturing Cell. 



 Programmable Logic Controller 

 

56 

In the Enabled Transitions algorithm, only totally enabled transitions are tested. A 
characterization of the enabling of transitions, other than marking, is supplied, and only 
fully enabled transitions are considered. This kind of technique is studied in works such as 
(Silva & Velilla 1982) (Briz. 1995). 
In the implementations developed in the present study, the program loads the net structure 
from a XML file that is generated by a Petri net editor; thus, the implementation is 
independent of the net and is an interpreted implementation. In the execution of a Petri net, a 
thread called the “coordinator” is responsible for the firing transitions and updates the state 
of the net (marking), this being a centralized approach. Furthermore, we have introduced 
centralized techniques into decentralized implementations, thereby creating a new 
technique called concurrent coordinators. The application can run several coordinators 
simultaneously by executing a sub-net for each subsystem. 

4. The flexible manufacturing cell. 
The practical application of the ideas presented in this paper were tested using a flexible 
manufacturing cell installed at the Department of Computer Science and Systems 
Engineering at the University of Zaragoza, Spain, for research and teaching purposes. 
The manufacturing cell carries out a complete production process making various types of 
pneumatic cylinders. The orders are composed by a rectangular base (white or black) and 
three cylinders produced in the first production ring, being able previously to select both the 
base and the cylinders. It also has two storage areas, one intermediate store for the 
manufactured pneumatic cylinders and the other for orders. The term “flexible” means that 
the cell can manufacture any component type at any moment. 
There are two types of base, white and black, and six types of pneumatic cylinders divided 
into two groups, cylinders with and without a cap. 
The cylinders with a cap are made up of a sleeve with a closed cap. These pieces are already 
manufactured and require no handling apart from identification and storage. The 
components without a cap are cylinders simple effect pneumatic cylinders made up of a 
piston, a recoil spring and a head. 
There are three types in both groups: black, red and metallic. The cylinders without cap 
have two sorts of piston, metallic and plastic. The metallic piston is narrower and shorter 
than the plastic, and is only included in the black pieces, while the plastic piston is mounted 
in the red or metallic cylinders. The composition of the cylinders without cap is shown in 
Fig. 3. 
The manufacturing cell is composed of a set of stations for the production and storage of 
pneumatic cylinders and is divided into two zones (Fig. 4): (a) the production zone (stations 
1, 2, 3, and 4, and the transport 1), and (b) the product expedition zone (station 6 and storage 
station 7, two robots, and the transport 2). Station 5 is an intermediate storage area between 
the two zones. 
Transport 1 (left hand side of Fig. 4) is responsible for moving the pallets in the production 
zone between the stations and is above the pallets where the operations are carried out. This 
transport connects stations 1, 2, 3 and 4 which carry out the following operations: 
• Station 1: identifies and positions the sleeves for cylinders without cap or those with 

cap and previously manufactured. 
• Station 2: assembles the corresponding piston with the sleeve type and next assembles 

the coil spring. 



The Java based Programmable Logic Controller. New Techniques in Control  
and Supervision of a Flexible Manufacturing Cell. 

 

57 

 
Fig. 3. Types of Cylinders. 

 
Fig. 4. Flexible manufacturing cell. 

• Station 3: attaches the Cap. 
• Station 4: checks the components and acts as a link between the production zone and 

storage area for all the finished components. 
Transport 2 (right hand side of Fig. 4) arranges the transport of the cart in the expedition of 
orders zone between stations 6, 7, 8 and 9 that do the following operations: 
• Station 6: is in charge of retrieving the base (black or white) where the three cylinders 

will be situated. 
• Station 7: is a servo controlled storage area that stores the orders in one of its eighty 

positions. 
• Station 8: will grasp the stored cylinders in the station 5 and inserts them in the base 

according to the order introduced by the user. 
• Station 9: removes orders from the cell. 



 Programmable Logic Controller 

 

58 

Station 5 links the production and expedition zones, acting as or intermediate storage area 
of 16 positions. The different pieces (cylinders) are dispatched depending on the production 
orders and the storage policy of station 5. 
The original control system of the cell consisted of a programmable logic controller (PLC) 
that controlled each station. A real-time industrial net connected all of the PLCs. We then 
installed a new control system based on a fieldbus. The fieldbus was installed at stations 1, 
2, 3, and 4, and at Transport 1 (see Fig. 5). Stations 1 and 4 have Inline modules 
(Phoenix_Contact 2006), and stations 2, 3 and Transport 1 have Advantys STB modules 
(Schneider_Electric. 2006). 
 

 
Fig. 5. Fieldbus and Product Identifier 

Both Transport 1 and Transport 2 identify the contents of every pallet by means of the read 
and write heads of the memories attached to the pallets. 
At the beginning of an operation at a cell station, to determine the operation that has to be 
performed, the memory of the pallet that arrives must be read. At the end of the 
manufacturing operation, the memory of the pallet must be updated. 
The product identifier module is a resource shared by all of the stations. Communication 
with the identifier module is achieved using a serial port inserted in the Inline module of 
Station 1. Access to the module must be protected from concurrent access. 

5. The input/output module 
Communication with the control system could be established with the coordinators directly 
accessing the communications network to read or write each time that they need to interact 



The Java based Programmable Logic Controller. New Techniques in Control  
and Supervision of a Flexible Manufacturing Cell. 

 

59 

with the cell. This strategy would not be very efficient because even writing or reading only 
one station variable would involve a complete reading or writing of the bus. This task has 
therefore been left to the communications layer. The coordinators access the data they need 
through monitors that guarantee mutual exclusion in accessing variables. In this way the 
implementation of the control layer is independent of the system used to communicate 
physically with the cell. 
The communication between the control module and the I/O module takes place via the 
station monitors. The control module reads the input values from the station monitors, 
executes the PLC program, and writes the output values in the station monitors. The I/O 
module reads the input signals of the fieldbus and leaves them in the station monitors. It 
then collects the output values and sends them via the fieldbus to actuators. 
The execution of the periodic task of communication with the fieldbuses is run in a real-time 
thread at a lower priority than the task of executing the PLC program. 
We have been developed classes to allow communication with the fieldbuses Interbus, 
CANopen and Modbus TCP/IP. The communication with the Interbus and CANopen 
fieldbuses is carried out through libraries in C++. The call to these libraries is made through 
JNI (Java Native Interface). Java allows fragments of native code to be incorporated in its 
programs that is code compiled for a specific platform, generally written in C/C++. JNI is 
the tool Java has to make use of methods run in other programming languages. For this 
reason it uses the JNI. 
Interbus is a network of distributed sensors and actuators for manufacturing systems and 
control processes. It is an open system with advanced features and a ring topology. The 
basic concept of an open bus is to provide information exchange between devices produced 
by different manufacturers. The information exchanged includes processing data (inputs / 
outputs) and parameters (configuration data, programs, monitoring data). The information 
format is defined by means of a standard profile for the devices. Interbus has standard 
profiles for servomotors, encoders, robot controls, positioning controls, control and 
operation panels, digital inputs / outputs, analogue inputs / outputs, thermocouples, 
meters, frequency variators, robots, soldering control, identification systems, etc. The 
INTERBUS protocol, DIN 19258, is the standard interface for these profiles. This is an open 
standard for E/S networks in industrial applications. 
A task has been developed for communicating with Interbus. This is implemented as a 
periodic task responsible for reading all the input variables and writing the output variables 
on the bus. This task is run every 10 ms, which is sufficient given the dynamics of the 
controlled system. The program uses the driver (native functions written in code C accessed 
through JNI - Java Native Interface) offered by the manufacturer of the bus PCI master card. 
In fact the reading and writing is not done directly on the bus but on an image of the 
memory of this card. 
Communication with the CANopen bus is carried out through a periodic task responsible 
for reading the bus inputs and writing the bus output variables and, as with Interbus, this 
task run every 10 ms. 
Communication with the Modbus TCP/IP protocol in ethernet is made directly in Java, 
providing communication with the input / output modules. The classes have functions for 
reading and writing the input/ouputs of the modules using the ModBus TCP/IP protocol. It 
is possible to change the communication interface of each fieldbus module. Interbus, 
CANopen, and Industrial Ethernet are supported. If Interbus is used, the bus master card 
will be the Hilscher CIF50-IBM (Hilscher 2007). If CANopen is used, the master card will be 



 Programmable Logic Controller 

 

60 

the CIF50-COM card and if Industrial Ethernet is chosen, the Ethernet card of the PC acts as 
the master. The Interbus topology is a ring and inputs cannot be read or outputs written 
individually. The reading of inputs and the writing of outputs are managed by the bus 
master in the same operation. Each station of the cell has a reading/writing head of the 
pallet memory that is connected to an identifying module of the products (Pepperl&Fuchs 
IVI-KHD2-4HRX) (Pepperl&fuchs 2006) 
Finally, a program also has to be developed for providing communication with the product 
identifier and thus be able to control production. Sun supplies a Java communications 
library for applications requiring communication with a device through a serial port (Sun 
2006). 

6. Control architecture. 
One of the main objectives of this work is to define a control architecture. From a 
hierarchical standpoint, our proposal is about the coordination and the local control layers 
of flexible manufacturing systems. Rather than distribute the local control of each subsystem 
of a flexible manufacturing system (manufacturing cells, transports, stores) in various PLCs, 
we have opted to centralize them in a computer. The system inputs/outputs are distributed 
over several modules connected by a field bus (see Section 5, above). This approach permits 
an easy way of developing and debugging new control techniques. 
The design and implementation of the local control of subsystems are maintained 
separately. In this way, separate threads running on the central computer control each 
subsystem. Another thread is responsible for the coordination function of the cell. 
Synchronization with the controlled system is achieved using an image memory of the 
inputs and outputs of the subsystems in the control computer, which is periodically 
updated through the field bus. That is, in each period, the inputs are read from the bus and 
the outputs are written to the bus. The cell coordinator updates the memory image. Several 
monitors protect the memory image because the input-output variables can be shared by 
more than one local controller, the cell coordinator, and some other threads, such as the 
Human Machine Interface HMI. Each local controller has its own monitor that protects the 
variables of the controlled subsystem. Fig. 6 shows the proposed software control 
architecture. 
To synchronize the local controller’s execution with the reading/writing of data in the field 
bus, a semaphore for each controller is used. The local controllers are cyclical but, at the 
beginning of each cycle, they must wait for a signal from the cell coordinator. It is periodic 
and, in each period, it sends a signal to all of the semaphores, which permits the execution 
of a new cycle of all of the controllers. Thus, the coordinator and the local controllers are 
periodic and have the same period. To implement this schema, the following three levels of 
fixed priorities are needed: 
• High priority. This is reserved for the cell coordinator. 
• Medium priority. All of the local controllers have the same priority. 
• Low priority. This level is associated with threads that do not have real-time 

requirements, e.g., the HMI. 
The proposed concurrent structure and priorities guarantee that the controllers always 
execute using updated input data and allow real-time analysis of the thread set. Following a 
rate monotonic approach, all of the local controller’s threads run within their period (the 
control period) if: 



The Java based Programmable Logic Controller. New Techniques in Control  
and Supervision of a Flexible Manufacturing Cell. 

 

61 

 

 
 

Fig. 6. Control architecture 

 
(1) 

where T is the control period, Ci is the Worst Case Execution Time (WCET) of control thread 
i, Ccoord is the WCET of the cell coordinator, and b is the blocking time of the monitors. We 
have used the immediate ceiling priority protocol, so the blocking time is the largest WCET 
of all of the services provided by the monitors and called by the lower priority threads, such 
as the HMI. The expression imposes a restriction on the number and complexity of local 
controllers running on the computer and on the refresh time of the bus. If the previous 
condition is fulfilled, the worst-case response time for events in the system can be calculated 
as: 

 (2) 

That is, the response time (tr) has a bound related to the control period (T) and the 
readingwriting time of the bus (tbus). An example of the system response time to an 
incoming event is presented in Fig. 7. 



 Programmable Logic Controller 

 

62 

 
Fig. 7. System Control Time response:  
a)  An event happens in the system (e.g., a pallet arrives at a station). 
b)  The event is copied to the memory image of the control system. 
c)   A local controller reads the event and establishes the reaction as changes on the memory  
      image of outputs. 
d)   The outputs are established in the system through the fieldbus. 

In our application, the control period is 10 ms, sufficient for the dynamics of the controlled 
system. With Interbus, the read-write time is less than 2 ms; therefore, the response time of 
the real-time control will be: 

 (3) 

In the proposed architecture, only one thread accesses to the communication field bus and 
establish the refresh frequency; therefore, it is extremely simple to adapt the control 
application to field buses other than Interbus. At present, it is possible to execute the control 
over the Interbus, CANopen, and Industrial Ethernet field buses. 
In this control architecture, we propose the following: 
• The specification of control systems using PN and SFC that allows simulation and 

system analysis, and the automatic generation of code (see Section 8). 
• The use of the JamaicaVM platform to support the concurrence and real-time execution 

of control programs. 
• In addition, we have implemented a graphical task (HMI) that allows real-time 

visualization of the state of the control system and the PN in Execution (see Fig. 8). In 
Java Real Time, the graphical task is executed in a remote virtual machine and the 
communication is made using the Java Remote Method Invocation System (RMI) (Sun 
2008). In a monitor, the graphical task writes the orders that the operator sends to the 
control system. 

Those aspects are presented below. 

8. The Java implementation 
Previous research on deriving Java code from PN specifications (see for example (Conway, 
Li et al. 2002) or (Buchs, Chachkov et al. 2003)) has focused on prototyping and simulation. 
Our objective is to generate Java code for Real Time control systems and, thus, we have 
chosen to adapt classic techniques of PN implementation developed for obtaining efficient 
and predictable control applications. 



The Java based Programmable Logic Controller. New Techniques in Control  
and Supervision of a Flexible Manufacturing Cell. 

 

63 

Java is an object oriented language. As in any Java application, the code is encapsulated in a 
series of classes that contain a specific functionality. A set of classes that carry out related 
tasks are usually grouped in the same package. In the application design it has been 
attempted to take advantage of the opportunities offered by Java to make a modular and 
robust application so that future modifications can be made quickly and efficiently. 
The packages of the classes implemented are described below. The basic organization is as 
follows: 
• Petri net: a package of classes representing places, transitions and structure of a Petri 

net. 
• SFC: a class that extends the Petri net class and allows the SFC representation. 
• Applications: the application package contains the final applications of the project and 

constitutes the definitive set of classes both for both manual and automatic control of 
the cell and small manual and automatic control applications of the stations. The main 
content comprises the programs for the server of the applications and the interfaces 
required for remote communication with the RMI. 

• Input/Output: contains the classes enabling communication with the controlled system 
through Interbus, CANopen and Ethernet. 

• Control: contains the basic classes for the execution of the Petri nets. The execution 
algorithms are implemented in this package for the Petri nets and SFCs: Enabled 
Transitions, Representing Places, Brute Force, Deferred Transit and Immediate Transit 
Evolution Model. 

• Centralized control: implements the centralized execution technique of the Petri nets. 
Among other classes, it contains the coordinator that executes the global Petri net of the 
cell. 

• Decentralized control: implements the decentralized technique for the Petri net control. 
Among other classes, it contains the coordinators responsible for executing 
independently and concurrently each of the Petri nets that make up the cell system. 

• Stations: monitors that contain the values of the sensors and actuators of each station. 
• Serial Port: contains the classes that manage the communication with the product 

identifier through the PC serial port. 
The first steps in the Java implementation were to develop the basic classes that allow 
representation of a Petri net. In addition, classes were developed that allow connections 
between the physical environment and the classes responsible for the execution of the Petri 
net, as well as classes that allow communication between different threads (monitors). 
In the implementations developed in the present work, the program loads the net structure 
from a text file generated by a Petri net editor. Thus, the implementation is independent of 
the net and, therefore, is an interpreted implementation. 
In the execution of a Petri net, a thread, the coordinator, makes the firing of transitions and 
updates the marking, this being a centralized approach. Following the approach presented in 
the previous section, we propose a new PN implementation technique called concurrent 
coordinators, in which centralized and decentralized ideas are merged. The concept is very 
simple; the net is decomposed into several subnets following, for example, a functional 
criterion, and a different coordinator implements each subnet in a centralized way. The 
communication between the different subnets is made using communication places that are 
implemented by monitors that use synchronized methods for marking and unmarking. 



 Programmable Logic Controller 

 

64 

 
Fig. 8. Human Machine Interface. 

In our practical application, the decomposition is straightforward; there are separate subnets 
for each station. Thus, the local controllers are coordinators that implement these subnets. 
For an efficient search of fireable transitions and the update of the data structure that stores 
them, diverse techniques have been proposed; e.g., enabled transitions, representing and 
dynamical representing places (Silva 1985) (Colom, Silva et al. 1986) (Villarroel 1990). Also, 
for the implementation of SFCs: Immediate Transit Evolution Model (ITEVM) (Hellgren, 
Fabian et al. 2005) algorithm and the Deferred Transit Evolution Model (DTEVM) (Hellgren, 
Fabian et al. 2005). In the present work, these five techniques were implemented. 
As indicated above, the cell coordinator and the local controllers are concurrent threads with 
real-time requirements. From the perspective of the Real Time Specification of Java, they are 
RealtimeThreads. Thus, they are scheduled following a static priorities policy with 
preemption. The cell coordinator is defined as periodic. The Java scheduler is responsible for 
the periodic activation of that thread. Fig. 9 shows the class hierarchy of our practical 
application. 
The class coordinator inherits from the RealtimeThread class of real time Java. Each 
implementation technique opens a branch in the hierarchy. In the abstract class 
Enabledtransitions, the enabled transitions technique (also called transition driven) is 
implemented. In the abstract class representingplaces, the methods of the technique 
representing places are implemented. Dinamicrepresentingplaces and staticrepresentingplaces 
inherit from the previous one. 
The cell coordinator and the local controllers are instances of descendants of those abstract 
classes. For example, Fig. 9 shows the classes in the control of the manufacturing cell that are 



The Java based Programmable Logic Controller. New Techniques in Control  
and Supervision of a Flexible Manufacturing Cell. 

 

65 

implemented by the enabled transitions method. All of the classes inherit the real-time 
characteristics. 
 

 
Fig. 9. Coordinator Class Hierarchy. 

 
Fig. 10. Petri Net Visualization in a web browser. 



 Programmable Logic Controller 

 

66 

In the coordinator class, we have defined the abstract methods related to the Petri net 
interpretation: 
 

        

        
These methods are application-dependent and must be implemented by the developer. Also 
we have defined the methods for the implementation of SFCs actions. Table 1 shows the 
actions that can be programmed in a SFC. In a PLC cycle, the following must be executed: 
• Actions which depend on the state of a step: action qualifiers N, L, D, P, P0, P1. 
• In the step where is programmed the storage of the stored actions (S, SL, SD, DS) and 

their cancellation (R). 
• The stored actions (S, SL, SD, DS) 
The state of the action depends on the action flag Q and the activation flag A. The activation 
and action flags are activated when the action is activated; the activation flag also remains 
active in the cycle that turns off the action flag. The action types and qualifiers are the 
standard ones of the IEC 61131 (ISO/IEC 2001). 
 

 
Table 1. SFC action qualifiers. 

The methods for the implementation of SFCs actions are described in (Piedrafita & Villarroel 
2008). 
The application of control consists of three separate modules. In the abstract coordinators, 
the control algorithms are implemented. In the non-abstract descending coordinators, the 
actions of the places and the conditions of firing of the transitions are implemented. The last 
module is responsible for the input/output. To communicate with Interbus and CANopen, 
the C libraries provided by the manufacturer were used. For their use in Java, several 
functions in JNI were developed. In the case of Ethernet, the communication was developed 
entirely in Java. 



The Java based Programmable Logic Controller. New Techniques in Control  
and Supervision of a Flexible Manufacturing Cell. 

 

67 

We used the JamaicaVM for our implementation. JamaicaVM’s real-time garbage collector 
does not interrupt application threads; therefore, RealtimeThreads do not have to run in 
special memory areas, such as LTMemory or ImmortalMemory, which are not under the 
control of the garbage collector. The garbage collector is pre-empted by any real-time thread. 

9. Development platform 
We have set up a development environment for the control architecture based on PN and 
the Java language (see Fig. 11). The basic Java classes were extended to allow the graphical 
representation and animation of PN that control the system in real time. To describe the PN, 
we used the Petri Net Markup Language (PNML) (Billington, Christensen et al. 2003), which, 
among other advances, contains graphical information of the net elements (its graphical 
coordinates) thus allowing the graphical representation of PN and its evolution. 
 

 
Fig. 11. Development of control aplications 

Petri nets were created using Pipe Editor (Bloom, Clark et al.), which allows the Petri net 
structure to be defined. The transitions predicates and the actions to execute are 
implemented directly in Java and are associated with the corresponding place and transition 
objects. The Petri net in PNML format is loaded by the application using parser XML, which 
creates a tree structure. From that tree, an object of the class Petri Net is created. Later, a 
thread from the coordinator class is instantiated and the Petri net object is sent as an 
argument. 
We have developed a graphical module that allows the load, representation, and run time 
animation of the Petri net models. The Java Real time platform does not support the 
graphical classes of Java. The JamaicaVM platform has a small set of classes that allows the 



 Programmable Logic Controller 

 

68 

drawing of points, lines and rectangles only. We decided to keep the graphics section 
separate from the real time control application. The communication between the two 
applications is performed using RMI, which allows an object that is executing in a Java 
virtual machine to call methods of objects or threads running on another virtual machine. 
RMI applications have two separate programs: a server and a client. In our case, the server is 
the real time control application and the remote client is the HMI graphic interface. The full 
application is composed of the following (see Fig. 12): 
• The real time control. In this application, the real-time execution of the Petri net occurs. 

It acts as a server in the RMI protocol. There is a set of class methods to allow the RMI 
clients to consult the state of the Petri net in execution. 

• The graphical Java client. In this application, the necessary classes for the graphical 
visualization created in Classic Java are defined. It uses the RMI to consult the data 
about the PN in execution and allows the visualization. 

• Web server. The Web server is programmed in Java and uses the RMI to consult the 
data of the real-time control. 

 

 
Fig. 12. Graphical interface and communication RMI 

When a Web browser connects to the server, the communication is produced by means of 
the HTTP protocol, but when the real time visualisation of the Petri net execution applet is 
executed in the browser the communication with the control application takes place in the 
RMI protocol directly with the server. 

10. Conclusions 
In this paper, we have proposed a control architecture and a development environment 
based on Petri Nets, SFCs and the Java language. The architecture is related with the 
coordination and the local control layers of flexible manufacturing systems. A centralized 
approach permits the easy development and debugging of new control techniques. One of 
the mains contributions of this paper is that the proposed architecture allows the verification 
of the real time constraints of control systems and the use of formal tools as PNs and SFCs. 



The Java based Programmable Logic Controller. New Techniques in Control  
and Supervision of a Flexible Manufacturing Cell. 

 

69 

The hardware is based on a central computer that is connected to the controlled system 
through a fieldbus. The software architecture is based on several periodic threads. One of 
the threads, the cell coordinator, plays the role of the coordination layer, and the others are 
the local controllers of each subsystem. Synchronization with the controlled system is 
achieved using an image memory of inputs and outputs that is periodically updated 
through the fieldbus. A set of monitors protects that memory image. 
The execution of the software structure over a fixed-priority scheduler allows real-time 
analysis of the system and a bound for the worst-case response time for events in the system 
can be established. 
Java has been chosen as the implementation language to evaluate them in control systems. 
An open framework of Java classes for the PN and SFCs implementation has been 
developed, from the basic classes to the classes that execute the PN, and the classes that 
allow communication with several fieldbuses. Java lacks the real-time characteristics needed 
to execute the proposed architecture; therefore, the Real Time Java Specification, which 
provides the necessary real-time behaviour, has been adopted. The non real-time 
functionalities, such as the graphic interface, were implemented in classic Java because the 
development of graphic environments and remote web clients is easier. In this way the 
controlled system can be supervised remotely through the web. 
The coordination function and the local controllers have been specified using Petri nets that 
allow simulation, systems analysis, and automatic code generation. A new PN 
implementation technique called concurrent coordinators, involving the use of techniques 
centralized in decentralized implementations has been developed. This technique is 
perfectly suited to the control architecture. 
All of the techniques and technologies presented in this paper have been evaluated in a 
practical application, the control of a flexible manufacturing cell composed of 
manufacturing stations, transports, robots, and stores. The control system of the cell is 
currently running without problems. This work concludes that the Real Time Java 
Specification for the development of control systems based (or not) on PN is entirely valid. 
The work sets the basis for more detailed research in the fields of programmed 
implementation of PN and SFC, languages, and execution and real-time platforms. Future 
work will examine the following: 
• The migration to real time operative systems. 
• Simultaneous control in several fieldbuses. 
• Discrete event control systems decentralized and distributed implementations. 

11. References 
Aicas, G. (2007 ). JamaicaVM Realtime Java Technology. http://www.aicas.com/. 
Billington, J., S. Christensen, et al. (2003). "The Petri net markup language: Concepts, 

technology, and tools." Lecture Notes in Computer Science: 483-506. 
Bloom, J., C. Clark, et al. PIPE Platform Independent Petri Net Editor, Technischer Bericht, 

Department of Computing, Imperial College London, 2003. 
Bollella, G. and J. Gosling ( 2000.). "The Real-time Specification for Java." Computer 33(6): 

47-54. 
Briz., J. L. (1995). "Técnicas de implementación de redes de Petri. ." PhD thesis, Univ. 

Zaragoza. 



 Programmable Logic Controller 

 

70 

Buchs, D., S. Chachkov, et al. (2003). "Modelling a secure, mobile, and transactional system 
with CO-OPN." Application of Concurrency to System Design, 2003. Proceedings. 
Third International Conference on: 82-91. 

Colom, J. M., M. Silva, et al. (1986). "On software implementation of Petri nets and colored 
Petri nets using high-level concurrent languages." Seventh European Workshop on 
applications and theory of Petri nets, Oxford, July 86: 207-241. 

Conway, C., C. H. Li, et al. (2002). Pencil: A Petri net specification language for Java. Math. 
Dept., Macquarie Univ., Sydney, Australia. 

García, F. J. and J. L. Villarroel (1996). "Modelling and Ada Implementation of Real-Time 
Systems using Time Petri Nets." Proc. of the 21st IFAC/IFIP Workshop on Real- 
Time Programming. Gramado-RS, Brazil. November. 

Hellgren, A., M. Fabian, et al. (2005). "On the execution of sequential function charts." 
Control Engineering Practice 13(10): 1283-1293. 

Hilscher. (2007). "PC cards. http://www.hilscher.com." ISO/IEC (2001). "International 
standard IEC 61131-3 (2nd ed.). Programmable logic controllers—Part 3. ISO/IEC 
(final draft). ." 

Klein, S., G. Frey, et al. (2003). PLC Programming with Signal Interpreted Petri Nets. 
ICATPN 2003, Eindhoven, Srpinger Verlag. 

Lewis, R. W. (1998). "Programming industrial control systems using IEC 1131-3." IEEE 
control engineering series 50. Open, P. L. C. (2005). XML Formats for IEC 61131-3. 

Peng, S. S. and M. C. Zhou ( 2004). "Ladder diagram and Petri-net-based discrete-event 
control design methods." Systems, Man and Cybernetics, Part C: Applications and 
Reviews, IEEE Transactions on 34(4): 523 – 531. 

Pepperl&fuchs. (2006). "IVI-KHD2-4HRX DataSheet. http://www.pepperl-fuchs.com." 2006.  
Phoenix_Contact. (2006). "Inline Modules. www.phoenixcontact.com. ." 
Piedrafita, R. and J. L. Villarroel (2006). Petri Nets and Java. Real-Time Control of a flexible 

manufacturing cell. Emerging Technologies and Factory Automation, 2006. 
ETFA'06. IEEE Conference on: 1246-1253. 

Piedrafita, R. and J. L. Villarroel (2008). Evaluation of Sequential Function Charts Execution 
Techniques. The Active Steps Algorithm. Emerging Technologies and Factory 
Automation,. IEEE Conference on. Hamburg, Germany. 

Schneider_Electric. (2006). "Advantys STB. http://www.telemecanique.com." 
Silva, M. (1985). Las Redes de Petri en la Automatica y la Informatica. Editorial AC, Madrid, 

1985, Spanish. 
Silva, M. and S. Velilla (1982). "Programmable logic controllers and Petri nets: A 

comparative study." IFAC/IFIP Symposium on Software for Computer Control, 
Madrid, Spain, October 1982: 83–88. 

Sun. (2006). "Java serial communication http://java.sun.com/products/javacomm/." 2006. 
Sun. (2008). "Java Remote Method Invocation.http://java.sun.com/." 
Uzam, M. and A. H. Jones (1996). Towards a Unified Methodology for Converting Coloured 

Petri Net Controllers into Ladder Logic Using TPLL: Part I - Methodology. 
International Workshop on Discrete Event Systems - WODES'96. Edinburgh, UK: 
178 - 183. 

Villarroel, J. L. (1990). Integración Informática del Control de Sistemas Flexibles de 
Fabricación. Tesis Doctoral. Ingeniería Eléctrica e Informática, Universidad de 
Zaragoza. 



5 

Holonic Robot Control for Job Shop Assembly 
by Dynamic Simulation 

Theodor Borangiu, Silviu Raileanu, Andrei Rosu and Mihai Parlea 
University Politehnica of Bucharest 

Romania 

1. Introduction     
To be competitive, manufacturing should adapt to changing conditions imposed by the 
market. The greater variety of products, the possible large fluctuations in demand, the 
shorter lifecycle of products expressed by a higher dynamics of new products, and the 
increased customer expectations in terms of quality and delivery time are challenges that 
manufacturing companies have to deal with to remain competitive. Besides these market 
based challenges, manufacturing firms also need to be constantly flexible, adapt to newly 
developed processes and technologies and to rapidly changing environmental protection 
regulations, support innovation and continuous development processes (Nylund et al, 
2008). Although the optimization of the production process remains a key aspect in the 
domain of fabrication systems, adaptive production gains more and more field (Sauer, 
2008). Flexible manufacturing systems should be able to quickly adapt to new situations like 
machine breakdown, machine recovery due to physical failure or stock depletion and also 
face rush orders (Borangiu et al, 2008). 
In recent decades, scientific developments in the field of production control have led to new 
architectures including heterarchical/non-hierarchical architectures that play a prominent 
role in flexible manufacturing. 
The traditional approach is mainly associated to the initial CIM concept (Computer 
Integrated Manufacturing) and usually leads to centralized or hierarchical control structures 
in which a supervisor initiates all the activities and the subordinate units respond directly in 
order to perform them. Due to the complexity of manufacturing problems, the usual practice 
has been to split the global problem into hierarchically dependent functions that operate 
within smaller time ranges, such as planning, scheduling, control and monitoring. This 
traditional approach is known to provide near optimal solutions, but only when hard 
assumptions are met, for example, no external (e.g., rush orders) or internal (e.g., machine 
breakdowns) perturbations, a priori known demands, and/or supplier reliability. Since 
reality is rarely so deterministic, this approach rapidly becomes inefficient when the system 
must deal with stochastic behaviour. 
The above observations allowed researchers to design in a second approach new control 
architectures formed by a group of independent entities that bid for orders based on their 
status and future workload. There is no master-slave relationship; all the entities including 
the manager of a particular order are bidding for it. Due to the decentralized architecture, 
the entities have full local autonomy and can react promptly to any change imposed to the 



 Programmable Logic Controller 

 

72 

system. However, because the behaviour of a production order depends on the number and 
characteristics of other orders, it is impossible to seek global batch optimization and the 
system’s performance is unpredictable. These control architectures, also called emergent or 
self-organized, can be categorized in four types (Bousiba et al, 2002): bionic & bio-inspired, as 
proposed by Okino (Okino, 1993) and Dorigo & Stuzle (Dorigo et al, 2004); multi-agent, as 
proposed by Maione & Naso (Maione et al, 2003); holonic, as proposed by Van Brussel (Van 
Brussel et al, 1998); and heterarchical, as proposed by Trentesaux (Trentesaux et al., 1998). An 
analysis of the state-of-the-art has been recently published by Trentesaux (Trentesaux, 2007). 
His main conclusion is that the expected advantages of such architectures are related to 
agility: on short term such architectures are reactive and on long term they are able to adapt 
themselves to their environment. However, these last control architectures suffer from the 
lack of long-term optimality, even when the environment remains deterministic, which can 
be considered as a "myopic" behaviour. This is the main reason why such control 
architectures are not really used by industrialists at the moment. 
In order to benefit from the advantages of both types of architectures, traditional and 
emergent, a new control paradigm was proposed by (Sallez et al., 2009) in which traditional 
explicit control is combined with an innovative type of control called implicit control. This 
paradigm is called open-control, meaning that subordinate entities are characterised by 
autonomy and an open communication mechanism permits them to be influenced by higher 
level entities directly or indirectly. 
In the heterarhical control approach there is also a new research direction nowadays focused 
on the concept "system controlled by the product" in which dynamical information and 
decisional capabilities are embedded into the product, making it an active entity in the 
fabrication process (McFarlane et al., 2002, Zbib et al., 2008). 
Rather then combining the hierarchical and heterarchical control, an approach is proposed 
in the current work in which the two control architectures are alternated based on the 
current state of the system called distributed semi-heterarchic control (Borangiu et. al, 2008). 
Thus, the system starts working in a hierarchical manner, using an offline schedule, in order 
to optimize production, but as soon as a disturbance appears it switches to a heterarchical 
operation mode in which resources bid for the execution of orders.  
There is currently a new trend in manufacturing control to apply the principle of holons in 
industrial networked robotics. The interpretation of the holon as a whole particle proposes 
an entity which is entirely stand-alone or supreme as is (a whole), but belongs to a higher 
order system as a basic individual part (a particle). If a limited number of parts (holons) fail, 
the higher order system should still be able to proceed with its main task by diverting the 
lost functionalities to other holons (Ramos, 1996; Deen, 2003). 
Based on Koestler’s concept, the next definitions, established by the Holonic Manufacturing 
Systems (HMS) consortium (Van Brussel et al., 1998) were accepted and used in this project: 
• Holon: An autonomous and co-operative building block of a manufacturing system for 

transforming, transporting, storing and/or validating information and physical objects. 
It consists of an information- and physical-processing part. A holon can be part of 
another holon. 

• Autonomy: The capability of an entity to create and control the execution of its own 
strategies. 

• Co-operation: A process whereby a set of entities develops and executes mutually 
acceptable plans. 



Holonic Robot Control for Job Shop Assembly by Dynamic Simulation 

 

73 

• Holarchy: A system of holons that can co-operate to achieve a goal or objective. The 
holarchy defines the basic rules for co-operation of holons and thereby limits their 
autonomy (Wyns, 1997). 

• Holonic manufacturing execution system (HMES): a holarchy integrating in (custom 
designed) software architecture the entire range of manufacturing tasks from ordering 
to design, and production execution.  

• Holonic attributes: attributes of an entity that make it a Holon. The minimum set is thus 
autonomy and cooperativeness (Bongaerts et al., 1996, 1998; Markus et al., 1996; Morel 
et al., 2003). 

Based on the PROSA reference architecture, several research groups have developed holonic 
control frameworks to operate parts of a manufacturing system (e.g. part processing on 
multiple machine tools, part assembling on multiple robots, etc), but only a few considered 
material-handling tasks (Liu et al., 1973) and transportation. The negotiation scenario, 
proposed by (Usher and Wang, 2000), for the cooperation between intelligent agents in 
manufacturing control, or the "n products on m machines" KB scheduling algorithms, 
proposed by (Kusiak, 1990), are limited to production planning and job scheduling, and do 
not consider: (a) the constraints imposed by the transportation system (e.g. cell conveyor); 
(b) the need to qualify (recognize, locate, check for collision-free robot access and correct 
robot points for part mounting) assembly components; (c) verify the assembly in different 
execution stages (Borangiu, 2009).  
The proposed holonic control framework faces the difficulties arising when moving from 
control theory to practice, because: (i) the real cell conveyor is modelled, parameterized and 
integrated in the generic job scheduling; (ii) the material components (parts, assemblies) are 
described by task-dependent features which are extracted from images processed in real 
time for material qualifying and product inspection; (iii) the mapping of job scheduling to 
job execution via conveyor devices (motors, stoppers, diverters) is granted to PLC networks.  
In order to face resource breakdowns, the job shop production structure using networked 
robot controllers with multiple-LAN communication is able to replicate data for single 
product execution and batch production planning and tracking (Cheng et al., 2006).    
The holonic implementing framework will be exemplified on a discrete, repetitive 
production system with part machining, robotized assembling and visual quality control 
capabilities. The management of changes is imposed at resource breakdown, storage 
depletion and occurrence of rush orders. The expected performances of the system are: high 
productivity (selectable cost functions: throughput, machine/robot loading, overall time), 
high accuracy of operations, adaptability to material flow variations and shop floor agility. 
The functionalities below were imposed in the development of the holonic control system: 
• adaptability and quick reaction in face of production changes (rush orders); 
• real time vision-based robot guidance (GVR) during precision assembly and visual in 

line geometry control of products (AVI) are requirements imposed to increase the 
diversity and quality of services performed;  

• efficient (optimal) use of available resources (robot, CNC machine tools) in normal 
operating mode; 

• stability in face of disturbances (resource failure, storage depletion). 
The paper describes: (i) the design and implementing of a PLC-based distributed control 
architecture for a production system with networked assembly robots and machine tools, 
automatically switching between hierarchical and heterarchical operating mode; (ii) the 



 Programmable Logic Controller 

 

74 

definition of the holarchy and set up of the holon structures; (iii) the design and software 
implementing of operation scheduling algorithms and HMES integration; (iv)  the solution 
adopted for fault-tolerance to robot and CNC breakdown (dynamic job reconfiguring 
instead of reprogramming) and high availability (redundancy in SPOF hardware and inter-
device communication paths); (v) the definition and execution of part qualifying operations 
by real-time, high-speed image processing and feature extraction (vi) the interconnection of 
job-shop control processes with business processes at enterprise level, by managing offer 
requests, customer orders and providing feedback on the current status of batch orders. 
The proposed design and implementing framework addresses a networked robotized job shop 
assembly structure composed by a number or robot-vision stations, linked by a closed-loop 
transportation system (conveyor). The final products result by executing a number of 
mounting, joining and fixing operations by one or several of the networked robots. The set 
of specific assembling operations is extended to on-line part conditioning (locating, tracking, 
qualifying, handling) and checking of relative positioning of components and geometry 
features. These functional extensions are supported by artificial vision merging motion 
control tasks (Guiding Vision for Robots - GVR) and quality control tasks (Automated Visual 
Inspection – AVI). Real time machine vision is used to adjust robot paths for component 
mounting or fastening, to check for proper geometry and pose of assembly components, and 
to inspect the assembly in various execution stages (Borangiu, 2004). 

2. Generic holonic control model for a FMS 
2.1 Description of the FMS processes 
According to (Brussel et al, 1998) a fabrication system is composed of the following generic 
entities and domains that are associated to the production: 
 

Supply 
Holon

Resource 
Holon

Order 
Holon

Product 
HolonProduction information

ProcessinformationReal-time order
execution

Process 
domain

Production 
domain

Business 
domain

Adaptation from 
Brussel and Nylund

 
Fig. 1. HMS structure (Brussel et al, 1998, Nylund, 2008), with supply/domain extension 

Entities and domains have different purposes in the system, and are described in the 
PROSA reference architecture which explains the structure of a fabrication system using 
three basic holons: Product- (PH), Resource- (RH) and Order-Holon (OH) (Brussel et al, 
1998). These entities are interconnected two by two with the process-, production- and 



Holonic Robot Control for Job Shop Assembly by Dynamic Simulation 

 

75 

business domains (Nylund et al., 2008). The process- along with the production domains 
characterizes the system from the internal point of view. The first, process domain, is related 
with the system's capabilities to be able to execute certain operations that are needed to 
manufacture products offered to the clients. These capabilities are defined by the products 
and are realized by the resources. The second one, the production domain, manages the real-
time information which relates the orders to the resources. This information is subject to 
offline and online scheduling in order to optimize the functioning of the fabrication system. 
The last domain, the business domain, relates orders to products and the fabrication system to 
the external world represented by clients.  
Generic structure of a holon 
Fig. 2 shows the structure of a generic holon, containing the digital, real, virtual and 
communication parts. 
 

 
Fig. 2. The structure of a generic holon (Nylund et al., 2008) 

In order for all of the different holons of the system to cooperate they must have similar 
structures, especially similar information structure. According to (Nylund et al., 2008) a 
general entity is composed of a real part which represents the physical resource capable of 
performing operations on products, a virtual part which is the model of the entity, a digital 
part in charge with the decision making and a communication port responsible for 
cooperation with the surrounding environment. 

2.2 Component entities 
The distributed control solution proposed in this project provides a set of functionalities 
rending the material-conditioning cell flexible, rapidly reacting to changes in client’s orders 
(batch size, type of products, alternate technologies, rush orders, updated programs), and 
fault-tolerant to resources getting down temporarily. In fact, the holonic control architecture 
proposed follows the key features of the PROSA reference architecture (Van Brussel et al, 
1998; Valkaenars et al, 1994), extended with: 
• Automatic switching between hierarchical (for efficient use of resources and global 

production optimization) and heterarchical (for agility to order changes, e.g. rush orders, 
and fault tolerance to resource breakdowns) production control modes. 

• Automatic planning and execution of assembly component supply; automatic 
generation of self-supply tasks upon detecting local storage depletion,  



 Programmable Logic Controller 

 

76 

• In line vision-based parts qualifying and quality control of products in various 
execution stages. 

• Robotized material processing (e.g. assembling, fastening) under visual control / 
guidance. 

As suggested by the PROSA abstract, the manufacturing system was broken down into 
three basic holons, the Resource Holon (RH), the Product Holon (PH), and the Order Holon 
(OH). Each of these holons may exist more than once to fully define the manufacturing cell. 
Order Holons are created by a Global Production Scheduler from the aggregate list of 
product orders (APO) generated at ERP level. 
Alternate OH are automatically created in response to changes in product batches (rush 
orders) and to failures occurring during execution (resource breakdown, storage depletion). 
A holon designs a class containing data fields as well as functionality. Beside the 
information part, holons usually possess a physical part, like the product_on_pallet for OH 
(Duffie and Prabhu, 1994). 
The way in which different types of holons communicate with each other and the type of 
information they exchange depends on the nature of the manufacturing cell. Fig. 3 shows 
the interaction diagram of the basic holon classes as they were implemented into software to 
solve scheduling and failure/recovery management problems. A separate software module,  
 

 
 

Fig. 3. Basic holon cooperation and communication structure in the semi-heterarchical 
control architecture 

Resource Holons
Product Holons 
(operation, tool, 

material, storage)  

Order Holons

CNP

Customer 
Orders  

PLC Files

Current status  Available operating modes, 
models, programs

Job scheduling

Job re-scheduling

Batch (OH set) execution, 
Product traceability

Transfer for execution 
(work-to-do)

Describe  
work-to-plan  

Announce 
work-to-do

Robot controllers, 
Machine CNC, 
Conveyor devices  

Announce 
capacity

Provide 
resource 
schedule

Product 

Resource 
failure / 
recovery 
capacity  

Storage 
depletion

Expertise Holons

Order change

Due data, rush tag



Holonic Robot Control for Job Shop Assembly by Dynamic Simulation 

 

77 

the HolonManager hosts all holons in form of arrays of certain types of holons and 
coordinates the data exchange among them. 
The HolonManager entity is responsible with the planning (with help of Expertise Holons – 
EH) and management of OH exactly as Staff Holons in the PROSA architecture do; in 
addition, the HolonManager interfaces the application with the exterior (maps OH into 
standard PLC file and tracks OH execution for user feedback). Since a single holon may be 
seen as a class object in the object oriented programming environment (C# and .net 3.0 
framework tools have been used), each of the three basic holon types was realized as a 
separate class.  
The instances necessary to define the manufacturing cell are then hosted by the class 
Holons.HolonManager. Each type is present as an array which may be scaled dynamically if 
necessary. Thus, the array of Holons.Product class instances assumes a size of existing 
product types; each element represents one product type with all necessary info to generate 
OH of this product type.  
The resource holon (RH) holds information about manufacturing resources (robots 
manipulators, grippers, machine tools, video cameras, magnetic sensors, RFID devices, a.o.). 
In general any resource may have a number of sub-resources (e.g. a robot manipulator with 
gripper with two fingers with force sensors), which are seen as holons. This project 
considers an entire resource with all its sub-resources as a holon without making the 
distinction of sub-systems. The hardware part of this type of holon is the actual physical 
robot and gripper with its functions. A permanent data exchange between hardware and 
software ensures that the actual status is accessible through the software representation of 
the resource holon. 
A product holon (PH) holds information about a product type. Any (assembly) type that 
may be produced within the manufacturing system and resource setup must be defined in a 
product holon. The fact that such a holon exists does not necessarily mean that the 
respective product is being really assembled. Only the array of order holons (described in 
the next paragraph) will specify that something is manufactured and in what quantity. The 
product information is more of a theoretical description of the physical counter piece but not 
directly associated with one individual physical item, unlike the resource holon. However, 
the availability of assembling components is ultimately checked by the PLC prior to 
authorize the final transfer of a pallet carrying the product to be assembled in a robot-vision 
workstation (see Fig. 6). 
An order holon represents all information necessary to produce one item of a certain 
product type. This holon is directly associated with the emerging item; it holds the  
information about the status of this very item at any time reaching from assembly not started 
yet throughout order progressing to order completed. Furthermore a complete manufacturing 
schedule must be computed holding all necessary information relevant for the production 
cell to successfully complete these orders, eventually satisfying a cost function such as the 
throughput or resource loading.  
Before production starts for a specific aggregate order, customer commands exist in form of 
electronic information. If a certain product needs to be manufactured n times, n identical raw 
order holons are first created (Fig. 4).  
During production execution orders can be seen as they progressively develop on a carrying 
support (pallet) in the system; after one order has been completed, the item gets cleared 
from the exiting pallet and has now a physical form. Before a schedule is defined for an 



 Programmable Logic Controller 

 

78 

aggregate order, raw order holons are created based on the information stored in the 
product holon. 
 

 
Fig. 4. Queue of two products (raw order holons) with a total of 7 items 

A layer of Order Holons ( Ppp ≤≤1 ,OH ) of variable depth, corresponding to assembly 

plans computed off line for the P final products is the output of the production scheduler fed 
with raw customer orders. A basic (quasi optimal) process plan is generated as a sequence of 
Order Holons (assembled products). Production planning uses the Step Scheduler 
developed both for production start up and resource failure and recovery situations. To 
formalize the OH scheduling process, the notations and definitions below are introduced:  

=O Set of all operations (assembly, conditioning) 
=P Set of all assemblies (final products) 

=pOA  Set of operations for assembly PpAp ∈,  

=L Set of all resource types 
=lQ Set of resources of type Lll ∈,  

=t Current scheduling time 
=lqr Resource q of type l , LlQq l ∈∈ ,  

For the networked assembly problem, the following types of resources were defined:  
• =qr1 assembly robot manipulator, 2,1=q :  SCARA, 4,3=q : vertical articulated; 

• =qr2  gripper, 2,1=q : 2(3) –finger number, 4,3=q : flat / concave-contact profile; 

• =qr3 end-effector tool, 3,2,1=q : none / bolt / screwdriver; 

• =qr4 physical-virtual camera duality ( jiVP ), ii nvjnvq ≤≤= ∑ 1 , ,,...2,1 , 

where =inv no. of virtual cameras defined and installed for each physical camera 
91 , ≤≤ ii ; 

• =qr5 magnetic code R/W device, 4,3,2,1=q . 

Resource lqr  is: operational if it can be used after a finite time delay lqΔ , 0,, ≥Δ∈∈ lql LlQq , 

available if 0=Δ lq , and down otherwise. An assembly plan )(AP δ
p of a product pA  is 

embedded in a resulting Order Holon OH as a vector of triplets, each specifying operation 
number io , processing time )(δ

it of operation io  using assembly plan δ , and set of resources 
)(δ

iR to process the operation io : 

 fiRto iiip ≤≤= δδδ 1  ),...],,,([...,AP )()()( ,  



Holonic Robot Control for Job Shop Assembly by Dynamic Simulation 

 

79 

where fiLlQqrrR liqiqi ≤≤∈∈= δδδ 1 ,,  },,...,{ )(
5

)(
1

)( . 

The Step Scheduler for assembly computes off-line the Ppp ≤≤δ 1 ,OH )( at batch level 

rending assembly plans )(AP δ
p  available for products PpAp ∈, . One operation Ooi ∈ in 

the thp OH is executable if all resources needed to carry it out are defined as operational by at 

least one )(AP δ
p . Operation Ooi ∈  is schedulable at time t , if 

1. No other operation (mounting, inspecting) upon the same product is being processed at 
time t . 

2. All operations preceding io  have been completed before time t . 

3. All resources needed by the basic assembly plans )(AP δ
p to process operation io  are 

available. 
Since a single holon may be seen as a class object in the object oriented programming 
environment (in this project the C# and .net 3.0 framework tools have been used), each of 
the three basic holon types was realized as a separate class. The instances necessary to 
define the manufacturing cell are then hosted by the Holons.HolonManager class. 
The array of Holons.Product class instances assumes a size of currently present product 
types; each element represents one product type with all necessary information to generate 
orders of this product type. The last array composed of Holons.Order class instances has a 
number of elements equal to the total count of items that needs to be manufactured. Each 
element defines an order of a certain product type with its specific assembly schedule.  
According to the definition (Koestler, 1967) a holon is an autonomous and collaborative 
entity which contains a hardware and software part. In the case of the supply holon the 
hardware part is represented by the pallet carrying pieces in the system and the software is 
the application on the PLC which controls the path pallet and manages the exchange of 
messages between the workplaces and the supplied station. The relationship between the 
two sides is 1 to 1 and synchronization is done via the code written on the pallet (251-254). 
Depending on when the supplies are sent there are two types of holons: one supplying the 
workplaces at production start up, and the one re-supplying the workstations during 
production execution. The life of a Supply Holon spreads during all the manufacturing 
process. Unlike a normal order or a Supply Holon needed for initial feeding, where the 
operations to be performed are established in advance, for a Supply Holon used at re-
feeding the operations are chosen dynamically depending on the usage of workstations. 
During production a single Supply Holon stays in the system pending for re-feeding 
operations. Another re-feeding constraint is the following: a pallet can carry only one type of 
parts for re-supply because when a workstation signals that it has an empty stock it means 
that it lacks a single type of piece. The type of piece is signaled to the PLC by a code similar 
to code that is sent when an order requires the execution of an operation. This signal is then 
sent to the workstation and is stored into a FIFO-type stack. From this stack re-feeding 
requests will be taken. 
A particular case of re-feeding is the initial supply, when all workstation stocks are empty. 
In this case the number of Supply Holons will be extended to 4, which is the number of 



 Programmable Logic Controller 

 

80 

pallets which ensure that the system will not block. After re-feeding only the pallet that 
supplies workstation during production remains in the system. The number of pallets is 
computed based on the configuration of the transportation system (Fig. 5). 
 

 
 
 

Fig. 5. Holonic manufacturing system with self-supply of assembly parts 

Before production starts for a particular Aggregate List of Product Orders (APO created at 
ERP level), the OHs exist only in electronic format; during production execution each OH 
develops on a pallet in the system; after completion, the item gets cleared from the exiting 
pallet and has now a physical form. OHs are created from raw orders (items in the APO list) 
which are based on the information stored in the product holon. If a certain product needs 
to be manufactured n times, then n identical raw orders are created first;  when OH for these 



Holonic Robot Control for Job Shop Assembly by Dynamic Simulation 

 

81 

raw orders are created, the information is distinct for each OH in terms of robot stations 
which need to be visited and the time at which they are visited (Onori et al., 2006).  
Unlike the product holon, seen as a general static entity describing a certain product type, 
the order holon is the actual realization of one item of a product type and undergoes many 
changes (of information as well as of physical nature) during manufacturing. An OH is 
represented by a pallet carrier with a unique identifier on it (magnetic tag), the manufactured 
product (on the pallet), and a management program running on the PLC communicating with 
resource controllers.  
The mappings between the (holonic) system requirements and the functional architecture 
are included in Figs. 1 and 4. Fig. 6 describes the mappings between the functional 
architecture and the physical one (for a particular implementation). The real world 
representation refers to the model (the software counterpart of the RH, PH and OH set) of 
the real production system which exists at the planning level. 
 
 
 

 
 
 

Fig. 6. Mapping between the (holonic) system and the physical architecture 



 Programmable Logic Controller 

 

82 

3. Implementation methodology using holonic principles 
The general information flow that characterizes the production system at enterprise level is 
described in Fig. 7: 

 

Customer 
Order 

Aggregate list 
of product 

On line  
ProductOff line  

Product 

Production Database & 
Rules/Strategies, RH, PH 

Update 

 Supplier 
Data, 

Job-Shop PLC Control 
(OH/SH Execution,  

RH Status Monitoring)

SH, Reschedule Request at 
Resource

Job-Shop Scheduler  
(Batch Production 

R
H

 S
ta

tu
s 

M
on

ito
rin

g 
 

(R
ob

ot
s,

C
am

er
as

,

H
ol

on
ic

 B
id

di
ng

 M
ec

ha
ni

sm
 

(C
re

at
e 

SH
 fo

r d
ep

le
te

d 
st

or
ag

e 
an

d 
al

te
rn

at
e 

O
H

 fo
r W

IP
)  

  
Supply- and WIP 

Reschedule

In
se

rt 
ne

w
 S

H
 

&
al

te
rn

at
e

Cell 

Cell 

Station 
Compute

Resource 
Controllers (RC, 

CAPP 
(OH/SH 

CAM, CAQC 
(OH/SH 

CAD, CAE 
(Customer 

Order

Marketing, 
Sales (Offer 

Request 

E

 
Fig. 7. Information and data flow of HMES with knowledge-based Service Oriented 
Architecture for customer request management 

After the definition of the process and production domains the fabrication cell is ready for 
utilization and the business process can begin. In order for this process to be made flexible it 
is proposed that the information on offer requests, offers to clients, order collection and 
production feedback is retrieved through a web interface which is interconnected with the 
process as described in Fig. 8 below: 



Holonic Robot Control for Job Shop Assembly by Dynamic Simulation 

 

83 

GUI Scheduler /ProductionManager

Post available products

Cell PLC

Request batch production

Accept/Reject production

Feedback informations

Accept/Reject production

Resources

Request status

Send response

Request available operations

Send available operations

Compute schedule

Send schedule

Monitoring resources status

Question

Response

Write execution log

Define products based 
on available operations

Start/Stop(with Reset)/
Renew production

 
Fig. 8. Time diagram representing messages exchanged between entities from the business 
domain 

Synchronization between the client interface and the planning and management application 
for the work cell is done via the exchange of text files. There will be three types of files: 
a. Input files for the scheduler 
        1. input_nr_orders.txt 
For a command the client will provide the manufacturer with the following details: product 
types, quantities and priorities. There are four levels of priority (0, 1, 2 and 3) where 3 
represent the orders with the highest priority. Once this information is provided a 
connection between them and production domain must be created in order to report its state 
to the client. Therefore, besides the three fields that define a client order another field that 
will make contact with customer orders is added. This is the customer index. 
In this way, the file has the following structure: 

nr_products$priority$product_name $index_client 
Here, nr_orders (from the file input_nr_orders.txt) is an integer which increases at each 
command. At each cycle of planning and production the application will retrieve the 
information from the file with the lowest index and then will delete the file. 
       2. command.txt 
It is better that once the orders are introduced in production it exists a way to intervene in 
their execution. The reason is that for an undetermined cause the cancellation of orders' 
execution should be possible. Therefore, through this file that contains a single row (the 



 Programmable Logic Controller 

 

84 

command), messages will be sent to the scheduler and management application. The 
commands in the file are interpreted as follows: 
 

start_production – represents the start command to the scheduler  
stop_production – stops the production immediately and cancels all orders in work. 
express_order – represents the command that stops current production, reads a new 
entry (input_nr_orders file) and then plans and executes the entire batch. 

 

b. Output files from the scheduler 
        1. feedback.txt 
This is a file that contains the state of the orders released for execution. This file has the 
following line structure:  

product_typetip_produs, start_time_execution,stop_time_execution,client_index,state 
having the following description: product_type – the type of product indicated by the 
representation; start_time_execution – the time at which the product execution has begun; 
stop_time_execution – the time at which the product execution will end; client_ index – the 
index that uniquely attaches a product to a client (e.g.: if there are two clients with the same 
product it must be identified to whom it belongs to); state – represents a product state as 
follows: failed_execution (the product cannot be executed due to lack of raw materials or 
resources), failed (the product can not be executed because of a malfunction that occurred 
during its fabrication), processing (execution in progress) and done (product executed). 
This file will be analyzed with a frequency that permits sending the information to the client 
in real time. 
At the end of the execution of a batch of products the file will contain two types of products: 
executed and non-executed. At every event in the system (resource failure or recovery) the 
scheduling is recomputed taking into account the products previously marked as 
compromised due to lack of resources. The non-executed products have reached this state 
due to two possible reasons: either they failed on the production line or there were no raw 
materials for their execution. For this reason the planning and management application 
checks one last time the "non-executed" status of products. If products still cannot be done 
they are finally rejected (e.g. a part is wrongly mounted because the palette doesn’t arrive 
perfectly aligned with one of the robot's base axis; this is identified using machine vision, 
and the respective product remains marked as "failed"). 
        2. lock 
This is a temporary file that reflects the utilization state of the scheduler and management 
application: if it exists, the application is occupied with a previous order; if not, it means that 
orders can be sent to it. This file contains the date and time the system was blocked. 
        3. A response from the scheduling and management application side should exist to 
confirm that it is in a running/stopped state. 
c. Storage files for memorizing execution logs 
        1. output_date_time.txt 
Following the execution of a batch of products the resulting information is stored for 
subsequent processing. Thus there will be stored all information related to the traceability of 
products: operations, execution times, entry and exit times, visited resources and the final 
state of product (done/failed). All this information will be stored in text files whose names 



Holonic Robot Control for Job Shop Assembly by Dynamic Simulation 

 

85 

start with the output keyword, followed by time and date when the file was written. Inside 
the file the following information will be found: 
 

Order 1 with index 1 of type H 
----------FAILED---------- 
Priority = …  
Insertion time: … 
Exit time: … 
Processing time: … 
Transporting time: … 
Operations: 
component(on resource …, at time …), … 
 

The FAILED field appears only if it is the case. If production is stopped to remove / add 
products from execution the log file will be written at the end of the production. 
       2. error.txt 
This file contains all the failures and recoveries the system went through in the form of 
records with the following structure: 
 

### 
Date: the date the failure/recovery happened 
Time: the time the failure/recovery happened 
Error type: string that uniquely identifies the problem and the resource that was affected.  
 

 
 

Fig. 9. Diagram of the user interaction interface 

In the representation of Fig. 9, the Web browser is a common web browser like: internet 
explorer, firefox, opera, etc; Web server is the location that hosts the user interaction page; 
the Data base server is the data base server that contains the information representing client 
orders, products, etc. 
The Graphical interface for interacting with the work cell is the module through which 
communication is done between the scheduling and management application and the 
client. 
Fig. 10 presents the application modules. These are: 

Web browser 

Web server 

Data base server 

Graphical interface for 
interacting with the work cell



 Programmable Logic Controller 

 

86 

 

 
 

Fig. 10. Application modules 

Authentication: login/logout and user administration module (for allowed zones and 
permissions). 
Administration commands module: module that monitors the client commands currently 
in execution. 
User administration module: module in charge of user personal data. 
Administration products module: module in charge with creating a product 
Administration products module: module in charge with the materials needed to create 
new products. 
Workcell interfacing module: module needed for the communication with the application 
from the work cell. 
Fig. 11 shows the data base structure, with the following components: 
 

Users: a table that contains the authentication data for registered users. 
User data: a table that contains user personal data address, telephone, etc. 
Client orders: a table that memorizes the clients' orders already sent to execution. 
Status: a table that contains the status of each client order. 
Product-orders link: the link table that does the connection between the possible products 
to order and the orders sent to execution 
Products: a table containing the list of possible products that can be executed by the system. 
Products properties: a table that describes the products composition (operations to perform 
and precedence between them). 
Products-materials link: the link table creating the connection between the list of materials 
and the possible products that can be executed by the system. 
Materials: a table containing the existing materials that can be used to assemble products. 
Materials prices: a table containing the cost of materials. 
Materials properties: a table containing the description of assembly materials. 
Measurement units: a table containing the measurement units for the materials used in the 
fabrication process. 

User administration 
module 

Authentication 

Administration 
commands module 

Administration 
products module 

Raw materials 
administration module Workcell interfacing 

module 



Holonic Robot Control for Job Shop Assembly by Dynamic Simulation 

 

87 

 
Fig. 11. Data base structure 

4. Essential production processes 
4.1 Step scheduler based on dynamic simulation 
4.1.1 Scheduling production at batch level 
Expertize Holons (EH) were defined and implemented as a set of rules creating an optimal 
schedule (maximizing the load of all available resources), which means that each of the four 
robots in the system should have a minimum of idling time. To achieve a maximum load of 
each robot, the conveyor system should never be jammed by any pallet carrying an item 
waiting to be processed by a robot. If the transport system is not blocked for most of the 
time each robot station will be always reachable, thus ready to receive an item and carry out 
a task.  
Based on this idea a Step Scheduler has been developed.  Each individual item (product) is 
being scheduled one step at a time. The process is initialized by generating a queue of all 
raw customer orders (products to be assembled – Fig. 4). Once the queue has been generated 
at production start up, failure detection or recovery from failure, the following algorithm is 
executed (an iteration of the algorithm checks and completes the following action steps): 
Step 1. Check the number of pallets in the system, if there are less than 2 pallets, go to Step 

2, else go to Step 3 
Step 2. Choose any item randomly from the queue 

Step 2.1: For the chosen item generate a list of all possible operations based on 
predecessor constraints 

Step 2.2: For each possible operation find all robots capable of executing the task 
and calculate the waiting time for each robot before the task could be 
executed once the item arrives at the station 

1-1 

n-1 

1-1xn 
1-1 

n-1 

0-n 

1-n 

1-n 

1-1 

0-n 

Client orders 

User data 
Product-

orders link 

Products-materials link 

Materials 

Materials prices 

Products 

Materials properties 

Products properties 

Status

Measurement 
units

Users

n-1 



 Programmable Logic Controller 

 

88 

Step 2.3: Choose the operation with the smallest waiting time and introduce the 
item on a new pallet with the destination acquired before, store the current 
time index as insertion time 

Step 3. Execute a step of one time index increment in the conveyor simulator and the robot 
operation execution; if a robot finishes an operation go to Step 4; if a pallet arrives 
at a workstation go to Step 6; else go to Step 5 

Step 4. For the item that just finished an operation, store the current time index as operation 
completed time, mark the robot as free, then do the following: 
Step 4.1: determine whether this item has been completed (all operations have been 

carried out), if so, mark the item as completed and send the pallet to the 
output, then continue with Step 5 

Step 4.2: For the chosen item generate a list of all possible operations based on 
predecessor constraints 

Step 4.3: For each possible operation find all robots capable of executing the task 
and calculate the waiting time for each robot before the task could be 
executed once the item arrives at the station 

Step 4.4: Choose the operation with the smallest operation start time and send the 
pallet to that robot station 

Step 5. If there are still items in the queue or pallets in the system, go back to Step 1, else 
exit the algorithm 

Step 6. Step 6: For the arriving item store the current time index as operation start time, 
allocate this item on the robot and mark the robot as busy, continue with Step 1 

Once an item has been introduced, it will remain in the system until it is completed. No item 
will leave the system and re-enter it to a later point in time. In other words any sequence 
(respecting the insertion criterion that the waiting time must be minimal) of alternating 
product types may be introduced into the system. Tests showed that different sequences 
(different runs of the algorithm on the exact same product definitions) yield slightly 
different total production times. For this reason, an alternative running mode has been 
integrated into the software. The so called Step Scheduler Best Sequence mode runs the 
algorithm 100 times and outputs the best result of these runs. 

4.1.2 The Simulator scheduling tool 
A Simulator has been developed and integrated in the global software system to assist and 
stepwise validate the creation of order holons list (i.e. the sequenced raw order holons). The 
simulation program routines play an essential role in the scheduling process, both at: 
• Production start up, detection of a resource failure, and recovery after failure (off line, 

preparing production) 
• Tracking of production execution, graphic monitoring (real time during production 

execution) 
The main quality of simulating the transportation of products on pallets is the capability to 
vary the time base. The software furthermore uses a transportation time matrix which has 
been created by measuring the actual time used by the real system to transport a pallet from 
one point of interest to another (in general from one stopper or elevator to the next). The 
simulation's smallest time index (transport time slice) corresponds to one advancement step 
of a pallet and was defined as 0.5 seconds. 
The transport simulation is used off-line to generate global production schedules, and in real 
time to track production execution. There is a fundamental difference in the use of core 



Holonic Robot Control for Job Shop Assembly by Dynamic Simulation 

 

89 

routines developed to realize the correct transportation of pallets. In the case of the visual 
simulation, the routines run in a timed mode. This means that after each iteration of the 
main program loop a timer stops the program and waits until the smallest time index of 0.5 
seconds has passed by and only after that allows another iteration of the main program 
loop. The result of this pause is the fluent running in 0.5 second steps of the simulation 
which, in combination with the measured transportation time matrix, corresponds exactly to 
the behaviour of the real system. 
When these routines are used to solve the scheduling problem, they transport the pallets in 
the system with an infinitely high speed (limited by the computer calculation speed). As 
soon as an iteration of the transport functions terminates, the next one starts. Since none of 
the dimensions or the transportation time matrix has been changed for this kind of 
simulation, the resulting time indexes still correspond exactly to 0.5 seconds and may 
directly be used to define the production schedule.  
The only difference is that time has been compressed at maximum by doing the calculations 
in absence of a timer which ensures the realistic execution of the simulation. The simulation 
functions check at each iteration all the pallets which are currently in the system. A pallet 
gets transported one step if the conveyor segment is running and if there is no active 
stopper or elevator at the pallet's present position. 
Certain constraints given by the cell architecture ask for another control layer which ensures 
that odd situations do not occur while the system is operational. Since there are four robot 
stations in the cell, the number of pallets with products circulating in the system was limited 
to five (including the one just leaving the production system). 

4.2 Failure management and system integration 
The fail-safe mechanism for controlling production is triggered whenever a resource (robot 
controller, sensor, video camera) is down or the result of an operation is negative (visual 
inspection). With the help of the basic holons RH, PH, and OH and the scheduling algorithm 
based on EH, a FailureManager was created. A virtually identical counterpart, the 
RecoveryManager, exists, which takes care of the complementary event when a resource 
recovers from the malfunctioning and comes back online. 
Alternative process plans, triggered by resource failure/recovery, local storage depletion or 
occurrence of rush orders, are automatically pipelined: (a) at the horizon of Ep  products in 
course of execution in the system, based on heterarchical contract negotiation schemes (e.g. 
CNP) between valid resources, and (b) at the global horizon of ET ppP −−  remaining 
products, =Tp  number of terminated products, based on hierarchical GSP. Two categories 
of changes are considered: 
1. Change occurring in the resource status at shop floor level: (i) breakdown of one 

manufacturing resource (e.g. robot, machine tool); (ii) failure of one inspection 
operation (e.g. visual measurement of a component/assembly); (iii) depletion of one 
workstation storage (e.g. assembly parts are missing in one local robot storage).  

2. Change occurring in production orders, i.e. the system receives a rush order as a new 
batch request (a new APO). 

All these situations trigger a fail-safe mechanism which manages the changes, providing 
respectively fault-tolerance at critical events in the first category, and agility in reacting (via 
ERP) to high-priority batch orders. A FailureManager was created for managing changes in 



 Programmable Logic Controller 

 

90 

resource status. A virtually identical counterpart, the RecoveryManager, takes care of the 
complementary event when a resource recovers from breakdown or missing parts are fed to 
the empty storage.  
The states describing the processing capabilities of a resource and the actions taken while 
transiting from one state to another are presented in Fig. 12. 
 

Resource available

Resource failed Empty stock

failure

recovery
depletion

refill

failure

launch

Failure/recovery 
management 

procedure launch

recovery

Event driven
 procedure

Resource state

State transition

Message

Supply 
management 

procedurelaunch

launch

 
Fig. 12. Actions taken when a resource is changing from a state to another 

Upon monitoring the processing resources (robots), their status may be at run time: available 
– the resource can process products; failed – the resource doesn’t respond to the 
interrogation of the PLC (the entity responsible for Order Holon execution), and 
consequently cannot be used in production; no stock – similar to failed but handled 
differently (the resource cannot be used in production during its re-supply, but it does 
respond to PLC status interrogations).  
There are two types of information exchanges between the PLC (master over OH execution) 
and the resource controllers (robot, CNC) for estimation of their status during production 
execution:  
• Background interrogation: periodic polling of RQST_STATUS and ACK_STATUS digital 

I/O lines between the PLC – OH coordinator and the Resource Controllers (robot, 
CNC). 

• Ultimate interrogation:  just before taking the decision to direct a pallet (already 
scheduled to a robot station) to the corresponding robot workplace, a TCP/IP 
communication between the PLC and the robot controller takes place (see Fig. 13). This 
communication practically validates the execution of the current OH operation on the 
particular resource (robot). 

In this protocol, READY is a signal generated by the Robot Controller indicating the idle or 
busy state of the resource (robot). The PLC requests through its digital output line RQST-JOB 
to use the robot for an assigned OH operation upon the product placed on the pallet waiting 
to enter the robot workstation. D1 details the scheduled job via the TCP PLC transmission 
line from the PLC to the Robot Controller. The Robot Controller indicates in D2 job 
acceptance or denial via the TCP Robot transmission line. When the job is accepted, the 
pallet is directed towards the robot's workplace, where its arrival is signalled to the Robot 
Controller by the Pal in Pos digital output signal of the PLC.  
Job Done is a signal indicating job termination (D3 details the way the job terminated: 
success, failure).  T1 is the decision time on job acceptance (storage evaluation etc), T2 is the 
transport time to move the pallet from the main conveyor loop to the robot workplace, and 
T3 is the time for job execution. 



Holonic Robot Control for Job Shop Assembly by Dynamic Simulation 

 

91 

 
Fig. 13. Communication protocol between the PLC and a Robot Controller for authorizing 
an OH operation execution 

Upon periodic interrogation, the entity coordinating OH execution – the PLC – checks the 
status of all resources, which acknowledge being available or failed.  The ultimate 
interrogation checks only the state of one resource – the one for which a current operation of 
an OH was scheduled; during this exchange of information, the PLC is informed whether 
the resource is available, failed or valid yet unable to execute the requested OH operation 
upon the product due to components missing in its storage (no stock status).  
When the failure status of a resource is detected, the FailureManager is called, executing a 
number of actions according to the procedure given below (Fig. 14):  
1. Stop immediately the transitions of executing OH, i.e. the circulation of 

products_on_pallets in the cell; production continues however at the remaining valid 
resources (robots, machine tools). 

2. Update the resource holons with the new states of all robots. 
3. Read Order Holons currently in execution (which are currently in the production cell). 
4. Evaluate all products if they can still be finished, by checking the status of each planned 

OH: 
• if the OH was in the failing robot station, mark it as failed and evacuate its 

product_on_pallet; 
• if the OH is in the system, but cannot be completed anymore because the failed resource 

was critical for this product, mark it as failed and evacuate its product_on_pallet; 
• if the OH is not yet in the system, but cannot be completed due to the failure of the 

resource which is critical for that product, mark it as failed ( en .is the total number of 
such OH). 

5. For the remaining failwipwip nnn −=' schedulable OH in the system, locate their 

products_on_pallets and initialize the transport simulation associated to the current 
operational configuration of the system. Authorise the '

wipn OH to launch Contract Net 

Protocol-based negotiations (HBM) with the remaining available Resource Holons for 
re-scheduling of their associated operations. wipn  are the OH currently introduced in 

READ

RQST-

TCP Robot

TCP PLC

Pal In Pos

Job Done

D

D

T1 T3T2

D



 Programmable Logic Controller 

 

92 

the system (in the present implementation, 5≤wipn ), and failn is the total number of 

OH currently in the system, which cannot be finished because they need the failed 
resource at some moment during their execution. 

 
Fig. 14. Dynamic OH rescheduling at resource failure/storage depletion with embedded 
CNP job negotiation 

6. Run the Global Production Scheduling algorithm for the ewipfin nnnN −−−  OH not 

yet introduced in the system, where a number of N OH was scheduled in total and 

finn   OH were finished. 

7. Delete the orders stored on the system and transfer the updated orders to the system. 
Resume product_on_pallet transfer within the transport system (allow OH transitions in the 
system). 
It might happen that a failed robot gets fixed before the current manufacturing cycle is 
finished. In this recovery case, the cell regained the ability to run at full capacity but the 
lined up orders do not make use of this fact, as they are managed by the system in a 



Holonic Robot Control for Job Shop Assembly by Dynamic Simulation 

 

93 

degraded mode. The procedure of rescheduling back the Order Holons is virtually identical 
to the one used in case of failure; the main difference is that none of the products_on_pallets 
being currently processed need to be evacuated since there is no reason to assume they 
could not be completed. Any orders that were marked as failed due to resource 
unavailability are now untagged and included in the APO list for scheduling as the may be 
manufactured again due to resource recovery (Lastra and Delamerm, 2006; Leitao et al, 
2007). 

4.2 Automatic re-supply of workplaces 
In case of local storage depletion, the OH waiting to enter the robot station with exhausted 
storage will be either delayed if the resource is critical or re scheduled to another resource 
disposing of the missing component and able to perform the current operation.  In such a 
situation, two actions take place:  
1. One Supply Holon (SH) is created by the GSP, by specifying the type and number of 

parts to be retrieved, the supply source (a central cell storage tended by a SCARA robot 
under visual guidance), and the restoring destination (the exhausted local robot 
storage). The SH is immediately started. 

2. From the wipn  OH currently in execution, dn  will be delayed until the empty storage, 

which is critical for certain of their mounting operations, is restored and 

dwipwip nnn −=''  OH will be re scheduled by the holonic bidding mechanism (HBM) to 

robots disposing of necessary assembly parts. 
A lock is put on the system, and no further OH (a new pallet) is introduced in the system 
until the last one of the dn  delayed OH is completed and exits the system. When both the 
SH and all dn OH are terminated, the lock is suspended and the remaining OH are 
introduced in the system in packets of wipn , their re-scheduling being not necessary. 

4.2 Treatment of rapid orders 
The system is agile to changes occurring in production orders too, i.e. manages rush orders 
received as new batch requests from the ERP level while executing an already scheduled batch 
production (a sequence of Order Holons). 
Because of the similarities between a task run on a processor and a batch of orders executed 
in a cell (both are preemptive, independent of other tasks/batches, have a release, a delivery 
date and an fixed or limited interval in which they are processed), it was decided to use the 
Earliest Deadline First (EDF) procedure to schedule new batches (rush orders) for the cell. 
Earliest Deadline First (EDF) is a dynamic scheduling algorithm generally used in real-time 
operating systems for scheduling periodic tasks on resources, e.g. processors (Sha et al., 
2004, Lipari, 2005). It works by assigning a unique priority to each task, the priority being 
inversely proportional to its absolute deadline and then placing the task in an ordered 
queue. Whenever a scheduling event occurs the queue will be searched for the task closest 
to its deadline. A feasibility test for the analysis of EDF scheduling was presented in (Liu and 
Layland, 1973); the test showed that under the following assumptions: (A1) all tasks are 
periodic, independent and fully preemptive; (A2) all tasks are released at the beginning of 
the period and have deadlines equal to their period; (A3) all tasks have a fixed computation 
time or a fixed upper bound which is less or equal to their period; (A4) no task can 
voluntarily stop itself; (A5) all overheads are assumed to be 0; (A6) there is only one 



 Programmable Logic Controller 

 

94 

processor, and  timecycle,timeexecution , tasksofnumber  ,1
1

===≤∑
=

ii

n

i i

i TCn
T
C

(a set of 

n periodic tasks can be scheduled if the utilization of the processor (resource) is less than 
100%). 
A batch or Aggregate Product Order list (APO) is composed of raw orders (list of products to 
be manufactured); this is why two different batches are independent. Nevertheless, there is 
a difference between a task and a batch of products: a task is periodic while a batch is 
generally a periodic. This means that instead of testing the feasibility of assigning batches to 
the production system considering the equation above, one can use the following test: "for 
an ordered queue (based on delivery date) of n batches with computed makespan, if 

ni
i

j
ij ,1,atedelivery_dmakespan

1

=≤∑
=

, then the batches can be assigned to the production 

cell using EDF without passing over the delivery dates". 
This EDF approach is used to insert rush orders in a production already scheduled by the 
GPS; the steps below are carried out for inserting a new production batch (rush order) 
during the execution of a previously created sequence of Order Holons (see Fig. 15): 
 

Generate 
raw 

barches

Schedule 
raw 

batches

Evaluate the probability 
to insert new batches 
keeping old batches 
deadlines (EDF test)

 Insertion
possible ?

Product orders 
ERP level

Propose 
new date

Date
accepted ?

No

Reject 
order(s)

No

3 2 1n ...
Shift register containing monitored 

batches ordered by delivery date

0

Current batch

Execution and monitoring process

Shop floor

Job loadingData collection

Computing the 
remaining batches (rest 
of the current batch and 
batches in production)

Execution process with 
integrated part supply and 
operation rescheduling in 
case of empty stocks or 
physical failure (monex)

Mix and order by 
delivery date 

inserted, monitored 
and current batches 

(EDF procedure)

Yes

Yes

New batch process

 
Fig. 15. Add rush order diagram and integration with dynamic job re-scheduling based on 
CNP negotiation 



Holonic Robot Control for Job Shop Assembly by Dynamic Simulation 

 

95 

0.     Compute the remaining time for finishing the rest of the current batch (if necessary). 
1. Insert new production data: product types, quantities, delivery dates. 
2. Separate products according to their delivery date. 
3. Form the entities "production batches" (a production batch is composed of all the 

products having the same delivery date). 
4. Generate raw orders inside the production batches (APO lists). 
5. Schedule the raw orders (using a GPS algorithm, e.g. KBS or Step Scheduler), compute 

the makespan and test if the inserted batch can be done (the makespan is smaller than 
the time interval to delivery date if production starts now). 

6. Analyse the possibility of allocating the batches to the manufacturing cell using the 
Earliest Deadline First procedure and second equation for feasibility test. 

7. Allocate the batches on the real production system according to the EDF procedure. 
8. Resume execution process with new scheduled Order Holons. 
In this mechanism for the management of changes in production orders, an inserted batch is a 
batch that arrives while another one is in execution. A monitored batch is one whose orders 
are scheduled and assigned to the cell (it has a priority and is waiting to enter execution). A 
current batch is one in execution. 
The capability of adding rush orders to production needs a new entity – the batch. In this 
way job scheduling is done at batch level (all orders with the same delivery date are 
scheduled together) and then batches are assigned to the cell according to their delivery 
date, using the EDF procedure (Table 1).  
 

Name Description 
batch_name Name or index of the batch 
delivery_date Delivery date of the orders 
requested_products Vector containing the products to be executed 

used_resources Vector containing the configuration used for current batch 
planning 

orders_to_execute Vector containing the entities OH already scheduled using a 
specified cell structure (defined by the variable used_resources) 

makespan The time interval needed for the current batch to be executed if 
started now and not interrupted (it is a result of scheduling) 

Table 1. The minimal structure of a batch holon 

Because the process of batch execution is interruptible (preemptive system), new batches 
(rush orders) can be introduced exactly at the moment of their arrival. The insertion process 
is triggered by the arrival of a "new order" event; a real-time acceptance response can be 
provided (via the ERP level) to the customer if the rush order can be executed by the 
requested delivery date. 

5. Experimental results 
The distributed control solution was implemented, tested and validated on a real 
manufacturing structure with industrial assembly robots and 4-axis CNC milling machines, 
using the holonic approach. This development platform was recently put in place in the 
Centre of Research in Robotics and CIM within the University Politehnica of Bucharest. 



 Programmable Logic Controller 

 

96 

The described holonic implementation framework allows networking equipment from 
different producers. The cost of the development platform is directly reflected in its high 
precision performances, integrated inspection services, relaxation of material presenting 
constraints, fixture simplification and management of changes. 
The control structure is fully operational, both in the normal hierarchical mode and upon 
switching automatically to the heterarchical one in response to rush order requests, part 
supply and resource failures.  
An example of production definition at batch level for four products (H-, U-, L-, and C-type 
products) resulting from the succession 8 operations consisting of assemblies, milling  and 
visual inspections is further analysed. 
For the experiments reported, the number of products simultaneously in execution was 
limited to 5. Table 2 below gives the production times resulting from the Step Scheduler 
RSRP computation in two scenarios: (i) only H-type products; (ii) equal number of H-, U-, L- 
and C-type of products within one of the four batch sizes (batch sizes were 4, 20, 40 and 60 
products): 
 

Production time [time units] Worst recovery time [time units] 
Batch 
size 

H-type 
[RSRP / 

CNP] 

Equal number of 
H-, U-, L-, and C-type 

[RSRP/CNP negotiation]

Alternate OH at 
[packet = 5] level 

(resource i failure: RiF)

New SH for restoring 
Local Storage i (LSi) 

at depletion 
4 684 / 734 663 / 687 6.4 (R1F) 97 (LS1) 

20 2841 / 
3112 2550 / 2712 6.5 (R2F) 112 (LS2) 

40 5485 / 
5962 4934 / 5288 6.8 (R3F) 136 (LS3) 

60 8129 / 
9089 7362 / 7902 6.5 (R4F) 83 (LS4) 

Table 2. Production time for H-, U-, L- and C-type batches and resuming times at resource 
failure 
The system's behaviour was tested with good results at storage depletion (less than 68 
seconds to generate a SH and restore the furthest local robot storage) and resource failure 
(SC, switch and RC). Future work will be directed towards integrating the process control- 
and ERP areas through an enhanced information management system based on RFID. 

6. Conclusion 
The scope of this chapter was the definition of a PLC-centred framework for developing an 
integrated solution aiming at controlling the resources of a flexible manufacturing system 
and managing of the clients’ orders. The key characteristics of the proposed framework are 
autonomy of the control systems' resources and cooperation between them. 
The general features of the proposed holonic implementing framework facilitate, beyond the 
product assembling with machined components, the development of any other discrete, 
repetitive manufacturing applications. Features like: decomposition of the production 
system into entities relative to the basic areas specific to an enterprise (production, process 
and business), description of the types of manufacturing entities and of the communication 
protocols that take place between them, and the decision scenarios during resource failure / 
recovery and stock restoring are reusable. 



Holonic Robot Control for Job Shop Assembly by Dynamic Simulation 

 

97 

From the algorithmic point of view, the proposed resolved scheduling rate planner (RSRP) 
based on variable-timing simulation, facing the NP complexity aspect of the batch 
scheduling problem can be reused for any topology of the material transportation system, 
due to its graph–type, object-oriented  description. 

7. References 
Bongaerts, L., Wyns, J., Detand, J., Van Brussel, H., Valckenaers, P., 1996. Identification of 

manufacturing holons. Proceedings of the European Workshop for Agent-Oriented 
Systems in Manufacturing, Albayrak, S., Bussmann, S. (Eds.), Berlin, 57-73 

Bongaerts, P., Monostori, L, McFarlane, D., Kadar, B., 1998. Hierarchy in distributed shop 
floor control. Proceedings of the 1st Int. Workshop on Intelligent Manufacturing 
Systems IMS-EUROPE, Ed. EPFL, Lausanne, 97-113 

Borangiu, Th., 2004. Intelligent Image Processing in Robotics and Manufacturing, Romanian 
Academy Publishing House, Bucharest 

Borangiu, T., Ivanescu, N., Raileanu, S., Rosu, A., 2008. Vision-Guided Part Feeding in a  
holonic Manufacturing System with Networked Robots, Proceedings of Int. 
Workshop RAAD 2008, Ancona, Italy 

Borangiu Th., Gilbert P., Ivanescu N., Rosu A., 2008. Holonic Robot Control for Job Shop 
Assembly by Dynamic Simulation, Int. Conference MED’08, Ajaccio 

Borangiu Th., Gilbert P., Ivanescu N.A., Rosu A., 2009. An Implementing Framework for 
Holonic Manufacturing Control with Multiple Robot-Vision Stations, Engineering 
Applications of Artificial Intelligence 22 (2009), 505-521, Elsevier 

Cheng, F.-T., Chang, C.-F., Wu, S.-L., 2006. Development of Holonic Manufacturing 
Execution Systems, Industrial Robotics: Theory, Modelling and Control, Advanced 
Robotics Systems, Ed. Pro Literatur Verlag Robert Mayer-Scholz Germany, Vienna 

Deen, S.M., 2003. Agent-Based Manufacturing – Advances in Holonic Approach, Springer 
Dorigo, M., and Stuzle, T., 2004. Ant Colony Optimization. The MIT Press 
Koestler, A. The Ghost in the Machine. Hutchinson publishing Group, London, 1967 
Kusiak, A., 1990. Intelligent Manufacturing Systems, Prentice Hall, Englewood Cliffs, New 

York 
Lipari, G., 2005. Sistemi in tempo reale (EDF), Course Scuola Superiore, Sant’Anna, Pisa 
Liu C.L., Layland, J.W., 1973. Scheduling algorithms for multiprogramming in a hard real-

time environment, Journal of ACM  20, 1, 46-61 
Maione, G., and Naso, D., 2003. A soft computing approach for task contracting in multi-

agent manufacturing control. Computers in Industry, 52, 199–219 
Markus, A., Vancza, T., Monostori, L., 1996. A market approach to holonic manufacturing. 

Annals of the CIRP 45, 1, 433-436 
McFarlane D, Sarma S, Chirn Jin Lung and Wong C Y, and Ashton K,. 2002. ‘‘The intelligent 

product in manufacturing control and management’’. Proceedings of the 15th 
Triennial World Congress, Barcelona 

Morel, G., Panetto, H., Zaremba, M., Mayer, F., 2003. Manufacturing enterprise control and 
management system engineering: Rationales and open issues, IFAC Annual 
Reviews in Control 

Nylund H., Salminen, K., Andersson, P.H., 2008. A multidimensional approach to digital 
manufacturing systems, Proceedings of the 5th International Conference on Digital 
Enterprise Technology, Nantes 



 Programmable Logic Controller 

 

98 

Okino, N., 1993. Bionic Manufacturing System in Flexible Manufacturing System: past – 
present – future. J. Peklenik (ed), CIRP, Paris, 73-95 

Onori, M., Barata, J., Frey, R., 2006. Evolvable assembly systems basic principles, IT for 
Balanced Manufacturing Systems 220, IFIP, W. Shen (Ed.), Springer, Boston, 317-
328 

Ramos, C., 1996. A holonic approach for task scheduling in manufacturing systems, 
Proceedings of the IEEE Int. Conf. on Robotics and Automation, Minneapolis, USA, 
2511-2516 

Sallez Y., Berger T., Trentesaux D., 2009. Open-control: a new paradigm for integrated 
product-driven manufacturing Control, Proceedings of the 13th IFAC Symposium 
on Information Control Problems in Manufacturing (INCOM '09), Moscow 

Sauer O., 2008. Automated engineering of manufacturing execution systems – a contribution 
to “adaptivity” in manufacturing companies, 5th International Conference on 
Digital Enterprise Technology, Nantes 

Sha, L. et al., 2004. Real Time Scheduling Theory: A Historical Perspective, Real-Time 
Systems, Vol. 28, No. 2-3, 101-155 

Trentesaux, D., Dindeleux, R. and Tahon, C., 1009. A MultiCriteria Decision Support System 
for Dynamic task Allocation in a Distributed Production Activity Control Structure. 
Computer Integrated Manufacturing, 11 (1), 3-17 

Usher, M.J., Wang, Y-C., 2000. Negotiation between intelligent agents for manufacturing 
control, Proc. of the EDA 2000 Conference, Orlando, Florida 

Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L. and Peeters, L,. 1998. Reference 
architecture for holonic manufacturing systems: PROSA. Computers in Industry, 37 
(3), 255–274 

Wyns, J., Van Ginderachter, T., Valckenaers, P., Van Brussel, H., 1997. Integration of 
resource allocation and process control in holonic manufacturing systems, 
Proceedings of the 29th CIRP Int. Seminar on Manufacturing Systems, 57-62 

Zbib, N., Raileanu, S., Sallez, Y., Berger, T. and Trentesaux, D., 2008. From Passive Products 
to Intelligent Products: the Augmentation Module Concept. Proceedings of the 5th 
International Conference on Digital Enterprise Technology, Nantes 



6 

Centralized/Decentralized Fault Diagnosis  
of Event-Driven Systems based  

on Probabilistic Inference 
Shinkichi Inagaki and Tatsuya Suzuki 

Nagoya University 
Japan 

1. Introduction 
Event-driven controlled systems based on the Programmable Logic Controller (PLC) are 
widely used in many industrial processes. The number of such a control system is said to 
occupy more than eighty percent of the entire existing control systems. Nowadays, the 
demands for production facilities are shifting from the high speed and highly efficiency to 
the safety and high reliability. In order to meet these requirements, several strategies for 
fault diagnosis of systems and the design of recovery procedure have been proposed. 
In the case of considering the PLC-based control systems, since they have discrete and 
event-driven characteristics inherently, system models based on discrete-event-system 
description give more efficient diagnostic algorithm than those based on continuous-time 
systems (for surveys cf. (A. Darwiche & G. Provan (1996); D. N. Pandalai& L. E. Holloway 
(2000); M. Sampath et al. (1995); S.H.Zad et al. (1999))). This aspect will be more emphasized 
when the number of components would be large. Based on these considerations, Lunze 
proposed a centralized fault diagnosis framework based on the system model with Timed 
Markov Model (TMM) (J.Lunze (2000)). This method especially becomes useful when 
numerous number of input and output data are collected through daily operation since the 
TMM is based on a stochastic expression of time interval between successive events. This 
approach also has some robustness against unevenness underlying in the ordinary 
production facilities. However, this kind of centralized diagnosis strategies will cause an 
explosion of the computational burden when they are applied to the large scale systems. In 
this case, the decentralized approach is highly recommended wherein the diagnosis is 
performed by each diagnose together with the communication with other diagnosers 
(O.Contant (2006); S.Debouk (2000); R.Su et al. (2002)). These approaches, however, were 
based on the deterministic model. 
Based on these backgrounds, the authors (S.Inagaki et al. (2007)) proposed a decentralized 
stochastic fault diagnosis strategy based on a combination of TMM and Bayesian Network 
(BN). The BN represents the causal relationship between the fault and observation in 
subsystems. Since the decentralized diagnosis architecture distributes the computational 
burden for the diagnosis to the subsystems, a large scale diagnosis problems in real-world 
application can be solved. In the decentralized approach, the computational burden and the 
diagnosis performance strongly depend on the complexity of the graph structure of BN. 



 Programmable Logic Controller 

 

100 

This chapter also addresses a design method of the graph structure of the BN in 
decentralized stochastic fault diagnosis of (S.Inagaki et al. (2007)) based on the control logic 
implemented on the system. For example, an actuator speed reduction affects on the (timed) 
event sequences observed by the sensors allocated in the subsystems. The effects of this type 
of fault on other subsystems depend on the control logic wherein the observed event signal 
is used as an firing condition of the actuators in other subsystems. Thus, the coupling in the 
control logic over subsystems must be considered in the design of the graph structure of BN. 
In order to formally realize this idea, the Sensor Actuator Dependency (SAD) graph and the 
Dependency Tree (DT) are constructed from the control logic in our strategy. The resulting 
DT represents the hierarchy of the causal relationship between the components in the 
system. Therefore, by specifying the level of hierarchy appropriately, the graph structure of 
BN with different level of complexities can be designed. 
The remaining part of this chapter is organized as follows: In section 2, we define the 
problem statement of decentralized fault diagnosis. In section 3, we overview the entire 
strategy of the fault diagnosis based on BN with a simple example. In section 4, local 
diagnosis based on TMM is introduced and, in addition, the calculation results of the local 
diagnosers are combined based on BN. Section 5 shows the procedure of the proposed 
decentralized diagnosis. In section 6, estimation strategy of probability distribution 
functions (PDF) which is used in the local diagnosis is introduced based on maximum 
entropy principle (M.Saito et al (2006)). In section 7, the usefulness of the stochastic 
decentralized fault diagnosis is verified through some experimental results of an automatic 
transfer line which is widely used in the industrial world. Section 8 proposes a design 
method of the graph structure of BN, and, in section 9, the decentralized fault diagnosis is 
applied to the automatic transfer line, while the system scale is larger than that in section 7, 
with trying some BN structures which are constructed based on the proposed design 
method. Section 10 concludes this chapter. 

2. Problem statement 
First, we assume that the controlled system can be divided into n subsystems in 
consideration of the architecture of the hardware and/or software. Furthermore, the output 
(event) sequence, which corresponds to the series of the ON/OFF of sensors and actuators, 
can be observed in each subsystem. Then, the event sequence for the k-th subsystem  (th) 
is defined as follows: 

 (1) 

where  is the H-th event and  is the occurrence time of the H-th event in the k-th 
subsystem. In addition, the κ-th fault in the k-th subsystem is represented by , and a 
combination of faults for all subsystems is defined as “r–combination of faults for the entire 
system.” The set of r–combination of faults for the entire system R is defined bellow: 

 
(2) 

This paper deals with the following diagnosis problem: 



Centralized/Decentralized Fault Diagnosis of Event-Driven Systems based on Probabilistic Inference 

 

101 

 

3. Global diagnosis based on Bayesian network 
Bayesian Network (BN) is a probabilistic inference network which expresses qualitative 
causal relations between some random variables by a graph structure together with the 
conditional probability assigned to each arc (E.Castillo et al. (1997)). 
In this section, the proposed global diagnosis method is explained. First, two types of 
random variables are defined. The first one is Rk which takes  (κ ∈ {0, 1, … ,K}) as a 
realization. The second one is the Ek which takes the observed event sequence as a 
realization. In the BN, the causal relationship between these random variables are defined 
using a graph structure wherein each node corresponds to each random variable. For the 
purpose of the fault diagnosis, we restrict the structure of the BN in the bipartite graph. One 
subset consists of the set of Rks, and the other subset consists of the set of Eks (Fig.1). We also 
assume that there are no causal relationship between nodes in the same subset. The 
development of an appropriate graph structure must be made by considering the physical 
and logical interactions between subsystems. The fault diagnosis can be realized by 
calculating the occurrence probability of each fault conditioned by the observed event 
sequence. 
 

 
Fig. 1. Bipartite Bayesian Network for fault diagnosis 
 

 
Fig. 2. Example of Bayesian Network 

Figure 2 shows the example of the BN for fault diagnosis. The occurrence probability of the 
fault in the subsystem 1 can be systematically calculated as follows: First, the joint 
probability distribution (JPD) is uniquely decided based on the graph structure. 

 (3) 

Then, the occurrence probability of the fault in the subsystem 1 is calculated by 
marginalizing the JPD. For example, the fault occurrence probability of the fault  in the 
subsystem 1 is calculated as follows: 



 Programmable Logic Controller 

 

102 

 

(4) 

where Z is normalized term and is represented as (5). 

 
(5) 

In (4), the term  represents the conditional probabilities assigned 
to the corresponding arc. This conditional probability can be calculated using the local 
diagnosis results and the Bayesian estimation (see section 4.3 for detail). Also, the prior 
probabilities (for example P(R1 = ) in (4) are supposed to be given in advance. See section 
7.4 for another example. 

4. Local diagnosis based on TMM 
4.1 Timed Markov model 
For the local diagnosis, the relationship between two successive events observed in the 
corresponding subsystem are represented by means of Timed Markov Model (TMM). The 
TMM is one of the Markov model wherein the state transition probabilities depend on time. 
In other words, state transition probabilities vary according to the time interval between two 
successive events. In the following, representation of the event driven system based on the 
TMM is briefly described (J.Lunze (2000)). 
First of all, the set of fault random variables which are connected to the random variable Ek 

is defined and denoted by . Then, a combination of these realizations is 
defined as “rk– combination of faults for the k-th subsystem.” Furthermore, the set of these is 
denoted by Rk = {rk = . Roughly speaking, rk 

consists of the realization of the faults which affect on the measurement of the k-th 
subsystem Ek. For example, in Fig.2, , and . Based on definition of the 
rk, the following two functions are defined to specify the stochastic characteristics in the 
TMM. 
Definition 1 A probability density function (PDF)  

 
represents a probability density function for the time interval τ k under the situation 

that the fault rk exists. Note that τk is a time interval between two successive events and  in 
the k-th subsystem. 
Definition 2 A probability distribution function  

 represents a probability distribution function that the event  dose not occur within 
τ k after event  has occurred under the situation that the fault  rk  exists.  is represented 
by integrating . 

 
(6) 



Centralized/Decentralized Fault Diagnosis of Event-Driven Systems based on Probabilistic Inference 

 

103 

 
(7) 

where some symbols are defined as follows: 
: H-th event in the k-th subsystem 
: Occurrence time of event  

th : Sampling time index 
τ k : Waiting time from the occurrence of the latest event in the k-th subsystem (τ k = th – ) 
E k : Set of events that occur in the k-th subsystem 
Then, relationship between two successive events observed in the subsystem can be 
described by specifying the probability distribution functions. This function plays an 
essential role in the TMM based modeling and diagnosis. Section 6 shows an effective 
estimation method of the probability distribution functions. 

4.2 Local diagnosis method 
The goal of the local diagnosis is to find the following fault occurrence probability based on 
the observation only of the k-th subsystem: 

 (8) 

Equation (8) represents an occurrence probability of the rk
 conditioned by the observation in 

the k-th subsystem  (th). For the calculation of (8), the recursive algorithm has been 
developed in (J.Lunze (2000)). First, the following two cases must be distinguished: 
Case(a): There is no event at time th 

Case(b): The (H + 1)-th event occurs at time th 

 

 
Fig. 3. Time and events in the cases (a) and (b) 

Fig. 3 shows relations between time and events in the cases (a) and (b). The diagnosis begins 
with no information on the existence of the fault, i.e. the initial probabilities are given by 

 
(9) 

where  denotes the number of realizations in Rk. Next, an auxiliary function  is 
calculated as follows: 
Case(a) : No event is observed at time th 



 Programmable Logic Controller 

 

104 

 (10)

Case(b) : The (H + 1)-th event  occurs at time th 

 (11)

The fault occurrence probability given by (8) is updated by 

 
(12)

4.3 Calculation of conditional probability in the BN 
In the global diagnosis, the calculation of the conditional probability was the key 
computation (see (4) as an example). The conditional probabilities assigned to each arc 
(appearing in the marginalized JPD) in the BN can be calculated using (8) and Bayes 
theorem as follows: 

 
(13)

where the prior probability  is given in advance. Note that the 
probability P(Ek

 =  (th)) is not required to be calculated in advance because it is canceled 
out in (4). This equation implies that the global diagnosis can be executed by integrating 
results of the local diagnosis. 

5. Diagnosis procedure 
The procedure of the proposed decentralized diagnosis is depicted in Fig.4. First of all, 
observe the event sequence in each subsystem. Second, perform the local diagnosis in each 
subsystem based on the observed event sequence and calculate the conditional probabilities 
in the BN using (13). Then, calculate the fault occurrence probabilities by means of the BN 
(global diagnosis). Finally, select the greatest probability among all fault candidates in each 
subsystem. The diagnosis result for the k-th subsystem is the fault  that satisfies the 
following equation in the case that the fault candidates for the k-th subsystem are 

. 
Diagnosis Result for the k-th subsystem 

 
(14)

6. Estimation of probability density function by maximum entropy principal 
As described in the preceding sections, it is required to estimate all probability distribution 
functions (PDF)  in advance for modeling the system based on TMM, where the 
 



Centralized/Decentralized Fault Diagnosis of Event-Driven Systems based on Probabilistic Inference 

 

105 

 
Fig. 4. Procedure of the decentralized fault diagnosis 

superscript k representing subsystem k is omitted for simplicity in this section. One of the 
most straightforward way to do it is to collect numerous number of output sequences, and 
generate the histogram of the time interval of all two successive events for various situations 
such as normal or some kind of faulty. In the real application, it is not necessary to collect 
data for all situations in advance. When some new fault occur, then the new observed data 
for the new fault can be simply added to the old database as for the PDF. Thus, the PDF can 
be updated according to the occurrence of the new fault. 
Although, the PDF can be estimated by collecting the observed output sequence, 
when we consider to use it as the system model, we often face the zero frequency problem 
which leads to incorrect result in the system diagnosis based on TMM. In order to overcome 
this problem, the maximum entropy principle (M.Saito et al (2006)) is introduced in this 
section. It enables us to find the PDF , which maximizes the entropy with 
keeping the stochastic characteristics of the collected observed data (i.e. the histogram). The 
remaining part of this section is devoted to describe the estimation procedure for PDF by 
means of the maximum entropy principle. 
First of all, a histogram is created based on observed data. Then, a range of τ,  
is quantized into n equal intervals under the assumption that all unknown data exists in 

 where μ and σ are mean value of the observed data and standard deviation, 
respectively. 
Second, let {τ1,τ2, … ,τn} be the center of each interval, and let 

 be the probabilities corresponding to the 
points {τ1,τ2, … ,τn}. The example of this quantization is illustrated in Fig.5. 



 Programmable Logic Controller 

 

106 

 
Fig. 5. Time interval of event transition 
Finally, we solve the following entropy maximization problem: 
Find  which maximizes 

 
(15)

subject to 

 

(16)

where aj(= E[(τ ) j]) is the j-th moment obtained from the observed data. This problem can be 
solved by applying the Lagrange multiplier method, and the solution has a form given by 

 (17)

where λ0 is given by (18) and λ1, . . . ,λm are the Lagrange multipliers corresponding to the m 
constraints. 

 

(18)

The estimated PDFs are applied to the interval . For the outside of the range 
, probabilities are set to be zero and ε in normal and faulty situations, 

respectively. 
Figs.6 and 7 show PDF examples constructed by observed data in a transfer machine (see 
section 7 for details). Then, several moment constraints given by (16) were specified by 
using the histogram. In these examples, 1st and 2nd moments were considered. The 
problem of entropy maximization (15) was solved by using the Lagrange multiplier method. 
Estimated PDF are given by (19) and (20), respectively, where ε is 0.01. Thick solid line in 
Figs.6 and 7 represent the estimated PDF. 



Centralized/Decentralized Fault Diagnosis of Event-Driven Systems based on Probabilistic Inference 

 

107 

 
(19)

 
(20)

 
Fig. 6. Histogram and PDF  

 
Fig. 7. Histogram and PDF  

7. Application to automatic transfer line 
In this section, the proposed diagnosis procedure is applied to the automatic transfer line 
depicted in Fig.8. This type of machine is widely used in industrial world. 

7.1 Automatic transfer line 
Fig.9 shows the diagram of the developed prototype transfer line shown in Fig.8. This 
system transfers works to the unload station by means of two belt-conveyors (L1, L2: their 
length are 50cm) and two cranes (C1, C2). Sensors (S1-S6) are installed at the beginning, end 
and center of the conveyors and the sensor S7 is installed at the unload station. The events 
are observed when the work crosses the sensors, and are depicted also in Fig.9 
superimposing on the automatic transfer line. 



 Programmable Logic Controller 

 

108 

The transfer line system is decomposed into the four subsystems (Lane1, Crane1, Lane2, 
Crane2) as shown in Fig.10. The set of events observed in each subsystem is specified in 
Table 1. 
 

 
Fig. 8. Prototype of automatic transfer line 

 
Fig. 9. Diagram of the transfer line and definition of events 

 
Fig. 10. Definition of subsystems 

7.2 Candidates of fault 
We consider the candidates of fault in each subsystem specified in Table 2. Note that it is 
unlikely that these faults are diagnosed using deterministic approach. 
For the Lane1 and Lane2, the “normal” implies the case that the speed of the belt-conveyor 
is between 7.8cm/sec and 8.6cm/sec, and the “Speed of the belt-conveyor is reduced” 



Centralized/Decentralized Fault Diagnosis of Event-Driven Systems based on Probabilistic Inference 

 

109 

implies the case that the speed of the belt-conveyor goes down between 7.0cm/sec and 
7.8cm/sec. Faults  and  may come from a fatigue of the actuator. The “Sensor does not 
respond with probability of 50%” may occur by means of a defective wiring and so on. This 
corresponds to the early stage of the fatal fault wherein the sensor does not respond at all. 
Thus, 3 × 1 × 3 × 2 = 18 fault cases are investigated for the entire system including cases that 
some faults occur simultaneously in some subsystems. 

7.3 Experimental conditions 
Experimental conditions are specified as follows: 
• Works are provided to the line with almost constant intervals (about 5 sec). 
• Works do not exist in the system at time th = 0. 
• The experiment is finished if ten works are transferred to the unload station. 
• A sampling time for observation of events is 0.1 sec. 
Under these experimental conditions, the event sequences are collected. The probability 
density functions (PDFs) for every combination of two successive events in each subsystem 
are estimated before fault diagnoses. The PDFs are estimated through eighty trials per each 
fault case in advance. 

7.4 Graph structure 
As mentioned in section 3, two types of random variables are defined and specified as nodes 
in the BN. The first one is Rk which takes  (κ∈ {0, 1, … ,K}) as a realization. The second one 
is the Ek which takes the observed event sequence as a realization. In this application, a 
graph structure depicted in Fig.11 is adopted under the consideration that the faults 
occurred in the k-th subsystem influence on the event sequences observed in the (k – 1)-th 
and the k-th subsystem. Generally speaking, the graph structure should be designed from 
viewpoints of the computational burden for the diagnosis and the hardware / software 
interactions between subsystems. Development of the formal procedure for the generation 
of the graph structure is now under investigation. 
 

 
Fig. 11. Graph structure of the BN for the transfer line 

The JPD is calculated based on Fig.11 as follows: 

 
(21)

Then, the probabilistic inference based on the BN becomes possible by marginalizing the 
JPD. For example, the occurrence probability of the fault  in the subsystem 1 is calculated 
as follows: 



 Programmable Logic Controller 

 

110 

 

(22)

where Z1 is normalized term, and is represented by 

 

(23)

 

 
Table 1. Set of events in each subsystem 

 
Table 2. Candidates of fault 

 
Table 3. Comparison between decentralized method (proposed) and centralized method 
(conventional) 

7.5 Results of fault diagnosis 
7.5.1 Faultless case 
Fig.12 shows the profiles of the fault occurrence probability in each subsystem wherein no 
fault has occurred in the entire controlled system. The result in the subsystem 2 (Crane 1) is 



Centralized/Decentralized Fault Diagnosis of Event-Driven Systems based on Probabilistic Inference 

 

111 

eliminated because no fault has considered in the subsystem 2. In Figs.12(a) to 12(c), the 
probability of the “normal ( )” becomes almost 1 before 45 sec in all subsystems, and this 
result lasts until the experiment is completed. This implies that the result of the diagnosis for 
all subsystems are “normal ( )”, and agrees with the actual situation of the system. 
 

 
Fig. 12. Diagnosis result in the faultless case:  

7.5.2 Multiple faulty case 
Fig.13 shows the profiles of the fault occurrence probability in each subsystem wherein the 
faults ,  and  have occurred at a certain time (no fault has occurred in the subsystem 2). 
In Figs.13(a), 13(b) and 13(c), the vertical lines represent the time instants when the faults , 

, and  occurred, respectively. In the subsystem 1 (Fig.13(a)), the probability of the fault  
 goes up every time when the fault occurs, and shows the greatest probability when the 

experiment is completed. As the result, the fault  can be uniquely identified in the 
subsystem 1. Furthermore, in the subsystem 3 (Fig.13(b)) and subsystem 4 (Fig.13(c)), the 
faults  and  can be identified successfully a few seconds after each fault has occurred. 
These results show that the diagnosis results completely agree with the actual faulty 
situation. 



 Programmable Logic Controller 

 

112 

 

 
 
Fig. 13. Diagnosis result in the faultless case:  

7.5.3 Comparison with centralized method 
We have performed the experiments seven times for each fault, i.e., the total number of the 
trials is 7×18=126. The statistics of the diagnosis results are listed in Table 3 together with the 
statistics of the centralized approach (M.Saito et al (2006)) (i.e. the system is not 
decomposed). In Table 3, the “Success Rate” means the rate that the all diagnosis results 
coincide with the actual fault situation, the “Wrong Diagnosis Rate” means the rate that at 
least one of the subsystems had wrong diagnosis result, and the “Undetection Rate” means 
the rate that the diagnosis result was “normal” in spite of existence of the fault. The success 
rate of proposed decentralized diagnosis is 81%. This is reduced by 13% compared with the 
conventional centralized method. This reason is considered that the direct relationships 
(arcs) between Rk and R  (k ≠ ), Ek and E  (k ≠ ) are ignored. However, using the proposed 
decentralized strategy can distribute the computational burden for the diagnosis to the 
subsystems with sacrificing the small degradation of the success rate. The appropriate 
selection of the graph structure in the BN will lead to the increase of the success rate. 



Centralized/Decentralized Fault Diagnosis of Event-Driven Systems based on Probabilistic Inference 

 

113 

8. Design of graph structure 
In this section, the graph structure of the BN is designed based on the control law applied to 
the controlled system. The design procedure is explained step by step with an example. 
The controlled system is defined by three tuples as follows: 

 (24)

where S is the set of sensors, A is the set of actuators, and C is the set of control laws. The 
system is divided into subsystems: 

 (25)

where Ak and Sk are the set of actuators and sensors included in the k-th subsystem, 
respectively. In addition, Ck is the set of control laws relevant to Ak. Figure 14 shows the 
diagram of the developed prototype transfer line. This system transfers works to the unload 
station by means of six actuators; four lanes (Lane1-Lane4; their length are 50 cm) and two 
cranes (Crane1, Crane2). Sensors (S1-S12) are installed at the beginning, end and center of 
the lanes, and the sensor S13 is installed at the unload station. The events depicted in Fig.14 
are observed when the work crosses the sensors. The transfer line system is decomposed 
into six subsystems as shown in Fig.14. The set of events observed in each subsystem is 
specified in Table 4. 
 
 

 
 

Fig. 14. Diagram of transfer line and definition of events 



 Programmable Logic Controller 

 

114 

 
Table 4. Set of events in each subsystem 

The control lows applied to the system are summarized as follows: 
• Each lane is interlocked by its terminal sensor, i.e., stops when the terminal sensors (S3, 

S6, S9 and S12) are fired. 
• The lane continues to behave in the absence of the interlock stop. 
• Lane3/Lane4 stop when Crane1 is moving down at the position S7/S10. 
• Each crane starts to move and to transfer a work when a work reaches at the terminal 

sensor. 
• Crane1 transfers a work from Lane1 or Lane2 to Lane3 or Lane4. 
• Crane2 transfers a work from Lane3 or Lane4 to the unload station. 
• The crane transfers a work to the nearest lane which is available. 
These control lows can be described using the form of a ladder logic ?. For example, Fig.15 
shows the ladder logic of the C1 wherein the operating situation of the Lane1 (L1) is 
expressed by L1 = (X ∨ L1) ∧ . In other case, the logic of the C4 wherein the operating 
situation of the Lane3 (L3) is expressed by . This is due to the logic 
that Lane3/Lane4 stop when Crane1 is moving down at the position S7/S10. 
 

 
Fig. 15. Ladder logic of control law C1 

Based on this logical relationship between sensors and actuators, the causal relationships 
between sensors and actuators are extracted and expressed by a sensor actuator dependency 
(SAD) graph by using the following algorithm: 
 

 
 

An example of the SAD graph constructed from the control logic is shown in Fig.16. In the 
next step, a dependency tree (DT) is produced from the SAD graph by the following 
algorithm: 



Centralized/Decentralized Fault Diagnosis of Event-Driven Systems based on Probabilistic Inference 

 

115 

 
 

 
Fig. 16. Sensor actuator dependency (SAD) graph 

An example of the DT produced from Fig.16 is shown in Fig.17. In the last step, the structure 
of BN is designed from the DT by the following algorithm: 
 

 
 

In this algorithm, the parameter L is a depth of the DT and represents a threshold to take 
into consider the causal relationship between the subsystems into the graph structure of the 
BN. Figure 18 is the resultant graph structure when L = 2 for the DT in Fig.17. In Fig.18, for 
example, there exist arcs from R6 to E3, E4, E5, and E6 because S3, S4, S5, and S6 are included 
within Level 2 in Fig.17. Note that although the DT in Fig.17 starts from the actuator, a DT 



 Programmable Logic Controller 

 

116 

which starts from the sensor is simply constructed by straightforward modification of 
Algorithm 2. 
 

 
Fig. 17. Dependency tree for Crane2 (Subsystem 6) 

9. Experimental verification 
In this section, the decentralized diagnosis procedure is applied to the automatic transfer 
line depicted in Fig.14. The diagnosis procedure is executed by means of three graph 
structures. Graph structure 1 depicted in Fig.18 is derived in Section 8. Graph structure 2 
depicted in Fig.19 considers all causal relationships, i.e., L = ∞ in the DT. Graph structure 3 
depicted in Fig.20 represents the completely independent diagnosis. 
 

 
Fig. 18. Graph structure 1 

9.1 Candidates of fault 
We consider the candidates of fault in each subsystem specified in Table 5. For the lane, the 
“normal” implies the case that the speed is between 7.8 cm/sec and 8.6 cm/sec, and the 
“Speed of the lane is reduced” implies the case that the speed goes down between 7.0 
cm/sec and 7.8 cm/sec. Faults  and  may come from a fatigue of the actuator. For the 
crane, the “Speed of the crane is reduced” implies the case that it takes 0.2 more seconds 
 



Centralized/Decentralized Fault Diagnosis of Event-Driven Systems based on Probabilistic Inference 

 

117 

 
Fig. 19. Graph structure 2 

 
Fig. 20. Graph structure 3 

 
Table 5. Candidates of faulty situation 

than the “normal” situation to transfer a work to the destination lane. Thus, 1 × 2 × 2 × 1 × 2 
× 2 = 16 faulty cases are investigated for the entire system including cases that some faults 
occur simultaneously among some subsystems. 

9.2 Experimental conditions 
Experimental conditions are specified as follows: 
• Works are provided to the Lane1 and Lane2 alternately with almost constant intervals 

(about 5 sec). 
• Works do not exist in the system at time th = 0. 
• The experiment is finished when twenty works are transferred to the unload station. 
• A sampling time for observation of events is 0.1 sec. 
All the prior probabilities  (i = 1, 2, …, m) in (13) are set to be 



 Programmable Logic Controller 

 

118 

 
(26)

This means that no statistical information about the faults has not been used for the 
diagnosis. Under these experimental conditions, the event sequences are collected. The 
probability density functions (PDFs) for every combination of two successive events in each 
subsystem are estimated before the fault diagnosis. The PDFs are estimated through fifty 
trials per each faulty case in advance. The calculation of the diagnosis was performed by 
personal computers (Pentium 4 2.39 GHz). 

9.3 Results of fault diagnosis 
We have performed the experiments ten times for each faulty case, i.e., the total number of 
the trials is 10 × 16 = 160. The statistics of the diagnosis results are listed in Table 6. In Table 
6, the “Success Rate” means the rate that the all diagnosis results coincide with the actual 
faulty situation, the “Wrong Diagnosis Rate” means the rate that at least one of the 
subsystems had wrong diagnosis result, and the “Undetection Rate” means the rate that the 
diagnosis result was “normal” in spite of existence of the fault. 
The success rate of the graph structure 1 and 2 are both increased compared with the 
structure 3. This is due to the consideration of the causal relationships between subsystems. 
The structure 2 is better than the structure 1 from viewpoint of the success rate, however, 
the number of PDFs of the structure 1 is almost half of that of the structure 2. Since the 
number of the PDFs is related with the computational burden for the real-time inference, the 
structure 1 can be realized with less computational burden than the structure 2. The 
computing time shown in Table 6 is the total required time to diagnose the 150.5 [sec] data. 
These times were obtained from the maximum computing time of each local diagnoser and 
the computing time of the global diagnoser as shown in Fig.21 (in the case of the structure 
1). The computation of the local diagnosers is dominate in the computation of entire  
 

 
Fig. 21. Computingtimefordiagnosing150.5sec data in graph structure 1 
 

 
Table 6. Comparison of diagnosis results for three graph structures: Computing time for 
diagnosing 150.5 [sec] data 



Centralized/Decentralized Fault Diagnosis of Event-Driven Systems based on Probabilistic Inference 

 

119 

diagnosis. In addition, the computational burden of the local diagnosers increases by 
 where N(Ek) is the number of events in the subsystem k. The level 

threshold L of Algorithm 3 should be selected from the both viewpoint of the success rate 
and the computational burden. 

10. Conclusions 
This paper presented a design method of the graph structure of the Bayesian Network (BN) 
in the decentralized stochastic fault diagnosis of large-scale event-driven controlled systems. 
First, in order to estimate the probability density functions of the randomized time intervals, 
the maximum entropy principle was introduced, which can estimate probability density 
functions so as to maximize the uniformity with satisfying the constraints caused by 
observed data. 
Second, the controlled plant was decomposed into some subsystems, and the global 
diagnosis was formulated using the Bayesian Network (BN), which represents the causal 
relationship between the fault and observation between subsystems. 
Third, the local diagnoser was developed using the conventional Timed Markov Model 
(TMM), and the local diagnosis results were used to specify the conditional probability 
assigned to each arc in the BN. By exploiting the decentralized diagnosis architecture, the 
computational burden for the diagnosis can be distributed to the subsystems. As the result, 
large scale diagnosis problems in the practical situation can be solved. 
Forth, the graph structure of the BN is designed based on the control logic applied to the 
system. In order to realize this, the Sensor Actuator Dependency (SAD) graph and the 
Dependency Tree (DT) are constructed from the control logic. Since the computational 
burden and the diagnosis performance mainly depend on the complexity of the graph 
structure of BN, they are adjusted adequately by specifying the depth of the DT which 
represents the strength of the causal relationship between components in subsystems. 
Finally, the usefulness of the proposed strategy has been verified through some 
experimental results of an automatic transfer line. Our future work is to verify the 
decentralized stochastic fault diagnosis strategy in larger scale event-driven controlled 
systems. 

11. References 
A.Darwiche, G.Provan; “Exploiting system structure in model-based diagnosis of discrete-

event systems”, In Proc. 7th Intl. Workshop on Principles of Diagnosis., pp.95-105, 1996. 
D. N.Pandalai, L.E.Holloway; “Template Languages for Fault Monitoring of Timed Discrete 

Event Processes”, IEEE Trans. Automa. Contr., Vol.45, No.5, pp.868-882, 2000. 
M.Sampath, R.Sengupta, S.Lafortune, K.Sinnamohideen, D.Teneketxis; “Diagnosability of 

Discrete Event Systems”, IEEE Tras. Automa. Contr., Vol.40, No.9, pp.1555-1575, 
1995. 

S.H.Zad, R.H.Kwong, W.M.Wonham; “Fault Diagnosis in Timed Discrete-Event Systems”, 
In Proc. 38th IEEE Conf. Decision Contr., pp.1756-1761, 1999. 

J.Lunze; “Diagnosis of Quantized Systems Based on a Timed Discrete-Event Model”, IEEE 
Trans. Syst. Man. Cybern., Vol.30, No.3, pp.322-335, 2000. 



 Programmable Logic Controller 

 

120 

O.Contant, S.Lafortune, D.Teneketzis; “Diagnosability of Discrete Event Systems with 
Modular Structure”, Discrete Event Dynamic Systems: Theory and Applications., 
Vol.16, No.1, pp.9-37, 2006. 

S.Debouk, S.Lafortune, D.Teneketzis; “Coordinated decentralized protocols for failure 
diagnosis of discrete-event systems”, Discrete Event Dynamic Systems: Theory and 
Applications., Vol.10, No.1-2, pp.33-86, 2000. 

R.Su, W.M.Wonham, J.Kurien, X.Koutsoukos; “Distrubuted Diagnosis for Qualitative 
Systems”, In Proc. 6th International Workshop on Discrete Event Systems., pp.169-174, 
2002. 

E.Castillo, J.M.Guti´errez, A.S.Hadi; “Expert Systems and Probabilistic Network Models”, 
Springer, 1997. 

S.Inagaki, T.Suzuki, M.Saito, T.Aoki, “Local/Global Fault Diagnosis of Event-Driven 
Controlled Systems based on Probabilistic Inference”, In Proc. 46th IEEE Conference 
on Decision and Control, pp. 2633-2638, 2007. 

M. Saito, T.Suzuki, S.Inagaki, T.Aoki; “Fault Diagnosis of Event-Driven Control Systems 
based on Timed Markov Model with Maximum Entropy Estimation”, In Proc. 17th 
International Symposium on Mathematical Theory of Networks and Systems, 2006 



7 

New Applications Using PLCs  
in Access Networks 

Lamartine V. de Souza, João C. W. A. Costa and Carlos R. L. Francês 
Federal University of Pará (UFPA) 

Brazil 

1. Introduction 
Access Networks in telecommunications, such as digital subscriber lines (DSL) and wireless 
broadband networks (WBN) have become so popular that these systems are now found in 
almost all regions. The widespread use of these systems has brought about the need for 
research into new ways of resolving, or at the very least, minimizing the impact of problems 
that affect the performance of these systems. 
In terms of DSL systems, crosstalk is one of the main performance limiting factors, 
principally when operating at high frequencies, as is the case with VDSL (very-high-bit-rate 
DSL) networks. Consequently, the required high data rates of VDSL systems may not be 
achievable if crosstalk levels are excessive. 
Across WBN systems, the existence of co-channel interference increases the system's noise 
levels and also degrades the network's overall performance. It may be impossible therefore, 
depending on the noise level, to get even minimum system access. It is therefore necessary 
to plan a way of controlling these noise levels across both access networks. 
Programmable logic controllers (PLCs) are the main types of controllers used within the 
industry. One of their characteristics is the fact that they can operate within aggressive 
environments (for example, at high temperatures or within high humidity levels) as well as 
having high operational speeds in comparison with corresponding electro-mechanic control 
systems; the PLC becoming a highly efficient control device with multiple usage possibilities. 
Hence, the use of PLCs across access networks opens up additional fields of application for 
this type of device, especially due to the fact that up until now, the PLC’s widest form of use 
has been in the industrial sector. Additionally, the robustness, flexibility and speed of the 
PLC allows it to be used across access networks without any additional need for major 
configuration changes to already installed equipment, i.e.; the implementation of a PLC into 
a system does not generate excessive costs or require excessively specialized configurations. 
PLC application will focus on automated configurations in order to reduce system noise on 
access networks (DSL and WBN) with the intention of making sure the performance levels 
of these systems are not degraded in any way and are also able to operate within the 
expected performance parameters. 
In this chapter, we propose alternative PLC applications on two types of broadband 
networks. Basic concepts about DSL networks and wireless broadband networks are 
presented in section 2. In section 3 the application of PLC on broadband networks is 
discussed. Final comments are presented in section 4. 



 Programmable Logic Controller 

 

122 

2. Access networks 
2.1 DSL networks 
DSL access technologies have been developed by the telephone companies to provide high-
speed data rates over regular telephone wires. The term DSL covers a number of similar yet 
competing forms of DSL; including ADSL (asymmetric DSL), SHDSL (single-pair high 
speed DSL) and VDSL (Starr et al., 1999). These types of DSLs can be summarized as shown 
in Table 1 (Gonzalez, 2008). 
 

Technology Name Ratified Maximum speed 
capabilities 

ADSL Asymmetric Digital Subscriber 
Line, G.dmt 1999 6 Mbps (downstream) 

800 kbps (upstream) 

ADSL2 G.dmt.bis 2002 8 Mbps (downstream) 
1 Mbps (upstream) 

ADSL2+ ADSL2plus 2003 24 Mbps (downstream) 
1 Mbps (upstream) 

ADSL2-RE Reach Extended 2003 8 Mbps (downstream) 
1 Mbps (upstream) 

SHDSL Symmetric High-Bit Rate DSL 2003 5.6 Mbps 
(downstream/upstream) 

VDSL1 Very-high-data-rate DSL 1 2004 55 Mbps (downstream) 
15 Mbps (upstream) 

VDSL2 -12 MHz long 
reach VDSL 2 2005 55 Mbps (downstream) 

30 Mbps (upstream) 
VDSL2 - 30 MHz short 

reach VDSL 2 2005 100 Mbps 
(downstream/upstream) 

Table 1. DSL technology options 

Some authors (Ödling et al., 2009) indicate a fourth broadband generation concept with data 
rates from around 100 Mbps to around 1 Gbps. In this case, broadband systems will operate 
on the twisted-copper pairs of the public telephone and fiber optic networks, namely DLS 
systems and fiber access systems. 
Since DSL use relatively high spectrum frequencies, its signal is susceptible to external noise 
sources. Thus, the research into new ways of reducing noise impact on network 
performance are extremely useful in terms of design of well established DSL systems 
(ADSL, ADSL2+) as well as in relation to latest generation (VDSL1, VDSL2) networks. 
Crosstalk is the electromagnetic coupling that occurs when electrical signals are transmitted 
over telephone wires. It is the main factor limiting the bit rate and the distances that can be 
achieved on DSL systems. A pair of individually insulated twisted together conductors has 
been designed to reduce this coupling and to improve system performance. The reason for 
this is due to a sufficiently short space between twists - the electromagnetic coupling of 
energy over a small segment of wire is canceled by the out-of-phase energy coupled on the 
next segment of wire (Starr et al., 1999). 
There are two kinds of crosstalk: Next (near-end crosstalk) and Fext (far-end crosstalk). Next 
is the main obstacle for systems that share the same upstream and downstream frequency 



New Applications Using PLCs in Access Networks 

 

123 

band. Next is the noise that appears on the other pair but at the same end of the cable as the 
source of interference (Cook et al., 1999), as shown in Fig. 1.  
 

 
Fig. 1. Illustration of Next 
Fext is the noise that appears on another pair, but at the opposite or far end of the cable to 
the source of noise (Cook et al., 1999). Fext is less harmful than Next since it is mitigated 
because the distance between the source and the noise receiver. Fig. 2 is an example of Fext. 
 

 
Fig. 2. Illustration of Fext 

Techniques such as DSM (dynamic spectrum management) and MIMO (multiple-input 
multiple-output) schemes try to find a controlled injection of spectrum in DSL systems so 
that the resulting crosstalk can assume acceptable performance values (Starr et al., 2003), 
(Ödling et al., 2009). 

2.2 Wireless Broadband Networks (WBN) 
A large number of wireless technologies exist and other systems still being under design. 
These technologies can be distributed over different network families, based on a system 
scale (Nuaymi, 2007): 
• A wireless personal area network (WPAN) is a data network used for communication 

among data devices close to one person; 
• A wireless local area network (WLAN) is a data network used for communication 

among data devices: computer, telephones, printer and personal digital assistants 
(PDAs). This network covers a relatively small area, like a home, an office or a small 
campus (or part of a campus); 

Pair 1

Pair 2

Crosstalk 
transmitter 

Far-End 
Receiver Cable

Pair 1 

Pair 2 

Crosstalk 
transmitter 

Cable
Near-End 
receiver 



 Programmable Logic Controller 

 

124 

• A wireless metropolitan area network (WMAN) is a data network that may cover up to 
several kilometres, typically a large campus or a city; 

• A wireless wide area network (WWAN) is a data network covering a wide geographical 
area, as big as the Planet. WWANs are based on the connection of WLANs, allowing 
users in one location to communicate with users in other locations. 

There are many applications for wireless networks. One of the first uses for wireless 
technology was used as an alternative for traditional wired voice telephony, the 
narrowband wireless local-loop systems (Andrews et al., 2007). These systems, called 
wireless local-loop (WLL), were quite successful in developing countries whose high 
demand for basic telephone services could not be attended using the existing infrastructure. 
However, as conventional wired technologies such as DSL and cable modems began to be 
deployed, wireless systems had to evolve to support much higher speeds so that they could 
become competitive. A specific very high speed system called local multipoint distribution 
system (LMDS) was developed, capable of supporting several hundreds megabits per 
second in millimeter wave frequency bands, such as the 24 GHz and 39 GHz bands. 
A WBN is a high data rate (of the order of Mbps) WMAN or WWAN. A WBN system can be 
seen as an evolution of WLL systems, mainly featuring significantly higher data rates. While 
WLL systems are mainly destined for voice communications and low data rate (i.e. smaller 
than 50 kbps), WBN systems are intended to deliver data flows in Mbps (Nuaymi, 2007). 
There are a significant number of WBN systems with different and specific characteristics. 
Table 2 presents a comparison between the main WBN technologies (Andrews et al., 2007):  
 

Parameter Fixed WIMAX Mobile 
WIMAX HSPA Wi-Fi 

Meaning Worldwide Interoperability for 
Microwave Access 

High-Speed Packet 
Access Wireless Fidelity 

Standards IEEE 802.16 - 
2004 

IEEE 802.16e -
2005 3GPP* release 6 IEEE 802.11 a/g/n 

Frequency 
band 

3.5 GHz and 5.8 
GHz 

2.3 GHz, 2.5 
GHz, and 3.5 

GHz 

800/900/1,800/1,900/ 
2,100 MHz 2.4 GHz and 5 GHz 

Typical 
coverage 3–5 miles < 2 miles 1–3 miles < 100 ft indoors; 

< 1000 ft outdoors 

Mobility Not applicable Mid High Low 

Peak 
downlink 
(DL) data 

rate 

9.4 Mbps in 3.5 
MHz with 3:1 

DL-to-UL ratio; 
6.1 Mbps with 

1:1 

46 Mbps with 
3:1 DL-to-UL 

ratio; 
32 Mbps with 

1:1 

14.4 Mbps using all 15 
codes; 7.2 Mbps with 10 

codes 

Peak uplink 
(UL) data 

rate 

3.3 Mbps in 3.5 
MHz using 3:1 
DL-to-UL ratio; 
6.5 Mbps with 

1:1 

7 Mbps in 10 
MHz using 3:1

DL-to-UL 
ratio; 4 Mbps 

using 1:1 

1.4 Mbps initially; 5.8 
Mbps later 

54 Mbps shared 
using 802.11 a/g; 

more than 100 Mbps 
peak layer 2 

throughput using 
802.11 n 

* Third-generation Partnership Project 
Table 2. Comparison between main WBN technologies 



New Applications Using PLCs in Access Networks 

 

125 

Our focus in this section is to analyze WBN systems called pre-WIMAX systems. These 
systems use products which are claimed to be based on the IEEE 802.16 standard. They can 
deliver data flows up to 30 Mbps and their performance levels are close to the ones expected 
of WIMAX. Fig. 3 is a classical example of a pre-WIMAX system. 
 

 
Fig. 3. Example of pre-WIMAX system 

In this system we have a station server (or cluster) using six directional antennas (60˚ 
aperture) for an omni coverage. However, systems using 360˚, 180˚, 120˚ or 90˚ antenna 
apertures are also possible. 
Pre-WIMAX systems can operate in the 2.4 GHz, 3.5 GHz, 4.9 GHz, 5.2 GHz and 5.8 GHz 
frequency bands. Depending on national regulation laws, pre-WIMAX systems can work in 
both licensed and license-exempt frequencies. 
The main problem in pre-WIMAX systems is interference. Interference is an unwanted 
disturbance that can affect the overall system performance. Such disturbance is due to 
electromagnetic radiation emitted from diverse sources. It can appear in a different number 
of forms: 
• Intra-system (within its own network, i.e., equipments working on the same frequency); 
• Inter-system (external to its network, i.e., others systems working on the same 

frequency); 
• External (other sources, not network but RF equipment, such as machinery and 

generators). 
Traditional approaches to interference reduction include the use of power control, 
opportunistic spectrum access, intra and inter-base station interference cancellation, 
adaptive fractional frequency reuse, spatial antenna techniques such as MIMO and SDMA 
(space division multiple access), and adaptive beamforming, as well as recent innovations in 
decoding algorithms (Boudreau et al., 2009). 

3. PLC applications across access networks 
3.1 Using PLC on DSL systems 
Consider the scenario of small or medium-size enterprise using a VDSL system (VDSL1 or 
VDSL2) as broadband access. In this system, the demand for higher data rates is increasing, 
especially when it uses services that require high bandwidth such as video conferencing and 
internet protocol television (IPTV). Thus, the proper control of crosstalk becomes a keystone 
in the operation of such systems. 



 Programmable Logic Controller 

 

126 

Fig. 4 is a typical example of access network topology using VDSL systems on a fiber-to-the-
curb (FTTC) scenario. A primary optical fiber cable connects the central office (CO) to a 
street cabinet, and from there, a cooper pair is used to reach the customer premises 
equipment (CPE), i.e., the VDSL modem. 

 
Fig. 4. Access network topology using DSL system on a FTTC scenario 

VDSL is designed to operate over shorter loops. Consequently, VDSL equipment is 
positioned in cabinets, with the typical loop length being below one kilometer (Ödling et al., 
2009). 
A proposed use of the PLC is in the loop between the cabinet and VDSL modem. In this 
case, the PLC is used as a remote trigger for a system that changes the wires configuration 
on a telephone cable. The system shown in the Fig. 5 illustrates this use. 
 

 
Fig. 5. Changer device using a PLC and a stepper motor 

The changer device is comprised of a PLC and a stepper motor (an electromechanical system 
which converts electrical pulses into discrete mechanical movements). The main objective of 
this device is to modify the wire arrangement so that the resulting crosstalk has its values 
changed. It is obtained by changing the metal contacts located at the both extremities of the 
cable at the same time. This is the reason for it to be necessary to have two changer devices 
in the proposed configuration. 
Obviously, this solution is a first approach method for reducing crosstalk impact, having a 
very specific application which is focused on heavy users who need a high quality 
transmission system with reasonable costs. A basic limitation of this proposed scenario is 
that it has no real use in a VDSL system using a single wire pair. 
This scenario can be adapted to other DSL technologies. Fig. 6 shows an access network 
example for ADSL2+ technology. 



New Applications Using PLCs in Access Networks 

 

127 

 
Fig. 6. Access network for ADSL2+ system 

The copper plant is a star network which has fewer lines running together, until individual 
wire pairs finally reach their respective CPE (some configurations can use two wire pairs). 
Distribution points (DP) are the connection between cables of different gauges and wire 
numbers. 
The changer device can be used between points A and B or between points B and C. The 
idea is the same as shown in Fig. 5, i.e., using the changer device to rearrange the layout of 
the metal contacts. 

3.2 Using PLC on Wireless Broadband Networks (WBN) 
The basic idea using PLC for interference reduction on WBN is to use it as an antenna 
azimuth automatic controller (AAAC). 
Azimuth is the horizontal angular distance from the northern point of the horizon to a given 
referent direction. By changing the antenna’s azimuth, the radiated power in a given 
direction is altered. As a result, it is possible to reduce the interference caused by frequency 
reuse within the same area of wireless coverage. In this utilization, the PLC is again used in 
conjunction with a stepper motor to perform the azimuth change. 
The initial premise of this solution is to identify that interference is happening across the 
system. This can be done using some form of performance analysis system (depending on 
the equipment used, this could be a type of software for analyzing network performance) or 
collecting performance metrics from MIB (management information base) files, for instance. 
Once the occurrence of interference is identified, using the system described in Fig. 7, it is 
possible perform a rapid and effective intervention on the system, thus reducing the 
interference effects. 
Fig. 7 is an example of this proposed configuration. The PLC is connected to the stepper 
motor, which is responsible for the movement of set of APs (access points). AP represents 
the antenna of a radio transmission system. The number of APs will depend on the 
configuration of each system. The system shown in Fig. 7 uses six APs, where each antenna 
has a horizontal aperture of 60˚. Others configurations, using horizontal apertures of 90˚, 
120˚ or other values are also possible. 
The PLC control system consists of a computer (not shown in Fig. 7), which is responsible 
for sending commands to the PLC, thereby controlling the movements of the stepper motor.  
A basic ladder logic program for stepper motor control is shown in Fig. 8. In this case, i-
TRiLOGI software (i-TRiLOGI, 2009) was used to perform an off-line simulation of the 
PLC’s program on a personal computer. 



 Programmable Logic Controller 

 

128 

 
Fig. 7. Example of PLC application on WBN 

 
(a) 



New Applications Using PLCs in Access Networks 

 

129 

 
(b) 

Fig. 8. Ladder logic program for stepper motor control: a) Code to control speed and 
movement, b) Code to control stop 

4. Conclusion 
We have presented alternative PLC applications on access networks, particularly in DSL 
systems and wireless broadband networks. Details about technical implementation 
possibilities are beyond the scope of this chapter; however the proposed applications use 
well known and easily accessible equipments and devices. 
Since the PLC has relatively low cost, high operational speeds and multiple usage 
characteristics, its utilization across access networks provide a low-priced and practical 
method for mitigating problems related to the network performance. 

5. References 
Starr, T.; Cioffi, J. M. & Silverman, P. J. (1999). Understanding Digital Subscriber Line 

Technology, Prentice Hall PTR , ISBN 978-0137805457, New Jersey 
Gonzalez, L. (2008). DSL Technology Evolution, Broadband Forum, http://www.broadband-

forum.org/downloads/About_DSL.pdf 
Ödling, P.; Magesacher, T.; Höst, S.; Börjesson, P. O.; Berg, M.; Areizaga, E. (2009). The 

Fourth Generation Broadband Concept. IEEE Communications Magazine, Vol. 47, 
No. 1, January 2009, page numbers (63-69), ISSN 0163-6804 

Cook, J. W.; Kirkby, R. H.; Booth, M. G.; Foster, K. T.; Clarke, D. E. A. & Young, G. (1999). 
The Noise and Crosstalk Environment for ADSL and VDSL Systems. IEEE 



 Programmable Logic Controller 

 

130 

Communications Magazine, Vol. 37, Issue 5, May 1999, page numbers (73-78), ISSN 
0163-6804 

Starr, T.; Sorbara, M.; Cioffi, J. M. & Silverman, P. J. (2003). DSL Advances, Prentice Hall PTR, 
ISBN 978-0130938107, New Jersey 

Nuaymi, L. (2007). WiMAX: Technology for Broadband Wireless Access, John Wiley & Sons, 
ISBN 0-470-02808-4, West Sussex 

Andrews, J. G.; Ghosh, A. & Muhamed, R. (2007). Fundamentals of WiMAX: Understanding 
Broadband Wireless Networking, Pearson Education, Inc., ISBN 0-13-222552-2, New 
Jersey 

Boudreau, G.; Panicker, J.; Guo, N.; Chang, R.; Wang, N.; Vrzic, S. (2009). Interference 
Coordination and Cancellation for 4G Networks. IEEE Communications Magazine, 
Vol. 47, No. 4, April 2009, page numbers (74-81), ISSN 0163-6804 

i-TRiLOGI 6.23 (2009). Educational Version, build 02, Triangle Research International, Inc, 
http://www.tri-plc.com 



8 

Development of Customized Distribution 
Automation System (DAS) for Secure Fault 

Isolation in Low Voltage Distribution System 
M. M. Ahmed, W.L. Soo, M. A. M. Hanafiah and M. R. A. Ghani 

University Technical Malaysia Melaka (UTeM) 
Malaysia 

1. Introduction     
In general, an electric power system includes a generating subsystem, a transmission 
subsystem and a distribution subsystem. Electric power systems may have minor 
differences between countries due to geographical factors, demand variances, regions and 
other reasons. The voltages and frequencies for consumers around the world are depending 
on their regions. The power grids typically transmit electricity in three levels of voltage 
which are HV (100,000 Volts upwards), MV (1000 Volts to 100,000 Volts) and LV (1 to 1000 
Volts). Fig. 1 shows the typical power production and distribution process. 
 

 
Fig. 1. Typical Power Production and Distribution Process 



 Programmable Logic Controller 

 

132 

The electricity production process begins with its generation in power plants. The generated 
electric power is supplied through step-up transformers to raise the voltage to HV of 
transmission voltage before it is transmitted by transmission lines to transformer 
substations.  
The substations reduce the transmission voltage via power transformer in Main Intake 
Distribution Substation (MIDS). MIDS is a node for terminating and reconfiguring 
transformers that step down the HV transmission voltage to Primary Distribution Voltage 
Level (PDVL). 
The power is distributed from the transformer substations to the electric distribution 
network via Main Switch Station (MSS). Basically MSS is a node for terminating and 
reconfiguring the PDVL line of many feeders consisting of substations. In areas where 
power needs to be delivered to consumers, the power transformers in the substation are 
used to convert or step down the HV into a much lower voltage. Each feeder of MSS consists 
of a few substations that stepped down to consumer voltage. Basically, the network 
configuration for the distribution system is a loop circuit arrangement and each feeder 
consists of substations separated into two parts by the NOP.   
 

 
Fig. 2. An Example of Distribution Substation 11/0.415 kV 

Most distribution systems are designed as either radial distribution system (Pabla, 2005) or 
loop distribution system. In some countries like Malaysia, the electrical connection of the 
substations is in the form of ring called “Ring (loop) Main Unit (RMU)”. RMU can be 
obtained by arranging a primary loop, which provides power from two feeders. Any section 
of the feeder can be isolated without interruption, and primary faults are reduced in 
duration to the time required to locate a fault and do the necessary switching to restore 
service. The connections are illustrated in Fig. 3 and Fig. 4. 



Development of Customized Distribution Automation System (DAS)  
for Secure Fault Isolation in Low Voltage Distribution System 

 

133 

 
Fig. 3. RMU connection 

 
Fig. 4. Distribution Substation 11/0.415 kV 

Substations serve as sources of energy supply for the local areas of distribution in which 
they are located. Their main functions are to receive energy transmitted at HV from the 
transmission lines, acted as nodal point from which the power or electricity can be changed 
or distributed from it to the other substations or consumers and provide facilities for 
switching. Substations are accessed by their incoming and outgoing switches connected by 
other substations and allow the fault point due to the substation which affects in the system 
that be isolated with switching method and the electricity remain supplied via other back up 
supply.  They provide points where safety devices may be installed to disconnect circuits or 
equipment in the event of trouble. Some substations are equipped with EFI in order to locate 
the fault point either from upstream or downstream.  

2. Low voltage distribution system     
The low voltage operating equipment and systems are susceptible to faults, malfunctions 
and human errors. The solution to those problems lies on how the knowledgeable people 
such as engineers handle and solve them in the best possible ways.  



 Programmable Logic Controller 

 

134 

The application of Automation system is one of the best solutions to those problems. In this 
book, an application of automation system has been proposed and described applied into 
practical LV systems for the solution of these problems. 
However, the distribution systems have grown in an unplanned manner resulting in high 
system losses in addition to poor quality of supply. The other reasons are the lack of use of 
efficient tools for operational planning and advanced methodology for quick detection of 
fault, isolation of the faulty section and service restoration. Currently, fault detection, 
isolation and service restoration takes a long time causing the interruption of supply for a 
longer duration.  
SCADA can be used to handle the tasks which are currently handled by the people and can 
reduce frequency of periodic visit of technical personal substantially. SCADA is a process 
control system that enables a site operator to monitor and control processes that are 
distributed among various remote sites. The control functions are related to switching 
operations, such as switching a capacitor, or reconfiguring feeders. Once the fault location 
has been analyzed, the automatic function for fault isolation and supply restoration is 
executed. When the faulty line section is encountered, it is isolated, and the remaining 
sections are energized. This function directly impacts the customers as well as the system 
reliability. 
This research is to develop a state of the art technology which targets all types of LV systems 
and could be extended to lower voltage, medium voltage as well as higher voltage 
applications in electrical, electronic, communication and mechatronics engineering. 
In the early stage of introduction, distribution control technologies have lagged behind if 
compared with advances in generation and transmission controls.  
In Korea, the general structure of 154kV distribution substations using GIS standard. One 
distribution substation is composed of fixed devices such as a few transmission lines, 154kV 
double buses, two to four of 154kV/22.9kV main transformers, 22.9kV double structured 
distribution bus, many distribution lines, and switching devices like CBs and line switches 
(Lee & Park, 1996). 
The fault point isolation is also based on the operation of corresponding relays and CBs but 
the switching operation is done manually by the operators. KEPCO has suggested four step 
processes to their operators. Step1 is to isolate the fault section using switches or CBs. Step 2 
is to isolate black-out distribution line or transformers. Step 3 is to restore CBs one by one. 
The system uses radial operation and load transfer is allowed up to 90% of capacity of each 
transformer. 
Bretas and Phadke (2003) proposed restoration scheme which composed of several Island 
Restoration Schemes(IRS). Each IRS is composed of two ANNs and a switching sequence 
program (SSP). The first ANN of each IRS is responsible for an island restoration load 
forecast. The input of this ANN will be a normalized vector composed of the pre-
disturbance load. The second ANN of each IRS is responsible for the determination of the 
final island configuration and the associated forecast restoration load pick up percentage 
that will generate a feasible operational condition. 
Hsu and Huang (1995) proposed ANN approach and pattern recognition method to provide 
a proper restoration plan in a very short period. They investigated service restoration 
following a fault on a distribution system within the service area of Taipei City District 
Office of Taiwan Power Company. In this paper, they concluded that the required Central 
Processing Unit (CPU) time using their method is much shorter than that required by the 
heuristic approach of reference. 



Development of Customized Distribution Automation System (DAS)  
for Secure Fault Isolation in Low Voltage Distribution System 

 

135 

Huang C.M (2003) addressed multi objective service restoration problem (SRP) with a fuzzy 
cause-effect network for minimizing a set of criteria, including the load not supplied and the 
number of switching operations. All of them are converted into a single objective function 
by giving relative weighting values for each criterion. 
Hsiao et al (2000) proposed a reconfiguration for service restoration in a distribution system 
using a combination of fuzzy logic and genetic algorithms. The objectives of the proposed 
reconfiguration methodology were to maximize the load restored in the system and 
minimize the switching operations for the reconfiguration. However, the methodology 
proposed in this work is only applicable to radial power system.  

3. Distribution automation system     
The system architecture for this research is divided into three parts as shown in Fig. 5. The 
first part involves investigation of SCADA equipment or HMI. PC is equipped with GUI 
that runs under the Microsoft Windows XP platform using InduSoft software. The GUI 
provides monitoring for service substation and customer service substation, real-time data, 
data trending, data archiving, display and recoding alarm messages, show communication 
status of the system and control execution. Systems operations personnel use this equipment 
to control and monitor the I/O remotely. 
Level 2 consists of I-7188EG embedded Ethernet. The control program is downloaded into 
the controller. The logic programming for service substation and customer service 
substation is almost identical. The logic programming is configured by using IsaGRAF 
software manufactured by ICPDAS. I-7188EG is responsible for communicating with the 
SCADA equipment using TCP/IP protocol. I-7188EG also acts as converter to link the 
SCADA equipment to the I-7044 module, I-7051 module and I-7042 module using RS485 
protocol. The controller also receives data from power analyzer by using RS-485 protocol. 
Controller I-7188EG can handle control functions without the PC in real time.  
Level 3 consists of I/O modules and three panels. The I/O modules are I-7044 module 
which is an 8 channel digital output and 4 channel digital input module, I-7051 which is a 16 
channel digital input and I-7042 which is a 13 channel digital output. I-7044 module receives 
signal from ELCB in the customer service substation panel. It then converts the signal into 
RS485 standard signal and transfers to RS485 network. This signal is received by I-7188EG 
controller. I-7044 module receives signal from the controller to trigger certain actions to the 
relays as output devices.  I-7051 and I-7042 are responsible to receive and send signals to 
I/O of service panel. Power analyzer is a power measurement metering device that displays 
volts, amps, watt, vars and etc. It sends data directly to the controllers to be displayed at the 
monitor. 
In actual practice, service substation panel is connected to more than one customer service 
substation panel. In this research, service substation panel is only connected to one customer 
service substation panel. Customer service substation panel is connected to the consumer 
panel. In this case, the consumer panel consists of lights as the control loads.  
 Fig. 6 shows a typical compact substation (PE) which is still use until today. This compact 
substation fabricated by Schneider Electric Industries (M) Sdn Bhd. PE is also referred as 
RMU. A 12KV, 630A, 20KVA RMU is supplying power supply to LV Feeder Panel. A three-
phase, 1000KVA, 11/0.433 kV transformer is used to step down 11kV to 433V before 
supplying to LVFP. 



 Programmable Logic Controller 

 

136 

 

 
 

Fig. 5. System Architecture 

The outgoing supplies are protected by fuses which have to be replaced if fault occurs. In 
this research project, fuses have been replaced by CB which can be manually or 
automatically controlled for switching operation and are not frequently replaced which is 
shown in Fig. 7. The panel in Fig. 6 is using power factor meter, kilowatt hour meter and 
three ammeters to provide reading of power factor, kilowatt hour and three phase current 
values. Instead of using different types of meters to provide the reading, a single power 
analyzer is used in this research to provide the same reading and is able to send the data to 
the controller using modbus protocol. 



Development of Customized Distribution Automation System (DAS)  
for Secure Fault Isolation in Low Voltage Distribution System 

 

137 

 
Fig. 6. Substation Installed By Schneider  

5. HMI screen architecture 
In Fig.8, the user interface starts with login screen. The default user name is “Guest”. The 
user needs to login before being able to use the toolbar described in Fig.9. The current user 
name will be displayed at the top right of the screen. 
In Fig. 8, the control screen consists of main screen, customer service substation screen and 
service substation screen. These screens give flexibility on the operation personnel and also 
to assign authorization so that only the authorized personnel are being able to view the 
screen. The control screen can be divided into three sections which are the footer, header 
and body section. This is shown in Fig. 9. 



 Programmable Logic Controller 

 

138 

 
 

Fig. 7. Schematic Diagram of Service Substation  
 

 
Fig. 8. Screen Architecture 

The header section consists of toolbar, date and time display. Basically the toolbar provides 
navigation buttons to open other screens and also to exit the whole application. On the left 
side, the date and time display that provides the current date and time. The traffic light 
symbol on the top right indicates that the interface is communicating with the controller. 



Development of Customized Distribution Automation System (DAS)  
for Secure Fault Isolation in Low Voltage Distribution System 

 

139 

 
Fig. 9. Log on Dialog Box 

The body section consists of symbols of I/O, control button, communication status, values 
of voltages and currents. 
The footer section consists of alarm display screen that is located at the bottom of the main 
screen. Besides that the alarm display button is selected for filtering the alarm. Selection 
field is used to filter alarm messages by the selection text which is defined by the user. 
Priority field is used to filter alarm messages based on priority level. Total alarms will 
indicate the total alarm displayed. By pressing “Ack Top” button, the alarm on top of the 
alarm list will be acknowledged. Operation personnel can acknowledge all alarms by 
pressing on “Ack All”. All the alarms displayed will be printed out once the print button is 
pressed. Operation personnel can press the “beep” button to disable the alarm’s sound. 
Fig. 10 shows the main screen of the SCADA Distribution Automation System. Main screen 
displays both panels which are service substation panel and customer service substation 
panel.  
The symbols shown in Fig.10 are changed to red color to indicate false status and green 
color to indicate true status. The header part of the main screen consists of alarm screen, 
event screen, graph screen and table screen. Fig.11 shows the alarm screen. History alarms 
display alarm messages from the history database while online alarms display current alarm 
messages. 



 Programmable Logic Controller 

 

140 

 
Fig. 10. The Main Screen 

 
Fig. 11. Alarm Screen 



Development of Customized Distribution Automation System (DAS)  
for Secure Fault Isolation in Low Voltage Distribution System 

 

141 

Some tags are configured to the alarm parameters such as priority, selection, message, type 
and limit. Priority is to indicate the priority within the alarm group. Tags with a higher 
priority must have a higher priority value. Selection is used to filter in the alarm summary 
objects. The message part of the alarm screen is used to message the associated alarm that 
will be displayed on the Alarm/Event Control object. The type refers to the type of alarm 
such as Hi, Lo, HiHi and LoLo. Limit is the limit value associated to the alarm.  
Event screen displays the list of event triggered by the operation personnel. For example, 
the event of pressing the reset button will be captured and displayed in event screen. 
Operation personnel can set specific date of event to be displayed or clicked on “today” 
button to display event that happened today. Fig.12 shows the event screen. 
  

 
Fig. 12. Event Screen 

The graph will provide on-line data of voltage and current from the power analyzer. Cursor 
button located at the top of the graph can be dragged to know the value along a certain 
position of the graph. X-axis and Y-axis can be adjusted to the user preferences. A combo 
box on the left side of the graph is used to change the property of X-axis and Y-axis.  Start 
Date, Start Time and duration are used to set the X-axis. Fig.13 describes the trending screen 
for the customer service substation panel to display voltage values.  
By clicking on the “Show Tabular” button, screen shown in Fig.14 will be displayed. The 
voltage reading displayed in the table shown in Fig.14 is captured from the voltage graph in 
Fig.13. “Reload” button is to reload the voltage reading from the voltage graph into the 
table. 



 Programmable Logic Controller 

 

142 

 
Fig. 13. Voltage Graph for Customer Service Substation Panel 

 
Fig. 14. Voltage Data Table for Customer Service Substation Panel 



Development of Customized Distribution Automation System (DAS)  
for Secure Fault Isolation in Low Voltage Distribution System 

 

143 

User dialog box is to create new user, delete user, block and unblock user. Fig.15 shows the 
user dialog box. When “New User/Delete User” button is pressed, the screen shown in 
Fig.16 will be displayed. User can be blocked from accessing the application by clicking on 
“Block User” button. “Unblock User” button will undo the block user action. User can be 
removed by clicking on “Remove User”. “User Access” is to set which screens that are 
allowed to be accessed under certain user group. Fig.21 illustrates the user access dialog 
box. 
 

 
Fig. 15. User Dialog Box 
 

 
Fig. 16. User Account Dialog Box 

“New” button is used to create new user and a dialog box as shown in Fig. 19 will be 
displayed. “Delete” button is to delete user. A confirmation message box will be displayed 
to confirm the deleted action. “Setting” button is to change the password of the selected user 
as shown in Fig. 20. User can also be blocked by checking the check box which indicates that 
this “user is blocked”.   



 Programmable Logic Controller 

 

144 

 
Fig. 19. New User Account Dialog Box 

 
Fig. 20. Setting Dialog Box 

 
Fig. 21. User Access Dialog Box 



Development of Customized Distribution Automation System (DAS)  
for Secure Fault Isolation in Low Voltage Distribution System 

 

145 

6. HMI screen architecture     
6.1 System operation and experimental 
The system can be set to manual mode or automatic mode. The two operations which are 
the Operation Without Fault and Operation With Fault are described below. 

6.2 Operation Without Fault 
After success login to the system, control screen to be displayed is chosen from the toolbar. 
An example is shown in Fig.21, when “Serv SS” button is pressed, the service substation 
screen will be displayed. Currently all outputs are in healthy conditions. The 
communication status shows no communication error with the modules as well as the 
power analyzer. Fig.22 shows the values of counters during normal conditions. Loads will 
be turned in sequence and ‘count_L_cur_c’ will be increased by one.  
 

 
Fig. 21. Healthy Condition at the Service Substation Panel 

6.3 Operation With Fault 
If fault occurs, the ELCB will detect the fault condition and terminate all supplies to  
the zones. The outputs are the zones consisting of loads. In Fig.23 main MCCB, MCBs and 
the outputs are turned off. Alarms will be triggered and displayed at the bottom of the 
screen. 



 Programmable Logic Controller 

 

146 

 
Fig. 22. Counters for OLUC and OLDC 
 

 
 

Fig. 23. Unhealthy Condition at the Service Substation Panel 



Development of Customized Distribution Automation System (DAS)  
for Secure Fault Isolation in Low Voltage Distribution System 

 

147 

 
Fig. 24. Fault has occurred at Load 2 

If the system is operated under automatic mode, the controller will automatically reset the 
ELCB using a delay timer and the power input will be turned on again. OLUC will execute 
where each load will be turned on in sequence starting from main MCCB or load 0. Trip will 
occur once the faulty load is turned on and the ‘count_L_cur_sv’ indicates this faulty load 
which is described in Fig.24.  
 

 
Fig. 25. Fault Point has been Isolated 

The ELCB is reset and electricity power supply is supply to the system. OLUC will be 
executed once again and will turn on main MCCB and Zone1. However Zone2, Zone3 and 
zone4 are still remained off. Then the OLDC will be executed. The OLDC will turn on Zone 
3 and Zone 4. Fig.26 shows Zone 2 which is the fault zone will remain off. 
In the alarm list, the blue color indicates that the output has changed to healthy status and 
the red color indicates that the output is still remained unhealthy. Once the fault points have 
been checked and repaired, the “Reset” button is pressed to reset the counter and the OLUC 
and OLDC will be executed again and at this time, zone 2 will be turned on. 



 Programmable Logic Controller 

 

148 

 
Fig. 26. Fault Isolation at the Service Substation Panel 

7. Conclusion   
In this research project, a Customized SCADA based RTU for service substation and 
customer service substation is developed by using the open loop concept for the distribution 
networks. Currently, the SCADA system in the low distribution system implemented by 
TNB only focuses on alarm monitoring. SSO has to operate the control functions at the HMI 
side. The operator needs to analyze the situation and to make appropriate actions.  
In this research, a Customized SCADA is built to provide automatic fault isolation for low 
distribution system. The objective of the research is to provide an HMI for SCADA that is 
capable to build interfaces with I/O devices and fault isolation method. The contribution of 
this research includes developing a complete fault isolation algorithm based on an open 
loop distribution system. Service Substation Panel, Customer Service Substation Panel and 
Customer Panel have been built to validate the proposed methodology.  In this chapter, the 
proposed methodology is summarized with the experimental results and conclusion based 
on the results is also highlighted.  
The HMI is capable to communicate with the I/O devices. An HMI for SCADA is developed 
in this research by using an embedded Ethernet controller as the converter to communicate 
with the I/O devices. In addition to the automation, the controller retrieves the data from 



Development of Customized Distribution Automation System (DAS)  
for Secure Fault Isolation in Low Voltage Distribution System 

 

149 

the power analyzer. The SCADA software used in this research is propriety software shared 
by the same protocol with the embedded Ethernet controller which makes the 
communication possible by using modbus TCP protocol. The HMI can be monitored at 
different sites as the controller equipped with TCP/IP features. Whenever the system 
detects fault, an alarm message will be displayed at the HMI side to acknowledge the 
operator. The status of communication between the controller, digital I/O modules, power 
analyzer with the HMI helps to acknowledge the operator if there is a communication 
breakdown. This feature improves the reliability of the SCADA system in sending or 
receiving data from the devices. 
Based on the experimental results, the system correctly locates the fault point, isolates the 
fault point and reenergizes the un-faulted loads. However, during the fault isolation 
operation, the system has to detect the fault point by simply switching on the fault load. 
After the system acknowledges the fault point, the appropriate switching functions are 
executed. The developed system has a potential in reducing the outage time while 
comparing to the manual operation by the technicians and engineers.  
The SCADA system provides GUI, alarm system, data logging and report management 
facilities for the operator to interact with the equipment in the service substation and the 
customer service substation. The usage of RTU allows for future expansion. New 
technologies such as GSM and satellite communication are becoming available and will 
allow for new low cost automation system solutions. 

8. Future research  
This research project is a step towards developing customized DAS for LV distribution 
system and much more work lies ahead in evaluating new DAS technology and in 
developing new DAS applications. However, the outcome of this research as first effort has 
been very encouraging and bringing beneficial to the DAS research development in the 
future.  
a. Using web based application as GUI supported by IP-based computer networks and 

internet connectivity as communication network to remote sites. 
b. Improving the data communication system for distribution automation such as Global 

System for Mobile (GSM), Code Division Multiple Access (CDMA) and Wireless in 
Local Loop (WLL), Distribution Line Carrier Communication (DLCC) and Radio 
Communication. 

9. References 
Lee, H.J. & Park, Y.M. (1996). A Restoration Aid Expert System for Distribution Substations. 

IEEE Transactions on Power Delivery, Vol. 11, pp.1765 -1769 
Bretas, A.S & Phadke, A.G. (2003). Artificial Neural Networks in Power System Restoration. 

IEEE Transactions on Power Delivery, Vol.18, No.4 , pp.1181 -1186. 
Hsu, Y.Y & Huang, H.M. (1995).  Distribution System Service Restoration using the Artificial 

Neural Network Approach and Pattern Recognition Method. IEEE Proceeding 
Generation Transmission Distribution, Vol. 142, No.3, pp.251-256. 

Hsiao, Y. T. & Chien, C. Y. (2000). Enhancement of Restoration Service in Distribution 
Systems using a Combination Fuzzy-GA Method. IEEE Transactions on Power 
Systems, vol. 15, no. 4, November 2000, pp. 1394-1400 



 Programmable Logic Controller 

 

150 

Huang C.M (2003). Multiobjective Service Restoration of Distribution Systems Using Fuzzy 
Cause-Effect Networks. IEEE Transactions on Power Systems, Vol. 18, No. 2,  
pp.867 – 874 



9 

Computer Emulations  
to Support Training in Automation 

Manuel E. Macías and Ernesto D. Guridi 
Electrical and Computing Engineering, ITESM Campus Monterrey 

Monterrey N. L.,  
México 

1. Introduction      
With the main objectives of complementing the process rather than eliminating the real 
experience from the student, and making it more efficient, the Electrical and Computing 
Engineering Department at ITESM Campus Monterrey has been developing and using, for 
the last 3 years, computer emulations of real industrial processes at the Tele-Engineering 
Lab. The obtained results have shown that the students perform much better than in a 
traditional laboratory session. 
An Emulation is a computer model that mimics the operation of a real or proposed system. 
With Emulations, different solutions can be implemented and tested without the availability 
of the real system. Emulations are goal directed experimentation using dynamic models. 
Hence, it provides repeatable experimentation opportunities under controlled and extreme 
conditions [1-3]; students are able to experience several possible problems before facing 
them in real systems. As it is expected and even desired, students make mistakes while 
programming. A serious mistake on a computer screen is infinitely preferable to a mistake 
in a real system. 
Another important aspect to consider is that every single student has his/her own learning 
method and also his own rhythm. One cannot expect to get the same results, in the same 
manner, from two different students [4, 5]. It is important to keep in mind that there may be 
several solutions for the same assignment and that the complexity between different 
solutions may vary. When students are restricted to obtain a solution in a certain period of 
time within a laboratory session, their chances to reach a correct solution could be limited. 
By handing the emulations to the students, the laboratory concept is extended. The students 
are then able to program, test, and debug their PLC programs without being restricted to a 
scheduled laboratory session. The laboratory, is therefore, virtually always available. 

2. Main advantages 
The aims of using emulations are, respectively, gaining insight, performance prediction, and 
finding the appropriate input values for a desired behavior [3]. 
Therefore, Emulations are useful to support education and provide training in areas where 
dynamic systems are involved [1, 2, 5, 6]. Concerning the Industrial Automation field, there 
are several advantages in having an emulated system: 



 Programmable Logic Controller 

 

152 

• Costs: One of the most noticeable benefits is the cost. Many universities cannot afford 
enough appropriate equipment, such as scaled models of industrial processes that help 
them to develop practical skills on the students. With the use of Emulations, 
universities could acquire a single model to equip their laboratories or even, if their 
budget is not enough, make the students practice by the only use of Emulations. 

• Debugging: Programming errors discovered using Emulations would not be as costly, 
because the errors discovered during the testing process would not damage the 
equipment. The use of the emulations to debug the student’s program highly reduces 
the possibilities to commit errors in the real system.  

• Availability: In most cases, only one actual system would be available and students 
would only be able to test programs on the system one at a time, making the process 
inefficient. This is not the case with the Emulation, where students can be testing 
programs simultaneously, because of the fact that each student could have his own 
virtual duplicate of the system at his own computer.  

• Animation: Using animation to visualize system behavior greatly increases the ability to 
spot problems and certainly enhances students' learning [2, 7]. The process behaves 
accordingly to the student written code.  

• Diversity: With diverse kinds of processes, the students can practice different 
programming techniques, enriching their qualifications. A University could have a 
library of emulated models, containing processes with different complexities, each of 
them to be used in homeworks, projects, or tests. 

• Versatility: With Emulations you can quickly try out your ideas. Any promising correct 
solution is either accepted or dismissed much faster. 

• Overall understanding: Students have a better overall understanding of a new system 
or process when they work with its Emulation. Sometimes sensors in real systems are 
not accessible or visible to the student. In the Emulation, the location of each sensor is 
clearly specified.  

• Handling of Time. An often named advantage of emulations is that they (virtually) 
instantly show the results of the students’ decision. Furthermore, the "expansion of 
time" is also a major characteristic of emulators; users have more time than in reality to 
contemplate a complex situation and to make a decision. Emulators with adjustable 
time frames can be used [4]. 

3. Process Emulations' characteristics 
Although we know that Emulations are not always a perfect match of the physical system 
behavior, it is attempted with them to virtually duplicate a real system.  
As a matter of fact, there are certain process characteristics that, because of their rare or 
occasional existence (such as hardware failures, external disturbances, or even a behavioral 
modification), cannot be exactly replicated. 
Therefore, Emulations should be as similar as possible to the actual process. The operational 
characteristics of the sensors and the actuators must be preserved, such as the signals 
provided by the sensors and the required signals to activate the actuators. Also, it is desired 
that every sensor can be manipulated with a mouse click. This allows the user to activate the 
sensors at any time, the same way it happens in the real system using an external object. 
Through a process of abstraction, we select those details that are most critical to characterize 
the operation of the system. The degree of detail required in a model depends on the nature 
of the system itself. 



Computer Emulations to Support Training in Automation 

 

153 

An important aspect to consider when developing Emulations is the appropriate selection of 
the view to be used, in order to have a complete visualization of the process. It is desired 
that any possible programming error can be detected. Also, even when it is almost 
impossible to predict all the probable errors that could appear while programming, the 
behavior of the Emulation before common error situations can be established. For instance, 
if an actuator used to move an object is not deactivated when the object has reached its 
physical limit, in the real system the actuator will be forced and the object will not move 
beyond this limit; in the Emulation the object will continue moving off the screen, helping 
the student to detect his error. 

3.1 Real processes: scale models 
At the Tele-Engineering Lab several scale models of industrial processes are currently being 
used, such as: Transport and Sorting Lines, Process Lines with Machine Tools and 3-Axis 
Portals, from the Staudinger GmbH company. 
The Transport and Sorting Line model, shown in Figure 1, simulates a handling device to 
allocate part loads from a store register to various discharge stations, as used, for example, 
in a parcel distributor’s logistics. 
 

 
Fig. 1. Scale Model Transport and Sorting Line 

The Transport and Sorting Line consists of a storage register with an integrated conveyor 
chain, a conveyor belt, three pushers, and four discharge stations. The scale model shows 
parcels being withdrawn from the store register, being recognized at an identification unit, 
getting transported to the corresponding discharge station by a conveyor belt, and finally 
being poked from the conveyor belt to the discharge station by a pusher. 

3.2 Emulated processes 
Each of the real models used at the Lab has been already emulated. The Emulations of the 
models were created using LabVIEW from National Instrument as the development tool, 
since it offers a graphical interface to the user, who can easily operate it.  
The emulated model of the Transport and Sorting Line is shown in Figure 2. As it can be 
seen, a top view was selected to emulate this system. The reason of this is that this view 



 Programmable Logic Controller 

 

154 

provides a complete visualization of the process. Also, the location of each Sensor is clearly 
identified. 
 

 
Fig. 2. Emulated Model Transport and Sorting Line 

The scale model of a Process Line with Machine tool and its corresponding Emulation are 
shown in Figures 3 and 4, respectively. The process line consists of a turret drilling machine, 
three conveyor belts, a slewing table with conveyor chains and an automated lay-in-unit. 
The scale model shows a workpiece being provided at the lay-in-unit, then being brought 
onto the conveyance by a pusher, getting transported to the process cell, getting machined” 
in several steps and finally being brought out to a discharge station by using the slewing 
table. 
 

 
Fig. 3. Scale Model Process Line with Machine Tool 



Computer Emulations to Support Training in Automation 

 

155 

 
Fig. 4. Emulated Model Process Line with Machine Tool 

At the present, a diverse library of Third-Dimension (3D) Emulations is being developed. 3D 
Emulations offer, as it could be expected, more characteristics than the ones in Two 
Dimensions (2D). In a 3D visualization it is possible to get immersed into the process and 
actually adapt the view to observe specific tasks or circumstances occurring during the 
process. On a 3D environment the student can zoom, rotate, or scroll the process at will (see 
Figure 5). 
 

 
Fig. 5. Transport and Sorting Line Emulated on a 3D Environment 



 Programmable Logic Controller 

 

156 

Taking advantage of the 3D visualization, students can observe the process from 
perspectives that most of the times are not available on real systems (see Figure 6). 
 

 
Fig. 6. Different Perspective on the 3D Environment 

4. Use of the Emulations 
Before the development of the Emulations, the students had to solve the exercises and the 
Automation projects at the laboratory, and only within the laboratory sessions. This caused 
that pretty often, students could not finish the exercises on time, since the automation tasks 
normally require a considerable amount of tests in order to get to a correct solution. If the 
students wanted to prepare the exercises before the laboratory sessions, they could only 
sketch on paper a possible solution and they did not have the possibility to validate it. Most 
of the times, the proposed solution contained programming errors that needed to be 
debugged and several tests were required. 
This fact forced that either the exercises had to be designed in such way that they could be 
solved in a laboratory session, reducing their complexity, or that the same exercise had to be 
solved using different sessions. In both cases, the process was inefficient and the desired 
abilities were not developed in the students as desired. 
This is not the case when using Emulations. By handing the emulations to the students, they 
do not have to wait until the next laboratory session in order to validate their proposed 
solution. Therefore, the students have more flexibility to test and debug their PLC programs, 
because they can work wherever they want and without being restricted to a schedule. 
For this purpose, the students receive the tools required to solve the different assignments 
outside of the laboratory session: the stand-alone executable version of the determined 
Emulation that they need to automate and the Student Version of the development 
Software, Step7, from Siemens, which also includes the computer simulation of the Siemens 
controllers, S7-PLCSIM. 



Computer Emulations to Support Training in Automation 

 

157 

Students are given an automation task to solve, in which they have to make an analysis of 
the process in order to gain ideas that approach them to a correct solution. The 
implementation of their proposed solution may be unsuccessful and a redesign will be 
required. This leads the students to try their solutions on the Emulation several times in 
order to get to the final one. If the laboratory session comes to an end before they have 
reached a correct solution for the task, they can continue working outside of the laboratory. 
At the next laboratory session, the instructor tests the PLC program in the Emulation and 
only when the program runs completely out of errors, the students are asked to test it at the 
real system. 

5. Development tool 
The software used to develop the Emulations is LabVIEW, from National Instruments. This 
development tool offers important advantages in comparison to similar simulation software, 
such as SIMIT, from Siemens, DELMIA, from Dassault Systems, COSIMIR, from Festo, and 
SPS-VISU, from MHJ-Software, among others. 
Whereas some are very complex and expensive tools, others are cheaper but not so flexible. 
None of them allow a massive distribution of the developed models, since a license needs to 
be purchased; even if it is only desired to use already developed Emulations.  
The main advantages of our development using LabVIEW to emulate processes are: 
• Distribution. Once an Emulation has been developed, it can be distributed in a limitless 

way and completely free of charge to the students. The students just need to download 
the LabVIEW-Runtime from the Internet, which can be installed without the need of a 
license. 

• Portability. Emulations can be used in computers running different operating systems. 
The development tool runs in diverse platforms such as: Windows, Mac OS, Solaris and 
Linux. 

• ActiveX Support. LabVIEW supports the ActiveX functions. Although the Emulations 
were developed to be used with Siemens software, they can be easily adapted to work 
with software from different companies that support the ActiveX Technology.  

• OPC Support. LabVIEW also supports the OPC Technology, which offers an open 
protocol to exchange data between applications from different companies. In the case of 
the Emulations, the OPC Technology can be used to control the Emulations using real 
PLC’s from different providers. When the Emulations are controlled by real PLC’s, the 
students can build up and then validate the required hardware configuration of the 
PLC, complementing the entire process. 

6. Developed libraries 
The connection between the Emulations and the simulated or the real PLC is achieved with 
a set of self developed libraries, which makes use of LabVIEW’s ActiveX Technology 
support. Depending on the desired connection (whether with a simulated or with a real 
PLC), an appropriate ActiveX Control is used. 
Besides, when working with real Siemens Controllers, the libraries allow the connection 
through almost all the PLC supported industrial networks, such as MPI, PROFIBUS, and 
Industrial Ethernet. 



 Programmable Logic Controller 

 

158 

The libraries have been divided in 5 groups accordingly to the LabVIEW’s programming 
standard: configuration, open, write, read, and close section. Furthermore, the error codes 
have been analyzed and prepared in such a way that, if a problem occurs, the user can easily 
find it out. 
The libraries also take advantage of the polymorphic property, in order to write or read 
different data types with the same write or read function. 
Figure 7 shows a typical connection with PLCSim. One can observe the way to write and to 
read an entire input and output byte, respectively. 
 

 
Fig. 7. Typical PLCSim connection 

It is also possible to create new libraries that work with PLC environments from different 
providers, as long as the ActiveX technology is supported. It would be enough to select the 
adequate ActiveX Control and continue the scheme followed until now. 

7. Student’s perception 
A survey was applied to all the students currently working with the Emulations, with the 
intention of knowing their perception about them.  The students could rank each affirmation 
in a scale from 1 to 5; being 5 the highest score (Excellent) and 1 the worst score (Bad). 
The obtained results (see Figure 8) show that a 77 % of the students think that the 
Emulations help them in an excellent way (score 5) to solve all of their assignments, whereas 
the remaining 23 % say that they did it in a very good way (score 4). An 84 % of the students 
believe that the Emulations support the learning process at the laboratory in an excellent 
way (score 5), whereas the remaining 16% think that they did it in a very good way (score 4). 
An 84 % of the students believe that the Emulations helped them to understand the concepts 
taught in class in an excellent way (score 5), whereas the remaining 16% think that they did 
it in a very good way (score 4). 
Finally, a 65% of the students believe that, in general, the use of the Emulations on 
Automation Laboratories is Excellent, whereas the remaining 35 % think that it is Very 
Good. 
It is important to emphasize that all of the results from the survey presented an Excellent (5) 
and Very Good (4) score; none of them received a score of 3 or less points. 



Computer Emulations to Support Training in Automation 

 

159 

 
Fig. 8. Survey Results 

8. Conclusions 
Because of the high costs for appropriate laboratory equipment, one possible solution is to 
use computer emulations to support practical education and training.  
In comparison with similar existing simulation software on the market, the referred 
computer emulations can be limitlessly distributed without restrictions and without having to 
purchase any license. 
By handing the emulations to the students, the laboratory concept is extended. The students are 
then able to program, test, and debug their PLC programs without being restricted to a 
laboratory session. The laboratory is therefore always available. 
The results obtained have shown that the students perform much better than in a traditional 
laboratory session. This fact has been confirmed after 3 years of using the Emulations as a 
part of the Tele-Engineering Lab at Monterrey Tech. The process has shown that the most 
important benefits are: 



 Programmable Logic Controller 

 

160 

• Students solve the exercises in a more enthusiastic way, which influences directly on 
their performance. 

• Students accepted working with Emulations and they are even pleased with its use, 
because of the fact that they offer them more flexibility when solving their assignments. 

• Students enhance their learning process and as a result they also increase their final 
grades. 

• Instructors have said that it is much easier to review all of the exercises, since they can 
make different tests to a student’s program. 

9. References 
[1] Fernández, Vicente, and Jiménez, Virtual Laboratories for Control Education: a 

Combined Methodology, Int. J. Engng Ed., Vol. 21, No. 6, pp. 1059-1067, 2005 
[2] Liu, J., and Landers, R. G., Modular Control Laboratory System with Integrated 

Simulation, Animation, Emulation and Experimental Components, Int. J. Engng Ed., 
Vol. 21, No. 6, pp. 1005-1016, 2005 

[3] Szczerbicka, Banks, Rogers, and Zeigler, “Conceptions of Curriculum for Simulation 
Education (Panel)”, Proceedings of the 2000 Winter Simulation Conference, 2000. 

[4] Größler, A., “Don't let history repeat itself--methodological issues concerning the use of 
Simulators in teaching and experimentation”, System Dynamics Review 
ABI/INFORM, Vol. 20, No. 3, 2004, pp. 263. 

[5] Macías, M., Méndez, I., TeleLab – Remote Automations Lab in Real Time, 38th ASEE/IEEE 
Frontiers in Education Conference, 2008 

[6] Kezunovic, M., Abur, A., Huang, G., Bose A. and Tomsovic, K., “The Role of Digital 
Modeling and Simulation in Power Engineering Education”, IEEE transactions on 
power systems, Vol. 19, No. 1, 2004 pp. 64-72. 

[7] Luo, W., Stravers, J., A., Duffin, K., L., “Lessons Learned from Using a Web-based 
Interactive Landform Simulation Model (WILSIM) in a General Education Physical 
Geography Course”, Journal of Geoscience Education, Bellingham, Vol.53, No. 5, 2005, 
pp. 489. 

[8] Debevec, K., Shih, Kashyap, V., “Learning Strategies and Performance in a Technology 
Integrated Classroom”, Journal of Research on Technology in Education, Vol.38, No. 3, 
2006, pp. 293. 

[9] Macías, Méndez, Guridi, and Ortiz, TeleLab, Remote Laboratory for Automation and 
Control, IFAC Conference on Cost Effective Automation IFAC-CEA 2007. 

[10] Gomis, Montesinos, Galceran, Bergas and Sudriá, “A Chemical Process Automation 
Virtual Laboratory to Teach PLC Programming”, Int. J. Engng Ed., Vol. 23, No. 2, 
pp. 403-410, 2007 

[11] Rodríguez, Berenguel, and Guzmán, “A Virtual Course on Automation of Agriculture 
Systems”, Int. J. Engng Ed., Vol. 22, No. 6, pp. 1197-4101210, 2006 



10 

PLC based Structure for Management and 
Control of Distributed Energy Production Units 

Joao M. G. Figueiredo 
 CEM-IDMEC, Universidade Évora, Mechatronics Group 

R. Romão Ramalho, 59; 7000-671 Évora,  
Portugal 

1. Introduction     
Renewable Energy consists of energy generated from natural and unlimited sources, which 
include, among others, wind, solar, biomass and hydroelectricity. These energy sources, 
unlike the fossil fuels, do not contribute to the greenhouse gas emissions, namely the carbon 
dioxide emissions, and do not suffer from depletion as well. 
The global environmental alertness to protect Earth from the devastation of global warming 
has widespread, and consequently, governments’ incentive policies have driven to a 
massive investment in renewable energy, namely wind power. These incentives not only 
avoid a direct competition between clean energy and the one obtained from the 
conventional technologies, but also minor the damages on environment and mitigate human 
activity impacts on ecosystems. The continuous growth of the world demand has conducted 
to an increase of the total electricity power installed capacity, including renewable energy. 
The European electricity grid is one of the largest power systems in the world. Due to 
economies of scale it has always been advantageous to increase its size. Most of the 
European countries are synchronously connected to his grid. This means that the frequency 
in all of these interconnected countries is identical (in steady-state). The vast majority of the 
electricity in this grid is produced with large synchronous generators. Due to 
environmental, economical and geopolitical reasons there will be a shift in the production of 
energy. More and more distributed generation will be integrated in the system, some of 
which have significantly different characteristics when compared to the existing large 
synchronous generators (Doherty et al., 2005). 
There should always be a balance between the supply and the demand of electricity. Any 
deviation results in a change of the frequency of 50Hz. A set of ancillary services is in use to 
control the frequency, and therefore the power balance of the grid. 
In order to confront the variable or even stochastic behavior of the Renewable Energy 
Sources (RES), usually not meeting the electricity grid’s demand, the adaptation of an 
appropriate Energy Storage System (ESS) is thought to be essential. On the other hand, 
storage techniques are faced with controversies mainly referring to the high initial cost rates, 
the additional transformation losses and the noteworthy environmental impacts, largely 
depending on the correlation between the type of technology used and the selected site 
(Denholm & Kulcinski, 2004). 



 Programmable Logic Controller 

 

162 

Additionally, the common instability of electrical grids and the requirement for complete 
control over the quality of the electrical energy provision (Papathanassiou & Boulaxis, 2005), 
(Lund & Munster, 2003), set some serious obstacles in the dynamic exploitation of RES in 
autonomous electrical networks, this leading to the introduction of an upper limit of 
instantaneous RES contribution equal to a pre-described percentage (e.g. 30%) of the 
corresponding electricity demand. 
To confront the problem described, several authors have every so often proposed alternative 
supply concepts such as water-pumping solutions, hydrogen storage, battery schemes and 
hybrid systems (Kaldellis, 2007), (Kaiser, 2007). 
The system studied in this paper, illustrated in Fig. 1, supports the prior exploitation of RES 
in collaboration with state of art internal combustion engines set to operate in the range of 
minimum specific fuel consumption (maximum efficiency), while the ESS adopted is used to 
meet the satisfaction of power quality issues. In case of energy surplus, the excess amounts 
of energy are used to charge the ESS. When increased load demand and low RES production 
rates appear, the energy content of ESS is used and, if necessary, the programmed control of 
the thermal power stations calls for the back-up engines to set on. 
 

RES energy
Production

Energy Storage
System

Surplus

Def icit

Energy
Consumption

Energy Management
System

 
Fig. 1. RES production system integrated with ESS units 

Today, the improvements in system communications have stimulated the implementation of 
distributed systems. These distributed systems are then usually managed by a centralized 
supervisory platform, commonly known as a SCADA system (Supervisory Control And 
Data Acquisition). This strategy reaches different fields, from agriculture, to industry, 
building automation, etc (Figueiredo & Botto, 2005), (Figueiredo & Sá Costa, 2007). An 
optimal-performance supervisory system has the objective to allocate the minimal needed 
power generation to the traditional power plant in order to produce the electricity at a 
minimal economic cost. 
This paper presents a supervisory system to monitor and control energy production and 
consumption, in an optimized way. The developed system consists of a network of 
Programmable Logic Controllers (PLC), controlling locally the electricity production in each 
source, and measuring, in a real time base, the power consumption and production. The 
PLC network is parameterized according to the traditional Master-Slave requirements, using 
the PROFIBUS communication (Siemens, 2001). A SCADA system is implemented in order 
to supervise the entire PLC network. 



PLC based Structure for Management and Control of Distributed Energy Production Units 

 

163 

This monitoring and control strategy is simulated based on the requirements of the 
renewable energy park that is being assembled in Évora University. This experimental park 
is founded by an European project (PETER) with Évora University – Portugal and 
Extremadura University – Spain. The PETER park is a renewable energy park that plans to 
include a photovoltaic unit (10 KW), a wind generator (1KW) and a biomass unit (75KW). 

2. System model 
The power plant studied in this paper is composed by several production units, spatially 
distributed, with different energetic sources: RES (Photovoltaic, Wind, Biomass), and oil-
based thermal power stations for back-up purposes. Additionally this system contains also 
ESS systems. The electrical schematics of the developed multiple power-source system, with 
an ESS (battery) is illustrated in Fig. 2. 
 

Wind 
generator Converter 

AC/DC

PV 
generator Converter 

DC/DC

+ -

DC bus

DC/AC 
Inverter

= / ~ Load

UPS

Batery
Storage

Biomass 
generator Thermal/Electric 

Generator

Oil-Based Thermal/Electric
generator

 
Fig. 2. Electrical schematics of multiple power generation 

This paper develops a methodology that can be used with anyone of the several ESS 
available in the actual market. In fact, the choice of the proper ESS to fit to a specific 
application depends mainly on the storage requirements. Table 1 shows the most usual ESS 
systems and their applicability range dependent on load demand (Kaldellis et al., 2007). 
 

ESS Type Power Supply range
Flywheels ca. 100KW
Li-ion batteries 100KW  to 1MW
Lead-acid batteries 100KW  to 10MW
Na-S batteries 100KW  to 10MW
Fuel cells 100KW  to 10MW
Flow batteries 100KW  to 10MW
Pumped hydro 1MW  to 100MW
CAES 1MW  to 100MW  

Table 1. Common Energy Storage Systems (ESS) 



 Programmable Logic Controller 

 

164 

In the specific application simulated in this paper (PETER Park) the ESS Pumped Hydro 
received a particular emphasis as this park is located in an agriculture land with strong 
irrigation requirements. The usual developed technology used for the pumped hydro is 
illustrated in figure 3. 

Upper 
Reservoir

Lower Reservoir

Hydraulic Pump

Reversible 
Hydraulic 
Machine

RES energy
Production

 
Fig. 3. ESS – Pumped Hydro 

Each power source is connected to the central management platform through a typical PLC 
master-slave network. The master PLC communicates with a SCADA system that enlarges 
the system communication capabilities, allowing on-line monitoring and control, events 
recording, alarm management, etc.  
In each power unit there exists a slave PLC, which is connected to the master PLC through a 
Profibus network. This power unit PLC monitors and controls the on-line power delivery to 
the electric grid. Similarly each ESS has a slave PLC controlling the income/outcome energy 
in the system. 

3. Control strategy 
The developed strategy is implemented through a traditional cascade controller. The inner-
loop control is performed by a PLC network controlling locally each power plant. The outer-
loop is managed by a SCADA supervisory system. 
Each PLC hosts several control programs whose selection is made either locally, via an HMI 
(Human Machine Interface) or remotely, via the Master PLC. The Master PLC is connected 
to the server PC, via RS232/ MPI Siemens protocol, where the SCADA application is 
running. 
The server PC is simultaneous a SCADA server and an internet server, as the implemented 
SCADA application is web enabled. All process variables are available at the SCADA PC as 
these variables are on-line available through a Profibus/ DP connection protocol (Siemens, 
2001a). 

3.1 SCADA outer-loop controller 
A Supervisory Control and Data Acquisition (SCADA) System is used as an application 
development tool that enables system integrators to create sophisticated supervisory and 
control applications for a variety of technological domains, mainly in the industry field. The 



PLC based Structure for Management and Control of Distributed Energy Production Units 

 

165 

main feature of a SCADA system is its ability to communicate with control equipment in the 
field, through the PLC network. As the equipment is monitored and data is recorded, a 
SCADA application responds according to system logic requirements or operator requests. 
In the developed control strategy, the SCADA application performs the outer control loop of 
the energy plant system. At this outer loop several complex control structures can be used to 
manage the overall system dynamics.  
In this paper an optimal allocation of production resources is performed taking into account 
the minimization of the operational costs, what usually corresponds, in an hybrid power 
system, to the minimization of the supplied power from the oil-based thermal stations. Both 
instantaneous power demand and power supply are on-line monitored in the developed 
energy management system. 
Considering the application developed in this paper (isolated production/consumption 
system) the on-line monitoring of the power demand is performed by reading the power 
delivered at the output of the main electric panel. 
In order to guarantee the stability and quality of the electric power delivered, a set of Energy 
Storage Systems and back-up oil-based thermal power stations are integrated in the 
production system. 
Assuming that the projected hybrid power plant had been optimal designed (Shaahid & 
Elhadidy, 2008), the role of the platform here developed is basically to minimize  the energy 
supplied by the oil-based back-up power units. We use the potential of the SCADA 
supervisory platform to integrate the monitoring of the real production figures on the 
optimization problem. 
The selected functional to allocate the proper electricity production to each power unit is 
presented below (eqs. 1 to 7):  

 min PVi PVi windj windj oill oill
i j l

J c y c w c w= + +∑ ∑ ∑   (1) 

Subjected to: 

 
PVi windj oill ESSn demand

i j l n
y y y y y+ + + ≥∑ ∑ ∑ ∑   (2) 

 maxESSk ky y≤  (3) 

 max k ESSk kE y t≥ ×Δ  (4) 

 0 PVk PVkacty y≤ ≤  (5) 

 0 wink windkacty y≤ ≤  (6) 

 0 oilky≤  (7) 

where: 
cPVi = production cost associated with PV plant i; 
cwindi = production cost associated with Wind plant i; 
coili = production cost associated with oil-based thermal plant i; 



 Programmable Logic Controller 

 

166 

yPVi = requested Watt-power to be supplied by PV plant i; 
ywindi = requested Watt-power to be supplied by wind plant i; 
yoili = requested Watt-power to be supplied by oil-based thermal plant i; 
yESSi = requested Watt-power to be supplied by energy storage system i; 
ydemand = total Watt-power demand; 
ymaxk = max available Watt-power to be supplied by energy storage system k; 
Emaxk = max available Joule-energy to be supplied at an average rate of yESS, by a time 
periode of Δt, for the ESS k; 
yPVkact = instantaneous available Watt-power at the PV plant k; 
ywindkact = instantaneous available Watt-power at the wind plant k; 
Analysing the minimization criterion, it is clear that the change at the instantaneous 
available watt-power from the RES (yPVkact, ywindkact) implies the energy re-balance of the 
entire system. In fact when it happens a power surplus (production greater than 
consumption), the Energy Storage Systems are being charged (yESSk <0). When the 
demanded power exceeds the RES production, the difference has to be covered by 
additional requirements on ESS supply (yESSk >0) or oil-based thermal systems production 
(yoilk >0).  
The optimization algorithm implemented for the energy management, at the SCADA outer 
loop control, could not be implemented directly on the SCADA system, as this complex 
controller needs mathematical operations that are not present at usual available SCADA 
systems. In this paper we developed a strategy to couple the SCADA system with the 
MATLAB software (Mathworks, 2005). 
The communication between SCADA and MATLAB was performed using the DDE protocol 
(Dynamic Data Exchange). This communication protocol, developed in the 90’s but still very 
common, permits the exchange of data between two independent running software 
programs (Client and Server).   
In the developed application the MATLAB software was the Client, as it initiates the 
communication, and the SCADA software was the Server, as it responds to Client’s requests. 
Among the different information formats supported by DDE protocol, the TEXT format was 
selected as this format was supported by both software: SCADA and MATLAB. 
Figure 4 illustrates the communication flow that was developed to implement the 
optimization algorithm at the Outer loop control (eqs. 1 - 7). In this figure we see the 
coexistence of four different communication protocols (LAN, DDE, MPI, PROFIBUS) 
working simultaneously at different levels of the developed platform. 

3.2 Local PLC inner-loop controller 
At the inner loop of the developed strategy (PLC level), several algorithms had been 
developed. These algorithms were built using the Grafcet methodology - Sequential 
Function Chart. The designed algorithms were implemented using the Ladder Diagram 
language (Siemens, 2001b).  
The main purpose of the developed programs associated with the RES stations is the 
monitoring of the electric power generated. 

4. Experimental setup 
The developed application to monitor and control automatic Power Plants had been 
implemented on an experimental setup with the following software and hardware 
requirements. 



PLC based Structure for Management and Control of Distributed Energy Production Units 

 

167 

SCADA-PC
Workstation

SCADA-PC
Workstation

SCADA
Server

PLC
Master

Profibus

MPI

LAN

Remote Com. (GSM, RF,…)

MATLAB
Client

DDE

PC

PV-
slave Wind-

slave
Biomass-
slave

ESS
slave

 
Fig. 4. Communication’s Architecture for the built Prototype 

The PLC network implemented had four PLCs: one PLC for each Power unit (PV-slave, 
Wind-slave, Biomass-slave, ESS-slave). Figure 4 shows the architecture of the built 
Prototype. This prototype aims to test the developed energy management system to be 
implemented in the future Peter park. 
The PETER park plans to integrate a photovoltaic production unit (10 KW), a wind 
generator (1KW) and a biomass unit (75KW). In this park, the biomass plant will play the 
role of the controllable power production unit. 

4.1 Software requirements 
The software used for the PLC programming was the Siemens Simatic Step 7 (Siemens, 
2000). The Scada system was developed over the platform Siemens WinCC (Siemens, 2005). 

4.2 Hardware requirements 
Figure 5 shows an overview of the implemented prototype. Referring hardware characteristics 
each PLC (Master and Slaves) was composed by the following Siemens modules: 

Slot1 = Power supply PS 307-2A 

Slot2 = Processor CPU 315-2DP 

Slot4 = Communication module CP 342 -5 

Slot5 = Digital card DI8/DO8xDC24V/0,5A 

Slot6 = Digital card DI8/DO8xDC24V/0,5A 

Slot7 = Analogue card AI4/ AO2x8/ 8bit 

Additionally, the Master PLC has a modem for GSM communication that provides the 
system capacity to communicate through the mobile phone network.  
The sensors used to monitor the generated and consumed electric power/ current are a set 
of AC/DC current transducers, coupled to energy analysers, with Profibus communication. 
In our case the energy meters used were the family Siemens SIMEAS P. 



 Programmable Logic Controller 

 

168 

The power generation of the considered RES units, was simulated through 2 DC-power 
supplies, and 1 AC-Power supply, which simulated the power output from the DC-
converters and the AC-generator illustrated in fig. 2. The power amplitude was externally 
changed.  

5. Results 
The main objective of the performed tests was to evaluate the compatibility of the several 
communication protocols present in the developed application (LAN, DDE, MPI, 
PROFIBUS). 
The obtained results show mainly the information made available at the several developed 
Graphical User Interfaces (GUI) of the application. 
The optimization problem described in eqs. 1 to 7, was solved through the MATLAB 
Optimization Toolbox, using the standard algorithm “fmincon” (Mathworks, 2005). 
The SCADA system used to implement this monitoring and control strategy permits the 
selective access to the application, depending on the user’s responsibility degree. In this 
paper we developed three user levels: Operators, Supervisors and Administrators.  
Several SCADA menus were built. The main characteristic of a SCADA Menu is to be 
simple, explicit and quick on transmitting the information to the operator or to the System 
Administrator.  
Two of the developed Graphical User Interfaces (GUI) are shown in figs 6 and 7.  
As this SCADA platform is web enabled, all the GUI displayed data is also on-line accessible 
through the internet. 
In fig. 6 it is shown an overview of the complete Power Plant production, with the main 
information regarding the consumption and the production on several distributed power 
units (PV, Wind, Biomass). The on-line available information, referring actual data from 
each power unit is: actual values and maximal daily values for Voltage, Current, Power and 
efficiency ratio (actual Value/max. Value). In fig. 7 it is shown the GUI relative to one of the 
power units. In this case this figure shows the available information for the PV-power 
generator, concerning the several integrated sub-systems.  
 

 
Fig. 5. Implemented Prototype to test the energy management system 



PLC based Structure for Management and Control of Distributed Energy Production Units 

 

169 

 
Fig. 6. GUI: overview of the complete Power Plant Production 

 
Fig. 7. GUI: Photovoltaic Power Generation 

6. Conclusion 
The energy management system developed in this paper is composed by several production 
units, spatially distributed, with different energetic sources: Renewable Energy Sources – 
RES (Photovoltaic, Wind, Biomass), Oil-based thermal power stations and Energy Storage 
Systems - ESS. 
The developed strategy is implemented through a traditional cascade controller. 
The inner-loop control is performed by an industrial PLC network, controlling locally each 
power plant. The outer-loop is managed by a SCADA supervisory system. 
In this paper an optimal allocation of production resources is performed taking into account 
the minimization of the operational costs. Both instantaneous power-demand and power-
supply are on-line monitored in the developed energy management system. 
The developed strategy is simulated, based on the requirements of the new renewable 
energy experimental park (PETER), that is being implemented at the University of Évora - 
Portugal.  



 Programmable Logic Controller 

 

170 

7. References 
Denholm P., Kulcinski, G. (2004). Life Cycle Energy Requirements and Greenhouse Gas 

Emissions from Large Scale Energy Storage Systems. Energy Conversion Manag. 
2004, 45(13-14), pp. 2153-2172. 

Doherty, R., Lalor, G., O’Malley, M. (2005) “Frequency control in competitive electricity 
market dispatch”; IEEE Trans. on Power Systems, vol 20, nº3, pp. 1588-1596 

Figueiredo, J., M. Botto (2005). Automatic Control Strategies Implemented on a Water Canal 
Prototype. Proc. 16th IFAC World Congress, Praha, Czec Republic 

Figueiredo, J., Sá da Costa J. (2007). A Concept for an Operational Management System for 
Industrial Purposes. Proc. IEEE Intl. Symposium on Intelligent Signal Processing, 
Madrid, Spain, ISBN 1-4244-0830-X/07, 2007 IEEE  

Kaiser, R. (2007).  Optimized Battery-Management System to Improve Storage Lifetime in 
Renewable Energy Systems. J. Power Systems 2007, 168, pp. 58-65.  

Kaldellis, J. (2007). An Integrated Model for Performance Simulation of Hybrid Wind-Diesel 
Systems. Energy 32 (2007), pp. 1544-1564 

Lund, H., Munster, E. (2003). Management of Surplus Electricity – Production from a 
Fluctuating Renewable-Energy Source. Appl. Energy 2003, 76(1-3), pp. 65-74. 

Mathworks (2005). Matlab Simulink 7.1 (R14), Mathworks, 2005. 
Papathanassiou St A., Boulaxis N. (2005). Power Limitations and Energy Yield Evaluation 

for Wind Farms Operating in Island Systems. Renew Energy 2005, 31(4), pp. 457-479. 
Shaahid, S., Elhadidy, M. (2008). Economic Analysis of Hybrid Photovoltaic-diesel-battery 

power systems for residential loads in hot regions – A step to clean future. 
Renewable and Sustainable Energy Rev 12 (2008), pp. 488-503. 

Siemens (2000). System Software for S7-300 and S7-400 – Reference Manual, SIEMENS 08/2000; 
A5E00069892-02 

Siemens (2001a). Simatic Net – NCM S7 for Profibus/ FMS. SIEMENS 12/2001. 
Siemens (2001b). Simatic S7-300 – Ladder Logic (LAD) for S7-300, SIEMENS, 2001. 
Siemens (2005). Simatic WinCC V6.0 SP2, SIEMENS, 2005. 


	Preface&Contents_Programmable_Logic_Controller
	01_Han
	02_Ljungkrantz
	03_Guedas
	04_Piedrafita
	05_Borangiu
	06_Inagaki
	07_Souza
	08_Ahmed
	09_Macias
	10_Figueiredo


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


