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Since Model Predictive Heuristic Control (MPHC), the earliest algorithm of Model Predictive 
Control (MPC), was proposed by French engineer Richalet and his colleagues in 1978, the 
explicit background of industrial application has made MPC develop rapidly to satisfy the 
increasing request from modern industry. Different from many other control algorithms, the 
research history of MPC is originated from application and then expanded to theoretical field, 
while ordinary control algorithms often has applications after sufficient theoretical research.

Nowadays, MPC is not just the name of one or some specific computer control algorithms, but 
the name of a specific thought in controller design, from which many kinds of computer control 
algorithms can be derived for different systems, linear or nonlinear, continuous or discrete, 
integrated or distributed. The basic characters of the thought of MPC can be summarized as 
the model used for prediction, the online optimization based on prediction and the feedback 
compensation for model mismatch, while there is no special demands on the form of model, 
the computational tool for online optimization and the form of feedback compensation.

After three decades’ developing, the MPC theory for linear systems is now comparatively 
mature, so its applications can be found in almost every domain in modern engineering. While, 
MPC with robustness and MPC for nonlinear systems are still problems for scientists and 
engineers. Many efforts have been made to solve them, though there are some constructive 
results, they will remain as the focuses of MPC research for a period in the future.

In first part of this book, to present the recent theoretical improvements of MPC, Chapter 1 
will introduce the Robust Model Predictive Control and Chapter 2 to Chapter 5 will introduce 
some typical methods to establish Nonlinear Model Predictive Control, with more complexity, 
MPC for multi-variable nonlinear systems will be proposed in Chapter 6 and Chapter 7.

To give the readers an overview of MPC’s applications today, in second part of the book, 
Chapter 8 to Chapter 13 will introduce some successful examples, from plasma stabilization 
system to satellite system, from linear system to nonlinear system. They can not only help the 
readers understand the characters of MPC, but also give them the guidance for how to use 
MPC to solve practical problems.

Authors of this book truly want to it to be helpful for researchers and students, who are 
concerned about MPC, and further discussions on the contents of this book are warmly 
welcome.

Preface
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Vojtech Veselý and Danica Rosinová
Institute for Control and Industrial Informatics, Faculty of Electrical Engineering and

Information Technology, Slovak University of Technology, Ilkovičova 3, 81219 Bratislava
Slovak Republic

1. Introduction

Model predictive control (MPC) has attracted notable attention in control of dynamic systems
and has gained the important role in control practice. The idea of MPC can be summarized as
follows, (Camacho & Bordons, 2004), (Maciejovski, 2002), (Rossiter, 2003) :

• Predict the future behavior of the process state/output over the finite time horizon.

• Compute the future input signals on line at each step by minimizing a cost function
under inequality constraints on the manipulated (control) and/or controlled variables.

• Apply on the controlled plant only the first of vector control variable and repeat the
previous step with new measured input/state/output variables.

Therefore, the presence of the plant model is a necessary condition for the development of
the predictive control. The success of MPC depends on the degree of precision of the plant
model. In practice, modelling real plants inherently includes uncertainties that have to be
considered in control design, that is control design procedure has to guarantee robustness
properties such as stability and performance of closed-loop system in the whole uncertainty
domain. Two typical description of uncertainty, state space polytope and bounded unstruc-
tured uncertainty are extensively considered in the field of robust model predictive control.
Most of the existing techniques for robust MPC assume measurable state, and apply plant
state feedback or when the state estimator is utilized, output feedback is applied. Thus, the
present state of robustness problem in MPC can be summarized as follows:
Analysis of robustness properties of MPC.
(Zafiriou & Marchal, 1991) have used the contraction properties of MPC to develop necessary-
sufficient conditions for robust stability of MPC with input and output constraints for SISO
systems and impulse response model. (Polak & Yang, 1993) have analyzed robust stability of
MPC using a contraction constraint on the state.
MPC with explicit uncertainty description.
( Zheng & Morari, 1993), have presented robust MPC schemes for SISO FIR plants, given un-
certainty bounds on the impulse response coefficients. Some MPC consider additive type of
uncertainty, (delaPena et al., 2005) or parametric (structured) type uncertainty using CARIMA
model and linear matrix inequality, (Bouzouita et al., 2007). In (Lovas et al., 2007), for open-
loop stable systems having input constraints the unstructured uncertainty is used. The robust
stability can be established by choosing a large value for the control input weighting matrix R
in the cost function. The authors proposed a new less conservative stability test for determin-
ing a sufficiently large control penalty R using bilinear matrix inequality (BMI). In (Casavola
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et al., 2004), robust constrained predictive control of uncertain norm-bounded linear systems
is studied. The other technique- constrained tightening to design of robust MPC have been
proposed in (Kuwata et al., 2007). The above approaches are based on the idea of increasing
the robustness of the controller by tightening the constraints on the predicted states.
The mixed H2/H∞ control approach to design of MPC has been proposed by (Orukpe et al.,
2007) .
Robust constrained MPC using linear matrix inequality (LMI) has been proposed by (Kothare et
al., 1996), where the polytopic model or structured feedback uncertainty model has been used.
The main idea of (Kothare et al., 1996) is the use of infinite horizon control laws which guar-
antee robust stability for state feedback. In (Ding et al., 2008) output feedback robust MPC
for systems with both polytopic and bounded uncertainty with input/state constraints is pre-
sented. Off-line, it calculates a sequence of output feedback laws based on the state estimators,
by solving LMI optimization problem. On-line, at each sampling time, it chooses an appro-
priate output feedback law from this sequence. Robust MPC controller design with one step
ahead prediction is proposed in (Veselý & Rosinová , 2009). The survey of optimal and robust
MPC design can be consulted in (Mayne et al., 2000). Some interesting results for nonlinear
MPC are given in (Janík et al., 2008).
In MPC approach generally, control algorithm requires solving constrained optimization prob-
lem on-line (in each sampling period). Therefore on-line computation burden is significant
and limits practical applicability of such algorithms to processes with relatively slow dynam-
ics. In this chapter, a new MPC scheme for an uncertain polytopic system with constrained
control is developed using model structure introduced in (Veselý et al., 2010). The main con-
tribution of the first part of this chapter is that all the time demanding computations of output
feedback gain matrices are realized off-line ( for constrained control and unconstrained control
cases). The actual value of control variable is obtained through simple on-line computation of
scalar parameter and respective convex combination of already computed matrix gains. The
developed control design scheme employs quadratic Lyapunov stability to guarantee the ro-
bustness and performance (guaranteed cost) over the whole uncertainty domain.
The first part of the chapter is organized as follows. A problem formulation and preliminaries
on a predictive output/state model as a polytopic system are given in the next section. In
Section 1.2, the approach of robust output feedback predictive controller design using linear
matrix inequality is presented. In Section 1.3, the input constraints are applied to LMI feasi-
ble solution. Two examples illustrate the effectiveness of the proposed method in the Section
1.4. The second part of this chapter addresses the problem of designing a robust parameter
dependent quadratically stabilizing output/state feedback model predictive control for linear
polytopic systems without constraints using original sequential approach. For the closed-loop
uncertain system the design procedure ensures stability, robustness properties and guaran-
teed cost. Finally, conclusions on the obtained results are given.
Hereafter, the following notational conventions will be adopted: given a symmetric matrix
P = PT ∈ Rn×n, the inequality P > 0(P ≥ 0) denotes matrix positive definiteness (semi-
definiteness). Given two symmetric matrices P, Q, the inequality P > Q indicates that
P − Q > 0. The notation x(t + k) will be used to define, at time t, k-steps ahead prediction
of a system variable x from time t onwards under specified initial state and input scenario. I
denotes the identity matrix of corresponding dimensions.

1.1 Problem formulation and preliminaries
Let us start with uncertain plant model described by the following linear discrete-time uncer-
tain system with polytopic uncertainty domain

x(t + 1) = A(α)x(t) + B(α)u(t) (1)

y(t) = Cx(t)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl are state, control and output variables of the system,
respectively; A(α), B(α) belong to the convex set

S = {A(α) ∈ Rn×n, B(α) ∈ Rn×m} (2)

{A(α) =
N

∑
j=1

Ajαj B(α) =
N

∑
j=1

Bjαj, αj ≥ 0}, j = 1, 2...N,
N

∑
j=1

αj = 1

Matrices Ai, Bi and C are known matrices with constant entries of corresponding dimensions.
Simultaneously with (1) we consider the nominal model of system (1) in the form

x(t + 1) = Aox(t) + Bou(t) y(t) = Cx(t) (3)

where Ao, Bo are any constant matrices from the convex bounded domain S (2). The nominal
model (3) will be used for prediction, while (1) is considered as real plant description provid-
ing plant output. Therefore in the robust controller design we assume that for time t output
y(t) is obtained from uncertain model (1), predicted outputs for time t + 1, ...t + N2 will be
obtained from model prediction, where the nominal model (3) is used. The predicted states
and outputs of the system (1) for the instant t + k, k = 1, 2, ...N2 are given by

• k=1
x(t + 2) = Aox(t + 1) + Bou(t + 1) = Ao A(α)x(t) + AoB(α)u(t) + Bou(t + 1)

• k=2
x(t + 3) = A2

o A(α)x(t) + A2
o B(α)u(t) + AoBou(t + 1) + Bou(t + 2)

• for k

x(t + k + 1) = Ak
o A(α)x(t) + Ak

oB(α)u(t) +
k−1

∑
i=0

Ak−i−1
o Bou(t + 1 + i) (4)

and corresponding output is
y(t + k) = Cx(t + k) (5)

Consider a set of k = 0, 1, 2, ..., N2 state/output model predictions as follows

z(t + 1) = A f (α)z(t) + Bf (α)v(t), y f (t) = Cf z(t) (6)

where
z(t)T = [x(t)T ...x(t + N2)

T ], v(t)T = [u(t)T ...u(t + Nu)
T ] (7)

y f (t)
T = [y(t)T ...y(t + N2)

T ]

and

Bf (α) =




B(α) 0 ... 0
AoB(α) Bo ... 0

... ... ... 0
AN2

o B(α) AN2−1
o Bo ... AN2−Nu

o Bo


 (8)
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

B(α) 0 ... 0
AoB(α) Bo ... 0

... ... ... 0
AN2

o B(α) AN2−1
o Bo ... AN2−Nu

o Bo


 (8)



Model Predictive Control4

A f (α) =




A(α) 0 ... 0
Ao A(α) 0 ... 0

... ... ... ...
AN2

o A(α) 0 ... 0


 , Cf =




C 0 ... 0
0 C ... 0
... ... ... ...
0 0 ... C


 (9)

where N2, Nu are output and control prediction horizons of model predictive control, respec-
tively. Note that for output/state prediction in (6) one needs to put A(α) = Ao, B(α) = Bo.
Matrices dimensions are A f (α) ∈ Rn(N2+1)×n(N2+1), Bf (α) ∈ Rn(N2+1)×m(Nu+1) and Cf ∈
Rl(N2+1)×n(N2+1).
Consider the cost function associated with the system (6) in the form

J =
∞

∑
t=0

J(t) (10)

where
J(t) = ∑N2

k=0 x(t + k)TQkx(t + k) + ∑Nu
k=0 u(t + k)T Rku(t + k) =

= z(t)TQz(t) + v(t)T Rv(t) (11)

Q = blockdiag{Qi}i=0,1,...N2 R = blockdiag{Ri}i=0,1,...Nu

The problem studied in this part of chapter can be summarized as follows. Design the robust
model predictive controller with output feedback and input constraints in the form

v(t) = Fy f (t) = FCf z(t) (12)

where FT = [FT
0 ...FT

Nu
], Fi = [Fi0...FiN2 ], i = 0, 1, 2, ...Nu

are the output feedback gain matrices which for given prediction horizon N2 and control hori-
zon Nu ensure the closed-loop system (13) stability, robustness and guaranteed cost.

z(t + 1) = (A f (α) + Bf (α)FCf )z(t) = Ac(α)z(t) (13)

Definition 1. Consider the system (6). If there exists a control law v(t)∗ and a positive scalar J∗

such that the closed-loop system (13) is stable and the closed-loop cost function (10) value J
satisfies J ≤ J∗ then J∗ is said to be the guaranteed cost and v(t)∗ is said to be the guaranteed
cost control law for the system (6).
To guarantee closed-loop stability of uncertain system overall the whole uncertainty domain,
the concept of quadratic stability is frequently used. That is, one Lyapunov function works
for the whole uncertainty domain. Experience and analysis has shown that quadratic stabil-
ity is rather conservative in many cases, therefore robust stability with parameter dependent
Lyapunov function P(α) has been introduced by (Peaucelle et al., 2000). Using the concept of
Lyapunov stability it is possible to formulate the following definition and lemma.
Definition 2. System (13) is robustly stable in the convex uncertainty domain with parameter-
dependent Lyapunov function P(α) if and only if there exists a matrix P(α) = P(α)T > 0 such
that

Ac(α)
T P(α)Ac(α)− P(α) < 0 (14)

Lemma 1. (Rosinová et al., 2003), (Krokavec & Filasová, 2003) Consider the closed-loop system
(13) with control algorithm (12). Control algorithm (12) is the guaranteed cost control law if
and only if there exists a positive definite matrix P(α) and matrix F such that the following
condition holds

Be = z(t)T(Ac(α)
T P(α)Ac(α)− P(α) + Q + CT

f FT RFCf )z(t) ≤ 0 (15)

where the first term of (15) ∆V(t) = z(t)T(Ac(α)T P(α)Ac(α)− P(α))z(t) is the first difference
of closed-loop system Lyapunov function V(t) = z(t)T P(α)z(t). Moreover, summarizing (15)
from initial time to to t → ∞ the following inequality is obtained

− V(to) + J ≤ 0 (16)

Definition 1 and (16) imply
J∗ ≤ V(to) (17)

Note, that as a receding horizon strategy is used, only u(t) is sent to the real plant control,
control inputs u(t + k), k = 0, 1, 2, ..., Nu are used for predictive outputs y(t + k) calculation.
According to (de Oliviera et al., 2000) there is no general and systematic way to formally deter-
mine P(α) in (15) as a function of Ac(α). Such a matrix P(α) is called the parameter dependent
Lyapunov matrix (PDLM) and for particular structure of P(α) the inequality (15) defines the
parameter dependent quadratic stability (PDQS). Formal approach to choose P(α) for real
convex polytopic uncertainty (2) can be found in the references. One of the approaches is to
take P(α) = P, in this case if the solution is feasible the quadratic stability is obtained. An-
other possibility P(α) = ∑N

i=1 Piαi, ∑N
i=1 αi = 1, Pi = PT

i > 0 gives the parameter dependent
quadratic stability (PDQS). To decrease the conservatism of PDQS arising from affine parame-
ter dependent Lyapunov function (PDLF), recently, the use of polynomial PDLF (PPDLF) has
been proposed in different forms. For more details see (Ebihara et al., 2006).

1.2 Robust model predictive controller design. Quadratic stability
Robust MPC controller design which guarantees quadratic stability and guaranteed cost of
closed-loop system is based on (15). Using Schur complement formula inequality (15) can be
rewritten to following bilinear matrix inequality (BMI).




−P(α) + Q CT
f FT Ac(α)T

FCf −R−1 0
Ac(α) 0 −P(α)−1


 ≤ 0 (18)

For the quadratic stability P(α) = P = PT > 0 in (18). Using linearization approach for P−1,
de Oliviera et al. (2000), the following inequality can be derived

− P−1 ≤ Y−1
k (P − Yk)Y

−1
k − Y−1

k = lin(−P−1) (19)

where Yk, k = 1, 2, ... in iteration process Yk = P. We can recast bilinear matrix inequality (18)
to the linear matrix inequality (LMI) using linearization (19). The following LMI is obtained
for quadratic stability




−P + Q CT
f FT AT

f i + CT
f FT BT

f i
FCf −R−1 0

A f i + Bf iFCf 0 lin(−P−1)


 ≤ 0 i = 1, 2, ...N (20)

where

A f (α) =
N

∑
j=1

A f jαj B f (α) =
N

∑
j=1

Bf jαj

We can conclude that if the LMIs (20) are feasible with respect to � ∗ I > P = PT > 0 and
matrix F then the closed-loop system with control algorithm (12) is quadratically stable with
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A f (α) =




A(α) 0 ... 0
Ao A(α) 0 ... 0

... ... ... ...
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o A(α) 0 ... 0
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
 (9)
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v(t) = Fy f (t) = FCf z(t) (12)

where FT = [FT
0 ...FT

Nu
], Fi = [Fi0...FiN2 ], i = 0, 1, 2, ...Nu

are the output feedback gain matrices which for given prediction horizon N2 and control hori-
zon Nu ensure the closed-loop system (13) stability, robustness and guaranteed cost.

z(t + 1) = (A f (α) + Bf (α)FCf )z(t) = Ac(α)z(t) (13)

Definition 1. Consider the system (6). If there exists a control law v(t)∗ and a positive scalar J∗

such that the closed-loop system (13) is stable and the closed-loop cost function (10) value J
satisfies J ≤ J∗ then J∗ is said to be the guaranteed cost and v(t)∗ is said to be the guaranteed
cost control law for the system (6).
To guarantee closed-loop stability of uncertain system overall the whole uncertainty domain,
the concept of quadratic stability is frequently used. That is, one Lyapunov function works
for the whole uncertainty domain. Experience and analysis has shown that quadratic stabil-
ity is rather conservative in many cases, therefore robust stability with parameter dependent
Lyapunov function P(α) has been introduced by (Peaucelle et al., 2000). Using the concept of
Lyapunov stability it is possible to formulate the following definition and lemma.
Definition 2. System (13) is robustly stable in the convex uncertainty domain with parameter-
dependent Lyapunov function P(α) if and only if there exists a matrix P(α) = P(α)T > 0 such
that

Ac(α)
T P(α)Ac(α)− P(α) < 0 (14)

Lemma 1. (Rosinová et al., 2003), (Krokavec & Filasová, 2003) Consider the closed-loop system
(13) with control algorithm (12). Control algorithm (12) is the guaranteed cost control law if
and only if there exists a positive definite matrix P(α) and matrix F such that the following
condition holds

Be = z(t)T(Ac(α)
T P(α)Ac(α)− P(α) + Q + CT

f FT RFCf )z(t) ≤ 0 (15)

where the first term of (15) ∆V(t) = z(t)T(Ac(α)T P(α)Ac(α)− P(α))z(t) is the first difference
of closed-loop system Lyapunov function V(t) = z(t)T P(α)z(t). Moreover, summarizing (15)
from initial time to to t → ∞ the following inequality is obtained

− V(to) + J ≤ 0 (16)

Definition 1 and (16) imply
J∗ ≤ V(to) (17)

Note, that as a receding horizon strategy is used, only u(t) is sent to the real plant control,
control inputs u(t + k), k = 0, 1, 2, ..., Nu are used for predictive outputs y(t + k) calculation.
According to (de Oliviera et al., 2000) there is no general and systematic way to formally deter-
mine P(α) in (15) as a function of Ac(α). Such a matrix P(α) is called the parameter dependent
Lyapunov matrix (PDLM) and for particular structure of P(α) the inequality (15) defines the
parameter dependent quadratic stability (PDQS). Formal approach to choose P(α) for real
convex polytopic uncertainty (2) can be found in the references. One of the approaches is to
take P(α) = P, in this case if the solution is feasible the quadratic stability is obtained. An-
other possibility P(α) = ∑N

i=1 Piαi, ∑N
i=1 αi = 1, Pi = PT

i > 0 gives the parameter dependent
quadratic stability (PDQS). To decrease the conservatism of PDQS arising from affine parame-
ter dependent Lyapunov function (PDLF), recently, the use of polynomial PDLF (PPDLF) has
been proposed in different forms. For more details see (Ebihara et al., 2006).

1.2 Robust model predictive controller design. Quadratic stability
Robust MPC controller design which guarantees quadratic stability and guaranteed cost of
closed-loop system is based on (15). Using Schur complement formula inequality (15) can be
rewritten to following bilinear matrix inequality (BMI).




−P(α) + Q CT
f FT Ac(α)T

FCf −R−1 0
Ac(α) 0 −P(α)−1


 ≤ 0 (18)

For the quadratic stability P(α) = P = PT > 0 in (18). Using linearization approach for P−1,
de Oliviera et al. (2000), the following inequality can be derived

− P−1 ≤ Y−1
k (P − Yk)Y

−1
k − Y−1

k = lin(−P−1) (19)

where Yk, k = 1, 2, ... in iteration process Yk = P. We can recast bilinear matrix inequality (18)
to the linear matrix inequality (LMI) using linearization (19). The following LMI is obtained
for quadratic stability




−P + Q CT
f FT AT

f i + CT
f FT BT

f i
FCf −R−1 0

A f i + Bf iFCf 0 lin(−P−1)


 ≤ 0 i = 1, 2, ...N (20)

where

A f (α) =
N

∑
j=1

A f jαj B f (α) =
N

∑
j=1

Bf jαj

We can conclude that if the LMIs (20) are feasible with respect to � ∗ I > P = PT > 0 and
matrix F then the closed-loop system with control algorithm (12) is quadratically stable with
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guaranteed cost (17). Note that due to control horizon strategy only the first m rows of ma-
trix F are used for real plant control, the other part of matrix F serves for predicted output
variables calculation. Parameter dependent or Polynomial parameter dependent quadratic
stability approach to design robust MPC may decrease the conservatism of quadratic stability.
In this case for PDQS we can use the approaches given in (Peaucelle et al., 2000), (Grman et
al., 2005) and for (PPDLF) see (Ebihara et al., 2006).

1.3 MPC design for input constraints
In this subsection we propose the off-line calculation of two control gain matrices and using
analogy to SVSC approach, (Adamy & Fleming, 2004), we significantly reduce the computa-
tional effort for MPC suboptimal control with input constraints.
To design model predictive control (Adamy & Fleming, 2004), (Camacho & Bordons, 2004)
with constraints on input, state and output variables at each sampling time, starting from the
current state, an open-loop optimal control problem is solved over the defined finite horizon.
The first element of the optimal control sequence is applied to the plant. At the next time step,
the computation is repeated with new measured variables. Thus, the implementation of the
MPC strategy requires a QP solver for the on-line optimization which still requires significant
on-line computational effort, which limits MPC applicability.
In our approach the actual output feedback control gain matrix is computed as a convex com-
bination of two gain matrices computed a priori (off-line) : one for constrained and one for
unconstrained case such that both gains guarantee performance and robustness properties
of closed-loop system. This convex combination is determined by a scalar parameter which
is updated on-line in each step. Based on this idea, in the following, the algorithm for con-
strained control algorithm is developed.
Consider the system (6) where the control v(t) is constrained to evolve in the following set

Γ = {v ∈ RmNu : |vi(t)| ≤ Ui, i = 1, ...mNu} (21)

The aim of this part of chapter is to design the stabilizing output feedback control law for
system (6) in the form

v(t) = FCf z(t) (22)

which guarantees that for the initial state z0 ∈ Ω(P) = {z(t) : z(t)T Pz(t) ≤ θ} control v(t)
belongs to the set (21) for all t ≥ 0, where θ is a positive real parameter which determines the
size of Ω(P). Furthermore, Ω(P) should be such that all z(t) ∈ Ω(P) provide v(t) satisfying
the relation (21), restricting the values of the control parameters. Moreover, the following
ellipsoidal Lyapunov function level set

Ω(P) = {z(t) ∈ RnN2 : z(t)T Pz(t) ≤ θ} (23)

can be proven to be a robust positively invariant region with respect to motion of the closed-
loop system in the sense of the following definition, (Rohal-Ilkiv, 2004), (Ayd et al., 2008) .
Definition 3. A subset So ∈ R(nN2) is said to be positively invariant with respect to motion of
system (6) with control algorithm (22) if for every initial state z(0) inside So the trajectory z(t)
remains in So for all t ≥ 0.
Consider that vector fi denotes the i-th row of matrix F and define

L(F) = {z(t) ∈ R(nN2) : | fiCf z(t)| ≤ Ui, i = 1, 2...mNu}

The above set can be rewritten as

L(F) = {z(t) ∈ R(nN2) : |DiFCf z(t)| ≤ Ui, i = 1, 2...mNu} (24)

where Di ∈ R1×mNu = {dij}, dij = 1, i = j, dij = 0, i �= j. The results are summarized in
the following theorem.
Theorem 1. The inclusion Ω(P) ⊆ L(F) is for output feedback control equivalent to

[
P CT FT DT

i
DiFC λi

]
≥ 0, i = 1, 2, ...mNu (25)

where

λi ∈< 0,
U2

i
θ

>

Proof. To prove that the inclusion Ω(P) ⊆ L(F) is equivalent to (25) we use S− procedure in
the following way. Rewrite (23) and (24) to the following form

p(z) = zT(t)Pz(t)− θ ≤ 0

gi(z) = zT(t)CT
f FT DT

i DiFCz(t)− U2
i ≤ 0

According to S− procedure the above inclusion is equivalent to the existence of a positive
scalar λi such that

gi(z)− λi p(z) ≤ 0

or equivalently
z(t)T(CT

f FT DT
i DiFC − λiP)z(t)− U2

i + λiθ ≤ 0 (26)

After some manipulation (26) can be rewritten in the form
[

CT FT DT
i DiFC − λiP 0

0 −U2
i + λiθ

]
≤ 0 (27)

i = 1, 2, ...mNu

The above inequality for block diagonal matrix is equivalent to two inequalities. Using Schur
complement formula for the first one the inequality (25) is obtained, which proves the theo-
rem.
In order to check the value of θi for i− th input we solve the optimization problem z(t)T Pz(t) →
max, subject to constraints (24), which yields

θi =
U2

i
DiFCP−1CT FT DT

i
(28)

In the design procedure it should be verified that when parameter θ decreases the obtained
robust positively invariant regions Ω(P) are nested to region obtained for θ + ε, ε > 0.
Assume that we calculate two output feedback gain matrices: F1 for unconstrained case and F2
for constrained one. Obviously, closed-loop system with the gain matrix F2 gives the dynamic
behavior slower than the one obtained for F1. Consider the output feedback gain matrix F in
the form

F = γF1 + (1 − γ)F2, γ ∈ (0, 1) (29)
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guaranteed cost (17). Note that due to control horizon strategy only the first m rows of ma-
trix F are used for real plant control, the other part of matrix F serves for predicted output
variables calculation. Parameter dependent or Polynomial parameter dependent quadratic
stability approach to design robust MPC may decrease the conservatism of quadratic stability.
In this case for PDQS we can use the approaches given in (Peaucelle et al., 2000), (Grman et
al., 2005) and for (PPDLF) see (Ebihara et al., 2006).

1.3 MPC design for input constraints
In this subsection we propose the off-line calculation of two control gain matrices and using
analogy to SVSC approach, (Adamy & Fleming, 2004), we significantly reduce the computa-
tional effort for MPC suboptimal control with input constraints.
To design model predictive control (Adamy & Fleming, 2004), (Camacho & Bordons, 2004)
with constraints on input, state and output variables at each sampling time, starting from the
current state, an open-loop optimal control problem is solved over the defined finite horizon.
The first element of the optimal control sequence is applied to the plant. At the next time step,
the computation is repeated with new measured variables. Thus, the implementation of the
MPC strategy requires a QP solver for the on-line optimization which still requires significant
on-line computational effort, which limits MPC applicability.
In our approach the actual output feedback control gain matrix is computed as a convex com-
bination of two gain matrices computed a priori (off-line) : one for constrained and one for
unconstrained case such that both gains guarantee performance and robustness properties
of closed-loop system. This convex combination is determined by a scalar parameter which
is updated on-line in each step. Based on this idea, in the following, the algorithm for con-
strained control algorithm is developed.
Consider the system (6) where the control v(t) is constrained to evolve in the following set

Γ = {v ∈ RmNu : |vi(t)| ≤ Ui, i = 1, ...mNu} (21)

The aim of this part of chapter is to design the stabilizing output feedback control law for
system (6) in the form

v(t) = FCf z(t) (22)

which guarantees that for the initial state z0 ∈ Ω(P) = {z(t) : z(t)T Pz(t) ≤ θ} control v(t)
belongs to the set (21) for all t ≥ 0, where θ is a positive real parameter which determines the
size of Ω(P). Furthermore, Ω(P) should be such that all z(t) ∈ Ω(P) provide v(t) satisfying
the relation (21), restricting the values of the control parameters. Moreover, the following
ellipsoidal Lyapunov function level set

Ω(P) = {z(t) ∈ RnN2 : z(t)T Pz(t) ≤ θ} (23)

can be proven to be a robust positively invariant region with respect to motion of the closed-
loop system in the sense of the following definition, (Rohal-Ilkiv, 2004), (Ayd et al., 2008) .
Definition 3. A subset So ∈ R(nN2) is said to be positively invariant with respect to motion of
system (6) with control algorithm (22) if for every initial state z(0) inside So the trajectory z(t)
remains in So for all t ≥ 0.
Consider that vector fi denotes the i-th row of matrix F and define

L(F) = {z(t) ∈ R(nN2) : | fiCf z(t)| ≤ Ui, i = 1, 2...mNu}

The above set can be rewritten as

L(F) = {z(t) ∈ R(nN2) : |DiFCf z(t)| ≤ Ui, i = 1, 2...mNu} (24)

where Di ∈ R1×mNu = {dij}, dij = 1, i = j, dij = 0, i �= j. The results are summarized in
the following theorem.
Theorem 1. The inclusion Ω(P) ⊆ L(F) is for output feedback control equivalent to

[
P CT FT DT

i
DiFC λi

]
≥ 0, i = 1, 2, ...mNu (25)

where

λi ∈< 0,
U2

i
θ

>

Proof. To prove that the inclusion Ω(P) ⊆ L(F) is equivalent to (25) we use S− procedure in
the following way. Rewrite (23) and (24) to the following form

p(z) = zT(t)Pz(t)− θ ≤ 0

gi(z) = zT(t)CT
f FT DT

i DiFCz(t)− U2
i ≤ 0

According to S− procedure the above inclusion is equivalent to the existence of a positive
scalar λi such that

gi(z)− λi p(z) ≤ 0

or equivalently
z(t)T(CT

f FT DT
i DiFC − λiP)z(t)− U2

i + λiθ ≤ 0 (26)

After some manipulation (26) can be rewritten in the form
[

CT FT DT
i DiFC − λiP 0

0 −U2
i + λiθ

]
≤ 0 (27)

i = 1, 2, ...mNu

The above inequality for block diagonal matrix is equivalent to two inequalities. Using Schur
complement formula for the first one the inequality (25) is obtained, which proves the theo-
rem.
In order to check the value of θi for i− th input we solve the optimization problem z(t)T Pz(t) →
max, subject to constraints (24), which yields

θi =
U2

i
DiFCP−1CT FT DT

i
(28)

In the design procedure it should be verified that when parameter θ decreases the obtained
robust positively invariant regions Ω(P) are nested to region obtained for θ + ε, ε > 0.
Assume that we calculate two output feedback gain matrices: F1 for unconstrained case and F2
for constrained one. Obviously, closed-loop system with the gain matrix F2 gives the dynamic
behavior slower than the one obtained for F1. Consider the output feedback gain matrix F in
the form

F = γF1 + (1 − γ)F2, γ ∈ (0, 1) (29)
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For gain matrices Fi, i = 1, 2 we obtain two closed-loop system in the form (13), Aci = A f +
Bf FiCf , i = 1, 2. Consider the edge between Ac1 and Ac2, that is

Ac = αAc1 + (1 − α)Ac2, α ∈< 0, 1 > (30)

The following lemma gives the stability conditions for matrix Ac (30).
Lemma 2. Consider the stable closed-loop system matrices Aci, i = 1, 2.

• If there exists a positive definite matrix Pq such that

AT
ciPq Aci − Pq ≤ 0, i = 1, 2 (31)

then matrix Ac (30) is quadratically stable.

• If there exist two positive definite matrices P1, P2 such that they satisfy the parameter
dependent quadratic stability conditions, see (Peaucelle et al., 2000), (Grman et al., 2005)
the closed-loop system Ac is parameter dependent quadratically stable (PDQS).

Remarks

• If closed-loop matrices Aci, i = 1, 2 satisfy (31) the scalar γ in (29) may be changed
with any rate without violating the closed-loop stability.

• If closed-loop matrices Aci, i = 1, 2 are PDQS, the scalar γ in (29) has to be constant
but may be unknown.

• The proposed control algorithm (29) is similar to Soft Variable-Structure Control (SVSC),
(Adamy & Fleming, 2004), but in our case, when |vi| << Ui the feedback gain matrix
F (29) gives rather quicker dynamic behavior of the closed-loop system (unconstrained
case) than when |vi| approaches to Ui.

Algorithm for calculation of γ for (29) may be as follows:

γ = min
i

Ui − |vi|
Ui

(32)

If accidentally some |vi| > Ui, γ = 0.
The resulting control design procedure is given by the next steps

• Off-line computation stage, compute output feedback gain matrices:
F1 for unconstrained case as a solution to (20), where LMI (20) is solved for unknown P
and F;
F2 for constrained case as a solution to (20) and (25).

• On-line computation- in each step:
compute the actual value of scalar parameter γ, e.g from (32) (where vi is obtained from
(12) for F = F1;
compute the actual feedback gain matrix from (29) and respective constrained control
vector from (12). All on-line computations follow general MPC scheme, i.e. the first
part of computed control vector u(t) is applied on real controlled plant and the other
part of control vector is used for model prediction.

1.4 EXAMPLES
Two examples are presented to illustrate the qualities of the control design procedure pro-
posed above, namely its ability to cope with robust stability and input constraints without
complex computational load. In each example the results of three simulation experiments are
compared for closed-loop with output feedback control:
case 1 Unconstrained case for output feedback gain matrix F1
case 2 Constrained case for output feedback gain matrix F2
case 3 The new proposed control algorithm (29) for output feedback gain matrix F.
The input constraint case is studied, in each case maximal value of u(t) is checked; stability is
assessed using spectral radius of closed-loop system matrix.
First example serves as a benchmark. The model of double integrator turns to (1) where

Ao =

[
1 0
1 1

]

Bo =

[
1
0

]
, C =

[
0 1

]

and uncertainty matrices are

A1u =

[
0.01 0.01
0.02 0.03

]

B1u =

[
0.001

0

]
,

For the case when number of uncertainty is p = 1, the number of the respective polytope
vertices is N = 2p = 2, the matrices (2) are calculated as follows

A1 = Ao − A1u, A2 = Ao + A1u, B1 = Bo − B1u, B2 = Bo + B1u

For the parameters: � = 20000, N2 = 6, Nu = 6, Q0 = 0.1I, Q1 = 0.5I, Q2 = ... = Q6 = I, R =
I, the following results are obtained for unconstrained and constrained cases

• Unconstrained case: Closed − loopmaxeig = 0.8495. Maximal value of control variable
is about umax = 0.24.

• Constrained case with Ui = 0.1, θ = 1000, Closed − loopmaxeig = 0.9437. Maximal
value of control variable is about umax = 0.04.

Closed-loop step responses for unconstrained and constrained cases are given in Fig.1 and
Fig.2, respectively. Closed-loop step responses for the case of in this chapter proposed algo-
rithm are given in Fig.3. Maximal value of control variable is about umax = 0.08 < 0.1.
Input constraints conditions were applied only for plant control variable u(t).
Second example has been borrowed from (Camacho & Bordons (2004), p.147). The model cor-
responds to the longitudinal motion of a Boeing 747 airplane. The multivariable process is
controlled using a predictive controller based on the output model of the aircraft. Two of the
usual command outputs that must be controlled are airspeed that is, velocity with respect to
air, and climb rate. Continuous model has been converted to discrete time one with sampling
time of 0.1s, the nominal model turns to (1) where

Ao =




.9996 .0383 .0131 −.0322
−.0056 .9647 .7446 .0001

.002 −.0097 .9543 0
.0001 −.0005 .0978 1



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For gain matrices Fi, i = 1, 2 we obtain two closed-loop system in the form (13), Aci = A f +
Bf FiCf , i = 1, 2. Consider the edge between Ac1 and Ac2, that is

Ac = αAc1 + (1 − α)Ac2, α ∈< 0, 1 > (30)

The following lemma gives the stability conditions for matrix Ac (30).
Lemma 2. Consider the stable closed-loop system matrices Aci, i = 1, 2.

• If there exists a positive definite matrix Pq such that

AT
ciPq Aci − Pq ≤ 0, i = 1, 2 (31)

then matrix Ac (30) is quadratically stable.

• If there exist two positive definite matrices P1, P2 such that they satisfy the parameter
dependent quadratic stability conditions, see (Peaucelle et al., 2000), (Grman et al., 2005)
the closed-loop system Ac is parameter dependent quadratically stable (PDQS).

Remarks

• If closed-loop matrices Aci, i = 1, 2 satisfy (31) the scalar γ in (29) may be changed
with any rate without violating the closed-loop stability.

• If closed-loop matrices Aci, i = 1, 2 are PDQS, the scalar γ in (29) has to be constant
but may be unknown.

• The proposed control algorithm (29) is similar to Soft Variable-Structure Control (SVSC),
(Adamy & Fleming, 2004), but in our case, when |vi| << Ui the feedback gain matrix
F (29) gives rather quicker dynamic behavior of the closed-loop system (unconstrained
case) than when |vi| approaches to Ui.

Algorithm for calculation of γ for (29) may be as follows:

γ = min
i

Ui − |vi|
Ui

(32)

If accidentally some |vi| > Ui, γ = 0.
The resulting control design procedure is given by the next steps

• Off-line computation stage, compute output feedback gain matrices:
F1 for unconstrained case as a solution to (20), where LMI (20) is solved for unknown P
and F;
F2 for constrained case as a solution to (20) and (25).

• On-line computation- in each step:
compute the actual value of scalar parameter γ, e.g from (32) (where vi is obtained from
(12) for F = F1;
compute the actual feedback gain matrix from (29) and respective constrained control
vector from (12). All on-line computations follow general MPC scheme, i.e. the first
part of computed control vector u(t) is applied on real controlled plant and the other
part of control vector is used for model prediction.

1.4 EXAMPLES
Two examples are presented to illustrate the qualities of the control design procedure pro-
posed above, namely its ability to cope with robust stability and input constraints without
complex computational load. In each example the results of three simulation experiments are
compared for closed-loop with output feedback control:
case 1 Unconstrained case for output feedback gain matrix F1
case 2 Constrained case for output feedback gain matrix F2
case 3 The new proposed control algorithm (29) for output feedback gain matrix F.
The input constraint case is studied, in each case maximal value of u(t) is checked; stability is
assessed using spectral radius of closed-loop system matrix.
First example serves as a benchmark. The model of double integrator turns to (1) where

Ao =

[
1 0
1 1

]

Bo =

[
1
0

]
, C =

[
0 1

]

and uncertainty matrices are

A1u =

[
0.01 0.01
0.02 0.03

]

B1u =

[
0.001

0

]
,

For the case when number of uncertainty is p = 1, the number of the respective polytope
vertices is N = 2p = 2, the matrices (2) are calculated as follows

A1 = Ao − A1u, A2 = Ao + A1u, B1 = Bo − B1u, B2 = Bo + B1u

For the parameters: � = 20000, N2 = 6, Nu = 6, Q0 = 0.1I, Q1 = 0.5I, Q2 = ... = Q6 = I, R =
I, the following results are obtained for unconstrained and constrained cases

• Unconstrained case: Closed − loopmaxeig = 0.8495. Maximal value of control variable
is about umax = 0.24.

• Constrained case with Ui = 0.1, θ = 1000, Closed − loopmaxeig = 0.9437. Maximal
value of control variable is about umax = 0.04.

Closed-loop step responses for unconstrained and constrained cases are given in Fig.1 and
Fig.2, respectively. Closed-loop step responses for the case of in this chapter proposed algo-
rithm are given in Fig.3. Maximal value of control variable is about umax = 0.08 < 0.1.
Input constraints conditions were applied only for plant control variable u(t).
Second example has been borrowed from (Camacho & Bordons (2004), p.147). The model cor-
responds to the longitudinal motion of a Boeing 747 airplane. The multivariable process is
controlled using a predictive controller based on the output model of the aircraft. Two of the
usual command outputs that must be controlled are airspeed that is, velocity with respect to
air, and climb rate. Continuous model has been converted to discrete time one with sampling
time of 0.1s, the nominal model turns to (1) where

Ao =




.9996 .0383 .0131 −.0322
−.0056 .9647 .7446 .0001

.002 −.0097 .9543 0
.0001 −.0005 .0978 1



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Fig. 1. Dynamic behavior of controlled system for unconstrained case for u(t).

Bo =




.0001 .1002
−.0615 .0183
−.1133 .0586
−.0057 .0029


 C =

[
1 0 0 0
0 −1 0 7.74

]

and model uncertainty matrices are

A1u =




0 0 0 0
0 0.0005 0.0017 0
0 0 0.0001 0
0 0 0 0




B1u =




0 0.12
−0.02 0.1
−0.12 0

0 0


 10−3

For the case when number of uncertainty is p = 1, the number of vertices is N = 2p = 2, the
matrices (2) are calculated as in example 1. Note that nominal model Ao is unstable. Consider
N2 = Nu = 1, � = 20000 and weighting matrices Q0 = Q1 = 1I, R0 = R1 = I the following
results are obtained:

• Unconstrained case: maximal closed-loop nominal model eigenvalue is Closed− loopmaxeig =
0.9983. Maximal value of control variables are about u1max = 9.6, u2max = 6.3.

• Constrained case with Ui = 1, θ = 40000 Closed− loopmaxeig = 0.9998 Maximal values
of control variables are about u1max = 0.21, u2max = 0.2.

Closed-loop nominal model step responses of the above two cases for the input u(t) are given
in the Fig.4 and Fig.5, respectively. Closed-loop step responses for in the paper proposed
control algorithm (29) and (32) are in Fig.6. Maximal values of control variables are about
u1max = 0.75 < 1, u2max = 0.6 < 1. Input constraint conditions were applied only for plant
control variable u(t). Both examples show that using tuning parameter θ the demanded input

Fig. 2. Dynamic behavior of controlled system for constrained case for u(t).

constraints can be reached with high accuracy. The initial guess of θ can be obtained from (28).
It can be seen that the proposed control scheme provides reasonable results : the response in
case 3 (Fig.3 , Fig. 6) are quicker than those in case 2 (Fig.2, Fig.5), while the computation load
has not much increased comparing to case 2.

2. ROBUST MPC DESIGN: SEQUENTIAL APPROACH

2.1 INTRODUCTION
In this part a new MPC algorithm is proposed pursuing the idea of (Veselý & Rosinová ,
2009). The proposed robust MPC control algorithm is designed sequentially. The respec-
tive sequential robust MPC design procedure consists from two steps. In the first step and
one step ahead prediction horizon, the necessary and sufficient robust stability conditions
have been developed for MPC and polytopic system with output feedback, using generalized
parameter dependent Lyapunov matrix P(α). The proposed robust MPC algorithm ensures
parameter dependent quadratic stability (PDQS) and guaranteed cost. In the second step of
design procedure, the nominal plant model is used to design the predicted input variables
u(t + 1), ...u(t + N2 − 1) so that the robust closed-loop stability of MPC and guaranteed cost
are ensured. Thus, input variable u(t) guarantees the performance and robustness proper-
ties of closed-loop system and predicted input variables u(t + 1), ...u(t + N2 − 1) guarantee
the performance and closed-loop stability of uncertain plant model and nominal model pre-
diction. Note that within sequentially design procedure the degree of plant model does not
change when the output prediction horizon changes.
This part of chapter is organized as follows: Section 2.2 presents preliminaries and problem
formulation. In Section 2.3 the main results are given and finally, in Section 2.4 two examples
solved using Yalmip BMI solvers show the effectiveness of the proposed method.
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Fig. 1. Dynamic behavior of controlled system for unconstrained case for u(t).

Bo =




.0001 .1002
−.0615 .0183
−.1133 .0586
−.0057 .0029


 C =

[
1 0 0 0
0 −1 0 7.74

]

and model uncertainty matrices are

A1u =




0 0 0 0
0 0.0005 0.0017 0
0 0 0.0001 0
0 0 0 0




B1u =




0 0.12
−0.02 0.1
−0.12 0

0 0


 10−3

For the case when number of uncertainty is p = 1, the number of vertices is N = 2p = 2, the
matrices (2) are calculated as in example 1. Note that nominal model Ao is unstable. Consider
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• Constrained case with Ui = 1, θ = 40000 Closed− loopmaxeig = 0.9998 Maximal values
of control variables are about u1max = 0.21, u2max = 0.2.

Closed-loop nominal model step responses of the above two cases for the input u(t) are given
in the Fig.4 and Fig.5, respectively. Closed-loop step responses for in the paper proposed
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constraints can be reached with high accuracy. The initial guess of θ can be obtained from (28).
It can be seen that the proposed control scheme provides reasonable results : the response in
case 3 (Fig.3 , Fig. 6) are quicker than those in case 2 (Fig.2, Fig.5), while the computation load
has not much increased comparing to case 2.

2. ROBUST MPC DESIGN: SEQUENTIAL APPROACH

2.1 INTRODUCTION
In this part a new MPC algorithm is proposed pursuing the idea of (Veselý & Rosinová ,
2009). The proposed robust MPC control algorithm is designed sequentially. The respec-
tive sequential robust MPC design procedure consists from two steps. In the first step and
one step ahead prediction horizon, the necessary and sufficient robust stability conditions
have been developed for MPC and polytopic system with output feedback, using generalized
parameter dependent Lyapunov matrix P(α). The proposed robust MPC algorithm ensures
parameter dependent quadratic stability (PDQS) and guaranteed cost. In the second step of
design procedure, the nominal plant model is used to design the predicted input variables
u(t + 1), ...u(t + N2 − 1) so that the robust closed-loop stability of MPC and guaranteed cost
are ensured. Thus, input variable u(t) guarantees the performance and robustness proper-
ties of closed-loop system and predicted input variables u(t + 1), ...u(t + N2 − 1) guarantee
the performance and closed-loop stability of uncertain plant model and nominal model pre-
diction. Note that within sequentially design procedure the degree of plant model does not
change when the output prediction horizon changes.
This part of chapter is organized as follows: Section 2.2 presents preliminaries and problem
formulation. In Section 2.3 the main results are given and finally, in Section 2.4 two examples
solved using Yalmip BMI solvers show the effectiveness of the proposed method.
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Fig. 3. Dynamic behavior of controlled system with the proposed algorithm for u(t) .

2.2 PROBLEM FORMULATION AND PRELIMINARIES
For readers convenience, uncertain plant model and respective preliminaries are briefly re-
called. A time invariant linear discrete-time uncertain polytopic system is

x(t + 1) = A(α)x(t) + B(α)u(t) (33)

y(t) = Cx(t)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl are state, control and output variables of the system,
respectively; A(α), B(α) belong to the convex set

S = {A(α) ∈ Rn×n, B(α) ∈ Rn×m} (34)

{A(α) =
N

∑
j=1

Ajαj B(α) =
N

∑
j=1

Bjαj, αj ≥ 0}, j = 1, 2...N,
N

∑
j=1

αj = 1

Matrix C is constant known matrix of corresponding dimension. Jointly with the system (33),
the following nominal plant model will be used.

x(t + 1) = Aox(t) + Bou(t) (35)

y(t) = Cx(t)

where (Ao, Bo) ∈ S are any matrices with constant entries. The problem studied in this part
of chapter can be summarized as follows: in the first step, parameter dependent quadratic
stability conditions for output feedback and one step ahead robust model predictive control
are derived for the polytopic system (33), (34), when control algorithm is given as

u(t) = F11y(t) + F12y(t + 1) (36)

and in the second step of design procedure, considering a nominal model (35) and a given
prediction horizon N2 a model predictive control is designed in the form:

u(t + k − 1) = Fkky(t + k − 1) + Fkk+1y(t + k) (37)

Fig. 4. Dynamic behavior of unconstrained controlled system for u(t) .

where Fki ∈ Rm×l , k = 2, 3, ...N2; i = k + 1 are output (state) feedback gain matrices to be
determined so that cost function given below is optimal with respect to system variables. We
would like to stress that y(t + k − 1), y(t + 1) are predicted outputs obtained from predictive
model (44).
Substituting control algorithm (36) to (33) we obtain

x(t + 1) = D1(j)x(t) (38)

where
D1(j) = Aj + BjK1(j)

K1(j) = (I − F12CBj)
−1(F11C + F12CAj), j = 1, 2, ...N

For the first step of design procedure, the cost function to be minimized is given as

J1 =
∞

∑
t=0

J1(t) (39)

where
J1(t) = x(t)TQ1x(t) + u(t)T R1u(t)

and Q1, R1 are positive definite matrices of corresponding dimensions. For the case of k = 2
we obtain

u(t + 1) = F22CD1(j)x(t) + F23C(AoD1(j)x(t) + Bou(t + 1))

or
u(t + 1) = K2(j)x(t)

and closed-loop system

x(t + 2) = (AoD1(j) + BoK2(j))x(t) = D2(j)x(t), j = 1, 2, ...N



Robust Model Predictive Control Design 13

Fig. 3. Dynamic behavior of controlled system with the proposed algorithm for u(t) .

2.2 PROBLEM FORMULATION AND PRELIMINARIES
For readers convenience, uncertain plant model and respective preliminaries are briefly re-
called. A time invariant linear discrete-time uncertain polytopic system is

x(t + 1) = A(α)x(t) + B(α)u(t) (33)

y(t) = Cx(t)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl are state, control and output variables of the system,
respectively; A(α), B(α) belong to the convex set

S = {A(α) ∈ Rn×n, B(α) ∈ Rn×m} (34)

{A(α) =
N

∑
j=1

Ajαj B(α) =
N

∑
j=1

Bjαj, αj ≥ 0}, j = 1, 2...N,
N

∑
j=1

αj = 1

Matrix C is constant known matrix of corresponding dimension. Jointly with the system (33),
the following nominal plant model will be used.

x(t + 1) = Aox(t) + Bou(t) (35)

y(t) = Cx(t)

where (Ao, Bo) ∈ S are any matrices with constant entries. The problem studied in this part
of chapter can be summarized as follows: in the first step, parameter dependent quadratic
stability conditions for output feedback and one step ahead robust model predictive control
are derived for the polytopic system (33), (34), when control algorithm is given as

u(t) = F11y(t) + F12y(t + 1) (36)

and in the second step of design procedure, considering a nominal model (35) and a given
prediction horizon N2 a model predictive control is designed in the form:

u(t + k − 1) = Fkky(t + k − 1) + Fkk+1y(t + k) (37)

Fig. 4. Dynamic behavior of unconstrained controlled system for u(t) .

where Fki ∈ Rm×l , k = 2, 3, ...N2; i = k + 1 are output (state) feedback gain matrices to be
determined so that cost function given below is optimal with respect to system variables. We
would like to stress that y(t + k − 1), y(t + 1) are predicted outputs obtained from predictive
model (44).
Substituting control algorithm (36) to (33) we obtain
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where
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where
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and Q1, R1 are positive definite matrices of corresponding dimensions. For the case of k = 2
we obtain

u(t + 1) = F22CD1(j)x(t) + F23C(AoD1(j)x(t) + Bou(t + 1))

or
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x(t + 2) = (AoD1(j) + BoK2(j))x(t) = D2(j)x(t), j = 1, 2, ...N



Model Predictive Control14

Fig. 5. Dynamic behavior of constrained controlled system for u(t) .

Sequentially, for k = N2 ≥ 2 step prediction, we obtain the following closed-loop system

x(t + k) = (AoDk−1(j) + BoKk(j))x(t) = Dk(j)x(t) (40)

where
D0 = I, Dk(j) = AoDk−1(j) + BoKk(j) k = 2, 3, ..., N2; j = 1, 2, ...N

Kk(j) = (I − Fkk+1CBo)
−1(FkkC + Fkk+1CAo)Dk−1(j)

For the second step of robust MPC design procedure and k prediction horizon the cost function
to be minimized is given as

Jk =
∞

∑
t=0

Jk(t) (41)

where
Jk(t) = x(t)TQkx(t) + u(t + k − 1)T Rku(t + k − 1)

and Qk, Rk, k = 2, 3, ...N2 are positive definite matrices of corresponding dimensions. We
proceed with two corollaries following from Definition 2 and Lemma 1.
Corollary 1
The closed-loop system matrix of discrete-time system (1) is robustly stable if and only if
there exists a symmetric positive definite parameter dependent Lyapunov matrix 0 < P(α) =
P(α)T < I� such that

− P(α) + D1(α)
T P(α)D1(α) ≤ 0 (42)

where D1(α) is the closed-loop polytopic system matrix for system (33). The necessary and
sufficient robust stability condition for closed-loop polytopic system with guaranteed cost is
given by the recent result (Rosinová et al., 2003).
Corollary 2
Consider the system (33) with control algorithm (36). Control algorithm (36) is the guaranteed
cost control law for the closed-loop system if and only if the following condition holds

Be = D1(α)
T P(α)D1(α)− P(α) + Q1 + (F11C + F12CD1(α))

T R1(F11C+ (43)

Fig. 6. Dynamic behavior for proposed control algorithm (29) and (32) for u(t) .

+F12CD1(α)) ≤ 0

For the nominal model and k = 1, 2, ...N2 the model prediction can be obtained in the form

z(t + 1) = A f z(t) + Bf v(t) (44)

y f (t) = Cf z(t)

where
z(t)T = [x(t)T ...x(t + N2 − 1)T ]

v(t)T = [u(t)T ...u(t + N2 − 1)T ]

y f (t)
T = [y(t)T ...y(t + N2 − 1)T ]

A f =




Ao 0 0 ... 0
AoD1 0 0 ... 0
AoD2 0 0 ... 0

... ... ... ... ...
AoDN2−1 0 0 ... 0



∈ RnN2×nN2

Bf = blockdiag{Bo}nN2×mN2

Cf = blockdiag{C}lN2×nN2

Remarks

• Control algorithm for k = N2 is u(t + N2 − 1) = FN2 N2 y(t + N2 − 1).

• If one wants to use control horizon Nu < N2 (Camacho & Bordons, 2004), the control
algorithm is u(t + k − 1) = 0, Kk = 0, FNu+1 Nu+1 = 0, FNu+1 Nu+2 = 0 for k > Nu.

• Note that model prediction (44) is calculated using nominal model (35), that is D0 =
I, Dk = AoDk−1 + BoKk, Dk(j) is used robust controller design procedure.
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• Note that model prediction (44) is calculated using nominal model (35), that is D0 =
I, Dk = AoDk−1 + BoKk, Dk(j) is used robust controller design procedure.
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2.3 MAIN RESULTS
2.3.1 Robust MPC controller design. First step
The main results for the first step of design procedure can be summarized in the following
theorem.
Theorem 2.
The system (33) with control algorithm (36) is parameter dependent quadratically stable with
parameter dependent Lyapunov function V(t) = x(t)T P(α)x(t) if and only if there exist ma-
trices N11, N12, F11, F12 such that the following bilinear matrix inequality holds.

Be =

[
G11 G12
GT

12 G22

]
≤ 0 (45)

where
G22 = NT

12 Ac(α) + Ac(α)
T N12 − P(α) + Q1 + CT FT

11R1F11C

GT
12 = Ac(α)

T N11 + NT
12 Mc(α) + CT FT

11R1F12C

G11 = NT
22 Mc(α) + Mc(α)

T N22 + CT FT
12R1F12C + P(α)

Mc(α) = B(α)F12C − I
Ac(α) = A(α) + B(α)F11C

Note that (45) is affine with respect to α. Substituting (34) and P(α) = ∑N
i=1 αiPi to (45) the

following BMI is obtained for the polytopic system

Bie =

[
G11i G12i
GT

12i G22i

]
≤ 0 i = 1, 2, ...N (46)

where
G11i = NT

22 Mci + MT
ci N22 + CT FT

12R1F12C + Pi

GT
12i = AT

ci N22 + NT
12 Mci + CT FT

11R1F12C

G22i = NT
12 Aci + AT

ci N12 − Pi + Q1 + CT FT
11R1F11C

Mci = BiF12C − I Aci = Ai + BiF11C
Proof. For the proof of this theorem see the proof of Theorem 3 .
If the solution of (46) is feasible with respect to symmetric matrices Pi = PT

i > 0, i = 1, 2...N,
and matrices N11, N12, within the convex set defined by (34), the gain matrices F11, F12 ensure
the guaranteed cost and parameter dependent quadratic stability (PDQS) of closed-loop poly-
topic system for one step ahead predictive control.
Note that:

• For concrete matrix P(α) = ∑N
i=1 αiPi BMI robust stability conditions "if and only if" in

(45) reduces in (46) to BMI conditions " if".

• If in (46) Pi = Pj = P, i �= j = 1, 2...N, the feasible solution of (46) with respect to
matrices N11, N12, and symmetric positive definite matrix P gives the gain matrices
F11, F12 guaranteeing quadratic stability and guaranteed cost for one step ahead pre-
dictive control for the closed-loop polytopic system within the convex set defined by
(34). Quadratic stability gives more conservative results than PDQS. Conservatism of
real results depend on the concrete examples.

Assume that the BMI solution of (46) is feasible, then for nominal plant one can calculate
matrices D1 and K1 using (38). For the second step of MPC design procedure, the obtained
nominal model will be used.

2.3.2 Model predictive controller design. Second step
The aim of the second step of predictive control design procedure is to design gain matrices
Fkk, Fkk+1, k = 2, 3, ...N2 such that the closed-loop system with nominal model is stable with
guaranteed cost. In order to design model predictive controller with output feedback in the
second step of design procedure we proceed with the following corollary and theorem.
Corollary 3
The closed-loop system (40) is stable with guaranteed cost iff the following inequality holds

Bek(t) = ∆Vk(t) + x(t)TQkx(t) + u(t + k − 1)T Rku(t + k − 1) ≤ 0 (47)

where ∆Vk(t) = Vk(t + k)− Vk(t) and Vk(t) = x(t)T Pkx(t), Pk = PT
k > 0, k = 2, 3, ...N2.

Theorem 3
The closed-loop system (40) is robustly stable with guaranteed cost iff for k = 2, 3, ...N2 there
exist matrices

Fkk, Fkk+1, Nk1 ∈ Rn×n, Nk2 ∈ Rn×n

and positive definite matrix Pk = PT
k ∈ Rn×n such that the following bilinear matrix inequality

holds

Be2 =

[
Gk11 Gk12
GT

k12 Gk22

]
≤ 0 (48)

where
Gk11 = NT

k1 Mck + MT
ck Nk1 + CT FT

kk+1RkFkk+1C + Pk

GT
k12 = Dk−1(j)TCT FT

kkRkFkk+1C + Dk−1(j)T AT
ck Nk1 + NT

k2 Mck

Gk22 = Qk − Pk + Dk−1(j)TCT FT
kkRkFkkCDk−1(j)

+NT
k2 AckDk−1(j) + Dk−1(j)T AT

ck Nk2

and
Mck = B0Fkk+1C − I; Ack = A0 + B0FkkC

Dk(j) = A0Dk−1(j) + B0Kk(j)

Kk(j) = (I − Fkk+1CB0)
−1(FkkC + Fkk+1CA0)Dk−1(j), j = 1, 2, ...N

Proof. Sufficiency.
The closed-loop system (40) can be rewritten as follows

x(t + k) = −(Mck)
−1 AckDk−1(j)x(t) = Aclkx(t) (49)

Since the matrix (j is omitted)

UT
k = [−DT

k−1 AT
ck(Mck)

−1 I]

has full row rank, multiplying (48) from left and right side the inequality equivalent to (47) is
obtained. Multiplying the results from left by x(t)T and right by x(t), taking into account the
closed-loop matrix (49), the inequality (47) is obtained, which proves the sufficiency.
Necessity.
Suppose that for k-step ahead model predictive control there exists such matrix 0 < Pk =
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matrices N11, N12, and symmetric positive definite matrix P gives the gain matrices
F11, F12 guaranteeing quadratic stability and guaranteed cost for one step ahead pre-
dictive control for the closed-loop polytopic system within the convex set defined by
(34). Quadratic stability gives more conservative results than PDQS. Conservatism of
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Assume that the BMI solution of (46) is feasible, then for nominal plant one can calculate
matrices D1 and K1 using (38). For the second step of MPC design procedure, the obtained
nominal model will be used.

2.3.2 Model predictive controller design. Second step
The aim of the second step of predictive control design procedure is to design gain matrices
Fkk, Fkk+1, k = 2, 3, ...N2 such that the closed-loop system with nominal model is stable with
guaranteed cost. In order to design model predictive controller with output feedback in the
second step of design procedure we proceed with the following corollary and theorem.
Corollary 3
The closed-loop system (40) is stable with guaranteed cost iff the following inequality holds

Bek(t) = ∆Vk(t) + x(t)TQkx(t) + u(t + k − 1)T Rku(t + k − 1) ≤ 0 (47)

where ∆Vk(t) = Vk(t + k)− Vk(t) and Vk(t) = x(t)T Pkx(t), Pk = PT
k > 0, k = 2, 3, ...N2.

Theorem 3
The closed-loop system (40) is robustly stable with guaranteed cost iff for k = 2, 3, ...N2 there
exist matrices

Fkk, Fkk+1, Nk1 ∈ Rn×n, Nk2 ∈ Rn×n

and positive definite matrix Pk = PT
k ∈ Rn×n such that the following bilinear matrix inequality

holds

Be2 =

[
Gk11 Gk12
GT

k12 Gk22

]
≤ 0 (48)

where
Gk11 = NT

k1 Mck + MT
ck Nk1 + CT FT

kk+1RkFkk+1C + Pk

GT
k12 = Dk−1(j)TCT FT

kkRkFkk+1C + Dk−1(j)T AT
ck Nk1 + NT

k2 Mck

Gk22 = Qk − Pk + Dk−1(j)TCT FT
kkRkFkkCDk−1(j)

+NT
k2 AckDk−1(j) + Dk−1(j)T AT

ck Nk2

and
Mck = B0Fkk+1C − I; Ack = A0 + B0FkkC

Dk(j) = A0Dk−1(j) + B0Kk(j)

Kk(j) = (I − Fkk+1CB0)
−1(FkkC + Fkk+1CA0)Dk−1(j), j = 1, 2, ...N

Proof. Sufficiency.
The closed-loop system (40) can be rewritten as follows

x(t + k) = −(Mck)
−1 AckDk−1(j)x(t) = Aclkx(t) (49)

Since the matrix (j is omitted)

UT
k = [−DT

k−1 AT
ck(Mck)

−1 I]

has full row rank, multiplying (48) from left and right side the inequality equivalent to (47) is
obtained. Multiplying the results from left by x(t)T and right by x(t), taking into account the
closed-loop matrix (49), the inequality (47) is obtained, which proves the sufficiency.
Necessity.
Suppose that for k-step ahead model predictive control there exists such matrix 0 < Pk =
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PT
k < Iρ that (48) holds. Necessarily, there exists a scalar β > 0 such that for the first difference

of Lyapunov function in (47) holds

AT
clkPk Aclk − Pk ≤ −β(AT

clk Aclk) (50)

The inequality (50) can be rewritten as

AT
clk(Pk + βI)Aclk − Pk ≤ 0

Using Schur complement formula we obtain
[

−Pk −AT
clk(Pk + βI)

(Pk + βI)Aclk −(Pk + βI)

]
≤ 0 (51)

taking
Nk1 = −(Mck)

−1(Pk + βI/2)

NT
k2 = −DT

k−1 AT
ck(M−1

ck )T M−1
ck β/2

one obtains
−AT

clk(Pk + βI) = DT
k−1 AT

ck Nk1 + NT
k2 Mck

− Pk = −Pk + NT
k2 AckDk−1 + DT

k−1 (52)

AT
ck Nk2 + β(DT

k−1 AT
ck(M−1

ck )T M−1
ck AckDk−1)

−(Pk + βI) = 2Mck Nk1 + Pk

Substituting (52) to (51) for β → 0 the inequality (48) is obtained for the case of Qk = 0, Rk = 0.
If one substitutes to the second part of (47) for u(t + k − 1) from (37), rewrites the obtained
result to matrix form and takes sum of it with the above matrix, inequality (48) is obtained,
which proves the necessity. It completes the proof.
If there exists a feasible solution of (48) with respect to matrices Fkk, Fkk+1, Nk1 ∈ Rn×n, Nk2 ∈
Rn×n, k = 2, 3, ...N2 and positive definite matrix Pk = PT

k ∈ Rn×n, then the designed MPC
ensures quadratic stability of the closed-loop system and guaranteed cost.

Remarks

• Due to the proposed design philosophy, predictive control algorithm u(t + k), k ≥ 1 is
the function of corresponding performance term (39) and previous closed-loop system
matrix.

• In the proposed design approach constraints on system variables are easy to be imple-
mented by LMI using a notion of invariant set (Ayd et al., 2008), (Rohal-Ilkiv, 2004) (see
Section 1.3).

• The proposed MPC with sequential design is a special case of classical MPC. Sequential
MPC may not provide "better" dynamic behavior than classical one but it is another
approach to the design of MPC.

• Note that in the proposed MPC sequential design procedure, the size of system does
not change when N2 increases.

• If there exists feasible solution for both steps in the convex set (34), the proposed con-
trol algorithm (37) guarantees the PDQS and robustness properties of closed-loop MPC
system with guaranteed cost.

The sequential robust MPC design procedure can be summarized in the following steps:

• Design of robust MPC controller with control algorithm (36) by solving (46).

• Calculate matrices K1, D1 and K1(j), D1(j), j = 1, 2, ...N given in (38) for nominal and
uncertain model of system.

• For a given k = 2, 3, ...N2 and control algorithm (37), sequentially calculate Fkk, Fkk+1 by
solving (48) with Kk, Dk given in (40).

• Calculate matrices A f , Bf , Cf (44) for model prediction.

2.4 EXAMPLES
Example 1. First example is the same as in section 1.5, it serves as a benchmark. The model of
double integrator turns to (35) where

Ao =

[
1 0
1 1

]

Bo =

[
1
0

]
, C =

[
0 1

]

and uncertainty matrices are

A1u =

[
0.01 0.01
0.02 0.03

]

B1u =

[
0.001

0

]
,

For the case when number of uncertainties p = 1, the number of vertices is N = 2p = 2, the
matrices (34) are calculated as

A1 = An − A1u, A2 = An + A1u

B1 = Bn − B1u, B2 = Bn + B1u

For the parameters: � = 20000, prediction and control horizons N2 = 4, Nu = 4, performance
matrices R1 = ...R4 = 1, Q1 = .1I, Q2 = .5I, Q3 = I, Q4 = 5I, the following results are
obtained using the sequential design approach proposed in this part :

• For prediction k = 1, the robust control algorithm is given as

u(t) = F11y(t) + F12y(t + 1)

From (46), one obtains the gain matrices F11 = 0.9189; F12 = −1.4149. The eigenvalues
of closed-loop first vertex system model are as follows

Eig(Closed − loop) = {0.2977 ± 0.0644i}

• For k = 2, control algorithm is

u(t + 1) = F22y(t + 1) + F23y(t + 2)

In the second step of design procedure control gain matrices obtained solving (48) are
F22 = 0.4145; F23 = −0.323. The eigenvalues of closed-loop first vertex system model
are

Eig(Closed − loop) = {0.1822 ± 0.1263i}
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PT
k < Iρ that (48) holds. Necessarily, there exists a scalar β > 0 such that for the first difference

of Lyapunov function in (47) holds
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−AT
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Substituting (52) to (51) for β → 0 the inequality (48) is obtained for the case of Qk = 0, Rk = 0.
If one substitutes to the second part of (47) for u(t + k − 1) from (37), rewrites the obtained
result to matrix form and takes sum of it with the above matrix, inequality (48) is obtained,
which proves the necessity. It completes the proof.
If there exists a feasible solution of (48) with respect to matrices Fkk, Fkk+1, Nk1 ∈ Rn×n, Nk2 ∈
Rn×n, k = 2, 3, ...N2 and positive definite matrix Pk = PT

k ∈ Rn×n, then the designed MPC
ensures quadratic stability of the closed-loop system and guaranteed cost.

Remarks

• Due to the proposed design philosophy, predictive control algorithm u(t + k), k ≥ 1 is
the function of corresponding performance term (39) and previous closed-loop system
matrix.

• In the proposed design approach constraints on system variables are easy to be imple-
mented by LMI using a notion of invariant set (Ayd et al., 2008), (Rohal-Ilkiv, 2004) (see
Section 1.3).

• The proposed MPC with sequential design is a special case of classical MPC. Sequential
MPC may not provide "better" dynamic behavior than classical one but it is another
approach to the design of MPC.

• Note that in the proposed MPC sequential design procedure, the size of system does
not change when N2 increases.

• If there exists feasible solution for both steps in the convex set (34), the proposed con-
trol algorithm (37) guarantees the PDQS and robustness properties of closed-loop MPC
system with guaranteed cost.

The sequential robust MPC design procedure can be summarized in the following steps:

• Design of robust MPC controller with control algorithm (36) by solving (46).

• Calculate matrices K1, D1 and K1(j), D1(j), j = 1, 2, ...N given in (38) for nominal and
uncertain model of system.

• For a given k = 2, 3, ...N2 and control algorithm (37), sequentially calculate Fkk, Fkk+1 by
solving (48) with Kk, Dk given in (40).

• Calculate matrices A f , Bf , Cf (44) for model prediction.

2.4 EXAMPLES
Example 1. First example is the same as in section 1.5, it serves as a benchmark. The model of
double integrator turns to (35) where

Ao =

[
1 0
1 1

]

Bo =

[
1
0

]
, C =

[
0 1

]

and uncertainty matrices are

A1u =

[
0.01 0.01
0.02 0.03

]

B1u =

[
0.001

0

]
,

For the case when number of uncertainties p = 1, the number of vertices is N = 2p = 2, the
matrices (34) are calculated as

A1 = An − A1u, A2 = An + A1u

B1 = Bn − B1u, B2 = Bn + B1u

For the parameters: � = 20000, prediction and control horizons N2 = 4, Nu = 4, performance
matrices R1 = ...R4 = 1, Q1 = .1I, Q2 = .5I, Q3 = I, Q4 = 5I, the following results are
obtained using the sequential design approach proposed in this part :

• For prediction k = 1, the robust control algorithm is given as

u(t) = F11y(t) + F12y(t + 1)

From (46), one obtains the gain matrices F11 = 0.9189; F12 = −1.4149. The eigenvalues
of closed-loop first vertex system model are as follows

Eig(Closed − loop) = {0.2977 ± 0.0644i}

• For k = 2, control algorithm is

u(t + 1) = F22y(t + 1) + F23y(t + 2)

In the second step of design procedure control gain matrices obtained solving (48) are
F22 = 0.4145; F23 = −0.323. The eigenvalues of closed-loop first vertex system model
are

Eig(Closed − loop) = {0.1822 ± 0.1263i}
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• For k=3, control algorithm is

u(t + 2) = F33y(t + 2) + F34y(t + 3)

In the second step of design procedure the obtained control gain matrices are F33 =
0.2563; F34 = −0.13023. The eigenvalues of closed-loop first vertex system model are

Eig(Closed − loop) = {0.1482 ± 0.051i}

• For prediction k = N2 = 4, control algorithm is

u(t + 3) = F44y(t + 3) + F45y(t + 4)

In the second step the obtained control gain matrices are F44 = 0.5797; F45 = 0.0. The
eigenvalues of closed-loop first vertex model system are

Eig(Closed − loop) = {0.1002 ± 0.145i}

Example 2. Nominal model for the second example is

Ao =




0.6 0.0097 0.0143 0 0
0.012 0.9754 0.0049 0 0

−0.0047 0.01 0.46 0 0
0.0488 0.0002 0.0004 1 0
−0.0001 0.0003 0.0488 0 1




Bo =




0.0425 0.0053
0.0052 0.01
0.0024 0.0001

0 0.0012


 C =




1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




The linear affine type model of uncertain system (34) is in the form

Ai = An + θ1 A1u; Bi = Bn + θ1B1u

Ci = C, i = 1, 2

where A1u, B1u are uncertainty matrices with constant entries, θ1 is an uncertain real parame-
ter θ1 ∈< θ1, θ1 > . When lower and upper bounds of uncertain parameter θ1 are substituted
to the affine type model, the polytopic system (33) is obtained. Let θ1 ∈< −1, 1 > and

A1u =




0.025 0 0 0 0
0 0.021 0 0 0
0 0 0.0002 0 0

0.001 0 0 0 0
0 0 0.0001 0 0




B1u =




0.0001 0
0 0.001
0 0.0021
0 0
0 0




In this example two vertices (N = 2) are calculated. The design problem is: Design two PS(PI)
model predictive robust decentralized controllers for plant input u(t) and prediction horizon
N2 = 5 using sequential design approach. The cost function is given by the following matrices

Q1 = Q2 = Q3 = I, R1 = R2 = R3 = I,

Q4 = Q5 = 0.5I, R4 = R5 = I

In the first step, calculation for the uncertain system (33) yields the robust control algorithm

u(t) = F11y(t) + F12y(t + 1)

where matrix F11 with decentralized output feedback structure containing two PS controllers,
is designed. From (46), the gain matrices F11, F12 are obtained

F11 =

[
−18.7306 0 −42.4369 0

0 8.8456 0 48.287

]

where decentralized proportional and integral gains for the first controller are

K1p = 18.7306, K1i = 42.4369

and for the second one
K2p = −8.8456, K2i = −48.287

Note that in F11 sign - shows the negative feedback. Because predicted output y(t + 1) is
obtained from prediction model (44), for output feedback gain matrix F12 there is no need to
use decentralized control structure

F12 =

[
−22.0944 20.2891 −10.1899 18.2789
−29.3567 8.5697 −28.7374 −40.0299

]

In the second step of design procedure, using (48) for nominal model, the matrices (37) Fkk, Fkk+1, k =
2, 3, 4, 5 are calculated. The eigenvalues of closed-loop first vertex system model for N2 =
Nu = 5 are

Eig(Closed − loop) = {−0.0009;−0.0087; 0.9789; 0.8815; 0.8925}

Feasible solutions of bilinear matrix inequality have been obtained by YALMIP with PENBMI
solver.

3. CONCLUSION

The first part of chapter addresses the problem of designing the output/state feedback robust
model predictive controller with input constraints for output and control prediction horizons
N2 and Nu. The main contribution of the presented results is twofold: The obtained robust
control algorithm guarantees the closed-loop system quadratic stability and guaranteed cost
under input constraints in the whole uncertainty domain. The required on-line computa-
tion load is significantly less than in MPC literature (according to the best knowledge of au-
thors), which opens possibility to use this control design scheme not only for plants with slow
dynamics but also for faster ones. At each sample time the calculation of proposed control
algorithm reduces to a solution of simple equation. Finally, two examples illustrate the effec-
tiveness of the proposed method. The second part of chapter studies the problem of design
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• For k=3, control algorithm is

u(t + 2) = F33y(t + 2) + F34y(t + 3)

In the second step of design procedure the obtained control gain matrices are F33 =
0.2563; F34 = −0.13023. The eigenvalues of closed-loop first vertex system model are

Eig(Closed − loop) = {0.1482 ± 0.051i}

• For prediction k = N2 = 4, control algorithm is

u(t + 3) = F44y(t + 3) + F45y(t + 4)

In the second step the obtained control gain matrices are F44 = 0.5797; F45 = 0.0. The
eigenvalues of closed-loop first vertex model system are

Eig(Closed − loop) = {0.1002 ± 0.145i}

Example 2. Nominal model for the second example is
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


0.6 0.0097 0.0143 0 0
0.012 0.9754 0.0049 0 0
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
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0.0425 0.0053
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1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




The linear affine type model of uncertain system (34) is in the form

Ai = An + θ1 A1u; Bi = Bn + θ1B1u

Ci = C, i = 1, 2

where A1u, B1u are uncertainty matrices with constant entries, θ1 is an uncertain real parame-
ter θ1 ∈< θ1, θ1 > . When lower and upper bounds of uncertain parameter θ1 are substituted
to the affine type model, the polytopic system (33) is obtained. Let θ1 ∈< −1, 1 > and

A1u =




0.025 0 0 0 0
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0.0001 0
0 0.001
0 0.0021
0 0
0 0




In this example two vertices (N = 2) are calculated. The design problem is: Design two PS(PI)
model predictive robust decentralized controllers for plant input u(t) and prediction horizon
N2 = 5 using sequential design approach. The cost function is given by the following matrices

Q1 = Q2 = Q3 = I, R1 = R2 = R3 = I,

Q4 = Q5 = 0.5I, R4 = R5 = I

In the first step, calculation for the uncertain system (33) yields the robust control algorithm

u(t) = F11y(t) + F12y(t + 1)

where matrix F11 with decentralized output feedback structure containing two PS controllers,
is designed. From (46), the gain matrices F11, F12 are obtained

F11 =

[
−18.7306 0 −42.4369 0

0 8.8456 0 48.287

]

where decentralized proportional and integral gains for the first controller are

K1p = 18.7306, K1i = 42.4369

and for the second one
K2p = −8.8456, K2i = −48.287

Note that in F11 sign - shows the negative feedback. Because predicted output y(t + 1) is
obtained from prediction model (44), for output feedback gain matrix F12 there is no need to
use decentralized control structure

F12 =

[
−22.0944 20.2891 −10.1899 18.2789
−29.3567 8.5697 −28.7374 −40.0299

]

In the second step of design procedure, using (48) for nominal model, the matrices (37) Fkk, Fkk+1, k =
2, 3, 4, 5 are calculated. The eigenvalues of closed-loop first vertex system model for N2 =
Nu = 5 are

Eig(Closed − loop) = {−0.0009;−0.0087; 0.9789; 0.8815; 0.8925}

Feasible solutions of bilinear matrix inequality have been obtained by YALMIP with PENBMI
solver.

3. CONCLUSION

The first part of chapter addresses the problem of designing the output/state feedback robust
model predictive controller with input constraints for output and control prediction horizons
N2 and Nu. The main contribution of the presented results is twofold: The obtained robust
control algorithm guarantees the closed-loop system quadratic stability and guaranteed cost
under input constraints in the whole uncertainty domain. The required on-line computa-
tion load is significantly less than in MPC literature (according to the best knowledge of au-
thors), which opens possibility to use this control design scheme not only for plants with slow
dynamics but also for faster ones. At each sample time the calculation of proposed control
algorithm reduces to a solution of simple equation. Finally, two examples illustrate the effec-
tiveness of the proposed method. The second part of chapter studies the problem of design
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a new MPC with special control algorithm. The proposed robust MPC control algorithm is
designed sequentially, the degree of plant model does not change when the output predic-
tion horizon changes. The proposed sequential robust MPC design procedure consists of two
steps: In the first step for one step ahead prediction horizon the necessary and sufficient ro-
bust stability conditions have been developed for MPC and the polytopic system with output
feedback, using generalized parameter dependent Lyapunov matrix P(α). The proposed ro-
bust MPC ensures parameter dependent quadratic stability (PDQS) and guaranteed cost. In
the second step of design procedure the uncertain plant and nominal model with sequential
design approach is used to design the predicted input variables u(t + 1), ...u(t + N2 − 1) so
that to ensure the robust closed-loop stability of MPC with guaranteed cost. Main advantages
of the proposed sequential method are that the design plant model degree is independent on
prediction horizon N2; robust controller design procedure ensures PDQS and guaranteed cost
and the obtained results are easy to be implemented in real plant. In the proposed design
approach, constraints on system variables are easy to be implemented by LMI (BMI) using a
notion of invariant set. Feasible solution of BMI has been obtained by Yalmip with PENBMI
solver.
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a new MPC with special control algorithm. The proposed robust MPC control algorithm is
designed sequentially, the degree of plant model does not change when the output predic-
tion horizon changes. The proposed sequential robust MPC design procedure consists of two
steps: In the first step for one step ahead prediction horizon the necessary and sufficient ro-
bust stability conditions have been developed for MPC and the polytopic system with output
feedback, using generalized parameter dependent Lyapunov matrix P(α). The proposed ro-
bust MPC ensures parameter dependent quadratic stability (PDQS) and guaranteed cost. In
the second step of design procedure the uncertain plant and nominal model with sequential
design approach is used to design the predicted input variables u(t + 1), ...u(t + N2 − 1) so
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approach, constraints on system variables are easy to be implemented by LMI (BMI) using a
notion of invariant set. Feasible solution of BMI has been obtained by Yalmip with PENBMI
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1. Introduction

When faced with making a decision, it is only natural that one would aim to select the course
of action which results in the “best" possible outcome. However, the ability to arrive at a de-
cision necessarily depends upon two things: a well-defined notion of what qualities make an
outcome desirable, and a previous decision1 defining to what extent it is necessary to charac-
terize the quality of individual candidates before making a selection (i.e., a notion of when a
decision is “good enough"). Whereas the first property is required for the problem to be well
defined, the later is necessary for it to be tractable.
The process of searching for the “best" outcome has been mathematically formalized in the
framework of optimization. The typical approach is to define a scalar-valued cost function,
that accepts a decision candidate as its argument, and returns a quantified measure of its
quality. The decision-making process then reduces to selecting a candidate with the lowest
(or highest) such measure.

1.1 The Emergence of Optimal Control
The field of “control" addresses the question of how to manipulate an input u in order to drive
the state x of a dynamical system

ẋ = f (x, u) (1)

to some desired target. Ultimately this task can be viewed as decision-making, so it is not sur-
prising that it lends itself towards an optimization-based characterization. Assuming that one
can provide the necessary metric for assessing quality of the trajectories generated by (1), there
exists a rich body of “optimal control" theory to guide this process of decision-making. Much
of this theory came about in the 1950’s and 60’s, with Pontryagin’s introduction of the Mini-
mum (a.k.a. Maximum) Principle Pontryagin (1961), and Bellman’s development of Dynamic
Programming Bellman (1952; 1957). (This development also coincided with landmark results
for linear systems, pioneered by Kalman Kalman (1960; 1963), that are closely related). How-
ever, the roots of both approaches actually extend back to the mid-1600’s, with the inception
of the calculus of variations.

1 The recursiveness of this definition is of course ill-posed until one accepts that at some level, every
decision is ultimately predicated upon underlying assumptions, accepted entirely in faith.
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The tools of optimal control theory provide useful benchmarks for characterizing the notion
of “best" decision-making, as it applies to control. However applied directly, the tractability of
this decision-making is problematic. For example, Dynamic Programming involves the con-
struction of a n−dimensional surface that satisfies a challenging nonlinear partial differential
equation, which is inherently plagued by the so-called curse of dimensionality. This method-
ology, although elegant, remains generally intractable for problems beyond modest size. In
contrast, the Minimum Principle has been relatively successful for use in off-line trajectory
planning, when the initial condition of (1) is known. Although it was suggested as early as
1967 in Lee & Markus (1967) that a stabilizing feedback u = k(x) could be constructed by
continuously re-solving the calculations online, a tractable means of doing this was not im-
mediately forthcoming.

1.2 Model Predictive Control as Receding-Horizon Optimization
Early development (Richalet et al. (1976),Richalet et al. (1978),Cutler & Ramaker (1980)) of the
control approach known today as Model Predictive Control (MPC) originated in the process
control community, and was driven much more by industrial application than by theoret-
ical understanding. Modern theoretical understanding of MPC, much of which developed
throughout the 1990’s, has clarified its very natural ties to existing optimal control theory. Key
steps towards this development included such results as Chen & Allgöwer (1998a;b); De Nico-
lao et al. (1996); Jadbabaie et al. (2001); Keerthi & Gilbert (1988); Mayne & Michalska (1990);
Michalska & Mayne (1993); Primbs et al. (2000), with an excellent unifying survey in Mayne
et al. (2000).
At its core, MPC is simply a framework for implementing existing tools of optimal control.
Taking the current value x(t) as the initial condition for (1), the Minimum Principle is used
as the primary basis for identifying the “best" candidate trajectory by predicting the future
behaviour of the system using model (1). However, the actual quality measure of interest in
the decision-making is generally the total future accumulation (i.e., over an infinite future) of
a given instantaneous metric, a quantity rarely computable in a satisfactorily short time. As
such, MPC only generates predictions for (1) over a finite time-horizon, and approximates the
remaining infinite tail of the cost accumulation using a penalty surface derived from either a
local solution of the Dynamic Programming surface, or an appropriate approximation of that
surface. As such, the key benefit of MPC over other optimal control methods is simply that its
finite horizon allows for a convenient trade-off between the online computational burden of
solving the Minimum Principle, and the offline burden of generating the penalty surface.
In contrast to other approaches for constructive nonlinear controller design, optimal control
frameworks facilitate the inclusion of constraints, by imposing feasibility of the candidates
as a condition in the decision-making process. While these approaches can be numerically
burdensome, optimal control (and by extension, MPC) provides the only real framework for
addressing the control of systems in the presence of constraints - in particular those involving
the state x. In practice, the predictive aspect of MPC is unparalleled in its ability to account
for the risk of future constraint violation during the current control decision.

1.3 Current Limitations in Model Predictive Control
While the underlying theoretical basis for model predictive control is approaching a state
of relative maturity, application of this approach to date has been predominantly limited to
“slow" industrial processes that allow adequate time to complete the controller calculations.
There is great incentive to extend this approach to applications in many other sectors, moti-

vated in large part by its constraint-handling abilities. Future applications of significant inter-
est include many in the aerospace or automotive sectors, in particular constraint-dominated
problems such as obstacle avoidance. At present, the significant computational burden of
MPC remains the most critical limitation towards its application in these areas.
The second key weakness of the model predictive approach remains its susceptibility to un-
certainties in the model (1). While a fairly well-developed body of theory has been devel-
oped within the framework of robust-MPC, reaching an acceptable balance between computa-
tional complexity and conservativeness of the control remains a serious problem. In the more
general control literature, adaptive control has evolved as an alternative to a robust-control
paradigm. However, the incorporation of adaptive techniques into the MPC framework has
remained a relatively open problem.

2. Notational and Mathematical Preliminaries

Throughout the remainder of this dissertation, the following is assumed by default (where
s ∈ Rs and S represent arbitrary vectors and sets, respectively):

• all vector norms are Euclidean, defining balls B(s, δ)�{s′ | ‖s − s′‖≤δ}, δ ≥ 0.

• norms of matrices S ∈ Rm×s are assumed induced as ‖S‖ � max‖s‖=1 ‖Ss‖.

• the notation s[a,b] denotes the entire continuous-time trajectory s(τ), τ ∈ [a, b], and
likewise ṡ[a,b] the trajectory of its forward derivative ṡ(τ).

• For any set S ⊆ Rs, define

i) its closure cl{S}, interior S̊, and boundary ∂S = cl{S} \ S̊

ii) its orthogonal distance norm ‖s‖S � infs′∈S ‖s − s′‖
iii) a closed δ-neighbourhood B(S, δ)�{s ∈ Rs | ‖s‖S ≤δ}
iv) an interior approximation

←−
B (S, δ)�{s ∈ S | infs′∈∂S ‖s − s′‖≥δ}

v) a (finite, closed, open) cover of S as any (finite) collection {Si} of (open,
closed) sets Si ⊆ Rs such that S ⊆ ∪iS

i.
vi) the maximal closed subcover cov {S} as the infinite collection {Si} contain-

ing all possible closed subsets Si ⊆ S; i.e., cov {S} is a maximal “set of sub-
sets".

Furthermore, for any arbitrary function α : S → R we assume the following definitions:
• α(·) is Cm+ if it is at least m-times differentiable, with all derivatives of order m yielding

locally Lipschitz functions.
• A function α : S → (−∞, ∞] is lower semi-continuous (LS-continuous) at s if it satisfies

(see Clarke et al. (1998)): lim inf
s′→s

α(s′) ≥ α(s) (2)

• a continuous function α : R≥0 → R≥0 belongs to class K if α(0) = 0 and α(·) is strictly
increasing on R>0. It belongs to class K∞ if it is furthermore radially unbounded.

• a continuous function β : R≥0 × R≥0 → R≥0 belongs to class KL if i) for every fixed
value of τ, it satisfies β(·, τ) ∈ K, and ii) for each fixed value of s, then β(s, ·) is strictly
decreasing and satisfies limτ→∞ β(s, τ) = 0.

• the scalar operator satb
a(·) denotes saturation of its arguments onto the interval [a, b],

a < b. For vector- or matrix-valued arguments, the saturation is presumed by default
to be evaluated element-wise.
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The tools of optimal control theory provide useful benchmarks for characterizing the notion
of “best" decision-making, as it applies to control. However applied directly, the tractability of
this decision-making is problematic. For example, Dynamic Programming involves the con-
struction of a n−dimensional surface that satisfies a challenging nonlinear partial differential
equation, which is inherently plagued by the so-called curse of dimensionality. This method-
ology, although elegant, remains generally intractable for problems beyond modest size. In
contrast, the Minimum Principle has been relatively successful for use in off-line trajectory
planning, when the initial condition of (1) is known. Although it was suggested as early as
1967 in Lee & Markus (1967) that a stabilizing feedback u = k(x) could be constructed by
continuously re-solving the calculations online, a tractable means of doing this was not im-
mediately forthcoming.

1.2 Model Predictive Control as Receding-Horizon Optimization
Early development (Richalet et al. (1976),Richalet et al. (1978),Cutler & Ramaker (1980)) of the
control approach known today as Model Predictive Control (MPC) originated in the process
control community, and was driven much more by industrial application than by theoret-
ical understanding. Modern theoretical understanding of MPC, much of which developed
throughout the 1990’s, has clarified its very natural ties to existing optimal control theory. Key
steps towards this development included such results as Chen & Allgöwer (1998a;b); De Nico-
lao et al. (1996); Jadbabaie et al. (2001); Keerthi & Gilbert (1988); Mayne & Michalska (1990);
Michalska & Mayne (1993); Primbs et al. (2000), with an excellent unifying survey in Mayne
et al. (2000).
At its core, MPC is simply a framework for implementing existing tools of optimal control.
Taking the current value x(t) as the initial condition for (1), the Minimum Principle is used
as the primary basis for identifying the “best" candidate trajectory by predicting the future
behaviour of the system using model (1). However, the actual quality measure of interest in
the decision-making is generally the total future accumulation (i.e., over an infinite future) of
a given instantaneous metric, a quantity rarely computable in a satisfactorily short time. As
such, MPC only generates predictions for (1) over a finite time-horizon, and approximates the
remaining infinite tail of the cost accumulation using a penalty surface derived from either a
local solution of the Dynamic Programming surface, or an appropriate approximation of that
surface. As such, the key benefit of MPC over other optimal control methods is simply that its
finite horizon allows for a convenient trade-off between the online computational burden of
solving the Minimum Principle, and the offline burden of generating the penalty surface.
In contrast to other approaches for constructive nonlinear controller design, optimal control
frameworks facilitate the inclusion of constraints, by imposing feasibility of the candidates
as a condition in the decision-making process. While these approaches can be numerically
burdensome, optimal control (and by extension, MPC) provides the only real framework for
addressing the control of systems in the presence of constraints - in particular those involving
the state x. In practice, the predictive aspect of MPC is unparalleled in its ability to account
for the risk of future constraint violation during the current control decision.

1.3 Current Limitations in Model Predictive Control
While the underlying theoretical basis for model predictive control is approaching a state
of relative maturity, application of this approach to date has been predominantly limited to
“slow" industrial processes that allow adequate time to complete the controller calculations.
There is great incentive to extend this approach to applications in many other sectors, moti-

vated in large part by its constraint-handling abilities. Future applications of significant inter-
est include many in the aerospace or automotive sectors, in particular constraint-dominated
problems such as obstacle avoidance. At present, the significant computational burden of
MPC remains the most critical limitation towards its application in these areas.
The second key weakness of the model predictive approach remains its susceptibility to un-
certainties in the model (1). While a fairly well-developed body of theory has been devel-
oped within the framework of robust-MPC, reaching an acceptable balance between computa-
tional complexity and conservativeness of the control remains a serious problem. In the more
general control literature, adaptive control has evolved as an alternative to a robust-control
paradigm. However, the incorporation of adaptive techniques into the MPC framework has
remained a relatively open problem.

2. Notational and Mathematical Preliminaries

Throughout the remainder of this dissertation, the following is assumed by default (where
s ∈ Rs and S represent arbitrary vectors and sets, respectively):

• all vector norms are Euclidean, defining balls B(s, δ)�{s′ | ‖s − s′‖≤δ}, δ ≥ 0.

• norms of matrices S ∈ Rm×s are assumed induced as ‖S‖ � max‖s‖=1 ‖Ss‖.

• the notation s[a,b] denotes the entire continuous-time trajectory s(τ), τ ∈ [a, b], and
likewise ṡ[a,b] the trajectory of its forward derivative ṡ(τ).

• For any set S ⊆ Rs, define

i) its closure cl{S}, interior S̊, and boundary ∂S = cl{S} \ S̊

ii) its orthogonal distance norm ‖s‖S � infs′∈S ‖s − s′‖
iii) a closed δ-neighbourhood B(S, δ)�{s ∈ Rs | ‖s‖S ≤δ}
iv) an interior approximation

←−
B (S, δ)�{s ∈ S | infs′∈∂S ‖s − s′‖≥δ}

v) a (finite, closed, open) cover of S as any (finite) collection {Si} of (open,
closed) sets Si ⊆ Rs such that S ⊆ ∪iS

i.
vi) the maximal closed subcover cov {S} as the infinite collection {Si} contain-

ing all possible closed subsets Si ⊆ S; i.e., cov {S} is a maximal “set of sub-
sets".

Furthermore, for any arbitrary function α : S → R we assume the following definitions:
• α(·) is Cm+ if it is at least m-times differentiable, with all derivatives of order m yielding

locally Lipschitz functions.
• A function α : S → (−∞, ∞] is lower semi-continuous (LS-continuous) at s if it satisfies

(see Clarke et al. (1998)): lim inf
s′→s

α(s′) ≥ α(s) (2)

• a continuous function α : R≥0 → R≥0 belongs to class K if α(0) = 0 and α(·) is strictly
increasing on R>0. It belongs to class K∞ if it is furthermore radially unbounded.

• a continuous function β : R≥0 × R≥0 → R≥0 belongs to class KL if i) for every fixed
value of τ, it satisfies β(·, τ) ∈ K, and ii) for each fixed value of s, then β(s, ·) is strictly
decreasing and satisfies limτ→∞ β(s, τ) = 0.

• the scalar operator satb
a(·) denotes saturation of its arguments onto the interval [a, b],

a < b. For vector- or matrix-valued arguments, the saturation is presumed by default
to be evaluated element-wise.
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3. Brief Review of Optimal Control

The underlying assumption of optimal control is that at any time, the pointwise cost of x
and u being away from their desired targets is quantified by a known, physically-meaningful
function L(x, u). Loosely, the goal is to then reach some target in a manner that accumulates
the least cost. It is not generally necessary for the “target" to be explicitly described, since
its knowledge is built into the function L(x, u) (i.e it is assumed that convergence of x to
any invariant subset of {x | ∃u s.t. L(x, u) = 0} is as acceptable). The following result,
while superficially simple in appearance, is in fact the key foundation underlying the optimal
control results of this section, and by extension all of model predictive control as well. Proof
can be found in many references, such as Sage & White (1977).

Definition 3.1 (Principle of Optimality:). If u∗
[t1,t2]

is an optimal trajectory for the interval t ∈
[t1, t2], with corresponding solution x∗

[t1,t2]
to (1), then for any τ ∈ (t1, t2) the sub-arc u∗

[τ, t2]
is

necessarily optimal for the interval t ∈ [τ, t2] if (1) starts from x∗(τ).

4. Variational Approach: Euler, Lagrange
and Pontryagin

Pontryagin’s Minimum principle (also known as the Maximum principle, Pontryagin (1961))
represented a landmark extension of classical ideas of variational calculus to the problem of
control. Technically, the Minimum Principle is an application of the classical Euler-Lagrange
and Weierstrass conditions2 Hestenes (1966), which provide first-order necessary conditions to
characterize extremal time-trajectories of a cost functional.3. The Minimum Principle there-
fore characterizes minimizing trajectories (x[0,T], u[0,T]) corresponding to a constrained finite-
horizon problem of the form

VT(x0, u[0,T]) =
∫ T

0
L(x, u) dτ + W(x(T)) (3a)

s.t. ∀τ ∈[0, T] :

ẋ = f (x, u), x(0) = x0 (3b)

g(x(τ)) ≤ 0, h(x(τ), u(τ)) ≤ 0, w(x(T)) ≤ 0 (3c)

where the vectorfield f (·, ·) and constraint functions g(·), h(·, ·), and w(·) are assumed suffi-
ciently differentiable.
Assume that g(x0) < 0, and, for a given (x0, u[0,T]), let the interval [0, T) be partitioned into
(maximal) subintervals as τ ∈ ∪p

i=1[ti, ti+1), t0 = 0, tp+1 = T, where the interior ti represent
intersections g < 0 ⇔ g = 0 (i.e., the {ti} represent changes in the active set of g). Assuming
that g(x) has constant relative degree r over some appropriate neighbourhood, define the fol-
lowing vector of (Lie) derivatives: N(x) � [g(x), g(1)(x), . . . g(r−1)(x)]T , which characterizes
additional tangency constraints N(x(ti)) = 0 at the corners {ti}. Rewriting (3) in multiplier
form

VT =
∫ T

0
H(x, u)− λT ẋ dτ + W(x(T)) + µww(x(T)) + ∑

i
µT

N(ti)N(x(ti)) (4a)

H � L(x, u) + λT f (x, u) + µhh(x, u) + µgg(r)(x, u) (4b)

2 phrased as a fixed initial point, free endpoint problem
3 i.e., generalizing the NLP necessary condition ∂p

∂x = 0 for the extrema of a function p(x).

overa Taking the first variation of the right-hand sides of (4a,b) with respect to perturbations
in x[0,T] and u[0,T] yields the following set of conditions (adapted from statements in Bert-
sekas (1995); Bryson & Ho (1969); Hestenes (1966)) which necessarily must hold for VT to be
minimized:

Proposition 4.1 (Minimum Principle). Suppose that the pair (u∗
[0,T], x∗

[0,T]) is a minimizing solu-
tion of (3). Then for all τ ∈ [0, T], there exists multipliers λ(τ) ≥ 0, µh(τ) ≥ 0, µg(τ) ≥ 0, and
constants µw ≥ 0, µi

N ≥ 0, i ∈ I , such that

i) Over each interval τ ∈ [ti, ti+1], the multipliers µh(τ), µg(τ) are piecewise continuous, µN(τ)
is constant, λ(τ) is continuous, and with (u∗

[ti , ti+1]
, x∗

[ti , ti+1]
) satisfies

ẋ∗ = f (x∗, u∗), x∗(0) = x0 (5a)

λ̇T = ∇xH a.e., with λT(T) = ∇xW(x∗(T)) + µw∇xw(x∗(T)) (5b)

where the solution λ[0,T] is discontinuous at τ ∈ {ti}, i ∈ {1, 3, 5...p}, satisfying

λT(t−i ) = λT(t+i ) + µT
N(t+i )∇x N(x(ti)) (5c)

ii) H(x∗, u∗, λ, µh, µg) is constant over intervals τ ∈ [ti, ti+1], and for all τ ∈ [0, T] it satisfies

(where U (x) � {u | h(x, u) ≤ 0 and
(

g(r)(x, u) ≤ 0 if g(x) = 0
)
} ):

H(x∗, u∗, λ, µh, µg) ≤ min
u∈U(x)

H(x∗, u, λ, µh, µg) (5d)

∇uH(x∗(τ), u∗(τ), λ(τ), µh(τ), µg(τ)) = 0 (5e)

iii) For all τ ∈ [0, T], the following constraint conditions hold

g(x∗) ≤ 0 h(x∗, u∗) ≤ 0 w(x∗(T)) ≤ 0 (5f)

µg(τ)g(r)(x∗, u∗) = 0 µh(τ)h(x∗, u∗) = 0 µww(x∗(T)) = 0 (5g)

µT
N(τ)N(x∗) = 0

(
and N(x∗) = 0, ∀τ ∈ [ti, ti+1], i ∈ {1, 3, 5...p}

)
(5h)

The multiplier λ(t) is called the co-state, and it requires solving a two-point boundary-value
problem for (5a) and (5b). One of the most challenging aspects to locating (and confirming)
a minimizing solution to (5) lies in dealing with (5c) and (5h), since the number and times of
constraint intersections are not known a-priori.

5. Dynamic Programming: Hamilton, Jacobi,
and Bellman

The Minimum Principle is fundamentally based upon establishing the optimality of a partic-
ular input trajectory u[0,T]. While the applicability to offline, open-loop trajectory planning
is clear, the inherent assumption that x0 is known can be limiting if one’s goal is to develop
a feedback policy u = k(x). Development of such a policy requires the consideration of all
possible initial conditions, which results in an optimal cost surface J∗ : Rn → R, with an asso-
ciated control policy k : Rn → Rm. A constructive approach for calculating such a surface,
referred to as Dynamic Programming, was developed by Bellman Bellman (1957). Just as the
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3. Brief Review of Optimal Control
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[t1,t2]
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[t1,t2]
to (1), then for any τ ∈ (t1, t2) the sub-arc u∗

[τ, t2]
is
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form
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N(ti)N(x(ti)) (4a)
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2 phrased as a fixed initial point, free endpoint problem
3 i.e., generalizing the NLP necessary condition ∂p

∂x = 0 for the extrema of a function p(x).

overa Taking the first variation of the right-hand sides of (4a,b) with respect to perturbations
in x[0,T] and u[0,T] yields the following set of conditions (adapted from statements in Bert-
sekas (1995); Bryson & Ho (1969); Hestenes (1966)) which necessarily must hold for VT to be
minimized:

Proposition 4.1 (Minimum Principle). Suppose that the pair (u∗
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[0,T]) is a minimizing solu-
tion of (3). Then for all τ ∈ [0, T], there exists multipliers λ(τ) ≥ 0, µh(τ) ≥ 0, µg(τ) ≥ 0, and
constants µw ≥ 0, µi

N ≥ 0, i ∈ I , such that
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is constant, λ(τ) is continuous, and with (u∗
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λ̇T = ∇xH a.e., with λT(T) = ∇xW(x∗(T)) + µw∇xw(x∗(T)) (5b)

where the solution λ[0,T] is discontinuous at τ ∈ {ti}, i ∈ {1, 3, 5...p}, satisfying

λT(t−i ) = λT(t+i ) + µT
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(where U (x) � {u | h(x, u) ≤ 0 and
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iii) For all τ ∈ [0, T], the following constraint conditions hold

g(x∗) ≤ 0 h(x∗, u∗) ≤ 0 w(x∗(T)) ≤ 0 (5f)

µg(τ)g(r)(x∗, u∗) = 0 µh(τ)h(x∗, u∗) = 0 µww(x∗(T)) = 0 (5g)

µT
N(τ)N(x∗) = 0

(
and N(x∗) = 0, ∀τ ∈ [ti, ti+1], i ∈ {1, 3, 5...p}

)
(5h)

The multiplier λ(t) is called the co-state, and it requires solving a two-point boundary-value
problem for (5a) and (5b). One of the most challenging aspects to locating (and confirming)
a minimizing solution to (5) lies in dealing with (5c) and (5h), since the number and times of
constraint intersections are not known a-priori.

5. Dynamic Programming: Hamilton, Jacobi,
and Bellman

The Minimum Principle is fundamentally based upon establishing the optimality of a partic-
ular input trajectory u[0,T]. While the applicability to offline, open-loop trajectory planning
is clear, the inherent assumption that x0 is known can be limiting if one’s goal is to develop
a feedback policy u = k(x). Development of such a policy requires the consideration of all
possible initial conditions, which results in an optimal cost surface J∗ : Rn → R, with an asso-
ciated control policy k : Rn → Rm. A constructive approach for calculating such a surface,
referred to as Dynamic Programming, was developed by Bellman Bellman (1957). Just as the
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Minimum Principle was extended out of the classical trajectory-based Euler-Lagrange equa-
tions, Dynamic Programming is an extension of classical Hamilton-Jacobi field theory from
the calculus of variations.
For simplicity, our discussion here will be restricted to the unconstrained problem:

V∗(x0) = min
u[0,∞)

∫ ∞

0
L(x, u) dτ (6a)

s.t. ẋ = f (x, u), x(0) = x0 (6b)

with locally Lipschitz dynamics f (·, ·). From the Principle of Optimality, it can be seen that
(6) lends itself to the following recursive definition:

V∗(x(t)) = min
u[t, t+∆t]

{∫ t+∆t

t
L(x(τ), u(τ))dτ + V∗(x(t + ∆t))

}
(7)

Assuming that V∗ is differentiable, replacing V∗(x(t + ∆t) with a first-order Taylor-series and
the integrand with a Riemannian sum, the limit ∆t → 0 yields

0 = min
u

{
L(x, u) +

∂V∗

∂x
f (x, u)

}
(8)

Equation (8) is one particular form of what is known as the Hamilton-Jacobi-Bellman (HJB)
equation. In some cases (such as L(x, u) quadratic in u, and f (x, u) affine in u), (8) can
be simplified to a more standard-looking PDE by evaluating the indicated minimization in
closed-form4. Assuming that a (differentiable) surface V∗ : Rn → R is found (generally
by off-line numerical solution) which satisfies (8), a stabilizing feedback u = kDP(x) can be
constructed from the information contained in the surface V∗ by simply defining5 kDP(x) �
{u | ∂V∗

∂x f (x, u) = −L(x, u)}.
Unfortunately, incorporation of either input or state constraints generally violates the as-
sumed smoothness of V∗(x). While this could be handled by interpreting (8) in the context
of viscosity solutions (see Clarke et al. (1998) for definition), for the purposes of application to
model predictive control it is more typical to simply restrict the domain of V∗ : Ω → R such
that Ω ⊂ Rn is feasible with respect to the constraints.

6. Inverse-Optimal Control Lyapunov Functions

While knowledge of a surface V∗(x) satisfying (8) is clearly ideal, in practice analytical so-
lutions are only available for extremely restrictive classes of systems, and almost never for
systems involving state or input constraints. Similarly, numerical solution of (8) suffers the
so-called “curse of dimensionality" (as named by Bellman) which limits its applicability to
systems of restrictively small size.
An alternative design framework, originating in Sontag (1983), is based on the following:

Definition 6.1. A control Lyapunov function (CLF) for (1) is any C1, proper, positive definite
function V : Rn → R≥0 such that, for all x �= 0:

inf
u

∂V
∂x

f (x, u) < 0 (9)

4 In fact, for linear dynamics and quadratic cost, (8) reduces down to the linear Ricatti equation.
5 kDP(·) is interpreted to incorporate a deterministic selection in the event of multiple solutions. The

existence of such a u is implied by the assumed solvability of (8)

Design techniques for deriving a feedback u = k(x) from knowledge of V(·) include the well-
known “Sontag’s Controller" of Sontag (1989), which led to the development of “Pointwise
Min-Norm" control of the form Freeman & Kokotović (1996a;b); Sepulchre et al. (1997):

min
u

γ(u) s.t.
∂V
∂x

f (x, u) < −σ(x) (10)

where γ, σ are positive definite, and γ is radially unbounded. As discussed in Freeman
& Kokotović (1996b); Sepulchre et al. (1997), relation (9) implies that there exists a function
L(x, u), derived from γ and σ, for which V(·) satisfies (8). Furthermore, if V(x) ≡ V∗(x), then
appropriate selection of γ, σ (in particular that of Sontag’s controller Sontag (1989)) results in
the feedback u = kcl f (x) generated by (9) satisfying kcl f (·) ≡ kDP(·). Hence this technique is
commonly referred to as “inverse-optimal" control design, and can be viewed as a method for
approximating the optimal control problem (6) by replacing V∗(x) directly.

7. Review of Nonlinear MPC based on Nominal Models

The ultimate objective of a model predictive controller is to provide a closed-loop feedback u =
κmpc(x) that regulates (1) to its target set (assumed here x = 0) in a fashion that is optimal
with respect to the infinite-time problem (6), while enforcing pointwise constraints of the form
(x, u) ∈ X × U in a constructive manner. However, rather than defining the map κmpc : X →
U by solving a PDE of the form (8) (i.e thereby pre-computing knowledge of κmpc(x) for every
x ∈ X), the model predictive control philosophy is to solve for, at time t, the control move
u = κmpc(x(t)) for the particular value x(t) ∈ X. This makes the online calculations inherently
trajectory-based, and therefore closely tied to the results in Section 4 (with the caveat that the
initial conditions are continuously referenced relative to current (t, x)). Since it is not practical
to pose (online) trajectory-based calculations over an infinite prediction horizon τ ∈ [t, ∞), a
truncated prediction τ ∈ [t, t+T] is used instead. The truncated tail of the integral in (6) is
replaced by a (designer-specified) terminal penalty W : Xf → R≥0, defined over any local
neighbourhood Xf ⊂ X of the target x = 0. This results in a feedback of the form:

u = κmpc(x(t)) � u∗
[t, t+T](t) (11a)

where u∗
[t, t+T] denotes the solution to the x(t)-dependent problem:

u∗
[t, t+T] � arg min

up
[t, t+T]

(
VT(x(t), up

[t, t+T]) �
∫ t+T

t
L(xp, up) dτ + W(xp(t+T))

)
(11b)

s.t. ∀τ ∈ [t, t+T] : d
dτ xp = f (xp, up), xp(t) = x(t) (11c)

(xp(τ), up(τ)) ∈ X × U (11d)

xp(t+T) ∈ Xf (11e)

Clearly, if one could define W(x) ≡ V∗(x) globally, then the feedback in (11) must satisfy
κmpc(·) ≡ kDP(·). While W(x) ≡ V∗(x) is generally unachievable, this motivates the selection
of W(x) as a CLF such that W(x) is an inverse-optimal approximation of V∗(x). A more
precise characterization of the selection of W(x) is the focus of the next section.
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Minimum Principle was extended out of the classical trajectory-based Euler-Lagrange equa-
tions, Dynamic Programming is an extension of classical Hamilton-Jacobi field theory from
the calculus of variations.
For simplicity, our discussion here will be restricted to the unconstrained problem:

V∗(x0) = min
u[0,∞)

∫ ∞

0
L(x, u) dτ (6a)

s.t. ẋ = f (x, u), x(0) = x0 (6b)

with locally Lipschitz dynamics f (·, ·). From the Principle of Optimality, it can be seen that
(6) lends itself to the following recursive definition:

V∗(x(t)) = min
u[t, t+∆t]

{∫ t+∆t

t
L(x(τ), u(τ))dτ + V∗(x(t + ∆t))

}
(7)

Assuming that V∗ is differentiable, replacing V∗(x(t + ∆t) with a first-order Taylor-series and
the integrand with a Riemannian sum, the limit ∆t → 0 yields

0 = min
u

{
L(x, u) +

∂V∗

∂x
f (x, u)

}
(8)

Equation (8) is one particular form of what is known as the Hamilton-Jacobi-Bellman (HJB)
equation. In some cases (such as L(x, u) quadratic in u, and f (x, u) affine in u), (8) can
be simplified to a more standard-looking PDE by evaluating the indicated minimization in
closed-form4. Assuming that a (differentiable) surface V∗ : Rn → R is found (generally
by off-line numerical solution) which satisfies (8), a stabilizing feedback u = kDP(x) can be
constructed from the information contained in the surface V∗ by simply defining5 kDP(x) �
{u | ∂V∗

∂x f (x, u) = −L(x, u)}.
Unfortunately, incorporation of either input or state constraints generally violates the as-
sumed smoothness of V∗(x). While this could be handled by interpreting (8) in the context
of viscosity solutions (see Clarke et al. (1998) for definition), for the purposes of application to
model predictive control it is more typical to simply restrict the domain of V∗ : Ω → R such
that Ω ⊂ Rn is feasible with respect to the constraints.

6. Inverse-Optimal Control Lyapunov Functions

While knowledge of a surface V∗(x) satisfying (8) is clearly ideal, in practice analytical so-
lutions are only available for extremely restrictive classes of systems, and almost never for
systems involving state or input constraints. Similarly, numerical solution of (8) suffers the
so-called “curse of dimensionality" (as named by Bellman) which limits its applicability to
systems of restrictively small size.
An alternative design framework, originating in Sontag (1983), is based on the following:

Definition 6.1. A control Lyapunov function (CLF) for (1) is any C1, proper, positive definite
function V : Rn → R≥0 such that, for all x �= 0:

inf
u

∂V
∂x

f (x, u) < 0 (9)

4 In fact, for linear dynamics and quadratic cost, (8) reduces down to the linear Ricatti equation.
5 kDP(·) is interpreted to incorporate a deterministic selection in the event of multiple solutions. The

existence of such a u is implied by the assumed solvability of (8)

Design techniques for deriving a feedback u = k(x) from knowledge of V(·) include the well-
known “Sontag’s Controller" of Sontag (1989), which led to the development of “Pointwise
Min-Norm" control of the form Freeman & Kokotović (1996a;b); Sepulchre et al. (1997):

min
u

γ(u) s.t.
∂V
∂x

f (x, u) < −σ(x) (10)

where γ, σ are positive definite, and γ is radially unbounded. As discussed in Freeman
& Kokotović (1996b); Sepulchre et al. (1997), relation (9) implies that there exists a function
L(x, u), derived from γ and σ, for which V(·) satisfies (8). Furthermore, if V(x) ≡ V∗(x), then
appropriate selection of γ, σ (in particular that of Sontag’s controller Sontag (1989)) results in
the feedback u = kcl f (x) generated by (9) satisfying kcl f (·) ≡ kDP(·). Hence this technique is
commonly referred to as “inverse-optimal" control design, and can be viewed as a method for
approximating the optimal control problem (6) by replacing V∗(x) directly.

7. Review of Nonlinear MPC based on Nominal Models

The ultimate objective of a model predictive controller is to provide a closed-loop feedback u =
κmpc(x) that regulates (1) to its target set (assumed here x = 0) in a fashion that is optimal
with respect to the infinite-time problem (6), while enforcing pointwise constraints of the form
(x, u) ∈ X × U in a constructive manner. However, rather than defining the map κmpc : X →
U by solving a PDE of the form (8) (i.e thereby pre-computing knowledge of κmpc(x) for every
x ∈ X), the model predictive control philosophy is to solve for, at time t, the control move
u = κmpc(x(t)) for the particular value x(t) ∈ X. This makes the online calculations inherently
trajectory-based, and therefore closely tied to the results in Section 4 (with the caveat that the
initial conditions are continuously referenced relative to current (t, x)). Since it is not practical
to pose (online) trajectory-based calculations over an infinite prediction horizon τ ∈ [t, ∞), a
truncated prediction τ ∈ [t, t+T] is used instead. The truncated tail of the integral in (6) is
replaced by a (designer-specified) terminal penalty W : Xf → R≥0, defined over any local
neighbourhood Xf ⊂ X of the target x = 0. This results in a feedback of the form:

u = κmpc(x(t)) � u∗
[t, t+T](t) (11a)

where u∗
[t, t+T] denotes the solution to the x(t)-dependent problem:

u∗
[t, t+T] � arg min

up
[t, t+T]

(
VT(x(t), up
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t
L(xp, up) dτ + W(xp(t+T))

)
(11b)

s.t. ∀τ ∈ [t, t+T] : d
dτ xp = f (xp, up), xp(t) = x(t) (11c)

(xp(τ), up(τ)) ∈ X × U (11d)

xp(t+T) ∈ Xf (11e)

Clearly, if one could define W(x) ≡ V∗(x) globally, then the feedback in (11) must satisfy
κmpc(·) ≡ kDP(·). While W(x) ≡ V∗(x) is generally unachievable, this motivates the selection
of W(x) as a CLF such that W(x) is an inverse-optimal approximation of V∗(x). A more
precise characterization of the selection of W(x) is the focus of the next section.
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8. General Sufficient Conditions for Stability

A very general proof of the closed-loop stability of (11), which unifies a variety of earlier, more
restrictive, results is presented6 in the survey Mayne et al. (2000). This proof is based upon
the following set of sufficient conditions for closed-loop stability:

Criterion 8.1. The function W : Xf → R≥0 and set Xf are such that a local feedback k f : Xf → U

exists to satisfy the following conditions:

C1) 0 ∈ Xf ⊆ X, Xf closed (i.e., state constraints satisfied in Xf )

C2) k f (x) ∈ U, ∀x ∈ Xf (i.e., control constraints satisfied in Xf )

C3) Xf is positively invariant for ẋ = f (x, k f (x)).

C4) L(x, k f (x)) + ∂W
∂x f (x, k f (x)) ≤ 0, ∀x ∈ Xf .

Only existence, not knowledge, of k f (x) is assumed. Thus by comparison with (9), it can be
seen that C4 essentially requires that W(x) be a CLF over the (local) domain Xf , in a manner
consistent with the constraints.
In hindsight, it is nearly obvious that closed-loop stability can be reduced entirely to con-
ditions placed upon only the terminal choices W(·) and Xf . Viewing VT(x(t), u∗

[t,t+T]) as a

Lyapunov function candidate, it is clear from (3) that VT contains “energy" in both the
∫

L dτ
and terminal W terms. Energy dissipates from the front of the integral at a rate L(x, u) as time
t flows, and by the principle of optimality one could implement (11) on a shrinking horizon
(i.e., t + T constant), which would imply V̇ = −L(x, u). In addition to this, C4 guarantees that
the energy transfer from W to the integral (as the point t + T recedes) will be non-increasing,
and could even dissipate additional energy as well.

9. Robustness Considerations

As can be seen in Proposition 4.1, the presence of inequality constraints on the state variables
poses a challenge for numerical solution of the optimal control problem in (11). While locating
the times {ti} at which the active set changes can itself be a burdensome task, a significantly
more challenging task is trying to guarantee that the tangency condition N(x(ti+1)) = 0 is
met, which involves determining if x lies on (or crosses over) the critical surface beyond which
this condition fails.
As highlighted in Grimm et al. (2004), this critical surface poses more than just a computa-
tional concern. Since both the cost function and the feedback κmpc(x) are potentially discon-
tinuous on this surface, there exists the potential for arbitrarily small disturbances (or other
plant-model mismatch) to compromise closed-loop stability. This situation arises when the
optimal solution u∗

[t,t+T] in (11) switches between disconnected minimizers, potentially result-
ing in invariant limit cycles (for example, as a very low-cost minimizer alternates between
being judged feasible/infeasible.)
A modification suggested in Grimm et al. (2004) to restore nominal robustness, similar to the
idea in Marruedo et al. (2002), is to replace the constraint x(τ) ∈ X of (11d) with one of the
form x(τ) ∈ Xo(τ − t), where the function Xo : [0, T] → X satisfies Xo(0) = X, and the strict
containment Xo(t2) ⊂ Xo(t1), t1 < t2. The gradual relaxation of the constraint limit as future
predictions move closer to current time provides a safety margin that helps to avoid constraint
violation due to small disturbances.
6 in the context of both continuous- and discrete-time frameworks

The issue of robustness to measurement error is addressed in Tuna et al. (2005). On one hand,
nominal robustness to measurement noise of an MPC feedback was already established in
Grimm et al. (2003) for discrete-time systems, and in Findeisen et al. (2003) for sampled-data
implementations. However, Tuna et al. (2005) demonstrates that as the sampling frequency
becomes arbitrarily fast, the margin of this robustness may approach zero. This stems from
the fact that the feedback κmpc(x) of (11) is inherently discontinuous in x if the indicated
minimization is performed globally on a nonconvex surface, which by Coron & Rosier (1994);
Hermes (1967) enables a fast measurement dither to generate flow in any direction contained
in the convex hull of the discontinuous closed-loop vectorfield. In other words, additional
attractors or unstable/infeasible modes can be introduced into the closed-loop behaviour by
arbitrarily small measurement noise.
Although Tuna et al. (2005) deals specifically with situations of obstacle avoidance or stabi-
lization to a target set containing disconnected points, other examples of problematic noncon-
vexities are depicted in Figure 1. In each of the scenarios depicted in Figure 1, measurement
dithering could conceivably induce flow along the dashed trajectories, thereby resulting in
either constraint violation or convergence to an undesired equilibrium.
Two different techniques were suggested in Tuna et al. (2005) for restoring robustness to the
measurement error, both of which involve adding a hysteresis-type behaviour in the optimiza-
tion to prevent arbitrary switching of the solution between separate minimizers (i.e., making
the optimization behaviour more decisive).
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8. General Sufficient Conditions for Stability
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∫
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therefore described by the general form

ẋ = f (x, u, d) (12)

where d(t) represents any arbitrary L∞-bounded disturbance signal, which takes point-wise8

values d ∈ D. Equivalently, (12) can be represented as the differential inclusion model ẋ ∈
F(x, u) � f (x, u,D).
In the next two sections, we will discuss approaches for accounting explicitly for the distur-
bance in the online MPC calculations. We note that significant effort has also been directed
towards various means of increasing the inherent robustness of the controller without requir-
ing explicit online calculations. This includes the suggestion in Magni & Sepulchre (1997)
(with a similar discrete-time idea in De Nicolao et al. (1996)) to use a modified stage cost
L(x, u) � L(x, u) + 〈∇xV∗

T (x), f (x, u)〉 to increase the robustness of a nominal-model imple-
mentation, or the suggestion in Kouvaritakis et al. (2000) to use an prestabilizer, optimized
offline, of the form u = Kx + v to reduced online computational burden. Ultimately, these ap-
proaches can be considered encompassed by the banner of nominal-model implementation.

10.1.1 Explicit robust MPC using Open-loop Models
As seen in the previous chapters, essentially all MPC approaches depend critically upon the
Principle of Optimality (Def 3.1) to establish a proof of stability. This argument depends inher-
ently upon the assumption that the predicted trajectory xp

[t, t+T] is an invariant set under open-

loop implementation of the corresponding up
[t, t+T]; i.e., that the prediction model is “perfect".

Since this is no longer the case in the presence of plant-model mismatch, it becomes necessary
to associate with up

[t, t+T] a cone of trajectories {xp
[t, t+T]}D emanating from x(t), as generated by

(12).
Not surprisingly, establishing stability requires a strengthening of the conditions imposed on
the selection of the terminal cost W and domain Xf . As such, W and Xf are assumed to satisfy
Criterion (8.1), but with the revised conditions:

C3a) Xf is strongly positively invariant for ẋ ∈ f (x, k f (x),D).

C4a) L(x, k f (x)) + ∂W
∂x f (x, k f (x), d) ≤ 0, ∀(x, d) ∈ Xf ×D.

While the original C4 had the interpretation of requiring W to be a CLF for the nominal sys-
tem, so the revised C4a can be interpreted to imply that W should be a robust-CLF like those
developed in Freeman & Kokotović (1996b).
Given such an appropriately defined pair (W, Xf ), the model predictive controller explicitly
considers all trajectories {xp

[t, t+T]}D by posing the modified problem

u = κmpc(x(t)) � u∗
[t, t+T](t) (13a)

where the trajectory u∗
[t, t+T] denotes the solution to

u∗
[t, t+T]� arg min

up
[t, t+T]

T∈[0,Tmax ]

(
max

d[t, t+T]∈D
VT(x(t), up

[t, t+T], d[t, t+T])

)
(13b)

8 The abuse of notation d[t1, t2 ]
∈ D is likewise interpreted pointwise

The function VT(x(t), up
[t, t+T], d[t, t+T]) appearing in (13) is as defined in (11), but with (11c) re-

placed by (12). Variations of this type of design are given in Chen et al. (1997); Lee & Yu (1997);
Mayne (1995); Michalska & Mayne (1993); Ramirez et al. (2002), differing predominantly in the
manner by which they select W(·) and Xf .
If one interprets the word “optimal" in Definition 3.1 in terms of the worst-case trajectory in
the optimal cone {xp

[t, t+T]}
∗
D , then at time τ ∈ [t, t+T] there are only two possibilities:

• the actual x[t,τ] matches the subarc from a worst-case element of {xp
[t, t+T]}

∗
D , in which

case the Principle of Optimality holds as stated.

• the actual x[t,τ] matches the subarc from an element in {xp
[t, t+T]}

∗
D which was not the

worst case, so implementing the remaining u∗
[τ, t+T] will achieve overall less cost than

the worst-case estimate at time t.

One will note however, that the bound guaranteed by the principle of optimality applies only
to the remaining subarc [τ, t+T], and says nothing about the ability to extend the horizon. For
the nominal-model results of Chapter 7, the ability to extend the horizon followed from C4)
of Criterion (8.1). In the present case, C4a) guarantees that for each terminal value {xp

[t, t+T](t+
T)}∗D there exists a value of u rendering W decreasing, but not necessarily a single such value
satisfying C4a) for every {xp

[t, t+T](t+T)}∗D . Hence, receding of the horizon can only occur at
the discretion of the optimizer. In the worst case, T could contract (i.e., t+T remains fixed)
until eventually T = 0, at which point {xp

[t, t+T](t+T)}∗D ≡ x(t), and therefore by C4a) an
appropriate extension of the “trajectory" u∗

[t,t] exists.
Although it is not an explicit min-max type result, the approach in Marruedo et al. (2002)
makes use of global Lipschitz constants to determine a bound on the the worst-case distance
between a solution of the uncertain model (12), and that of the underlying nominal model es-
timate. This Lipschitz-based uncertainty cone expands at the fastest-possible rate, necessarily
containing the actual uncertainty cone {xp

[t, t+T]}D . Although ultimately just a nominal-model
approach, it is relevant to note that it can be viewed as replacing the “max" in (13) with a
simple worst-case upper bound.
Finally, we note that many similar results Cannon & Kouvaritakis (2005); Kothare et al. (1996)
in the linear robust-MPC literature are relevant, since nonlinear dynamics can often be ap-
proximated using uncertain linear models. In particular, linear systems with polytopic de-
scriptions of uncertainty are one of the few classes that can be realistically solved numerically,
since the calculations reduce to simply evaluating each node of the polytope.

10.1.2 Explicit robust MPC using Feedback Models
Given that robust control design is closely tied to game theory, one can envision (13) as rep-
resenting a player’s decision-making process throughout the evolution of a strategic game.
However, it is unlikely that a player even moderately-skilled at such a game would restrict
themselves to preparing only a single sequence of moves to be executed in the future. Instead,
a skilled player is more likely to prepare a strategy for future game-play, consisting of several
“backup plans" contingent upon future responses of their adversary.
To be as least-conservative as possible, an ideal (in a worst-case sense) decision-making pro-
cess would more properly resemble

u = κmpc(x(t)) � u∗
t (14a)
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where u∗
t ∈ Rm is the constant value satisfying

u∗
t � arg min

ut

(
max

d[t, t+T]∈D
min

up
[t, t+T]∈U (ut)

VT(x(t), up
[t, t+T], d[t, t+T])

)
(14b)

with the definition U (ut) � {up
[t, t+T] | up(t) = ut}. Clearly, the “least conservative" prop-

erty follows from the fact that a separate response is optimized for every possible sequence
the adversary could play. This is analogous to the philosophy in Scokaert & Mayne (1998),
for system x+ = Ax + Bu + d, in which polytopic D allows the max to be reduced to select-
ing the worst index from a finitely-indexed collection of responses; this equivalently replaces
the innermost minimization with an augmented search in the outermost loop over all input
responses in the collection.
While (14) is useful as a definition, a more useful (equivalent) representation involves mini-
mizing over feedback policies k : [t, t+T]× X → U rather than trajectories:

u = κmpc(x(t)) � k∗(t, x(t)) (15a)

k∗(·, ·) � arg min
k(·,·)

max
d[t, t+T]∈D

(
VT(x(t), k(·, ·), d[t, t+T])

)
(15b)

VT(x(t), k(·, ·), d[t, t+T]) �
∫ t+T

t
L(xp, k(τ, xp(τ))) dτ + W(xp(t+T)) (15c)

s.t. ∀τ ∈ [t, t+T] : d
dτ xp = f (xp, k(τ, xp(τ)), d), xp(t)= x(t) (15d)

(xp(τ), k(τ, xp(τ))) ∈ X × U (15e)

xp(t+T) ∈ Xf (15f)

There is a recursive-like elegance to (15), in that κmpc(x) is essentially defined as a search over
future candidates of itself. Whereas (14) explicitly involves optimization-based future feedbacks,
the search in (15) can actually be (suboptimally) restricted to any arbitrary sub-class of feed-
backs k : [t, t+T]×X → U. For example, this type of approach first appeared in Kothare et al.
(1996); Lee & Yu (1997); Mayne (1995), where the cost functional was minimized by restricting
the search to the class of linear feedback u = Kx (or u = K(t)x).
The error cone {xp

[t, t+T]}
∗
D associated with (15) is typically much less conservative than that of

(13). This is due to the fact that (15d) accounts for future disturbance attenuation resulting
from k(τ, xp(τ)), an effect ignored in the open-loop predictions of (13). In the case of (14) and
(15) it is no longer necessary to include T as an optimization variable, since by condition C4a
one can now envision extending the horizon by appending an increment k(T+δt, ·) = k f (·).
This notion of feedback MPC has been applied in Magni et al. (2003; 2001) to solve H∞ dis-
turbance attenuation problems. This approach avoids the need to solve a difficult Hamilton-
Jacobi-Isaacs equation, by combining a specially-selected stage cost L(x, u) with a local HJI
approximation W(x) (designed generally by solving an H∞ problem for the linearized sys-
tem). An alternative perspective of the implementation of (15) is developed in Langson et al.
(2004), with particular focus on obstacle-avoidance in Raković & Mayne (2005). In this work,
a set-invariance philosophy is used to propagate the uncertainty cone {xp

[t, t+T]}D for (15d) in
the form of a control-invariant tube. This enables the use of efficient methods for constructing
control invariant sets based on approximations such as polytopes or ellipsoids.

11. Adaptive Approaches to MPC

The sectionr will be focused on the more typical role of adaptation as a means of coping with
uncertainties in the system model. A standard implementation of model predictive control
using a nominal model of the system dynamics can, with slight modification, exhibit nominal
robustness to disturbances and modelling error. However in practical situations, the sys-
tem model is only approximately known, so a guarantee of robustness which covers only
“sufficiently small" errors may be unacceptable. In order to achieve a more solid robustness
guarantee, it becomes necessary to account (either explicitly, or implicitly) for all possible
trajectories which could be realized by the uncertain system, in order to guarantee feasible
stability. The obvious numerical complexity of this task has resulted in an array of different
control approaches, which lie at various locations on the spectrum between simple, conser-
vative approximations versus complex, high-performance calculations. Ultimately, selecting
an appropriate approach involves assessing, for the particular system in question, what is an
acceptable balance between computational requirements and closed-loop performance.
Despite the fact that the ability to adjust to changing process conditions was one of the ear-
liest industrial motivators for developing predictive control techniques, the progress in this
area has been negligible. The small amount of progress that has been made is restricted to
systems which do not involve constraints on the state, and which are affine in the unknown
parameters. We will briefly describe two such results.

11.1 Certainty-equivalence Implementation
The result in Mayne & Michalska (1993) implements a certainty equivalence nominal-model9

MPC feedback of the form u(t) = κmpc(x(t), θ̂(t)), to stabilize the uncertain system

ẋ = f (x, u, θ) � f0(x, u) + g(x, u)θ (16)

subject to an input constraint u ∈ U. The vector θ ∈ Rp represents a set of unknown con-
stant parameters, with θ̂ ∈ Rp denoting an identifier. Certainty equivalence implies that the
nominal prediction model (11c) is of the same form as (16), but with θ̂ used in place of θ.
At any time t ≥ 0, the identifier θ̂(t) is defined to be a (min-norm) solution of

∫ t

0
g(x(s), u(s))T

(
ẋ(s)− f0(x(s), u(s))

)
ds =

∫ t

0
g(x(s), u(s))T g(x(s), u(s))ds θ̂ (17)

which is solved over the window of all past history, under the assumption that ẋ is mea-
sured (or computable). If necessary, an additional search is performed along the nullspace
of

∫ t
0 g(x, u)T g(x, u)ds in order to guarantee θ̂(t) yields a controllable certainty-equivalence

model (since (17) is controllable by assumption).
The final result simply shows that there must exist a time 0 < ta < ∞ such that the regressor∫ t

0 g(x, u)T g(x, u)ds achieves full rank, and thus θ̂(t) ≡ θ for all t ≥ ta. However, it is only by
assumption that the state x(t) does not escape the stabilizable region during the identification
phase t ∈ [0, ta]; moreover, there is no mechanism to decrease ta in any way, such as by
injecting excitation.

9 Since this result arose early in the development of nonlinear MPC, it happens to be based upon a
terminal-constrained controller (i.e., Xf ≡ {0}); however, this is not critical to the adaptation.
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d[t, t+T]∈D

(
VT(x(t), k(·, ·), d[t, t+T])

)
(15b)

VT(x(t), k(·, ·), d[t, t+T]) �
∫ t+T

t
L(xp, k(τ, xp(τ))) dτ + W(xp(t+T)) (15c)

s.t. ∀τ ∈ [t, t+T] : d
dτ xp = f (xp, k(τ, xp(τ)), d), xp(t)= x(t) (15d)

(xp(τ), k(τ, xp(τ))) ∈ X × U (15e)

xp(t+T) ∈ Xf (15f)
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[t, t+T]}
∗
D associated with (15) is typically much less conservative than that of

(13). This is due to the fact that (15d) accounts for future disturbance attenuation resulting
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[t, t+T]}D for (15d) in
the form of a control-invariant tube. This enables the use of efficient methods for constructing
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11. Adaptive Approaches to MPC

The sectionr will be focused on the more typical role of adaptation as a means of coping with
uncertainties in the system model. A standard implementation of model predictive control
using a nominal model of the system dynamics can, with slight modification, exhibit nominal
robustness to disturbances and modelling error. However in practical situations, the sys-
tem model is only approximately known, so a guarantee of robustness which covers only
“sufficiently small" errors may be unacceptable. In order to achieve a more solid robustness
guarantee, it becomes necessary to account (either explicitly, or implicitly) for all possible
trajectories which could be realized by the uncertain system, in order to guarantee feasible
stability. The obvious numerical complexity of this task has resulted in an array of different
control approaches, which lie at various locations on the spectrum between simple, conser-
vative approximations versus complex, high-performance calculations. Ultimately, selecting
an appropriate approach involves assessing, for the particular system in question, what is an
acceptable balance between computational requirements and closed-loop performance.
Despite the fact that the ability to adjust to changing process conditions was one of the ear-
liest industrial motivators for developing predictive control techniques, the progress in this
area has been negligible. The small amount of progress that has been made is restricted to
systems which do not involve constraints on the state, and which are affine in the unknown
parameters. We will briefly describe two such results.

11.1 Certainty-equivalence Implementation
The result in Mayne & Michalska (1993) implements a certainty equivalence nominal-model9

MPC feedback of the form u(t) = κmpc(x(t), θ̂(t)), to stabilize the uncertain system

ẋ = f (x, u, θ) � f0(x, u) + g(x, u)θ (16)

subject to an input constraint u ∈ U. The vector θ ∈ Rp represents a set of unknown con-
stant parameters, with θ̂ ∈ Rp denoting an identifier. Certainty equivalence implies that the
nominal prediction model (11c) is of the same form as (16), but with θ̂ used in place of θ.
At any time t ≥ 0, the identifier θ̂(t) is defined to be a (min-norm) solution of

∫ t

0
g(x(s), u(s))T

(
ẋ(s)− f0(x(s), u(s))

)
ds =

∫ t

0
g(x(s), u(s))T g(x(s), u(s))ds θ̂ (17)

which is solved over the window of all past history, under the assumption that ẋ is mea-
sured (or computable). If necessary, an additional search is performed along the nullspace
of

∫ t
0 g(x, u)T g(x, u)ds in order to guarantee θ̂(t) yields a controllable certainty-equivalence

model (since (17) is controllable by assumption).
The final result simply shows that there must exist a time 0 < ta < ∞ such that the regressor∫ t

0 g(x, u)T g(x, u)ds achieves full rank, and thus θ̂(t) ≡ θ for all t ≥ ta. However, it is only by
assumption that the state x(t) does not escape the stabilizable region during the identification
phase t ∈ [0, ta]; moreover, there is no mechanism to decrease ta in any way, such as by
injecting excitation.

9 Since this result arose early in the development of nonlinear MPC, it happens to be based upon a
terminal-constrained controller (i.e., Xf ≡ {0}); however, this is not critical to the adaptation.
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11.1.1 Stability-Enforced Approach
One of the early stability results for nominal-model MPC in (Primbs (1999); Primbs et al.
(2000)) involved the use of a global CLF V(x) instead of a terminal penalty. Stability was
enforced by constraining the optimization such that V(x) is decreasing, and performance
achieved by requiring the predicted cost to be less than that accumulated by simulation of
pointwise min-norm control.
This idea was extended in Adetola & Guay (2004) to stabilize unconstrained systems of the
form

ẋ = f (x, u, θ) � f0(x) + gθ(x)θ + gu(x)u (18)

Using ideas from robust stabilization, it is assumed that a global ISS-CLF10 is known for the
nominal system. Constraining V(x) to decrease ensures convergence to a neighbourhood of
the origin, which gradually contracts as the identification proceeds. Of course, the restrictive-
ness of this approach lies in the assumption that V(x) is known.

12. An Adaptive Approach to Robust MPC

Both the theoretical and practical merits of model-based predictive control strategies for non-
linear systems are well established, as reviewed in Chapter 7. To date, the vast majority of
implementations involve an “accurate model" assumption, in which the control action is com-
puted on the basis of predictions generated by an approximate nominal process model, and
implemented (un-altered) on the actual process. In other words, the effects of plant-model
mismatch are completely ignored in the control calculation, and closed-loop stability hinges
upon the critical assumption that the nominal model is a “sufficiently close" approximation of
the actual plant. Clearly, this approach is only acceptable for processes whose dynamics can
be modelled a-priori to within a high degree of precision.
For systems whose true dynamics can only be approximated to within a large margin of un-
certainty, it becomes necessary to directly account for the plant-model mismatch. To date, the
most general and rigourous means for doing this involves explicitly accounting for the error
in the online calculation, using the robust-MPC approaches discussed in Section 10.1. While
the theoretical foundations and guarantees of stability for these tools are well established,
it remains problematic in most cases to find an appropriate approach yielding a satisfactory
balance between computational complexity, and conservatism of the error calculations. For
example, the framework of min-max feedback-MPC Magni et al. (2003); Scokaert & Mayne
(1998) provides the least-conservative control by accounting for the effects of future feedback
actions, but is in most cases computationally intractable. In contrast, computationally simple
approaches such as the openloop method of Marruedo et al. (2002) yield such conservatively-
large error estimates, that a feasible solution to the optimal control problem often fails to exist.
For systems involving primarily static uncertainties, expressible in the form of unknown (con-
stant) model parameters θ ∈ Θ ⊂ Rp, it would be more desirable to approach the problem in
the framework of adaptive control than that of robust control. Ideally, an adaptive mechanism
enables the controller to improve its performance over time by employing a process model
which asymptotically approaches that of the true system. Within the context of predictive
control, however, the transient effects of parametric estimation error have proven problematic

10 i.e., a CLF guaranteeing robust stabilization to a neighbourhood of the origin, where the size of the
neighbourhood scales with the L∞ bound of the disturbance signal

towards developing anything beyond the limited results discussed in Section 11. In short, the
development of a general “robust adaptive-MPC" remains at present an open problem.
In the following, we make no attempt to construct such a “robust adaptive" controller; in-
stead we propose an approach more properly referred to as “adaptive robust" control. The
approach differs from typical adaptive control techniques, in that the adaptation mechanism
does not directly involve a parameter identifier θ̂ ∈ Rp. Instead, a set-valued description of
the parametric uncertainty, Θ, is adapted online by an identification mechanism. By gradually
eliminating values from Θ that are identified as being inconsistent with the observed trajecto-
ries, Θ gradually contracts upon θ in a nested fashion. By virtue of this nested evolution of Θ,
it is clear that an adaptive feedback structure of the form in Figure 2 would retain the stability
properties of any underlying robust control design.

PlantRobust Controller for

Identifier

Fig. 2. Adaptive robust feedback structure

The idea of arranging an identifier and robust controller in the configuration of Figure 2 is
itself not entirely new. For example the robust control design of Corless & Leitmann (1981),
appropriate for nonlinear systems affine in u whose disturbances are bounded and satisfy the
so-called “matching condition", has been used by various authors Brogliato & Neto (1995);
Corless & Leitmann (1981); Tang (1996) in conjunction with different identifier designs for
estimating the disturbance bound resulting from parametric uncertainty. A similar concept
for linear systems is given in Kim & Han (2004).
However, to the best of our knowledge this idea has not been well explored in the situation
where the underlying robust controller is designed by robust-MPC methods. The advantage
of such an approach is that one could then potentially imbed an internal model of the identi-
fication mechanism into the predictive controller, as shown in Figure 3. In doing so the effects
of future identification are accounted for within the optimal control problem, the benefits of
which are discussed in the next section.

13. A Minimally-Conservative Perspective

13.1 Problem Description
The problem of interest is to achieve robust regulation, by means of state-feedback, of the
system state to some compact target set Σo

x ∈ Rn. Optimality of the resulting trajectories are
measured with respect to the accumulation of some instantaneous penalty (i.e., stage cost)
L(x, u) ≥ 0, which may or may not have physical significance. Furthermore, the state and
input trajectories are required to obey pointwise constraints (x, u) ∈ X × U ⊆ Rn × Rm.
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13.1 Problem Description
The problem of interest is to achieve robust regulation, by means of state-feedback, of the
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x ∈ Rn. Optimality of the resulting trajectories are
measured with respect to the accumulation of some instantaneous penalty (i.e., stage cost)
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Fig. 3. Adaptive robust MPC structure

It is assumed that the system dynamics are not fully known, with uncertainty stemming from
both unmodelled static nonlinearities as well as additional exogenous inputs. As such, the
dynamics are assumed to be of the general form

ẋ = f (x, u, θ, d(t)) (19)

where f is a locally Lipschitz vector function of state x ∈ Rn, control input u ∈ Rm, dis-
turbance input d ∈ Rd, and constant parameters θ ∈ Rp. The entries of θ may represent
physically meaningful model parameters (whose values are not exactly known a-priori), or
alternatively they could be parameters associated with any (finite) set of universal basis func-
tions used to approximate unknown nonlinearities. The disturbance d(t) represents the com-
bined effects of actual exogenous inputs, neglected system states, or static nonlinearities lying
outside the span of θ (such as the truncation error resulting from using a finite basis).

Assumption 13.1. θ ∈ Θo, where Θo is a known compact subset of Rp.

Assumption 13.2. d(·) ∈ D∞, where D∞ is the set of all right-continuous L∞-bounded functions
d : R → D; i.e., composed of continuous subarcs d[a,b), and satisfying d(τ) ∈ D, ∀τ ∈ R, with
D ⊂ Rd a compact vectorspace.

Unlike much of the robust or adaptive MPC literature, we do not necessarily assume exact
knowledge of the system equilibrium manifold, or its stabilizing equilibrium control map.
Instead, we make the following (weaker) set of assumptions:

Assumption 13.3. Letting Σo
u ⊆ U be a chosen compact set, assume that L : X × U → R≥0 is

continuous, L(Σo
x, Σo

u)≡0, and L(x, u) ≥ γL

(
‖(x, u)‖Σo

x×Σo
u

)
, γL ∈ K∞. As well, assume that

min
(u,θ,d)∈U×Θo×D

(
L(x, u)

‖ f (x, u, θ, d)‖

)
≥ c2

‖x‖Σo
x

∀x ∈ X \ B(Σo
x, c1) (20)

Definition 13.4. For each Θ⊆Θo, let Σx(Θ)⊆Σo
x denote the maximal (strongly) control-invariant

subset for the differential inclusion ẋ∈ f (x, u, Θ,D), using only controls u ∈ Σo
u.

Assumption 13.5. There exists a constant NΣ < ∞, and a finite cover of Θo (not necessarily unique),
denoted {Θ}Σ, such that

i. the collection {Θ̊}Σ is an open cover for the interior Θ̊o.

ii. Θ ∈ {Θ}Σ implies Σx(Θ) �= ∅.

iii. {Θ}Σ contains at most NΣ elements.

The most important requirement of Assumption 13.3 is that, since the exact location (in Rn ×
Rm) of the equilibrium11 manifold is not known a-priori, L(x, u) must be identically zero on
the entire region of equilibrium candidates Σo

x × Σo
u. One example of how to construct such

a function would be to define L(x, u) = ρ(x, u)L(x, u), where L(x, u) is an arbitrary penalty
satisfying (x, u) �∈ Σo

x × Σo
u =⇒ L(x, u) > 0, and ρ(x, u) is a smoothed indicator function of

the form

ρ(x, u) =




0 (x, u) ∈ Σo
x × Σo

u
‖(x,u)‖Σo

x×Σo
u

δρ
0 < ‖(x, u)‖Σo

x×Σo
u
< δρ

1 ‖(x, u)‖Σo
x×Σo

u
≥ δρ

(21)

The restriction that L(x, u) is strictly positive definite with respect to Σo
x×Σo

u is made for con-
venience, and could be relaxed to positive semi-definite using an approach similar to that of
Grimm et al. (2005) as long as L(x, u) satisfies an appropriate detectability assumption (i.e.,
as long as it is guaranteed that all trajectories remaining in {x | ∃u s.t. L(x, u) = 0} must
asymptotically approach Σo

x×Σo
u).

The first implication of Assumption 13.5 is that for any θ ∈ Θo, the target Σo
x contains a

stabilizable “equilibrium" Σ(θ) such that the regulation problem is well-posed. Secondly, the
openness of the covering in Assumption 13.5 implies a type of “local-ISS" property of these
equilibria with respect to perturbations in small neighbourhoods Θ of θ. This property ensures
that the target is stabilizable given “sufficiently close" identification of the unknown θ, such
that the adaptive controller design is tractable.

13.2 Adaptive Robust Controller Design Framework
13.2.1 Adaptation of Parametric Uncertainty Sets
Unlike standard approaches to adaptive control, this work does not involve explicitly gener-
ating a parameter estimator θ̂ for the unknown θ. Instead, the parametric uncertainty set Θo is
adapted to gradually eliminate sets which do not contain θ. To this end, we define the infimal
uncertainty set

Z(Θ, x[a,b], u[a,b]) � { θ ∈ Θ | ẋ(τ) ∈ f (x(τ), u(τ), θ,D), ∀τ∈ [a, b]} (22)

By definition, Z represents the best-case performance that could be achieved by any iden-
tifier, given a set of data generated by (19), and a prior uncertainty bound Θ. Since exact
online calculation of (22) is generally impractical, we assume that the set Z is approximated
online using an arbitrary estimator Ψ. This estimator must be chosen to satisfy the following
conditions.

Criterion 13.6. Ψ(·, ·, ·) is designed such that for a≤b≤ c, and for any Θ ⊆ Θo,

C13.6.1 Z ⊆ Ψ

C13.6.2 Ψ(Θ, ·, ·) ⊆ Θ, and closed.

11 we use the word “equilibrium" loosely in the sense of control-invariant subsets of the target Σo
x , which

need not be actual equilibrium points in the traditional sense
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C13.6.3 Ψ(Θ1, x[a,b], u[a,b]) ⊆ Ψ(Θ2, x[a,b], u[a,b]), for Θ1 ⊆ Θ2 ⊆ Θo

C13.6.4 Ψ(Θ, x[a,b], u[a,b]) ⊇ Ψ(Θ, x[a,c], u[a,c])

C13.6.5 Ψ(Θ, x[a,c], u[a,c]) ≡ Ψ(Ψ(Θ, x[a,b], u[a,b]), x[b,c], u[b,c])

The set Ψ represents an approximation of Z in two ways. First, both Θo and Ψ can be restricted
a-priori to any class of finitely-parameterized sets, such as linear polytopes, quadratic balls, etc.
Second, contrary to the actual definition of (22), Ψ can be computed by removing values from
Θo as they are determined to violate the differential inclusion model. As such, the search for
infeasible values can be terminated at any time without violating C13.6.
The closed loop dynamics of (19) then take the form

ẋ = f (x, κmpc(x, Θ(t)), θ, d(t)), x(t0) = x0 (23a)

Θ(t) = Ψ(Θo, x[t0, t], u[t0, t]) (23b)

where κmpc(x, Θ) represents the MPC feedback policy, detailed in Section 13.2.2. In practice,
the (set-valued) controller state Θ could be generated using an update law Θ̇ designed to
gradually contract the set (satisfying C13.6). However, the given statement of (23b) is more
general, as it allows for Θ(t) to evolve discontinuously in time, as may happen for example
when the sign of a parameter can suddenly be conclusively determined.

13.2.2 Feedback-MPC framework
In the context of min-max robust MPC, it is well known that feedback-MPC, because of its abil-
ity to account for the effects of future feedback decisions on disturbance attenuation, provides
significantly less conservative performance than standard open-loop MPC implementations.
In the following, the same principle is extended to incorporate the effects of future parameter
adaptation.
In typical feedback-MPC fashion, the receding horizon control law in (23) is defined by mini-
mizing over feedback policies κ : R≥0×Rn×cov {Θo} → Rm as

u = κmpc(x, Θ) � κ∗(0, x, Θ) (24a)

κ∗ � arg min
κ(·,·,·)

J(x, Θ, κ) (24b)

where J(x, Θ, κ) is the (worst-case) cost associated with the optimal control problem:

J(x, Θ, κ) � max
θ∈Θ

d(·)∈D∞

∫ T

0
L(xp, up)dτ + W(xp

f , Θ̂ f ) (25a)

s.t. ∀τ ∈ [0, T]
d

dτ xp = f (xp, up, θ, d), xp(0) = x (25b)

Θ̂(τ) = Ψp(Θ(t), xp
[0,τ], up

[0,τ]) (25c)

xp(τ) ∈ X (25d)

up(τ) � κ(τ, xp(τ), Θ̂(τ)) ∈ U (25e)

xp
f � xp(T) ∈ Xf (Θ̂ f ) (25f)

Θ̂ f � Ψf (Θ(t), xp
[0,T], up

[0,T]) (25g)

Throughout the remainder, we denote the optimal cost J∗(x, Θ) � J(x, Θ, κ∗), and further-
more we drop the explicit constraints (25d)-(25f) by assuming the definitions of L and W have
been extended as follows:

L(x, u) =

{
L(x, u) < ∞ (x, u) ∈ X × U

+∞ otherwise
(26a)

W(x, Θ) =

{
W(x, Θ) < ∞ x ∈ Xf (Θ)

+∞ otherwise
(26b)

The parameter identifiers Ψp and Ψf in (25) represent internal model approximations of the
actual identifier Ψ, and must satisfy both C13.6 as well as the following criterion:

Criterion 13.7. For identical arguments, Z ⊆ Ψ ⊆ Ψf ⊆ Ψp.

Remark 13.8. We distinguish between different identifiers to emphasize that, depending on the fre-
quency at which calculations are called, differing levels of accuracy can be applied to the identification
calculations. The ordering in Criterion 13.7 is required for stability, and implies that identifiers existing
within faster timescales provide more conservative approximations of the uncertainty set.

There are two important characteristics which distinguish (25) from a standard (non-adaptive)
feedback-MPC approach. First, the future evolution of Θ̂ in (25c) is fed back into both (25b)
and (25e). The benefits of this feedback are analogous to those of adding state-feedback into
the MPC calculation; the resulting cone of possible trajectories xp(·) is narrowed by account-
ing for the effects of future adaptation on disturbance attenuation, resulting in less conserva-
tive worst-case predictions.
The second distinction is that both W and Xf are parameterized as functions of Θ̂ f , which
reduces the conservatism of the terminal cost. Since the terminal penalty W has the inter-
pretation of the “worst-case cost-to-go", it stands to reason that W should decrease with de-
creased parametric uncertainty. In addition, the domain Xf would be expected to enlarge
with decreased parametric uncertainty, which in some situations could mean that a stabilizing
CLF-pair (W(x, Θ), Xf (Θ)) can be constructed even when no such CLF exists for the original
uncertainty Θo. This effect is discussed in greater depth in Section 14.1.1.

13.2.3 Generalized Terminal Conditions
To guide the selection of W(xf , Θ̂ f ) and Xf (Θ̂ f ) in (25), it is important to outline (sufficient)
conditions under which (23)-(25) can guarantee stabilization to the target Σo

x. The statement
given here is extended from the set of such conditions for robust MPC from Mayne et al. (2000)
that was outlined in Sections 8 and 10.1.1.
For reasons that are explained later in Section 14.1.1, it is useful to present these conditions in
a more general context in which W(·, Θ) is allowed to be LS-continuous with respect to x, as
may occur if W is generated by a switching mechanism. This adds little additional complexity
to the analysis, since (25) is already discontinuous due to constraints.

Criterion 13.9. The set-valued terminal constraint function Xf : cov {Θo} → cov {X} and terminal
penalty function W : Rn × cov {Θo} → [0,+∞] are such that for each Θ ∈ cov {Θo}, there exists
k f (·, Θ) : Xf → U satisfying

C13.9.1 Xf (Θ) �= ∅ implies that Σo
x ∩ Xf (Θ) �= ∅, and Xf (Θ) ⊆ X is closed

C13.9.2 W(·, Θ) is LS-continuous with respect to x ∈ Rn
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C13.6.3 Ψ(Θ1, x[a,b], u[a,b]) ⊆ Ψ(Θ2, x[a,b], u[a,b]), for Θ1 ⊆ Θ2 ⊆ Θo

C13.6.4 Ψ(Θ, x[a,b], u[a,b]) ⊇ Ψ(Θ, x[a,c], u[a,c])

C13.6.5 Ψ(Θ, x[a,c], u[a,c]) ≡ Ψ(Ψ(Θ, x[a,b], u[a,b]), x[b,c], u[b,c])

The set Ψ represents an approximation of Z in two ways. First, both Θo and Ψ can be restricted
a-priori to any class of finitely-parameterized sets, such as linear polytopes, quadratic balls, etc.
Second, contrary to the actual definition of (22), Ψ can be computed by removing values from
Θo as they are determined to violate the differential inclusion model. As such, the search for
infeasible values can be terminated at any time without violating C13.6.
The closed loop dynamics of (19) then take the form

ẋ = f (x, κmpc(x, Θ(t)), θ, d(t)), x(t0) = x0 (23a)

Θ(t) = Ψ(Θo, x[t0, t], u[t0, t]) (23b)

where κmpc(x, Θ) represents the MPC feedback policy, detailed in Section 13.2.2. In practice,
the (set-valued) controller state Θ could be generated using an update law Θ̇ designed to
gradually contract the set (satisfying C13.6). However, the given statement of (23b) is more
general, as it allows for Θ(t) to evolve discontinuously in time, as may happen for example
when the sign of a parameter can suddenly be conclusively determined.

13.2.2 Feedback-MPC framework
In the context of min-max robust MPC, it is well known that feedback-MPC, because of its abil-
ity to account for the effects of future feedback decisions on disturbance attenuation, provides
significantly less conservative performance than standard open-loop MPC implementations.
In the following, the same principle is extended to incorporate the effects of future parameter
adaptation.
In typical feedback-MPC fashion, the receding horizon control law in (23) is defined by mini-
mizing over feedback policies κ : R≥0×Rn×cov {Θo} → Rm as

u = κmpc(x, Θ) � κ∗(0, x, Θ) (24a)

κ∗ � arg min
κ(·,·,·)

J(x, Θ, κ) (24b)

where J(x, Θ, κ) is the (worst-case) cost associated with the optimal control problem:

J(x, Θ, κ) � max
θ∈Θ

d(·)∈D∞

∫ T

0
L(xp, up)dτ + W(xp

f , Θ̂ f ) (25a)

s.t. ∀τ ∈ [0, T]
d

dτ xp = f (xp, up, θ, d), xp(0) = x (25b)

Θ̂(τ) = Ψp(Θ(t), xp
[0,τ], up

[0,τ]) (25c)

xp(τ) ∈ X (25d)

up(τ) � κ(τ, xp(τ), Θ̂(τ)) ∈ U (25e)

xp
f � xp(T) ∈ Xf (Θ̂ f ) (25f)

Θ̂ f � Ψf (Θ(t), xp
[0,T], up

[0,T]) (25g)

Throughout the remainder, we denote the optimal cost J∗(x, Θ) � J(x, Θ, κ∗), and further-
more we drop the explicit constraints (25d)-(25f) by assuming the definitions of L and W have
been extended as follows:

L(x, u) =

{
L(x, u) < ∞ (x, u) ∈ X × U

+∞ otherwise
(26a)

W(x, Θ) =

{
W(x, Θ) < ∞ x ∈ Xf (Θ)

+∞ otherwise
(26b)

The parameter identifiers Ψp and Ψf in (25) represent internal model approximations of the
actual identifier Ψ, and must satisfy both C13.6 as well as the following criterion:

Criterion 13.7. For identical arguments, Z ⊆ Ψ ⊆ Ψf ⊆ Ψp.

Remark 13.8. We distinguish between different identifiers to emphasize that, depending on the fre-
quency at which calculations are called, differing levels of accuracy can be applied to the identification
calculations. The ordering in Criterion 13.7 is required for stability, and implies that identifiers existing
within faster timescales provide more conservative approximations of the uncertainty set.

There are two important characteristics which distinguish (25) from a standard (non-adaptive)
feedback-MPC approach. First, the future evolution of Θ̂ in (25c) is fed back into both (25b)
and (25e). The benefits of this feedback are analogous to those of adding state-feedback into
the MPC calculation; the resulting cone of possible trajectories xp(·) is narrowed by account-
ing for the effects of future adaptation on disturbance attenuation, resulting in less conserva-
tive worst-case predictions.
The second distinction is that both W and Xf are parameterized as functions of Θ̂ f , which
reduces the conservatism of the terminal cost. Since the terminal penalty W has the inter-
pretation of the “worst-case cost-to-go", it stands to reason that W should decrease with de-
creased parametric uncertainty. In addition, the domain Xf would be expected to enlarge
with decreased parametric uncertainty, which in some situations could mean that a stabilizing
CLF-pair (W(x, Θ), Xf (Θ)) can be constructed even when no such CLF exists for the original
uncertainty Θo. This effect is discussed in greater depth in Section 14.1.1.

13.2.3 Generalized Terminal Conditions
To guide the selection of W(xf , Θ̂ f ) and Xf (Θ̂ f ) in (25), it is important to outline (sufficient)
conditions under which (23)-(25) can guarantee stabilization to the target Σo

x. The statement
given here is extended from the set of such conditions for robust MPC from Mayne et al. (2000)
that was outlined in Sections 8 and 10.1.1.
For reasons that are explained later in Section 14.1.1, it is useful to present these conditions in
a more general context in which W(·, Θ) is allowed to be LS-continuous with respect to x, as
may occur if W is generated by a switching mechanism. This adds little additional complexity
to the analysis, since (25) is already discontinuous due to constraints.

Criterion 13.9. The set-valued terminal constraint function Xf : cov {Θo} → cov {X} and terminal
penalty function W : Rn × cov {Θo} → [0,+∞] are such that for each Θ ∈ cov {Θo}, there exists
k f (·, Θ) : Xf → U satisfying

C13.9.1 Xf (Θ) �= ∅ implies that Σo
x ∩ Xf (Θ) �= ∅, and Xf (Θ) ⊆ X is closed

C13.9.2 W(·, Θ) is LS-continuous with respect to x ∈ Rn
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C13.9.3 k f (x, Θ) ∈ U, for all x ∈ Xf (Θ).

C13.9.4 Xf (Θ) and Σx(Θ) ⊆
{

Σo
x ∩ Xf (Θ)

}
are both strongly positively invariant with

respect to the differential inclusion ẋ ∈ f (x, k f (x, Θ), Θ,D).

C13.9.5 ∀x ∈ Xf (Θ), and denoting F � f (x, k f (x, Θ), Θ,D),

max
f∈F


L(x, k f (x, Θ))+ lim inf

v→ f
δ↓0

(
W(x+δv, Θ)−W(x,Θ)

δ

)≤ 0

Although condition C13.9.5 is expressed in a slightly non-standard form, it embodies the stan-
dard interpretation that W must be decreasing by at least an amount −L(x, k f (x, Θ)) along
all vectorfields in the closed-loop differential inclusion F ; i.e., W(x, Θ) is a robust-CLF (in
an appropriate non-smooth sense) on the domain Xf (Θ). Lyapunov stability involving LS-
continuous functions is thoroughly studied in Clarke et al. (1998), and provides a meaningful
sense in which W can be considered a “robust-CLF" despite its discontinuous nature.
It is important to note that for the purposes of Criterion 13.9, W(x, Θ) and Xf (Θ) are param-
eterized by the set Θ, but the criterion imposes no restrictions on their functional dependence
with respect to the Θ argument. This Θ-dependence is required to satisfy the following crite-
ria:

Criterion 13.10. For any Θ1, Θ2 ∈ cov {Θo} such that Θ1 ⊆ Θ2,

C13.10.1 Xf (Θ2) ⊆ Xf (Θ1)

C13.10.2 W(x, Θ1) ≤ W(x, Θ2), ∀x ∈ Xf (Θ2)

Designing W and Xf as functions of Θ satisfying Criteria 13.9 and 13.10 may appear pro-
hibitively complex; however, the task is greatly simplified by noting that neither criterion im-
poses any notion of continuity of W or Xf with respect to Θ. A constructive design approach
exploiting this fact is presented in Section 14.1.1.

13.2.4 Closed-loop Stability
Theorem 13.11 (Main result). Given system (19), target Σo

x, and penalty L satisfying Assumptions
13.1, 13.2, 13.3, 13.5, assume the functions Ψ, Ψp, Ψf , W and Xf are designed to satisfy Criteria
13.6, 13.7, 13.9, and 13.10. Furthermore, let X0 � X0(Θo) ⊆ X denote the set of initial states, with
uncertainty Θ(t0) = Θo, for which (25) has a solution. Then under (23), Σo

x is feasibly asymptotically
stabilized from any x0 ∈ X0.

Remark 13.12. As indicated by Assumption 13.5, the existence of an invariant target set Σo
x(Θo),

robust to the full parametric uncertainty Θo, is not required for Theorem 13.11 to hold. The identifier
Θ̂ f must be contained in a sufficiently small neighbourhood of (the worst-case) θ such that nontrivial
Xf (Θ̂ f ) and W(·, Θ̂ f ) exist, for (25) to be solvable. While this imposes a minimum performance
requirement on Ψ f , it enlarges the domain X0 for which the problem is solvable.

14. Computation and Performance Issues

14.1 Excitation of the closed-loop trajectories
Contrary to much of the adaptive control literature, including adaptive-MPC approaches such
as Mayne & Michalska (1993), the result of Theorem 13.11 does not depend on any auxiliary
excitation signal, nor does it require any assumptions regarding the persistency or quality of
excitation in the closed-loop behaviour.
Instead, any benefits to the identification which result from injecting excitation into the input
signal are predicted by (25c) and (25g), and thereby are automatically accounted for in the
posed optimization. In the particular case where Ψp ≡ Ψf ≡ Ψ, then the controller generated
by (25) will automatically inject the exact type and amount of excitation which optimizes the
cost J∗(x, Θ); i.e., the closed-loop behaviour (23) could be considered “optimally-exciting".
Unlike most a-priori excitation signal design methods, excess actuation is not wasted in trying
to identify parameters which have little impact on the closed-loop performance (as measured
by J∗).
As Ψp and Ψf deviate from Ψ, the convergence result of Theorem 13.11 remains valid. How-
ever, the non-smoothness of J∗(x, Θ) (with respect to both x and Θ) makes it difficult to quan-
tify the impact of these deviations on the closed-loop behaviour. Qualitatively, small changes
to Ψp or Ψf yielding increasingly conservative identification would generally result in the
optimal control solution injecting additional excitation to compensate for the de-sensitized
identifier. However, if the changes to Ψp or Ψf are sufficiently large such that the injection of
additional excitation is insufficient to prevent a discontinuous increase in J∗, then it is possi-
ble that the optimal solution may suddenly involve less excitation than previously, to instead
reduce actuation energy. Clearly this behaviour is the result of nonconvexities in the optimal
control problem (24), which is inherently a nonconvex problem even in the absence of the
adaptive mechanisms proposed here.

14.1.1 A Practical Design Approach for W and Xf

Proposition 14.1. Let {(Wi, Xi
f )} denote a finitely-indexed collection of terminal function candidates,

with indices i ∈ I , where each pair (Wi, Xi
f ) satisfies Criteria 13.9 and 13.10. Then

W(x, Θ) � min
i∈I

{Wi(x, Θ)}, Xf (Θ) �
⋃

i∈I
{Xi

f (Θ)} (27)

satisfy Criteria 13.9 and 13.10.

Using Proposition 14.1, it is clear that one approach to constructing W(·, ·) and Xf (·) is to use
a collection of pairs of the form

(
Wi(x, Θ), Xi

f (Θ)
)
=

{(
Wi(x), Xi

f

)
Θ ⊆ Θi

(+∞, ∅) otherwise

This collection can be obtained as follows:

1. Generate a finite collection {Θi} of sets covering Θo

• The elements of the collection can, and should, be overlapping, nested, and ranging
in size.

• Categorize {Θi} in a hierarchical (i.e., “tree") structure such that
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C13.9.3 k f (x, Θ) ∈ U, for all x ∈ Xf (Θ).

C13.9.4 Xf (Θ) and Σx(Θ) ⊆
{

Σo
x ∩ Xf (Θ)

}
are both strongly positively invariant with

respect to the differential inclusion ẋ ∈ f (x, k f (x, Θ), Θ,D).

C13.9.5 ∀x ∈ Xf (Θ), and denoting F � f (x, k f (x, Θ), Θ,D),

max
f∈F


L(x, k f (x, Θ))+ lim inf

v→ f
δ↓0

(
W(x+δv, Θ)−W(x,Θ)

δ

)≤ 0

Although condition C13.9.5 is expressed in a slightly non-standard form, it embodies the stan-
dard interpretation that W must be decreasing by at least an amount −L(x, k f (x, Θ)) along
all vectorfields in the closed-loop differential inclusion F ; i.e., W(x, Θ) is a robust-CLF (in
an appropriate non-smooth sense) on the domain Xf (Θ). Lyapunov stability involving LS-
continuous functions is thoroughly studied in Clarke et al. (1998), and provides a meaningful
sense in which W can be considered a “robust-CLF" despite its discontinuous nature.
It is important to note that for the purposes of Criterion 13.9, W(x, Θ) and Xf (Θ) are param-
eterized by the set Θ, but the criterion imposes no restrictions on their functional dependence
with respect to the Θ argument. This Θ-dependence is required to satisfy the following crite-
ria:

Criterion 13.10. For any Θ1, Θ2 ∈ cov {Θo} such that Θ1 ⊆ Θ2,

C13.10.1 Xf (Θ2) ⊆ Xf (Θ1)

C13.10.2 W(x, Θ1) ≤ W(x, Θ2), ∀x ∈ Xf (Θ2)

Designing W and Xf as functions of Θ satisfying Criteria 13.9 and 13.10 may appear pro-
hibitively complex; however, the task is greatly simplified by noting that neither criterion im-
poses any notion of continuity of W or Xf with respect to Θ. A constructive design approach
exploiting this fact is presented in Section 14.1.1.

13.2.4 Closed-loop Stability
Theorem 13.11 (Main result). Given system (19), target Σo

x, and penalty L satisfying Assumptions
13.1, 13.2, 13.3, 13.5, assume the functions Ψ, Ψp, Ψf , W and Xf are designed to satisfy Criteria
13.6, 13.7, 13.9, and 13.10. Furthermore, let X0 � X0(Θo) ⊆ X denote the set of initial states, with
uncertainty Θ(t0) = Θo, for which (25) has a solution. Then under (23), Σo

x is feasibly asymptotically
stabilized from any x0 ∈ X0.

Remark 13.12. As indicated by Assumption 13.5, the existence of an invariant target set Σo
x(Θo),

robust to the full parametric uncertainty Θo, is not required for Theorem 13.11 to hold. The identifier
Θ̂ f must be contained in a sufficiently small neighbourhood of (the worst-case) θ such that nontrivial
Xf (Θ̂ f ) and W(·, Θ̂ f ) exist, for (25) to be solvable. While this imposes a minimum performance
requirement on Ψ f , it enlarges the domain X0 for which the problem is solvable.

14. Computation and Performance Issues

14.1 Excitation of the closed-loop trajectories
Contrary to much of the adaptive control literature, including adaptive-MPC approaches such
as Mayne & Michalska (1993), the result of Theorem 13.11 does not depend on any auxiliary
excitation signal, nor does it require any assumptions regarding the persistency or quality of
excitation in the closed-loop behaviour.
Instead, any benefits to the identification which result from injecting excitation into the input
signal are predicted by (25c) and (25g), and thereby are automatically accounted for in the
posed optimization. In the particular case where Ψp ≡ Ψf ≡ Ψ, then the controller generated
by (25) will automatically inject the exact type and amount of excitation which optimizes the
cost J∗(x, Θ); i.e., the closed-loop behaviour (23) could be considered “optimally-exciting".
Unlike most a-priori excitation signal design methods, excess actuation is not wasted in trying
to identify parameters which have little impact on the closed-loop performance (as measured
by J∗).
As Ψp and Ψf deviate from Ψ, the convergence result of Theorem 13.11 remains valid. How-
ever, the non-smoothness of J∗(x, Θ) (with respect to both x and Θ) makes it difficult to quan-
tify the impact of these deviations on the closed-loop behaviour. Qualitatively, small changes
to Ψp or Ψf yielding increasingly conservative identification would generally result in the
optimal control solution injecting additional excitation to compensate for the de-sensitized
identifier. However, if the changes to Ψp or Ψf are sufficiently large such that the injection of
additional excitation is insufficient to prevent a discontinuous increase in J∗, then it is possi-
ble that the optimal solution may suddenly involve less excitation than previously, to instead
reduce actuation energy. Clearly this behaviour is the result of nonconvexities in the optimal
control problem (24), which is inherently a nonconvex problem even in the absence of the
adaptive mechanisms proposed here.

14.1.1 A Practical Design Approach for W and Xf

Proposition 14.1. Let {(Wi, Xi
f )} denote a finitely-indexed collection of terminal function candidates,

with indices i ∈ I , where each pair (Wi, Xi
f ) satisfies Criteria 13.9 and 13.10. Then

W(x, Θ) � min
i∈I

{Wi(x, Θ)}, Xf (Θ) �
⋃

i∈I
{Xi

f (Θ)} (27)

satisfy Criteria 13.9 and 13.10.

Using Proposition 14.1, it is clear that one approach to constructing W(·, ·) and Xf (·) is to use
a collection of pairs of the form

(
Wi(x, Θ), Xi

f (Θ)
)
=

{(
Wi(x), Xi

f

)
Θ ⊆ Θi

(+∞, ∅) otherwise

This collection can be obtained as follows:

1. Generate a finite collection {Θi} of sets covering Θo

• The elements of the collection can, and should, be overlapping, nested, and ranging
in size.

• Categorize {Θi} in a hierarchical (i.e., “tree") structure such that
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i. level 1 (i.e., the top) consists of Θo. (Assuming Θo ∈ {Θi} is w.l.o.g., since
W(·, Θo) ≡ +∞ and Xf (Θo) = ∅ satisfy Criteria 13.9 and 13.10)

ii. every set in the l’th vertical level is nested inside one or more “parents" on level
l − 1

iii. at every level, the “horizontal peers" constitute a cover12 of Θo.

2. For every set Θj ∈ {Θi}, calculate a robust CLF Wj(·) ≡ Wj(·, Θj), and approximate its
domain of attraction X

j
f ≡ X

j
f (Θ

j).

• Generally, Wj(·, Θj) is selected first, after which Xf (Θj) is approximated as either a
maximal level set of Wj(·, Θj), or as some other controlled-invariant set.

• Since the elements of {Θi} need not be unique, one could actually define multiple
(Wi, Xi

f ) pairs associated with the same Θj.

• While not an easy task, this is a very standard robust-control calculation. As such,
there is a wealth of tools in the robust control and viability literatures (see, for exam-
ple Aubin (1991)) to tackle this problem.

3. Calculate W(·, Θ) and Xf (Θ) online:

i. Given Θ, identify all sets that are active: I∗ = I∗(Θ) �
{

j | Θ ⊆ Θj
}

. Using the
hierarchy, test only immediate children of active parents.

ii. Given x, search over the active indices to identify I∗
f = I∗

f (x, I∗) � {j ∈ I∗ | x ∈ X
j
f }.

Define W(x, Θ) � minj∈I∗
f

Wj(x) by testing indices in I∗
f , setting W(x, Θ) = +∞ if

I∗
f = ∅.

Remark 14.2. Although the above steps assume that Θj is selected before X
j
f , an alternative approach

would be to design the candidates Wj(·) on the basis of a collection of parameter values θ̂ j. Briefly,
this could be constructed as follows:

1. Generate a grid of values {θi} distributed across Θo.

2. Design Wj(·) based on a certainty-equivalence model for θ̂ j (for example, by linearization).
Specify X

j
f (likely as a level set of Wj), and then approximate the maximal neighbourhood Θj of

θ̂ j such that Criterion 13.9 holds.

3. For the same (θ j, Wj) pair, multiple (Wj, X
j
f ) candidates can be defined corresponding to differ-

ent Θj.

14.2 Robustness Issues
One could argue that if the disturbance model D in (19) encompasses all possible sources
of model uncertainty, then the issue of robustness is completely addressed by the min-max
formulation of (25). In practice this is not realistic, since it is generally desirable to explicitly
consider significant disturbances only, or to exclude D entirely if Θ represents the dominant
uncertainty. The lack of nominal robustness to model error in constrained nonlinear MPC is
a well documented problem, as discussed in Grimm et al. (2004). In particular, Grimm et al.

12 specifically, the interiors of all peers must together constitute an open cover

(2003); Marruedo et al. (2002) establish nominal robustness (for “accurate-model", discrete-
time MPC) in part by implementing the constraint x ∈ X as a succession of strictly nested
sets. We present here a modification to this approach, that is relevant to the current adaptive
framework.
In addition to ensuring robustness of the controller itself, using methods similar to those men-
tioned above, it is equally important to ensure that the adaptive mechanism Ψ, including its
internal models Ψf and Ψp, exhibits at least some level of nominal robustness to unmodelled
disturbances. By Criterion 13.6.4, the online estimation must evolve in a nested fashion and
therefore the true θ must never be inadvertently excluded from the estimated uncertainty set.
Therefore, just as Z in (22) defined a best-case bound around which the identifiers in the pre-
vious sections could be designed, we present here a modification of (22) which quantifies the
type of conservatism required in the identification calculations for the identifiers to possess
nominal robustness.
For any γ, δ ≥ 0, and with τa � τ−a, we define the following modification of (22):

Zδ,γ(Θ, x[a,b], u[a,b]) � { θ∈Θ | B(ẋ, δ+γτa) ∩ f (B(x, γτa), u, θ,D) �= ∅, ∀τ} . (28)

Equation (28) provides a conservative outer-approximation of (22) such that Z ⊆ Zδ,γ. The
definition in (28) accounts for two different types of conservatism that can be introduced into
the identification calculations. First, the parameter δ > 0 represents a minimum tolerance
for the distance between actual derivative information from trajectory x[a,b] and the model
(19) when determining if a parameter value can be excluded from the uncertainty set. For
situations where the trajectory x[a,b] is itself a prediction, as is the case for the internal models
Ψf and Ψp, the parameter γ > 0 represents increasingly relaxed tolerances applied along the
length of the trajectory. Throughout the following we denote Zδ ≡ Zδ,0, with analogous
notations for Ψ, Ψf , and Ψp.
The following technical property of definition (28) is useful towards establishing the desired
robustness claim:

Claim 14.3. For any a<b< c, γ≥0, and δ≥δ′ ≥0, let x′
[a,c] be an arbitrary, continuous perturbation

of x[a,b] satisfying

i. ‖x′(τ)− x(τ)‖ ≤
{

γ(τ − a) τ ∈ [a, b]
γ(b − a) τ ∈ [b, c]

ii. ‖ẋ′(τ)− ẋ(τ)‖ ≤
{

δ − δ′ + γ(τ − a) τ ∈ [a, b]
γ(b − a) τ ∈ [b, c]

Then, Zδ,γ satisfies

Zδ,γ
(

Zδ′(Θ, x′[a,b], u[a,b]), x′[b,c], u[b,c]

)
⊆ Zδ,γ(Θ, x[a,c], u[a,c]). (29)

Based on (28), we are now able to detail sufficient conditions under which the stability claim of
Theorem 13.11 holds in the presence of small, unmodelled disturbances. For convenience, the
following proposition is restricted to the situation where the only discontinuities in W(x, Θ)
and Xf (Θ) are those generated by a switching mechanism (as per Prop. 14.1) between a set of
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j
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candidates {Wi(x, Θ), Xi
f (Θ)} that are individually continuous on x ∈ Xi

f (Θ) (i.e., a strength-
ening of C13.9.2). With additional complexity, the proposition can be extended to general
LS-continuous penalties W(x, Θ).

Proposition 14.4. Assume that the following modifications are made to the design in Section 13.2:

i. W(x, Θ) and Xf (Θ) are constructed as per Prop. 14.1, but with C13.9.2 strengthened to require
the individual Wi(x, Θ) to be continuous w.r.t x ∈ Xi

f (Θ).

ii. For some design parameter δx > 0, (26) and (27) are redefined as:

L̃(τ, x, u) =

{
L(x, u) (x, u)∈←−

B (X, δx
τ
T )× U

+∞ otherwise

W̃i(x, Θ) =

{
Wi(x) x∈←−

B (Xi
f (Θ), δx)

+∞ otherwise

iii. The individual sets Xi
f are specified such that there exists δ f > 0, for which C13.9.4 holds for every

inner approximation
←−
B (Xi

f (Θ), δ′x), δ′x ∈ [0, δx], where positive invariance is with respect to all

flows generated by the differential inclusion ẋ ∈ B( f (x, ki
f (x, Θ), Θ,D), δ f )

iv. Using design parameters δ > δ′ > 0 and γ > 0, the identifiers are modified as follows:

• Ψ in (23b) is replaced by Ψδ′ ≡ Ψδ′, 0

• Ψp and Ψf in (25) are replaced by Ψδ,γ
p and Ψδ,γ

f , respectively

where the new identifiers are assumed to satisfy C13.6, C13.7, and a relation of the form (29).

Then for any compact subset X̄0 ⊆ X0(Θo), there exists c∗ = c∗(γ, δx, δ f , δ, δ′, X̄0) > 0 such that,
for all x0 ∈ X̄0 and for all disturbances ‖d2‖ ≤ c ≤ c∗, the target Σo

x and the actual dynamics

ẋ = f (x, κmpc(x, Θ(t)), θ, d(t)) + d2(t), x(t0) = x0 (30a)

Θ(t) = Ψδ′ (Θo, x[t0,t], u[t0,t]) (30b)

are input-to-state stable (ISS); i.e., there exists αd ∈ K such that x(t) asymptotically converges to
B(Σo

x, αd(c)).

14.3 Example Problem
To demonstrate the versatility of our approach, we consider the following nonlinear system:

ẋ1 = −x1 +
∣∣2 sin(x1 + πθ1) + 1.5θ2 − x1 + x2

∣∣x1 + d1(t)

ẋ2 = 10 θ4aθ4bx1 (u + θ3) + d2(t)

The uncertainty D is given by |d1| , |d2| ≤ 0.1, and Θo by θ1, θ2, θ3 ∈ [−1, 1], and θ4a ∈
{−1,+1}, θ4b ∈ [0.5, 1]. The control objective is to achieve regulation of x1 to the set x1 ∈
[−0.2, 0.2], subject to the constraints X � {|x1| ≤ M1 and |x2| ≤ M2}, U � {|u| ≤ Mu}, with
M1, M2 ∈ (0,+∞] and Mu ∈ (1,+∞] any given constants. The dynamics exhibit several
challenging properties: i) state constraints, ii) nonlinear parameterization of θ1 and θ2, iii) po-
tential open-loop instability with finite escape, iv) uncontrollable linearization, v) unknown

sign of control gain, and vi) exogenous disturbances. This system is not stabilizable by any
non-adaptive approach (MPC or otherwise), and furthermore fits very few, if any, existing
frameworks for adaptive control.
One key property of the dynamics (which is arguably necessary for the regulation objective
to be well-posed) is that for any known θ ∈ Θ the target is stabilizable and nominally robust.
This follows by observing that the surface

s � 2 sin(x1 + πθ1) + 1.5θ2 − x1 + x2 = 0

defines a sliding mode for the system, with a robustness margin |s| ≤ 0.5 for |x1| ≥ 0.2. This
motivates the design choices:

Xf (Θ) � {x ∈ X |−M2 ≤Γ(x1, Θ)≤ x2 ≤Γ(x1, Θ)≤M2}

Γ � x1 − 1.5θ2 − 2 sin(x1 + πθ
avg
1 )− 2π(θ1−θ

avg
1 ) + 0.5

Γ � x1 − 1.5θ2 − 2 sin(x1 + πθ
avg
1 )− 2π(θ1−θ

avg
1 )− 0.5

where θi, θi denote upper and lower bounds corresponding to Θ ⊆ Θo, and θavg � θ+θ
2 . The

set Xf (Θ) satisfies C13.10 and is nonempty for any Θ such that θ2 − θ2 + π(θ1 − θ1) ≤ 0.5,
that defines minimum thresholds for the performance of Ψf and the amount of excitation in
solutions to (25).

It can be shown that |s| ≤ 0.5 ∀θ∈Θo
=⇒ |x1 − x2| ≤ 4, and that Xf (Θ) is control-invariant us-

ing u ∈ [−1, 1], as long as the sign θ4a is known. This motivates the definitions Σo
u �

[−1, 1], Σ1 = [−0.2, 0.2], Σ12 = [−4, 4], and Σo
x � {x | (x1, x1 − x2) ∈ Σ1 × Σ12}, plus

the modification of Xf (Θ) above to contain the explicit requirement Θ4a = {−1,+1} =⇒
Xf (Θ) = ∅. Then on x ∈ Xf (Θ), the cost functions W(x, Θ) � 1

2‖x1‖2
Σ1

and L(x, u) �
1
2

(
‖x1‖2

Σ1
+ ‖x1 − x2‖2

Σ12
+ ‖u‖2

Σo
u

)
satisfy all the claims of C13.9, since W ≡ L ≡ 0 on x ∈

Xf ∩ Σo
x, and on x ∈ Xf \ Σo

x one has:

Ẇ ≤ ‖x1‖Σ1

(
− 1

2

∣∣x1
∣∣+ 0.1

)
≤ − 1

2‖x1‖2
Σ1

≤ −L(x, u).

15. Conclusions

In this chapter we have demonstrated the methodology for adaptive MPC, in which the ad-
verse effects of parameter identification error are explicitly minimized using a robust MPC
approach. As a result, it is possible to address both state and input constraints within the
adaptive framework. Another key advantage of this approach is that the effects of future pa-
rameter estimation can be incorporated into the optimization problem, raising the potential
to significantly reduce the conservativeness of the solutions, especially with respect to design
of the terminal penalty. While the results presented here are conceptual, in that they are gen-
erally intractable to compute due to the underlying min-max feedback-MPC framework, this
chapter provides insight into the maximum performance that could be attained by incorpo-
rating adaptation into a robust-MPC framework.
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Ẇ ≤ ‖x1‖Σ1

(
− 1

2

∣∣x1
∣∣+ 0.1

)
≤ − 1

2‖x1‖2
Σ1

≤ −L(x, u).

15. Conclusions

In this chapter we have demonstrated the methodology for adaptive MPC, in which the ad-
verse effects of parameter identification error are explicitly minimized using a robust MPC
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16. Proofs for Section 13

16.1 Proof of Theorem 13.11
This proof will follow the so-called “direct method" of establishing stability by directly prov-
ing strict decrease of J∗(x(t), Θ(t)), for all x �∈ Σo

x. Stability analysis involving LS-continuous
Lyapunov functions (for example, (Clarke et al., 1998, Thm4.5.5)) typically involves the prox-
imal subgradient ∂p J∗ (a generalization of ∇J), which is a somewhat ambiguous quantity in
the context here given (23b). Instead, this proof exploits an alternative framework involv-
ing subderivates (generalized Dini-derivatives), which is equivalent by (Clarke et al., 1998,
Prop4.5.3). Together, the following two conditions can be shown sufficient to ensure decrease
of J∗, where F � f (x, κmpc(x, Θ(t)), Θ(t),D)

(i.) max
f∈F

−→
D J∗(x,Θ) � max

f∈F
lim inf

v→ f
δ↓0

J∗(x+δv,Θ(t+δ))−J∗(x,Θ(t))
δ < 0

(ii.) min
f∈F

←−
D J∗(x,Θ) � min

f∈F
lim sup

v→ f
δ↓0

J∗(x−δv,Θ(t−δ))−J∗(x,Θ(t))
δ > 0

i.e., J∗ is decreasing on both open future and past neighborhoods of t, for all t ∈ R, where
−→
D J∗,

←−
D J∗ ∈ [−∞,+∞].

To prove condition (i.), let xp, Lp, W p, Θ̂p correspond to any worst-case minimizing solution of
J∗(x(t), Θ(t)), defined on τ ∈ [0, T]. Additional notations which will be used: Tδ�T+δ, Θ̂p

T �
Θ̂ f (T), Θ̂p

Tδ
� Θ̂ f (Tδ); i.e., both sets represent solutions of the terminal identifier Ψ f , evaluated

along xp
[0,T] and xp

[0,Tδ ]
, respectively. Likewise, for an arbitrary argument S ∈ {Θ̂p

T , Θ̂p
Tδ
}, we

define W p
T(S)�W(xp(T), S) and W p

Tδ
(S)�W(xp(Tδ), S).

With the above notations, it can be seen that if the minimizing solution xp
[0,T] were extended

to τ ∈ [0, Tδ] by implementing the feedback up(τ) = k f (xp(τ), θ̂
p
T) on τ ∈ [T, Tδ] (i.e., with θ̂

p
T

fixed), then Criterion C13.9.5 guarantees the inequality

lim
δ↓0

1
δ

(
δL(xp

T , k f (xp
T , Θ̂p

T)) + Wp
Tδ
(Θ̂p

T)− Wp
T(Θ̂

p
T)

)
≤ 0.

Using this fact, the relationship (i.) follows from:

max
f∈F

−→
D J∗(x, Θ) = max

f∈F
lim inf

v→ f
δ↓0

1
δ

[
J∗(x+δv, Θ(t+δ))−

∫ T
0 Lpdτ−Wp

T(Θ̂
p
T)

]

≤ max
f∈F

lim inf
v→ f
δ↓0

1
δ

[
J∗(x+δv, Θ(t+δ))−

∫ δ
0 Lpdτ−

∫ T
δ Lpdτ−Wp

T(Θ̂
p
T)

−
(

δL(xp
T , k f (xp

T , Θ̂p
T)) + Wp

Tδ
(Θ̂p

T)− Wp
T(Θ̂

p
T)

) ]

≤ max
f∈F

lim inf
v→ f
δ↓0

1
δ

[
J∗(x+δv, Θ(t+δ))−

∫ T
δ Lpdτ−

∫ Tδ

T Lpdτ−Wp
Tδ
(Θ̂p

T)−δLp|δ
]

≤ max
f∈F

lim
δ↓0

1
δ

[
J∗(xp(δ), Θ̂p(δ))−

∫ Tδ

δ Lpdτ−Wp
Tδ
(Θ̂p

Tδ
)
]
−δLp|δ

≤ −L(x, κmpc(x, Θ))

The final inequalities are achieved by recognizing:

• the
∫

Lpdτ + Wp term is a (potentially) suboptimal cost on the interval [δ, Tδ], starting
from the point (xp(δ), Θ̂p(δ)).

• The relation Θ̂p
Tδ

⊆ Θ̂p
T holds by Criterion C13.6.4, which implies by Criterion C13.10.2

that W p
Tδ
(Θ̂p

Tδ
) ≤ Wp

Tδ
(Θ̂p

T)

• by C13.7, Θ(t+δ) � Ψ(Θ(t), x[0,δ], u[0,δ]) ⊆ Ψp(Θ(t), x[0,δ], u[0,δ]), along any locus con-
necting x and x + δv.

• the lim infv applies over all sequences {vk} → f , of which the particular sequence
{v(δk) =

xp(δk)−x
δ } is a member.

• there exists an arbitrary perturbation of the sequence {v(δk)} satisfying
Ψp(Θ(t), x[0,δ]) = Θ̂p(δ). The lim infv includes the limiting cost J∗(xp(δ), Θ̂p(δ)) of any
such perturbation of {v(δk)}.

• The cost J∗(xp(δ), Θ̂p(δ)) is optimal on [δ, Tδ], and passes through the same point (xp(δ), Θ̂p(δ))
as the trajectory defining the Lp and Wp expressions. Thus, the bracketed expression is
non-positive.

For the purposes of condition (ii.), let xv denote a solution to the prediction model (25b) for
initial condition xv(−δ) = x − δv. Condition (ii.) then follows from:

min
f∈F

←−
D J∗(x, Θ) = min

f∈F
lim sup

v→ f
δ↓0

1
δ

[∫ T−δ
−δ Lvdτ + Wv

T−δ(Θ̂
v
T−δ)− J∗(x, Θ)

]

≥ min
f∈F

lim sup
v→ f
δ↓0

1
δ

[
δLv|−δ +

∫ T−δ
0 Lvdτ + Wv

T−δ(Θ̂
v
T−δ)− J∗(x, Θ)

+
(

δL(xv
T−δ, k f (xv

T−δ, Θ̂v
T−δ)) + Wv

T(Θ̂
v
T−δ)− Wv

T−δ(Θ̂
v
T−δ)

) ]

≥ min
f∈F

lim sup
v→ f
δ↓0

1
δ

[
δLv|−δ +

∫ T
0 Lvdτ+Wv

T(Θ̂
v
T−δ)− J∗(x, Θ)

]

≥ min
f∈F

lim
δ↓0

1
δ

[
δLp|−δ +

∫ T
0 Lpdτ+Wp

T(Θ̂
p
T)− J∗(x, Θ)

]

≥ L(x, κmpc(x, Θ))

The above derivation made use of the fact that the reverse subderivate
←−
D W satisfies

min
f∈F

lim sup
v→ f
δ↓0

(
− L(x−δv, k f (x−δv, Θ))+

(
W(x−δv, Θ)−W(x,Θ)

δ

))
≥ 0

which follows from a combination of C13.9.5 and the LS-continuity of W.
Using the above inequalities for

←−
D J∗(x, Θ) and

−→
D J∗(x, Θ) together with Assumption 13.3, it

follows that J∗(t) is strictly decreasing on x �∈ Σo
x and non-increasing on x ∈ Σo

x. It follows
that limt→∞(x, Θ) must converge to an invariant subset of Σ0

x × cov {Θo}. Assumption 13.1
guarantees that such an invariant subset exists, since it implies ∃δ∗ > 0 such Σx(B(θ∗, δ∗)) �=
∅, with θ∗ the actual unknown parameter in (19). Continued solvability of (25) as (x(t), Θ(t))
evolve follows by: 1) x(τ) �∈ X0(Θ(τ)) ⇒ J∗(τ) = +∞, and 2) if x(t) ∈ X0(Θ(t)) and
x(t′) �∈ X0(Θ(t′)), then (t′ − t) ↓ 0 contradicts either condition (i.) at time t, or (ii.) at time t′.
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16. Proofs for Section 13

16.1 Proof of Theorem 13.11
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x. Stability analysis involving LS-continuous
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(i.) max
f∈F

−→
D J∗(x,Θ) � max

f∈F
lim inf

v→ f
δ↓0

J∗(x+δv,Θ(t+δ))−J∗(x,Θ(t))
δ < 0

(ii.) min
f∈F

←−
D J∗(x,Θ) � min

f∈F
lim sup

v→ f
δ↓0

J∗(x−δv,Θ(t−δ))−J∗(x,Θ(t))
δ > 0
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−→
D J∗,

←−
D J∗ ∈ [−∞,+∞].
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[0,T] and xp

[0,Tδ ]
, respectively. Likewise, for an arbitrary argument S ∈ {Θ̂p

T , Θ̂p
Tδ
}, we
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T(S)�W(xp(T), S) and W p

Tδ
(S)�W(xp(Tδ), S).
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p
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p
T
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Using this fact, the relationship (i.) follows from:
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The final inequalities are achieved by recognizing:

• the
∫

Lpdτ + Wp term is a (potentially) suboptimal cost on the interval [δ, Tδ], starting
from the point (xp(δ), Θ̂p(δ)).

• The relation Θ̂p
Tδ

⊆ Θ̂p
T holds by Criterion C13.6.4, which implies by Criterion C13.10.2

that W p
Tδ
(Θ̂p

Tδ
) ≤ Wp

Tδ
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T)

• by C13.7, Θ(t+δ) � Ψ(Θ(t), x[0,δ], u[0,δ]) ⊆ Ψp(Θ(t), x[0,δ], u[0,δ]), along any locus con-
necting x and x + δv.

• the lim infv applies over all sequences {vk} → f , of which the particular sequence
{v(δk) =

xp(δk)−x
δ } is a member.

• there exists an arbitrary perturbation of the sequence {v(δk)} satisfying
Ψp(Θ(t), x[0,δ]) = Θ̂p(δ). The lim infv includes the limiting cost J∗(xp(δ), Θ̂p(δ)) of any
such perturbation of {v(δk)}.

• The cost J∗(xp(δ), Θ̂p(δ)) is optimal on [δ, Tδ], and passes through the same point (xp(δ), Θ̂p(δ))
as the trajectory defining the Lp and Wp expressions. Thus, the bracketed expression is
non-positive.

For the purposes of condition (ii.), let xv denote a solution to the prediction model (25b) for
initial condition xv(−δ) = x − δv. Condition (ii.) then follows from:

min
f∈F

←−
D J∗(x, Θ) = min
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lim sup

v→ f
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1
δ

[∫ T−δ
−δ Lvdτ + Wv
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v
T−δ)− J∗(x, Θ)

]
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δ

[
δLv|−δ +
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v
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+
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δ
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δ
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The above derivation made use of the fact that the reverse subderivate
←−
D W satisfies

min
f∈F

lim sup
v→ f
δ↓0

(
− L(x−δv, k f (x−δv, Θ))+

(
W(x−δv, Θ)−W(x,Θ)

δ

))
≥ 0

which follows from a combination of C13.9.5 and the LS-continuity of W.
Using the above inequalities for

←−
D J∗(x, Θ) and

−→
D J∗(x, Θ) together with Assumption 13.3, it

follows that J∗(t) is strictly decreasing on x �∈ Σo
x and non-increasing on x ∈ Σo

x. It follows
that limt→∞(x, Θ) must converge to an invariant subset of Σ0

x × cov {Θo}. Assumption 13.1
guarantees that such an invariant subset exists, since it implies ∃δ∗ > 0 such Σx(B(θ∗, δ∗)) �=
∅, with θ∗ the actual unknown parameter in (19). Continued solvability of (25) as (x(t), Θ(t))
evolve follows by: 1) x(τ) �∈ X0(Θ(τ)) ⇒ J∗(τ) = +∞, and 2) if x(t) ∈ X0(Θ(t)) and
x(t′) �∈ X0(Θ(t′)), then (t′ − t) ↓ 0 contradicts either condition (i.) at time t, or (ii.) at time t′.
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16.2 Proof of Proposition 14.1
The fact that C13.10 holds is a direct property of the union and min operations for the closed
sets Xi

f , and the fact that the Θ-dependence of individual (Wi, Xi
f ) satisfies C13.10. For the

purposes of C13.9, the Θ argument is a constant, and is omitted from notation. Properties
C13.9.1 and C13.9.2 follow directly by (27), the closure of Xi

f , and (2). Define

I f (x)& = {i ∈ I | x ∈ Xi
f and W(x) = Wi(x)}

Denoting F i � f (x, ki
f (x), Θ,D), the following inequality holds for every i ∈ I f (x):

max
f i∈F i

lim inf
v→ f i

δ↓0

W(x+δv)−W(x)
δ ≤ max

f i∈F i
lim inf

v→ f i
δ↓0

Wi(x+δv)−W(x)
δ ≤ −L(x, ki

f (x))

It then follows that u = k f (x) � ki(x)
f (x) satisfies C13.9.5 for any arbitrary selection rule

i(x) ∈ I f (x) (from which C13.9.3 is obvious). Condition C13.9.4 follows from continuity of
the x(·) flows, and observing that by (26), C13.9.5 would be violated at any point of departure
from Xf .

16.3 Proof of Claim 14.3
By contradiction, let θ∗ be a value contained in the left-hand side of (29), but not in the right-
hand side. Then by (28), there exists τ ∈ [a, c] (i.e., τa ≡ (τ−a) ∈ [0, c−a]) such that

f (B(x, γτa), u, θ∗,D) ∩ B(ẋ, δ + γτa) = ∅ (31)

Using the bounds indicated in the claim, the following inclusions hold when τ ∈ [a, b]:

f (x′, u, θ∗,D) ⊆ f (B(x, γτa), u, θ∗,D) (32a)

B(ẋ′, δ′) ⊆ B(ẋ, δ + γτa) (32b)

Combining (32) and (31) yields

f (x′, u, θ∗,D) ∩ B(ẋ′, δ′) = ∅ =⇒ θ∗ 
∈ Zδ′(Θ, x′[a,τ], u[a,τ]) (33)

which violates the initial assumption that θ∗ is in the LHS of (29). Meanwhile, for τ ∈ [b, c]
the inclusions

f (B(x′, γτb), u, θ∗,D) ⊆ f (B(x, γτa), u, θ∗,D) (34a)

B(ẋ′, δ + γτb) ⊆ B(ẋ, δ + γτa) (34b)

yield the same contradictory conclusion:

f (B(x′, γτb), u, θ∗,D) ∩ B(ẋ′, δ + γτb) = ∅ (35a)

=⇒ θ∗ 
∈ Zδ,γ
(

Zδ′(Θ, x′[a,b], u[a,b]), x′[b,τ], u[b,τ]

)
(35b)

It therefore follows that the containment indicated in (29) necessarily holds.

16.4 Proof of Proposition 14.4
It can be shown that Assumption 13.3, together with the compactness of Σx, is sufficient for an
analogue of Claim ?? to hold (i.e., with J∗∞ interpreted in a min−max sense). In other words,
the cost J∗(x, Θ) satisfies

αl(‖x‖Σo
x
, Θ) ≤ J∗(x, Θ) ≤ αh(‖x‖Σo

x
, Θ)

for some functions αl , αh which are class-K∞ w.r.t. x, and whose parameterization in Θ satis-
fies αi(x, Θ1) ≤ αi(x, Θ2), Θ1 ⊆ Θ2. We then define the compact set X̄

↑
0 � {x | minΘ∈cov{Θo} J∗(x, Θ) <

maxx0∈X̄0
αh(‖x0‖Σo

x
, Θ0)}.

By a simple extension of (Khalil, 2002, Thm4.19), the ISS property follows if it can be shown
that there exists αc ∈ K such that J∗(x, Θ) satisfies

x∈ X̄
↑
0\B(Σo

x, αc(c))⇒
{

max f∈Fc

−→
D J∗(x, Θ) < 0

min f∈Fc

←−
D J∗(x, Θ) > 0

(36)

where Fc � B( f (x, κmpc(x, Θ(t)), Θ(t),D), c). To see this, it is clear that J decreases until
x(t) enters B(Σo

x, αc(c)). While this set is not necessarily invariant, it is contained within an
invariant, compact levelset Ω(c, Θ) � {x | J∗(x, Θ) ≤ αh(αc(c), Θ)}. By C13.6.4, the evolution
of Θ(t) in (30b) must approach some constant interior bound Θ∞, and thus limt→∞ x(t) ∈
Ω(c, Θ∞). Defining αd(c) � maxx∈Ω(c,Θ∞) ‖x‖Σo

x
completes the Proposition, if c∗ is sufficiently

small such that B(Σo
x, αd(c∗)) ⊆ X̄

↑
0.

Next, we only prove decrease in the forward direction, since the reverse direction follows
analogously, as it did in the proof of Theorem 13.11. Using similar procedure and notation as
the Thm 13.11 proof, xp

[0,T] denotes any worst-case prediction at (t, x, Θ), extended to [T, Tδ]

via k f , that is assumed to satisfy the specifications of Proposition 14.4. Following the proof of
Theorem 13.11,

max
f∈Fc∗

−→
D J∗(x, Θ) ≤ max

f∈F
lim inf

v→ f
δ↓0

1
δ

[
J∗(x+δv, Θ(t+δ))−

∫ Tδ

δ Lpdτ−Wp
Tδ
(Θ̂p

T)
]
−Lp|δ

≤ max
f∈F

lim inf
v→ f
δ↓0

1
δ

[
J∗(x+δv, Θ(t+δ))−

∫ Tδ

δ Lvdτ−Wv
Tδ
(Θ̂v

Tδ
)
]
−Lp|δ

+ 1
δ

[∫ Tδ

δ Lvdτ+Wv
Tδ
(Θ̂v

Tδ
)−

∫ Tδ

δ Lpdτ−Wp
Tδ
(Θ̂p

T)
]

(37)

where Lv, Wv denote costs associated with a trajectory xv
[0,Tδ ]

satisfying the following:

• initial conditions xv(0) = x, Θv(0) = Θ.

• generated by the same worst-case θ̂ and d(·) as xp
[0,Tδ ]

• dynamics of form (30) on τ ∈ [0, δ], and of form (25b),(25c) on τ ∈ [δ, Tδ], with the
trajectory passing through xv(δ) = x + δv, Θv

p(δ) = Θ(t + δ).

• the minκ in (25) is constrained such that κv(τ, xv, Θv) = κp(τ, xp, Θp); i.e., uv
[0,Tδ ]

≡
up
[0,Tδ ]

≡ u[0,Tδ ].
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16.2 Proof of Proposition 14.1
The fact that C13.10 holds is a direct property of the union and min operations for the closed
sets Xi

f , and the fact that the Θ-dependence of individual (Wi, Xi
f ) satisfies C13.10. For the

purposes of C13.9, the Θ argument is a constant, and is omitted from notation. Properties
C13.9.1 and C13.9.2 follow directly by (27), the closure of Xi

f , and (2). Define

I f (x)& = {i ∈ I | x ∈ Xi
f and W(x) = Wi(x)}

Denoting F i � f (x, ki
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It then follows that u = k f (x) � ki(x)
f (x) satisfies C13.9.5 for any arbitrary selection rule

i(x) ∈ I f (x) (from which C13.9.3 is obvious). Condition C13.9.4 follows from continuity of
the x(·) flows, and observing that by (26), C13.9.5 would be violated at any point of departure
from Xf .

16.3 Proof of Claim 14.3
By contradiction, let θ∗ be a value contained in the left-hand side of (29), but not in the right-
hand side. Then by (28), there exists τ ∈ [a, c] (i.e., τa ≡ (τ−a) ∈ [0, c−a]) such that

f (B(x, γτa), u, θ∗,D) ∩ B(ẋ, δ + γτa) = ∅ (31)

Using the bounds indicated in the claim, the following inclusions hold when τ ∈ [a, b]:

f (x′, u, θ∗,D) ⊆ f (B(x, γτa), u, θ∗,D) (32a)

B(ẋ′, δ′) ⊆ B(ẋ, δ + γτa) (32b)

Combining (32) and (31) yields

f (x′, u, θ∗,D) ∩ B(ẋ′, δ′) = ∅ =⇒ θ∗ 
∈ Zδ′(Θ, x′[a,τ], u[a,τ]) (33)

which violates the initial assumption that θ∗ is in the LHS of (29). Meanwhile, for τ ∈ [b, c]
the inclusions
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=⇒ θ∗ 
∈ Zδ,γ
(
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)
(35b)

It therefore follows that the containment indicated in (29) necessarily holds.

16.4 Proof of Proposition 14.4
It can be shown that Assumption 13.3, together with the compactness of Σx, is sufficient for an
analogue of Claim ?? to hold (i.e., with J∗∞ interpreted in a min−max sense). In other words,
the cost J∗(x, Θ) satisfies
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, Θ) ≤ J∗(x, Θ) ≤ αh(‖x‖Σo
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, Θ)

for some functions αl , αh which are class-K∞ w.r.t. x, and whose parameterization in Θ satis-
fies αi(x, Θ1) ≤ αi(x, Θ2), Θ1 ⊆ Θ2. We then define the compact set X̄

↑
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maxx0∈X̄0
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, Θ0)}.

By a simple extension of (Khalil, 2002, Thm4.19), the ISS property follows if it can be shown
that there exists αc ∈ K such that J∗(x, Θ) satisfies
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max f∈Fc

−→
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where Fc � B( f (x, κmpc(x, Θ(t)), Θ(t),D), c). To see this, it is clear that J decreases until
x(t) enters B(Σo

x, αc(c)). While this set is not necessarily invariant, it is contained within an
invariant, compact levelset Ω(c, Θ) � {x | J∗(x, Θ) ≤ αh(αc(c), Θ)}. By C13.6.4, the evolution
of Θ(t) in (30b) must approach some constant interior bound Θ∞, and thus limt→∞ x(t) ∈
Ω(c, Θ∞). Defining αd(c) � maxx∈Ω(c,Θ∞) ‖x‖Σo

x
completes the Proposition, if c∗ is sufficiently

small such that B(Σo
x, αd(c∗)) ⊆ X̄

↑
0.

Next, we only prove decrease in the forward direction, since the reverse direction follows
analogously, as it did in the proof of Theorem 13.11. Using similar procedure and notation as
the Thm 13.11 proof, xp

[0,T] denotes any worst-case prediction at (t, x, Θ), extended to [T, Tδ]

via k f , that is assumed to satisfy the specifications of Proposition 14.4. Following the proof of
Theorem 13.11,

max
f∈Fc∗

−→
D J∗(x, Θ) ≤ max

f∈F
lim inf

v→ f
δ↓0

1
δ

[
J∗(x+δv, Θ(t+δ))−

∫ Tδ

δ Lpdτ−Wp
Tδ
(Θ̂p

T)
]
−Lp|δ

≤ max
f∈F

lim inf
v→ f
δ↓0

1
δ

[
J∗(x+δv, Θ(t+δ))−

∫ Tδ

δ Lvdτ−Wv
Tδ
(Θ̂v

Tδ
)
]
−Lp|δ

+ 1
δ

[∫ Tδ

δ Lvdτ+Wv
Tδ
(Θ̂v

Tδ
)−

∫ Tδ

δ Lpdτ−Wp
Tδ
(Θ̂p

T)
]

(37)

where Lv, Wv denote costs associated with a trajectory xv
[0,Tδ ]

satisfying the following:

• initial conditions xv(0) = x, Θv(0) = Θ.

• generated by the same worst-case θ̂ and d(·) as xp
[0,Tδ ]

• dynamics of form (30) on τ ∈ [0, δ], and of form (25b),(25c) on τ ∈ [δ, Tδ], with the
trajectory passing through xv(δ) = x + δv, Θv

p(δ) = Θ(t + δ).

• the minκ in (25) is constrained such that κv(τ, xv, Θv) = κp(τ, xp, Θp); i.e., uv
[0,Tδ ]

≡
up
[0,Tδ ]

≡ u[0,Tδ ].
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Let Kf denote a Lipschitz constant of (19) with respect to x, over the compact domain X̄
↑
0×

Θo×D. Then, using the comparison lemma (Khalil, 2002, Lem3.4) one can derive the bounds

τ ∈ [0, δ] :

{
‖xv − xp‖ ≤ c

Kf
(eKf τ − 1)

‖ẋv − ẋp‖ ≤ c eKf τ
(38a)

τ ∈ [δ, Tδ] :

{
‖xv − xp‖ ≤ c

Kf
(eKf δ − 1) eKf (τ−δ)

‖ẋv − ẋp‖ ≤ c (eKf δ − 1) eKf (τ−δ)
(38b)

As δ ↓ 0, the above inequalities satisfy the conditions of Claim 14.3 as long as c∗ < min{γ, (δ−
δ′), γeKf T , γ

Kf
eKf T}, thus yielding

Θ̂v
f = Ψδ,γ

f (Ψδ′ (Θ, xv
[0,δ], u[0,δ]), xv

[δ,Tδ ]
, u[δ,Tδ ]) ⊆ Ψδ,γ

f (Θ, xp
[0,Tδ ]

, u[0,Tδ ]) = Θ̂p
f

as well as the analogue Θ̂v
p(τ) ⊆ Θ̂p

p(τ), ∀τ ∈ [0, Tδ].
Since xp

[0,T] is a feasible solution of the original problem from (t, x, Θ) with τ ∈ [0, T], it follows
for the new problem posed at time t+ δ that xv is feasible with respect to the appropriate inner
approximations of X and Xi∗

f (Θ̂
p
T) ⊆ Xf (Θ̂v

Tδ
) (where i∗ denotes an active terminal set for xp

f )
if

‖xv − xp‖ ≤
{

δ δx
T τ ∈ [δ, T]

δ δ f τ ∈ [T, Tδ]

which holds by (38) as long as c∗ < min{δ f , δx
T } e−Kf T . Using arguments from the proof

Theorem 13.11, the first term in (37) can be eliminated, leaving:

max
f∈Fc

−→
D J∗(x, Θ) ≤ max

f∈F
lim inf

v→ f
δ↓0

1
δ

[∫ Tδ

δ Lvdτ+Wv
Tδ
(Θ̂v

Tδ
)−

∫ Tδ

δ Lpdτ−Wp
Tδ
(Θ̂p

T)
]
−Lp|δ

≤ max
f∈F

lim inf
v→ f
δ↓0

1
δ

(∫ Tδ

δ KL‖xv − xp‖dτ + KW‖xv(T)− xp(T)‖−Lp|δ
)

≤ lim
δ↓0

(
c(eK f δ−1)

K f δ

[
KW + TKL

]
eK f T − Lp|δ

)

≤ −L(x, kMPC(x, Θ)) + c(KW + TKL)eK f T

< 0 ∀x ∈ X̄
↑
0\B(Σo

x, αc(c))

with αc ∈ K given by

αc(c) � γ−1
L

(
c (KW + TKL) eKf T

)

where KW is a Lipschitz constant of Wi∗ (x, Θ) over the compact domain X̄
↑
0 ∩Xi∗

f (Θ), maximal
over all Θ ∈ cov {Θo}. Likewise, KL is a Lipschitz constant of L(x, u) with respect to x,
maximal over u ∈ U.
This proves the forward case in (36), with the reverse case following similarly. As argued
previously, this is sufficient to yield the ISS property of (30) with respect to ‖d2‖ ≤ c ≤ c∗,
which completes the proof.

17. References

Adetola, V. & Guay, M. (2004). Adaptive receding horizon control of nonlinear systems, Proc.
IFAC Symposium on Nonlinear Control Systems, Stuttgart, Germany, pp. 1055–1060.

Aubin, J. (1991). Viability Theory, Systems & Control: Foundations & Applications, Birkhäuser,
Boston.

Bellman, R. (1952). The theory of dynamic programming, Proc. National Academy of Science,,
number 38, USA.

Bellman, R. (1957). Dynamic Programming, Princeton Press.
Bertsekas, D. (1995). Dynamic Programming and Optimal Control, Vol. I, Athena Scientific, Bel-

mont, MA.
Brogliato, B. & Neto, A. T. (1995). Practical stabilization of a class of nonlinear systems with

partially known uncertainties, Automatica 31(1): 145 – 150.
Bryson, A. & Ho, Y. (1969). Applied Optimal Control, Ginn and Co., Waltham, MA.
Cannon, M. & Kouvaritakis, B. (2005). Optimizing prediction dynamics for robust MPC,

50(11): 1892–1897.
Chen, H. & Allgöwer, F. (1998a). A computationally attractive nonlinear predictive control

scheme with guaranteed stability for stable systems, Journal of Process Control 8(5-
6): 475–485.

Chen, H. & Allgöwer, F. (1998b). A quasi-infinite horizon nonlinear model predictive control
scheme with guaranteed stability, Automatica 34(10): 1205–1217.

Chen, H., Scherer, C. & Allgöwer (1997). A game theoretic approach to nonlinear robust
receding horizon control of constrained systems, Proc. American Control Conference.

Clarke, F., Ledyaev, Y., Stern, R. & Wolenski, P. (1998). Nonsmooth Analysis and Control Theory,
Grad. Texts in Math. 178, Springer-Verlag, New York.

Corless, M. J. & Leitmann, G. (1981). Continuous state feedback guaranteeing uniform ulti-
mate boundedness for uncertain dynamic systems., IEEE Trans. Automat. Contr. AC-
26(5): 1139 – 1144.

Coron, J. & Rosier, L. (1994). A relation between continuous time-varying and discontinuous
feedback stabilization, Journal of Mathematical Systems, Estimation, and Control 4(1): 67–
84.

Cutler, C. & Ramaker, B. (1980). Dynamic matrix control - a computer control algorithm,
Proceedings Joint Automatic Control Conference, San Francisco, CA.

De Nicolao, G., Magni, L. & Scattolini, R. (1996). On the robustness of receding horizon control
with terminal constraints, IEEE Trans. Automat. Contr. 41: 454–453.

Findeisen, R., Imsland, L., Allgöwer, F. & Foss, B. (2003). Towards a sampled-data theory
for nonlinear model predictive control, in C. Kang, M. Xiao & W. Borges (eds), New
Trends in Nonlinear Dynamics and Control, and their Applications, Vol. 295, Springer-
Verlag, New York, pp. 295–313.
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Let Kf denote a Lipschitz constant of (19) with respect to x, over the compact domain X̄
↑
0×

Θo×D. Then, using the comparison lemma (Khalil, 2002, Lem3.4) one can derive the bounds

τ ∈ [0, δ] :

{
‖xv − xp‖ ≤ c

Kf
(eKf τ − 1)

‖ẋv − ẋp‖ ≤ c eKf τ
(38a)

τ ∈ [δ, Tδ] :

{
‖xv − xp‖ ≤ c

Kf
(eKf δ − 1) eKf (τ−δ)

‖ẋv − ẋp‖ ≤ c (eKf δ − 1) eKf (τ−δ)
(38b)

As δ ↓ 0, the above inequalities satisfy the conditions of Claim 14.3 as long as c∗ < min{γ, (δ−
δ′), γeKf T , γ

Kf
eKf T}, thus yielding

Θ̂v
f = Ψδ,γ

f (Ψδ′ (Θ, xv
[0,δ], u[0,δ]), xv

[δ,Tδ ]
, u[δ,Tδ ]) ⊆ Ψδ,γ

f (Θ, xp
[0,Tδ ]

, u[0,Tδ ]) = Θ̂p
f

as well as the analogue Θ̂v
p(τ) ⊆ Θ̂p

p(τ), ∀τ ∈ [0, Tδ].
Since xp

[0,T] is a feasible solution of the original problem from (t, x, Θ) with τ ∈ [0, T], it follows
for the new problem posed at time t+ δ that xv is feasible with respect to the appropriate inner
approximations of X and Xi∗

f (Θ̂
p
T) ⊆ Xf (Θ̂v

Tδ
) (where i∗ denotes an active terminal set for xp

f )
if

‖xv − xp‖ ≤
{

δ δx
T τ ∈ [δ, T]

δ δ f τ ∈ [T, Tδ]

which holds by (38) as long as c∗ < min{δ f , δx
T } e−Kf T . Using arguments from the proof

Theorem 13.11, the first term in (37) can be eliminated, leaving:

max
f∈Fc

−→
D J∗(x, Θ) ≤ max

f∈F
lim inf

v→ f
δ↓0

1
δ

[∫ Tδ

δ Lvdτ+Wv
Tδ
(Θ̂v

Tδ
)−

∫ Tδ

δ Lpdτ−Wp
Tδ
(Θ̂p

T)
]
−Lp|δ

≤ max
f∈F

lim inf
v→ f
δ↓0

1
δ

(∫ Tδ

δ KL‖xv − xp‖dτ + KW‖xv(T)− xp(T)‖−Lp|δ
)

≤ lim
δ↓0

(
c(eK f δ−1)

K f δ

[
KW + TKL

]
eK f T − Lp|δ

)

≤ −L(x, kMPC(x, Θ)) + c(KW + TKL)eK f T

< 0 ∀x ∈ X̄
↑
0\B(Σo

x, αc(c))

with αc ∈ K given by

αc(c) � γ−1
L

(
c (KW + TKL) eKf T

)

where KW is a Lipschitz constant of Wi∗ (x, Θ) over the compact domain X̄
↑
0 ∩Xi∗

f (Θ), maximal
over all Θ ∈ cov {Θo}. Likewise, KL is a Lipschitz constant of L(x, u) with respect to x,
maximal over u ∈ U.
This proves the forward case in (36), with the reverse case following similarly. As argued
previously, this is sufficient to yield the ISS property of (30) with respect to ‖d2‖ ≤ c ≤ c∗,
which completes the proof.
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1. Introduction    

With the abilities of handling constraints and performance of optimization, model based 
predictive control (MPC), especially linear MPC, has been extensively researched in theory 
and applied in practice since it was firstly proposed in 1970s (Qin & Badgwell, 2003). 
However, when used in systems with heavy nonlinearities, nonlinear MPC (NMPC) results 
often in problems of high computational cost or closed loop instability due to their 
complicated structure. This is the reason why the gaps between NMPC theory and its 
applications in reality are larger and larger, and why researches on NMPC theory absorbs 
numerous scholars (Chen & Shaw, 1982; Henson, 1998 ; Mayne, et al., 2000 ; Rawlings, 2000). 
When the closed loop stability of NMPC is concerned, some extra strategies is necessary, 
such as increasing the length of the predictive horizon, superinducing state constraints, or 
introducing Control Lyapunov Functions (CLF).  
That infinite predictive/control horizon (in this chapter, predictive horizon is assumed 
equal to control horizon) can guarantee the closed loop stability is natural with the 
assumption of feasibility because it implicates zero terminal state, which is a sufficient 
stability condition in many NMPC algorithm (Chen and Shaw, 1982). In spite of the 
inapplicability of infinite predictive horizon in real plants, a useful proposition originated 
from it makes great senses during the development of NMPC theory, i.e., a long enough 
predictive horizon can guarantee the closed loop stability for most systems (Costa & do Val, 
2003; Primbs & Nevistic, 2000). Many existing NMPC algorithm is on the basis of this result, 
such as Chen & Allgower (1998), Magni et al. (2001). Although long predictive horizon 
scheme is convenient to be realized, the difficulty to obtain the corresponding threshold 
value makes this scheme improper in many plants, especially in systems with complicated 
structure. For these cases, another strategy, superinducing state constraints or terminal 
constraints, is a good substitue. A typical predictive control algorithm using this strategy is 
the so called dual mode predictive control(Scokaert et al., 1999 ; Wesselowske and Fierro, 
2003 ; Zou et al., 2006), which is originated from the predictive control with zero terminal 
state constrains and can increase its the stability region greatly. CLF is a new introduced 
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concept to design nonlinear controller. It is firstly used in NMPC by Primbs et al. in 1999 to 
obtain two typical predictive control algorithm with guaranteed stability.  
Unfortunately, each approach above will result in huge computational burden 
simultaneously since they bring either more constraints or more optimizing variables. It is 
well known that the high computational burden of NMPC mainly comes from the online 
optimization algorithm, and it can be alleviated by decreasing the number of optimized 
variables. But this often deteriorates the closed loop stability due to the changed structure of 
optimal control problem at each time step.  
In a word, the most important problem during designing NMPC algorithm is that the 
stability and computational burden are deteriorated by each other. Another problem, 
seldom referred to but top important, is that the stability can only be guarangteed under the 
condition of perfect optimization algorithm that is impossible in reality. Thus, how to design 
a robustly stable and fast NMPC algorithm has been one of the most difficult problems that 
many researchers are pursued.  
In this chapter, we attempt to design a new stable NMPC which can partially solve the 
problems referred to above. CLF, as a new introduced concept to design nonlinear controller 
by directly using the idea of Lyapunov stability analysis, is used in this chapter to ensure the 
stability. Firstly, a generalized pointwise min-norm (GPMN) controller (a stable controller 
design method) based on the concept of CLF is designed. Secondly, a new stable NMPC 
algorithm, called GPMN enhanced NMPC (GPMN-ENMPC), is given through 
parameterized GPMN controller. The new algorithm has the following two advantages, 1) it 
can not only ensure the closed loop stability but also decrease the computational cost 
flexibly at the price of sacrificing the optimality in a certain extent; 2) a new tool of guide 
function is introduced by which some extra control strategy can be considered implicitly. 
Subsequently, the GPMN-ENMPC algorithm is generalized to obtain a robust NMPC 
algorithm with respect to the feedback linearizable system. Finally, extensive simulations 
are conducted and the results show the feasibility and validity of the proposed algorithm. 

 
2. Concept of CLF 

The nonlinear system under consideration in this chapter is in the form as: 
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where nx R  is state vector, mu R  is input vector, f(*) and g(*) are nonlinear smooth 
functions with f(0) = 0. U is the control constraint. 
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then V(x) is called a CLF of system (1). Moreover, if x can be chosen as Rn and V(x) satisfies 
the following condition, 

 

V(x)∞ ==> ||x||∞ 
 

then V(x) is called a global CLF of system (1).                                                                                 █ 
If system (1) has uncertainty terms, i.e., 
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where ω  Rq is external disturbance; l(*) and h(*) are pre-defined nonlinear smooth 
functions; y is the interested output. We have the following concept of robust version CLF – 
called H∞CLF, 
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For system (2), if there exists a C1 function V(x): x RnR+ {0}, such that 
1) V(0) = 0, V(x) > 0 if x ≠0; 
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then V(x) is called a local H∞CLF of system (2) in 
1 2c c  . Furthermore, V(x) is called a 

global H∞CLF if c1 can be chosen +∞ with V(x)∞ as |x|∞.  █ 
 
Definition I and II indicate that if we can obtain a CLF or H∞CLF of system (1) or (2), a 
‘permitted’ control set can be found at every ‘feasible’ state, and the control action inside the 
set can guarantee the closed loop stability of system (1) or input output finite gain L2 
stability of system (2). Subsequently, in order to complete the controller design, what one 
needs to do is just to find an approach to select a sequence of control actions from the 
‘permitted control set’, see Fig. 1.  
 

 
Fig. 1. Sketch of CLF, the shadow indicates the ‘permitted’ set of (x, u) ( , )V x u  along system (1)  
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CLF based nonlinear controller design method is also called direct method of Lyapunov 
function based controller design, and its difficulty is how to ensure the controller’s 
continuousness. Thus, most recently, researchers mainly pay their attentions to designing 
continuous CLF based controller, and several universal formulas have been revealed. 
Sontag’s formula (Sontag, 1989), for example, originated from the root calculation of 2nd-
order equation, can be written as Eq. (3) through slightly modification by Freeman (Freeman 
& Kokotovic, 1996b), 
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where q(x) is a pre-designed positive definite function.  
Pointwise Min-Norm (PMN) control is another well known CLF-based approach proposed 
by Freeman (Freeman & Kokotovic, 1996a), 
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where σ(x) is a pre-selected positive definite function. Controller (4) can also be explicitly 
denoted as (5) if the constraint set U can be selected big enough. 
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(3) and (5) provide two different methods on how to design continuous and stable controller 
based on CLF with respect to system (1). H∞CLF with respect to system (2) is a new given 
concept, and there are no methods can be used to designed robust controller based on it. 
Although the closed loop stability can be guaranteed using controller (3) or controller (5), 
selection of parameters q(x) or σ(x) is too difficult to be used in real applications. This is 
mainly because these parameters heavily influence some inconsistent closed loop 
performance simultaneously. Furthermore, if the known CLF is not global, the selection of 
q(x) and σ(x) will also influence stability margin of the closed loop systems, which makes 
them more difficult to be selected (Sontag, 1989; Freeman & Kokotovic, 1996a). In this 
chapter, we will firstly give a new CLF based controller design strategy, which is superior 
compared to the existing CLF based controller design methods referred to above.  
Furthermore, the most important is that this new strategy can be used in designing robustly 
stable and fast NMPC algorithm.  

 

 

3. GPMN-ENMPC 

3.1 CLF based GPMN controller 
Since q(x) and σ(x) in controller (3) and controller (5) are difficult to select, a guide function is 
proposed in this subsection into the PMN controller to obtain a new CLF based nonlinear 
controller with respect to system (1), in the following section, this controller will be 
generated with respect to system (2). In the new controller, σ(x) is only used to ensure the 
stability of the closed loop, while the other desired performance of the controller, for 
example tracking performance, can be guaranteed by the guide function, which, as new 
controller parameters, can be designed without deteriorating the stability. The following 
proposition is the main result of this subsection.  
 
Proposition I: 
If V(x) is a CLF of system (1) in Ωc and ξ(x): RnRm is a continuous guide function such that 
ξ(0) = 0, then, the following controller can stabilize system (1), 
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where σ(x) is a positive definite function of state, and ξ(x), called guide function, is a 
continuous state function. 
Proof of Proposition I: 
Let V(x) be a Lyapunov function candidate for system (1), then we have 
 
 ( ) ( ) ( ) ( ) ( )x xV x V x f x V x g x u   (7) 
 
Substitute Eq. (6) into (7), it is not difficult to obtain the following inequality, 
 

( ) ( ) ( ) ( ) ( ) ( )x xV x V x f x V x g x u x     
 

Because σ(x) is a positive definite function, proposition I is proved.                                           █ 
 
Controller (6) is called Generalized Pointwise Min-Norm (GPMN) controller. The difference 
between the proposed GPMN controller and the normal PMN controller of Eq. (4) can be 
illustrated in Fig.2: for the normal PMN algorithm (Fig. 2a), the controller output in each 
state point has the minimum ‘permitted’ norm (close to the state-axis as much as possible), 
while the GPMN controller’s output has nearest distance from the guide function ξ(x) (Fig. 
2b). Thus, ξ(x) in GPMN controller is actual a performance criterion which the controller is 
expected to pursue, while σ(x) dedicates only on providing the ‘permitted’ stable control 
input sets.  
Up to now, the design of new GPMN controller has been completed. However, in order to 
use a GPMN controller in reality or in NMPC algorithm, analytical form of the solution of 
Eq. (6) is necessary to be studied. 
Firstly, if there are no input constraints (or the input constraint sets are big enough), the 
analytical form of controller (6) can be obtained as follows, based on the projection theory, 
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Secondly, if there exist input constraints, the analytical expression of controller (6) might be 
very complicated or even inexistent. Thus in this subsection, only analytical form of 
controller (6) with a typical super ball input constraint is researched, i.e., input constraints is 
as  
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where (u1, … ,um) is the input vector, and r is the radius of the super ball. 
In order to obtain the analytical expression of Eq. (6) with input constraint as Eq. (9), we 
propose the following 4 steps (For a general control input constraint U, one can always find 
a maximal inscribed super ball B of it, and then use B replacing U before continuing the 
following processes):  
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Fig. 2b. the sketch of GPMN 
* the dashed line is the PMN controller in a) and the GPMN control in b); the solid line 
denotes the guide function of ξ(x). 
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Step1: For each state x, the following equation denotes a super plane in Rm (uRm). 
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Fig. 3b. 
* Sketch of the process to build the analytic GPMN controller 
 
Step2: From Eq. (11), the ‘permitted’ stable control input set KV(x) in controller (6) can be 
denoted as Fig. 3a, where the right figure (left figure) is the case that the super plane of (10) 
intersects (does not intersect) with the super ball (9), and the region filled by the dotted line 
is the ‘permitted’ stable control input set. For the case denoted by the left figure of Fig. 3a, it 
is easy to obtain a minimal distance from any point p to KV(x), and the corresponding point, 
i.e., the controller’s output, in KV(x) with minimal distance from p can also be obtained (the 
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point of intersection of the super ball (9) and the beeline connecting the centre of it and p). 
With respect to the case of the right figure, the maximally inscribed super ball B’ is used to 
replace KV(x) (see Fig. 3b). Thus, the same processes as above can be used to obtain the 
output of controller (6).  
Step 3: A new ‘permitted’ stable control input sets ( )VK x  is defined, 
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It is obvious that ( ) ( )V VK x K x , thus the stability of the closed loop can be ensured from 
Proposition I. 
Step 4: The analytical expression of GPMN controller with super-ball input constraint can 
thus be described as 
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where ξ(x) is the guide function of controller (6).                                                                           █ 
From the preceding procedure, it is evidently that Eq. (13) is the solution of Eq. (6) with 
KV(x) being placed by ( )VK x . 

 
3.2 GPMN-ENMPC 
In order to achieve a stable NMPC with reduced computational burden, we propose to use 
the GPMN to parameterize the control input sequence in NMPC. Assuming that ( , )x   is a 
function of state x, where θ is the vector of unknown parameters, the following NMPC can 
be formulated, 
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NMPC algorithm of (14) is different from the normal NMPC in the following aspect: in 
normal NMPC algorithm, one tries to optimize the continuous control profile of u (Mayne et 
al., 2000), while controller (14) tries to achieve good performance by optimizing the 
parameter vector θ. Thus, the computational cost of controller (14) dependents mainly on 
dimension of θ instead of that of control input profile in normal NMPC algorithm. The most 
important problem of the latter algorithm is that its computational cost increases rapidly 
with the control horizon. Based on (14), our new designed NMPC controller is introduced in 
the following proposition. 
 
Proposition II: 
Assuming V(x) is a known CLF of system (1), Ωc is the stability region of V(x), then 
controller (14) with the following GPMN controller ( , )x  , 
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(u(x,θ) is the GPMN control and ξ(x,θ) the guide function in Eq. (6)), is stable in Ωc. 
Furthermore, if V(x) is a global CLF, controller of (14) combined with (15) is stable over Rn. 
(14), combined with (15), is called GPMN-Enhanced NMPC (GPMN-ENMPC). 
Proof of Proposition II: 
At any time instant t, by assuming that θ* is the optimal parameters at t, control input at t 
can be represented as u(x,θ*). From Proposition I, we can conclude that the control inputs 
u(x,θ*) can guarantee a negative definite ( )V x . Due to the randomicity of t, GPMN-ENMPC 

actually makes the ( )V x  negative in any time instant, which means that the closed loop 
stability of controller (14) and (15) is guaranteed.                                                                          █ 

 
3.3 Selection of ξ(x,θ) 
Theoretically, ξ(x,θ) in (15) can be selected in any forms since it does not influence the closed 
loop stability, which is guaranteed by GPMN. However, it is natural that ξ(x,θ) will 
influence other closed loop performances of the GPMN-ENMPC except the stability.  
Since optimality is the main concern in designing NMPC algorithm, the Bellman’s 
Optimization Principle (BOP, Lewis & Syrmos, 1995) is used to design ξ(x,θ) in this sub-
section. 
In BOP, with the following quadratic cost function, 
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and J*(x0,θ) denoting the optimal value function of J(x0,θ) in state x0, the following controller 
of system (1) is optimal, 
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Unfortunately, in most applications, it is impossible to obtain J*(x*,θ).  
Based on the Stone-Weierstrass theorem (Brinkhuis & Tikhomirov, 2005), any continuous 
function defined in a bounded set can be uniformly approximated by a polynomial function, 
 

 
*

1
1
1

* 1
1 ; , , 1

, , 0
( , , ) ( , , ) ( , , )

n
n
n

J n
k n k v v n

v v
v v k

vvB x x J p x x
k k

  

  



     (18) 

where 

 

11

1; , , 1 1 1
1

1 1 2 1

( , , ) (1 ) ,
, ,

! ,
, , ! ! !( )!

n n

n

v k v vv
k v v n n n

n

n n n

k
p x x x x x x

v v

k k
v v v v v k v v

   
    
 

 
     


   



  

  (19) 

and  

 
*

1

*
, , 1 1

( 1, , )

lim ( , , ) ( , , )
n

i

J
k k n nk

i k

B x x J x x







    (20) 

 
Thus, take the coefficients of the Bernstein polynomial as the parameters θ, and select θ 
optimally using the NMPC algorithm, a ‘quasi-optimal’ function closed to J*(x*,θ) can be 
obtained. That means we can complete the design of GPMN-ENMPC algorithm by taking 
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where 

1 ,..., nv v , 1,..., nv v ≥ 0 and 1 ... nv v  ≤ k are the parameters to be optimized, k is the 

order of the Bernstein polynomial, and  
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It should be noted that the order of the Bernstein polynomial determines the consequent 
optimization cost, i.e., the higher the order is, the higher the computational cost is. About 
the GPMN-ENMPC, we have the following remarks: 
Remark-1: Selection of ξ(x,θ) as Eq. (21) provides a feasible way to complete the GPMN-
ENMPC of (20) and (21). By this way, the computation cost is controllable, namely, one can 
select the order of k to meet the CPU capability of a specific real system. This makes the 
GPMN-ENMPC feasible to be implemented.  

 

 

Remark-2: The selection of k does not influence the closed loop stability, which has already 
guaranteed by the GPMN scheme. But there still exist trade-offs between computation cost 
and the optimal performance which is determined by ξ(x,θ).  
 
Remark-3: Compared to nominal NMPC algorithm, the huge computational burden 
problem of GPMN-ENMPC algorithm is improved due to the following two reasons: 1) the 
dimension of optimizing variables is one of key elements which increase the computational 
burden of NMPC, while that of GPMN-ENMPC algorithm is independent of the predictive 
horizon; 2) online considerations of control input constraints are not necessary in GPMN-
ENMPC algorithm since it can be dealt with offline during designing GPMN controller.     

 
3.4 The Feasibility of GPMN-ENMPC 
Another important problem, normally called the feasibility problem of NMPC, is that 
general NMPC algorithm may not guarantee that a control set always exists to meet all of 
the input and state constraints, while the proposed GPMN-ENMPC can guarantee such a 
control sequence always exists. This is because for any θ, from the proposition-I, one can 
always obtain a stable GPMN controller, i.e., u(x,θ) of (6) meeting all input and state 
constraints. Therefore, by Eq. (14) and (15), there will always exist a feasible control  
u = ( , )x  , and the task left is just to find an optimal parameter set of θ to minimize the cost 
function of J(x,θ) in Eq. (14). 

 
4. H∞ GPMN-ENMPC  

In section 3, GPMN-ENMPC algorithm is introduced with respect to system (1). In this 
section, it will be generalized to deal with the disturbed system as Eq. (2). Firstly, an H∞ 
controller with partially known disturbances is given, and then it is used to design 
H∞GPMN controller, which followed by the designing process of H∞GPMN-ENMPC. 

 
4.1 H∞ Control With Partially Known Disturbances 
Suppose the following two assumptions are satisfied with respect to system (2), 
 
Assumption I:  
System (2) is static feedback linearizable, i.e., there exists a state feedback controller u = k(x) 
such that (2) can be transformed into a linear system without considering ω. 

 
Assumption II: 
The disturbances of system (2) are partially obtainable, i.e., the variables ω can be used to 
construct controller.          
 
Assumption II is reasonable because the uncertainty information ω can often be measured or 
estimated in reality (He & Han, 2007; Chen, 2004). Moreover, the tracking problem of 
general nonlinear system, where ω is composed of known desired trajectory, can also be 
modeled as Eq. (2). However, the higher order derivative of the disturbances with respective 
to time is often difficult to be obtained due to the heavy additive noise. Thus, the 
disturbances are often ‘partially obtainable’.  
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the GPMN-ENMPC, we have the following remarks: 
Remark-1: Selection of ξ(x,θ) as Eq. (21) provides a feasible way to complete the GPMN-
ENMPC of (20) and (21). By this way, the computation cost is controllable, namely, one can 
select the order of k to meet the CPU capability of a specific real system. This makes the 
GPMN-ENMPC feasible to be implemented.  

 

 

Remark-2: The selection of k does not influence the closed loop stability, which has already 
guaranteed by the GPMN scheme. But there still exist trade-offs between computation cost 
and the optimal performance which is determined by ξ(x,θ).  
 
Remark-3: Compared to nominal NMPC algorithm, the huge computational burden 
problem of GPMN-ENMPC algorithm is improved due to the following two reasons: 1) the 
dimension of optimizing variables is one of key elements which increase the computational 
burden of NMPC, while that of GPMN-ENMPC algorithm is independent of the predictive 
horizon; 2) online considerations of control input constraints are not necessary in GPMN-
ENMPC algorithm since it can be dealt with offline during designing GPMN controller.     

 
3.4 The Feasibility of GPMN-ENMPC 
Another important problem, normally called the feasibility problem of NMPC, is that 
general NMPC algorithm may not guarantee that a control set always exists to meet all of 
the input and state constraints, while the proposed GPMN-ENMPC can guarantee such a 
control sequence always exists. This is because for any θ, from the proposition-I, one can 
always obtain a stable GPMN controller, i.e., u(x,θ) of (6) meeting all input and state 
constraints. Therefore, by Eq. (14) and (15), there will always exist a feasible control  
u = ( , )x  , and the task left is just to find an optimal parameter set of θ to minimize the cost 
function of J(x,θ) in Eq. (14). 

 
4. H∞ GPMN-ENMPC  

In section 3, GPMN-ENMPC algorithm is introduced with respect to system (1). In this 
section, it will be generalized to deal with the disturbed system as Eq. (2). Firstly, an H∞ 
controller with partially known disturbances is given, and then it is used to design 
H∞GPMN controller, which followed by the designing process of H∞GPMN-ENMPC. 

 
4.1 H∞ Control With Partially Known Disturbances 
Suppose the following two assumptions are satisfied with respect to system (2), 
 
Assumption I:  
System (2) is static feedback linearizable, i.e., there exists a state feedback controller u = k(x) 
such that (2) can be transformed into a linear system without considering ω. 

 
Assumption II: 
The disturbances of system (2) are partially obtainable, i.e., the variables ω can be used to 
construct controller.          
 
Assumption II is reasonable because the uncertainty information ω can often be measured or 
estimated in reality (He & Han, 2007; Chen, 2004). Moreover, the tracking problem of 
general nonlinear system, where ω is composed of known desired trajectory, can also be 
modeled as Eq. (2). However, the higher order derivative of the disturbances with respective 
to time is often difficult to be obtained due to the heavy additive noise. Thus, the 
disturbances are often ‘partially obtainable’.  
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Based on assumption I, system (2) can be changed into the following equations through 
some coordination transformation,  
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where z = [z1,z2,…,zn]T is the new state variable. 
An H∞ robust controller for system (23) can be designed based on the following Theorem, 
 
Theorem I: 
Consider system (23), if there exists a control u = u1(z) and a radially unbounded function 
V(x) to satisfy the following inequality, 
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Then, controller      
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can make the system (23) finite gain L2 stable from Δ+ρ to y, and the gain is less than or 
equal to γ. ρ is a new defined signal to further attenuate the disturbances.                                 
Proof of Theorem I: 
Define new variables, 
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Then, system (23) can be written as 
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where  T1 2 nz = z z z . Computing the HJI equation (Khalil, 2002) of system (27) 

with respect to ( )V z , we have, 
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Thus, combine controller (25) and Eq. (29), we have, 
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Based on theorem 5.5 in reference (Khalil, 2002), controller (25) can make system (23) finite 
gain L2 stable from Δ+ρ to y, and the L2 gain is less than or equal to γ.                                       █ 
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Based on assumption I, system (2) can be changed into the following equations through 
some coordination transformation,  
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where z = [z1,z2,…,zn]T is the new state variable. 
An H∞ robust controller for system (23) can be designed based on the following Theorem, 
 
Theorem I: 
Consider system (23), if there exists a control u = u1(z) and a radially unbounded function 
V(x) to satisfy the following inequality, 
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Then, controller      
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can make the system (23) finite gain L2 stable from Δ+ρ to y, and the gain is less than or 
equal to γ. ρ is a new defined signal to further attenuate the disturbances.                                 
Proof of Theorem I: 
Define new variables, 
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Then, system (23) can be written as 
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Thus, combine controller (25) and Eq. (29), we have, 
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Based on theorem 5.5 in reference (Khalil, 2002), controller (25) can make system (23) finite 
gain L2 stable from Δ+ρ to y, and the L2 gain is less than or equal to γ.                                       █ 
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Furthermore, ρ can be used to further attenuate the disturbances which are partially 
obtainable from assumption II by the following equation, 
 

 
( )( ) ( )
( )
B ss s
A s

     (31) 

 
where s is the Laplace operator. Thus, the new external disturbances Δ+ρ can be denoted as, 
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From Eq. (32), proper A(s) and B(s) is effective for attenuating the influence of external 
disturbances on the closed loop system. Thus, we have designed an H∞ controller (25) and 
(31) with partially known uncertainty information. 

 
4.2 H∞ GPMN Controller Based on Control Lyapunov Functions 
In this sub-section, by using the concept of H∞CLF, H∞ GPMN controller is designed as 
following proposition,  
 
Proposition III: 
If V(x) is a local H∞CLF of system (23), and ξ(x): RnRm is a continuous guide function such 
that ξ(0) = 0, then, the following controller, called H∞GPMN, can make system (23) finite 
gain L2 stable from    to output y, 
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█ 
Proof of Proposition III can be easily done based on the definition of finite gain L2 stability 
and H∞CLF. The analytical form of controller (33) can also be obtained as steps in section 3. 
Here only the analytical form of controller without input constraints is given, 

 
2

1 1[ ( ) ]
22 0( )

0

T T T T T
x x x

H
T T

x x

V f ll V g h h g V
u x V gg V

 
 

 



       

 

  (35) 

where  
; ( ); ( ); ( );

( ); ( ); ( ); ( )
x x

x x

V f V g f f x g g x x
x V V x h h x l l x

    
 
     

   
 

 

It is not difficult to show that H∞GPMN satisfies inequality (24) of Theorem I, thus, it can be 
used as u1(z) in controller (25) to bring the advantages of H∞GPMN controller to the robust 
controller in section 4.1. 

 
4.3 H∞GPMN-ENMPC 
As far as the external disturbances are concerned, nominal model based NMPC, where the 
prediction is made through a nominal certain system model, is an often used strategy in 
reality. And the formulation of it is very similar to non-robust NMPC, so dose the GPMN-
ENMPC.  
 

 
Fig. 4. Structure of new designed RNRHC controller 
 
However, for disturbed nonlinear system like Eq. (23), GPMN-ENMPC algorithm can 
hardly be used in real applications due to weak robustness. Thus, in this subsection, we will 
combine it to the robust controller from sub-section 4.1 and sub-section 4.2 to overcome the 
drawbacks originated from both GPMN-ENMPC algorithm and the robust controller (25) 
and (35). The structure of the new parameterized H∞GPMN-ENMPC algorithm based on 
controller (25) and (35) is as Fig. 4.  
Eq. (36) is the new designed H∞GPMN-ENMPC algorithm. Compared to Eq. (14), it is easy 
to find out that the control input in the H∞GPMN-ENMPC algorithm has a pre-defined 
structure given in section 4.1 and 4.2.  
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Furthermore, ρ can be used to further attenuate the disturbances which are partially 
obtainable from assumption II by the following equation, 
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From Eq. (32), proper A(s) and B(s) is effective for attenuating the influence of external 
disturbances on the closed loop system. Thus, we have designed an H∞ controller (25) and 
(31) with partially known uncertainty information. 

 
4.2 H∞ GPMN Controller Based on Control Lyapunov Functions 
In this sub-section, by using the concept of H∞CLF, H∞ GPMN controller is designed as 
following proposition,  
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Proof of Proposition III can be easily done based on the definition of finite gain L2 stability 
and H∞CLF. The analytical form of controller (33) can also be obtained as steps in section 3. 
Here only the analytical form of controller without input constraints is given, 
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It is not difficult to show that H∞GPMN satisfies inequality (24) of Theorem I, thus, it can be 
used as u1(z) in controller (25) to bring the advantages of H∞GPMN controller to the robust 
controller in section 4.1. 

 
4.3 H∞GPMN-ENMPC 
As far as the external disturbances are concerned, nominal model based NMPC, where the 
prediction is made through a nominal certain system model, is an often used strategy in 
reality. And the formulation of it is very similar to non-robust NMPC, so dose the GPMN-
ENMPC.  
 

 
Fig. 4. Structure of new designed RNRHC controller 
 
However, for disturbed nonlinear system like Eq. (23), GPMN-ENMPC algorithm can 
hardly be used in real applications due to weak robustness. Thus, in this subsection, we will 
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controller (25) and (35) is as Fig. 4.  
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structure given in section 4.1 and 4.2.  

Uncertain No- 
nlinear System 

Feedback lineari- 
zation z=T(x) 

Robust control- 
er with partially  
obtainable distu- 

rbances (25) 

RGPMN 

H∞GPMN controller 
(35) 

z 

GPMN-ENMPC 

θ* 

u1(z) 

*( , )
( )H

x
u z
 
  

( , ) ( )
H
xu z 
  

x 

x 

Feedback lineari- 
zation z=T(x) 

z 



Model Predictive Control74

 

 

* *

*

( , )

arg min ( , )

( , ) ( ( ), ( ))

. . ( ) ( )
( ) ( , )

H

u U

t T

t

H

u u x

J x u

J x u l x u d

s t x f x g x u
u t u x





  









 









 






  (36)  

 
5. Practical Considering  

Both GPMN-ENMPC algorithm and H∞GPMN-ENMPC algorithm can be divided into two 
processes, including the implementation process and the optimization process as Fig.5. 
 

 
Fig. 5. The process of (H∞)GPMN-ENMPC 
 
The implementation process and the optimization process in Fig. 5 are independent.  In 
implementation process, the (H∞)GPMN scheme is used to ensure the closed loop (L2) 
stability, and in the optimization process, the optimization algorithm is responsible to 
improving the optimality of the controller. And the interaction of the two processes is 
realized through the optimized parameter θ* (from optimization process to implementation 
process) and the measured states (form implementation process to optimization process). 

 
5.1 Time Interval Between Two Neighboring Optimizing Process 
Sample time in controller implemented using computer is often very short, especially in 
mechatronic system. This is very challenging to implement complicated algorithm, such as 
GPMN-ENMPC in this chapter. Fortunately, the optimization process of the new designed 
controller will end up with a group of parameters which are used to form a stable 
(H∞)GPMN controller, and the optimization process itself does not influence the closed loop 
stability at all. Thus, theoretically, any group of optimized parameters can be used for 
several sample intervals without destroying the closed loop stability. 
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Fig.6 denotes the scheduling of (H∞)GPMN-ENMPC algorithm. In Fig.6, t is the current time 
instant; T is the prediction horizon; TS is the sample time of the (H∞)GPMN controller; and TI 
is the duration of every optimal parameter θ*(t), i.e., the same parameter θ* is used to 
implement the (H∞)GPMN controller from time t to time t+TI. 
 

 
Fig. 6. Scheduling of ERNRHC 

 
5.2 Numerical Integrator 
How to predict the future’s behavior is very important during the implementation of any 
kind of MPC algorithms. In most applications, the NMPC algorithm is realized by 
computers. Thus, for the continuous systems, it will be difficult and time consuming if some 
accurate but complicated numerical integration methods are used, such as Newton-Cotes 
integration and Gaussian quadratures, etc. In this chapter, we will discretize the continuous 
system (1) as follows (take system (1) as an example), 
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where To is the discrete sample time. Thus, the numerical integrator can be approached by 
the operation of cumulative addition. 

 
5.3 Index Function 
Replace x(kTo) with x(k), the index function can be designed as follows, 
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where k0 denotes the current time instant; N is the predictive horizon with N=Int(T/To) (here 
Int(*) is the operator to obtain a integer nearest to *); θc is the parameter vector to be 
optimized at current time instant; and θl* is the last optimization result; Q, Z, R are constant 
matrix with Q>0, Z>0, and R≥0. 
The new designed item θlT*Zθl* is used to reduce the difference between two neighboring 
optimized parameter vector, and improve the smoothness of the optimized control inputs u. 

  

T 

TI 
TS 

          

t 



A new kind of nonlinear model predictive control  
algorithm enhanced by control lyapunov functions 75

 

 

* *

*

( , )

arg min ( , )

( , ) ( ( ), ( ))

. . ( ) ( )
( ) ( , )

H

u U

t T

t

H

u u x

J x u

J x u l x u d

s t x f x g x u
u t u x





  









 









 






  (36)  

 
5. Practical Considering  

Both GPMN-ENMPC algorithm and H∞GPMN-ENMPC algorithm can be divided into two 
processes, including the implementation process and the optimization process as Fig.5. 
 

 
Fig. 5. The process of (H∞)GPMN-ENMPC 
 
The implementation process and the optimization process in Fig. 5 are independent.  In 
implementation process, the (H∞)GPMN scheme is used to ensure the closed loop (L2) 
stability, and in the optimization process, the optimization algorithm is responsible to 
improving the optimality of the controller. And the interaction of the two processes is 
realized through the optimized parameter θ* (from optimization process to implementation 
process) and the measured states (form implementation process to optimization process). 

 
5.1 Time Interval Between Two Neighboring Optimizing Process 
Sample time in controller implemented using computer is often very short, especially in 
mechatronic system. This is very challenging to implement complicated algorithm, such as 
GPMN-ENMPC in this chapter. Fortunately, the optimization process of the new designed 
controller will end up with a group of parameters which are used to form a stable 
(H∞)GPMN controller, and the optimization process itself does not influence the closed loop 
stability at all. Thus, theoretically, any group of optimized parameters can be used for 
several sample intervals without destroying the closed loop stability. 

Computing control input 
based on (H∞)GPMN scheme 

Computing the optimal 
parameter θ* by solving an 
optimal control problem 

Optimized parameter θ* 

Implementation process 

Current state xt 
 

Optimization process 

 

Fig.6 denotes the scheduling of (H∞)GPMN-ENMPC algorithm. In Fig.6, t is the current time 
instant; T is the prediction horizon; TS is the sample time of the (H∞)GPMN controller; and TI 
is the duration of every optimal parameter θ*(t), i.e., the same parameter θ* is used to 
implement the (H∞)GPMN controller from time t to time t+TI. 
 

 
Fig. 6. Scheduling of ERNRHC 

 
5.2 Numerical Integrator 
How to predict the future’s behavior is very important during the implementation of any 
kind of MPC algorithms. In most applications, the NMPC algorithm is realized by 
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where k0 denotes the current time instant; N is the predictive horizon with N=Int(T/To) (here 
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6. Numerical Examples 

6.1 Example1 (GPMN-ENMPC without control input constrains) 
Consider the following pendulum equation (Costa & do Va, 2003), 
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A local CLF of system (39) can be given as, 
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The normal PMN control can be designed according to (5) as, 
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Given initial state x0 = [x1,x2]T = [-1,2]T, and desired state xd = [0,0]T, time response of the 
closed loop for PMN controller is shown in Fig. 7 in solid line. It can be seen that the closed 
loop with PMN controller (42) has a very low convergence rate for state x1. This is mainly 
because the only regulable parameter to change the closed loop performance is σ(x), which is 
difficult to be properly selected due to its great influence on the stability region.  
To design GPMN-ENMPC, two different guide functions are selected based on Eq. (21),  
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CLF V(x) and σ(x) are given in Eq. (40) and Eq. (41), and others conditions in GPMN-
ENMPC are designed as follows, 
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Integral time interval To in Eq. (37) is 0.1s. Genetic algorithm (GA) in MATLAB toolbox is 
used to solve the online optimization problem. Time response of GPMN-ENMPC algorithm 
with different predictive horizon T and approaching order are presented in Fig. 7, where the 
dotted line denotes the case of T = 0.6s with guide function (43), and the dashed line is the 
case of T = 1.5s with guide function (44). From Fig. 7, it can be seen that the convergence 
performance of the proposed NMPC algorithm is better than PMN controller, and both the 
prediction horizon and the guide function will result in the change of the closed loop 
performance.  
The improvement of the optimality is the main advantage of MPC compared with others 
controller. In view of this, we propose to estimate the optimality by the following index 
function,  
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Fig. 7. Time response of different controller, where the (a,b) indicates that the order of 
( , )x   is a, and the predictive horizon b 

 
The comparison results are summarized in Table 1, from which the following conclusions 
can be obtained, 1) GPMN-ENMPC has better optimizing performance than PMN controller 
in terms of optimization. 2) In most cases, GPMN-ENMPC with higher order ξ(x,θ) will 
usually result in a smaller cost than that with lower order ξ(x,θ). This is mainly because 
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6. Numerical Examples 

6.1 Example1 (GPMN-ENMPC without control input constrains) 
Consider the following pendulum equation (Costa & do Va, 2003), 
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Integral time interval To in Eq. (37) is 0.1s. Genetic algorithm (GA) in MATLAB toolbox is 
used to solve the online optimization problem. Time response of GPMN-ENMPC algorithm 
with different predictive horizon T and approaching order are presented in Fig. 7, where the 
dotted line denotes the case of T = 0.6s with guide function (43), and the dashed line is the 
case of T = 1.5s with guide function (44). From Fig. 7, it can be seen that the convergence 
performance of the proposed NMPC algorithm is better than PMN controller, and both the 
prediction horizon and the guide function will result in the change of the closed loop 
performance.  
The improvement of the optimality is the main advantage of MPC compared with others 
controller. In view of this, we propose to estimate the optimality by the following index 
function,  
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The comparison results are summarized in Table 1, from which the following conclusions 
can be obtained, 1) GPMN-ENMPC has better optimizing performance than PMN controller 
in terms of optimization. 2) In most cases, GPMN-ENMPC with higher order ξ(x,θ) will 
usually result in a smaller cost than that with lower order ξ(x,θ). This is mainly because 



Model Predictive Control78

 

higher order ξ(x,θ) indicates larger inherent optimizing parameter space. 3) A longer 
prediction horizon will usually be followed by a better optimal performance. 
 

           J 

ENMPC PMN 

x0 = (-1,2) x0 = (0.5,1) x0 = (-
1,2) 

x0 = 
(0.5,1) 

k = 1 k = 2 K = 
1 

k = 
2 

---- 

T=0.6 29.39 28.87 6.54 6.26 +∞ +∞ 
T=0.8 23.97 23.83 5.02 4.96 +∞ +∞ 
T=1.0 24.08 24.07 4.96 4.90 +∞ +∞ 
T=1.5 26.31 24.79 5.11 5.28 +∞ +∞ 

Table 1. the cost value of different controller 
* k is the order of Bernstein polynomial used to approach the optimal value function; T is the 
predictive horizon; x0 is the initial state 
 
Another advantage of the GPMN-ENMPC algorithm is the flexibility of the trade offs 
between the optimality and the computational time. The computational time is influenced 
by the dimension of optimizing parameters and the parameters of the optimizing algorithm, 
such as the maximum number of iterations and the size of the population (the smaller these 
values are selected, the less the computational cost is). However, it will be natural that the 
optimality maybe deteriorated to some extent with the decreasing of the computational 
burden. In preceding paragraphs, we have researched the optimality of GPMN-ENMPC 
algorithm with different optimizing parameters, and now the optimality comparisons 
among the closed loop systems with different GA parameters will be done. And the results 
are listed in Table 2, from which the certain of the optimality loss with the changing of the 
optimizing algorithm’s parameters can be observed. This can be used as the criterion to 
determine the trade-off between the closed loop performance and the computational 
efficiency of the algorithm. 
 

OP G=100 
PS=50 

G=50 
PS=50 

G=50 
PS=30 

G=50 
PS=20 

G=50 
PS=10 

cost 26.2 28.1 30.8 43.5 45.7 
Table 2. The relation between the computational cost and the optimality 
*x0 = (-1,2), T=1.5, k = 1, OP means Optimization Prameters, G means Generations, PS means 
Population Size 
 
Finally, in order to verify that the new designed algorithm is improved in the computational 
burden, simulations comparing the performance of the new designed algorithm and 
algorithm in (Primbs, 1999) are conducted with the same optimizing algorithm. Time 
interval of two neighboured optimization (TI in Table 3) in Primbs’ algorithm is important 
since control input is assumed to be constant at every time slice. Generally, large time 
interval will result in poor stability. 
While our new GPMN-ENMPC results in a group of controller parameter, and the closed loop 
stability is independent of TI. Thus different TI is considered in these simulations of Primbs’ 

 

algorithm and Table 3 lists the results. From Table 3, the following items can be concluded: 1) 
with same GA parameters, Primbs’ algorithm is more time-consuming and poorer in optimality 
than GPMN-ENMPC. This is easy to be obtained through comparing results of Ex-2 and Ex-5; 2) 
in order to obtain similar optimality, GPMN-ENMPC takes much less time than Primbs’ 
algorithm. This can be obtained by comparing results of Ex-1/Ex-4 and Ex-6, as well as Ex-3 and 
Ex-5. The reasons for these phenomena have been introduced in Remark 3. 
 

 
Algorithm in (Primbs, 1999) GPMN-ENMPC 

Ex-1 Ex-2 Ex-3 Ex-4 Ex-5 Ex-6 
TI 0.1 0.05 0.1 

OP G=100 
PS=50 

G=50 
PS=50 

G=100 
PS=50 

G=50 
PS=50 

G=50 
PS=50 

G=50 
PS=30 

Average Time 
Consumption 2.2075 1.8027 2.9910 2.2463 1.3961 0.8557 

Cost 31.2896 35.7534 27.7303 31.8055 28.1 31.1043 
Table 3. Performance comparison of GPMN-ENMPC and Primbs’ algorithm 
*x0 = (-1,2), TI means time interval of two neighbored optimization; OP means Optimization 
Prameters; G means Generations, PS means Population Size. Other parameters of GPMN-
ENMPC are T=1.5, k = 1 

 
6.2 Example 2 (GPMN-ENMPC with control input constraint) 
In order to show the performance of the GPMN-ENMPC in handling input constraints, we 
give another simulation using the dynamics of a mobile robot with orthogonal wheel 
assemblies (Song, 2007). The dynamics can be denoted as Eq. (48), 
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higher order ξ(x,θ) indicates larger inherent optimizing parameter space. 3) A longer 
prediction horizon will usually be followed by a better optimal performance. 
 

           J 

ENMPC PMN 

x0 = (-1,2) x0 = (0.5,1) x0 = (-
1,2) 

x0 = 
(0.5,1) 

k = 1 k = 2 K = 
1 

k = 
2 

---- 

T=0.6 29.39 28.87 6.54 6.26 +∞ +∞ 
T=0.8 23.97 23.83 5.02 4.96 +∞ +∞ 
T=1.0 24.08 24.07 4.96 4.90 +∞ +∞ 
T=1.5 26.31 24.79 5.11 5.28 +∞ +∞ 

Table 1. the cost value of different controller 
* k is the order of Bernstein polynomial used to approach the optimal value function; T is the 
predictive horizon; x0 is the initial state 
 
Another advantage of the GPMN-ENMPC algorithm is the flexibility of the trade offs 
between the optimality and the computational time. The computational time is influenced 
by the dimension of optimizing parameters and the parameters of the optimizing algorithm, 
such as the maximum number of iterations and the size of the population (the smaller these 
values are selected, the less the computational cost is). However, it will be natural that the 
optimality maybe deteriorated to some extent with the decreasing of the computational 
burden. In preceding paragraphs, we have researched the optimality of GPMN-ENMPC 
algorithm with different optimizing parameters, and now the optimality comparisons 
among the closed loop systems with different GA parameters will be done. And the results 
are listed in Table 2, from which the certain of the optimality loss with the changing of the 
optimizing algorithm’s parameters can be observed. This can be used as the criterion to 
determine the trade-off between the closed loop performance and the computational 
efficiency of the algorithm. 
 

OP G=100 
PS=50 

G=50 
PS=50 

G=50 
PS=30 

G=50 
PS=20 

G=50 
PS=10 

cost 26.2 28.1 30.8 43.5 45.7 
Table 2. The relation between the computational cost and the optimality 
*x0 = (-1,2), T=1.5, k = 1, OP means Optimization Prameters, G means Generations, PS means 
Population Size 
 
Finally, in order to verify that the new designed algorithm is improved in the computational 
burden, simulations comparing the performance of the new designed algorithm and 
algorithm in (Primbs, 1999) are conducted with the same optimizing algorithm. Time 
interval of two neighboured optimization (TI in Table 3) in Primbs’ algorithm is important 
since control input is assumed to be constant at every time slice. Generally, large time 
interval will result in poor stability. 
While our new GPMN-ENMPC results in a group of controller parameter, and the closed loop 
stability is independent of TI. Thus different TI is considered in these simulations of Primbs’ 

 

algorithm and Table 3 lists the results. From Table 3, the following items can be concluded: 1) 
with same GA parameters, Primbs’ algorithm is more time-consuming and poorer in optimality 
than GPMN-ENMPC. This is easy to be obtained through comparing results of Ex-2 and Ex-5; 2) 
in order to obtain similar optimality, GPMN-ENMPC takes much less time than Primbs’ 
algorithm. This can be obtained by comparing results of Ex-1/Ex-4 and Ex-6, as well as Ex-3 and 
Ex-5. The reasons for these phenomena have been introduced in Remark 3. 
 

 
Algorithm in (Primbs, 1999) GPMN-ENMPC 

Ex-1 Ex-2 Ex-3 Ex-4 Ex-5 Ex-6 
TI 0.1 0.05 0.1 

OP G=100 
PS=50 

G=50 
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G=50 
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G=50 
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G=50 
PS=30 

Average Time 
Consumption 2.2075 1.8027 2.9910 2.2463 1.3961 0.8557 

Cost 31.2896 35.7534 27.7303 31.8055 28.1 31.1043 
Table 3. Performance comparison of GPMN-ENMPC and Primbs’ algorithm 
*x0 = (-1,2), TI means time interval of two neighbored optimization; OP means Optimization 
Prameters; G means Generations, PS means Population Size. Other parameters of GPMN-
ENMPC are T=1.5, k = 1 

 
6.2 Example 2 (GPMN-ENMPC with control input constraint) 
In order to show the performance of the GPMN-ENMPC in handling input constraints, we 
give another simulation using the dynamics of a mobile robot with orthogonal wheel 
assemblies (Song, 2007). The dynamics can be denoted as Eq. (48), 
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1 2 3 4 5 6; ; ; ; ;w w w w w wx x x x x y x y x x         ; xw, yw, φw are respective the x-y  positions 
and yaw angle; u1, u2, u3 are motor torques.  
Suppose that control input is limited in the following closed set, 
 
 U  =  {( u1, u2, u3)|( u12+ u22+ u32)1/2≤20}  (49) 
 
System (48) is feedback linearizable, and by which we can obtain a CLF of system (48) as 
follows, 
 ( ) TV x x Px   (50) 
where 
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The cost function J(x) and σ(x) are designed as, 
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System (48) has 6 states and 3 inputs, which will introduce large computational burden if 
using the GPMN-ENMPC method. Fortunately, one of the advantages of GPMN-ENMPC is 
that the optimization does not destroy the closed loop stability. Thus, in order to reduce the 
computation burden, we reduce the frequency of the optimization in this simulation, i.e., 
one optimization process is conducted every 0.1s while the controller of (13) is calculated 
every 0.002s, i.e., TI = 0.1s, Ts = 0.002s. 
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a) states response                                               b) control input u1 
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Fig. 8. GPMN-ENMPC controller simulation results on the mobile robot with input 
constraints 
 

Initial States 
(x1; x2; x3; x4; x5; x6) 

Feedback 
linearization 

controller 
GPMN-NMPC 

(10; 5; 10; 5; 1; 0) 2661.7 1377.0 
(10; 5; 10; 5; -1; 0) 3619.5 1345.5 
(-10; -5; 10; 5; 1; 0) 2784.9 1388.5 
(-10; -5; 10; 5; -1; 0) 8429.2 1412.0 
(-10; -5; -10; -5; 1; 0) 394970.0 1349.9 
(-10; -5; -10; -5; -1; 0) 4181.6 1370.9 

(10; 5; -10; -5; 1; 0) 3322 1406 
(10; 5; -10; -5; -1; 0) 1574500000 1452.1 
(-5; -2; -10; -5; 1; 0) 1411.2 856.1 
(-10; -5; -5; -2; 1; 0) 1547.5 850.9 

Table 4. The comparison of the optimality 
 
Simulation results are shown in Fig.8 with the initial state (10; 5; -10; -5; 1; 0), From Fig.8, it is 
clear that GPMN-ENMPC controller has the ability to handling input constraints. 
In order to evaluate the optimal performance of the GPMN-ENMPC, we proposed the 
following cost function according to Eq. (51), 
 

 2 2 2 2 2 2 2 2 2
1 3 5 2 4 6 1 2 30

cos t lim (3 3 3 5 5 5 )x x x x x x u u u dt



           (52) 

 
Table 4 lists the costs by feedback linearization controller and GPMN-ENMPC for several 
different initial states, from which it can be seen that the cost of GPMN-ENMPC is less than 
the half of the cost of feedback linearization controller when the initial is (10; 5; -10; -5; 1; 0). 
And in most cases listed in Table 4, the cost of GPMN-ENMPC is about one second of that of 
feedback linearization controller. Actually, in some special cases, such as the initial of (10; 5; 
-10; -5; -1; 0), the cost ratio of feedback linearization controller to GPMN-ENMPC is more 
than 1000000. 
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System (48) has 6 states and 3 inputs, which will introduce large computational burden if 
using the GPMN-ENMPC method. Fortunately, one of the advantages of GPMN-ENMPC is 
that the optimization does not destroy the closed loop stability. Thus, in order to reduce the 
computation burden, we reduce the frequency of the optimization in this simulation, i.e., 
one optimization process is conducted every 0.1s while the controller of (13) is calculated 
every 0.002s, i.e., TI = 0.1s, Ts = 0.002s. 
 

2 4 6 8 10
-5

0

5

10

15

x 1

2 4 6 8 10
-5

0

5

x 2

2 4 6 8 10
-15

-10

-5

0

5

x 3

2 4 6 8 10
-5

0

5

x 4

2 4 6 8 10
-0.5

0
0.5
1

1.5

time(s)

x 5

2 4 6 8 10
-1

0

1

time(s)

x 6

2 4 6 8 10 12 14 16 18 20
-16

-14

-12

-10

-8

-6

-4

-2

0

2

time(s)

u 3

 
a) states response                                               b) control input u1 

 

2 4 6 8 10 12 14 16 18 20
-1

0

1

2

3

4

time(s)

u 2

 
2 4 6 8 10 12 14 16 18 20

-2

0

2

4

6

8

10

12

14

time(s)

u 1

 
c) control input u2                                               d) control input u3 

Fig. 8. GPMN-ENMPC controller simulation results on the mobile robot with input 
constraints 
 

Initial States 
(x1; x2; x3; x4; x5; x6) 

Feedback 
linearization 

controller 
GPMN-NMPC 

(10; 5; 10; 5; 1; 0) 2661.7 1377.0 
(10; 5; 10; 5; -1; 0) 3619.5 1345.5 
(-10; -5; 10; 5; 1; 0) 2784.9 1388.5 
(-10; -5; 10; 5; -1; 0) 8429.2 1412.0 
(-10; -5; -10; -5; 1; 0) 394970.0 1349.9 
(-10; -5; -10; -5; -1; 0) 4181.6 1370.9 

(10; 5; -10; -5; 1; 0) 3322 1406 
(10; 5; -10; -5; -1; 0) 1574500000 1452.1 
(-5; -2; -10; -5; 1; 0) 1411.2 856.1 
(-10; -5; -5; -2; 1; 0) 1547.5 850.9 

Table 4. The comparison of the optimality 
 
Simulation results are shown in Fig.8 with the initial state (10; 5; -10; -5; 1; 0), From Fig.8, it is 
clear that GPMN-ENMPC controller has the ability to handling input constraints. 
In order to evaluate the optimal performance of the GPMN-ENMPC, we proposed the 
following cost function according to Eq. (51), 
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Table 4 lists the costs by feedback linearization controller and GPMN-ENMPC for several 
different initial states, from which it can be seen that the cost of GPMN-ENMPC is less than 
the half of the cost of feedback linearization controller when the initial is (10; 5; -10; -5; 1; 0). 
And in most cases listed in Table 4, the cost of GPMN-ENMPC is about one second of that of 
feedback linearization controller. Actually, in some special cases, such as the initial of (10; 5; 
-10; -5; -1; 0), the cost ratio of feedback linearization controller to GPMN-ENMPC is more 
than 1000000. 
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6.3 Example 3 (H∞GPMN-ENMPC) 
In this section, a simulation will be given to verify the feasibility of the proposed H∞GPMN-
ENMPC algorithm with respect to the following planar dynamic model of helicopter, 
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where Δ1, Δ2, Δ3, Δ4 are all the external disturbances, and are selected as following values, 
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Firstly, design an H∞CLF of system (53) by using the feedback linearization method, 
 
 TV X PX   (54) 
 
where,  
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Thus, the robust predictive controller can be designed as Eq. (25), (35) and (36) with the 
following parameters, 
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Time response of the H∞GPMN-ENMPC is as solid line of Fig.9 and Fig.10. Furthermore, the 
comparisons between the performance of the closed loop controlled by the proposed 
H∞GPMN-ENMPC and some other controller design method are done. The dashed line in 
Fig.9 and Fig.10 is the time response of the feedback linearization controller. From Fig.9 and 
Fig.10, the disturbance attenuation performance of the H∞GPMN-ENMPC is apparently 
better than that of feedback linearization controller, because the penalty gain of position 
signals, being much larger than other terms, can be used to further improve the ability. 
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Fig. 9. Time response of states 
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6.3 Example 3 (H∞GPMN-ENMPC) 
In this section, a simulation will be given to verify the feasibility of the proposed H∞GPMN-
ENMPC algorithm with respect to the following planar dynamic model of helicopter, 
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following parameters, 

 

* * T T

1

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

( )

[ ( ) ( ) ( ) ( )]

( ) =

50000 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 50000 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0

T

N
T
l l o o o o o

i

x X X

J I x iT Px iT u iT Qu iT T

x x y y
x,

x x y y

P



 

            
 

            





  

        
 

        




  
  

0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

1 0
; 0.1 ; 0.02 ; 1 ; 20;

0 1 o s IQ T s T s T s N Z = I

 
 
 
 
 
 
 
 
 
 
 
  
 

     
 

 

 
Time response of the H∞GPMN-ENMPC is as solid line of Fig.9 and Fig.10. Furthermore, the 
comparisons between the performance of the closed loop controlled by the proposed 
H∞GPMN-ENMPC and some other controller design method are done. The dashed line in 
Fig.9 and Fig.10 is the time response of the feedback linearization controller. From Fig.9 and 
Fig.10, the disturbance attenuation performance of the H∞GPMN-ENMPC is apparently 
better than that of feedback linearization controller, because the penalty gain of position 
signals, being much larger than other terms, can be used to further improve the ability. 
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Fig. 9. Time response of states 
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Simultaneously, the following index is used to compare the optimality of the two different 
controllers, 
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The optimality performance of H∞GPMN-ENMPC, computed from Eq. (55), is about 3280, 
and the feedback linearization controller is about 5741, i.e., the H∞GPMN-ENMPC has better 
optimality than the feedback linearization controller. 

 
7. Conclusion 

In this paper, nonlinear model predictive control (NMPC) is researched and a new NMPC  
algorithm is proposed. The new designed NMPC algorithm, called GPMN-enhancement 
NMPC (GPMN-ENMPC), has the following three advantages: 1) closed loop stability can be 
always guaranteed; 2) performance other than optimality and stability can be considered in 
the new algorithm through selecting proper guide function; 3) computational cost of the 
new NMPC algorithm is regulable according to the performance requirement and available 
CPU capabilities. Also, the new GPMN-ENMPC is generalized to a robust version with 
respect to input-output feedback linearizable nonlinear system with partially known 
uncertainties. Finally, extensive simulations have been conducted, and the results have 
shown the feasibility and validity of the new designed method. 
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This paper presents and compares two robust MPC controllers for constrained nonlinear systems based
on the minimization of a nominal performance index. Under suitable modifications of the constraints
of the Finite Horizon Optimization Control Problems (FHOCP), the derived controllers ensure that the
closed loop system is Input-to-State Stable (ISS) with a robust invariant region, with relation to addi-
tive uncertainty/disturbance. Assuming smoothness of the model function and of the ingredients of the
FHOCP, the effect of each admissible disturbance in the predictions is considered and taken into account
by the inclusion in the problem formulation of tighter state and terminal constraints. A simulation exam-
ple shows the potentiality of both the algorithms and highlights their complementary aspects.

Keywords: Robust MPC, Input to State Stability, Constraints, Robust design.

1. Introduction

Model predictive control (MPC) is an optimal control technique which deals with constraints
on the states and the inputs. This strategy is based on the solution of a finite horizon optimiza-
tion problem (FHOCP), which can be posed as a mathematical programming problem. The
control law is obtained by means of the receding horizon strategy that requires the solution of
the optimization problem at each sample time Camacho & Bordons (2004); Magni et al. (2009);
Rawlings & Mayne (2009).
It is well known that considering a terminal cost and a terminal constraint in the optimization
problem, the MPC stabilizes asymptotically a constrained system in absence of disturbances
or uncertainties. If there exist uncertainties in the process model, then the stabilizing proper-
ties may be lost Magni & Scattolini (2007); Mayne et al. (2000) and these must be taken into
account in the controller design. Recent results have revealed that nominal MPC may have

4



Model Predictive Control88

zero robustness, i.e. stability or feasibility may be lost if there exist model mismatches Grimm
et al. (2004). Therefore it is quite important to analyze when this situation occurs and to find
design procedures to guarantee certain degree of robustness. In Limon et al. (2002b); Scokaert
et al. (1997) it has been proved that under some regularity condition on the optimal cost, the
MPC is able to stabilize the uncertain system; however, this regularity condition may be not
ensured due to constraints, for instance.
The synthesis of NMPC algorithms with robustness properties for uncertain systems has been
developed by minimizing a nominal performance index while imposing the fulfillment of con-
straints for each admissible disturbance, see e.g. Limon et al. (2002a) or by solving a min-max
optimization problem, see e.g. Chen et al. (1997); Fontes & Magni (2003); Magni et al. (2003);
Magni, Nijmeijer & van der Schaft (2001); Magni & Scattolini (2005). The first solution calls for
the inclusion in the problem formulation of tighter state, control and terminal constraints. The
main advantage is that the on-line computational burden is substantially equal to the compu-
tational burden of the nominal NMPC. In fact, nominal prediction based robust predictive
controllers can be thought as a nominal MPC designed in such a way that a certain degree
of robustness is achieved. The main limitation is that it can lead to very conservative solu-
tions. With a significant increase of the computational burden, less conservative results can be
achieved by solving a min-max optimization problem.
Input-to-State Stability (ISS) is one of the most important tools to study the dependence of
state trajectories of nonlinear continuous and discrete time systems on the magnitude of in-
puts, which can represent control variables or disturbances. The concept of ISS was first
introduced in Sontag (1989) and then further exploited by many authors in view of its equiv-
alent characterization in terms of robust stability, dissipativity and input-output stability, see
e.g. Jiang & Wang (2001), Huang et al. (2005), Angeli et al. (2000), Jiang et al. (1994), Nešić &
Laila (2002). Now, several variants of ISS equivalent to the original one have been developed
and applied in different contexts (see e.g. Sontag & Wang (1996), Gao & Lin (2000), Sontag &
Wang (1995), Huang et al. (2005)). The ISS property has been recently introduced also in the
study of nonlinear perturbed discrete-time systems controlled with Model Predictive Control
(MPC), see e.g. Limon et al. (2009), Raimondo et al. (2009), Limon et al. (2002a), Magni &
Scattolini (2007), Limon et al. (2006), Franco et al. (2008), Magni et al. (2006). In fact, the devel-
opment of MPC synthesis methods with enhanced robustness characteristics is motivated by
the widespread success of MPC and by the availability of many MPC algorithms for nonlinear
systems guaranteeing stability in nominal conditions and under state and control constraints.
In this paper two algorithms based on the solution of a minimization problem with respect to
a nominal performance index are proposed. The first one, following the algorithm presented
in Limon et al. (2002a), proves that if the terminal cost is a Lyapunov function which ensures
a nominal convergence rate (and hence some degree of robustness), then the derived nominal
MPC is an Input-to-State stabilizing controller. The size of allowable disturbances depends
on the one step decreasing rate of the terminal cost.
The second algorithm, first proposed in a preliminary version in Raimondo & Magni (2006),
shares with de Oliveira Kothare & Morari (2000) the idea to update the state of the nominal
system with the value of the real one only each M step to check the terminal constraint. The
use of a prediction horizon larger than a time varying control horizon is aimed to provide
more robust results by means of considering the decreasing rate in a number of steps.
Both controllers are based on the Lipschitz continuity of the prediction model and of some
of the ingredients of the MPC functional such as stage cost function and the terminal cost

function. Under the same assumptions they ensure that the closed loop system is Input-to-
State-Stable (ISS) with relation to the additive uncertainty.
A simulation example shows the potentiality of both the algorithms and highlights their com-
plementary aspects.
The paper is organized as follows: first some notations and definitions are presented. In
Section 3 the problem is stated. In Section 4 the Regional Input-to-State Stability is introduced.
In Section 5 the proposed MPC controllers are presented. In Section 6 the benefits of the
proposed controllers are illustrated with several examples. Section 7 contains the conclusions.
All the proofs are gathered in an Appendix in order to improve the readability.

2. Notations and basic definitions

Let R, R≥0, Z and Z≥0 denote the real, the non-negative real, the integer and the non-
negative integer numbers, respectively. For a given M ∈ Z≥0, the following set is defined
TM � {kM, k ∈ Z≥0}. Euclidean norm is denoted as | · |. Given a signal w, the signal’s
sequence is denoted by w � {w(0), w(1), · · ·} where the cardinality of the sequence is in-
ferred from the context. The set of sequences of w, whose values belong to a compact set
W ⊆ Rm is denoted by MW , while W sup � supw∈W{|w|}, W in f � infw∈W{|w|}. More-
over ‖w‖ � supk≥0{|w(k)|} and ‖w[τ]‖ � sup0≤k≤τ{|w(k)|}. The symbol id represents the
identity function from R to R, while γ1 ◦ γ2 is the composition of two functions γ1 and γ2
from R to R. Given a set A ⊆ Rn, |ζ|A � inf {|η − ζ| , η ∈ A} is the point-to-set distance
from ζ ∈ Rn to A. The difference between two given sets A ⊆ Rn and B ⊆ Rn with B ⊆ A,
is denoted by A\B � {x : x ∈ A, x /∈ B}. Given two sets A ⊆ Rn and B ⊆ Rn, then the
Pontryagin difference set C is defined as C = A ∼ B � {x ∈ Rn : x + ξ ∈ A, ∀ξ ∈ B}.
Given a closed set A ⊆ Rn, ∂A denotes the border of A. A function γ : R≥0→ R≥0 is of class
K (or a ”K-function”) if it is continuous, positive definite and strictly increasing. A function
γ : R≥0→ R≥0 is of class K∞ if it is a K-function and γ(s) → +∞ as s → +∞. A function
β : R≥0 ×Z≥0 → R≥0 is of class KL if, for each fixed t ≥ 0, β(·, t) is of class K, for each fixed
s ≥ 0, β(s, ·) is decreasing and β(s, t) → 0 as t → ∞.

3. Problem statement

In this paper it is assumed that the plant to be controlled is described by discrete-time nonlin-
ear model:

x(k + 1) = f (x(k), u(k)) + w(k), k ≥ t, x(t) = x̄ (1)

where x(k) ∈ Rn is the state of the system, u(k) ∈ Rm is the control variable, and w(k) ∈ Rn

is the additive uncertainty. Notice that the additive uncertainty can model perturbed systems
and a wide class of model mismatches. Take into account that these ones might depend on
the state and on the input of the system, consider a real plant xk+1 = f̃ (x(k), u(k)). Then the
additive uncertainty can be taken as w(k) = [ f̃ (x(k), u(k)) − f (x(k), u(k))]. Note that if, as
it will be assumed, x and u are bounded and f is Lipschitz, then w can be modeled as a
bounded uncertainty. This kind of model uncertainty has been used in previous papers about
robustness in MPC , as in Michalska & Mayne (1993) and Mayne (2000).
In the following assumption, the considered structure of such a model is formally presented.

Assumption 1.
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zero robustness, i.e. stability or feasibility may be lost if there exist model mismatches Grimm
et al. (2004). Therefore it is quite important to analyze when this situation occurs and to find
design procedures to guarantee certain degree of robustness. In Limon et al. (2002b); Scokaert
et al. (1997) it has been proved that under some regularity condition on the optimal cost, the
MPC is able to stabilize the uncertain system; however, this regularity condition may be not
ensured due to constraints, for instance.
The synthesis of NMPC algorithms with robustness properties for uncertain systems has been
developed by minimizing a nominal performance index while imposing the fulfillment of con-
straints for each admissible disturbance, see e.g. Limon et al. (2002a) or by solving a min-max
optimization problem, see e.g. Chen et al. (1997); Fontes & Magni (2003); Magni et al. (2003);
Magni, Nijmeijer & van der Schaft (2001); Magni & Scattolini (2005). The first solution calls for
the inclusion in the problem formulation of tighter state, control and terminal constraints. The
main advantage is that the on-line computational burden is substantially equal to the compu-
tational burden of the nominal NMPC. In fact, nominal prediction based robust predictive
controllers can be thought as a nominal MPC designed in such a way that a certain degree
of robustness is achieved. The main limitation is that it can lead to very conservative solu-
tions. With a significant increase of the computational burden, less conservative results can be
achieved by solving a min-max optimization problem.
Input-to-State Stability (ISS) is one of the most important tools to study the dependence of
state trajectories of nonlinear continuous and discrete time systems on the magnitude of in-
puts, which can represent control variables or disturbances. The concept of ISS was first
introduced in Sontag (1989) and then further exploited by many authors in view of its equiv-
alent characterization in terms of robust stability, dissipativity and input-output stability, see
e.g. Jiang & Wang (2001), Huang et al. (2005), Angeli et al. (2000), Jiang et al. (1994), Nešić &
Laila (2002). Now, several variants of ISS equivalent to the original one have been developed
and applied in different contexts (see e.g. Sontag & Wang (1996), Gao & Lin (2000), Sontag &
Wang (1995), Huang et al. (2005)). The ISS property has been recently introduced also in the
study of nonlinear perturbed discrete-time systems controlled with Model Predictive Control
(MPC), see e.g. Limon et al. (2009), Raimondo et al. (2009), Limon et al. (2002a), Magni &
Scattolini (2007), Limon et al. (2006), Franco et al. (2008), Magni et al. (2006). In fact, the devel-
opment of MPC synthesis methods with enhanced robustness characteristics is motivated by
the widespread success of MPC and by the availability of many MPC algorithms for nonlinear
systems guaranteeing stability in nominal conditions and under state and control constraints.
In this paper two algorithms based on the solution of a minimization problem with respect to
a nominal performance index are proposed. The first one, following the algorithm presented
in Limon et al. (2002a), proves that if the terminal cost is a Lyapunov function which ensures
a nominal convergence rate (and hence some degree of robustness), then the derived nominal
MPC is an Input-to-State stabilizing controller. The size of allowable disturbances depends
on the one step decreasing rate of the terminal cost.
The second algorithm, first proposed in a preliminary version in Raimondo & Magni (2006),
shares with de Oliveira Kothare & Morari (2000) the idea to update the state of the nominal
system with the value of the real one only each M step to check the terminal constraint. The
use of a prediction horizon larger than a time varying control horizon is aimed to provide
more robust results by means of considering the decreasing rate in a number of steps.
Both controllers are based on the Lipschitz continuity of the prediction model and of some
of the ingredients of the MPC functional such as stage cost function and the terminal cost

function. Under the same assumptions they ensure that the closed loop system is Input-to-
State-Stable (ISS) with relation to the additive uncertainty.
A simulation example shows the potentiality of both the algorithms and highlights their com-
plementary aspects.
The paper is organized as follows: first some notations and definitions are presented. In
Section 3 the problem is stated. In Section 4 the Regional Input-to-State Stability is introduced.
In Section 5 the proposed MPC controllers are presented. In Section 6 the benefits of the
proposed controllers are illustrated with several examples. Section 7 contains the conclusions.
All the proofs are gathered in an Appendix in order to improve the readability.

2. Notations and basic definitions

Let R, R≥0, Z and Z≥0 denote the real, the non-negative real, the integer and the non-
negative integer numbers, respectively. For a given M ∈ Z≥0, the following set is defined
TM � {kM, k ∈ Z≥0}. Euclidean norm is denoted as | · |. Given a signal w, the signal’s
sequence is denoted by w � {w(0), w(1), · · ·} where the cardinality of the sequence is in-
ferred from the context. The set of sequences of w, whose values belong to a compact set
W ⊆ Rm is denoted by MW , while W sup � supw∈W{|w|}, W in f � infw∈W{|w|}. More-
over ‖w‖ � supk≥0{|w(k)|} and ‖w[τ]‖ � sup0≤k≤τ{|w(k)|}. The symbol id represents the
identity function from R to R, while γ1 ◦ γ2 is the composition of two functions γ1 and γ2
from R to R. Given a set A ⊆ Rn, |ζ|A � inf {|η − ζ| , η ∈ A} is the point-to-set distance
from ζ ∈ Rn to A. The difference between two given sets A ⊆ Rn and B ⊆ Rn with B ⊆ A,
is denoted by A\B � {x : x ∈ A, x /∈ B}. Given two sets A ⊆ Rn and B ⊆ Rn, then the
Pontryagin difference set C is defined as C = A ∼ B � {x ∈ Rn : x + ξ ∈ A, ∀ξ ∈ B}.
Given a closed set A ⊆ Rn, ∂A denotes the border of A. A function γ : R≥0→ R≥0 is of class
K (or a ”K-function”) if it is continuous, positive definite and strictly increasing. A function
γ : R≥0→ R≥0 is of class K∞ if it is a K-function and γ(s) → +∞ as s → +∞. A function
β : R≥0 ×Z≥0 → R≥0 is of class KL if, for each fixed t ≥ 0, β(·, t) is of class K, for each fixed
s ≥ 0, β(s, ·) is decreasing and β(s, t) → 0 as t → ∞.

3. Problem statement

In this paper it is assumed that the plant to be controlled is described by discrete-time nonlin-
ear model:

x(k + 1) = f (x(k), u(k)) + w(k), k ≥ t, x(t) = x̄ (1)

where x(k) ∈ Rn is the state of the system, u(k) ∈ Rm is the control variable, and w(k) ∈ Rn

is the additive uncertainty. Notice that the additive uncertainty can model perturbed systems
and a wide class of model mismatches. Take into account that these ones might depend on
the state and on the input of the system, consider a real plant xk+1 = f̃ (x(k), u(k)). Then the
additive uncertainty can be taken as w(k) = [ f̃ (x(k), u(k)) − f (x(k), u(k))]. Note that if, as
it will be assumed, x and u are bounded and f is Lipschitz, then w can be modeled as a
bounded uncertainty. This kind of model uncertainty has been used in previous papers about
robustness in MPC , as in Michalska & Mayne (1993) and Mayne (2000).
In the following assumption, the considered structure of such a model is formally presented.

Assumption 1.
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1. The uncertainty belongs to a compact set W ⊂ Rn containing the origin, defined as

W � {w ∈ Rn : |w| ≤ γ} (2)

where γ ∈ R≥0.

2. The system has an equilibrium point at the origin, that is f (0, 0) = 0.

3. The control and state of the plant must fulfill the following constraints on the state and the input:

x(k) ∈ X (3)

u(k) ∈ U (4)

where X is and U are compact sets, both of them containing the origin.

4. The state of the plant x(k) can be measured at each sample time. �

The control objective consists in designing a control law u = κ(x) such that it steers the system
to (a neighborhood of) the origin fulfilling the constraints on the input and the state along the
system evolution for any possible uncertainty and yielding an optimal closed performance
according to certain performance index.

4. Regional Input-to-State Stability

In this section the ISS framework for discrete-time autonomous nonlinear systems is pre-
sented and Lyapunov-like sufficient conditions are provided. This will be employed in the
paper to study the behavior of perturbed nonlinear systems in closed-loop with MPC con-
trollers. Consider a nonlinear discrete-time system described by

x(k + 1) = F(k, x(k), w(k)), k ≥ t, x(t) = x̄ (5)

where F : Z≥0 ×Rn ×Rr → Rn is locally Lipschitz continuous, F(k, 0, 0) = 0, x(k) ∈ Rn

is the state, w(k) ∈ Rp is the input (disturbance), limited in a compact set W containing the
origin w(k) ∈ W . The solution to the difference equation (5) at time k, starting from state
x(0) = x̄ and for inputs w is denoted by x(k, x̄, w). Consider the following definitions.

Definition 1 (Robust positively invariant set). A set Ξ(k) ⊆ Rn is a robust positively invariant
set for the system (5), if x(k, x̄, w) ∈ Ξ(k), ∀k ≥ t, ∀x̄ ∈ Ξ(t) and ∀w ∈ MW . �

Definition 2 (Magni et al. (2006) Regional ISS in Ξ(k)). Given a compact set Ξ(k) ⊂ Rn contain-
ing the origin as an interior point, the system (5) with w ∈ MW , is said to be ISS (Input-to-State
Stable) in Ξ(k), if Ξ(k) is robust positively invariant for (5) and if there exist a KL-function β and a
K-function γ such that

|x(k, x̄, w)| ≤ β(|x̄|, k) + γ(‖w[k−1]‖), ∀k ≥ t, ∀x̄ ∈ Ξ(t). (6)

�

Definition 3 (Magni et al. (2006) ISS-Lyapunov function in Ξ). A function V: Rn → R≥0 is
called an ISS-Lyapunov function in Ξ(k) ⊂ Rn for system (5) with respect to w, if:

1) Ξ(k) is a closed robust positively invariant set containing the origin as an interior point.

2) there exist a compact set Ω ⊆ Ξ(k) , ∀k ≥ t (containing the origin as an interior point), a
pair of suitable K∞-functions α1, α2 such that:

V(x) ≥ α1(|x|), ∀x ∈ Ξ(k), ∀k ≥ t (7)

V(x) ≤ α2(|x|), ∀x ∈ Ω (8)

3) there exist a suitable K∞-function α3, a K-function σ such that:

∆V(x) � V(F(k, x, w))− V(x)
≤ −α3(|x|) + σ(|w|), ∀x ∈ Ξ(k), ∀k ≥ t, ∀w ∈ W (9)

4) there exist a suitable K∞-functions ρ (with ρ such that (id− ρ) is a K∞-function) and a suitable
constant cθ > 0, such that there exists a nonempty compact set Θ ⊂ {x : x ∈ Ω, d(x, δΩ) >
cθ} (containing the origin as an interior point) defined as follows:

Θ � {x : V(x) ≤ b(W sup)} (10)

where b � α−1
4 ◦ ρ−1 ◦ σ, with α4 � α3 ◦ α−1

2 .

�

The following sufficient condition for regional ISS of system (5) can be stated.

Theorem 1. If system (5) admits an ISS-Lyapunov function in Ξ(k) with respect to w, then it is ISS
in Ξ(k) with respect to w and limk→∞ |x(k, x̄, w)|Θ = 0.

Remark 1. In order to analyse the control algorithm reported in Section 5.2, a time-varying system
has been considered. However, because all the bounds introduced in the ISS Lyapunov function are
time-invariant, Theorem 1 can be easily derived by the theorem reported in Magni et al. (2006) for
time-invariant systems. �

5. Nonlinear Model Predictive Control

In this section, the results derived in Theorem 1, are used to analyze the ISS property of two
open-loop formulations of stabilizing MPC algorithms for nonlinear systems. The idea on the
base of the two algorithms is the same one. However, there are important differences that,
based on the dynamic system under consideration, give advantages to an algorithm rather
than to the other in terms of domain of attraction and robustness. Notably, in the following
it is not necessary to assume the regularity of the value function and of the resulting control
law.

5.1 MPC with constant optimization horizon
The system (1) with w(k) = 0, k ≥ t, is called nominal model. Let denote ut1,t2 � {u(t1), u(t1 +
1), . . . , u(t2)}, t2 ≥ t1, a sequence of vectors and ut1,t2 (t3) the vector ut1,t2 at time t3. If it is
clear on the context the subscript will be omitted. The vector x̂(k|t) is the predicted state of
the system at time k (k ≥ t) obtained applying the sequence of inputs ut,k−1 to the nominal
model, starting from the real state x(t) at time t, i.e. x̂(k|t) = f (x̂(k − 1|t), u(k − 1)), k >
t, x̂(t|t) = x(t).
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1. The uncertainty belongs to a compact set W ⊂ Rn containing the origin, defined as

W � {w ∈ Rn : |w| ≤ γ} (2)

where γ ∈ R≥0.

2. The system has an equilibrium point at the origin, that is f (0, 0) = 0.

3. The control and state of the plant must fulfill the following constraints on the state and the input:

x(k) ∈ X (3)

u(k) ∈ U (4)

where X is and U are compact sets, both of them containing the origin.

4. The state of the plant x(k) can be measured at each sample time. �

The control objective consists in designing a control law u = κ(x) such that it steers the system
to (a neighborhood of) the origin fulfilling the constraints on the input and the state along the
system evolution for any possible uncertainty and yielding an optimal closed performance
according to certain performance index.

4. Regional Input-to-State Stability

In this section the ISS framework for discrete-time autonomous nonlinear systems is pre-
sented and Lyapunov-like sufficient conditions are provided. This will be employed in the
paper to study the behavior of perturbed nonlinear systems in closed-loop with MPC con-
trollers. Consider a nonlinear discrete-time system described by

x(k + 1) = F(k, x(k), w(k)), k ≥ t, x(t) = x̄ (5)

where F : Z≥0 ×Rn ×Rr → Rn is locally Lipschitz continuous, F(k, 0, 0) = 0, x(k) ∈ Rn

is the state, w(k) ∈ Rp is the input (disturbance), limited in a compact set W containing the
origin w(k) ∈ W . The solution to the difference equation (5) at time k, starting from state
x(0) = x̄ and for inputs w is denoted by x(k, x̄, w). Consider the following definitions.

Definition 1 (Robust positively invariant set). A set Ξ(k) ⊆ Rn is a robust positively invariant
set for the system (5), if x(k, x̄, w) ∈ Ξ(k), ∀k ≥ t, ∀x̄ ∈ Ξ(t) and ∀w ∈ MW . �

Definition 2 (Magni et al. (2006) Regional ISS in Ξ(k)). Given a compact set Ξ(k) ⊂ Rn contain-
ing the origin as an interior point, the system (5) with w ∈ MW , is said to be ISS (Input-to-State
Stable) in Ξ(k), if Ξ(k) is robust positively invariant for (5) and if there exist a KL-function β and a
K-function γ such that

|x(k, x̄, w)| ≤ β(|x̄|, k) + γ(‖w[k−1]‖), ∀k ≥ t, ∀x̄ ∈ Ξ(t). (6)

�

Definition 3 (Magni et al. (2006) ISS-Lyapunov function in Ξ). A function V: Rn → R≥0 is
called an ISS-Lyapunov function in Ξ(k) ⊂ Rn for system (5) with respect to w, if:

1) Ξ(k) is a closed robust positively invariant set containing the origin as an interior point.

2) there exist a compact set Ω ⊆ Ξ(k) , ∀k ≥ t (containing the origin as an interior point), a
pair of suitable K∞-functions α1, α2 such that:

V(x) ≥ α1(|x|), ∀x ∈ Ξ(k), ∀k ≥ t (7)

V(x) ≤ α2(|x|), ∀x ∈ Ω (8)

3) there exist a suitable K∞-function α3, a K-function σ such that:

∆V(x) � V(F(k, x, w))− V(x)
≤ −α3(|x|) + σ(|w|), ∀x ∈ Ξ(k), ∀k ≥ t, ∀w ∈ W (9)

4) there exist a suitable K∞-functions ρ (with ρ such that (id− ρ) is a K∞-function) and a suitable
constant cθ > 0, such that there exists a nonempty compact set Θ ⊂ {x : x ∈ Ω, d(x, δΩ) >
cθ} (containing the origin as an interior point) defined as follows:

Θ � {x : V(x) ≤ b(W sup)} (10)

where b � α−1
4 ◦ ρ−1 ◦ σ, with α4 � α3 ◦ α−1

2 .

�

The following sufficient condition for regional ISS of system (5) can be stated.

Theorem 1. If system (5) admits an ISS-Lyapunov function in Ξ(k) with respect to w, then it is ISS
in Ξ(k) with respect to w and limk→∞ |x(k, x̄, w)|Θ = 0.

Remark 1. In order to analyse the control algorithm reported in Section 5.2, a time-varying system
has been considered. However, because all the bounds introduced in the ISS Lyapunov function are
time-invariant, Theorem 1 can be easily derived by the theorem reported in Magni et al. (2006) for
time-invariant systems. �

5. Nonlinear Model Predictive Control

In this section, the results derived in Theorem 1, are used to analyze the ISS property of two
open-loop formulations of stabilizing MPC algorithms for nonlinear systems. The idea on the
base of the two algorithms is the same one. However, there are important differences that,
based on the dynamic system under consideration, give advantages to an algorithm rather
than to the other in terms of domain of attraction and robustness. Notably, in the following
it is not necessary to assume the regularity of the value function and of the resulting control
law.

5.1 MPC with constant optimization horizon
The system (1) with w(k) = 0, k ≥ t, is called nominal model. Let denote ut1,t2 � {u(t1), u(t1 +
1), . . . , u(t2)}, t2 ≥ t1, a sequence of vectors and ut1,t2 (t3) the vector ut1,t2 at time t3. If it is
clear on the context the subscript will be omitted. The vector x̂(k|t) is the predicted state of
the system at time k (k ≥ t) obtained applying the sequence of inputs ut,k−1 to the nominal
model, starting from the real state x(t) at time t, i.e. x̂(k|t) = f (x̂(k − 1|t), u(k − 1)), k >
t, x̂(t|t) = x(t).
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Assumption 2. The function f (·, ·) is Lispchitz with respect to x and u in X × U, with Lipschitz
constants L f and L f u respectively.

Remark 2. Note that the following results could be easily extended to the more general case of f (·, ·)
uniformly continuous with respect to x and u in X × U. Moreover, note that in virtue of the Heine-
Cantor, if X and U are compact, as assumed, then continuity is sufficient to guarantee uniform conti-
nuity Limon (2002); Limon et al. (2009).

Definition 4 (Robust invariant region). Given a control law u = κ(x), X̄ ⊆ X is a robust invariant
region for the closed-loop system (1) with u(k) = κ(x(k)), if x̄ ∈ X̄ implies x(k) ∈ X̄ and κ(x(k)) ∈
U, ∀w(k) ∈ W , k ≥ t. �

Since there are mismatches between real system and nominal model, the predicted evolution
using nominal model might differ from the real evolution of the system. In order to consider
this effect in the controller synthesis, a bound on the difference between the predicted and the
real evolution is given in the following lemma:

Lemma 1. Limon et al. (2002a) Consider the system (1) satisfying Assumption 2. Then, for a given
sequence of inputs, the difference between the nominal prediction of the state x̂(k|t) and the real state
of the system x(k) is bounded by

|x̂(k|t)− x(k)| ≤
Lk−t

f − 1

L f − 1
γ, k ≥ t.

�

To define the NMPC algorithms first let

Bk−t
γ � {z ∈ Rn : |z| ≤

Lk−t
f −1

L f −1 γ}
Xk−t � X ∼ Bk−t

γ

= {x ∈ Rn : x + y ∈ X, ∀y ∈ Bk−t
γ }

then define the following Finite Horizon Optimal Control Problem.

Definition 5 (FHOCP1). Given the positive integer N, the stage cost l, the terminal penalty Vf and
the terminal set X f , the Finite Horizon Optimal Control Problem (FHOCP1) consists in minimizing,
with respect to ut,t+N−1, the performance index

J(x̄, ut,t+N−1, N) �
t+N−1

∑
k=t

l(x̂(k|t), u(k)) + Vf (x̂(t + N|t))

subject to

(i) the nominal state dynamics (1) with w(k) = 0 and x(t) = x̄;

(ii) the state constraints x̂(k|t) ∈ Xk−t, k ∈ [t, t + N − 1];

(iii) the control constraints (4), k ∈ [t, t + N − 1];

(iv) the terminal state constraint x̂(t + N|t) ∈ X f . �

It is now possible to define a “prototype” of the first one of two nonlinear MPC algorithms: at
every time instant t, define x̄ = x(t) and find the optimal control sequence uo

t,t+N−1 by solving
the FHOCP1. Then, according to the Receding Horizon (RH) strategy, define κMPC(x̄) =
uo

t,t(x̄) where uo
t,t(x̄) is the first column of uo

t,t+N−1, and apply the control law

u = κMPC(x). (11)

Although the FHOCP1 has been stated for nominal conditions, under suitable assumptions
and by choosing appropriately the terminal cost function Vf and the terminal constraint X f ,
it is possible to guarantee the ISS property of the closed-loop system formed by (1) and (11),
subject to constraints (2)-(4).

Assumption 3. The function l(x, u) is such that l(0, 0) = 0, l(x, u) ≥ αl(|x|) where αl is a K∞-
function. Moreover, l(x, u) is Lipschitz with respect to x and u, in X × U, with constant Ll and Llu
respectively.

Remark 3. Notice that if the stage cost l(x, u) is a piece-wise differentiable function in X and U (as
for instance the standard quadratic cost l(x, u) = x′Qx + u′Ru) and X and U are bounded sets, then
the previous assumption is satisfied.

Assumption 4. The design parameter Vf and the set Φ � {x : Vf (x) ≤ α}, α > 0, are such that,
given an auxiliary control law κ f ,

1. Φ ⊆ XN−1;

2. κ f (x) ∈ U, ∀x ∈ Φ;

3. f (x, κ f (x)) ∈ Φ, ∀x ∈ Φ;

4. αVf (|x|) ≤ Vf (x) < βVf (|x|), ∀x ∈ Φ, where αVf and βVf are K∞-functions;

5. Vf ( f (x, κ f (x)))− Vf (x) ≤ −l(x, κ f (x)), ∀x ∈ Φ;

6. Vf is Lipschitz in Φ with a Lipschitz constant Lv.

Remark 4. The assumption above can appear quite difficult to be satisfied, but it is standard in the
development of nonlinear stabilizing MPC algorithms. Moreover, many methods have been proposed in
the literature to compute Vf , Φ satisfying the Assumption 4 (see for example Chen & Allgöwer (1998);
De Nicolao et al. (1998); Keerthi & Gilbert (1988); Magni, De Nicolao, Magnani & Scattolini (2001);
Mayne & Michalska (1990)).

Assumption 5. The design parameter X f � {x ∈ Rn : Vf (x) ≤ αv}, αv > 0, is such that for all
x ∈ Φ, f (x, k f (x)) ∈ X f .

Remark 5. If Assumption 4 is satisfied, then, a value of αv satisfying Assumption 5 is the following

αv = (id + αl ◦ β−1
Vf

)−1(α).

For each x(k) ∈ Φ there could be two cases. If Vf (x(k)) ≤ αv, then, by Assumption 4, Vf (x(k+ 1)) ≤
αv. If V(x(k)) > αv, then, by point 4 of Assumption 4, βVf (|x(k)|) ≥ Vf (x(k)) > αv, that means
|x(k)| > β−1

Vf
(αv). Therefore, by Assumption 3 and point 4 of Assumption 4, one has

Vf (x(k + 1)) ≤ Vf (x(k))− l(x(k), κ f (x(k))) ≤ Vf (x(k))− αl(|x(k)|)

≤ α − αl ◦ β−1
Vf

(αv)
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Assumption 2. The function f (·, ·) is Lispchitz with respect to x and u in X × U, with Lipschitz
constants L f and L f u respectively.

Remark 2. Note that the following results could be easily extended to the more general case of f (·, ·)
uniformly continuous with respect to x and u in X × U. Moreover, note that in virtue of the Heine-
Cantor, if X and U are compact, as assumed, then continuity is sufficient to guarantee uniform conti-
nuity Limon (2002); Limon et al. (2009).

Definition 4 (Robust invariant region). Given a control law u = κ(x), X̄ ⊆ X is a robust invariant
region for the closed-loop system (1) with u(k) = κ(x(k)), if x̄ ∈ X̄ implies x(k) ∈ X̄ and κ(x(k)) ∈
U, ∀w(k) ∈ W , k ≥ t. �

Since there are mismatches between real system and nominal model, the predicted evolution
using nominal model might differ from the real evolution of the system. In order to consider
this effect in the controller synthesis, a bound on the difference between the predicted and the
real evolution is given in the following lemma:

Lemma 1. Limon et al. (2002a) Consider the system (1) satisfying Assumption 2. Then, for a given
sequence of inputs, the difference between the nominal prediction of the state x̂(k|t) and the real state
of the system x(k) is bounded by

|x̂(k|t)− x(k)| ≤
Lk−t

f − 1

L f − 1
γ, k ≥ t.

�

To define the NMPC algorithms first let

Bk−t
γ � {z ∈ Rn : |z| ≤

Lk−t
f −1

L f −1 γ}
Xk−t � X ∼ Bk−t

γ

= {x ∈ Rn : x + y ∈ X, ∀y ∈ Bk−t
γ }

then define the following Finite Horizon Optimal Control Problem.

Definition 5 (FHOCP1). Given the positive integer N, the stage cost l, the terminal penalty Vf and
the terminal set X f , the Finite Horizon Optimal Control Problem (FHOCP1) consists in minimizing,
with respect to ut,t+N−1, the performance index

J(x̄, ut,t+N−1, N) �
t+N−1

∑
k=t

l(x̂(k|t), u(k)) + Vf (x̂(t + N|t))

subject to

(i) the nominal state dynamics (1) with w(k) = 0 and x(t) = x̄;

(ii) the state constraints x̂(k|t) ∈ Xk−t, k ∈ [t, t + N − 1];

(iii) the control constraints (4), k ∈ [t, t + N − 1];

(iv) the terminal state constraint x̂(t + N|t) ∈ X f . �

It is now possible to define a “prototype” of the first one of two nonlinear MPC algorithms: at
every time instant t, define x̄ = x(t) and find the optimal control sequence uo

t,t+N−1 by solving
the FHOCP1. Then, according to the Receding Horizon (RH) strategy, define κMPC(x̄) =
uo

t,t(x̄) where uo
t,t(x̄) is the first column of uo

t,t+N−1, and apply the control law

u = κMPC(x). (11)

Although the FHOCP1 has been stated for nominal conditions, under suitable assumptions
and by choosing appropriately the terminal cost function Vf and the terminal constraint X f ,
it is possible to guarantee the ISS property of the closed-loop system formed by (1) and (11),
subject to constraints (2)-(4).

Assumption 3. The function l(x, u) is such that l(0, 0) = 0, l(x, u) ≥ αl(|x|) where αl is a K∞-
function. Moreover, l(x, u) is Lipschitz with respect to x and u, in X × U, with constant Ll and Llu
respectively.

Remark 3. Notice that if the stage cost l(x, u) is a piece-wise differentiable function in X and U (as
for instance the standard quadratic cost l(x, u) = x′Qx + u′Ru) and X and U are bounded sets, then
the previous assumption is satisfied.

Assumption 4. The design parameter Vf and the set Φ � {x : Vf (x) ≤ α}, α > 0, are such that,
given an auxiliary control law κ f ,

1. Φ ⊆ XN−1;

2. κ f (x) ∈ U, ∀x ∈ Φ;

3. f (x, κ f (x)) ∈ Φ, ∀x ∈ Φ;

4. αVf (|x|) ≤ Vf (x) < βVf (|x|), ∀x ∈ Φ, where αVf and βVf are K∞-functions;

5. Vf ( f (x, κ f (x)))− Vf (x) ≤ −l(x, κ f (x)), ∀x ∈ Φ;

6. Vf is Lipschitz in Φ with a Lipschitz constant Lv.

Remark 4. The assumption above can appear quite difficult to be satisfied, but it is standard in the
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De Nicolao et al. (1998); Keerthi & Gilbert (1988); Magni, De Nicolao, Magnani & Scattolini (2001);
Mayne & Michalska (1990)).

Assumption 5. The design parameter X f � {x ∈ Rn : Vf (x) ≤ αv}, αv > 0, is such that for all
x ∈ Φ, f (x, k f (x)) ∈ X f .

Remark 5. If Assumption 4 is satisfied, then, a value of αv satisfying Assumption 5 is the following

αv = (id + αl ◦ β−1
Vf

)−1(α).

For each x(k) ∈ Φ there could be two cases. If Vf (x(k)) ≤ αv, then, by Assumption 4, Vf (x(k+ 1)) ≤
αv. If V(x(k)) > αv, then, by point 4 of Assumption 4, βVf (|x(k)|) ≥ Vf (x(k)) > αv, that means
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Vf
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Vf

(αv)



Model Predictive Control94

for all Vf (x(k + 1)) ≤ αv. Then, αv = α − αl ◦ β−1
Vf

(αv) satisfy the previous equation. After some

manipulations one has αv = (id + αl ◦ β−1
Vf

)−1(α). �

Let XMPC(N) be the set of states of the system where an admissible solution of the FHOCP1

optimization problem exists.

Definition 6. Let α1 = α3 = αl , α2 = βVf , Ξ = XMPC(N), Ω = Φ, σ = LJ, where LJ �

LVf LN−1
f + Ll

LN−1
f −1
L f −1 .

Assumption 6. The values w are such that point 4 of Definition 2 is satisfied with V(x) �
J(x, uo

t,t+N−1, N).

Remark 6. From this assumption it is inferred that the allowable size of disturbances is related with
the size of the local region Ω where the upper bound of the terminal cost is found. This region can
be enlarged following the way suggested in Limon et al. (2006). However, this might not produce an
enlargement of the allowable size since the new obtained bound is more conservative. �

The main peculiarities of this NMPC algorithm are the use in the FHOCP1 of: (i) tightened
state constraints along the optimization horizon; (ii) terminal set that is only a subset of
the region where the auxiliary control law satisfies Assumption 4 in order to guarantee
robustness (see Assumptions 4 and 5).

Let introduce now following theorem.

Theorem 2. Let a system be described by a model given by (1). Assume that Assumptions 1-6 are
satisfied. Then the closed loop system (1), (11) is ISS with robust invariant region XMPC(N) if the
uncertainty is such that

γ ≤ α − αv

LvLN−1
f

(12)

5.2 MPC with time-varying control horizon
In this sub-section the second algorithm will be shown. It is based on the same ideas of the
first one and it is motivated by the attempt to reduce its intrinsic conservativity.
The second Finite Horizon Optimal Control Problem (FHOCP2) to be introduced is character-
ized by using a time varying control horizon Nc(t) and a (time invariant) prediction horizon
Np. The control horizon is given by

Nc(t) �
(⌊

t
M

⌋
+ 1

)
M − t

where �·� indicates the integer part operator and M is a parameter which determines its
maximum value, i.e. Nc(t) ∈ [1, M] .

Definition 7 (FHOCP2). Given a stabilizing control law κ f the maximum control horizon M, the
prediction horizon Np, the stage cost l, and the terminal penalty Vf , the Finite Horizon Optimal Con-
trol Problem (FHOCP2) consists in minimizing, with respect to ut,t+Nc(t)−1, the performance index

J(x̄, ut,t+Nc(t)−1, Nc(t), Np) �
t+Np−1

∑
k=t

l(x̂(k|t), u(k)) + Vf (x̂(t + Np|t))

subject to

(i) the nominal state dynamics (1) with w(k) = 0 and x̄ = x(t);

(ii) the state constraints x̂(k|t) ∈ Xk−t, k ∈ [t, ..., t + Nc(t)− 1];

(iii) the control constraints (4), k ∈ [t, ..., t + Nc(t)− 1];

(iv) the terminal state constraint x̃(t+ Nc(t)|t+ Nc(t)− M) ∈ X f where x̃ denotes the nom-
inal prediction of the system considering as initial condition x(t + Nc(t)− M) and ap-
plying the sequence of control inputs ũt+Nc(t)−M,t+Nc(t)−1 defined as

ũt+Nc(t)−M,t+Nc(t)−1(k) =

{
uo

k,k if k < t
ut,t+Nc(t)−1(k) if k ≥ t

(v) the control signal

u(k) =
{

ut,t+Nc(t)−1(k), k ∈ [t, t + Nc(t)− 1]
κ f (x̂(k|t)), k ∈ [t + Nc(t), t + Np − 1]

(13)

�

It is now possible to introduce the second NMPC algorithm in the following way: at every
time instant t, define x̄ = x(t) and find the optimal control sequence uo

t,t+Nc(t)−1 by solving

the FHOCP2. Then, according to the RH strategy, define κMPC(t, x̄, x̃(t|t + Nc(t) − M)) =
uo

t,t(x̄, x̃(t|t + Nc(t)− M)) where uo
t,t(x̄, x̃(t|t + Nc(t)− M)) is the first column of uo

t,t+Nc(t)−1,
and apply the control law

u(t) = κMPC(t, x(t), x̃(t|t + Nc(t)− M)). (14)

Note that the control law is time variant (periodic) due to the time variance of the control
horizon Nc(t) and depends also on x̃(t|t + Nc(t)− M).
Therefore, defining

ξ(t) =
[

x(t)
x̃(t|t + Nc(t)− M))

]
=

[
ξ1(t)
ξ2(t)

]
∈ R2n,

the closed-loop system formed by (1) and (14) is given by

ξ(k + 1) = F̃(k, ξ(k), w(k)), k ≥ t, ξ(t) = ξ̄ (15)

where

F̃(k, ξ(k), w(k)) =




f (ξ1(k), κMPC(k, ξ1(k), ξ2(k))) + w(k){
f (ξ2(k), κMPC(k, ξ1(k), ξ2(k))), ∀(k + 1) /∈ TM
f (ξ1(k), κMPC(k, ξ1(k), ξ2(k))) + w(k), ∀(k + 1) ∈ TM




Definition 8. Let XMPC(t, Np) ∈ R2n be the set of states ξ(t) where an admissible solution of the
FHOCP2 exists. �
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horizon Nc(t) and depends also on x̃(t|t + Nc(t)− M).
Therefore, defining
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

f (ξ1(k), κMPC(k, ξ1(k), ξ2(k))) + w(k){
f (ξ2(k), κMPC(k, ξ1(k), ξ2(k))), ∀(k + 1) /∈ TM
f (ξ1(k), κMPC(k, ξ1(k), ξ2(k))) + w(k), ∀(k + 1) ∈ TM




Definition 8. Let XMPC(t, Np) ∈ R2n be the set of states ξ(t) where an admissible solution of the
FHOCP2 exists. �



Model Predictive Control96

Noting that x(t) = x̃(t|t + Nc(t)− M)), ∀t ∈ TM since Nc(t) = M, the closed-loop system (1),
(14) for k ∈ TM is time invariant since the control law is time invariant and

x(k + M) = F̄(x(k), wk,k+M−1), ∀k ∈ TM, k ≥ t, x(t) = x̄. (16)

Definition 9. Let XMPC
M (Np) ∈ Rn be the set x of states of the system (1) where an admissible

solution of the FHOCP2 exists ∀t ∈ TM. �

As in the previous algorithm, although the FHOCP2 has been stated for nominal conditions,
under suitable assumptions and by choosing accurately the terminal cost function Vf and the
terminal constraint X f , it is possible to guarantee the ISS property of the closed-loop system
formed by (1) and (14), subject to constraints (2)-(4).

Assumption 7. The auxiliary control law κ f is Lipschitz in Φ with a Lipschitz constant Lκ where
Φ � {x ∈ XM−1 : Vf (x) ≤ α}, α > 0.

Remark 7. Note that, an easy way to satisfy Assumption 7 is to choose κ f linear, e.g. the solution of
the infinite horizon optimal control problem for the unconstrained linear system.

Assumption 8. The design parameter X f � {x ∈ Rn : Vf (x) ≤ αv} is such that, considering
the system (1), with u = κ f (x) and w(k) = 0, for all x(t) ∈ Φ results x̂(t + M|t) ∈ X f and
x̂(k|t) ∈ Xk−t, k ∈ [t, t + M − 1].

Definition 10. Let α1 = α3 = αl , α2 = βVf , Ξ = XMPC
M (Np), Ω = Φ, σ = LM

J , where

LM
J �

t+M−1

∑
k=t


Ll

LNc(k)−1
f − 1

L f − 1
+ Llx LNc(k)−1

f
L

Np−Nc(k)+1
x − 1

Lx − 1
+ Lv LNc(k)−1

f L
Np−Nc(k)+1
x




with Lx � (L f + L f uLκ) and Llx � (Ll + LluLκ).

Assumption 9. The values w are such that point 4 of Definition 2 is satisfied with V(x) �
J(x, uo

t,t+M−1, M, Np).

The main peculiarities of this NMPC algorithm, with respect to the one previously presented,
are the use in the FHOCP2 of: (i) a time varying control horizon; (ii) a control horizon that
is different from prediction horizon; (iii) the fact that the real value of the state is updated
only each M step to check the terminal constraint while it is updated at each step for the
computation of cost. These modifications allows to relax Assumption 5 with Assumption 8.
In this way it could be possible to enhance the robustness. The idea to use the measure of
the state only each M step has been already used in an other context in contractive MPC de
Oliveira Kothare & Morari (2000).

Theorem 3. Let a system be described by a model given by (1). Assume that Assumptions 1-4, 7-9
are satisfied. Then the closed loop system (15) is ISS with robust invariant region XMPC(t, Np) if the
uncertainty is such that

γ ≤ α − αv

Lv
LM

f −1
L f −1

(17)

Different from Magni, De Nicolao, Magnani & Scattolini (2001) the use of a prediction horizon
longer than the control horizon does not affect the size of the robust invariant region because
the terminal inequality constraint has been imposed at the end of the control horizon. How-
ever the following theorem proves that this choice has positive effect on the performance.

Theorem 4. Magni, De Nicolao, Magnani & Scattolini (2001) Letting l(x, u) = x′Qx + u′Ru,
Q> 0, R > 0, u = −KLQx the solution of the infinite horizon optimal control problem for the
unconstrained linear system

x(k + 1) = Ax(k) + Bu(k)

with A = ∂ f (x, u)/∂x|x=0,u=0, B = ∂ f (x, u)/∂u|x=0,u=0 , for each given Nc, if κ f (x) = −KLQx,
then limNp→∞ ∂κMPC(x)/∂x|x=0 = KLQ.

In conclusion, Theorems 2 and 3 proven that both the algorithm guarantee the ISS of the
closed-loop system. However a priori it is not possible to establish which of the two algo-
rithms give more robustness. This because of the dependance from the values of L f , M, Np of
the bounded on the maximum disturbance allowed. Therefore, based on the dynamic system
in object, it will be used an algorithm rather than the other.

6. Examples

The objective of the examples is to show that, based on the values of certain parameters, one
algorithm can be better than the other. In particular two examples are shown: in the first
one the algorithm based on FHOCP1 is better than the one based on FHOCP2 in terms of
robustness; in the second one the contrary happens.

6.1 Example 1
Consider the uncertain nonlinear system given by

x1(k + 1) = 0.55x1(k) + 0.12x2(k) + (0.01 − 0.6x1(k) + x2(k) + Λ1)u(k)
x2(k + 1) = 0.67x2(k) + (0.15 + x1(k)− 0.8x2(k) + Λ2)u(k)

where Λ1 and Λ2 are the parameters of the system model uncertainty. The control is con-
strained to be |u| ≤ umax = 0.2. Defining w = [Λ1uT Λ2uT ]T the disturbance is in the form (1)
and the nominal system is in the form x(k + 1) = Ax + Bu + Cxu. Considering the ∞-norm,
the Lipschitz constant of the system is

L f = maxu(|A + Cu|∞) = max{|A + 3C|∞, |A − 3C|∞} = 1.03.

In the formulation of the FHOCP1 and FHOCP2 the stage is l(x, u) = x′Qx + u′Ru with

Q =

[
1 0
0 1

]
, R = 1 and the auxiliary control law u = −KLQx is derived by solving an

Infinite Horizon optimal control problem for the linearized system around the origin

x1(k + 1) = 0.55x1(k) + 0.12x2(k) + 0.01u(k)
x2(k + 1) = 0.67x2(k) + 0.15u(k)

with the same stage cost. The solution of the associated Riccati Equation is P =[
1.4332 0.1441
0.1441 1.8316

]
so that the value of KLQ is KLQ =

[
−0.0190 −0.1818

]
. The value of the
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Lipschitz constant Lκ of the auxiliary control law is Lκ = |KLQ|∞ = 0.1818. The terminal
penalty Vf (x) = βx′Px, where β = 1.2 satisfies

λmax(Q + KLQ′RKLQ) < βλmin(Q + KLQ′RKLQ)

in order to verify Assumption 7. Therefore, considering the presence of the constraint on the
control, the linear controller u = −KLQx stabilizes the system only in the invariant set Φ, Φ =
{x : 1.2x′Px ≤ α = 0.2} The value of the Lipschitz constant Lv is Lv = maxx∈Φ |2βPx|∞ =
2.4|Px|∞ = 1.3222. For the algorithm based on FHOCP2 the final constraint X f depends on
the value M while for the algorithm based on FHOCP1 it results X f = {x : 3x′Px ≤ 0.0966}.
In Figure 1.a the maximum value of γ that satisfies (12) (solid line) and the one that satisfies
the (17) (dotted line) for different values of M, are reported. In this example the algorithm
based on the FHOCP1 guarantees major robustness than the one based on FHOCP2.
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(d) Example 2: detail of the closed-loop state evo-
lution with initial state (-4.1;-3).

6.2 Example 2
This example shows a case in which the algorithm based on FHOCP2 gives a better solution.
Consider the uncertain nonlinear system

x1(k + 1) = x2(k) + (0.3x2(k) + Λ1)u
x2(k + 1) = −0.32x1(k) + 1.8x2(k) + (1 − 0.2x2(k) + Λ2)u

where Λ1 and Λ2 are the parameters of the system model uncertainty. The control is con-
strained to be |u| ≤ umax = 3 and the state x1 is constrained to be x1 ≥ −4.8. Considering the
∞-norm, the Lipschitz constant of the system is

L f = maxu(|A + Cu|∞) = max{|A + 3C|∞, |A − 3C|∞} = 2.72.

In the formulation of the FHOCP1 and FHOCP2 the stage is l(x, u) = x′Qx + u′Ru with

Q =

[
1 0
0 1

]
, R = 1 and the auxiliary control law u = −KLQx is derived by solving an

Infinite Horizon optimal control problem for the linearized system around the origin

x1(k + 1) = x2(k)
x2(k + 1) = −0.32x1(k) + 1.8x2(k) + u

with the same stage cost. The solution of the associated Riccati Equation is P =[
1.0834 −0.4428

−0.4428 4.3902

]
so that the value of KLQ is KLQ =

[
−0.2606 1.3839

]
. The value of

the Lipschitz constant Lκ of the auxiliary control law is Lκ = |KLQ|∞ = 1.3839. The terminal
penalty Vf (x) = βx′Px, where β = 3, satisfies

λmax(Q + KLQ′RKLQ) < βλmin(Q + KLQ′RKLQ)

in order to verify Assumption 7. Therefore, considering the presence of the constraint on the
control, the linear controller u = −KLQx stabilizes the system only in the invariant set Φ, Φ =
{x : 3x′Px ≤ α = 40.18}. The value of the Lipschitz constant Lv is Lv = maxx∈Φ |2βPx|∞ =
6|Px|∞ = 45.9926. For the algorithm based on FHOCP2 the final constraint X f depends on the
value M while for the algorithm based on FHOCP1 it results X f = {x : 3x′Px ≤ 31.2683}. In
Figure 1.b the maximum value of γ that satisfies (12) (solid line) and the one that satisfies the
(17) (dotted line) for different values of M, are reported. In this example, the advantage of the
algorithm based on the FHOCP2 with respect to first one is due to the fact that the auxiliary
control law can lead the state of the nominal system from Φ to X f in M steps rather than in
only one. Hence, since the difference between Φ and X f is bigger, then a bigger perturbation
can be tolerated. In Figure 1.c the state evolutions of the nonlinear system obtained with
different control strategies with initial condition

x01 6 −4.1 7 6 −4.6
x02 −2.5 −3 1.5 −1 1

and γ = 0.0581 are reported: in solid line, using the new algorithm (NMPC), with Np = 10
and M = 3, in dashed line, using the new algorithm but with the linearized system in the
solution of the FHOCP (LMPC) and in dash-dot line the results of a nominal MPC (MPC)
with Np = 10 and Nc = 3. It is clear that, since the model used for the FHOCP differs from the
nonlinear model, using LMPC feasibility is not guaranteed along the trajectory as shown with
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penalty Vf (x) = βx′Px, where β = 1.2 satisfies

λmax(Q + KLQ′RKLQ) < βλmin(Q + KLQ′RKLQ)

in order to verify Assumption 7. Therefore, considering the presence of the constraint on the
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the value M while for the algorithm based on FHOCP1 it results X f = {x : 3x′Px ≤ 0.0966}.
In Figure 1.a the maximum value of γ that satisfies (12) (solid line) and the one that satisfies
the (17) (dotted line) for different values of M, are reported. In this example the algorithm
based on the FHOCP1 guarantees major robustness than the one based on FHOCP2.
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6.2 Example 2
This example shows a case in which the algorithm based on FHOCP2 gives a better solution.
Consider the uncertain nonlinear system

x1(k + 1) = x2(k) + (0.3x2(k) + Λ1)u
x2(k + 1) = −0.32x1(k) + 1.8x2(k) + (1 − 0.2x2(k) + Λ2)u

where Λ1 and Λ2 are the parameters of the system model uncertainty. The control is con-
strained to be |u| ≤ umax = 3 and the state x1 is constrained to be x1 ≥ −4.8. Considering the
∞-norm, the Lipschitz constant of the system is

L f = maxu(|A + Cu|∞) = max{|A + 3C|∞, |A − 3C|∞} = 2.72.

In the formulation of the FHOCP1 and FHOCP2 the stage is l(x, u) = x′Qx + u′Ru with

Q =

[
1 0
0 1

]
, R = 1 and the auxiliary control law u = −KLQx is derived by solving an

Infinite Horizon optimal control problem for the linearized system around the origin

x1(k + 1) = x2(k)
x2(k + 1) = −0.32x1(k) + 1.8x2(k) + u

with the same stage cost. The solution of the associated Riccati Equation is P =[
1.0834 −0.4428

−0.4428 4.3902

]
so that the value of KLQ is KLQ =

[
−0.2606 1.3839

]
. The value of

the Lipschitz constant Lκ of the auxiliary control law is Lκ = |KLQ|∞ = 1.3839. The terminal
penalty Vf (x) = βx′Px, where β = 3, satisfies

λmax(Q + KLQ′RKLQ) < βλmin(Q + KLQ′RKLQ)

in order to verify Assumption 7. Therefore, considering the presence of the constraint on the
control, the linear controller u = −KLQx stabilizes the system only in the invariant set Φ, Φ =
{x : 3x′Px ≤ α = 40.18}. The value of the Lipschitz constant Lv is Lv = maxx∈Φ |2βPx|∞ =
6|Px|∞ = 45.9926. For the algorithm based on FHOCP2 the final constraint X f depends on the
value M while for the algorithm based on FHOCP1 it results X f = {x : 3x′Px ≤ 31.2683}. In
Figure 1.b the maximum value of γ that satisfies (12) (solid line) and the one that satisfies the
(17) (dotted line) for different values of M, are reported. In this example, the advantage of the
algorithm based on the FHOCP2 with respect to first one is due to the fact that the auxiliary
control law can lead the state of the nominal system from Φ to X f in M steps rather than in
only one. Hence, since the difference between Φ and X f is bigger, then a bigger perturbation
can be tolerated. In Figure 1.c the state evolutions of the nonlinear system obtained with
different control strategies with initial condition

x01 6 −4.1 7 6 −4.6
x02 −2.5 −3 1.5 −1 1

and γ = 0.0581 are reported: in solid line, using the new algorithm (NMPC), with Np = 10
and M = 3, in dashed line, using the new algorithm but with the linearized system in the
solution of the FHOCP (LMPC) and in dash-dot line the results of a nominal MPC (MPC)
with Np = 10 and Nc = 3. It is clear that, since the model used for the FHOCP differs from the
nonlinear model, using LMPC feasibility is not guaranteed along the trajectory as shown with
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initial states [−4.6; 1], [−4.1;−3], [6;−1]. Also with the nominal MPC, as shown with initial
states [−4.1;−3], [6;−2.5], since uncertainty is not considered, feasibility is not guaranteed.
Figure 1.d shows a detail of the unfeasibility phenomenon from the first to the second time
instant with initial state [−4.1;−3]. The state constraint infact is robustly fulfilled only with
the NMPC algorithm. For the other initial states, the evolutions of the three strategies are
close.

7. Conclusions

In this paper two design procedures of nominal MPC controllers are presented. The objec-
tive of these algorithms is to provide some degree of robustness when model mismatches are
present. Regional Input-to-State Stability (ISS) has been used as theoretical framework of the
closed loop analysis. Both controllers assume the Lipschitz continuity of the model and of
the stage cost and terminal cost functions. Robust constraint satisfaction is ensured by in-
troducing restricted constraints in the optimization problem based on the estimation of the
maximum effect of the uncertainty. The main differences between the proposed algorithms
are that the second one uses a time varying control horizon and, in order to check the terminal
constraints, it updates the state with the real one just only each M steps. Theorem 2 and The-
orem 3 give sufficient condition on the maximum uncertainty in order to guarantee regional
ISS. The bounds depend on both system parameters and control algorithm parameters. These
conditions, even if only sufficient, give an idea on the algorithm that it is better to use for a
particular system.

8. Appendix

Lemma 2. Let x ∈ Xk−t and y ∈ Rn such that |y − x| ≤ Lk−t−1
f γ. Then y ∈ Xk−t−1.

Proof : Consider ek−t−1 ∈ Bk−t−1
γ , and let denote z = y − x + ek−t−1. It is clear that

|z| ≤ |y − x|+ |ek−t−1| ≤ Lk−t−1
f γ +

Lk−t−1
f − 1

L f − 1
γ =

Lk−t
f − 1

L f − 1
γ

thus, z ∈ Bk−t
γ . Taking into account that x ∈ Xk−t, for all ek−t−1 ∈ Bk−t−1

γ , it results that
y + ek−t−1 = (x + z) ∈ X. This yields that y ∈ Xk−t−1. �

Proof of Theorem 2: Firstly, it will be shown that region XMPC(N) is robust positively invariant
for the closed loop system: if x(t) ∈ XMPC(N), then x(t + 1) = f (x(t), uo(t)) + w(t) ∈
XMPC(N) for all w(t) ∈ W. This is achieved by proving that for all x(t) ∈ XMPC(N), there
exists an admissible solution of the optimization problem in t + 1, based on the optimal
solution in t, i.e. ūt+1,t+N = [uo

t+1,t+N−1, k f (x̂(t + N|t + 1))]. Let denote x̄(k|t + 1) the state
obtained applying the input sequence ūt+1,k−1 to the nominal model with initial condition
x(t + 1). In order to prove that the sequence ūt+1,t+N is admissible, it is necessary that

a) ū(k) ∈ U, k ∈ [t + 1, t + N]: it follows from the feasibility of uo
t,t+N−1 and the fact that

κ f (x) ∈ U, ∀x ∈ X f ⊆ Φ.

b) x̄(t + N + 1|t + 1) ∈ X f : first, it is going to be shown that x̄(t + N|t + 1) ∈ Φ. Taking
into account that |x̄(t + N|t + 1)− x̂(t + N|t)| ≤ LN−1

f γ then

Vf (x̄(t + N|t + 1)) ≤ Vf (x̂(t + N|t)) + LvLN−1
f γ ≤ αv + LvLN−1

f γ ≤ α.

Therefore x̄(t + N|t + 1) ∈ Φ and hence, applying the auxiliary control law, x̄(t + N +
1|t + 1) ∈ X f .

c) x̄(k|t + 1) ∈ Xk−t−1, k ∈ [t + 1, t + N]: considering that |x(t + 1)− x̂(t + 1|t)| ≤ γ by
recursion |x̄(k|t + 1) − x̂(k|t)| ≤ Lk−t−1

f γ for k ∈ [t + 1, t + N]. Since x̂(k|t) ∈ Xk−t,
then, by Lemma 2, x̄(k|t + 1) ∈ Xk−t−1. Moreover, since x̄(t + N|t + 1) ∈ Φ ⊆ XN−1,
the proof is completed.

Now, in order to show that the closed loop system (1), (11) is ISS in XMPC(N), let verify
that V(x̄, N) � J(x̄, uo

t,t+N−1, N) is an ISS-Lyapunov function in XMPC(N). First note that by
Assumption 3

V(x̄, N) ≥ αl(|x̄|), ∀x̄ ∈ XMPC(N). (18)

Moreover, in view of Assumption 4, ũt,t+N = [uo
t,t+N−1, k f (x̂(t + N|t))] is an admissible, pos-

sible suboptimal, control sequence for the FHOCP1 with horizon N + 1 at time t with cost

J(x̄, ũt,t+N , N + 1) = V(x̄, N)− Vf (x̂(t + N|t)) + Vf (x̂(t + N + 1|t))
+l(x̂(t + N|t), k f (x̂(t + N|t))).

Since ũt,t+N is a suboptimal sequence, V(x̄, N + 1) ≤ J(x̄, ũt,t+N , N + 1) and, using point 5 of
Assumption 4, it follows that J(x̄, ũt,t+N , N + 1) ≤ V(x̄, N). Then

V(x̄, N + 1) ≤ V(x̄, N), ∀x̄ ∈ XMPC(N)

with V(x̄, 0) = Vf (x̄), ∀x̄ ∈ Φ. Therefore

V(x̄, N) ≤ V(x̄, N − 1) ≤ Vf (x̄) < βVf (|x̄|), ∀x̄ ∈ Φ. (19)

Moreover, let define ∆J as

∆J � J(x(t + 1), ūt+1,t+N , N)− J(x(t), uo
t,t+N−1, N)

= −l(x(t), uo(t)) +
k=t+N−1

∑
k=t+1

{l(x̄(k|t + 1), ū(k))− l(x̂(k|t), uo(k))}

+l(x̄(t + N|t + 1), ū(t + N)) + Vf (x̄(t + N + 1|t + 1)− Vf (x̂(t + N|t)). (20)

From the definition of ū, ū(k) = uo(k), for k ∈ [t+ 1, t+ N − 1], and hence l(x̄(k|t+ 1), ū(k))−
l(x̂(k|t), uo(k)) ≤ Ll L

k−t−1
f γ and analogously

Vf (x̄(t + N|t + 1)− Vf (x̂(t + N|t)) ≤ LvLN−1
f γ.

Substituting these expressions in (20) and considering that x̄(t + N|t + 1) ∈ Φ, from Assump-
tion 4, there is

∆J ≤ [l(x̄(t + N|t + 1), ū(t + N)) + Vf (x̄(t + N + 1|t + 1)− Vf (x̄(t + N|t + 1)]

−l(x(t), uo(t)) + LJγ ≤ −l(x(t), uo(t)) + LJγ
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initial states [−4.6; 1], [−4.1;−3], [6;−1]. Also with the nominal MPC, as shown with initial
states [−4.1;−3], [6;−2.5], since uncertainty is not considered, feasibility is not guaranteed.
Figure 1.d shows a detail of the unfeasibility phenomenon from the first to the second time
instant with initial state [−4.1;−3]. The state constraint infact is robustly fulfilled only with
the NMPC algorithm. For the other initial states, the evolutions of the three strategies are
close.

7. Conclusions

In this paper two design procedures of nominal MPC controllers are presented. The objec-
tive of these algorithms is to provide some degree of robustness when model mismatches are
present. Regional Input-to-State Stability (ISS) has been used as theoretical framework of the
closed loop analysis. Both controllers assume the Lipschitz continuity of the model and of
the stage cost and terminal cost functions. Robust constraint satisfaction is ensured by in-
troducing restricted constraints in the optimization problem based on the estimation of the
maximum effect of the uncertainty. The main differences between the proposed algorithms
are that the second one uses a time varying control horizon and, in order to check the terminal
constraints, it updates the state with the real one just only each M steps. Theorem 2 and The-
orem 3 give sufficient condition on the maximum uncertainty in order to guarantee regional
ISS. The bounds depend on both system parameters and control algorithm parameters. These
conditions, even if only sufficient, give an idea on the algorithm that it is better to use for a
particular system.
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Lemma 2. Let x ∈ Xk−t and y ∈ Rn such that |y − x| ≤ Lk−t−1
f γ. Then y ∈ Xk−t−1.

Proof : Consider ek−t−1 ∈ Bk−t−1
γ , and let denote z = y − x + ek−t−1. It is clear that
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f γ +

Lk−t−1
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L f − 1
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L f − 1
γ

thus, z ∈ Bk−t
γ . Taking into account that x ∈ Xk−t, for all ek−t−1 ∈ Bk−t−1

γ , it results that
y + ek−t−1 = (x + z) ∈ X. This yields that y ∈ Xk−t−1. �

Proof of Theorem 2: Firstly, it will be shown that region XMPC(N) is robust positively invariant
for the closed loop system: if x(t) ∈ XMPC(N), then x(t + 1) = f (x(t), uo(t)) + w(t) ∈
XMPC(N) for all w(t) ∈ W. This is achieved by proving that for all x(t) ∈ XMPC(N), there
exists an admissible solution of the optimization problem in t + 1, based on the optimal
solution in t, i.e. ūt+1,t+N = [uo

t+1,t+N−1, k f (x̂(t + N|t + 1))]. Let denote x̄(k|t + 1) the state
obtained applying the input sequence ūt+1,k−1 to the nominal model with initial condition
x(t + 1). In order to prove that the sequence ūt+1,t+N is admissible, it is necessary that

a) ū(k) ∈ U, k ∈ [t + 1, t + N]: it follows from the feasibility of uo
t,t+N−1 and the fact that

κ f (x) ∈ U, ∀x ∈ X f ⊆ Φ.

b) x̄(t + N + 1|t + 1) ∈ X f : first, it is going to be shown that x̄(t + N|t + 1) ∈ Φ. Taking
into account that |x̄(t + N|t + 1)− x̂(t + N|t)| ≤ LN−1

f γ then

Vf (x̄(t + N|t + 1)) ≤ Vf (x̂(t + N|t)) + LvLN−1
f γ ≤ αv + LvLN−1

f γ ≤ α.

Therefore x̄(t + N|t + 1) ∈ Φ and hence, applying the auxiliary control law, x̄(t + N +
1|t + 1) ∈ X f .
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then, by Lemma 2, x̄(k|t + 1) ∈ Xk−t−1. Moreover, since x̄(t + N|t + 1) ∈ Φ ⊆ XN−1,
the proof is completed.

Now, in order to show that the closed loop system (1), (11) is ISS in XMPC(N), let verify
that V(x̄, N) � J(x̄, uo

t,t+N−1, N) is an ISS-Lyapunov function in XMPC(N). First note that by
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V(x̄, N) ≥ αl(|x̄|), ∀x̄ ∈ XMPC(N). (18)
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t,t+N−1, k f (x̂(t + N|t))] is an admissible, pos-

sible suboptimal, control sequence for the FHOCP1 with horizon N + 1 at time t with cost
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Moreover, let define ∆J as
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∑
k=t+1
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k−t−1
f γ and analogously
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f γ.

Substituting these expressions in (20) and considering that x̄(t + N|t + 1) ∈ Φ, from Assump-
tion 4, there is
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where LJ � LvLN−1
f + Ll

LN−1
f −1
L f −1 . Considering that by Assumption 3, l(x, u) ≥ αl(|x|) and the

optimality of the solution, then

V(x(t + 1), N)− V(x(t), N) ≤ ∆J ≤ −αl(|x(t)|) + LJ γ, ∀x ∈ XMPC(N) (21)

Therefore, by (18), (19) and (21), V(x̄, N) is an ISS-Lyapunov function of the closed loop
system (1), (11), and hence, the closed-loop system is ISS with robust invariant region
XMPC(N). �

Proof of Theorem 3: Firstly, it will be shown that region XMPC(t, Np) is robust positively invari-
ant for the closed-loop system. This is achieved by proving that for all ξ(t) ∈ XMPC(t, Np),
there exists an admissible solution ūt+1,t+1+Nc(t+1)−1 of the optimization problem in t + 1,
based on the optimal solution in t. This sequence is given by

ūt+1,t+1+Nc(t+1)−1(k) =

{
uo

t,t+Nc(t)−1(k) if t + 1 �∈ TM

κ f (x̂(k|t + 1)) if t + 1 ∈ TM

for k ∈ [t + 1, · · · , t + 1 + Nc(t + 1)− 1]. Notice that if t + 1 �∈ TM, Nc(t + 1) = Nc(t)− 1 and
hence the sequence is well defined.
Moreover, since necessary for the ISS proof, it will be shown that, starting from the (nominal)
state x̂(t + 1|t), the sequence ū′

t+1,t+1+Nc(t+1)−1 is admissible. This is given by

ū′
t+1,t+1+Nc(t+1)−1(k) =

{
uo

t,t+Nc(t)−1(k) if t + 1 �∈ TM

κ f (x̂(k|t)) if t + 1 ∈ TM

for k ∈ [t + 1, · · · , t + 1 + Nc(t + 1)− 1].

In order to prove that the two sequences are admissible, it is necessary that
1) x̃(t+ 1+ Nc(t+ 1)|t+ 1+ Nc(t+ 1)− M) ∈ X f with ũt+1+Nc(t+1)−M,t+1+Nc(t+1)−1 derived
from both ū and ū′;
2) x̂(k|t + 1) ∈ Xk−t−1, k ∈ [t + 1, t + 1 + Nc(t + 1)− 1] with input ū;
3) x̂(k|t) ∈ Xk−t, k ∈ [t + 1, t + 1 + Nc(t + 1)− 1] with input ū′;
4) ū(k) ∈ U, ū′(k) ∈ U, k ∈ [t + 1, t + 1 + Nc(t + 1)− 1].

1) First note that if t + 1 �∈ TM, then ū(k) = ū′(k) = uo(k), k ∈ [t + 1, t + 1 + Nc(t + 1)− 1].
This yields to x̃(k|t + Nc(t)− M) = x̃(k|t + 1 + Nc(t + 1)− M) for all k ∈ [t + 1 + Nc(t + 1)− M, t +
1 + Nc(t + 1)] and hence

x̃(t + 1 + Nc(t + 1)|t + 1 + Nc(t + 1)− M) = x̃(t + Nc(t)|t + Nc(t)− M) ∈ Xf .

On the contrary, if t + 1 ∈ TM then ūt+1,t+1+Nc(t+1)−1(k) = κ f (x̂(k|t + 1)) and
ū′

t+1,t+1+Nc(t+1)−1(k) = κ f (x̂(k|t)). We are going to prove that both sequence satisfies the
terminal constraint:

• Consider the sequence ū and let denote ũ and x̃ the sequence and predictions derived
from ū. In virtue of Lemma 1 and the fact that Nc(t) = 1, the following inequality holds

|x(t + 1)− x̃(t + 1|t + Nc(t)− M)| ≤
LM

f − 1

L f − 1
γ (22)

and by point 5 of Assumption 4 it follows that

Vf (x(t + 1))− Vf (x̃(t + 1|t + Nc(t)− M))

≤ Lv|x(t + 1)− x̃(t + 1|t + Nc(t)− M)| ≤ Lv
LM

f − 1

L f − 1
γ

Hence, considering that x̃(t + 1|t + Nc(t)− M) ∈ X f and the uncertainty satisfies (17),
then

Vf (x(t + 1)) ≤ Vf (x̃(t + 1|t + Nc(t)− M)) + Lv
LM

f −1
L f −1 γ ≤ αv + Lv

LM
f −1

L f −1 γ ≤ α (23)

and therefore x(t + 1) ∈ Φ. Hence, from Assumption 8, κ f (x̂(k|t + 1)) steers the nomi-
nal state in X f in M steps. Then ūt+1,t+Nc(t+1)−1 satisfies the constraint.

• Let consider now ū′ and let denote ũ′ and x̃′ the sequence and predictions derived from
ū′. Since x̂(t + 1|t) = f (x(t), uo

t,t) we have that

|x̂(t + 1|t)− x̃′(t + 1|t + Nc(t)− M)|
= | f (x(t), uo(t))− f (x̃′(t|t + Nc(t)− M), uo(t))|
≤ L f |x(t)− x̃′(t|t + Nc(t)− M)|

and from (22) |x̂(t+ 1|t)− x̃′(t+ 1|t+ Nc(t)− M)| ≤ L f
LM−1

f −1
L f −1 γ. Finally, following the same

idea used to derive (23)

Vf (x̂(t + 1|t)) ≤ Vf (x̃′(t + 1|t + Nc(t)− M)) + Lv L f
LM−1

f − 1

L f − 1
γ

< αv + Lv
LM

f − 1

L f − 1
γ ≤ α. (24)

Therefore Vf (x̂(t + 1|t)) < α and consequently x̂(t + 1|t) ∈ Φ. Hence κ f (x̂(k|t)) steers
the nominal state in X f in M steps. Then ū′

t+1,t+Nc(t+1)−1 satisfies the constraint.

2) Consider the sequence of inputs ū and assume that t + 1 �∈ TM, then, since by optimality of
solution at time t, x̂(k|t) ∈ Xk−t and

|x̂(k|t + 1)− x̂(k|t)| ≤ Lk−t−1
f γ, k ∈ [t + 1, t + 1 + Nc(t + 1)− 1]

from Lemma 2, it follows that x̂(k|t + 1) ∈ Xk−t−1. If t ∈ TM then x(t + 1) ∈ Φ as shown in
(23), and from Assumptions 4, 7, the constraints satisfaction is directly derived.

3) Consider that the sequence ū′
t+1,t+1+Nc(t+1)−1 is applied from the state x̂(t + 1|t). If

t + 1 �∈ TM then the constraints are satisfied since x̂(k|t) ∈ Xk−t. If t + 1 ∈ TM, as shown in
(24), x̂(t + 1|t) ∈ Φ and then, by Assumptions 4, 7, constraints satisfaction is directly derived.

4) From the admissibility of uo
t,t+Nc(t)−1 and the fact that for all x ∈ Φ, κ f (x) ∈ U, it follows

that ū(k) ∈ U, ū′(k) ∈ U, k ∈ [t + 1, t + 1 + Nc(t + 1)− 1].

Now, in order to show that the closed loop system (15) is ISS in XMPC(t, Np), it is first
proven that the closed-loop system (16), defined for each t ∈ TM, is ISS in XMPC

M (Np).
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where LJ � LvLN−1
f + Ll

LN−1
f −1
L f −1 . Considering that by Assumption 3, l(x, u) ≥ αl(|x|) and the

optimality of the solution, then

V(x(t + 1), N)− V(x(t), N) ≤ ∆J ≤ −αl(|x(t)|) + LJ γ, ∀x ∈ XMPC(N) (21)

Therefore, by (18), (19) and (21), V(x̄, N) is an ISS-Lyapunov function of the closed loop
system (1), (11), and hence, the closed-loop system is ISS with robust invariant region
XMPC(N). �

Proof of Theorem 3: Firstly, it will be shown that region XMPC(t, Np) is robust positively invari-
ant for the closed-loop system. This is achieved by proving that for all ξ(t) ∈ XMPC(t, Np),
there exists an admissible solution ūt+1,t+1+Nc(t+1)−1 of the optimization problem in t + 1,
based on the optimal solution in t. This sequence is given by

ūt+1,t+1+Nc(t+1)−1(k) =

{
uo

t,t+Nc(t)−1(k) if t + 1 �∈ TM

κ f (x̂(k|t + 1)) if t + 1 ∈ TM

for k ∈ [t + 1, · · · , t + 1 + Nc(t + 1)− 1]. Notice that if t + 1 �∈ TM, Nc(t + 1) = Nc(t)− 1 and
hence the sequence is well defined.
Moreover, since necessary for the ISS proof, it will be shown that, starting from the (nominal)
state x̂(t + 1|t), the sequence ū′

t+1,t+1+Nc(t+1)−1 is admissible. This is given by

ū′
t+1,t+1+Nc(t+1)−1(k) =

{
uo

t,t+Nc(t)−1(k) if t + 1 �∈ TM

κ f (x̂(k|t)) if t + 1 ∈ TM

for k ∈ [t + 1, · · · , t + 1 + Nc(t + 1)− 1].

In order to prove that the two sequences are admissible, it is necessary that
1) x̃(t+ 1+ Nc(t+ 1)|t+ 1+ Nc(t+ 1)− M) ∈ X f with ũt+1+Nc(t+1)−M,t+1+Nc(t+1)−1 derived
from both ū and ū′;
2) x̂(k|t + 1) ∈ Xk−t−1, k ∈ [t + 1, t + 1 + Nc(t + 1)− 1] with input ū;
3) x̂(k|t) ∈ Xk−t, k ∈ [t + 1, t + 1 + Nc(t + 1)− 1] with input ū′;
4) ū(k) ∈ U, ū′(k) ∈ U, k ∈ [t + 1, t + 1 + Nc(t + 1)− 1].

1) First note that if t + 1 �∈ TM, then ū(k) = ū′(k) = uo(k), k ∈ [t + 1, t + 1 + Nc(t + 1)− 1].
This yields to x̃(k|t + Nc(t)− M) = x̃(k|t + 1 + Nc(t + 1)− M) for all k ∈ [t + 1 + Nc(t + 1)− M, t +
1 + Nc(t + 1)] and hence

x̃(t + 1 + Nc(t + 1)|t + 1 + Nc(t + 1)− M) = x̃(t + Nc(t)|t + Nc(t)− M) ∈ Xf .

On the contrary, if t + 1 ∈ TM then ūt+1,t+1+Nc(t+1)−1(k) = κ f (x̂(k|t + 1)) and
ū′

t+1,t+1+Nc(t+1)−1(k) = κ f (x̂(k|t)). We are going to prove that both sequence satisfies the
terminal constraint:

• Consider the sequence ū and let denote ũ and x̃ the sequence and predictions derived
from ū. In virtue of Lemma 1 and the fact that Nc(t) = 1, the following inequality holds

|x(t + 1)− x̃(t + 1|t + Nc(t)− M)| ≤
LM

f − 1

L f − 1
γ (22)

and by point 5 of Assumption 4 it follows that

Vf (x(t + 1))− Vf (x̃(t + 1|t + Nc(t)− M))

≤ Lv|x(t + 1)− x̃(t + 1|t + Nc(t)− M)| ≤ Lv
LM

f − 1

L f − 1
γ

Hence, considering that x̃(t + 1|t + Nc(t)− M) ∈ X f and the uncertainty satisfies (17),
then

Vf (x(t + 1)) ≤ Vf (x̃(t + 1|t + Nc(t)− M)) + Lv
LM

f −1
L f −1 γ ≤ αv + Lv

LM
f −1

L f −1 γ ≤ α (23)

and therefore x(t + 1) ∈ Φ. Hence, from Assumption 8, κ f (x̂(k|t + 1)) steers the nomi-
nal state in X f in M steps. Then ūt+1,t+Nc(t+1)−1 satisfies the constraint.

• Let consider now ū′ and let denote ũ′ and x̃′ the sequence and predictions derived from
ū′. Since x̂(t + 1|t) = f (x(t), uo

t,t) we have that

|x̂(t + 1|t)− x̃′(t + 1|t + Nc(t)− M)|
= | f (x(t), uo(t))− f (x̃′(t|t + Nc(t)− M), uo(t))|
≤ L f |x(t)− x̃′(t|t + Nc(t)− M)|

and from (22) |x̂(t+ 1|t)− x̃′(t+ 1|t+ Nc(t)− M)| ≤ L f
LM−1

f −1
L f −1 γ. Finally, following the same

idea used to derive (23)

Vf (x̂(t + 1|t)) ≤ Vf (x̃′(t + 1|t + Nc(t)− M)) + Lv L f
LM−1

f − 1

L f − 1
γ

< αv + Lv
LM

f − 1

L f − 1
γ ≤ α. (24)

Therefore Vf (x̂(t + 1|t)) < α and consequently x̂(t + 1|t) ∈ Φ. Hence κ f (x̂(k|t)) steers
the nominal state in X f in M steps. Then ū′

t+1,t+Nc(t+1)−1 satisfies the constraint.

2) Consider the sequence of inputs ū and assume that t + 1 �∈ TM, then, since by optimality of
solution at time t, x̂(k|t) ∈ Xk−t and

|x̂(k|t + 1)− x̂(k|t)| ≤ Lk−t−1
f γ, k ∈ [t + 1, t + 1 + Nc(t + 1)− 1]

from Lemma 2, it follows that x̂(k|t + 1) ∈ Xk−t−1. If t ∈ TM then x(t + 1) ∈ Φ as shown in
(23), and from Assumptions 4, 7, the constraints satisfaction is directly derived.

3) Consider that the sequence ū′
t+1,t+1+Nc(t+1)−1 is applied from the state x̂(t + 1|t). If

t + 1 �∈ TM then the constraints are satisfied since x̂(k|t) ∈ Xk−t. If t + 1 ∈ TM, as shown in
(24), x̂(t + 1|t) ∈ Φ and then, by Assumptions 4, 7, constraints satisfaction is directly derived.

4) From the admissibility of uo
t,t+Nc(t)−1 and the fact that for all x ∈ Φ, κ f (x) ∈ U, it follows

that ū(k) ∈ U, ū′(k) ∈ U, k ∈ [t + 1, t + 1 + Nc(t + 1)− 1].

Now, in order to show that the closed loop system (15) is ISS in XMPC(t, Np), it is first
proven that the closed-loop system (16), defined for each t ∈ TM, is ISS in XMPC

M (Np).



Model Predictive Control104

In order to prove the first part let verify that V(x̄, M, Np) � J(x̄, uo
t,t+M−1, M, Np), is

an ISS-Lyapunov function for the system (16).

Let denote x̄(k|t + 1) and x̄′(k|t) the state evolution obtained with input ū(k) and ini-
tial state x(t + 1) and with input ū′(k) and initial state x(t + 1|t) respectively. Let call J∗(t, x),
J̄(x) and J̄′(x) the optimal cost and the cost relative to the admissible sequences ū and ū′

respectively. First note that by Assumption 3

V(x̄, M, Np) ≥ αl(|x̄|), ∀x̄ ∈ XMPC
M (Np). (25)

Moreover, ũt,t+M−1 = uo
t,t+M−1, where uo

t,t+M−1 is the optimal control sequence for the
FHOCP2 with prediction horizon Np, is an admissible, possible suboptimal, control sequence
for the FHOCP2 with control horizon M and prediction horizon Np + 1 at time t with cost

J(x̄, ũt,t+M−1, M, Np + 1) = V(x̄, M, Np)− Vf (x̂(t + Np|t)) + Vf (x̂(t + Np + 1|t))
+l(x̂(t + Np|t), k f (x̂(t + Np|t))).

Since ũt,M−1 is a suboptimal sequence V(x̄, M, Np + 1) ≤ J(x̄, ũt,t+M−1, M, Np + 1) and, us-
ing point 5 of Assumption 4, it follows that J(x̄, ũt,t+M−1, Np + 1) ≤ V(x̄, M, Np). Then
V(x̄, M, Np + 1) ≤ V(x̄, M, Np), ∀x̄ ∈ XMPC

M (Np), Np ≥ M. In particular, it is true that
V(x̄, M, Np) ≤ V(x̄, M, M), ∀x̄ ∈ XMPC

M (M). Now, in view of Assumption 4, ũt,t+M =
[uo

t,t+M−1, k f (x̂(t + M|t))] is an admissible, possible suboptimal, control sequence for the
FHOCP2 with horizon M + 1 with cost

J(x̄, ũt,t+M , M + 1, M + 1) = V(x̄, M, M)− Vf (x̂(t + M|t)) + Vf (x̂(t + M + 1|t))
+l(x̂(t + M|t), k f (x̂(t + M|t))).

Since ũt,t+M is a suboptimal sequence V(x̄, M + 1, M + 1) ≤ J(x̄, ũt,t+M , M + 1, M + 1) and, using
point 5 of Assumption 4, it follows that J(x̄, ũt,t+M , M + 1) ≤ V(x̄, M, M). Then V(x̄, M + 1, M +
1) ≤ V(x̄, M, M), ∀x̄ ∈ XMPC

M (M) with V(x̄, 0, 0) = Vf (x̄), ∀x̄ ∈ Φ. Therefore

V(x̄, M, M) ≤ V(x̄, M − 1, M − 1) ≤ Vf (x̄) < βVf (|x̄|), ∀x̄ ∈ Φ. (26)

Moreover, let calculate

J̄′(x̂(t + 1|t))− J∗(t, x(t))

=
t+1+Nc(t+1)−1

∑
k=t+1

l(x̄′(k|t), ū′(k)) +
t+Np

∑
k=t+1+Nc(t+1)

l(x̄′(k|t), κ f (x̄′(k|t)))

−
t+Nc(t)−1

∑
k=t

l(x̂(k|t), uo(k))−
t+Np−1

∑
k=t+Nc(t)

l(x̂(k|t), κ f (x̂(k|t)))

+Vf (x̄′(t + 1 + Np|t))− Vf (x̂(t + Np|t)).

Since, both the state evolutions are obtained with initial condition x̂(t + 1|t) and the same
input sequence from time t+ 1 and until t+ Np − 1, there is x̄′(k|t) = x̂(k|t), k ∈ [t+ 1, t+ Np]
so that

J̄′(x̂(t + 1|t))− J∗(t, x(t)) = l(x̂(t + Np|t), κ f (x̂(t + Np|t))− l(x(t), uo(t))
+Vf (x̂(t + 1 + Np|t))− Vf (x̂(t + Np|t)).

Using point 5 of the Assumption 4

J̄′(x̂(t + 1|t))− J∗(t, x(t)) ≤ −l(x(t), κMPC(t, x(t))). (27)

Let consider now the difference

J̄(x(t + 1))− J̄′(x̂(t + 1|t)) =
t+Nc(t)−1

∑
k=t+1

{l(x̄(k|t + 1), ū(k))− l(x̄′(k|t), ū′(k))}

+
t+Np

∑
k=t+Nc(t)

{l(x̄(k|t + 1), κ f (x̄(k|t + 1)))

−l(x̄′(k|t), κ f (x̄′(k|t)))}
+Vf (x̄(t + 1 + Np|t + 1))− Vf (x̄′(t + 1 + Np|t)).

Note that ū(k) = ū′(k), k ∈ [t + 1, t + Nc(t) − 1], while the signals are different for k >

t + Nc(t)− 1. Since |x̄(k|t + 1)− x̄′(k|t)| ≤ Lk−t−1
f γ from Assumption 3 it is derived that

|l(x̄(k|t + 1), ū(k))− l(x̄′(k|t), ū′(k))| ≤ Ll L
k−t−1
f γ, k ∈ [t + 1, ...., t + Nc(t)− 1]

Therefore, an upper bound for the first part of the summation is given by

t+Nc(t)−1

∑
k=t+1

{l(x̄(k|t + 1), ū(k))− l(x̄′(k|t), ū′(k))} ≤ Ll
LNc(t)−1

f − 1

L f − 1
γ. (28)

For k > t + Nc(t), where ū′ and ū are obtained applying the auxiliary control law to x̄(k|t + 1)
and x̄′(k|t) respectively, the upper bound is obtained using Assumptions 3 and 7, l(x̄(k|t +
1), ū(k|t + 1))− l(x̄′(k|t), ū′(k|t)) ≤ (Ll + Llu Lκ)|x̄(k|t + 1)− x̄′(k|t)| and Assumption 2, |x̄(k + 1|t +
1)− x̄′(k + 1|t)| ≤ (L f + L f u Lκ)|x̄(k|t + 1)− x̄′(k|t)|.Moreover |x̄(t + Nc(t)|t + 1)− x̄′(t + Nc(t)|t)| ≤
LNc(t)−1

f γ and defining Lx � (L f + L f uLκ) and Llx � (Ll + LluLκ), the following upper bound
is obtained

t+Np

∑
k=t+Nc(t)

{l(x̄(k|t + 1), ū(k|t + 1))− l(x̄′(k|t), ū′(k|t))} ≤ Llx

t+Np

∑
k=t+Nc(t)

|x̄(k|t + 1)− x̄′(k|t)|

≤ Llx

t+Np

∑
k=t+Nc(t)

Lk−t−Nc(t)
x |x̄(t + Nc(t)|t + 1)− x̄′(t + Nc(t)|t)|

≤ Llx LNc(t)−1
f

L
Np−Nc(t)+1
x − 1

Lx − 1
γ.

Finally in order to compute an upper bound for the difference of terminal penalties note that
|x̄(t + Np + 1|t + 1) − x̄′(t + Np + 1|t)| ≤ LNc(t)−1

f L
Np−Nc(t)+1
x γ and using point 6 of Assumption

4, Vf (x̄(t + Np + 1|t + 1))− Vf (x̄′(t + Np + 1|t)) ≤ Lv LNc(t)−1
f L

Np−Nc(t)+1
x γ. Therefore the following

bound is obtained

J̄(x(t + 1))− J̄′(x̂(t + 1|t)) ≤ Ll
LNc(t)−1

f − 1

L f − 1
γ + Llx LNc(t)−1

f
L

Np−Nc(t)+1
x − 1

Lx − 1
γ

+Lv LNc(t)−1
f L

Np−Nc(t)+1
x γ.
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In order to prove the first part let verify that V(x̄, M, Np) � J(x̄, uo
t,t+M−1, M, Np), is

an ISS-Lyapunov function for the system (16).

Let denote x̄(k|t + 1) and x̄′(k|t) the state evolution obtained with input ū(k) and ini-
tial state x(t + 1) and with input ū′(k) and initial state x(t + 1|t) respectively. Let call J∗(t, x),
J̄(x) and J̄′(x) the optimal cost and the cost relative to the admissible sequences ū and ū′

respectively. First note that by Assumption 3

V(x̄, M, Np) ≥ αl(|x̄|), ∀x̄ ∈ XMPC
M (Np). (25)

Moreover, ũt,t+M−1 = uo
t,t+M−1, where uo

t,t+M−1 is the optimal control sequence for the
FHOCP2 with prediction horizon Np, is an admissible, possible suboptimal, control sequence
for the FHOCP2 with control horizon M and prediction horizon Np + 1 at time t with cost

J(x̄, ũt,t+M−1, M, Np + 1) = V(x̄, M, Np)− Vf (x̂(t + Np|t)) + Vf (x̂(t + Np + 1|t))
+l(x̂(t + Np|t), k f (x̂(t + Np|t))).

Since ũt,M−1 is a suboptimal sequence V(x̄, M, Np + 1) ≤ J(x̄, ũt,t+M−1, M, Np + 1) and, us-
ing point 5 of Assumption 4, it follows that J(x̄, ũt,t+M−1, Np + 1) ≤ V(x̄, M, Np). Then
V(x̄, M, Np + 1) ≤ V(x̄, M, Np), ∀x̄ ∈ XMPC

M (Np), Np ≥ M. In particular, it is true that
V(x̄, M, Np) ≤ V(x̄, M, M), ∀x̄ ∈ XMPC

M (M). Now, in view of Assumption 4, ũt,t+M =
[uo

t,t+M−1, k f (x̂(t + M|t))] is an admissible, possible suboptimal, control sequence for the
FHOCP2 with horizon M + 1 with cost

J(x̄, ũt,t+M , M + 1, M + 1) = V(x̄, M, M)− Vf (x̂(t + M|t)) + Vf (x̂(t + M + 1|t))
+l(x̂(t + M|t), k f (x̂(t + M|t))).

Since ũt,t+M is a suboptimal sequence V(x̄, M + 1, M + 1) ≤ J(x̄, ũt,t+M , M + 1, M + 1) and, using
point 5 of Assumption 4, it follows that J(x̄, ũt,t+M , M + 1) ≤ V(x̄, M, M). Then V(x̄, M + 1, M +
1) ≤ V(x̄, M, M), ∀x̄ ∈ XMPC

M (M) with V(x̄, 0, 0) = Vf (x̄), ∀x̄ ∈ Φ. Therefore

V(x̄, M, M) ≤ V(x̄, M − 1, M − 1) ≤ Vf (x̄) < βVf (|x̄|), ∀x̄ ∈ Φ. (26)

Moreover, let calculate

J̄′(x̂(t + 1|t))− J∗(t, x(t))

=
t+1+Nc(t+1)−1

∑
k=t+1

l(x̄′(k|t), ū′(k)) +
t+Np

∑
k=t+1+Nc(t+1)

l(x̄′(k|t), κ f (x̄′(k|t)))

−
t+Nc(t)−1

∑
k=t

l(x̂(k|t), uo(k))−
t+Np−1

∑
k=t+Nc(t)

l(x̂(k|t), κ f (x̂(k|t)))

+Vf (x̄′(t + 1 + Np|t))− Vf (x̂(t + Np|t)).

Since, both the state evolutions are obtained with initial condition x̂(t + 1|t) and the same
input sequence from time t+ 1 and until t+ Np − 1, there is x̄′(k|t) = x̂(k|t), k ∈ [t+ 1, t+ Np]
so that

J̄′(x̂(t + 1|t))− J∗(t, x(t)) = l(x̂(t + Np|t), κ f (x̂(t + Np|t))− l(x(t), uo(t))
+Vf (x̂(t + 1 + Np|t))− Vf (x̂(t + Np|t)).

Using point 5 of the Assumption 4

J̄′(x̂(t + 1|t))− J∗(t, x(t)) ≤ −l(x(t), κMPC(t, x(t))). (27)

Let consider now the difference

J̄(x(t + 1))− J̄′(x̂(t + 1|t)) =
t+Nc(t)−1

∑
k=t+1

{l(x̄(k|t + 1), ū(k))− l(x̄′(k|t), ū′(k))}

+
t+Np

∑
k=t+Nc(t)

{l(x̄(k|t + 1), κ f (x̄(k|t + 1)))

−l(x̄′(k|t), κ f (x̄′(k|t)))}
+Vf (x̄(t + 1 + Np|t + 1))− Vf (x̄′(t + 1 + Np|t)).

Note that ū(k) = ū′(k), k ∈ [t + 1, t + Nc(t) − 1], while the signals are different for k >

t + Nc(t)− 1. Since |x̄(k|t + 1)− x̄′(k|t)| ≤ Lk−t−1
f γ from Assumption 3 it is derived that

|l(x̄(k|t + 1), ū(k))− l(x̄′(k|t), ū′(k))| ≤ Ll L
k−t−1
f γ, k ∈ [t + 1, ...., t + Nc(t)− 1]

Therefore, an upper bound for the first part of the summation is given by

t+Nc(t)−1

∑
k=t+1

{l(x̄(k|t + 1), ū(k))− l(x̄′(k|t), ū′(k))} ≤ Ll
LNc(t)−1

f − 1

L f − 1
γ. (28)

For k > t + Nc(t), where ū′ and ū are obtained applying the auxiliary control law to x̄(k|t + 1)
and x̄′(k|t) respectively, the upper bound is obtained using Assumptions 3 and 7, l(x̄(k|t +
1), ū(k|t + 1))− l(x̄′(k|t), ū′(k|t)) ≤ (Ll + Llu Lκ)|x̄(k|t + 1)− x̄′(k|t)| and Assumption 2, |x̄(k + 1|t +
1)− x̄′(k + 1|t)| ≤ (L f + L f u Lκ)|x̄(k|t + 1)− x̄′(k|t)|.Moreover |x̄(t + Nc(t)|t + 1)− x̄′(t + Nc(t)|t)| ≤
LNc(t)−1

f γ and defining Lx � (L f + L f uLκ) and Llx � (Ll + LluLκ), the following upper bound
is obtained

t+Np

∑
k=t+Nc(t)

{l(x̄(k|t + 1), ū(k|t + 1))− l(x̄′(k|t), ū′(k|t))} ≤ Llx

t+Np

∑
k=t+Nc(t)

|x̄(k|t + 1)− x̄′(k|t)|

≤ Llx

t+Np

∑
k=t+Nc(t)

Lk−t−Nc(t)
x |x̄(t + Nc(t)|t + 1)− x̄′(t + Nc(t)|t)|

≤ Llx LNc(t)−1
f

L
Np−Nc(t)+1
x − 1

Lx − 1
γ.

Finally in order to compute an upper bound for the difference of terminal penalties note that
|x̄(t + Np + 1|t + 1) − x̄′(t + Np + 1|t)| ≤ LNc(t)−1

f L
Np−Nc(t)+1
x γ and using point 6 of Assumption

4, Vf (x̄(t + Np + 1|t + 1))− Vf (x̄′(t + Np + 1|t)) ≤ Lv LNc(t)−1
f L

Np−Nc(t)+1
x γ. Therefore the following

bound is obtained

J̄(x(t + 1))− J̄′(x̂(t + 1|t)) ≤ Ll
LNc(t)−1

f − 1

L f − 1
γ + Llx LNc(t)−1

f
L

Np−Nc(t)+1
x − 1

Lx − 1
γ

+Lv LNc(t)−1
f L

Np−Nc(t)+1
x γ.
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Defining

LJ(t) � Ll
LNc(t)−1

f − 1

L f − 1
+ Llx LNc(t)−1

f
L

Np−Nc(t)+1
x − 1

Lx − 1
+ Lv LNc(t)−1

f L
Np−Nc(t)+1
x

it follows that J̄(x(t + 1)) ≤ J̄′(x̂(t + 1|t)) + LJ(t)γ. Considering that J∗(t + 1, x(t + 1)) is the
optimal solution at time t + 1, J∗(t + 1, x(t + 1)) ≤ J̄(x(t + 1)) ≤ J̄′(x̂(t + 1|t)) + LJ(t)γ. From (27)
it is possible to conclude J∗(t + 1, x(t + 1)) − J∗(t, x(t)) ≤ −l(x(t), κMPC(t, x(t))) + LJ(t)γ. and by
Assumption 3

J∗(t + 1, x(t + 1))− J∗(t, x(t)) ≤ −αl(|x(t)|) + LJ(t)γ. (29)

Now, since V(x(t), M, Np) = J∗(t, x(t)), ∀t ∈ TM, using (29), there is

V(x(t + M), M, Np)− V(x(t), M, Np) ≤
t+M−1

∑
k=t

−αl(|x(k)|) + LJ(k)γ

≤ −αl(|x(t)|) +
t+M−1

∑
k=t

LJ(k)γ. (30)

Therefore, by (25), (26) and (30), V(x, M, Np) is an ISS-Lyapunov function for the closed-loop
system (16) and hence, the closed-loop system is ISS with robust invariant region XMPC

M (Np).
Now, to conclude the proof, it is necessary to demonstrate that, for t /∈ TM, the system (15) is
ISS in XMPC(t, Np). Since the model predictive control law (14) is admissible for the FHOCP2,
the closed-loop system (15) is such that ξ1(t + nM) ∈ Φ, ∀t ∈ TM, ∀n ∈ Z>0. Hence, in order
to prove that the system (15) is ISS in XMPC(t, Np), it is sufficient to prove that the system (15)
is ISS in Φ.
Noting that

αl(|x(t + i)|) ≤ J∗(t + i, x(t + i)) ≤ V(x(t), M, Np)− αl(|x(t)|) +
t+i−1

∑
k=t

LJ(k)γ

≤ βVf (|x(t)|) +
t+i−1

∑
k=t

LJ(k)γ, ∀x(t) ∈ Φ

considering that for any K∞-function γ, γ(r + s) ≤ γ(2r) + γ(2s), there is

|x(t + Mn + i)| ≤ α−1
l (2βVf (|x(t + Mn)|)) + α−1

l (2
t+i−1

∑
k=t

LJ(k)γ), ∀x(t) ∈ Φ (31)

for all n ∈ Z>0 and i ∈ [0, · · · , M − 1]. Since the closed-loop system (16) is ISS with robust
invariant region XMPC

M (Np), there exist a KL-function β(·, ·), and a K∞-function λ such that
|x(t + Mn)| ≤ β(|x(t)|, n) + λ(γ), ∀n ∈ Z≥0, ∀x(t) ∈ XMPC

M (Np). Applying this to (31), there is
|x(t + Mn + i)| ≤ β̃(|x(t)|, n) + λ̃(γ), ∀x(t) ∈ Φ. Hence, in conclusion, the system (15) is ISS in
XMPC(t, Np). �
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Defining

LJ(t) � Ll
LNc(t)−1

f − 1

L f − 1
+ Llx LNc(t)−1

f
L

Np−Nc(t)+1
x − 1

Lx − 1
+ Lv LNc(t)−1

f L
Np−Nc(t)+1
x

it follows that J̄(x(t + 1)) ≤ J̄′(x̂(t + 1|t)) + LJ(t)γ. Considering that J∗(t + 1, x(t + 1)) is the
optimal solution at time t + 1, J∗(t + 1, x(t + 1)) ≤ J̄(x(t + 1)) ≤ J̄′(x̂(t + 1|t)) + LJ(t)γ. From (27)
it is possible to conclude J∗(t + 1, x(t + 1)) − J∗(t, x(t)) ≤ −l(x(t), κMPC(t, x(t))) + LJ(t)γ. and by
Assumption 3

J∗(t + 1, x(t + 1))− J∗(t, x(t)) ≤ −αl(|x(t)|) + LJ(t)γ. (29)

Now, since V(x(t), M, Np) = J∗(t, x(t)), ∀t ∈ TM, using (29), there is

V(x(t + M), M, Np)− V(x(t), M, Np) ≤
t+M−1

∑
k=t

−αl(|x(k)|) + LJ(k)γ

≤ −αl(|x(t)|) +
t+M−1

∑
k=t

LJ(k)γ. (30)

Therefore, by (25), (26) and (30), V(x, M, Np) is an ISS-Lyapunov function for the closed-loop
system (16) and hence, the closed-loop system is ISS with robust invariant region XMPC

M (Np).
Now, to conclude the proof, it is necessary to demonstrate that, for t /∈ TM, the system (15) is
ISS in XMPC(t, Np). Since the model predictive control law (14) is admissible for the FHOCP2,
the closed-loop system (15) is such that ξ1(t + nM) ∈ Φ, ∀t ∈ TM, ∀n ∈ Z>0. Hence, in order
to prove that the system (15) is ISS in XMPC(t, Np), it is sufficient to prove that the system (15)
is ISS in Φ.
Noting that

αl(|x(t + i)|) ≤ J∗(t + i, x(t + i)) ≤ V(x(t), M, Np)− αl(|x(t)|) +
t+i−1

∑
k=t

LJ(k)γ

≤ βVf (|x(t)|) +
t+i−1

∑
k=t

LJ(k)γ, ∀x(t) ∈ Φ

considering that for any K∞-function γ, γ(r + s) ≤ γ(2r) + γ(2s), there is

|x(t + Mn + i)| ≤ α−1
l (2βVf (|x(t + Mn)|)) + α−1

l (2
t+i−1

∑
k=t

LJ(k)γ), ∀x(t) ∈ Φ (31)

for all n ∈ Z>0 and i ∈ [0, · · · , M − 1]. Since the closed-loop system (16) is ISS with robust
invariant region XMPC

M (Np), there exist a KL-function β(·, ·), and a K∞-function λ such that
|x(t + Mn)| ≤ β(|x(t)|, n) + λ(γ), ∀n ∈ Z≥0, ∀x(t) ∈ XMPC

M (Np). Applying this to (31), there is
|x(t + Mn + i)| ≤ β̃(|x(t)|, n) + λ̃(γ), ∀x(t) ∈ Φ. Hence, in conclusion, the system (15) is ISS in
XMPC(t, Np). �
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1. Historical background 

Process control has become an integral part of process plants. An automatic controller must 
be able to facilitate the plant operation over a wide range of operating conditions. The 
proportional-integral (PI) or proportional-integral-derivative (PID) controllers are 
commonly used in many industrial control systems. These controllers are tuned with 
different tuning techniques to deliver satisfactory plant performance.  
 

 
Fig. 1. MPC multi-step prediction scheme. 
 
However, specific control problems associated with the plant operations severely limit the 
performance of conventional controllers. The increasing complexity of plant operations 

5
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together with tougher environmental regulations, rigorous safety codes and rapidly 
changing economic situations demand the need for more sophisticated process controllers.  
Model predictive control (MPC) is an important branch of automatic control theory. MPC 
refers to a class of control algorithms in which a process model is used to predict and 
optimize the process performance. MPC has been widely applied in industry (Qin and 
Badgwell, 1997). The idea of MPC is to calculate a control function for the future time in 
order to force the controlled system response to reach the reference value. Therefore, the 
future reference values are to be known and the system behavior must be predictable by an 
appropriate model. The controller determines a manipulated variable profile that optimizes 
some open-loop performance objective over a finite horizon extending from the current time 
into the future. This manipulated variable profile is implemented until a plant measurement 
becomes available. Feedback is incorporated by using the measurement to update the 
optimization problem for the next time step. Figure 1 explains the basic idea of MPC 
showing how the past input-output information is used to predict the future process 
behavior at the current time and how this information is extended to future to track the 
desired setpoint trajectory. The notation y, u and Ts refer process output, control action and 
sample time, respectively. 

 
2. Model predictive control scheme 

Model predictive control (MPC) refers to a wide class of control algorithms that use an 
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together with tougher environmental regulations, rigorous safety codes and rapidly 
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time by an adaptive mechanism. The one step ahead predictive model can be recursively 
extended to obtain future predictions for the plant output. The minimization of a cost 
function based on future plant predictions and desired plant outputs generates an optimal 
control input sequence to act on the plant. The strategy is described as follows. 
 
Predictive model   
The relation between the past input-output data and the predicted output can be expressed 
by an ARX model of the form   
 
  y(t+1) = a1y(t) + . . . + anyy(t-ny+1) + b1u(t) +. . . . . . . + bnuu(t-nu+1)  (1) 
 
where y(t) and u(t) are the process and controller outputs at time t, y(t+1) is the one-step 
ahead model prediction at time t, a’s and b’s represent the model coefficients and the nu and 
ny are input and output orders of the system.    
 
Model identification  
 
The model output prediction can be expressed as 
            
  ym(t+1) =  xm(t)  (2) 
where 
  = [1 . . . ny 1 . . . nu]   (3) 
and  
  xm(t) = [y(t) . . . y(t-ny+1)  u(t) . . . u(t-nu+1)]T   (4)  
 
with   and    as  identified model parameters. 
One of the most widely used estimators for model parameters and covariance is the popular 
recursive least squares (RLS) algorithm (Goodwin and Sin, 1984). The RLS algorithm 
provides the updated parameters of the ARX model in the operating space at each sampling 
instant or these parameters can be determined a priori using the known data of inputs and 
outputs for different operating conditions. The RLS algorithm is expressed as  
 

   (t+1) =  (t)  + K(t) [y(t+1) - ym(t+1)]   
 K(t) = P(t) xm(t+1) / [1 +  xm(t+1)T P(t) xm(t+1)]  (5) 
 P(t+1) = 1/ [P(t) - {( P(t) xm(t+1) xm(t+1)T P(t)) / (1 +  xm(t+1)T P(t) xm(t+1))}]  
 

where (t) represents the estimated parameter vector,  is the forgetting factor, K(t) is the 
gain matrix and P(t) is the covariance matrix.  
 
Controller formulation   
 
The N time steps ahead output prediction over a prediction horizon is given by 
 

 1( )py t N    y(t+N-1)+...+nyy(t-ny+N)+1u(t+N-1)+...+nuu(t-nu+N)+err(t)  (6) 
 

where yp(t+N) represent the model predictions for N steps and err(t) is an estimate of the 
modeling error which is assumed as constant for the entire prediction horizon. If the control 
horizon is m, then the controller output, u after m time steps can be assumed to be constant. 

An internal model is used to eliminate the discrepancy between model and process outputs, 
error(t), at each sampling instant 
  error(t) = y(t) - ym(t)  (7) 
 

where ym(t) is the one-step ahead model prediction at time (t-1). The estimate of the error is 
then filtered to produce err(t) which minimizes the instability introduced by the modeling 
error feedback. The filter error is given by 
 

 err(t) = (1-Kf) err(t-1) + Kf  error(t)  (8) 
 

where Kf  is the feedback filter gain which has to be tuned heuristically. 
Back substitutions transform the prediction model equations into the following form 
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The elements f, g and e  are recursively calculated using the parameters  and  of  
Eq. (3). The above equations can be written in a condensed form as 
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where 
 Y(t) = [yp(t+1) . . . yp(t+N)]T  (11)  
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 U(t) = [u(t) . . . u(t+m-1)]T  (13) 
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time by an adaptive mechanism. The one step ahead predictive model can be recursively 
extended to obtain future predictions for the plant output. The minimization of a cost 
function based on future plant predictions and desired plant outputs generates an optimal 
control input sequence to act on the plant. The strategy is described as follows. 
 
Predictive model   
The relation between the past input-output data and the predicted output can be expressed 
by an ARX model of the form   
 
  y(t+1) = a1y(t) + . . . + anyy(t-ny+1) + b1u(t) +. . . . . . . + bnuu(t-nu+1)  (1) 
 
where y(t) and u(t) are the process and controller outputs at time t, y(t+1) is the one-step 
ahead model prediction at time t, a’s and b’s represent the model coefficients and the nu and 
ny are input and output orders of the system.    
 
Model identification  
 
The model output prediction can be expressed as 
            
  ym(t+1) =  xm(t)  (2) 
where 
  = [1 . . . ny 1 . . . nu]   (3) 
and  
  xm(t) = [y(t) . . . y(t-ny+1)  u(t) . . . u(t-nu+1)]T   (4)  
 
with   and    as  identified model parameters. 
One of the most widely used estimators for model parameters and covariance is the popular 
recursive least squares (RLS) algorithm (Goodwin and Sin, 1984). The RLS algorithm 
provides the updated parameters of the ARX model in the operating space at each sampling 
instant or these parameters can be determined a priori using the known data of inputs and 
outputs for different operating conditions. The RLS algorithm is expressed as  
 

   (t+1) =  (t)  + K(t) [y(t+1) - ym(t+1)]   
 K(t) = P(t) xm(t+1) / [1 +  xm(t+1)T P(t) xm(t+1)]  (5) 
 P(t+1) = 1/ [P(t) - {( P(t) xm(t+1) xm(t+1)T P(t)) / (1 +  xm(t+1)T P(t) xm(t+1))}]  
 

where (t) represents the estimated parameter vector,  is the forgetting factor, K(t) is the 
gain matrix and P(t) is the covariance matrix.  
 
Controller formulation   
 
The N time steps ahead output prediction over a prediction horizon is given by 
 

 1( )py t N    y(t+N-1)+...+nyy(t-ny+N)+1u(t+N-1)+...+nuu(t-nu+N)+err(t)  (6) 
 

where yp(t+N) represent the model predictions for N steps and err(t) is an estimate of the 
modeling error which is assumed as constant for the entire prediction horizon. If the control 
horizon is m, then the controller output, u after m time steps can be assumed to be constant. 

An internal model is used to eliminate the discrepancy between model and process outputs, 
error(t), at each sampling instant 
  error(t) = y(t) - ym(t)  (7) 
 

where ym(t) is the one-step ahead model prediction at time (t-1). The estimate of the error is 
then filtered to produce err(t) which minimizes the instability introduced by the modeling 
error feedback. The filter error is given by 
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where Kf  is the feedback filter gain which has to be tuned heuristically. 
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In the above, Y(t) represents the model predictions over the prediction horizon, X(t) is a 
vector of past plant and controller outputs and U(t) is a vector of future controller outputs. If 
the coefficients of F, G and E are determined then the transformation can be completed. The 
number of columns in F is determined by the ARX model structure used to represent the 
system, where as the number of columns in G is determined by the length of the control 
horizon. The number of rows is fixed by the length of the prediction horizon. 
 
Consider a cost function of the form 
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where W(t) is a setpoint vector over the prediction horizon 
 
    W(t) = [ w(t+1) . .  .  . w(t+N)]T  (15)                          
 
The minimization of the cost function, J gives optimal controller output sequence 
            
 U(t) = [GTG + I ]-1GT[W(t) - FX(t) - Eerr(t)]  (16)                          
          
The vector U(t) generates control sequence over the entire control horizon. But, the first 
component of U(t) is actually implemented and the whole procedure is repeated again at the 
next sampling instant using latest measured information. 
Linear model predictive control involving input-output models in classical, adaptive or 
fuzzy forms is proved useful for controlling processes that exhibit even some degree of 
nonlinear behavior (Eaton and Rawlings, 1992; Venkateswarlu and Gangiah, 1997 ; 
Venkateswarlu and Naidu, 2001). 

 
3.2 Case study: linear model predictive control of a reactive distillation column 
In this study, a multistep linear model predictive control (LMPC) strategy based on  
autoregressive moving average (ARX) model structure is presented for the control of a 
reactive distillation column. Although MPC has been proved useful for a variety of chemical 
and biochemical processes (Garcia et al., 1989 ; Eaton and Rawlings, 1992), its application to 
a complex dynamic system like reactive distillation is more interesting.  
 
The process and the model 
Ethyl acetate is produced through an esterfication reaction between acetic acid and ethyl 
alcohol 

 5232523 HCOOCCHOHOHHCCOOHCH H     (17) 
 
The achievable conversion in this reversible reaction is limited by the equilibrium 
conversion. This quaternary system is highly non-ideal and forms binary and ternary 

azeotropes, which introduce complexity to the separation by conventional distillation. 
Reactive distillation can provide a means of breaking the azeotropes by altering or 
eliminating the conditions for azeotrope formation. Thus reactive distillation becomes 
attractive alternative for the production of ethyl acetate.  
The rate equation of this reversible reaction in the presence of a homogeneous acid catalyst 
is given by (Alejski and Duprat, 1996) 
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Vora and Daoutidis (2001) have presented a two feed column configuration for ethyl acetate 
reactive distillation and found that by feeding the two reactants, ethanol and acetic acid, on 
different trays counter currently allows to enhance the forward reaction on trays and results 
in higher conversion and purity over the conventional column configuration of feeding the 
reactants on a single tray. All plates in the column are considered to be reactive. The column 
consists of 13 stages including the reboiler and the condenser. The less volatile acetic acid 
enters the 3 rd tray and the more volatile ethanol enters the 10 th tray. The steady state 
operating conditions of the column are shown in Table 1.  

 
 

Acetic acid feed flow rate, FAc                             6.9 mol/s                 
Ethanol flow rate, FEth                              6.865 mol/s      
Reflux flow rate, Lo                                            13.51 mol/s  
Distillate flow rate, D                                             6.68 mol/s  
Bottoms flow rate, B                                              7.085 mol/s  
Reboiler heat duty, Qr                                            5.88 x 105 J/mol     
Boiling points, oK                                           391.05, 351.45, 373.15, 350.25 
(Acetic acid, ethanol, water, ethyl acetate)    
Distillate composition                                     0.0842, 0.1349, 0.0982, 0.6827 
(Acetic acid, ethanol, water, ethyl acetate)    
Bottoms composition                                      0.1650, 0.1575, 0.5470, 0.1306 
(Acetic acid, ethanol, water, ethyl acetate)    

 
Table 1. Design conditions for ethyl acetate reactive distillation column 
 
The dynamic model representing the process operation involves mass and component 
balance equations with reaction terms, along with energy equations supported by vapor-
liquid equilibrium and physical properties (Alejski & Duprat, 1996). The assumptions made 
in the formulation of the model include adiabatic column operation, negligible heat of 
reaction, negligible vapor holdup, liquid phase reaction, physical equilibrium in streams 
leaving each stage, negligible down comer dynamics and negligible weeping of liquid 
through the openings on the tray surface. The equations representing the process are given 
as follows. 
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In the above, Y(t) represents the model predictions over the prediction horizon, X(t) is a 
vector of past plant and controller outputs and U(t) is a vector of future controller outputs. If 
the coefficients of F, G and E are determined then the transformation can be completed. The 
number of columns in F is determined by the ARX model structure used to represent the 
system, where as the number of columns in G is determined by the length of the control 
horizon. The number of rows is fixed by the length of the prediction horizon. 
 
Consider a cost function of the form 
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where W(t) is a setpoint vector over the prediction horizon 
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The vector U(t) generates control sequence over the entire control horizon. But, the first 
component of U(t) is actually implemented and the whole procedure is repeated again at the 
next sampling instant using latest measured information. 
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fuzzy forms is proved useful for controlling processes that exhibit even some degree of 
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3.2 Case study: linear model predictive control of a reactive distillation column 
In this study, a multistep linear model predictive control (LMPC) strategy based on  
autoregressive moving average (ARX) model structure is presented for the control of a 
reactive distillation column. Although MPC has been proved useful for a variety of chemical 
and biochemical processes (Garcia et al., 1989 ; Eaton and Rawlings, 1992), its application to 
a complex dynamic system like reactive distillation is more interesting.  
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Ethyl acetate is produced through an esterfication reaction between acetic acid and ethyl 
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The achievable conversion in this reversible reaction is limited by the equilibrium 
conversion. This quaternary system is highly non-ideal and forms binary and ternary 

azeotropes, which introduce complexity to the separation by conventional distillation. 
Reactive distillation can provide a means of breaking the azeotropes by altering or 
eliminating the conditions for azeotrope formation. Thus reactive distillation becomes 
attractive alternative for the production of ethyl acetate.  
The rate equation of this reversible reaction in the presence of a homogeneous acid catalyst 
is given by (Alejski and Duprat, 1996) 
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Vora and Daoutidis (2001) have presented a two feed column configuration for ethyl acetate 
reactive distillation and found that by feeding the two reactants, ethanol and acetic acid, on 
different trays counter currently allows to enhance the forward reaction on trays and results 
in higher conversion and purity over the conventional column configuration of feeding the 
reactants on a single tray. All plates in the column are considered to be reactive. The column 
consists of 13 stages including the reboiler and the condenser. The less volatile acetic acid 
enters the 3 rd tray and the more volatile ethanol enters the 10 th tray. The steady state 
operating conditions of the column are shown in Table 1.  

 
 

Acetic acid feed flow rate, FAc                             6.9 mol/s                 
Ethanol flow rate, FEth                              6.865 mol/s      
Reflux flow rate, Lo                                            13.51 mol/s  
Distillate flow rate, D                                             6.68 mol/s  
Bottoms flow rate, B                                              7.085 mol/s  
Reboiler heat duty, Qr                                            5.88 x 105 J/mol     
Boiling points, oK                                           391.05, 351.45, 373.15, 350.25 
(Acetic acid, ethanol, water, ethyl acetate)    
Distillate composition                                     0.0842, 0.1349, 0.0982, 0.6827 
(Acetic acid, ethanol, water, ethyl acetate)    
Bottoms composition                                      0.1650, 0.1575, 0.5470, 0.1306 
(Acetic acid, ethanol, water, ethyl acetate)    

 
Table 1. Design conditions for ethyl acetate reactive distillation column 
 
The dynamic model representing the process operation involves mass and component 
balance equations with reaction terms, along with energy equations supported by vapor-
liquid equilibrium and physical properties (Alejski & Duprat, 1996). The assumptions made 
in the formulation of the model include adiabatic column operation, negligible heat of 
reaction, negligible vapor holdup, liquid phase reaction, physical equilibrium in streams 
leaving each stage, negligible down comer dynamics and negligible weeping of liquid 
through the openings on the tray surface. The equations representing the process are given 
as follows. 
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Total mass balance 
Total condenser: 
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Component mass balance 
Total condenser : 
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Total energy balance 
Total condenser : 
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Reboiler: 
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Level of  liquid on the tray 
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Flow of liquid over the weir  
  If   ( Lliq<hweir ) then Ln  = 0  (29) 
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Mole fraction normalization 
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VLE calculations 
 
For the column operation under moderate pressures, the VLE equation assumes the ideal 
gas model for the vapor phase, thus making the vapor phase activity coefficient equal to 
unity. The VLE relation is given by 
 
 yi P = xi i Pisat       (i = 1,2,….,NC)   (32) 
 
The liquid phase activity coefficients are calculated using UNIFAC method (Smith et al., 
1996). 
 
Enthalpies Calculation 
The relations for the liquid enthalpy h, the vapor enthalpy H and the liquid density   are: 
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    (33) 

 
Control scheme 
 
The design and implementation of the control strategy is studied for the single input-single 
output (SISO) control of the ethyl acetate reactive distillation column with its double feed 
configuration. The objective is to control the desired product purity in the distillate stream 
inspite disturbances in column operation. This becomes the main control loop. Since reboiler 
and condenser holdups act as pure integrators, they also need to be controlled. These 
become the auxiliary control loops. Reflux flow rate is used as a manipulated variable to 
control the purity of the ethyl acetate. Distillate flow rate is used as a manipulated variable 
to control the condenser holdup, while bottom flow rate is used to control the reboiler 
holdup. In this work, it is proposed to apply a multistep model predictive controller for the 
main loop and conventional PI controllers for the auxiliary control loops. This control 
scheme is shown in the Figure 3.  
 



Model predictive control of nonlinear processes 117

 
Total mass balance 
Total condenser: 

 112
1 )( RDLV

dt
dM

    (19) 

Plate j: 

 jjjjjjj
j RLVLFLVFV

dt
dM

  11   (20) 

Reboiler : 

 nnnn
n RLVL

dt
dM

 1    (21) 

Component mass balance 
Total condenser : 

 1,1,12,2
1,1 )(
)(

iii
i RxDLyV

dt
xMd

   (22) 

Plate j: 

  
,

, 1 , 1 , 1 , 1 , , ,
( )j i j

j i j j i j j i j j i j j i j j i j i j
d M x

FV yf V y FL xf L x V y L x R
dt            (23) 

Reboiler: 

 ,
1 , 1 , , ,

( )n i n
n i n n i n n i n i n

d M x
L x V y L x R

dt          (24) 

 
Total energy balance 
Total condenser : 

 11122
1 )( QhDLHV

dt
dE

     (25) 

Plate j: 

  jjjjjjjjjjjjj
j QhLHVhLhfFLHVHfFV

dt
dE

  1111   (26) 

 
Reboiler: 

 nnnnnnn
n QhLHVhL

dt
dE

  11   (27) 

Level of  liquid on the tray 

 
avtray

avnliq

A
MWML


     (28) 

Flow of liquid over the weir  
  If   ( Lliq<hweir ) then Ln  = 0  (29) 
 

else  

 2
3
)(84.1 weir

liq

av

avweir
n hL

MW
LL 


  (30) 

Mole fraction normalization 
 

 1
11




NC

i
i

NC

i
i yx  (31) 

 
VLE calculations 
 
For the column operation under moderate pressures, the VLE equation assumes the ideal 
gas model for the vapor phase, thus making the vapor phase activity coefficient equal to 
unity. The VLE relation is given by 
 
 yi P = xi i Pisat       (i = 1,2,….,NC)   (32) 
 
The liquid phase activity coefficients are calculated using UNIFAC method (Smith et al., 
1996). 
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Control scheme 
 
The design and implementation of the control strategy is studied for the single input-single 
output (SISO) control of the ethyl acetate reactive distillation column with its double feed 
configuration. The objective is to control the desired product purity in the distillate stream 
inspite disturbances in column operation. This becomes the main control loop. Since reboiler 
and condenser holdups act as pure integrators, they also need to be controlled. These 
become the auxiliary control loops. Reflux flow rate is used as a manipulated variable to 
control the purity of the ethyl acetate. Distillate flow rate is used as a manipulated variable 
to control the condenser holdup, while bottom flow rate is used to control the reboiler 
holdup. In this work, it is proposed to apply a multistep model predictive controller for the 
main loop and conventional PI controllers for the auxiliary control loops. This control 
scheme is shown in the Figure 3.  
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Fig. 3. Control structure of two feed ethyl acetate reactive distillation column. 
 
Analysis of Results  
The performance of the multistep linear model predictive controller (LMPC) is evaluated 
through simulation. The product composition measurements are obtained by solving the 
model equations using Euler’s integration with sampling time of 0.01 s. The input and 
output orders of the predictive model are considered as nu = 2 and ny = 2. The diagonal 
elements of the initial covariance matrix, P(0) in the RLS algorithm are selected as 10.0, 1.0, 
0.01, 0.01, respectively. The forgetting factor,  used in recursive least squares is chosen as 
5.0. The feedback controller gain Kf  is assigned as 0.65. The tuning parameter   in the 
control law is set as  0.115 x 10-6. The PI controller parameters of ethyl acetate composition 
are evaluated by using the continuous cycling method of Ziegler and Nichols. The tuned 
controller settings  are kc = 11.15 and  I = 1.61 x 104 s. The PI controller parameters used for 

reflux drum and reboiler holdups are kc =  - 0.001 and I = 5.5 h,  and kc =  - 0.001 and  

I  = 5.5 h, respectively (Vora and Daoutidis, 2001).  
The LMPC is implemented by adaptively updating the prediction model using recursive 
least squares. On evaluating the effect of different prediction and control horizons, it is 
observed that the LMPC with a prediction horizon of around 5 and a control horizon of 2  
has shown reasonably better control performance. The LMPC is also referred here as MPC. 
Figure 4 shows the results of MPC and PI controller when they are applied for tracking 
series of step changes in ethyl acetate composition. The regulatory control performance of 
MPC and PI controller for 20% decrease in feed rate of acetic acid is shown in Figure 5. The 
results thus show the effectiveness of the multistep linear model predictive control strategy 
for the control of highly nonlinear reactive distillation column. 

 
Fig. 4. Performance of MPC and PI controller for tracking series of step changes in distillate 
composition. 
 

 
Fig.5. Output and input profiles for  MPC and PI controller for  20% decrease in the feed rate 
of acetic acid. 
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4. Generalized predictive control 

The generalized predictive control (GPC) is a general purpose multi-step predictive control 
algorithm (Clarke et al., 1987) for stable control of processes with variable parameters, 
variable dead time and a model order which changes instantaneously. GPC adopts an 
integrator as a natural consequence of its assumption about the basic plant model. Although 
GPC is capable of controlling such systems, the control performance of GPC needs to be 
ascertained if the process constraints are to be encountered in nonlinear processes. Camacho 
(1993) proposed a constrained generalized predictive controller (CGPC) for linear systems 
with constrained input and output signals. By this strategy, the optimum values of the 
future control signals are obtained by transforming the quadratic optimization problem into 
a linear complementarity problem. Camacho demonstrated the results of the CGPC strategy 
by carrying out a simulation study on a linear system with pure delay. Clarke et al. (1987) 
have applied the GPC to open-loop stable unconstrained linear systems. Camacho applied 
the CGPC to constrained open-loop stable linear system. However, most of the real 
processes are nonlinear and some processes change behavior over a period of time. 
Exploring the application of GPC to nonlinear process control will be more interesting.  
In this study, a constrained generalized predictive control (CGPC) strategy is presented and 
applied for the control of highly nonlinear and open-loop unstable processes with multiple 
steady states. Model parameters are updated at each sampling time by an adaptive 
mechanism.  

 
4.1 GPC design 
A nonlinear plant generally admits a local-linearized model when considering regulation 
about a particular operating point. A single-input single-output (SISO) plant on linearization 
can be described by a Controlled Autoregressive Integrated Moving Average (CARIMA) 
model of the form 
 A(q-1)y(t) = B(q-1)q-d u(t) + C (q-1)e(t )/  (34) 
 
where A, B and C are polynomials in the backward shift operator q-1. The y(t) is the 
measured plant output, u(t) is the controller output, e(t) is the zero mean random Gaussian 
noise, d is the delay time of the system and  is the differencing operator 1-q-1. 
The control law of GPC is based on the minimization of a multi-step quadratic cost function 
defined in terms of the sum of squares of the errors between predicted and desired output 
trajectories with an additional term weighted by projected control increments as given by  
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where E{.} is the expectation operator, y(t + j| t ) is a sequence of predicted outputs, w(t + j) 
is a sequence of future setpoints, u(t + j -1) is a sequence of predicted control increments 
and  is the control weighting factor. The N1 , N2 and N3 are the minimum costing horizon, 
the maximum costing horizon and the control horizon, respectively. The values of N1 , N2 
and N3 of Eq. (35) can be defined by N1 = d + 1, N2 = d + N, and N3 = N, respectively. 

Predicting the output response over a finite horizon beyond the dead-time of the process 
enables the controller to compensate for constant or variable time delays. The recursion of 
the Diophantine equation is a computationally efficient approach for modifying the 
predicted output trajectory.  An optimum j-step a head prediction output is given by 
 
  y(t + j| t) = Gj (q-1 ) u(t + j - d - 1) + Fj (q-1 )y(t)  (36) 
 
where Gj (q-1 ) = Ej (q-1 )B(q-1), and Ej and Fj are polynomials obtained recursively solving the 
Diophantine equation, 
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The j-step ahead optimal predictions of  y for  j = 1, . . . , N2 can be written in condensed form 
 
 Y =Gu + f  (38) 
 
where f contains predictions based on present and past outputs up to time t and past inputs 
and referred to free response of the system, i.e., f = [f1, f2, ….., fN]. The vector u corresponds 
to the present and future increments of the control signal, i.e., u = [u(t),  u(t+1), ……., 
u(t+N-1)]T.  Eq. (35) can be written as  
 

     uuwfGuwfGuJ TT     (39) 
 
The minimization of J gives unconstrained solution to the projected control vector 
 

 )()( 1 fwGIGGu TT     (40) 
 
The first component of the vector u is considered as the current control increment u(t), 
which is applied to the process and the calculations are repeated at the next sampling 
instant. The schematic of GPC control law is shown in Figure 6, where K is the first row of 
the matrix 1( )T TG G I G  .   

 
 

 
 
 
 
 
 
 
 
 

 

Fig. 6. The GPC control law 
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4.2 Constrained GPC design  
In practice, all processes are subject to constraints. Control valves are limited by fully closed 
and fully open positions and maximum slew rates. Constructive and safety reasons as well 
as sensor ranges cause limits in process variables. Moreover, the operating points of plants 
are determined in order to satisfy economic goals and usually lie at the intersection of 
certain constraints. Thus, the constraints acting on a process can be manipulated variable 
limits (umin, umax ), slew rate limits of the actuator (dumin, dumax), and limits on the output 
signal (ymin, ymax ) as given by 
 
 maxmin )( utuu   
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 maxmin )( ytyy   
 
These constraints can be expressed as 
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where l is an N  vector containing ones, and T is an N x N lower triangular matrix containing 
ones. By defining a new vector x = u - ldumin, the constrained equations can be transformed 
as 
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Eq. (39) can be expressed as 
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The minimization of J with no constraints on the control signal gives 
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Eq. (45) in terms of the newly defined vector x becomes 
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The solution of the problem can be obtained by minimization of Eq. (47) subject to the 
constraints of Eq. (43). By using the Lagrangian multiplier vectors v1 and v for the 
constraints, x ≥ 0 and Rx ≤ c, respectively, and introducing the slack variable vector v2, the 
Kuhn-Tucker conditions can be expressed as 
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Camacho (1993) has proposed the solution of this problem with the help of Lemke’s 
algorithm (Bazaraa and Shetty, 1979) by expressing the Kuhn-Tucker conditions as a linear 
complementarity problem starting with the following tableau 
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Here, z0 is the artificial variable which will be driven to zero iteratively. 
 
In this study, the above stated constrained generalized predictive linear control of Camacho 
(1993) is extended to open-loop unstable constrained control of nonlinear processes. In this 
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4.2 Constrained GPC design  
In practice, all processes are subject to constraints. Control valves are limited by fully closed 
and fully open positions and maximum slew rates. Constructive and safety reasons as well 
as sensor ranges cause limits in process variables. Moreover, the operating points of plants 
are determined in order to satisfy economic goals and usually lie at the intersection of 
certain constraints. Thus, the constraints acting on a process can be manipulated variable 
limits (umin, umax ), slew rate limits of the actuator (dumin, dumax), and limits on the output 
signal (ymin, ymax ) as given by 
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where l is an N  vector containing ones, and T is an N x N lower triangular matrix containing 
ones. By defining a new vector x = u - ldumin, the constrained equations can be transformed 
as 
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Here, z0 is the artificial variable which will be driven to zero iteratively. 
 
In this study, the above stated constrained generalized predictive linear control of Camacho 
(1993) is extended to open-loop unstable constrained control of nonlinear processes. In this 
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strategy, process nonlinearities are accounted through adaptation of model parameters 
while taking care of input and output constraints acting on the process. The following 
recursive least squares formula (Hsia, 1977) is used for on-line estimation of parameters and 
the covariance matrix after each new sample: 
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where θ is the parameter vector, γ is the intermediate estimation variable, P is the covariance 
matrix, v is the vector of input-output variables, y is the output variable, and 0 <  < 1 is the 
forgetting factor. The initial covariance matrix and exponential forgetting factor are selected 
based on various trials so as to provide reasonable convergence in parameter estimates. 
 
The CGPC strategy of nonlinear processes is described in the following steps: 
 

1. Specify the controller design parameters N1, N2, N3 and also the initial parameter   
estimates and covariance matrix for recursive identification of model parameters. 

2.  Update the model parameters using recursive least squares method. 
3.  Initialize the polynomials E1 and F1 of Diophantine identity, Eq. (37), using the estimated 

parameters. Further initialize G1 as E1 B. 
4.  Compute the polynomials Ej , Fj and Gj over the prediction horizon and control horizon 

using the recursion of Diophantine. 
5.  Compute matrices H, R, and G, and  vectors f and c using the polynomials determined in 

step 4. 
6.  Compute the unconstrained solution xmin = - H-1 a. 
7.  Compute v2min = c - Rxmin . If xmin and v2min are nonnegative, then go to step 10. 
8.  Start Lemke’s algorithm with x and v2 in the basis with the tableau, Eq. (49). 
9.  If x1 is not in the first column of the tableau, make it zero; otherwise, assign it the  

corresponding value. 
10. Compute u(t) = x1 + dumin + u(t - 1). 
11. Implement the control action, then shift to the next sampling instant and go to step 2. 

         
4.3 Case study: constrained generalized predictive control (CGPC) of open-loop 
unstable CSTR 
The design and implementation of the CGPC strategy is studied by applying it for the 
control of a nonlinear open-loop unstable chemical reactor (Venkateswarlu and Gangiah, 
1997).  
 
Reactor 
A continuous stirred tank reactor (CSTR) in which a first order exothermic irreversible 
reaction occurs is considered as an example of an unstable nonlinear process. The dynamic 
equations describing the process can be written as 
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where CA and Tr are reactant concentration and temperature, respectively. The coolant 
temperature Tc is assumed to be the manipulated variable. Following the analysis of Uppal 
et al. (1974), the model is made dimensionless by introducing the parameters as 
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where Fo, CAfo and Tfo are the nominal characteristic values of volumetric flow rate, feed 
composition and feed temperature, respectively. The corresponding dimensionless variables 
are defined by 
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where Tco is some reference value for the coolant temperature.  
The modeling equations can be written in dimensionless form (Calvet and Arkun, 1988; 
Hernandez and Arkun, 1992) as 
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 y = x1 
 
where x1 and x2 are the dimensionless reactant concentration and temperature, respectively. 
The input u is the cooling jacket temperature, Da is the Damkohler number,  is the 
dimensionless activation energy, Bh is the heat of reaction and  is the heat transfer coeffi- 
cient. If the physical parameters chosen are Da = 0.072,  = 20.0, Bh = 8.0, and  = 0.3, then the 
system can exhibit up to three steady states,  one of which is unstable as shown in Figure 7. 
Here the task is to control the reactor at and around the unstable operating point. The 
cooling water temperature is the input u, which is the manipulated variable to control the 
reactant concentration, x1.  
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where θ is the parameter vector, γ is the intermediate estimation variable, P is the covariance 
matrix, v is the vector of input-output variables, y is the output variable, and 0 <  < 1 is the 
forgetting factor. The initial covariance matrix and exponential forgetting factor are selected 
based on various trials so as to provide reasonable convergence in parameter estimates. 
 
The CGPC strategy of nonlinear processes is described in the following steps: 
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corresponding value. 
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where CA and Tr are reactant concentration and temperature, respectively. The coolant 
temperature Tc is assumed to be the manipulated variable. Following the analysis of Uppal 
et al. (1974), the model is made dimensionless by introducing the parameters as 
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where Fo, CAfo and Tfo are the nominal characteristic values of volumetric flow rate, feed 
composition and feed temperature, respectively. The corresponding dimensionless variables 
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where Tco is some reference value for the coolant temperature.  
The modeling equations can be written in dimensionless form (Calvet and Arkun, 1988; 
Hernandez and Arkun, 1992) as 
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where x1 and x2 are the dimensionless reactant concentration and temperature, respectively. 
The input u is the cooling jacket temperature, Da is the Damkohler number,  is the 
dimensionless activation energy, Bh is the heat of reaction and  is the heat transfer coeffi- 
cient. If the physical parameters chosen are Da = 0.072,  = 20.0, Bh = 8.0, and  = 0.3, then the 
system can exhibit up to three steady states,  one of which is unstable as shown in Figure 7. 
Here the task is to control the reactor at and around the unstable operating point. The 
cooling water temperature is the input u, which is the manipulated variable to control the 
reactant concentration, x1.  
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Fig. 7.  Steady state output vs. steady state input for CSTR system. 
 
Analysis of Results 
Simulation studies are carried out in order to evaluate the performance of the Constrained 
Generalized Predictive Control (CGPC) strategy. The results of unconstrained Generalized 
Predictive Control (GPC) are also presented as a reference. The CGPC strategy considers an 
adaptation mechanism for model parameters.  
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umin                                                                                                -1.0 
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dumin                                                                                             -0.5 
dumax                                                                                              0.5 

ymin                                                                                                   0.1 

ymax                                                                                                  0.5 

Forgetting factor                                             0.95 
Initial covariance matrix                                 1.0x109 
Sample time                                                    0.5 

 

Table 2. Constraints and parameters of CSTR system. 
 
The controller and design parameters as well as the constraints employed for the CSTR 
system are given in Table 2. The same controller and design parameters are used for both 
the CGPC and GPC. Two set-point changes are introduced for the output concentration of 
the system and the corresponding results of CGPC and GPC are analyzed. A step change is 

introduced in the output concentration of CSTR from a stable equilibrium point (x1 = 0.2, x2 
= 1.33, u = 0.42) to an unstable operating point (x1 = 0.5, x2 = 3.303, u = - 0.2). The input and 
output responses of both CGPC and GPC are shown in Figure 8. Another step change is 
introduced for the set-point from a stable operating point (x1 = 0.144, x2 = 0.886, u = 0.0) to 
an unstable operating point (x1 = 0.445, x2 = 2.75, u = 0.0). The input and output responses of 
CGPC and GPC for this case are shown in Figure 9. The results show that for the specified 
controller and design parameters, CGPC provides better performance over GPC.  
 

 
Fig. 8. Cooling water temperature and concentration plots of CSTR for a step change in 
concentration from 0.20 to 0.50. 
 

 
Fig. 9. Cooling water temperature and concentration plots of CSTR for a step change in 
concentration from 0.144 to 0.445.   
 
The results illustrate the better performance of CGPC for SISO control of nonlinear systems 
that exhibit multiple steady states and unstable behavior. 

 
5. Nonlinear model predictive control 

Linear MPC employs linear or linearized models to obtain the predictive response of the 
controlled process. Linear MPC is proved useful for controlling processes that exhibit even 
some degree of nonlinear behavior (Eaton and Rawlings, 1992; Venkateswarlu and Gangiah, 
1997). However, the greater the mismatch between the actual process and the representative 
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model, the degree of deterioration in the control performance increases. Thus the control of 
a highly nonlinear process by MPC requires a suitable model that represents the salient 
nonlinearities of the process. Basically, two different approaches are used to develop 
nonlinear dynamic models. These approaches are developing a first principle model using 
available process knowledge and developing an empirical model from input-output data. 
The first principle modeling approach results models in the form of coupled nonlinear 
ordinary differential equations and various model predictive controllers based on this 
approach have been reported for nonlinear processes (Wright and Edgar, 1994 ; Ricker and 
Lee, 1995). The first principle models will be larger in size for high dimensional systems thus 
limiting their usage for MPC design. On the other hand, the input-output modeling 
approach can be conveniently used to identify nonlinear empirical models from plant data, 
and there has been a growing interest in the development of different types of MPCs based 
on this approach (Hernandez and Arkun, 1994; Venkateswarlu and Venkat Rao, 2005). The 
other important aspect in model predictive control of highly nonlinear systems is the 
optimization algorithm. Efficient optimization algorithms exist for convex optimization 
problems. However, the optimization problem often becomes nonconvex in the presence of 
nonlinear characteristics/constraints and is usually more complex than convex 
optimization. Thus, the practical usefulness of nonlinear predictive control is hampered by 
the unavailability of suitable optimization tools (Camacho and Bordons, 1995). Sequential 
quadratic programming (SQP) is widely used classical optimization algorithm to solve 
nonlinear optimization problems. However, for the solution of large problems, it has been 
reported that gradient based methods like SQP requires more computational efforts (Ahn et 
al., 1999). More over, classical optimization methods are more sensitive to the initialization 
of the algorithm and usually leads to unacceptable solutions due to convergence to local 
optima. Consequently, efficient optimization techniques are being used to achieve the 
improved performance of NMPC.  
This work presents a NMPC based on stochastic optimization technique. Stochastic 
approach based genetic algorithms (GA) and simulated annealing (SA) are potential 
optimization tools because of their ability to handle constrained, nonlinear and nonconvex 
optimization problems. These methods have the capacity to escape local optima and find 
solutions in the vicinity of the global optimum. They have the ability to use the values from 
the model in a black box optimization approach with out requiring the derivatives. Various 
studies have been reported to demonstrate the ability of these methods in providing 
efficient optimization solutions (Hanke and Li, 2000 ;  Shopova and Vaklieva-Bancheva, 
2006). 

 
5.1 NMPC design  
In NMPC design, the identified input-output nonlinear process model is explicitly used to 
predict the process output at future time instants over a specified prediction horizon. A 
sequence of future control actions over a specified control horizon is calculated using a 
stochastic optimizer which minimizes the objective function under given operating 
constraints. In this receding horizon approach, only the first control action in the sequence is 
implemented. The horizons are moved towards the future. The structure of the stochastic 
optimizer based NMPC is shown in Figure 10. 

 
Fig.10. Structure of stochastic optimization based NMPC. 
 
Simulated Annealing 
Simulated annealing (SA) is analogous to the process of atomic rearrangement of a 
substance into a highly ordered crystalline structure by way of slowly cooling-annealing the 
substance through successive stages. This method is found to be a potential tool to solve a 
variety of optimization problems (Kirkpatrick et al., 1983 ; Dolan et al., 1989).  Crystalline 
structure with a high degree of atomic order is the purest form of the substance, indicating 
the minimum energy state. The principle of SA mimics the annealing process of slow 
cooling of molten metal to achieve the minimum function value. The cooling phenomena is 
simulated by controlling a temperature like parameter introduced with the concept of the 
Bolzmann probability  distribution, which determines the energy distribution probability, P 
of the system at the temperature, T according to the equation:    
 
 )/exp()( ABTkEEP   (56)  
 
where kB is the Bolzmann constant. The Bolzmann distribution concentrates around the state 
with the lowest energy. For T  0, P(E)  0 and only the state with the lowest energy can 
have a probability greater than zero. However, cooling the system too fast could result in a 
higher state of energy and may lead to frozen the system to a metastable state.  
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model, the degree of deterioration in the control performance increases. Thus the control of 
a highly nonlinear process by MPC requires a suitable model that represents the salient 
nonlinearities of the process. Basically, two different approaches are used to develop 
nonlinear dynamic models. These approaches are developing a first principle model using 
available process knowledge and developing an empirical model from input-output data. 
The first principle modeling approach results models in the form of coupled nonlinear 
ordinary differential equations and various model predictive controllers based on this 
approach have been reported for nonlinear processes (Wright and Edgar, 1994 ; Ricker and 
Lee, 1995). The first principle models will be larger in size for high dimensional systems thus 
limiting their usage for MPC design. On the other hand, the input-output modeling 
approach can be conveniently used to identify nonlinear empirical models from plant data, 
and there has been a growing interest in the development of different types of MPCs based 
on this approach (Hernandez and Arkun, 1994; Venkateswarlu and Venkat Rao, 2005). The 
other important aspect in model predictive control of highly nonlinear systems is the 
optimization algorithm. Efficient optimization algorithms exist for convex optimization 
problems. However, the optimization problem often becomes nonconvex in the presence of 
nonlinear characteristics/constraints and is usually more complex than convex 
optimization. Thus, the practical usefulness of nonlinear predictive control is hampered by 
the unavailability of suitable optimization tools (Camacho and Bordons, 1995). Sequential 
quadratic programming (SQP) is widely used classical optimization algorithm to solve 
nonlinear optimization problems. However, for the solution of large problems, it has been 
reported that gradient based methods like SQP requires more computational efforts (Ahn et 
al., 1999). More over, classical optimization methods are more sensitive to the initialization 
of the algorithm and usually leads to unacceptable solutions due to convergence to local 
optima. Consequently, efficient optimization techniques are being used to achieve the 
improved performance of NMPC.  
This work presents a NMPC based on stochastic optimization technique. Stochastic 
approach based genetic algorithms (GA) and simulated annealing (SA) are potential 
optimization tools because of their ability to handle constrained, nonlinear and nonconvex 
optimization problems. These methods have the capacity to escape local optima and find 
solutions in the vicinity of the global optimum. They have the ability to use the values from 
the model in a black box optimization approach with out requiring the derivatives. Various 
studies have been reported to demonstrate the ability of these methods in providing 
efficient optimization solutions (Hanke and Li, 2000 ;  Shopova and Vaklieva-Bancheva, 
2006). 

 
5.1 NMPC design  
In NMPC design, the identified input-output nonlinear process model is explicitly used to 
predict the process output at future time instants over a specified prediction horizon. A 
sequence of future control actions over a specified control horizon is calculated using a 
stochastic optimizer which minimizes the objective function under given operating 
constraints. In this receding horizon approach, only the first control action in the sequence is 
implemented. The horizons are moved towards the future. The structure of the stochastic 
optimizer based NMPC is shown in Figure 10. 

 
Fig.10. Structure of stochastic optimization based NMPC. 
 
Simulated Annealing 
Simulated annealing (SA) is analogous to the process of atomic rearrangement of a 
substance into a highly ordered crystalline structure by way of slowly cooling-annealing the 
substance through successive stages. This method is found to be a potential tool to solve a 
variety of optimization problems (Kirkpatrick et al., 1983 ; Dolan et al., 1989).  Crystalline 
structure with a high degree of atomic order is the purest form of the substance, indicating 
the minimum energy state. The principle of SA mimics the annealing process of slow 
cooling of molten metal to achieve the minimum function value. The cooling phenomena is 
simulated by controlling a temperature like parameter introduced with the concept of the 
Bolzmann probability  distribution, which determines the energy distribution probability, P 
of the system at the temperature, T according to the equation:    
 
 )/exp()( ABTkEEP   (56)  
 
where kB is the Bolzmann constant. The Bolzmann distribution concentrates around the state 
with the lowest energy. For T  0, P(E)  0 and only the state with the lowest energy can 
have a probability greater than zero. However, cooling the system too fast could result in a 
higher state of energy and may lead to frozen the system to a metastable state.  
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The SA is a point by point method based on Monte Carlo approach. The algorithm begins at 
an initial random point called u and a high temperature T, and the function value at this 
point is evaluated as E(k). A second point is created in the vicinity of the initial point u and 
the function value corresponding to this point is obtained as E(k+1). The difference in 
function values at these points E is obtained as  
 
 E = E(k+1) – E(k)   (57) 
 
If E  0, the second point is accepted, otherwise the point is accepted probabilistically, 
governed by the temperature dependent Bolzmann probability factor   
 
 )/exp( ABr TkEP    (58) 
 
The annealing temperature, TA  is a parameter  in the optimization algorithm and is set by a 
predefined annealing schedule which starts at a relatively high temperature  and steps 
slowly downward at a prescribed rate in accordance with the equation 
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As the temperature decreases, the probability of the acceptance of the point u will be 
decreased according to Eq. (58). The parameter  is set such that at the point of convergence, 
the temperature TA reaches a small value. The procedure is iteratively repeated at each 
temperature with the generation of new points and the search is terminated when the 
convergence criterion set for the objective is met.  
 
Nonlinear modeling and model identification 
Various model structures such as Volterra series models, Hammerstein and Wiener models, 
bilinear models, state affine models  and  neural network models have been reported in 
literature for identification of nonlinear systems. Haber and Unbehauen (1990) presented a 
comprehensive review on these model structures. The model considered in this study for 
identification of a nonlinear process has a polynomial ARMA structure of the form 
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or simply 
 
  )( ,),........1( ),(),......,1( )(ˆ uy nkukunkykyfky    (61)  

 
Here k refers the sampling time, y and  u are the output and input variables, and  ny and nu  
refer the number of output and input lags, respectively. This type of polynomial model 
structures have been used by various researchers for process control (Morningred et al., 

1992 ; Hernandez and Arkun, 1993).  The main advantage of this model is that it represents 
the process nonlinearities in a structure with linear model parameters, which can be 
estimated by using efficient parameter estimation methods such as recursive least squares. 
Thus the model in (61) can be rearranged in a linear regression form as  
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where  is a parameter vector,    represents input-output process information and  is  the 
estimation error. The parameters in the model can be estimated by using recursive least 
squares based on a priori process knowledge representing the process characteristics over a 
wide range of operating conditions.  
 
Predictive Model Formulation 
The primary purpose of NMPC is to deal with complex dynamics over an extended horizon. 
Thus, the model must predict the process dynamics over a prediction horizon enabling the 
controller to incorporate future set point changes or disturbances. The polynomial input-
output model provides one step ahead prediction for process output. By feeding back the 
model outputs and control inputs, the one step-a head predictive model can be recurrently 
cascaded to itself to generate future predictions for process output.  The N step predictions 
can be obtained as follows 
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where N is the prediction horizon and M is the control horizon.   
 
Objective function 
The optimal control input sequence in NMPC is computed by minimizing an objective 
function based on a desired output trajectory over a prediction horizon: 
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subject to constraints:  
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The SA is a point by point method based on Monte Carlo approach. The algorithm begins at 
an initial random point called u and a high temperature T, and the function value at this 
point is evaluated as E(k). A second point is created in the vicinity of the initial point u and 
the function value corresponding to this point is obtained as E(k+1). The difference in 
function values at these points E is obtained as  
 
 E = E(k+1) – E(k)   (57) 
 
If E  0, the second point is accepted, otherwise the point is accepted probabilistically, 
governed by the temperature dependent Bolzmann probability factor   
 
 )/exp( ABr TkEP    (58) 
 
The annealing temperature, TA  is a parameter  in the optimization algorithm and is set by a 
predefined annealing schedule which starts at a relatively high temperature  and steps 
slowly downward at a prescribed rate in accordance with the equation 
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As the temperature decreases, the probability of the acceptance of the point u will be 
decreased according to Eq. (58). The parameter  is set such that at the point of convergence, 
the temperature TA reaches a small value. The procedure is iteratively repeated at each 
temperature with the generation of new points and the search is terminated when the 
convergence criterion set for the objective is met.  
 
Nonlinear modeling and model identification 
Various model structures such as Volterra series models, Hammerstein and Wiener models, 
bilinear models, state affine models  and  neural network models have been reported in 
literature for identification of nonlinear systems. Haber and Unbehauen (1990) presented a 
comprehensive review on these model structures. The model considered in this study for 
identification of a nonlinear process has a polynomial ARMA structure of the form 
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or simply 
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Here k refers the sampling time, y and  u are the output and input variables, and  ny and nu  
refer the number of output and input lags, respectively. This type of polynomial model 
structures have been used by various researchers for process control (Morningred et al., 

1992 ; Hernandez and Arkun, 1993).  The main advantage of this model is that it represents 
the process nonlinearities in a structure with linear model parameters, which can be 
estimated by using efficient parameter estimation methods such as recursive least squares. 
Thus the model in (61) can be rearranged in a linear regression form as  
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where  is a parameter vector,    represents input-output process information and  is  the 
estimation error. The parameters in the model can be estimated by using recursive least 
squares based on a priori process knowledge representing the process characteristics over a 
wide range of operating conditions.  
 
Predictive Model Formulation 
The primary purpose of NMPC is to deal with complex dynamics over an extended horizon. 
Thus, the model must predict the process dynamics over a prediction horizon enabling the 
controller to incorporate future set point changes or disturbances. The polynomial input-
output model provides one step ahead prediction for process output. By feeding back the 
model outputs and control inputs, the one step-a head predictive model can be recurrently 
cascaded to itself to generate future predictions for process output.  The N step predictions 
can be obtained as follows 
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where N is the prediction horizon and M is the control horizon.   
 
Objective function 
The optimal control input sequence in NMPC is computed by minimizing an objective 
function based on a desired output trajectory over a prediction horizon: 
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subject to constraints:  
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where )(ˆ ikyp  , i=1, …., N, are the future process outputs predicted over the prediction 

horizon, wk+i , i=1, …., N, are the setpoints and u(k+i), i=0, .…., M-1, are the future control 
signals. The  and   represent  the output and input weightings, respectively. The umin and 
umax are the minimum and maximum values of the manipulated inputs,  and umin and umax 
represent their corresponding changes, respectively. Computation of future control signals 
involves the minimization of the objective function so as to bring and keep the process 
output as close as possible to the given reference trajectory, even in the presence of load 
disturbances. The control actions are computed at every sampling time by solving an 
optimization problem while taking into consideration of constraints on the output and 
inputs. The control signal, u is manipulated only with in the control horizon,  and  remains  
constant  afterwards,  i.e., u(k+i) = u(k+M-1) for i = M, …., N-1.  Only the first control move 
of the optimized control sequence is implemented on the process and the output 
measurements are obtained. At the next sampling instant, the prediction and control 
horizons are moved ahead by one step, and the optimization problem is solved again using 
the updated measurements from the process. The mismatch dk between the process  y(k)  
and the model )(ˆ ky is computed as 

 ))(ˆ)(( kykybdk     (65) 
 
where b is a tunable parameter lying between 0 and 1. This mismatch is used to compensate 
the model predictions in Eq. (62): 
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These predictions are incorporated in the objective function defined by Eq. (64) along with 
the corresponding setpoint values. 
 
NMPC based on stochastic optimization  
NMPC design based on simulated annealing (SA) requires to specify the energy function 
and random number selection for control input calculation. The control input is normalized 
and constrained with in the specified limits. The random numbers used for the control 
input, u equals the length of the control horizon, and these numbers are generated so that 
they satisfy the constraints. A penalty function approach is considered to satisfy the 
constraints on the input variables. In this approach, a penalty term corresponding to the 
penalty violation is added to the objective function defined in Eq. (64). Thus the violation of 
the constraints on the variables is accounted by defining a penalty function of the form 
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where the penalty parameter,  is selected as a high value. The penalized objective function 
is then given by 
 f(x) = J + P  (68) 

 
where J is defined by Eq. (64). At any instant, the current control signal, uk and the 
prediction output based on this control input, )(ˆ iky   are used to compute the objective 
function f(x) in Eq. (68) as the energy function, E(k+i). The E(k+i)  and the previously 
evaluated E(k) provides the E as 
 

 E(k) = E(k+i) – E(k)     (69) 
 

The comparison of the E with the random numbers generated between 0 and 1 determines 
the probability of acceptance of u(k). If E  0, all u(k) are accepted. If E  0,  u(k) are 
accepted with a probability of exp(-E/TA). If nm be the number of variables, nk be the 
number of function evaluations and nT be the number of temperature reductions, then the 
total number of function evaluations required for every sampling condition are (nT x nk x nm). 
Further details of NMPC based on stochastic optimization can be referred elsewhere 
(Venkateswarlu and Damodar Reddy, 2008). 
 
Implementation procedure 
The implementation of  NMPC based on SA proceeds with the following steps. 
 
1.  Set TA as a sufficiently high value and let nk be the number of function evaluations to be 

performed at a particular TA. Specify the termination criterion, . Choose the initial 
control vector, u and obtain the  process output predictions using Eq. (63). Evaluate the 
objective function, Eq. (68) as the energy function E(k).  

2. Compute the incremental input vector uk stochastically and update the control vector as  
 

  u(k+i) =   u(k)  + u(k)    (70) 
 

Calculate the objective function, E(k+i)  as the energy function based on this vector. 
3. Accept u(k+i)  unconditionally if the energy function satisfies the condition 
 

  E(k+i)  E(k)   (71) 
 

Otherwise, accept u(k+i)  with the probability according to the Metropolis criterion  
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where
'
AT  is the current annealing temperature and r represents random number. This step 

proceeds until the specified function evaluations, nk are completed. 
4.  Carry out the temperature reduction in the outer loop according to the decrement 

function 
        AA TT /     (73) 
where  is temperature reduction factor. Terminate the algorithm if all the differences are 
less than the prespecified .  
5. Go to step 2 and repeat the procedure for every measurement condition based on the 

updated control vector and its corresponding process output.  
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where )(ˆ ikyp  , i=1, …., N, are the future process outputs predicted over the prediction 

horizon, wk+i , i=1, …., N, are the setpoints and u(k+i), i=0, .…., M-1, are the future control 
signals. The  and   represent  the output and input weightings, respectively. The umin and 
umax are the minimum and maximum values of the manipulated inputs,  and umin and umax 
represent their corresponding changes, respectively. Computation of future control signals 
involves the minimization of the objective function so as to bring and keep the process 
output as close as possible to the given reference trajectory, even in the presence of load 
disturbances. The control actions are computed at every sampling time by solving an 
optimization problem while taking into consideration of constraints on the output and 
inputs. The control signal, u is manipulated only with in the control horizon,  and  remains  
constant  afterwards,  i.e., u(k+i) = u(k+M-1) for i = M, …., N-1.  Only the first control move 
of the optimized control sequence is implemented on the process and the output 
measurements are obtained. At the next sampling instant, the prediction and control 
horizons are moved ahead by one step, and the optimization problem is solved again using 
the updated measurements from the process. The mismatch dk between the process  y(k)  
and the model )(ˆ ky is computed as 

 ))(ˆ)(( kykybdk     (65) 
 
where b is a tunable parameter lying between 0 and 1. This mismatch is used to compensate 
the model predictions in Eq. (62): 
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These predictions are incorporated in the objective function defined by Eq. (64) along with 
the corresponding setpoint values. 
 
NMPC based on stochastic optimization  
NMPC design based on simulated annealing (SA) requires to specify the energy function 
and random number selection for control input calculation. The control input is normalized 
and constrained with in the specified limits. The random numbers used for the control 
input, u equals the length of the control horizon, and these numbers are generated so that 
they satisfy the constraints. A penalty function approach is considered to satisfy the 
constraints on the input variables. In this approach, a penalty term corresponding to the 
penalty violation is added to the objective function defined in Eq. (64). Thus the violation of 
the constraints on the variables is accounted by defining a penalty function of the form 
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where the penalty parameter,  is selected as a high value. The penalized objective function 
is then given by 
 f(x) = J + P  (68) 

 
where J is defined by Eq. (64). At any instant, the current control signal, uk and the 
prediction output based on this control input, )(ˆ iky   are used to compute the objective 
function f(x) in Eq. (68) as the energy function, E(k+i). The E(k+i)  and the previously 
evaluated E(k) provides the E as 
 

 E(k) = E(k+i) – E(k)     (69) 
 

The comparison of the E with the random numbers generated between 0 and 1 determines 
the probability of acceptance of u(k). If E  0, all u(k) are accepted. If E  0,  u(k) are 
accepted with a probability of exp(-E/TA). If nm be the number of variables, nk be the 
number of function evaluations and nT be the number of temperature reductions, then the 
total number of function evaluations required for every sampling condition are (nT x nk x nm). 
Further details of NMPC based on stochastic optimization can be referred elsewhere 
(Venkateswarlu and Damodar Reddy, 2008). 
 
Implementation procedure 
The implementation of  NMPC based on SA proceeds with the following steps. 
 
1.  Set TA as a sufficiently high value and let nk be the number of function evaluations to be 

performed at a particular TA. Specify the termination criterion, . Choose the initial 
control vector, u and obtain the  process output predictions using Eq. (63). Evaluate the 
objective function, Eq. (68) as the energy function E(k).  

2. Compute the incremental input vector uk stochastically and update the control vector as  
 

  u(k+i) =   u(k)  + u(k)    (70) 
 

Calculate the objective function, E(k+i)  as the energy function based on this vector. 
3. Accept u(k+i)  unconditionally if the energy function satisfies the condition 
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Otherwise, accept u(k+i)  with the probability according to the Metropolis criterion  
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where
'
AT  is the current annealing temperature and r represents random number. This step 

proceeds until the specified function evaluations, nk are completed. 
4.  Carry out the temperature reduction in the outer loop according to the decrement 

function 
        AA TT /     (73) 
where  is temperature reduction factor. Terminate the algorithm if all the differences are 
less than the prespecified .  
5. Go to step 2 and repeat the procedure for every measurement condition based on the 

updated control vector and its corresponding process output.  
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5.2 Case study: nonlinear model predictive control of reactive distillation column 
The performance of NMPC based on stochastic optimization is evaluated through 
simulation by applying it to a ethyl acetate reactive distillation column.  
 
Analysis of Results 
The process, the column details, the mathematical model and the control scheme of ethyl 
acetate reactive distillation column given in Section 3.2 is used for NMPC implementation.  
In this operation, since the ethyl acetate produced is withdrawn as a product in the distillate 
stream, controlling the purity of this main product is important in spite of disturbances in 
the column operation. This becomes the main control loop for NMPC in which reflux flow 
rate is used as a manipulated variable to control the purity of ethyl acetate. Since reboiler 
and condenser holdups act as pure integrators, they also need to be controlled. These 
become the auxiliary control loops and are controlled by conventional PI controllers in 
which the distillate flow rate is considered as a manipulated variable to control the 
condenser molar holdup and the bottom flow rate is used to control the reboiler molar 
holdup. The tuning parameters used for both the PI controllers of reflux drum and reboiler 
holdups are kc = - 0.001 and I = 1.99 x 104 (Vora and Dauotidis, 2001). The SISO control 
scheme for the column with the double feed configuration used in this study is shown in the 
Fig. 3. 
The input-output data to construct the nonlinear empirical model is obtained by solving the 
model equations using Euler's integration with a step size of  2.0 s. A PI controller with a 
series of step changes in the set point of ethyl acetate composition is used for data 
generation. The input data (reflux flow) is normalized and used along with the outputs 
(ethyl acetate composition) in model building. The reflux flow rate is constrained with in the 
limits of 20 mol/s and 5 mol/s. A total number of 25000 data sets is considered to develop 
the model. The model parameters are determined by using the well known recursive least 
squares algorithm (Goodwin and Sin, 1984), the application of which has been shown 
elsewhere (Venkateswarlu and Naidu, 2001). After evaluating model structure in Eq. (60) for 
different orders of ny and nu , the model with the order ny=2 and nu=2 is found to be more 
appropriate to design and implement the NMPC with stochastic optimization. The structure 
of the model is in the form  
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The parameters of this model are determined as θ0=-0.000774, θ1=1.000553, θ2=0.002943, θ3=-
0.003828, θ4=0.000766 and θ5=-0.000117. This identified model is then used to derive the 
future predictions for the process output by cascading the model to it self as in Eq. (63). 
These model predictions are added with the modeling error, d(k) defined by Eq. (65), which 
is considered to be constant for the entire prediction horizon. The weightings  and  in the 
objective function, Eq. (64) are set as 1.0 x 107  and 7.5 x 104, respectively. The penalty 
parameter,   in Eq. (67) is assigned as 1.0 x 105. The cost function used in NMPC is the 
penalized objective function, eq. (68), based on which the SA search is computed. The 
incremental input, u in SA search is constrained with in the limits -0.0025 and 0.0025, 
respectively. The actual input, u involved with the optimization scheme is a normalized 
value and is constrained between 0 and 1. The objective function in Eq. (68) is evaluated as 
the energy function at each instant. The initial temperature T is chosen as 500 and the 

number of iterations at each temperature is set as 250.  The temperature reduction factor,  
in Eq. (73) is set as 0.5. The control input determined by the stochastic optimizer is 
denormalized and implemented on the process. A sample time of 2 s is considered for the 
implementation of the controller. 
The performance of NMPC based on SA is evaluated by applying it for the servo and 
regulatory control of ethyl acetate reactive distillation column. On evaluating the results 
with different prediction and control horizons, the NMPC with a prediction horizon of 
around 10 and a control horizon of around 1 to 3 is observed to provide better performance. 
The results of NMPC are also compared with those of LMPC presented in Section 3 and a PI 
controller. The tuning parameters of the PI controller are set as kC = 10.0 and I = 1.99 x 104 
(Vora and Dauotidis, 2001). The servo and regulatory results of NMPC along with the 
results of LMPC and PI controller are shown in Figures 11-14. Figure 11 compares the input 
and output profiles of NMPC with LMPC and PI controller for step change in ethyl acetate 
composition from 0.6827 to 0.75. The responses in Figure 12 represent 20% step decrease in 
ethanol feed flow rate, and the responses in Figure 13 correspond to 20% step increase in 
reboiler heat load. These responses show the better performance of NMPC over LMPC and 
PI controller. Figure 14 compares the performance of NMPC and LMPC in tracking multiple 
step changes in setpoint of the controlled variable. The results thus show the stability and 
robustness of NMPC towards load disturbances and setpoint changes.   
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Fig.12. Output and input profiles for step decrease in ethanol feed flow rate. 
 

 
Fig.13. Output and input profiles for step increase in reboiler heat load. 

 
Fig. 14. Output responses for multiple setpoint changes in ethyl acetate composition 

 
6. Conclusions 

Model predictive control (MPC) is known to be a powerful control strategy for a variety of 
processes. In this study, the capabilities of linear and nonlinear model predictive controllers 
are explored by designing and applying them to different nonlinear processes. A linear 
model predictive controller (LMPC) is presented for the control of an ethyl acetate reactive 
distillation. A generalized predictive control (GPC) and a constrained generalized predictive 
control (CGPC) are presented for the control of an unstable chemical reactor. Further, a 
nonlinear model predictive controller (NMPC) based on simulated annealing is presented 
for the control of a highly complex nonlinear ethyl acetate reactive distillation column. The 
results of these controllers are evaluated under different disturbance conditions for their 
servo and regulatory performance and compared with the conventional controllers. From 
these results, it is observed that though linear model predictive controllers offer better 
control performance for nonlinear processes over conventional controllers, the nonlinear 
model predictive controller provides effective control performance for highly complex 
nonlinear processes. 
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ARX     autoregressive moving average  
Ah   heat transfer area, m2                                                  
Atray        tray area, m2 
B          bottom flow rate, mol s-1 

Bh   dimensionless heat of reaction 

C         concentration, mol m-3   

CA  reactant concentration, mol m-3 
CAf   feed concentration, mol m-3 
Ck        catalyst concentration, % vol   
Cp    specific heat capacity, J kg-1 K-1 
D         distillate flow rate, mol s-1 

Da   Damkohler number 
dumin   lower limit of slew rate 
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dumax   upper limit of slew rate 
E          total enthalpy of liquid on plate, kJ 
FL        liquid feed flow rate on plate, mol s-1 

FV       vapor feed on plate, mol s-1 

FAc       acetic acid feed flow rate, mol s-1 

FEth      ethanol feed flow rate, mol s-1 

Fo    volumetric feed rate, m3 s-1 
H          molar enthalpy of vapor stream, kJ mol-1 

 h          molar enthalpy of liquid stream, kJ mol-1 

 k1         reaction rate constant, m3  mol-1 s-1 

 hweir     weir height, m 
 KC        constant of reaction equilibrium 

 L          molar liquid flow rate, mol s-1 

 Lweir     weir length, m 
 Lliquid   liquid level on tray, m 
 M        molar holdup on plate, m 
 MWav  average molecular weight, g mol-1 

N1   minimum costing horizon 
N2   maximum costing horizon 
N3   control horizon 
P         pressure on plate, pascal 

Q         heat exchange, kJ 
R         number of moles reacted, mol s-1 

Rg   gas constant, J mol-1 K-1 
RLS     recursive least squares 
r          rate of reaction, mol s-1 m-3    
av       average density, g m-3 
T         temperature, K 
Tc   coolant temperature, K 
Tf   feed temperature, K 
Tr   reactor temperature, K 
U   heat transfer coefficient, J m-2 s-1 K-1 
u  controller output 
umin   lower limit of manipulated variable 
umax   upper limit of manipulated variable 
VLE     vapor-liquid equilibrium 
V          molar vapor flow rate, mol s-1 

x          mole fraction in liquid phase 
x1   dimensionless reactant concentration 
x2   dimensionless reactant temperature 
y          mole fraction in vapor phase 
ymin   lower limit of output variable 
ymax   upper limit of output variable 
av        average density, g m-3 
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1. Introduction

The control of multi-input multi-output (MIMO) systems is a common problem in practical
control scenarios. However in the last two decades, of the advanced control schemes, only
linear model predictive control (MPC) was widely used in industrial process control (Ma-
ciejowski, 2002). The fundamental common idea behind all MPC techniques is to rely on
predictions of a plant model to compute the optimal future control sequence by minimiza-
tion of an objective function. In the predictive control domain, Generalized Predictive Control
(GPC) and its derivatives have received special attention. Particularly the ability of GPC to
be applied to unstable or time-delayed MIMO systems in a straight forward manner and the
low computational demands for static models make it interesting for many different kinds of
tasks. However, this method is limited to linear models.

Counterweight

Travel-Axis

Elevation-Axis

Pitch-Axis

Engines

Fig. 1. Quanser 3-DOF Helicopter

If nonlinear dynamics are present in the plant a linear model might not yield sufficient pre-
dictions for MPC techniques to function adequately. A related technique that can be applied
to nonlinear plants is Approximate (Model) Predictive Control (APC). It uses an instantaneous
linearization of a nonlinear model based on a neural network in each sampling instant. It is
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similar to GPC in most aspects except that the instantaneous linearization of the neural net-
work yields an adaptive linear model. Previously this technique has already successfully been
applied to a pneumatic servomechanism (Nørgaard et al., 2000) and gas turbine engines (Mu
& Rees, 2004), however both only in simulation.
The main challenges in this work were the nonlinear, unstable and comparably fast dynamics
of the 3-DOF helicopter by Quanser Inc. (2005) (see figure 1). APC as proposed by Nørgaard
et al. (2000) had to be extended to the MIMO case and model parameter filtering was proposed
to achieve the desired control and disturbance rejection performance.
This chapter covers the whole design process from nonlinear MIMO system identification
based on an artificial neural network (ANN) in section 2 to controller design and presentation
of enhancements in section 3. Finally the results with the real 3-DOF helicopter system are
presented in section 4. On the way pitfalls are analyzed and practical application hints are
given.

2. System Identification

The correct identification of a model is of high importance for any MPC method, so special
attention has to be paid to this part of controller design. The success of the identification will
determine the performance of the final controlled system directly or even whether the system
is stable at all.
Basically there are a few points one has to bear in mind during the experiment design (Ljung,
1999):

• The sampling rate should be chosen appropriately.

• The experimental conditions should be close to the situation for which the model is
going to be used. Especially for MIMO systems this plays an important role as this may
be nontrivial.

• The identification signal should be sufficiently rich to excite all modes of the system. For
nonlinear systems not only the frequency spectrum but also the excitation of different
amplitudes should be sufficient.

• Periodic inputs have the advantage that they reduce the influence of noise on the output
signal but increase the experiment length.

The following sections guide through the full process of the MIMO identification by means of
the practical experiences with the helicopter model.

2.1 Excitation Signal
The type of the excitation signal plays an important role as it should exhibit a few properties
which affect the outcome essentially. Generally the input signal should be persistently exciting
of at least twice the system order. There are many different types of input signals which are not
covered here (see Ljung (1999) for further reading). Despite the desirable optimal Crest factor,
for nonlinear system identification binary signals are not an option due to the lack of excitation
of different amplitudes. For this work an excitation signal comprised of independent multi-
sine signals as described in (Evan et al., 2000) was designed. This is explored in the following
section.

2.1.1 Assembling of Multisine Signals
A multisine is basically a sum of sinusoids:

u(t) =
ns

∑
k=1

Akcos(ωkt + φk)

where ns is the number of present frequencies. This parameter should be large enough to
guarantee persistent excitation.
A favourable attribute of multisine signals is that the spectrum can be determined directly. By
this property it is possible to just include the frequency ranges that excite the system which
is done by splitting the spectrum in a low (or main) and a high frequency band. As a rule of
thumb one should choose the upper limit of the main frequency band ωc around the system
bandwidth ωb, since choosing ωc too low may result in unexcited modes, while ωc � ωb does
not yield additional information (Ljung, 1999). In a relay feedback experiment the bandwidth
of the helicopter’s pitch axis was measured to be fb ≈ 0.67Hz. As one can see in figure 2 the
upper limit of the main frequency band fc = ωc/2π = 1.5Hz was chosen about twice as large
but the higher frequencies from ωc up to the Nyquist frequency ωn are not entirely absent.
This serves the purpose of making the mathematical model resistant to high frequency noise
as the real system will typically not react to this high frequency band.
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Fig. 2. Spectrum of the multisine excitation signal for the helicopter

2.1.2 Periodic Signals
To reduce the influence of noise present in the output signal of the plant, taking an integer
number of periods of the input signal can be considered. If K periods of the input signal are
taken, the signal to noise ratio is improved by this factor K. A drawback of periodic inputs is
that they generally can not inject as much excitation into the system over a given time span as
non-periodic inputs, since a signal of length N can at most excite a system of order N (Ljung,
1999). But as a periodic signal of length N = KM consists of K periods of length M it has the
same level of excitation as one period.
In the case of the helicopter three signal periods were chosen, as this proved to give consistent
results for the present noise level.
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similar to GPC in most aspects except that the instantaneous linearization of the neural net-
work yields an adaptive linear model. Previously this technique has already successfully been
applied to a pneumatic servomechanism (Nørgaard et al., 2000) and gas turbine engines (Mu
& Rees, 2004), however both only in simulation.
The main challenges in this work were the nonlinear, unstable and comparably fast dynamics
of the 3-DOF helicopter by Quanser Inc. (2005) (see figure 1). APC as proposed by Nørgaard
et al. (2000) had to be extended to the MIMO case and model parameter filtering was proposed
to achieve the desired control and disturbance rejection performance.
This chapter covers the whole design process from nonlinear MIMO system identification
based on an artificial neural network (ANN) in section 2 to controller design and presentation
of enhancements in section 3. Finally the results with the real 3-DOF helicopter system are
presented in section 4. On the way pitfalls are analyzed and practical application hints are
given.

2. System Identification

The correct identification of a model is of high importance for any MPC method, so special
attention has to be paid to this part of controller design. The success of the identification will
determine the performance of the final controlled system directly or even whether the system
is stable at all.
Basically there are a few points one has to bear in mind during the experiment design (Ljung,
1999):

• The sampling rate should be chosen appropriately.

• The experimental conditions should be close to the situation for which the model is
going to be used. Especially for MIMO systems this plays an important role as this may
be nontrivial.

• The identification signal should be sufficiently rich to excite all modes of the system. For
nonlinear systems not only the frequency spectrum but also the excitation of different
amplitudes should be sufficient.

• Periodic inputs have the advantage that they reduce the influence of noise on the output
signal but increase the experiment length.

The following sections guide through the full process of the MIMO identification by means of
the practical experiences with the helicopter model.

2.1 Excitation Signal
The type of the excitation signal plays an important role as it should exhibit a few properties
which affect the outcome essentially. Generally the input signal should be persistently exciting
of at least twice the system order. There are many different types of input signals which are not
covered here (see Ljung (1999) for further reading). Despite the desirable optimal Crest factor,
for nonlinear system identification binary signals are not an option due to the lack of excitation
of different amplitudes. For this work an excitation signal comprised of independent multi-
sine signals as described in (Evan et al., 2000) was designed. This is explored in the following
section.

2.1.1 Assembling of Multisine Signals
A multisine is basically a sum of sinusoids:

u(t) =
ns

∑
k=1

Akcos(ωkt + φk)

where ns is the number of present frequencies. This parameter should be large enough to
guarantee persistent excitation.
A favourable attribute of multisine signals is that the spectrum can be determined directly. By
this property it is possible to just include the frequency ranges that excite the system which
is done by splitting the spectrum in a low (or main) and a high frequency band. As a rule of
thumb one should choose the upper limit of the main frequency band ωc around the system
bandwidth ωb, since choosing ωc too low may result in unexcited modes, while ωc � ωb does
not yield additional information (Ljung, 1999). In a relay feedback experiment the bandwidth
of the helicopter’s pitch axis was measured to be fb ≈ 0.67Hz. As one can see in figure 2 the
upper limit of the main frequency band fc = ωc/2π = 1.5Hz was chosen about twice as large
but the higher frequencies from ωc up to the Nyquist frequency ωn are not entirely absent.
This serves the purpose of making the mathematical model resistant to high frequency noise
as the real system will typically not react to this high frequency band.
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Fig. 2. Spectrum of the multisine excitation signal for the helicopter

2.1.2 Periodic Signals
To reduce the influence of noise present in the output signal of the plant, taking an integer
number of periods of the input signal can be considered. If K periods of the input signal are
taken, the signal to noise ratio is improved by this factor K. A drawback of periodic inputs is
that they generally can not inject as much excitation into the system over a given time span as
non-periodic inputs, since a signal of length N can at most excite a system of order N (Ljung,
1999). But as a periodic signal of length N = KM consists of K periods of length M it has the
same level of excitation as one period.
In the case of the helicopter three signal periods were chosen, as this proved to give consistent
results for the present noise level.
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2.1.3 MIMO Considerations
For MIMO systems the design of the input signal is a bit more complex, as there may be cross
couplings between the different inputs which drive the outputs out of desired limits or the
signal does not excite all modes sufficiently. The design process of the identification signal
involves the consideration of system specifics and can not be generalized.

0 500 1000 1500 2000
−2

−1

0

1

2

Samples

A
m

pl
itu

de

(a) Signal 1

0 500 1000 1500 2000
−2

−1

0

1

2

Samples

(b) Signal 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−100

−80

−60

−40

−20

0

20

40

Frequency (Hz)

A
m

pl
itu

de
 (d

B
)

(c) Spectrum of signal 1

0 1 2 3 4 5
−100

−50

0

Frequency (Hz)

A
m

pl
itu

de
 (d

B
)

(d) Spectrum of signal 2

Fig. 3. MIMO signals with appropriate setpoints

In the case of the helicopter three axes need to be excited in all modes. A first attempt was
to directly apply multisine signals to both inputs. For this attempt both inputs were limited

to low amplitudes though, as coincidental add-up effects quickly drove the system out of the
operating bounds. Naturally this yielded bad models that did not resemble the actual plant
very well.
A way to drive a MIMO system to different operating states is the use of setpoints that are
added to the multisine signal. This enables the selective identification of certain modes of the
system. At the same time this can be used as a means to keep the outputs inside of valid op-
erating bounds, since the amplitude of the multisine signal can be chosen to be much lower
than without setpoints. This enables much safer operation during the experiment, as the en-
ergy of the random signal can be reduced. Of course one has to keep in mind that the actual
excitation signals amplitude has to be as large as possible to assure maximal excitation around
each setpoint.
The spectrum of a multisine signal with additive setpoints does not differ much from the
original multisine (figure 2) as can be seen in figure 3. The only difference is a peak in the low
frequency band and a general small lifting in the upper band. Both signals are composed of
multisines of same spectrum with unit variance and additive setpoints in the range of [−1, 1].
This assures overlapping amplitude ranges, which is desirable for a consistent model.

2.2 Closed Loop Identification
In recent years the interest in closed loop identification has generally risen, due to its impor-
tance for practical system identification. In many industrial processes existing control loops
cannot be switched off during system identification for safety reasons or process restrictions.
Likewise when dealing with unstable systems every experiment setup must involve stabiliz-
ing control loops to keep the output in a valid operating range. Another advantage of models
computed from closed loop data is their better approximation of the behavior of a process
under feedback which is important for successful controller design (Pico & Martinez, 2002).
There are a few different approaches to closed loop identification of which the two most gen-
eral are covered here:

• Direct Approach: ignore the presence of the feedback and directly identify the plant by
plant input and output data. This has the advantage that no knowledge about the type
of control feedback or even linearity of the controller is required.

• Indirect Approach: identify the closed loop and obtain the open loop model by decon-
volution if possible. Obtaining the open loop model is only possible if the controller is
known and both the closed loop plant model and the controller are linear.

u(t)

KF(z)

r(t)
+

y(t)

−
G0(z)

Fig. 4. Closed loop setup for identification
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2.1.3 MIMO Considerations
For MIMO systems the design of the input signal is a bit more complex, as there may be cross
couplings between the different inputs which drive the outputs out of desired limits or the
signal does not excite all modes sufficiently. The design process of the identification signal
involves the consideration of system specifics and can not be generalized.
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In the case of the helicopter three axes need to be excited in all modes. A first attempt was
to directly apply multisine signals to both inputs. For this attempt both inputs were limited

to low amplitudes though, as coincidental add-up effects quickly drove the system out of the
operating bounds. Naturally this yielded bad models that did not resemble the actual plant
very well.
A way to drive a MIMO system to different operating states is the use of setpoints that are
added to the multisine signal. This enables the selective identification of certain modes of the
system. At the same time this can be used as a means to keep the outputs inside of valid op-
erating bounds, since the amplitude of the multisine signal can be chosen to be much lower
than without setpoints. This enables much safer operation during the experiment, as the en-
ergy of the random signal can be reduced. Of course one has to keep in mind that the actual
excitation signals amplitude has to be as large as possible to assure maximal excitation around
each setpoint.
The spectrum of a multisine signal with additive setpoints does not differ much from the
original multisine (figure 2) as can be seen in figure 3. The only difference is a peak in the low
frequency band and a general small lifting in the upper band. Both signals are composed of
multisines of same spectrum with unit variance and additive setpoints in the range of [−1, 1].
This assures overlapping amplitude ranges, which is desirable for a consistent model.

2.2 Closed Loop Identification
In recent years the interest in closed loop identification has generally risen, due to its impor-
tance for practical system identification. In many industrial processes existing control loops
cannot be switched off during system identification for safety reasons or process restrictions.
Likewise when dealing with unstable systems every experiment setup must involve stabiliz-
ing control loops to keep the output in a valid operating range. Another advantage of models
computed from closed loop data is their better approximation of the behavior of a process
under feedback which is important for successful controller design (Pico & Martinez, 2002).
There are a few different approaches to closed loop identification of which the two most gen-
eral are covered here:

• Direct Approach: ignore the presence of the feedback and directly identify the plant by
plant input and output data. This has the advantage that no knowledge about the type
of control feedback or even linearity of the controller is required.

• Indirect Approach: identify the closed loop and obtain the open loop model by decon-
volution if possible. Obtaining the open loop model is only possible if the controller is
known and both the closed loop plant model and the controller are linear.

u(t)

KF(z)

r(t)
+

y(t)

−
G0(z)

Fig. 4. Closed loop setup for identification
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This section is limited to the techniques and practical experiences of the identification of the
helicopter model and does not cover the whole theory of closed loop identification. For further
information on this matter see Pico & Martinez (2002) or Ljung (1999).

2.2.1 Direct Identification
This is the natural approach to closed loop identification as it is similar to open loop identifi-
cation if one keeps some fallacies in mind. In general this method applies a straightforward
identification by taking the raw data from plant input u(t) and plant output y(t) and thus
computes the model as if in open loop. Figure 4 shows the basic setup of the experiment.
A few general statements can be made about the direct identification in closed loop (Pico &
Martinez, 2002):

• The experiment is informative if r(t) is persistently exciting.

• Even if r(t) is not a rich signal, the experiment can be informative if the system is driven
by the output-noise and the feedback mechanism is of adequate structure avoiding a
linear dependency between y(t) and u(t).

• Problems can arise if the amplitude of r(t) is small in comparison to u(t) and the feed-
back mechanism is approximately linear, i.e. u(t) ≈ −KF(z)y(t).

• The direct approach can be problematic if the open loop plant is unstable, since the
spectrum of u(t) may be altered in a suboptimal way.

So if it is possible to use a rich signal for r(t), the experiment is informative. But as this may
not always be the case in a practical scenario, informative experiments can still be achieved by
choosing an appropriate controller. Generally if r(t) has a very low amplitude in comparison
to u(t) or if r(t) is not a rich signal, problems arise if a dependency like u(t) ≈ −KF(z)y(t) ex-
ists. But this can be avoided by choosing high order, time varying or nonlinear feedback mech-
anisms. For further information about appropriate controllers see (Pico & Martinez, 2002).

Issues with Unstable Systems
In the case of the helicopter the multisine from section 2.1 was used which exhibits a high level
of excitation, thus a simple proportional derivative controller (PD controller) could be used for
stabilization since the main source of exitation is the reference signal r(t) in this case. Figure
5 shows the spectrum of the input signal u(t) that was recorded during a SISO experiment
to identify the helicopters pitch axis. The elevation axis was controlled separately by a PID
controller. As one can see, the spectrum has changed significantly if compared to the original
spectrum in figure 2. The low frequencies are heavily damped which comes naturally for
an unstable plant like the helicopter’s pitch axis, as a constant input would drive the system
to infinity. For identification though this is unfavourable, since the low frequencies are not
sufficiently excited although these frequencies lie in the normal operating band.
More problems arise during validation, since with the direct approach unstable plants yield
unstable models directly and validating these is tedious. The problem with validating un-
stable models is that the validation is usually open loop, as the recorded input sequence is
applied to the model and the output is compared to the recorded actual output. Errors are not
compensated and thus add up as there are no control loops during validation so the model
response may ascend to infinity - even with a decent model. A better way to verify the quality
of an unstable model is to look at a k-step-ahead prediction, because errors do not have as
much time to add up.
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Fig. 5. Spectrum of the plant input u(t) in closed loop excited by multisine signal (lower
picture). Note that this signal is scaled in comparison to the original spectrum of the reference
r(t) (upper picture).

A comparison of the direct and the indirect approach by example of the helicopter’s unstable
pitch axis is presented in section 2.2.3.

2.2.2 Indirect Identification
The basic concept of indirect identification is to identify the closed loop as a whole and vali-
date this model of the closed loop in the first place. Consecutive steps may include a decon-
volution of the plant and controller to obtain the open loop model. This requires the regulator
and the plant model to be both linear, and of course the regulator transfer function must be
known. So in the case of nonlinear system identification these steps are not possible, even if
the controller is linear and known, because in this case the equation can usually not be solved
for G0(z) analytically.
In contrast to the direct approach the indirect approach avoids any alteration of the input sig-
nal’s spectrum since the input to the closed loop directly is the reference signal r(t) which has
no dependence on other signals. This has the advantage, that even if r(t) is small compared
to u(t) and the feedback mechanism is of a simple linear kind, an informative experiment is
still achieved as long as r(t) is persistently exciting (which the multisine signal from section
2.1 ensures). Another advantage is that unstable systems can be handled intuitively as the re-
sulting model is stable. This eliminates the problems discussed in 2.2.1 in the validation phase
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This section is limited to the techniques and practical experiences of the identification of the
helicopter model and does not cover the whole theory of closed loop identification. For further
information on this matter see Pico & Martinez (2002) or Ljung (1999).

2.2.1 Direct Identification
This is the natural approach to closed loop identification as it is similar to open loop identifi-
cation if one keeps some fallacies in mind. In general this method applies a straightforward
identification by taking the raw data from plant input u(t) and plant output y(t) and thus
computes the model as if in open loop. Figure 4 shows the basic setup of the experiment.
A few general statements can be made about the direct identification in closed loop (Pico &
Martinez, 2002):

• The experiment is informative if r(t) is persistently exciting.

• Even if r(t) is not a rich signal, the experiment can be informative if the system is driven
by the output-noise and the feedback mechanism is of adequate structure avoiding a
linear dependency between y(t) and u(t).

• Problems can arise if the amplitude of r(t) is small in comparison to u(t) and the feed-
back mechanism is approximately linear, i.e. u(t) ≈ −KF(z)y(t).

• The direct approach can be problematic if the open loop plant is unstable, since the
spectrum of u(t) may be altered in a suboptimal way.

So if it is possible to use a rich signal for r(t), the experiment is informative. But as this may
not always be the case in a practical scenario, informative experiments can still be achieved by
choosing an appropriate controller. Generally if r(t) has a very low amplitude in comparison
to u(t) or if r(t) is not a rich signal, problems arise if a dependency like u(t) ≈ −KF(z)y(t) ex-
ists. But this can be avoided by choosing high order, time varying or nonlinear feedback mech-
anisms. For further information about appropriate controllers see (Pico & Martinez, 2002).

Issues with Unstable Systems
In the case of the helicopter the multisine from section 2.1 was used which exhibits a high level
of excitation, thus a simple proportional derivative controller (PD controller) could be used for
stabilization since the main source of exitation is the reference signal r(t) in this case. Figure
5 shows the spectrum of the input signal u(t) that was recorded during a SISO experiment
to identify the helicopters pitch axis. The elevation axis was controlled separately by a PID
controller. As one can see, the spectrum has changed significantly if compared to the original
spectrum in figure 2. The low frequencies are heavily damped which comes naturally for
an unstable plant like the helicopter’s pitch axis, as a constant input would drive the system
to infinity. For identification though this is unfavourable, since the low frequencies are not
sufficiently excited although these frequencies lie in the normal operating band.
More problems arise during validation, since with the direct approach unstable plants yield
unstable models directly and validating these is tedious. The problem with validating un-
stable models is that the validation is usually open loop, as the recorded input sequence is
applied to the model and the output is compared to the recorded actual output. Errors are not
compensated and thus add up as there are no control loops during validation so the model
response may ascend to infinity - even with a decent model. A better way to verify the quality
of an unstable model is to look at a k-step-ahead prediction, because errors do not have as
much time to add up.
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Fig. 5. Spectrum of the plant input u(t) in closed loop excited by multisine signal (lower
picture). Note that this signal is scaled in comparison to the original spectrum of the reference
r(t) (upper picture).

A comparison of the direct and the indirect approach by example of the helicopter’s unstable
pitch axis is presented in section 2.2.3.

2.2.2 Indirect Identification
The basic concept of indirect identification is to identify the closed loop as a whole and vali-
date this model of the closed loop in the first place. Consecutive steps may include a decon-
volution of the plant and controller to obtain the open loop model. This requires the regulator
and the plant model to be both linear, and of course the regulator transfer function must be
known. So in the case of nonlinear system identification these steps are not possible, even if
the controller is linear and known, because in this case the equation can usually not be solved
for G0(z) analytically.
In contrast to the direct approach the indirect approach avoids any alteration of the input sig-
nal’s spectrum since the input to the closed loop directly is the reference signal r(t) which has
no dependence on other signals. This has the advantage, that even if r(t) is small compared
to u(t) and the feedback mechanism is of a simple linear kind, an informative experiment is
still achieved as long as r(t) is persistently exciting (which the multisine signal from section
2.1 ensures). Another advantage is that unstable systems can be handled intuitively as the re-
sulting model is stable. This eliminates the problems discussed in 2.2.1 in the validation phase
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since the closed loop model does not have unstable poles as the open loop model would. A
drawback of this method is, that the feedback mechanism increases the model order since it is
identified along with the actual open loop model.
For the case of a known linear controller and a linear closed loop model, the open loop model
can be obtained by deconvolution as was already mentioned. The closed loop transfer func-
tion corresponding to figure 4 is:

Gcl(z) =
G0(z)

1 + G0(z)KF(z)
. (1)

Solving for G0(z) yields:

G0(z) =
Gcl(z)

1 − Gcl(z)KF(z)
, (2)

which is the final formula for obtaining the open loop model G0(z). So if either Gcl(z) or KF(z)
are nonlinear both formulas cannot be applied and a deconvolution is not possible. However
for the linear case it will be shown that a controller design for the closed loop model Gcl(z)
can yield exactly the same overall system dynamics as a controller design for the open loop
model G0(z). For control strategies that utilize linearizations of a nonlinear model like APC,
this similarly implies that the direct use of a (in this case nonlinear) closed loop model has no
adverse effects on the final performance.

G0(z)

⇔
+

−
K2(z)

−
+

y(t)r(t)y(t)
G0(z)

+
−

r(t)
K1(z)

KF(z)

Fig. 6. Controller Setup for open loop and closed loop models

Theorem. Given the closed loop system Gcl(z) consisting of the open loop plant G0(z) and the con-
troller KF(z), a controller K2(z) can be found that transforms the system to an equivalent system
consisting of an arbitrary controller K1(z) that is applied to the plant G0(z) directly.

Proof. The two system setups are depicted in figure 6. The transfer function of the left system
is:

G1(z) =
K1(z)G0(z)

1 + K1(z)G0(z)

while the right system has the transfer-function:

G2(z) =
K2(z)Gcl(z)

1 + K2(z)Gcl(z)

=
K2(z)

G0(z)
1+G0(z)KF(z)

1 + K2(z)
G0(z)

1+G0(z)KF(z)

=
K2(z)G0(z)

1 + (KF(z) + K2(z))G0(z)
.

Now it has to be proved that there exists a controller K2(z) that transforms G2(z) to G1(z)
for any given K1(z). It is clear that the system G2(z) with the KF(z) feedback controller can
achieve exactly the same performance as the G1(z) system if this is the case.

K1(z)G0(z)
1 + K1(z)G0(z)

=
K2(z)G0(z)

1 + (KF(z) + K2(z))G0(z)
K1(z)G0(z) + K1(z)KF(z)G0(z)G0(z) = K2(z)G0(z)

K2(z) = K1(z) + K1(z)KF(z)G0(z)
= K1(z)(1 + KF(z)G0(z))

2.2.3 Indirect vs. Direct Approach
The quality of the models heavily depends on the experiment setup and the identification
approach chosen. This is valid even more for the identification of unstable systems. This will
be shown in the following with the example of the SISO identification of the helicopter’s pitch
axis. Consider the experiment setup from figure 4. As discussed in section 2.1 three periods
of a multisine signal with spectrum as in figure 2 are applied to the reference input r(t). The
feedback controller KF(z) is a hand tuned PD controller. The input data for the identification
process are r(t) for the indirect approach and u(t) for the direct approach respectively, the
output data is y(t) in both cases. The spectrum of u(t) is shown in figure 5 (the spectrum of
r(t) is just the one of the multisine in figure 2). To obtain a fair comparison of the approaches
the open loop model is computed for both (for the indirect approach (2) is used to compute
G0(z)). Since direct validation of unstable models is not very meaningful in most cases, a
stabilizing controller is added for the simulation. Here, the natural choice is the same PD
feedback controller as used with the real helicopter. The comparison of the model outputs to
the original helicopter output is shown in figure 7.
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Fig. 7. Simulated closed loop response of models from direct and indirect approach compared
to experimental measurement

Judging from the predicted outputs of both models they seem almost identical, as it is even
difficult to distinguish between both model outputs. Both are not perfectly tracking the real
output but it seems that decent models have been acquired. In figure 8 the bode plots of both
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since the closed loop model does not have unstable poles as the open loop model would. A
drawback of this method is, that the feedback mechanism increases the model order since it is
identified along with the actual open loop model.
For the case of a known linear controller and a linear closed loop model, the open loop model
can be obtained by deconvolution as was already mentioned. The closed loop transfer func-
tion corresponding to figure 4 is:

Gcl(z) =
G0(z)

1 + G0(z)KF(z)
. (1)

Solving for G0(z) yields:

G0(z) =
Gcl(z)

1 − Gcl(z)KF(z)
, (2)

which is the final formula for obtaining the open loop model G0(z). So if either Gcl(z) or KF(z)
are nonlinear both formulas cannot be applied and a deconvolution is not possible. However
for the linear case it will be shown that a controller design for the closed loop model Gcl(z)
can yield exactly the same overall system dynamics as a controller design for the open loop
model G0(z). For control strategies that utilize linearizations of a nonlinear model like APC,
this similarly implies that the direct use of a (in this case nonlinear) closed loop model has no
adverse effects on the final performance.

G0(z)

⇔
+

−
K2(z)

−
+

y(t)r(t)y(t)
G0(z)

+
−

r(t)
K1(z)

KF(z)

Fig. 6. Controller Setup for open loop and closed loop models

Theorem. Given the closed loop system Gcl(z) consisting of the open loop plant G0(z) and the con-
troller KF(z), a controller K2(z) can be found that transforms the system to an equivalent system
consisting of an arbitrary controller K1(z) that is applied to the plant G0(z) directly.

Proof. The two system setups are depicted in figure 6. The transfer function of the left system
is:

G1(z) =
K1(z)G0(z)

1 + K1(z)G0(z)

while the right system has the transfer-function:

G2(z) =
K2(z)Gcl(z)

1 + K2(z)Gcl(z)

=
K2(z)

G0(z)
1+G0(z)KF(z)

1 + K2(z)
G0(z)

1+G0(z)KF(z)

=
K2(z)G0(z)

1 + (KF(z) + K2(z))G0(z)
.

Now it has to be proved that there exists a controller K2(z) that transforms G2(z) to G1(z)
for any given K1(z). It is clear that the system G2(z) with the KF(z) feedback controller can
achieve exactly the same performance as the G1(z) system if this is the case.

K1(z)G0(z)
1 + K1(z)G0(z)

=
K2(z)G0(z)

1 + (KF(z) + K2(z))G0(z)
K1(z)G0(z) + K1(z)KF(z)G0(z)G0(z) = K2(z)G0(z)

K2(z) = K1(z) + K1(z)KF(z)G0(z)
= K1(z)(1 + KF(z)G0(z))

2.2.3 Indirect vs. Direct Approach
The quality of the models heavily depends on the experiment setup and the identification
approach chosen. This is valid even more for the identification of unstable systems. This will
be shown in the following with the example of the SISO identification of the helicopter’s pitch
axis. Consider the experiment setup from figure 4. As discussed in section 2.1 three periods
of a multisine signal with spectrum as in figure 2 are applied to the reference input r(t). The
feedback controller KF(z) is a hand tuned PD controller. The input data for the identification
process are r(t) for the indirect approach and u(t) for the direct approach respectively, the
output data is y(t) in both cases. The spectrum of u(t) is shown in figure 5 (the spectrum of
r(t) is just the one of the multisine in figure 2). To obtain a fair comparison of the approaches
the open loop model is computed for both (for the indirect approach (2) is used to compute
G0(z)). Since direct validation of unstable models is not very meaningful in most cases, a
stabilizing controller is added for the simulation. Here, the natural choice is the same PD
feedback controller as used with the real helicopter. The comparison of the model outputs to
the original helicopter output is shown in figure 7.
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Fig. 7. Simulated closed loop response of models from direct and indirect approach compared
to experimental measurement

Judging from the predicted outputs of both models they seem almost identical, as it is even
difficult to distinguish between both model outputs. Both are not perfectly tracking the real
output but it seems that decent models have been acquired. In figure 8 the bode plots of both
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open loop models are shown and this illustrates that the models are not as similar as it had
seemed in the closed loop validation, since the static gain differs in a few orders of magnitude.
The high frequency part of the plot is comparable, though.
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This correlates with the spectra of r(t) and u(t) since they are similar for higher frequencies,
too. Taking a close look at the step responses in figure 9 of both stabilized open loop models,
although looking similar over all, the model of the direct approach shows a small oscillation
for a long time period which seems negligible at first.
To see the consequences of the differences in the models they have to be used in a controller de-
sign process and tested on the actual plant. Figure 10 shows the responses of the helicopter’s
pitch axis to a rectangular reference stabilized by two LQG controllers. Both controllers were
designed with the same parameters differing only in the employed plant models.
The controller designed with the model of the indirect approach performs well and is also
very robust to manual disturbances. In contrast the LQG controller designed with the model
of the direct approach even establishes a static oscillation indicating that the model is not a
good representation of the real plant. During all identification approaches the indirect method
performed superiorly, which led to the conclusion that the direct approach is not ideal for our
setup.

2.3 Linear Identification Results
With the bad results for the direct identification in the SISO case the MIMO identification was
attempted with the indirect approach only.
The output of a MIMO model computed from a data set with usage of setpoints as described
in 2.1.3 is shown in figure 11. The model used for the output in figure 11 is a state space model
of order 16 computed with the prediction error/maximum likelihood (PEM) method of the
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Fig. 9. Simulated step response of models from direct and indirect approach (plotted at differ-
ent scales)
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Fig. 10. Experimental results of controllers tracking a rectangular reference on the pitch axis.
The LQG controller design was done with models from the direct and indirect approach re-
spectively.

identification toolbox in Matlab. This method uses an iterative search starting at the result of
the subspace-method. Other methods like MIMO ARX or directly the sub-space method also
yielded good results.
From the model output it can be seen that the characteristics of the model seem to resemble the
real ones correctly. During more dynamic maneuvers a discrepancy between the measurement
and the prediction becomes visible, though.

2.4 Neural Networks for System Identification
Opposed to the common linear plant models with widely spread structures like ARX (AutoRe-
gressive with eXogenous input), ARMAX (AutoRegressive Moving Average with eXogenous
input) or state space models the use of neural networks for system identification is a relatively
new approach. Traditionally the identification of models with neural networks falls in the
category of black box modelling as typically very few information about the system can be
incorporated in the process of identification. Neural networks as they are used most often
are very general approximators which can be trained to resemble any given function (given
that the network complexity is sufficient). Many different approaches and network structures
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This correlates with the spectra of r(t) and u(t) since they are similar for higher frequencies,
too. Taking a close look at the step responses in figure 9 of both stabilized open loop models,
although looking similar over all, the model of the direct approach shows a small oscillation
for a long time period which seems negligible at first.
To see the consequences of the differences in the models they have to be used in a controller de-
sign process and tested on the actual plant. Figure 10 shows the responses of the helicopter’s
pitch axis to a rectangular reference stabilized by two LQG controllers. Both controllers were
designed with the same parameters differing only in the employed plant models.
The controller designed with the model of the indirect approach performs well and is also
very robust to manual disturbances. In contrast the LQG controller designed with the model
of the direct approach even establishes a static oscillation indicating that the model is not a
good representation of the real plant. During all identification approaches the indirect method
performed superiorly, which led to the conclusion that the direct approach is not ideal for our
setup.

2.3 Linear Identification Results
With the bad results for the direct identification in the SISO case the MIMO identification was
attempted with the indirect approach only.
The output of a MIMO model computed from a data set with usage of setpoints as described
in 2.1.3 is shown in figure 11. The model used for the output in figure 11 is a state space model
of order 16 computed with the prediction error/maximum likelihood (PEM) method of the
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The LQG controller design was done with models from the direct and indirect approach re-
spectively.

identification toolbox in Matlab. This method uses an iterative search starting at the result of
the subspace-method. Other methods like MIMO ARX or directly the sub-space method also
yielded good results.
From the model output it can be seen that the characteristics of the model seem to resemble the
real ones correctly. During more dynamic maneuvers a discrepancy between the measurement
and the prediction becomes visible, though.

2.4 Neural Networks for System Identification
Opposed to the common linear plant models with widely spread structures like ARX (AutoRe-
gressive with eXogenous input), ARMAX (AutoRegressive Moving Average with eXogenous
input) or state space models the use of neural networks for system identification is a relatively
new approach. Traditionally the identification of models with neural networks falls in the
category of black box modelling as typically very few information about the system can be
incorporated in the process of identification. Neural networks as they are used most often
are very general approximators which can be trained to resemble any given function (given
that the network complexity is sufficient). Many different approaches and network structures
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Fig. 11. 20-step ahead prediction output of the linear model for a validation data set

exist. For an introduction to the field of neural networks the reader is referred to Engelbrecht
(2002). The common structures and specifics of neural networks for system identification are
examined in Nørgaard et al. (2000).

2.4.1 Network Structure
The network that was chosen as nonlinear identification structure in this work is of NNARX
format (Neural Network ARX, corresponding to the linear ARX structure), as depicted by
figure 12. It is comprised of a multilayer perceptron network with one hidden layer of sigmoid
units (or tanh units which are similar) and linear output units. In particular this network
structure has been proven to have a universal approximation capability (Hornik et al., 1989).
In practice this is not very relevant knowledge though, since no statement about the required
number of hidden layer units is made. Concerning the total number of neurons it may still
be advantageous to introduce more network layers or to introduce higher order neurons like
product units than having one big hidden layer.
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Fig. 12. SISO NNARX model structure

The prediction function of a general two-layer network with tanh hidden layer and linear
output units at time k of output l is

ŷl(k) =
s1

∑
j=1

w2
l j tanh

(
r

∑
i=1

w1
ji ϕi(k) + w1

j0

)
+ w2

l0 (3)

where w1
ji and w1

j0 are the weights and biases of the hidden layer, w2
l j and w2

l0 are the weights
and biases of the output layer respectively and ϕi(k) is the ith entry of the network input
vector (regression vector) at time k which contains past inputs and outputs in the case of the
NNARX structure. The choice of an appropriate hidden layer structure and input vector are of
great importance for satisfactory prediction performance. Usually this decision is not obvious
and has to be determined empirically. For this work a brute-force approach was chosen, to
systematically explore different lag space and hidden layer setups, as illustrated in figure 13.
From the linear system identification can be concluded that significant parts of the dynamics
can be described by linear equations approximately. This knowledge can pay off during the
identification using neural networks. If only sigmoid units are used in the hidden layer the
network is not able to learn linear dynamics directly. It can merely approximate the linear
behavior which would be wasteful. Consequently in this case it is beneficial to introduce linear
neurons to the hidden layer. The benefits are twofold as training speed is greatly improved
when using linear units (faster convergence) and the linear behavior can be learned "natively".
Since one linear neuron in the hidden layer can represent a whole difference equation for an
output the number of linear neurons should not exceed the number of system outputs.
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exist. For an introduction to the field of neural networks the reader is referred to Engelbrecht
(2002). The common structures and specifics of neural networks for system identification are
examined in Nørgaard et al. (2000).

2.4.1 Network Structure
The network that was chosen as nonlinear identification structure in this work is of NNARX
format (Neural Network ARX, corresponding to the linear ARX structure), as depicted by
figure 12. It is comprised of a multilayer perceptron network with one hidden layer of sigmoid
units (or tanh units which are similar) and linear output units. In particular this network
structure has been proven to have a universal approximation capability (Hornik et al., 1989).
In practice this is not very relevant knowledge though, since no statement about the required
number of hidden layer units is made. Concerning the total number of neurons it may still
be advantageous to introduce more network layers or to introduce higher order neurons like
product units than having one big hidden layer.
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The prediction function of a general two-layer network with tanh hidden layer and linear
output units at time k of output l is
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where w1
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j0 are the weights and biases of the hidden layer, w2
l j and w2

l0 are the weights
and biases of the output layer respectively and ϕi(k) is the ith entry of the network input
vector (regression vector) at time k which contains past inputs and outputs in the case of the
NNARX structure. The choice of an appropriate hidden layer structure and input vector are of
great importance for satisfactory prediction performance. Usually this decision is not obvious
and has to be determined empirically. For this work a brute-force approach was chosen, to
systematically explore different lag space and hidden layer setups, as illustrated in figure 13.
From the linear system identification can be concluded that significant parts of the dynamics
can be described by linear equations approximately. This knowledge can pay off during the
identification using neural networks. If only sigmoid units are used in the hidden layer the
network is not able to learn linear dynamics directly. It can merely approximate the linear
behavior which would be wasteful. Consequently in this case it is beneficial to introduce linear
neurons to the hidden layer. The benefits are twofold as training speed is greatly improved
when using linear units (faster convergence) and the linear behavior can be learned "natively".
Since one linear neuron in the hidden layer can represent a whole difference equation for an
output the number of linear neurons should not exceed the number of system outputs.



Model Predictive Control154

024681012

0
2

4
6

8

0

50

100

150

200

250

300

Number of sigmoid UnitsLagspace

M
S

E
 o

f 1
0−

st
ep

 a
he

ad
 p

re
di

ct
io

n

Fig. 13. Comparison of network structures according to their MSE of the 10-step ahead pre-
diction using a validation data set (all networks include three linear units in the hidden layer).
Each data point reresents the best candidate network of 10 independent trainings.

The final structure that was chosen according to the results depicted by figure 13 includes three
linear and twelve sigmoid units in the hidden layer with a lag space of six for both inputs and
the three outputs. For this network accordingly ((2 + 3)· 6 + 1)· (12 + 3) + (12 + 3 + 1)· 3 =
513 weights had to be optimized.

2.4.2 Instantaneous Linearization
To implement APC, linearized MIMO-ARX models have to be extracted from the nonlinear
NNARX model in each sampling instant. The coefficients of a linearized model can be ob-
tained by the partial derivative of each output with respect to each input (Nørgaard et al.,
2000). Applying the chain rule to (3) yields

∂ŷl(k)
∂ϕi(k)

=
s1

∑
j=1

w2
l jw

1
ji

[
1 − tanh2

(
r

∑
i=1

w1
ji ϕi(k) + w1

j0

)]
(4)

for tanh units in the hidden layer. For linear hidden layer units in both the input and the
output layer one yields

∂ŷl(k)
∂ϕi(k)

=
s1

∑
j=1

w2
l jw

1
ji . (5)

2.4.3 Network Training
All networks were trained with Levenberg Marquardt Backpropagation (Hagan & Menhaj, 1994).
Due to the monotonic properties of linear and sigmoid units, networks using only these unit
types have the inherent tendency to have only few local minima, which is beneficial for local
optimization algorithms like backpropagation. The size of the final network (513 weights)
that was used in this work even makes global optimization techniques like Particle Swarm Op-
timization or Genetic Algorithms infeasible. Consequently for a network of the presented size,
higher order units such as product units cannot be incorporated due to the increased amount
of local minima, requiring global optimization techniques (Ismail & Engelbrecht, 2000).
But also with only sigmoid units, based on the possibility of backpropagation getting stuck in
local minima, always a set of at least 10 networks with random initial parameters were trained.
To minimize overfitting a weight decay of D = 0.07 was used. The concept of regularization
to avoid overfitting using a weight decay term in the cost function is thoroughly explored by
Nørgaard et al. (2000).

2.5 Nonlinear Identification Results
For the nonlinear identification the same excitation signal and indirect measurement setup
was used as for the linear identification. Thus a stabilized closed-loop model was acquired.
The controller that was inevitably identified along with the unstable plant model cannot be
removed from the model analytically. In section 2.2.2 we showed that the stabilizing controller
will not hinder the final control performance in the case of APC, though.
The prediction of the finally chosen network with a validation data set is depicted in figure
14. If one compares the neural network prediction with the prediction of the linear model
in figure 11 it is obvious that the introduction of nonlinear neurons benefited the prediction
accuracy. This is underlined by figure 13 also visualizing a declining prediction error for
increasing sigmoid unit numbers. Whether the improvements in the model can be transferred
to an improved controller remains to be seen, though.

2.6 Conclusion
This section demonstrated successful experiment design for an unstable nonlinear MIMO sys-
tem and showed some pitfalls that may impede effective identification. The main approaches
to closed loop identification have been presented and compared by means of the helicopters
unstable pitch axis. It was shown that the identification of unstable systems can be just as suc-
cessful as for stable systems if the presented issues are kept in mind. Both linear and nonlinear
identifications can be regarded as successful, although the nonlinear predictions outperform
the linear ones.
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Fig. 13. Comparison of network structures according to their MSE of the 10-step ahead pre-
diction using a validation data set (all networks include three linear units in the hidden layer).
Each data point reresents the best candidate network of 10 independent trainings.

The final structure that was chosen according to the results depicted by figure 13 includes three
linear and twelve sigmoid units in the hidden layer with a lag space of six for both inputs and
the three outputs. For this network accordingly ((2 + 3)· 6 + 1)· (12 + 3) + (12 + 3 + 1)· 3 =
513 weights had to be optimized.

2.4.2 Instantaneous Linearization
To implement APC, linearized MIMO-ARX models have to be extracted from the nonlinear
NNARX model in each sampling instant. The coefficients of a linearized model can be ob-
tained by the partial derivative of each output with respect to each input (Nørgaard et al.,
2000). Applying the chain rule to (3) yields
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for tanh units in the hidden layer. For linear hidden layer units in both the input and the
output layer one yields
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2.4.3 Network Training
All networks were trained with Levenberg Marquardt Backpropagation (Hagan & Menhaj, 1994).
Due to the monotonic properties of linear and sigmoid units, networks using only these unit
types have the inherent tendency to have only few local minima, which is beneficial for local
optimization algorithms like backpropagation. The size of the final network (513 weights)
that was used in this work even makes global optimization techniques like Particle Swarm Op-
timization or Genetic Algorithms infeasible. Consequently for a network of the presented size,
higher order units such as product units cannot be incorporated due to the increased amount
of local minima, requiring global optimization techniques (Ismail & Engelbrecht, 2000).
But also with only sigmoid units, based on the possibility of backpropagation getting stuck in
local minima, always a set of at least 10 networks with random initial parameters were trained.
To minimize overfitting a weight decay of D = 0.07 was used. The concept of regularization
to avoid overfitting using a weight decay term in the cost function is thoroughly explored by
Nørgaard et al. (2000).

2.5 Nonlinear Identification Results
For the nonlinear identification the same excitation signal and indirect measurement setup
was used as for the linear identification. Thus a stabilized closed-loop model was acquired.
The controller that was inevitably identified along with the unstable plant model cannot be
removed from the model analytically. In section 2.2.2 we showed that the stabilizing controller
will not hinder the final control performance in the case of APC, though.
The prediction of the finally chosen network with a validation data set is depicted in figure
14. If one compares the neural network prediction with the prediction of the linear model
in figure 11 it is obvious that the introduction of nonlinear neurons benefited the prediction
accuracy. This is underlined by figure 13 also visualizing a declining prediction error for
increasing sigmoid unit numbers. Whether the improvements in the model can be transferred
to an improved controller remains to be seen, though.

2.6 Conclusion
This section demonstrated successful experiment design for an unstable nonlinear MIMO sys-
tem and showed some pitfalls that may impede effective identification. The main approaches
to closed loop identification have been presented and compared by means of the helicopters
unstable pitch axis. It was shown that the identification of unstable systems can be just as suc-
cessful as for stable systems if the presented issues are kept in mind. Both linear and nonlinear
identifications can be regarded as successful, although the nonlinear predictions outperform
the linear ones.
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Fig. 14. 20-step ahead prediction output of the best network for a validation data set

3. Approximate Model Predictive Control

The predictive controller that is discussed in this chapter is a nonlinear adaptation of the
popular Generalized Predictive Control (GPC), proposed in (Clarke et al., 1987a;b). Approximate
(Model) Predictive Control (APC) as proposed by Nørgaard et al. (2000) uses the GPC principle
on instantaneous linearizations of a neural network model. Although presented as a single-
input single-output (SISO) algorithm, its extension to the multi-input multi-output (MIMO)
case with MIMO-GPC (Camacho & Borbons, 1999) is straightforward. The scheme is visual-
ized in figure 15.
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Fig. 15. Approximate predictive control scheme

The linearized model that is extracted from the neural network at each time step (as described
in section 2.4.2) is used for the computation of the optimal future control sequence according
to the objective function:

J(k) =
N2

∑
i=N1

(
r(k + i)− ŷ(k + i)

)T
Qr

(
r(k + i)− ŷ(k + i)

)

+
Nu

∑
i=1

∆uT(k + i − 1) Qu ∆u(k + i − 1) (6)

where N1 and N2 are the two prediction horizons which determine how many future samples
the objective function considers for minimization and Nu denotes the length of the control
sequence that is computed. As common in most MPC methods, a receding horizon strategy is
used and thus only the first control signal that is computed is actually applied to the plant to
achieve loop closure.
A favourable property of quadratic cost functions is that a closed-form solution exists, en-
abling its application to fast processes under hard realtime constraints (since the execution
time remains constant). If constraints are added, an iterative optimization method has to be
used in either way, though. The derivation of MIMO-GPC is given in the following section for
the sake of completeness.

3.1 Generalized Predictive Control for MIMO Systems
In GPC, usually a modified ARX (AutoRegressive with eXogenous input) or ARMAX (Au-
toRegressive Moving Average with eXogenous input) structure is used. In this work a struc-
ture like
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Fig. 14. 20-step ahead prediction output of the best network for a validation data set

3. Approximate Model Predictive Control

The predictive controller that is discussed in this chapter is a nonlinear adaptation of the
popular Generalized Predictive Control (GPC), proposed in (Clarke et al., 1987a;b). Approximate
(Model) Predictive Control (APC) as proposed by Nørgaard et al. (2000) uses the GPC principle
on instantaneous linearizations of a neural network model. Although presented as a single-
input single-output (SISO) algorithm, its extension to the multi-input multi-output (MIMO)
case with MIMO-GPC (Camacho & Borbons, 1999) is straightforward. The scheme is visual-
ized in figure 15.
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synthesis

Fig. 15. Approximate predictive control scheme

The linearized model that is extracted from the neural network at each time step (as described
in section 2.4.2) is used for the computation of the optimal future control sequence according
to the objective function:

J(k) =
N2

∑
i=N1

(
r(k + i)− ŷ(k + i)

)T
Qr

(
r(k + i)− ŷ(k + i)

)

+
Nu

∑
i=1

∆uT(k + i − 1) Qu ∆u(k + i − 1) (6)

where N1 and N2 are the two prediction horizons which determine how many future samples
the objective function considers for minimization and Nu denotes the length of the control
sequence that is computed. As common in most MPC methods, a receding horizon strategy is
used and thus only the first control signal that is computed is actually applied to the plant to
achieve loop closure.
A favourable property of quadratic cost functions is that a closed-form solution exists, en-
abling its application to fast processes under hard realtime constraints (since the execution
time remains constant). If constraints are added, an iterative optimization method has to be
used in either way, though. The derivation of MIMO-GPC is given in the following section for
the sake of completeness.

3.1 Generalized Predictive Control for MIMO Systems
In GPC, usually a modified ARX (AutoRegressive with eXogenous input) or ARMAX (Au-
toRegressive Moving Average with eXogenous input) structure is used. In this work a struc-
ture like
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A(z−1)y(k) = B(z−1)u(k) +
1
∆

e(k) (7)

is used for simplicity, with ∆ = 1 − z−1 where y(k) and u(k) are the output and control
sequence of the plant and e(k) is zero mean white noise. This structure is called ARIX and
basically extends the ARX structure by integrated noise. It has a high relevance for practical
applications as the coloring polynomials for an integrated ARMAX structure are very difficult
to estimate with sufficient accuracy, especially for MIMO systems (Camacho & Borbons, 1999).
The integrated noise term is introduced to eliminate the effects of step disturbances.
For an n-output, m-input MIMO system A(z−1) is an n × n monic polynomial matrix and
B(z−1) is an n × m polynomial matrix defined as:

A(z−1) = In×n + A1z−1 + A2z−2 + ... + Ana z−na

B(z−1) = B0 + B1z−1 + B2z−2 + ... + Bnb z−nb

The output y(k) and noise e(k) are n × 1-vectors and the input u(k) is an m × 1-vector for the
MIMO case. Looking at the cost function from (6) one can see that it is already in a MIMO
compatible form if the weighting matrices Qr and Qu are of dimensions n × n and m × m
respectively. The SISO case can easily be deduced from the MIMO equations by inserting
n = m = 1 where A(z−1) and B(z−1) degenerate to polynomials and y(k), u(k) and e(k) be-
come scalars.

To predict future outputs the following Diophantine equation needs to be solved:

In×n = Ej(z−1)(A(z−1)∆) + z−jFj(z−1) (8)

where Ej(z−1) and Fj(z−1) are both unique polynomial matrices of order j − 1 and na re-
spectively. This special Diophantine equation with In×n on the left hand side is called Bizout
identity, which is usually solved by recursion (see Camacho & Borbons (1999) for the recur-
sive solution). The solution to the Bizout identity needs to be found for every future sampling
point that is to be evaluated by the cost function. Thus N2 − N1 + 1 polynomial matrices
Ej(z−1) and Fj(z−1) have to be computed. To yield the j step ahead predictor, (7) is multiplied
by Ej(z−1)∆zj:

Ej(z−1)∆A(z−1)y(k + j) = Ej(z−1)B(z−1)∆u(k + j − 1) + Ej(z−1)e(k + j) (9)

which by using equation 8 can be transformed into:

y(k + j) = Ej(z−1)B(z−1)∆u(k + j − 1)︸ ︷︷ ︸
past and f uture inputs

+ Fj(z−1)y(k)︸ ︷︷ ︸
f ree response

+ Ej(z−1)e(k + j)︸ ︷︷ ︸
f uture noise

(10)

Since the future noise term is unknown the best prediction is yielded by the expectation value
of the noise which is zero for zero mean white noise. Thus the expected value for y(k + j) is:

ŷ(k + j|k) = Ej(z−1)B(z−1)∆u(k + j − 1) + Fj(z−1)y(k) (11)

The term Ej(z−1)B(z−1) can be merged into the new polynomial matrix Gj(z−1):

Gj(z−1) = G0 + G1z−1 + . . . + Gj−1z−(j−1) + (Gj)jz−j + . . . + (Gj−1+nb
)jz−(j−1+nb)

where (Gj+1)j is the (j + 1)th coefficient of Gj(z−1) and nb is the order of B(z−1). So the
coefficients up to (j− 1) are the same for all Gj(z−1) which stems from the recursive properties
of Ej(z−1) (see Camacho & Borbons (1999)). With this new matrix it is possible to separate the
first term of (10) into past and future inputs:

Gj(z−1)∆u(k + j − 1) = G0∆u(k + j − 1) + G1∆u(k + j − 2) + . . . + Gj−1∆u(k)︸ ︷︷ ︸
f uture inputs

+ (Gj)j∆u(k − 1) + (Gj+1)j∆u(k − 2) + . . . + (Gj−1+nb
)j∆u(k − nb)︸ ︷︷ ︸

past inputs

Now it is possible to separate all past inputs and outputs from the future ones and write this
in matrix form:




ŷ(k + 1|k)
ŷ(k + 2|k)

...
ŷ(k + Nu|k)

...
ŷ(k + N2|k)




︸ ︷︷ ︸
ŷ

=




G0 0 · · · 0
G1 G0 · · · 0
...

...
. . .

...
GNu−1 GNu−2 · · · G0

...
... · · ·

...
GN2−1 GN2−2 · · · GN2−Nu




︸ ︷︷ ︸
G




∆u(k)
∆u(k + 1)

...
∆u(k + Nu − 1)




︸ ︷︷ ︸
ũ

+




f1
f2
...

fNu
...

fN2




︸ ︷︷ ︸
f

(12)
which can be condensed to :

ŷ = Gũ + f (13)

where f represents the influence of all past inputs and outputs and the columns of G are the
step responses to future ũ (for further reading, see (Camacho & Borbons, 1999)). Since each Gi
is an n × m matrix G has block matrix structure.

Now that we obtained a j-step ahead predictor form of a linear model this can be used to
compute the optimal control sequence with respect to a given cost function (like (6)). If (6) is
written in vector form and with (13) one yields:

J(k) = (r − ŷ)TQr(r − ŷ) + ũTQuũ

= (r − Gũ − f)TQr(r − Gũ − f) + ũTQuũ

where
r = [r(k + 1), r(k + 2), . . . , r(k + N2)]

T

In order to minimize the cost function J(k) for the future control sequence ũ the derivative
dJ(k)/dũ is computed and set to zero:
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dJ(k)
dũ

= 0

= 2GTQrGũ − 2GTQr(r − f) + 2Quũ

(GTQrG + Qu)ũ = GTQr(r − f) (14)

ũ = (GTQrG + Qu)
−1GTQr︸ ︷︷ ︸

K

(r − f) (15)

Thus the optimization problem can be solved analytically without any iterations which is true
for all quadratic cost functions in absence of constraints. This is a great advantage of GPC
since the computation effort can be very low for time-invariant plant models as the main
computation of the matrix K can be carried out off-line. Actually just the first m rows of K
must be saved because of the receding horizon strategy using only the first input of the whole
sequence ũ. Therefore the resulting control law is linear, each element of K weighting the
predicted error between the reference and the free response of the plant.
Finally for a practical implementation of APC one has to bear in mind that the matrix (GTQrG+
Qu) can be singular in some instances. In the case of GPC this is not a problem since the so-
lution is not computed online. For APC in this work a special Gauss solver was used which
assumes zero control input where no unambiguous solution can be found.

3.2 Reducing Overshoot with Reference Filters
With the classic quadratic cost function it is not possible to control the overshoot of the result-
ing controller in a satisfying manner. If the overshoot needs to be influenced one can choose
three possible ways. The obvious and most elaborate way is to introduce constraints, however
the solution to the optimization problems becomes computationally more expensive. Another
possible solution is to change the cost function, introducing more tuning polynomials, as men-
tioned by Nørgaard et al. (2000) referring to Unified Predictive Control.
A simple but yet effective way to reduce the overshoot for any algorithm that minimizes the
standard quadratic cost function (like LQG, GPC or APC) is to introduce a reference prefilter
which smoothes the steep areas like steps in the reference. For the helicopter, the introduction
of prefilters made it possible to eliminate overshoot completely, retaining comparably fast rise
times. The utilized reference prefilters are of first order low-pass kind

GRF =
1 − l

1 − lz−1

which have a steady-state gain of one and can be tuned by the parameter l to control the
smoothing.

3.3 Improving APC Performance by Parameter Filtering
A problem with APC is that a network that has a good prediction capability does not neces-
sarily translate into a good controller, as for APC the network dynamics need to be smooth for
consistent linear models which is not a criterion the standard Levenberg-Marquardt backprop-
agation algorithm trains the network for. A good way to test whether the network dynamics
are sufficiently smooth is to start a simulation with the same neural network as the plant and

as the predictive controllers system model. If one sees unnecessary oscillation this is good ev-
idence that the network dynamics are not as smooth as APC desires for optimal performance.
The first solution to this is simply training more networks and test whether they provide a
better performance in the simulation.
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Fig. 16. Simulation results of disturbance rejection with parameter filtering. Top two plots:
Control outputs. Bottom two plots : Control inputs

In the case of the helicopter a neural network with no unnecessary oscillation in the simu-
lation could not be found, though. If one assumes sufficiently smooth nonlinearities in the
real system, one can try to manually smooth linearizations of the neural network from sample
to sample, as proposed in (Witt et al., 2007). Since APC is not able to control systems with
nonlinearities that are not reasonably smooth within the prediction horizon anyway, the idea
of smoothing the linearizations of the network does not interfere with the basic idea of APC
being able to control nonlinear systems. It is merely a means to flatten out local network areas
where the linearized coefficients start to jitter within the prediction horizon.
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= 2GTQrGũ − 2GTQr(r − f) + 2Quũ
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This idea has been realized by a first order low-pass filter:

GPF =
1 − d

1 − dz−1

with tuning parameter d. When applied to the polynomial matrix A(z−1), (3.3) results in the
following formula:

Âk(z
−1) = (1 − d)Ak(z

−1) + dÂk−1(z
−1)

where Âk(z−1) contains the filtered polynomial coefficients Ak(z−1). For prediction horizons
around N2 = 10...20 a good starting value for the tuning parameter d was found to be 0.9,
however this parameter depends on the sampling rate.
If the filtering parameter d is increased, the adaptivity of the model decreases and shifts to-
wards a linear model (in the case of d = 1). The importance of parameter filtering in the case
of the helicopter is displayed in figure 16 where an input disturbance acts on the torque input
of a standard APC controller and the parameter filtered version.

4. Experimental Results

During the practical experiments the setup shown in figure 17 was used. It necessarily in-
corporates the stabilizing proportional derivative controller that is included in our nonlinear
model from section 2. The sampling time was 0.1 seconds and the experiments were run on
a 1 GHz Intel Celeron CPU. All APC related algorithms were implemented in C++ to achieve
the computational performance that was necessary to be able to compute the equations in
realtime on this system at the given sampling rate.

d(t)

Helicopter
Prefilter

r(t)
y(t)

Controller
u(t)

PD-Stabilizers

Fig. 17. Control setup for helicopter with inner stabilizing control loop and reference prefilter.

For our experiments only the control of the pitch and elevation axis was considered as the
travelspeed axis has significantly longer rise times (about factor 15) than the other two axes,
making predictive control with the same sampling rate and prediction horizons impractical.
To control the travelspeed axis in this setup one could design an outer cascaded control loop
with a slower sampling rate, but this is beyond the scope of this work.
APC as well as GPC were tuned with the same 5 parameters, being the horizons N1, N2, Nu
and the weighting matrices Qr and Qu. The tuning was done as suggested in (Clarke et al.,
1987a;b) and resulted in N1 = 1, N2 = 10, Nu = 10 and the weighting matrices Qr =

diag(0, 1, 1) and Qu = diag(20, 10). The choice of Qr disables weighting for the first output
which is the uncontrolled travelspeed-axis.
The computational limits of the test platform were found at horizons of N2 = Nu = 20 which
does not leave too much headroom.

4.1 Tracking Performance
APC has been benchmarked with both tracking and disturbance rejection experiments. We
also designed a linear GPC and an integrator augmented LQG controller for comparison. The
benchmark reference signals are designed to cover all operating ranges for all outputs. All
controllers were benchmarked with identically parameterized reference prefilters to eliminate
overshoot.
In figure 18 it can be seen that LQG achieves a suitable performance only for the pitch axis
while performance on the elevation axis is much poorer than both APC and GPC. For both
outputs, APC yields slightly better performance than linear GPC which is most visible for
the large reference steps on the more nonlinear elevation axis. However looking at the plant
input signals one can see that the APC signals have less high frequency oscillation than for
GPC which is also an important issue because of actuator stress in practical use. Parameter
filtering does not change the response to the benchmark sequence up to about d = 0.9 but
significantly improves the performance for disturbance rejection as will be shown in the next
section.

4.2 Disturbance Rejection
The performance of the benchmarked controllers becomes more diverse when disturbance
rejection is considered. In figure 19 one can see the response to disturbances applied to the
two inputs. Again LQG can be tuned to satisfactory performance only for the pitch axis, but
also the standard APC and GPC do not give satisfying results. Considering input disturbance
rejection the standard APC even shows a lower stability margin than GPC. The introduction
of parameter filtering however changes this aspect significantly. With parameter filtering of
d = 0.9 the stability margin of APC becomes much larger than the one of GPC and it can be
seen in the plot that it shows the best disturbance response of all tested controllers - especially
note the low input signal amplitude, while superiorly managing the disturbance.

4.3 Conclusion
With this work it has been shown that MIMO APC for a fast process is indeed feasible with
mid-range embedded hardware. It was found that standard APC can be problematic if the
network dynamics are unsmooth. For this purpose, parameter filtering was presented as an
improvement to the standard APC implementation with which it was possible to enhance
the stability margin and overall performance of APC in the face of disturbances significantly.
Still the acquisition of a decent model should be the first step before one should tune the
performance with parameter filtering, since it remains the most important constituent to good
control performance.
Finally although the helicopter is not a highly nonlinear system, APC with parameter filtering
was able to outperform the linear GPC while being the more generally applicable control
scheme.
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This idea has been realized by a first order low-pass filter:

GPF =
1 − d

1 − dz−1

with tuning parameter d. When applied to the polynomial matrix A(z−1), (3.3) results in the
following formula:

Âk(z
−1) = (1 − d)Ak(z

−1) + dÂk−1(z
−1)
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however this parameter depends on the sampling rate.
If the filtering parameter d is increased, the adaptivity of the model decreases and shifts to-
wards a linear model (in the case of d = 1). The importance of parameter filtering in the case
of the helicopter is displayed in figure 16 where an input disturbance acts on the torque input
of a standard APC controller and the parameter filtered version.

4. Experimental Results

During the practical experiments the setup shown in figure 17 was used. It necessarily in-
corporates the stabilizing proportional derivative controller that is included in our nonlinear
model from section 2. The sampling time was 0.1 seconds and the experiments were run on
a 1 GHz Intel Celeron CPU. All APC related algorithms were implemented in C++ to achieve
the computational performance that was necessary to be able to compute the equations in
realtime on this system at the given sampling rate.
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Fig. 17. Control setup for helicopter with inner stabilizing control loop and reference prefilter.
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overshoot.
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input signals one can see that the APC signals have less high frequency oscillation than for
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filtering does not change the response to the benchmark sequence up to about d = 0.9 but
significantly improves the performance for disturbance rejection as will be shown in the next
section.
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The performance of the benchmarked controllers becomes more diverse when disturbance
rejection is considered. In figure 19 one can see the response to disturbances applied to the
two inputs. Again LQG can be tuned to satisfactory performance only for the pitch axis, but
also the standard APC and GPC do not give satisfying results. Considering input disturbance
rejection the standard APC even shows a lower stability margin than GPC. The introduction
of parameter filtering however changes this aspect significantly. With parameter filtering of
d = 0.9 the stability margin of APC becomes much larger than the one of GPC and it can be
seen in the plot that it shows the best disturbance response of all tested controllers - especially
note the low input signal amplitude, while superiorly managing the disturbance.

4.3 Conclusion
With this work it has been shown that MIMO APC for a fast process is indeed feasible with
mid-range embedded hardware. It was found that standard APC can be problematic if the
network dynamics are unsmooth. For this purpose, parameter filtering was presented as an
improvement to the standard APC implementation with which it was possible to enhance
the stability margin and overall performance of APC in the face of disturbances significantly.
Still the acquisition of a decent model should be the first step before one should tune the
performance with parameter filtering, since it remains the most important constituent to good
control performance.
Finally although the helicopter is not a highly nonlinear system, APC with parameter filtering
was able to outperform the linear GPC while being the more generally applicable control
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Fig. 18. Experimental results for tracking performance of APC compared to GPC and LQG.
Top two plots: Control outputs. Bottom two plots: Control inputs.

0 2 4 6 8 10 12 14 16 18 20

-5

0

5

E
le

va
tio

n 
(d

eg
)

Time (sec)

Reference
LQG
GPC
APC, d=0
APC, d=0.9

0 2 4 6 8 10 12 14 16 18 20
-10

-5

0

5

10

P
itc

h 
(d

eg
)

Time (sec)

Reference
LQG
GPC
APC, d=0
APC, d=0.9

0 2 4 6 8 10 12 14 16 18 20
-6

-4

-2

0

2

4

6

To
rq

ue

Time (sec)

Disturbance
LQG
GPC
APC, d=0
APC, d=0.9

0 2 4 6 8 10 12 14 16 18 20
-6

-4

-2

0

2

4

6

Th
ru

st

Time (sec)

Disturbance
LQG
GPC
APC, d=0
APC, d=0.9

Fig. 19. Experimental results for disturbance rejection performance. Top two plots: Control
outputs. Bottom two plots: Control inputs.
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1. Introduction      

The design of most process control is essentially a dynamic multi-objective optimization 
problem (Meadowcroft et al., 1992), sometimes with nonlinear characters, and in which both 
economic benefit and social benefit should be considered. Commonly speaking, there are 
contradictory objectives such as quantity of products, quality of products, safety of 
manufacturing, cost of manufacturing, environment protection and so on. Since the different 
relative importance of these objectives cannot be ignored in the process of the controller 
design, we should manage the different priority of each objective correctly and exactly. 
Therefore, multivariable process control could be formulated as a complicated dynamic 
multi-objective optimization problem. 
Traditionally, a multi-objective control problem could be transformed into a single-objective 
dynamic optimization with the quadratic objective function, where the weights denote the 
different relative importance of different objectives. This method is easy to understand, but 
the value of the weight coefficients usually could be only decided by try-and-error method, 
based on engineering experiences, repeating simulations and other information, while there 
is no accurate theoretical analysis of these weight coefficients yet. So it can be seen that, the 
design process of the traditional method is complicated and time-consuming indeed. 
Especially, when the situation of manufacturing changes (such as sudden load increasing of 
a power supplier and so on), it is very hard for operators to renew the weights rapidly. 
Therefore, a new framework of multi-objective controller is desired, it should be driven by 
the relative importance of different objectives, which reflect the practical requirement of 
control problems, and it also should be convenient to redesign for engineers and operators, 
when the values or priorities of the objectives are changed.  
Using lexicographic method, which also called completely stratified method, Meadowcroft 
et al. proposed a priority-driven framework of controller: Modular Multivariable Controller 
(MMC), and analyzed its steady-state properties (Meadowcroft et al., 1992). It sorts 
objectives sequentially according to their relative importance, and then satisfies them as 
many as possible in the corresponding control modules by the order as Fig. 1., where one 
module handles with only one objective. Later, because of its advantages, researchers have 
extended MMC to the dynamic optimization of linear systems with model predictive control 
(MPC) and other controllers in past years (Ocampo-Martinez et al., 2008, Wu et al., 2000).  
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Fig. 1. Lexicographic structure of Modular Multivariable Controller 
 
While has the mentioned advantages, the lexicographic structure still has some serious 
problems. First, in this structure, the priorities of objectives are absolute and rigid, if an 
objective cannot be completely satisfied (usually a objective with a setpoint form or an 
extremum form), the objectives with lower priorities than it will not be considered any 
more, even if they can be satisfied without any bad influence on other objectives. Second, in 
some practical cases, it is hard to distinguish the difference on priorities between some 
“parallel objectives”, and it is also not necessary indeed. In practical need, the number of 
priorities is no need to equals to the number of objectives, it can be smaller, that means a 
certain priority may have several objectives. So sometimes, the partially stratified structure 
is more flexible than completely stratified structure (lexicographic structure), the number of 
priorities could be determined by the essential control problem, and the objectives with 
relatively lower importance can be handled in a same priority together for simplicity. 
Besides the structure of the controller, the control algorithm is also important in multi-
objective control nowadays. Since the control demand of modern process industry is 
heightening continuously, nonlinearity of systems cannot be ignored in controller design, to 
utilize the advantages of MPC in process control, nonlinear model predictive control 
(NMPC) now are developing rapidly (Alessio & Bemporad, 2009, Cannon, 2004). Naturally, 
for multi-objective NMPC in many industrial cases, the priority-driven method is also 
necessary. We have tried to combine lexicographic structure (or partially stratified structure) 
and NMPC directly, as dynamic MMC of linear systems (Ocampo-Martinez et al., 2008, Wu 
et al., 2000). But the nonlinear character makes it difficult to obtain analytic solution of 
control problem, and the modular form for stratified structure seems to be too complex for 

 

nonlinear systems in some extent. Both these facts lead us to find a new way for the 
nonlinear multi-objective control problem. Genetic algorithm (GA) now is recognized as an 
efficient computing means for single-objective NMPC already (Yuzgec et al., 2006), and it 
also can be used to solve lexicographic optimization (Coello, 2000). So, in this chapter, a 
series of dynamic coefficients are used to make up a combined fitness function of GA, which 
makes GA be able to handle lexicographic optimization or partially stratified optimization 
in multi-objective NMPC. It can solve the nonlinear multi-objective control problem in the 
same way as MMC, but with a simple structure and much little computational load.  
Since the partially stratified structure could be modified from lexicographic structure easily 
(or lexicographic structure can be seen as a special case of partially stratified structure), in 
this chapter, we will introduce lexicographic method as the main content, then the 
corresponding content of partially stratified method can be obtained directly. The rest of this 
chapter is organized as follow, Section 2 will introduce the basic theory of lexicographic 
optimization and partially stratified optimization, then the modified GA for them will be 
proposed in Section 3, lexicographic NMPC and partially stratified NMPC based on the 
proposed GA will be studied in Section 4, using the control problem of a two-tank system as 
a case study. At last, conclusions and acknowledgements will be done in Section 5. 

 
2. Lexicographic optimization and partially stratified optimization 

2.1 Lexicographic optimization 
Lexicographic optimization is a strategy of multivariable optimization derived from 
priority-driven thought, without loss of generality, we just considers the minimization of 
multi-objective problem in this chapter. 
Suppose a complex goal }g,,g,{gg n21   contains n objectives, and the subscript also 
describe the relative importance of each objective, where 1g is the most important one and 

1ig  is always more important than ig . The solution }g,,g,g{g )1(
n

)1(
2

)1(
1

)1(  is better than 

the solution }g,,g,g{g )2(
n

)2(
2

)2(
1

)2(  , if and only if )2(
k

)1(
k gg   and i

)2(
i

)1(
i gmin gg   hold 

for certain nk   and all ki  . It means that, before priority k , all objectives are satisfied in 
both )1(g  and )2(g , but on priority k, )1(g is preferred to )2(g , so it is a better solution for the 
whole multi-objective optimization, no matter what will be on the objectives of lower 
priorities than kg . Thus the formulation of the lexicographic minimization problem can be 
written as follow (Meadowcroft et al., 1992):  

n,2,1k,gmin k   
  s. t.  ki,gmin g ii    (1) 
Therefore, lexicographic optimization would be defined as the computing process of a 
lexicographic minimum solution of a multi-objective problem (or sometimes maybe a 
maximum solution). This solution usually is not the optimal solution of any quadratic 
objective function and vice versa. As mentioned in Section 1, in lexicographic optimization, 
one priority can have only one objective, so it also called completely stratified optimization. 
If needed, the readers can find more about the definition of lexicographic optimization from 
other references. 

 



Multi-objective Nonlinear Model Predictive Control: Lexicographic Method 169

 

Initialize
Feasible 

Control Set

Module 1

Module 2

Module n

Process 

...

1U

0U

2U

1nU

nU

Control
Objectives

&
Constraints

System’s
Information

 
Fig. 1. Lexicographic structure of Modular Multivariable Controller 
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for multi-objective NMPC in many industrial cases, the priority-driven method is also 
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nonlinear systems in some extent. Both these facts lead us to find a new way for the 
nonlinear multi-objective control problem. Genetic algorithm (GA) now is recognized as an 
efficient computing means for single-objective NMPC already (Yuzgec et al., 2006), and it 
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makes GA be able to handle lexicographic optimization or partially stratified optimization 
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same way as MMC, but with a simple structure and much little computational load.  
Since the partially stratified structure could be modified from lexicographic structure easily 
(or lexicographic structure can be seen as a special case of partially stratified structure), in 
this chapter, we will introduce lexicographic method as the main content, then the 
corresponding content of partially stratified method can be obtained directly. The rest of this 
chapter is organized as follow, Section 2 will introduce the basic theory of lexicographic 
optimization and partially stratified optimization, then the modified GA for them will be 
proposed in Section 3, lexicographic NMPC and partially stratified NMPC based on the 
proposed GA will be studied in Section 4, using the control problem of a two-tank system as 
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2.1 Lexicographic optimization 
Lexicographic optimization is a strategy of multivariable optimization derived from 
priority-driven thought, without loss of generality, we just considers the minimization of 
multi-objective problem in this chapter. 
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for certain nk   and all ki  . It means that, before priority k , all objectives are satisfied in 
both )1(g  and )2(g , but on priority k, )1(g is preferred to )2(g , so it is a better solution for the 
whole multi-objective optimization, no matter what will be on the objectives of lower 
priorities than kg . Thus the formulation of the lexicographic minimization problem can be 
written as follow (Meadowcroft et al., 1992):  

n,2,1k,gmin k   
  s. t.  ki,gmin g ii    (1) 
Therefore, lexicographic optimization would be defined as the computing process of a 
lexicographic minimum solution of a multi-objective problem (or sometimes maybe a 
maximum solution). This solution usually is not the optimal solution of any quadratic 
objective function and vice versa. As mentioned in Section 1, in lexicographic optimization, 
one priority can have only one objective, so it also called completely stratified optimization. 
If needed, the readers can find more about the definition of lexicographic optimization from 
other references. 
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2.2 Partially stratified optimization 
Still suppose the complex goal }g,,g,g{g n21  contains n objectives, and all objectives 
need to be minimized. If these n objectives can be divided into m priorities ( nm  ), the 
complex goal can be rewritten as }G,,G,G{G m21  , where 

j
ijiji gG  is a combined 

goal of a certain priority i that contains j goals, and the goals in the same priority still could 
be combined with weight coefficients. 
Because the relation between priorities is still lexicographic, the subscript of iG  also 
describes the relative importance, where 1G is the most important and 1iG  is always more 

important than iG . The solution }G,,G,G{G )1(
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mk   and all ki  . Similar to de definition of lexicographic minimization in (1), the 
partially stratified optimization now can be defined as the computing process of a partially 
stratified minimum solution: 

m,2,1k,Gmin k   
 s. t.  ki,GminG ii    (2) 
 
Simply speaking, partially stratified multi-objective optimization here means lexicographic 
method between priorities and traditional weight coefficients method on goals in the same 
priority. Specially, if the number of priorities equals to the number of goals ( nm  ), 
partially stratified multi-objective optimization will equal to lexicographic multi-objective 
optimization. 

 
3. GA for lexicographic optimization and partially stratified optimization 

3.1 GA for lexicographic optimization 
In GA, the survival opportunity and competitiveness of individuals are only determined by 
fitness function. So the key to a lexicographic genetic algorithm is a special fitness function, 
which is suitable for lexicographic optimization for multi-objective control. 
Still suppose a complex goal }g,,g,g{g n21  contains n objectives, and the fitness 
function of each objective is ni1],1,0[Fi  , while 1Fi   means objective i has been 
completely satisfied. Since lexicographic optimization can only deal with a certain objective 
when all the objectives with higher priority have been achieved already, a series of dynamic 
coefficients is introduced to describe this decision procedure: 
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Here, since 1F  is the fitness function of the most important objective, which has no objective 
with higher priority than itself, so 11   should be held all the time. Then the combined 
fitness function could be: 
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Using this lexicographic combined fitness function in multi-objective GA, the lexicographic 
optimum solution can be obtained directly, and there are no special rules on coding method, 
crossover operator, mutation operator or any other parameters of GA. Constraints on the 
value of individuals can be matched by lethal penalty or other kinds of penalties in GA, and 
to ensure the solution’s convergence to the optimal solution, the best individual should be 
remained in every evolution. For the convenience to readers, we will describe the steps of 
this modified GA for lexicographic optimization briefly as follow: 

Step 1: create M initial parent individuals randomly. 
Step 2: create M offspring individuals by crossover operator, mutation operator 

with proper operation on constraints. 
Step 3: compute the fitness of all the 2M individuals (parents and offspring) 

respectively by (4). 
Step 4: choose M individuals with higher fitness among the 2M individuals as new 

parent individuals. 
Step 5: if the ending condition for evolution computation is matched, output the 

individual of the highest fitness, or return to Step 2. 

 
3.2 GA for partially stratified optimization and some discussion 
The only difference between GA for lexicographic optimization (LMGA) and partially 
stratified GA (PSMGA) is the definition of iF , in LMGA it is the fitness function for a single 
objective, but in PSMGA it is the fitness function for all the objectives in a same priority. 
Since the form of fitness fuction is depend on the problem will be solved, the fitness fuction 
of NMPC based on proposed GA will be introduced in detail later in the Section 4. 
Both LMGA and PSMGA are quite different from many other multi-objective GA. 
Traditional multi-objective GA usually need to find out Pareto Surface (Coello, 2000), which 
contains a set of Pareto optimal solutions, then choose a best solution by the given criterion. 
But LMGA and PSMGA don’t need this additional selection after evolutionary computing, 
since the optimal solution of the multi-objective optimization can be obtained directly. For 
controller design, what we need is just an optimal solution, no matter what the Pareto 
Surface is, so PSMGA and LMGA’s disposal is quite suitable and time-saving.  
In LMGA and PSMGA, if  the priority order of objectives changes, we only need  to modify 
the logical descriptions of the priorities in the combined fitness function, and if the value of 
objectives changes, we only need to modify the numerical description of the combined 
fitness function, while there is no parameters need to be tuned. 

 
4. Multi-objective NMPC based on GA: a case study 

4.1 The model of the two-tank system 
To be used in this chapter to carry out simulations, the nonlinear model of a two-tank 
system in Fig. 2. would be introduced here as (5), which is obtained by mechanism 
modelling, and the sample time of this discrete system is 1 second. Here outputs 

)k(y),k(y 21  denote the height of water in two tanks 1T  and 2T  respectively, and control 
input )k(u  is the water fed into tank 1T  from the valve 3V . The manual valve 1V  and 2V  
are kept open at the maximal position all the time, and magnetic valve  3V  is controlled by 
PC to be the actuator of the system, to control the fluid speed of water from pulp 1P . (5-1) 
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fitness function, while there is no parameters need to be tuned. 
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To be used in this chapter to carry out simulations, the nonlinear model of a two-tank 
system in Fig. 2. would be introduced here as (5), which is obtained by mechanism 
modelling, and the sample time of this discrete system is 1 second. Here outputs 

)k(y),k(y 21  denote the height of water in two tanks 1T  and 2T  respectively, and control 
input )k(u  is the water fed into tank 1T  from the valve 3V . The manual valve 1V  and 2V  
are kept open at the maximal position all the time, and magnetic valve  3V  is controlled by 
PC to be the actuator of the system, to control the fluid speed of water from pulp 1P . (5-1) 
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and (5-2) is the fluid mechanical character of  1T  and 2T  and (5-3) is the constraints on 
outputs, input, and the increment of input respectively. For convenience, all the variables in 
the model are normalized to the scale 0%-100%. 
 

 
Fig. 2. Structure of the two-tank system 
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4.2 The basic control problem of the two-tank system 
The NMPC of the two-tank system would have two forms of objective functions, according 
to two forms of practical goals in control problem: setpoint and restricted range. 
For goals in the form of restricted range 2,1i],y,y[)k(y:g highilowii   , suppose the 

predictive horizon contains p sample time, k is the current time and the predictive value at 
time k of future output is denoted by )k|(ŷi  , the objective function can be chosen as:  
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In (6), if the output is in the given restricted range, the value of objective function )k(J  is 
zero, which means this objective is completely satisfied. 
For goals in the form of setpoint 2,1i,y)k(y:g setii   , since the output cannot reach the 
setpoint from recent value immediately, we can use the concept of reference trajectories, and 

 

the output will reach the set point along it. Suppose the future reference trajectories of 
output )k(yi  are 2,1i),k(wi  , in most MPC (NMPC), these trajectories often can be set as 
exponential curves as (7) and Fig. 3. (Zheng et al., 2008) 
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Fig. 3. Description of exponential reference trajectory 

 
4.3 The stair-like control strategy 
To enhance the control quality and lighten the computational load of dynamic optimization 
of NMPC, especially the computational load of GA in this chapter, stair-like control strategy 
(Wu et al., 2000) could be used here. Suppose the first unknown increment of instant control 
input  is )1k(u)k(u)k(u  , and the stair constant   is a positive real number, in stair-
like control strategy, the future control inputs could be decided as follow (Wu et al., 2000, 
Zheng et al., 2008): 
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Fig. 4. Description of stair-like control strategy 
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and (5-2) is the fluid mechanical character of  1T  and 2T  and (5-3) is the constraints on 
outputs, input, and the increment of input respectively. For convenience, all the variables in 
the model are normalized to the scale 0%-100%. 
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zero, which means this objective is completely satisfied. 
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the output will reach the set point along it. Suppose the future reference trajectories of 
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Fig. 3. Description of exponential reference trajectory 
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With this disposal, the elements in the future sequence of control input  
)1pk(u)1k(u)k(u    are not independent as before, and the only unknown 

variable here in NMPC is the increment of instant control input )k(u , which can determine 
all the later control input. The dimension of unknown variable in NMPC now decreases 
from pi   to i remarkably, where i is only the dimension of control input, thus the 
computational load is no longer depend on the length of the predictive horizon like many 
other MPC (NMPC). So, it is very convenient to use long predictive horizon to obtain better 
control quality without additional computational load under this strategy. Because MPC 
(NMPC) will repeat the dynamic optimization at every sample time, and only 

)1k(u)k(u)k(u   will be carried out actually in MPC (NMPC), this strategy is surely 
efficient here. At last, in stair-like control strategy, it also supposes the future increment of 
control input will change in the same direction, which can prevent the frequent oscillation of 
control input’s increment, while this kind of oscillation is very harmful to the actuators of 
practical control plants. A visible description of this control strategy is shown in Fig. 4. 

 
4.4 Multi-objective NMPC based on GA 
Based on the proposed LMGA and PSMGA, the NMPC now can be established directly. 
Because NMPC is an online dynamic optimal algorithm, the following steps of NMPC will 
be executed repeatedly at every sample time to calculate the instant control input. 

Step 1: the LMGA (PSMGA) initialize individuals as different )k(u  (with 
population M) under the constraints in (5-3) with historic data )1k(u  . 

Step 2: create  M offspring individuals by evolutionary operations as mentioned in 
the end of Section 3.1. In control problem, we usually can use real number coding, linear 
crossover, stochastic mutation and the lethal penalty in GA for NMPC. Suppose 21 P,P  are 
parents and 1 2,O O  are offspring, linear crossover operator 10   and stochastic 
mutation operator   is Gaussian white noise with zero mean, the operations can be 
described briefly as bellow: 
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Step 3: predictions of future outputs ( )k|pk(ŷ)k|2k(ŷ)k|1k(ŷ iii   , 
i=1,2) are carried out by (5-1) and (5-2) on all the 2M individuals (M parents and M 
offspring), and their fitness will be calculated. In this control problem, the fitness function F  
of each objective is transformed from its objective function J  easily as follow, to meet the 
value demand of ]1,0[F , in which J  is described by (6) or (8): 
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To obtain the robustness to model mismatch, feedback compensation can be used in 
prediction, thus the latest predictive errors 2,1i),1k|k(ŷ)k(y)k(e iii   should be added 
into every predictive output pj1 ,2,11),k|jk(ŷi  . 

Step 4: the M individuals with higher fitness in the 2M individuals will be 
remained as new parents.  

 

Step 5: if the condition of ending evaluation is met, the best individual will be the 
increment of instant control input )k(u  of NMPC, which is taken into practice by the 
actuator. Else, the process should go back to Step 2, to resume dynamic optimization of 
NMPC based on LMGA (PSMGA).  

 
4.5 Simulations and analysis of lexicographic multi-objective NMPC 
First, the simulation about lexicographic Multi-objective NMPC will be carried out. Choose 
control objectives as: %]60%,40[)k(y:g 11  , %]40%,20[)k(y:g 22  , %30y:g 23  . Consider 
the physical character of the system, two different order of priorities can be chosen as: [A]: 

321 ggg  , [B]: 312 ggg  , and they will have the same initial state as %80)0(y1  , 
%0)0(y2   and %20)0(u  . Parameters of NMPC are 85.0,95.0   for both 1y  and 2y , 

and parameters of GA are 9.0 , while   is a zero mean Gaussian white noise, whose variance 
is 5. Since the feasible control input set is relatively small in our problem according to constraints 
(5-3), it is enough to have only 10 individuals in our simulation, and they will evolve for 20 
generations. While in process control practice, because the sample time is often has a time scale of 
minutes, even hours, we can have much more individuals and they can evolve much more 
generations to get a satisfactory solution. (In following figures, dash-dot lines denote 21 g,g , dot 
line denote 3g  and solid lines denote u,y,y 21  )  
Compare Fig. 5. and Fig. 6. with Fig. 7. and Fig. 8., although the steady states are the same in 
these figures, the dynamic responses of them are with much difference, and the objectives 
are satisfied as the order appointed before respectively under all the constraints. The reason 
of these results is the special initial state: )0(y1  is higher than 1g (the most important 
objective in order [A]: 321 ggg  ), while )0(y2  is lower than 2g  (the most important 
objective in order [B]: 312 ggg  ). So the most important objective of the two orders must 
be satisfied with different control input at first respectively. Thus the difference can be seen 
from the different decision-making of the choice in control input more obviously: in Fig. 5. 
and Fig. 6. the input stays at the lower limit of the constraints at first to meet 1g , while in 
Fig. 7. and Fig. 8. the input increase as fast as it can to satisfy 2g  at first. The lexicographic 
character of LMGA is verified by these comparisons. 
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Fig. 5. Control simulation: priority order [A] and p=1 
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control quality without additional computational load under this strategy. Because MPC 
(NMPC) will repeat the dynamic optimization at every sample time, and only 
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efficient here. At last, in stair-like control strategy, it also supposes the future increment of 
control input will change in the same direction, which can prevent the frequent oscillation of 
control input’s increment, while this kind of oscillation is very harmful to the actuators of 
practical control plants. A visible description of this control strategy is shown in Fig. 4. 
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Step 2: create  M offspring individuals by evolutionary operations as mentioned in 
the end of Section 3.1. In control problem, we usually can use real number coding, linear 
crossover, stochastic mutation and the lethal penalty in GA for NMPC. Suppose 21 P,P  are 
parents and 1 2,O O  are offspring, linear crossover operator 10   and stochastic 
mutation operator   is Gaussian white noise with zero mean, the operations can be 
described briefly as bellow: 
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Step 3: predictions of future outputs ( )k|pk(ŷ)k|2k(ŷ)k|1k(ŷ iii   , 
i=1,2) are carried out by (5-1) and (5-2) on all the 2M individuals (M parents and M 
offspring), and their fitness will be calculated. In this control problem, the fitness function F  
of each objective is transformed from its objective function J  easily as follow, to meet the 
value demand of ]1,0[F , in which J  is described by (6) or (8): 
 

 )1J(1F    (11) 
 

To obtain the robustness to model mismatch, feedback compensation can be used in 
prediction, thus the latest predictive errors 2,1i),1k|k(ŷ)k(y)k(e iii   should be added 
into every predictive output pj1 ,2,11),k|jk(ŷi  . 

Step 4: the M individuals with higher fitness in the 2M individuals will be 
remained as new parents.  

 

Step 5: if the condition of ending evaluation is met, the best individual will be the 
increment of instant control input )k(u  of NMPC, which is taken into practice by the 
actuator. Else, the process should go back to Step 2, to resume dynamic optimization of 
NMPC based on LMGA (PSMGA).  

 
4.5 Simulations and analysis of lexicographic multi-objective NMPC 
First, the simulation about lexicographic Multi-objective NMPC will be carried out. Choose 
control objectives as: %]60%,40[)k(y:g 11  , %]40%,20[)k(y:g 22  , %30y:g 23  . Consider 
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%0)0(y2   and %20)0(u  . Parameters of NMPC are 85.0,95.0   for both 1y  and 2y , 

and parameters of GA are 9.0 , while   is a zero mean Gaussian white noise, whose variance 
is 5. Since the feasible control input set is relatively small in our problem according to constraints 
(5-3), it is enough to have only 10 individuals in our simulation, and they will evolve for 20 
generations. While in process control practice, because the sample time is often has a time scale of 
minutes, even hours, we can have much more individuals and they can evolve much more 
generations to get a satisfactory solution. (In following figures, dash-dot lines denote 21 g,g , dot 
line denote 3g  and solid lines denote u,y,y 21  )  
Compare Fig. 5. and Fig. 6. with Fig. 7. and Fig. 8., although the steady states are the same in 
these figures, the dynamic responses of them are with much difference, and the objectives 
are satisfied as the order appointed before respectively under all the constraints. The reason 
of these results is the special initial state: )0(y1  is higher than 1g (the most important 
objective in order [A]: 321 ggg  ), while )0(y2  is lower than 2g  (the most important 
objective in order [B]: 312 ggg  ). So the most important objective of the two orders must 
be satisfied with different control input at first respectively. Thus the difference can be seen 
from the different decision-making of the choice in control input more obviously: in Fig. 5. 
and Fig. 6. the input stays at the lower limit of the constraints at first to meet 1g , while in 
Fig. 7. and Fig. 8. the input increase as fast as it can to satisfy 2g  at first. The lexicographic 
character of LMGA is verified by these comparisons. 
 

0 20 40 60 80 100
20%

40%

60%

80%

Y
1

0 20 40 60 80 100
0%

20%

40%

60%

Y
2

0 20 40 60 80 100
0%

50%

100%

Time (second)

U

 
Fig. 5. Control simulation: priority order [A] and p=1 
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Fig. 6. Control simulation: priority order [A] and p=20 
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Fig. 7. Control simulation: priority order [B] and p=1 
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Fig. 8. Control simulation: priority order [B] and p=20 
 
And the difference in control input with different predictive horizon can also be observed 
from above figures: the control input is much smoother when the predictive horizon 

 

becomes longer, while the output is similar with the control result of shorter predictive 
horizon. It is the common character of NMPC.  
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Fig. 9. Control simulation: when an objective cannot be satisfied 
 
In Fig. 9., 1g is changed as %]80%,60[y1  , while other objectives and parameters are kept 
the same as those of Fig. 6., so that 3g  can’t be satisfied at steady state. The result shows that 

1y  will stay at lower limit of 1g  to reach set-point of 3g  as close as possible, when 1g  must 
be satisfied first in order [A]. This result also shows the lexicographic character of LMGA 
obviously. 
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Fig. 10. Control simulation:  when model mismatch 
 
Finally, we would consider about of the model mismatch, here the simulative plant is 
changed, by increasing the flux coefficient 0.2232 to 0.25 in (5-1) and (5-2), while all the 
objectives, parameters and predictive model are kept the same as those of Fig. 6. The result 
in Fig. 10. shows the robustness to model mismatch of the controller with error 
compensation in prediction, as mentioned in Section 4.4. 
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Fig. 7. Control simulation: priority order [B] and p=1 

0 20 40 60 80 100
20%

40%

60%

80%

Y
1

0 20 40 60 80 100
0%

20%

40%

60%

Y
2

0 20 40 60 80 100
0%

50%

100%

Time (second)

U

 
Fig. 8. Control simulation: priority order [B] and p=20 
 
And the difference in control input with different predictive horizon can also be observed 
from above figures: the control input is much smoother when the predictive horizon 

 

becomes longer, while the output is similar with the control result of shorter predictive 
horizon. It is the common character of NMPC.  
 

0 20 40 60 80 100
40%

60%

80%

100%

Y
1

0 20 40 60 80 100
0%

20%

40%

60%
Y

2

0 20 40 60 80 100
0%

50%

100%

Time (second)

U

 
Fig. 9. Control simulation: when an objective cannot be satisfied 
 
In Fig. 9., 1g is changed as %]80%,60[y1  , while other objectives and parameters are kept 
the same as those of Fig. 6., so that 3g  can’t be satisfied at steady state. The result shows that 

1y  will stay at lower limit of 1g  to reach set-point of 3g  as close as possible, when 1g  must 
be satisfied first in order [A]. This result also shows the lexicographic character of LMGA 
obviously. 
 

0 20 40 60 80 100
20%

40%

60%

80%

Y
1

0 20 40 60 80 100
0%

20%

40%

60%

Y
2

0 20 40 60 80 100
0%

50%

100%

Time (second)

U

 
Fig. 10. Control simulation:  when model mismatch 
 
Finally, we would consider about of the model mismatch, here the simulative plant is 
changed, by increasing the flux coefficient 0.2232 to 0.25 in (5-1) and (5-2), while all the 
objectives, parameters and predictive model are kept the same as those of Fig. 6. The result 
in Fig. 10. shows the robustness to model mismatch of the controller with error 
compensation in prediction, as mentioned in Section 4.4. 
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4.6 Simulations and analysis of partially stratified multi-objective NMPC 
To obtain evident comparison to Section 4.5, simulations are carried out with the same 
parameters ( 85.0,95.0   for both 1y  and 2y , predictive horizon p=20 and the same 
GA parameters), and the only difference is an additional objective on 1y  in the form of a 
setpoint. 
The four control objectives now are %]60%,40[)k(y:g 11  , %]40%,20[)k(y:g 22  , 

%30y:g 23  ,  %50y:g 14  , and then choose the new different order of priorities as: [A]: 

4321 gggg  , [B]: 4312 gggg  , if we still use lexicographic multi-objective NMPC 
as Section 4.5, the control result in Fig. 11. and Fig. 12. is completely the same as Fig. 6. and 
Fig. 8., when there are only three objectives 321 ggg ，， . That means, the additional 
objective 4g  (setpoint of 1y ) could not be considered by the controller in both situations 
above, because the solution of 3g  (setpoint of 2y ) is already a single-point set of u . (In 
following figures, dash-dot lines denote 21 g,g , dot line denote 43 g,g  and solid lines denote 

u,y,y 21  ) 
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Fig. 11. Control simulation: priority order [A] of four objectives, NMPC based on LMGA  
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Fig. 12. Control simulation: priority order [B] of four objectives, NMPC based on LMGA 

 

In another word, in lexicographic multi-objective NMPC based on LMGA, if optimization of 
an objective uses out all the degree of freedom on control inputs (often an objective in the 
form of setpoint), or an objective cannot be completely satisfied (often an objective in the 
form of extremum, such as minimization of cost that can not be zero), the objectives with 
lower priorities will not be take into account at all. But this is not rational in most practice 
cases, for complex process industrial manufacturing, there are often many objectives in the 
form of setpoint in a multi-objective control problem, if we handle them with the 
lexicographic method, usually, we can only satisfy only one of them. Take the proposed 
two-tank system as example, 3g  and 4g  are both in the form of setpoint, seeing about the 
steady-state control result in Fig. 13. and Fig. 14., if we want to satisfy %30y:g 23  , then 

1y  will stay at 51.99%, else if we want to satisfy %50y:g 14  , then 2y  will stay at 28.92%, 
the errors of the dissatisfied output are both more than 1%.  
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Fig. 13. Steady-state control result when 3g  is completely satisfied 
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Fig. 14. Steady-state control result when 4g  is completely satisfied 
 
In the above analysis, the mentioned disadvantage comes from the absolute, rigid 
management of lexicographic method, if we don’t develop it, NMPC based on LMGA can 
only be used in very few control practical problem. Actually, in industrial practice, 
objectives in the form of setpoint or extremum are often with lower importance, they are 
usually objectives for higher demand on product quality, manufacturing cost and so on, 
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Fig. 14. Steady-state control result when 4g  is completely satisfied 
 
In the above analysis, the mentioned disadvantage comes from the absolute, rigid 
management of lexicographic method, if we don’t develop it, NMPC based on LMGA can 
only be used in very few control practical problem. Actually, in industrial practice, 
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which is much less important than the objectives about safety and other basic 
manufacturing demand. Especially, for objectives in the form of setpoint, under many kinds 
of disturbances, it always can not be accurately satisfied while it is also not necessary to 
satisfy them accurately. 
A traditional way to improve it is to add slack variables into objectives in the form of setpoint or 
extremum. Setpoint may be changed into a narrow range around it, and instead of an extremum, 
the satisfaction of a certain threshold value will be required. For example, in the two-tank 
system’s control problem, setpoint %30y:g 23   could be redefined as %1%30y:g 23  . 
Another way is modified LMGA into PSMGA as mentioned in Section 3, because sometimes 
there is no need to divide these objectives with into different priorities respectively, and they are 
indeed parallel. Take order [A] for example, we now can reform the multi-objective control 
problem of the two-tank system as: 443321321 ggggGGG  . Choose weight 
coefficients as 1,30 43  and other parameters the same as those of Fig. 6., while NMPC 
base on PSMGA has the similar dynamic state control result to that of NMPC based on LMGA, 
the steady state control result is evidently developed as in Fig. 15. and Fig. 16.,  1y  stays at 
50.70% and 2y  stays at 29.27%, both of them are in the 0.8% neighborhood of setpoint in 43 g,g . 
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Fig. 15. NMPC based on PSMGA: priority order [A] 
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Fig. 16. Steady-state control result of NMPC base on PSMGA 

 

4.7 Some discussions 
In the above simulative examples, there is only one control input, but for many practical 
systems, coordinated control of multi-input is also a serious problem. The brief discussions 
on multi-input proposed NMPC can be achieved if we still use priorities for inputs. If all the 
inputs have the same priority, in another word, it is no obvious difference among them in 
economic cost or other factors, we can just increase the dimension of GA’s individual. But, 
in many cases, the inputs actually also have different priorities: for certain output, different 
input often has different gain on it with different economic cost. The cheap ones with large 
gain are always preferred by manufacturers. In this case, we can form anther priority list, 
and then inputs will be used to solve the control problem one by one, using single input 
NMPC as the example in Section 4, that can divide an MIMO control problem into some 
SIMO control problems. 
We should point out that, the two kinds of stratified structures proposed in this paper are 
basic structures for multi-objective controllers, though we use NMPC to realize them in this 
chapter, they are independent with control algorithms indeed. For certain multi-objective 
control problem, other proper controllers and computational method can be used. 
Another point must be mentioned is that, NMPC proposed in this paper is based on LMGA 
and PSMGA, because it is hard for most NMPC to get an online analytic solution. But the 
LMGA and PSMGA are also suitable for other control algorithms, the only task is to modify 
the fitness function, by introducing the information from the control algorithm which will 
be used. 
At last, all the above simulations could been done in 40-200ms by PC (with 2.7 GHz CPU, 
2.0G Memory and programmed by Matlab 6.5), which is much less than the sample time of 
the system (1 second), that means controllers proposed in this chapter are actually 
applicable online. 

 
5. Conclusion 

In this chapter, to avoid the disadvantages of weight coefficients in multi-objective dynamic 
optimization, lexicographic (completely stratified) and partially stratified frameworks of 
multi-objective controller are proposed. The lexicographic framework is absolutely priority-
driven and the partially stratified framework is a modification of it, they both can solve the 
multi-objective control problem with the concept of priority for objective’s relative 
importance, while the latter one is more flexible, without the rigidity of lexicographic 
method. 
Then, nonlinear model predictive controllers based on these frameworks are realized based 
on the modified genetic algorithm, in which a series of dynamic coefficients is introduced to 
construct the combined fitness function. With stair–like control strategy, the online 
computational load is reduced and the performance is developed.  The simulative study of a 
two-tank system indicates the efficiency of the proposed controllers and some deeper 
discussions are given briefly at last. 
The work of this chapter is supported by Fund for Excellent Post Doctoral Fellows (K. C. 
Wong Education Foundation, Hong Kong, China and Chinese Academy of Sciences), 
Science and Technological Fund of Anhui Province for Outstanding Youth (08040106910), 
and the authors also thank for the constructive advices from Dr. De-Feng HE, College of 
Information Engineering, Zhejiang University of Technology, China. 
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on the modified genetic algorithm, in which a series of dynamic coefficients is introduced to 
construct the combined fitness function. With stair–like control strategy, the online 
computational load is reduced and the performance is developed.  The simulative study of a 
two-tank system indicates the efficiency of the proposed controllers and some deeper 
discussions are given briefly at last. 
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1. Introduction

Rack feeders represent the commonly used handling systems for the automated operation of
high-bay rackings. To further increase the handling capacity by shorter transport times, con-
trol measures are necessary for the reduction of excited structural oscillations, see also Asche-
mann & Ritzke (2009). One possible approach is given by flatness-based feedforward control,
where the desired control inputs are determined by dynamic system inversion using the de-
sired trajectories for the flat outputs as in Bachmayer et al. (2008) and M. Bachmayer & Ulbrich
(2008). However, both publications consider only a constant mass position in vertical direc-
tion on an elastic beam without any feedback control. A variational approach is presented in
Kostin & Saurin (2006) to compute an optimal feedforward control for an elastic beam. Unfor-
tunately, feedforward control alone is not sufficient to guarantee small tracking errors when
model uncertainty is present or disturbances act on the system. For this reason in this con-
tribution a model predictive control (MPC) design is presented for fast trajectory control. In
general, at model predictive control the optimal input vector is mostly calculated by minimis-
ing a quadratic cost function as, e.g., in Wang & Boyd (2010) or Magni & Scattolini (2004). In
contrast, the here considered MPC approach aims at reducing future state errors, see Jung &
Wen (2004), and allows for a relatively small computational effort as required in a real-time
implementation. Hence, the proposed MPC algorithm is well suited for systems with fast
dynamics, e.g., a high-speed linear axis with pneumatic muscles as presented in Schindele &
Aschemann (2008) or high-speed rack feeders as in the given case. A further attractive char-
acteristic of this MPC approach is its applicability to linear as well as nonlinear systems.
For the experimental investigation of modern control approaches to active oscillation damp-
ing as well as tracking control, a test rig of a high-speed rack feeder has been build up at the
Chair of Mechatronics at the University of Rostock, see Figure 1. The experimental set-up
consists of a carriage driven by an electric DC servo motor via a toothed belt, on which an
elastic beam as the vertical supporting structure is mounted. On this beam structure, a cage
with variable load mass is guided relocatably in vertical direction. This cage with the coor-
dinate yK(t) in horizontal direction and xK(t) in vertical direction represents the tool center
point (TCP) of the rack feeder that should track desired trajectories as accurate as possible.
The movable cage is driven by a tooth belt and an electric DC servo motor as well. The angles
of the actuators are measured by internal angular transducers, respectively. Additionally, the
horizontal position of the carriage is detected by a magnetostrictive transducer. Both axes are
operated with a fast underlying velocity control on the current converter. Consequently, the
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Fig. 1. Experimental set-up of the high-speed rack feeder (left) and the corresponding elastic
multibody model (right).

corresponding velocities deal as new control input, and the implementational effort is tremen-
dously reduced as compared to the commonly used force or torque input, like in Staudecker
et al. (2008), where passivity techniques were employed for feedback control of a similar set-
up. Two strain gauges are used to determine the bending deformation of the elastic beam.
Basis of the control design for the rack feeder is a planar elastic multibody system, where
for the mathematical description of the bending deflection of the elastic beam a Ritz ansatz
is introduced, covering for instance the first bending mode. The decentralised feedforward
and feedback control design for both axes is performed employing a linearised state space
representation, respectively. Given couplings between both axes are taken into account by the
gain-scheduling technique with the normalised vertical cage position as scheduling param-
eter, see also Aschemann & Ritzke (2010). This leads to an adaptation of the whole control
structure for the horizontal axis. The capability of the proposed control concept is shown by
experimental results from the test set-up with regard to tracking behaviour and damping of
bending oscillations. Especially the artificial damping introduced by the closed control loop
represents a main improvement. The maximum velocity of the TCP during the tracking ex-
periments is approx. 2.5 m/s.

2. Control-oriented modelling of the mechatronic system

Elastic multibody models have proven advantageously for the control-oriented modelling of
flexible mechanical systems. For the feedforward and feedback control design of the rack
feeder a multibody model with three rigid bodies - the carriage (mass mS), the cage movable
on the beam structure (mass mK , mass moment of inertia θK), and the end mass at the tip of
the beam (mass mE) - and an elastic Bernoulli beam (density ρ, cross sectional area A, Youngs
modulus E, second moment of area IzB, and length �) is chosen. The varying vertical position

xK(t) of the cage on the beam is denoted by the dimensionless system parameter

κ (t) =
xκ (t)

l
. (1)

The elastic degrees of freedom of the beam concerning the bending deflection can be described
by the following Ritz ansatz

v (x, t) = ¯̄v1 (x) v1 (t) =
[

3
2

( x
l

)2
− 1

2

( x
l

)3
]

v1 (t) , (2)

which takes into account only the first bending mode. The vector of generalised coordinates
results in

q (t) =
[

yS (t)
v1 (t)

]
. (3)

The nonlinear equations of motion can be derived either by Lagrange’s equations or, advan-
tageously, by the Newton-Euler approach, cf. Shabana (2005). After a linearisation for small
bending deflections, the equations of motion can be stated in M-D-K form

Mq̈ (t) +Dq̇ (t) +Kq (t) = h · [FSM (t)− FSR (ẏS (t))] . (4)

The symmetric mass matrix is given by

M =

[
mS + ρAl + mK + mE

3
8 ρAl + mKκ2

2 [3 − κ] + mE
3
8 ρAl + mKκ2

2 [3 − κ] + mE m22

]
, (5)

with m22 = 33
140 ρAl + 6ρIzB

5l + mKκ2

4 [3 − κ]2 + 9θKκ2

l2

[
1 − κ + κ2

4

]
+ mE. The damping matrix,

which is specified with stiffness-proportional damping properties, and the stiffness matrix
become

D =

[
0 0
0 3kd EIzB

l3

]
, (6)

K =

[
0 0

0 3EIzB
l3 − 3

8 ρAg − 3mK gκ3

l

[
1 + 3κ2

20 − 3κ
4

]
− 6mE g

5l

]
. (7)

The input vector of the generalised forces, which accounts for the control input as well as the
disturbance input, reads

h =
[

1 0
]T . (8)

The electric drive for the carriage is operated with a fast underlying velocity control on the
current converter. The resulting dynamic behaviour is characterised by a first-order lag system
with a time constant T1y

T1yÿS (t) + ẏS (t) = vS (t) . (9)

This differential equation replaces now the equation of motion for the carriage in the mechan-
ical system model, which leads to a modified mass matrix as well as a modified damping
matrix

My =

[
T1y 0

3
8 ρAl + mKκ2

2 [3 − κ] + mE m22

]
, (10)
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Fig. 1. Experimental set-up of the high-speed rack feeder (left) and the corresponding elastic
multibody model (right).

corresponding velocities deal as new control input, and the implementational effort is tremen-
dously reduced as compared to the commonly used force or torque input, like in Staudecker
et al. (2008), where passivity techniques were employed for feedback control of a similar set-
up. Two strain gauges are used to determine the bending deformation of the elastic beam.
Basis of the control design for the rack feeder is a planar elastic multibody system, where
for the mathematical description of the bending deflection of the elastic beam a Ritz ansatz
is introduced, covering for instance the first bending mode. The decentralised feedforward
and feedback control design for both axes is performed employing a linearised state space
representation, respectively. Given couplings between both axes are taken into account by the
gain-scheduling technique with the normalised vertical cage position as scheduling param-
eter, see also Aschemann & Ritzke (2010). This leads to an adaptation of the whole control
structure for the horizontal axis. The capability of the proposed control concept is shown by
experimental results from the test set-up with regard to tracking behaviour and damping of
bending oscillations. Especially the artificial damping introduced by the closed control loop
represents a main improvement. The maximum velocity of the TCP during the tracking ex-
periments is approx. 2.5 m/s.

2. Control-oriented modelling of the mechatronic system

Elastic multibody models have proven advantageously for the control-oriented modelling of
flexible mechanical systems. For the feedforward and feedback control design of the rack
feeder a multibody model with three rigid bodies - the carriage (mass mS), the cage movable
on the beam structure (mass mK , mass moment of inertia θK), and the end mass at the tip of
the beam (mass mE) - and an elastic Bernoulli beam (density ρ, cross sectional area A, Youngs
modulus E, second moment of area IzB, and length �) is chosen. The varying vertical position

xK(t) of the cage on the beam is denoted by the dimensionless system parameter
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which takes into account only the first bending mode. The vector of generalised coordinates
results in

q (t) =
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yS (t)
v1 (t)

]
. (3)

The nonlinear equations of motion can be derived either by Lagrange’s equations or, advan-
tageously, by the Newton-Euler approach, cf. Shabana (2005). After a linearisation for small
bending deflections, the equations of motion can be stated in M-D-K form

Mq̈ (t) +Dq̇ (t) +Kq (t) = h · [FSM (t)− FSR (ẏS (t))] . (4)
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The input vector of the generalised forces, which accounts for the control input as well as the
disturbance input, reads

h =
[

1 0
]T . (8)

The electric drive for the carriage is operated with a fast underlying velocity control on the
current converter. The resulting dynamic behaviour is characterised by a first-order lag system
with a time constant T1y

T1yÿS (t) + ẏS (t) = vS (t) . (9)

This differential equation replaces now the equation of motion for the carriage in the mechan-
ical system model, which leads to a modified mass matrix as well as a modified damping
matrix

My =

[
T1y 0

3
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Dy =

[
1 0
0 3kd EIzB

l3

]
. (11)

The stiffness matrix K = Ky and the input vector for the generalised forces h = hy, however,
remain unchanged. Hence, the equations of motion are given by

q̈ = −M−1
y Kyq −M−1

y Dyq̇ +M−1
y hyvS . (12)

For control design, the system representation is reformulated in state space form

ẋy =

[
q̇
q̈

]
=

[
0 I

−M−1
y Ky −M−1

y Dy

]

︸ ︷︷ ︸
Ay

[
q
q̇

]

︸ ︷︷ ︸
xy

+

[
0

M−1
y hy

]

︸ ︷︷ ︸
by

vS︸︷︷︸
uy

. (13)

The design model for the vertical movement of the cage can be directly stated in state space
representation. Here, an underlying velocity control is employed on the current converter,
which is also described by a first-order lag system

T1x ẍK (t) + ẋK (t) = vK (t) . (14)

The corresponding state space description follows immediately in the form

ẋx =

[
ẋK
ẍK

]
=

[
0 1
0 − 1

T1x

]

︸ ︷︷ ︸
Ax

[
xK
ẋK

]

︸ ︷︷ ︸
xx

+

[
0
1

T1x

]

︸ ︷︷ ︸
bx

vK︸︷︷︸
ux

. (15)

Whereas the state space respresentation for the horizontal y-axis depends on the varying sys-
tem parameter κ(t), the description of the x-axis is invariant. A gain-scheduling, hence, is
necessary only for the horizontal axis in y-direction.

3. Decentralised control design

As for control, a decentralised approach is followed, at which the coupling of the vertical
cage motion with the horizontal axis is taken into account by gain-scheduling techniques. For
the control of the cage position xK(t) a simple proportional feedback in combination with
feedforward control, which is based on the inverse transfer function of this axis, is sufficient

vK (t) = KR (xKd (t)− xK (t)) + ẋKd (t) + T1x ẍKd (t) . (16)

For this purpose, the desired trajectory xKd(t) and its first two time derivatives are available
from trajectory planning. The design of the state feedback for the horizontal motion is carried
out by the MPC approach, which is explained in the following chapter.
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ÿ Kd

y Kd
y4 Kd

] Inverse
Kinematics

[ v1

v̇ 1
]

Real
Differentiation

Real
Differentiation

Feedforward
Control

Proportional
Feedback

xK t 

[
y Sd
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4. Model Predictive Control

The main idea of the control approach consists in a minimisation of a future tracking error
in terms of the predicted state vector based on the actual state and the desired state vector
resulting from trajectory planning, see Lizarralde et al. (1999), Jung & Wen (2004). The min-
imisation is achieved by repeated approximate numerical optimisation in each time step, in
the given case using the Newton-Raphson technique. The optimisation is initialised in each
time step with the optimisation result of the preceding time step in form of the input vector.
The MPC-algorithm is based on the following discrete-time state space representation

xk+1 = Axk + buk , (17)

yk = cTxk , (18)

with the state vector xk ∈ Rn, the control input uk ∈ R and the output vector yk ∈ R.
The constant M specifies the prediction horizon TP as a multiple of the sampling time ts, i.e.
TP = M · ts. The predicted input vector at time k becomes

uk,M =
[
u(k)

1 , ..., u(k)
M

]T
, (19)
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The stiffness matrix K = Ky and the input vector for the generalised forces h = hy, however,
remain unchanged. Hence, the equations of motion are given by
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The design model for the vertical movement of the cage can be directly stated in state space
representation. Here, an underlying velocity control is employed on the current converter,
which is also described by a first-order lag system

T1x ẍK (t) + ẋK (t) = vK (t) . (14)

The corresponding state space description follows immediately in the form

ẋx =

[
ẋK
ẍK
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Whereas the state space respresentation for the horizontal y-axis depends on the varying sys-
tem parameter κ(t), the description of the x-axis is invariant. A gain-scheduling, hence, is
necessary only for the horizontal axis in y-direction.

3. Decentralised control design

As for control, a decentralised approach is followed, at which the coupling of the vertical
cage motion with the horizontal axis is taken into account by gain-scheduling techniques. For
the control of the cage position xK(t) a simple proportional feedback in combination with
feedforward control, which is based on the inverse transfer function of this axis, is sufficient

vK (t) = KR (xKd (t)− xK (t)) + ẋKd (t) + T1x ẍKd (t) . (16)

For this purpose, the desired trajectory xKd(t) and its first two time derivatives are available
from trajectory planning. The design of the state feedback for the horizontal motion is carried
out by the MPC approach, which is explained in the following chapter.
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ẍ Kd

]
Normalisation

d

Fig. 2. Implementation of the control structure.

4. Model Predictive Control

The main idea of the control approach consists in a minimisation of a future tracking error
in terms of the predicted state vector based on the actual state and the desired state vector
resulting from trajectory planning, see Lizarralde et al. (1999), Jung & Wen (2004). The min-
imisation is achieved by repeated approximate numerical optimisation in each time step, in
the given case using the Newton-Raphson technique. The optimisation is initialised in each
time step with the optimisation result of the preceding time step in form of the input vector.
The MPC-algorithm is based on the following discrete-time state space representation

xk+1 = Axk + buk , (17)

yk = cTxk , (18)

with the state vector xk ∈ Rn, the control input uk ∈ R and the output vector yk ∈ R.
The constant M specifies the prediction horizon TP as a multiple of the sampling time ts, i.e.
TP = M · ts. The predicted input vector at time k becomes

uk,M =
[
u(k)

1 , ..., u(k)
M

]T
, (19)
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with uk,M ∈ RM. The predicted state vector at the end of the prediction horizon φM(xk,uk,M)
is obtained by repeated substitution of k by k + 1 in the discrete-time state equation (17)

xk+2 = Axk+1 + buk+1 = A2xk +Abuk + buk+1

...

xk+M = AMxk +AM−1buk +AM−2buk−1 + . . . + buk+M−1

= φM(xk,uk,M) .

(20)

The difference of φM(xk,uk,M) and the desired state vector xd yields the final control error

eM,k = φM(xk,uk,M)− xd , (21)

i.e. to the control error at the end of the prediction horizon. The cost function to be minimised
follows as

JMPC =
1
2
· eT

M,keM,k , (22)

and, hence, the necessary condition for an extremum can be stated as

∂JMPC
∂eM,k

= eM,k
!
= 0 . (23)

A Taylor-series expansion of (23) at uk,M in the neighbourhood of the optimal solution leads
to the following system of equations

0 = eM,k +
∂φM

∂uk,M
∆uk,M + T.h.O.. (24)

The vector ∆uk,M denotes the difference which has to be added to the input vector uk,M to
obtain the optimal solution. The n equations (24) represent an under-determined set of equa-
tions with m · M unknowns having an infinite number of solutions. An unique solution for
∆uk,M can be determined by solving the following L2-optimisation problem with (24) as side
condition

J =
1
2
· ∆uT

k,M∆uk,M + λT
(
eM,k +

∂φM
∂uk,M

∆uk,M

)
. (25)

Consequently, the necessary conditions can be stated as

∂J
∂∆uk,M

!
= 0 = ∆uk,M +

(
∂φM

∂uk,M

)T
λ,

∂J
∂λ

!
= 0 = eM,k +

∂φM
∂uk,M

∆uk,M,
(26)

which results in eM,k

eM,k =
∂φM

∂uk,M

(
∂φM
uk,M

)T

︸ ︷︷ ︸
S(φM ,uk,M)

λ . (27)

If the matrix S
(
φM,uk,M

)
is invertible, the vector λ can be calculated as follows

λ = S−1 (φM,uk,M
)
eM,k . (28)

An almost singular matrix S
(
φM,uk,M

)
can be treated by a modification of (28)

λ =
[
µI +S

(
φM,uk,M

)]−1
eM,k , (29)

where I denotes the unity matrix. The regularisation parameter µ > 0 in (29) may be chosen
constant or may be calculated by a sophisticated algorithm. The latter solution improves
the convergence of the optimisation but increases, however, the computational complexity.
Solving (26) for ∆uk,M and inserting λ according to (28) or (29), directly yields the L2-optimal
solution

∆uk,M = −
(

∂φM
∂uk,M

)T
S−1 (φM,uk,M

)
eM,k = −

(
∂φM

∂uk,M

)†
eM,k . (30)

Here,
(

∂φM
∂uk,M

)†
denotes the Moore-Penrose pseudo inverse of ∂φM

∂uk,M
. The overall MPC-

algorithm can be described as follows:
Choice of the initial input vector u0,M at time k = 0, e.g. u0,M = 0, and repetition of steps a) -
c) at each sampling time k ≥ 0:

a) Calculation of an improved input vector vk,M according to

vk,M = uk,M − ηk

(
∂φM

∂uk,M

)†
eM,k . (31)

The step width ηk can be determined with, e.g., the Armijo-rule.

b) For the calculation of uk+1,M the elements of the vector vk,M have to be shifted by one
element and the steady-state input ud corresponding to the final state has to be inserted
at the end

uk+1,M =

[
0((M−1)×1)

1

]
ud +

[
0((M−1)×1) I(M−1)

0 0(1×(M−1))

]
vk,M. (32)

In general, the steady-state control input ud can be computed from

xd = Axd + bud. (33)

Alternatively, the desired input vector ud can be calculated by an inverse system model.
If the system is differentially flat, see Fliess et al. (1995) the desired input ud can be cal-
culated exactly by the flat system output and a finite number of its time derivative. For
non-flat outputs -as in the given case- the approach presented in chapter 4.4 is useful.

c) The first element of the improved input vector vk,M is applied as control input at time k

uk =
[

1 0(1×(M−1))
]
vk,M . (34)

In the proposed algorithm only one iteration is performed per time step. A similar approach
using several iteration steps is described in Weidemann et al. (2004). An improvement of
the trajectory tracking behaviour can be achieved if an input vector resulting from an inverse
system model is used as initial vector for the subsequent optimisation step instead of the last
input vector. The slightly modified algorithm can be stated as follows
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with uk,M ∈ RM. The predicted state vector at the end of the prediction horizon φM(xk,uk,M)
is obtained by repeated substitution of k by k + 1 in the discrete-time state equation (17)

xk+2 = Axk+1 + buk+1 = A2xk +Abuk + buk+1

...

xk+M = AMxk +AM−1buk +AM−2buk−1 + . . . + buk+M−1

= φM(xk,uk,M) .

(20)

The difference of φM(xk,uk,M) and the desired state vector xd yields the final control error

eM,k = φM(xk,uk,M)− xd , (21)

i.e. to the control error at the end of the prediction horizon. The cost function to be minimised
follows as

JMPC =
1
2
· eT

M,keM,k , (22)

and, hence, the necessary condition for an extremum can be stated as

∂JMPC
∂eM,k

= eM,k
!
= 0 . (23)

A Taylor-series expansion of (23) at uk,M in the neighbourhood of the optimal solution leads
to the following system of equations

0 = eM,k +
∂φM

∂uk,M
∆uk,M + T.h.O.. (24)

The vector ∆uk,M denotes the difference which has to be added to the input vector uk,M to
obtain the optimal solution. The n equations (24) represent an under-determined set of equa-
tions with m · M unknowns having an infinite number of solutions. An unique solution for
∆uk,M can be determined by solving the following L2-optimisation problem with (24) as side
condition

J =
1
2
· ∆uT

k,M∆uk,M + λT
(
eM,k +

∂φM
∂uk,M

∆uk,M

)
. (25)

Consequently, the necessary conditions can be stated as

∂J
∂∆uk,M

!
= 0 = ∆uk,M +

(
∂φM

∂uk,M

)T
λ,

∂J
∂λ

!
= 0 = eM,k +

∂φM
∂uk,M

∆uk,M,
(26)

which results in eM,k

eM,k =
∂φM

∂uk,M

(
∂φM
uk,M

)T

︸ ︷︷ ︸
S(φM ,uk,M)

λ . (27)

If the matrix S
(
φM,uk,M

)
is invertible, the vector λ can be calculated as follows

λ = S−1 (φM,uk,M
)
eM,k . (28)

An almost singular matrix S
(
φM,uk,M

)
can be treated by a modification of (28)

λ =
[
µI +S

(
φM,uk,M

)]−1
eM,k , (29)

where I denotes the unity matrix. The regularisation parameter µ > 0 in (29) may be chosen
constant or may be calculated by a sophisticated algorithm. The latter solution improves
the convergence of the optimisation but increases, however, the computational complexity.
Solving (26) for ∆uk,M and inserting λ according to (28) or (29), directly yields the L2-optimal
solution

∆uk,M = −
(

∂φM
∂uk,M

)T
S−1 (φM,uk,M

)
eM,k = −

(
∂φM

∂uk,M

)†
eM,k . (30)

Here,
(

∂φM
∂uk,M

)†
denotes the Moore-Penrose pseudo inverse of ∂φM

∂uk,M
. The overall MPC-

algorithm can be described as follows:
Choice of the initial input vector u0,M at time k = 0, e.g. u0,M = 0, and repetition of steps a) -
c) at each sampling time k ≥ 0:

a) Calculation of an improved input vector vk,M according to

vk,M = uk,M − ηk

(
∂φM

∂uk,M

)†
eM,k . (31)

The step width ηk can be determined with, e.g., the Armijo-rule.

b) For the calculation of uk+1,M the elements of the vector vk,M have to be shifted by one
element and the steady-state input ud corresponding to the final state has to be inserted
at the end

uk+1,M =

[
0((M−1)×1)

1

]
ud +

[
0((M−1)×1) I(M−1)

0 0(1×(M−1))

]
vk,M. (32)

In general, the steady-state control input ud can be computed from

xd = Axd + bud. (33)

Alternatively, the desired input vector ud can be calculated by an inverse system model.
If the system is differentially flat, see Fliess et al. (1995) the desired input ud can be cal-
culated exactly by the flat system output and a finite number of its time derivative. For
non-flat outputs -as in the given case- the approach presented in chapter 4.4 is useful.

c) The first element of the improved input vector vk,M is applied as control input at time k

uk =
[

1 0(1×(M−1))
]
vk,M . (34)

In the proposed algorithm only one iteration is performed per time step. A similar approach
using several iteration steps is described in Weidemann et al. (2004). An improvement of
the trajectory tracking behaviour can be achieved if an input vector resulting from an inverse
system model is used as initial vector for the subsequent optimisation step instead of the last
input vector. The slightly modified algorithm can be stated as follows
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a) Calculation of the ideal input vector u(d)
k,M by evaluating an inverse system model with

the specified reference trajectory as well as a certain number β ∈ N of its time deriva-
tives

u
(d)
k,M = u

(d)
k,M

(
yd, ẏd, ...,

(β)
y d

)
. (35)

b) Calculation of the improved input vector vk,M based on the equation

vk,M = u
(d)
k,M − ηk

(
∂φM

∂uk,M

)†
eM,k . (36)

c) Application of the first element of vk,M to the process

uk =
[

1 0(1×(M−1))
]
vk,M . (37)

If the reference trajectory is known in advance, the according reference input vector u(d)
k,M can

be computed offline. Consequently, the online computational time remains unaffected.

4.1 Numerical calculations
The analytical computation of the Jacobian ∂φM

∂uk,M
becomes increasingly complex for larger

values of M. Therefore, a numerical approach is preferred taking advantage of the chain rule
with i = 0, ..., M − 1

∂φM

∂u
(k)
i+1

=
∂φM

∂xk+M−1
· ∂xk+M−1

∂xk+M−2
· . . . · ∂xk+i+2

∂xk+i+1
· ∂xk+i+1

∂u(k)
i+1

. (38)

In this way, the Jacobian can be computed as follows

∂φM
∂uk,M

= [AM−1b,AM−2b, ...,Ab, b] . (39)

For the inversion of the symmetric and positive definite matrix S
(
φM,uk,M

)
=

∂φM
∂uk,M

(
∂φM

∂uk,M

)T
the Cholesky-decomposition has proved advantageous in terms of compu-

tational effort.

4.2 Choice of the MPC design parameters
The most important MPC design parameter is the prediction horizon TP, which is given as the
product of the sampling time ts and the constant value M. Large values of TP lead to a slow
and smooth transient behaviour and result in a robust and stable control loop. For fast trajec-
tory tracking, however, a smaller value TP is desirable concerning a small tracking error. The
choice of the sampling time ts is crucial as well: a small sampling time is necessary regard-
ing both discretisation error and stability; however, the MPC-algorithm has to be evaluated
in real-time within the sampling inverval. Furthermore, the smaller ts, the larger becomes M
for a given prediction horizon, which in turn increases the computational complexity of the
optimisation step. Consequently, a system-specific trade-off has to be made for the choice of
M and ts. This paper follows the moving horizon approach with a constant prediction hori-
zon and, hence, a constant dimension m · M of the corresponding optimisation problem in
constrast to the shrinking horizon approach according to Weidemann et al. (2004).

TP
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φM(x  , u     )0 0,M
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x

tt s

φM(x  , u     )1 1,M

x1
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xd,0

xd,1

Fig. 3. Design parameters.

4.3 Input constraints
One major advantage of predictive control is the possibility to easily account for input con-
straints, which are present in almost all control applications. To this end, the cost function can
be extended with a corresponding term

h(u(k)
j ) =




0 umin ≤ u(k)
j ≤ umax

g1(u
(k)
j ) for u(k)

j > umax

g2(u
(k)
j ) u(k)

j < umin

, (40)

which has to be evaluated componentwise, i.e. for each input variable at each sampling time.
Thus, the contribution of the additional input constraints depending on uk,M is given by

z(uk,M) =
M

∑
j=1

h(u(k)
j ). (41)

Instead of eM,k, the extended vector
[
eT

M,k, z
]T

has to be minimised in the MPC-algorithm.

4.4 MPC of the horizontal cage position
The state space representation for the cage position control in y-direction design is given by
(13). The discrete-time representation of the continous-time system is obtained by Euler dis-
cretisation

xy,k+1 =
(
I + ts ·Ay (κ)

)
xy,k + ts · by (κ) uy,k. (42)
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a) Calculation of the ideal input vector u(d)
k,M by evaluating an inverse system model with

the specified reference trajectory as well as a certain number β ∈ N of its time deriva-
tives

u
(d)
k,M = u

(d)
k,M

(
yd, ẏd, ...,

(β)
y d

)
. (35)

b) Calculation of the improved input vector vk,M based on the equation

vk,M = u
(d)
k,M − ηk

(
∂φM

∂uk,M

)†
eM,k . (36)

c) Application of the first element of vk,M to the process

uk =
[

1 0(1×(M−1))
]
vk,M . (37)

If the reference trajectory is known in advance, the according reference input vector u(d)
k,M can

be computed offline. Consequently, the online computational time remains unaffected.

4.1 Numerical calculations
The analytical computation of the Jacobian ∂φM

∂uk,M
becomes increasingly complex for larger

values of M. Therefore, a numerical approach is preferred taking advantage of the chain rule
with i = 0, ..., M − 1

∂φM

∂u
(k)
i+1

=
∂φM

∂xk+M−1
· ∂xk+M−1

∂xk+M−2
· . . . · ∂xk+i+2

∂xk+i+1
· ∂xk+i+1

∂u(k)
i+1

. (38)

In this way, the Jacobian can be computed as follows

∂φM
∂uk,M

= [AM−1b,AM−2b, ...,Ab, b] . (39)

For the inversion of the symmetric and positive definite matrix S
(
φM,uk,M

)
=

∂φM
∂uk,M

(
∂φM

∂uk,M

)T
the Cholesky-decomposition has proved advantageous in terms of compu-

tational effort.

4.2 Choice of the MPC design parameters
The most important MPC design parameter is the prediction horizon TP, which is given as the
product of the sampling time ts and the constant value M. Large values of TP lead to a slow
and smooth transient behaviour and result in a robust and stable control loop. For fast trajec-
tory tracking, however, a smaller value TP is desirable concerning a small tracking error. The
choice of the sampling time ts is crucial as well: a small sampling time is necessary regard-
ing both discretisation error and stability; however, the MPC-algorithm has to be evaluated
in real-time within the sampling inverval. Furthermore, the smaller ts, the larger becomes M
for a given prediction horizon, which in turn increases the computational complexity of the
optimisation step. Consequently, a system-specific trade-off has to be made for the choice of
M and ts. This paper follows the moving horizon approach with a constant prediction hori-
zon and, hence, a constant dimension m · M of the corresponding optimisation problem in
constrast to the shrinking horizon approach according to Weidemann et al. (2004).
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4.3 Input constraints
One major advantage of predictive control is the possibility to easily account for input con-
straints, which are present in almost all control applications. To this end, the cost function can
be extended with a corresponding term

h(u(k)
j ) =




0 umin ≤ u(k)
j ≤ umax

g1(u
(k)
j ) for u(k)

j > umax

g2(u
(k)
j ) u(k)

j < umin

, (40)

which has to be evaluated componentwise, i.e. for each input variable at each sampling time.
Thus, the contribution of the additional input constraints depending on uk,M is given by

z(uk,M) =
M

∑
j=1

h(u(k)
j ). (41)

Instead of eM,k, the extended vector
[
eT

M,k, z
]T

has to be minimised in the MPC-algorithm.

4.4 MPC of the horizontal cage position
The state space representation for the cage position control in y-direction design is given by
(13). The discrete-time representation of the continous-time system is obtained by Euler dis-
cretisation

xy,k+1 =
(
I + ts ·Ay (κ)

)
xy,k + ts · by (κ) uy,k. (42)
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Using this simple discretisation method, the computational effort for the MPC-algorithm can
be kept acceptable. By the way, no significant improvement could be obtained for the given
system with the Heun discretisation method because of the small sampling time ts = 3 ms.
Only in the case of large sampling times, e.g. ts > 20 ms, the increased computational effort
caused by a sophisticated time discretisation method is advantageous. Then, the smaller dis-
cretisation error allows for less time integration steps for a specified prediction horizon, i.e. a
smaller number M. As a result, the smaller number of time steps can overcompensate the
larger effort necessary for a single time step.
The ideal input ud(t) can be obtained in continous time as function of the output variable

yK(t) = cT
y xy(t) =

[
1 1

2 κ2 (3 − κ) 0 0
]
xy(t) , (43)

and a certain number of its time derivatives. For this purpose the corresponding transfer
function of the system under consideration is employed

YK (s)
Ud (s)

= cT
y
(
sI −Ay

)−1
by =

(
b0 + b1 · s + b2 · s2)

N (s)
. (44)

Obviously, the numerator of the control transfer function contains a second degree polynomial
in s, leading to two transfer zeros. This shows that the considered output yK(t) represents a
non-flat output variable that makes computing of the feedforward term more difficult. A pos-
sible way for calculating the desired input variable is given by a modification of the numerator
of the control transfer function by introducing a polynomial ansatz for the feedforward action
according to

Ud (s) =
[
kV0 + kV1 · s + . . . + kV4 · s4

]
YKd (s) . (45)

For its realisation the desired trajectory yKd(t) as well as the first four time derivatives are
available from a trajectory planning module. The feedforward gains can be computed from
a comparison of the corresponding coefficients in the numerator as well as the denominator
polynomials of

YK (s)
YKd (s)

=

(
b0 + . . . + b2 · s2) [kV0 + . . . + kV4 · s4]

N (s)

=
bV0

(
kVj

)
+ bV1

(
kVj

)
· s + . . . + bV6

(
kVj

)
· s6

a0 + a1 · s + . . . + s4 (46)

according to

ai = bVi

(
kVj

)
, i = 0, . . . , n = 4 . (47)

This leads to parameter-dependent feedforward gains kVj = kVj(κ). It is obvious that due
the higher numerator degree in the modified control transfer function a remaining dynamics
must be accepted. Lastly, the desired input variable in the time domain is represented by

ud(t) = ud

(
ẏKd(t), ÿKd(t),

...
y Kd(t), y(4)Kd (t), κ

)
. (48)

To obtain the desired system states as function of the output trajectory the output equation
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Fig. 4. Desired trajectories for the cage motion: desired and actual position in horizontal
direction (upper left corner), desired and actual position in vertical direction (upper right
corner), actual velocity in horizontal direction (lower left corner) and actual velocity in vertical
direction (lower right corner).

and its first three time derivatives are considered. Including the equations of motion (12)
yields the following set of equations

yKd(t) = yS(t) + 1
2 κ2 (3 − κ) · v1(t), (49)

ẏKd(t) = ẏS(t) + 1
2 κ2 (3 − κ) · v̇1(t), (50)

ÿKd(t) = ÿS(t) + 1
2 κ2 (3 − κ) · v̈1(t) = ÿK (v1(t), ẏS(t), v̇1(t), ud(t), κ) , (51)

...
y Kd(t) =

...
y K (v1(t), ẏS(t), v̇1(t), ud(t), u̇d(t), κ) . (52)

Solving equation (49) to (52) for the system states results in the desired state vector

xd(t) =




ySd (yKd(t), ẏKd(t), ÿKd(t),
...
y Kd(t), ud(t), u̇d(t), κ)

v1d (ẏKd(t), ÿKd(t),
...
y Kd(t), ud(t), u̇d(t), κ)

ẏSd (ẏKd(t), ÿKd(t),
...
y Kd(t), ud(t), u̇d(t), κ)

v̇1d (ẏKd(t), ÿKd(t),
...
y Kd(t), ud(t), u̇d(t), κ)


 . (53)

This equation still contains the inverse dynamics ud(t) and its time derivative u̇d. Substituting
ud for equation (48) and u̇d(t) for the time derivative of (48), which can be calculated analyti-
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Using this simple discretisation method, the computational effort for the MPC-algorithm can
be kept acceptable. By the way, no significant improvement could be obtained for the given
system with the Heun discretisation method because of the small sampling time ts = 3 ms.
Only in the case of large sampling times, e.g. ts > 20 ms, the increased computational effort
caused by a sophisticated time discretisation method is advantageous. Then, the smaller dis-
cretisation error allows for less time integration steps for a specified prediction horizon, i.e. a
smaller number M. As a result, the smaller number of time steps can overcompensate the
larger effort necessary for a single time step.
The ideal input ud(t) can be obtained in continous time as function of the output variable

yK(t) = cT
y xy(t) =

[
1 1

2 κ2 (3 − κ) 0 0
]
xy(t) , (43)

and a certain number of its time derivatives. For this purpose the corresponding transfer
function of the system under consideration is employed

YK (s)
Ud (s)

= cT
y
(
sI −Ay

)−1
by =

(
b0 + b1 · s + b2 · s2)

N (s)
. (44)

Obviously, the numerator of the control transfer function contains a second degree polynomial
in s, leading to two transfer zeros. This shows that the considered output yK(t) represents a
non-flat output variable that makes computing of the feedforward term more difficult. A pos-
sible way for calculating the desired input variable is given by a modification of the numerator
of the control transfer function by introducing a polynomial ansatz for the feedforward action
according to

Ud (s) =
[
kV0 + kV1 · s + . . . + kV4 · s4

]
YKd (s) . (45)

For its realisation the desired trajectory yKd(t) as well as the first four time derivatives are
available from a trajectory planning module. The feedforward gains can be computed from
a comparison of the corresponding coefficients in the numerator as well as the denominator
polynomials of

YK (s)
YKd (s)

=

(
b0 + . . . + b2 · s2) [kV0 + . . . + kV4 · s4]

N (s)

=
bV0

(
kVj

)
+ bV1

(
kVj

)
· s + . . . + bV6

(
kVj

)
· s6

a0 + a1 · s + . . . + s4 (46)

according to

ai = bVi

(
kVj

)
, i = 0, . . . , n = 4 . (47)

This leads to parameter-dependent feedforward gains kVj = kVj(κ). It is obvious that due
the higher numerator degree in the modified control transfer function a remaining dynamics
must be accepted. Lastly, the desired input variable in the time domain is represented by

ud(t) = ud

(
ẏKd(t), ÿKd(t),

...
y Kd(t), y(4)Kd (t), κ

)
. (48)

To obtain the desired system states as function of the output trajectory the output equation
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Fig. 4. Desired trajectories for the cage motion: desired and actual position in horizontal
direction (upper left corner), desired and actual position in vertical direction (upper right
corner), actual velocity in horizontal direction (lower left corner) and actual velocity in vertical
direction (lower right corner).

and its first three time derivatives are considered. Including the equations of motion (12)
yields the following set of equations

yKd(t) = yS(t) + 1
2 κ2 (3 − κ) · v1(t), (49)

ẏKd(t) = ẏS(t) + 1
2 κ2 (3 − κ) · v̇1(t), (50)

ÿKd(t) = ÿS(t) + 1
2 κ2 (3 − κ) · v̈1(t) = ÿK (v1(t), ẏS(t), v̇1(t), ud(t), κ) , (51)

...
y Kd(t) =

...
y K (v1(t), ẏS(t), v̇1(t), ud(t), u̇d(t), κ) . (52)

Solving equation (49) to (52) for the system states results in the desired state vector

xd(t) =




ySd (yKd(t), ẏKd(t), ÿKd(t),
...
y Kd(t), ud(t), u̇d(t), κ)

v1d (ẏKd(t), ÿKd(t),
...
y Kd(t), ud(t), u̇d(t), κ)

ẏSd (ẏKd(t), ÿKd(t),
...
y Kd(t), ud(t), u̇d(t), κ)

v̇1d (ẏKd(t), ÿKd(t),
...
y Kd(t), ud(t), u̇d(t), κ)


 . (53)

This equation still contains the inverse dynamics ud(t) and its time derivative u̇d. Substituting
ud for equation (48) and u̇d(t) for the time derivative of (48), which can be calculated analyti-
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cally, finally leads to

xd(t) =




ySd

(
yKd(t), ẏKd(t), ÿKd(t),

...
y Kd(t), y(4)Kd (t), y(5)Kd (t), κ

)

v1d

(
yKd(t), ẏKd(t), ÿKd(t),

...
y Kd(t), y(4)Kd (t), y(5)Kd (t), κ

)

ẏSd

(
yKd(t), ẏKd(t), ÿKd(t),

...
y Kd(t), y(4)Kd (t), y(5)Kd (t), κ

)

v̇1d
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5. Experimental validation on the test rig

The benefits and the efficiency of the proposed control measures shall be pointed out by exper-
imental results obtained from the test set-up available at the Chair of Mechatronics, University
of Rostock. For this purpose, a synchronous four times continuously differentiable desired
trajectory is considered for the position of the cage in both x- and y-direction. The desired
trajectory is given by polynomial functions that comply with specified kinematic constraints,
which is achieved by taking advantage of time scaling techniques. The desired trajectory
shown in Figure 4 comprises a sequence of reciprocating motions with maximum velocities of
2 m/s in horizontal direction and 1.5 m/s in vertical direction. The resulting tracking errors

ey (t) = yKd (t)− yK (t) (55)

and
ex (t) = xKd (t)− xK (t) (56)

are depicted in Figure 5 and Figure 6. As can be seen, the maximum position error in y-
direction during the movements is about 6 mm and the steady-state position error is smaller
than 0.2 mm, whereas the maximum position error in x-direction is approx. 4 mm. Figure 7
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Fig. 7. Comparison of the desired values v1d (t) and the actual values v1 (t) for the bending
deflection.

shows the comparison of the bending deflection measured by strain gauges attached to the
flexible beam with desired values. During the acceleration as well as the deceleration inter-
vals, physically unavoidable bending deflections could be noticed. The achieved benefit is
given by the fact the remaining oscillatons are negligible when the rack feeder arrives at its
target position. This underlines both the high model accuracy and the quality of the active
damping of the first bending mode. Figure 8 depicts the disturbance rejection properties due
to an external excitation by hand. At the beginning, the control structure is deactivated, and
the excited bending oscillations decay only due to the very weak material damping. After
approx. 2.8 seconds, the control structure is activated and, hence, the first bending mode is
actively damped. The remaining oscillations are characterised by higher bending modes that
decay with material damping. In future work, the number of Ritz ansatz functions shall be
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cally, finally leads to

xd(t) =



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...
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...
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yKd(t), ẏKd(t), ÿKd(t),

...
y Kd(t), y(4)Kd (t), y(5)Kd (t), κ

)
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(
yKd(t), ẏKd(t), ÿKd(t),

...
y Kd(t), y(4)Kd (t), y(5)Kd (t), κ

)




. (54)
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target position. This underlines both the high model accuracy and the quality of the active
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to an external excitation by hand. At the beginning, the control structure is deactivated, and
the excited bending oscillations decay only due to the very weak material damping. After
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Fig. 8. Transient response after a manual excitation of the bending deflection: at first without
feedback control, after approx. 2.8 seconds with active control.

increased to include the higher bending modes as well in the active damping. The correspond-
ing elastic coordinates and their time derivatives can be determined by observer techniques.

6. Conclusions

In this paper, a gain-scheduled fast model predictive control strategy for high-speed rack feed-
ers is presented. The control design is based on a control-oriented elastic multibody system.
The suggested control algorithm aims at reducing the future tracking error at the end of the
prediction horizon. Beneath an active oscillation damping of the first bending mode, an accu-
rate trajectory tracking for the cage position in x- and y-direction is achieved. Experimental
results from a prototypic test set-up point out the benefits of the proposed control structure.
Experimental results show maximum tracking errors of approx. 6 mm in transient phases,
whereas the steady-state tracking error is approx. 0.2 mm. Future work will address an active
oscillation damping of higher bending modes as well as an additional gain-scheduling with
respect to the varying payload.
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1. Introduction

Tokamaks, as future nuclear power plants, currently present exceptionally significant re-
search area. The basic problems are electromagnetic control of the plasma current, shape
and position. High-performance plasma control in a modern tokamak is the complex prob-
lem (Belyakov et al., 1999). This is mainly connected with the design requirements imposed
on magnetic control system and power supply physical constraints. Besides that, plasma is
an extremely complicated dynamical object from the modeling point of view and usually con-
trol system design is based on simplified linear system, representing plasma dynamics in the
vicinity of the operating point (Ovsyannikov et al., 2005). This chapter is focused on the con-
trol systems design on the base of Model Predictive Control (MPC) (Camacho & Bordons,
1999; Morari et al., 1994). Such systems provide high-performance control in the case when
accurate mathematical model of the plant to be controlled is unknown. In addition, these
systems allow to take into account constraints, imposed both on the controlled and manip-
ulated variables (Maciejowski, 2002). Furthermore, MPC algorithms can base on both linear
and nonlinear mathematical models of the plant. So MPC control scheme is quite suitable for
plasma stabilization problems.
In this chapter two different approaches to the plasma stabilization system design on the base
of model predictive control are considered. First of them is based on the traditional MPC
scheme. The most significant drawback of this variant is that it does not guarantee stability
of the closed-loop control circuit. In order to eliminate this problem, a new control algorithm
is proposed. This algorithm allows to stabilize control plant in neighborhood of the plasma
equilibrium position. Proposed approach is based on the ideas of MPC and modal paramet-
ric optimization. Within the suggested framework linear closed-loop system eigenvalues are
placed in the specific desired areas on the complex plane for each sample instant. Such areas
are located inside the unit circle and reflect specific requirements and constraints imposed on
closed-loop system stability and oscillations.
It is well known that the MPC algorithms are very time-consuming, since they require the
repeated on-line solution of the optimization problem at each sampling instant. In order to re-
duce computational load, algorithms parameters tuning are performed and a special method
is proposed in the case of modal parametric optimization based MPC algorithms.

9
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The working capacity and effectiveness of the MPC algorithms is demonstrated by the exam-
ple of ITER-FEAT plasma vertical stabilization problem. The comparison of the approaches is
done.

2. Control Problem Formulation

2.1 Mathematical model of the plasma vertical stabilization process in ITER-FEAT tokamak
The dynamics of plasma control process can be commonly described by the system of ordinary
differential equations (Misenov, 2000; Ovsyannikov et al., 2006)

dΨ
dt

+ RI = V, (1)

where Ψ is the poloidal flux vector, R is a diagonal resistance matrix, I is a vector of active and
passive currents, V is a vector of voltages applied to coils. The vector Ψ is given by nonlinear
relation

Ψ = Ψ(I, Ip), (2)

where Ip is the plasma current. The vector of output variables is given by

y = y(I, Ip). (3)

Linearizing equations (1)–(3) in the vicinity of the operating point, we obtain a linear model of
the process in the state space form. In particular, the linear model describing plasma vertical
control in ITER-FEAT tokamak is presented below.
ITER-FEAT tokamak (Gribov et al., 2000) has a separate fast feedback loop for plasma vertical
stabilization. The Vertical Stabilization (VS) converter is applied in this loop. Its voltage is
evaluated in the feedback controller, which uses the vertical velocity of plasma current cen-
troid as an input. So the linear model can be written as follows

ẋ = Ax + bu,
y = cx + du, (4)

where x ∈ E58 is a state space vector, u ∈ E1 is the voltage of the VS converter, y ∈ E1 is the
vertical velocity of the plasma current centroid.
Since the order of this linear model is very high, an order reduction is desirable to simplify
the controller synthesis problem. The standard Matlab function schmr was used to perform
model reduction from 58th to 3rd order. As a result, we obtain a transfer function of the
reduced SISO model (from input u to output y)

P(s) =
1.732 · 10−6(s − 121.1)(s + 158.2)(s + 9.641)

(s + 29.21)(s + 8.348)(s − 12.21)
. (5)

This transfer function has poles which dominate the dynamics of the initial plant. The un-
stable pole corresponds to vertical instability. It is natural to assume that two other poles
are determined by the virtual circuit dynamic related to the most significant elements in the
tokamak vessel construction. The quality of the model reduction can be illustrated by the
comparison of the Bode diagram for both initial and reduced models. Fig. 1 shows the Bode
diagrams for initial and reduced 3rd order models on the left and for initial and reduced 2nd

order model on the right. It is easy to see that the curves for initial model and reduced 3rd

order model are actually indistinguishable, contrary to the 2nd order model.
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Fig. 1. Bode diagrams for initial (solid lines) and reduced (dotted lines) models.

In addition to plant model (5), we must take into account the following limits that are imposed
on the power supply system

VVS
max = 0.6kV, IVS

max = 20.7kA, (6)

where VVS
max is the maximum voltage, IVS

max is the maximum current in the VS converter. So,
the linear model (5) together with constraints (6) is considered in the following as the basis for
controller synthesis.

2.2 Optimal control problem formulation
The desired controller must stabilize vertical velocity of the plasma current centroid. One of
the approaches to control synthesis is based on the optimal control theory. In this framework,
plasma vertical stabilization problem can be stated as follows. One needs to find a feedback
control algorithm u = u(t, y) that provides a minimum of the quadratic cost functional

J = J(u) =
∫ ∞

0
(y2(t) + λu2(t))dt, (7)

subject to plant model (5) and constraints (6), and guarantees closed-loop stability. Here λ is a
constant multiplier setting the trade-off between controller’s performance and control energy
costs.
Specifically, in order to find an optimal controller, LQG-synthesis can be performed. Such a
controller has high stabilization performance in the unconstrained case. However, it is per-
haps not the best choice in the presence of constraints.
Contrary to this, the MPC synthesis allows to take into account constraints. Its basic scheme
implies on-line optimization of the cost functional (7) over a finite horizon subject to plant
model (5) and imposed constraints (6).
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are determined by the virtual circuit dynamic related to the most significant elements in the
tokamak vessel construction. The quality of the model reduction can be illustrated by the
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In addition to plant model (5), we must take into account the following limits that are imposed
on the power supply system

VVS
max = 0.6kV, IVS

max = 20.7kA, (6)

where VVS
max is the maximum voltage, IVS

max is the maximum current in the VS converter. So,
the linear model (5) together with constraints (6) is considered in the following as the basis for
controller synthesis.

2.2 Optimal control problem formulation
The desired controller must stabilize vertical velocity of the plasma current centroid. One of
the approaches to control synthesis is based on the optimal control theory. In this framework,
plasma vertical stabilization problem can be stated as follows. One needs to find a feedback
control algorithm u = u(t, y) that provides a minimum of the quadratic cost functional

J = J(u) =
∫ ∞

0
(y2(t) + λu2(t))dt, (7)

subject to plant model (5) and constraints (6), and guarantees closed-loop stability. Here λ is a
constant multiplier setting the trade-off between controller’s performance and control energy
costs.
Specifically, in order to find an optimal controller, LQG-synthesis can be performed. Such a
controller has high stabilization performance in the unconstrained case. However, it is per-
haps not the best choice in the presence of constraints.
Contrary to this, the MPC synthesis allows to take into account constraints. Its basic scheme
implies on-line optimization of the cost functional (7) over a finite horizon subject to plant
model (5) and imposed constraints (6).
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3. Model Predictive Control Algorithms

3.1 MPC Basic Principles
Suppose we have a mathematical model, which approximately describes control process dy-
namics

˙̃x(τ) = f(τ, x̃(τ), ũ(τ)), x̃|τ=t = x(t). (8)

Here x̃(τ) ∈ En is a state vector, ũ(τ) ∈ Em is a control vector, τ ∈ [t, ∞), x(t) is the actual
state of the plant at the instant t or its estimation based on measurement output.
This model is used to predict future outputs of the process given the programmed control
ũ(τ) over a finite time interval τ ∈ [t, t + Tp]. Such a model is called prediction model and
the parameter Tp is named prediction horizon. Integrating system (8) we obtain x̃(τ) =
x̃(τ, x(t), ũ(τ))—predicted process evolution over time interval τ ∈ [t, t + Tp].
The programmed control ũ(τ) is chosen in order to minimize quadratic cost functional over
the prediction horizon

J = J(x(t), ũ(·), Tp) =
∫ t+Tp

t
((x̃ − rx)

′R(x̃)(x̃ − rx) + (ũ − ru)
′Q(x̃)(ũ − ru))dτ, (9)

where R (x̃) , Q (x̃) are positive definite symmetric weight matrices, rx, ru are state and con-
trol input reference signals. In addition, the programmed control ũ(τ) should satisfy all of the
constraints imposed on the state and control variables. Therefore, the programmed control
ũ(τ) over prediction horizon is chosen to provide minimum of the following optimization
problem

J(x (t) , ũ (·) , Tp) → min
ũ(·)∈Ωu

, (10)

where Ωu is the admissible set given by

Ωu =
{

ũ(·) ∈ K0
n[t, t + Tp] : ũ(τ) ∈ U, x̃(τ, x(t), ũ(τ)) ∈ X, ∀τ ∈ [t, t + Tp]

}
. (11)

Here, K0
n[t, t + Tp] is the set of piecewise continuous vector functions over the interval

[t, t + Tp], U ⊂ Em is the set of feasible input values, X ⊂ En is the set of feasible state values.
Denote by ũ∗(τ) the solution of the optimization problem (10), (11). In order to implement
feedback loop, the obtained optimal programmed control ũ∗(τ) is used as the input only on
the time interval [t, t + δ], where δ << Tp. So, only a small part of ũ∗(τ) is implemented. At
time t + δ the whole procedure—prediction and optimization—is repeated again to find new
optimal programmed control over time interval [t + δ, t + δ + Tp]. Summarizing, the basic
MPC scheme works as follows:

1. Obtain the state estimation x̂ on the base of measurements y.

2. Solve the optimization problem (10), (11) subject to prediction model (8) with initial
conditions x̃|τ=t = x̂(t) and cost functional (9).

3. Implement obtained optimal control ũ∗(τ) over time interval [t, t + δ].

4. Repeat the whole procedure 1–3 at time t + δ.

From the previous discussion, the most significant MPC features can be noted:

• Both linear and nonlinear model of the plant can be used as a prediction model.

• MPC allows taking into account constraints imposed both on the input and output vari-
ables.

• MPC is the feedback control with the discrete entering of the measurement information
at each sampling instant 0, δ, 2δ, . . . .

• MPC control algorithms imply the repeated (at each sampling instant with interval δ)
on-line solution of the optimization problems. It is especially important from the real-
time implementation point of view, because fast calculations are needed.

3.2 MPC real-time implementation
In order for real-time implementation, piece-wise constant functions are used as a pro-
grammed control over the prediction horizon. That is, the programmed control ũ(τ) is pre-
sented by the sequence{ũ k , ũk+1, ..., ũk+P−1}, where ũi ∈ Em is the control input at the time
interval [iδ, (i + 1)δ] , δ is the sampling interval. Note that, P is a number of sampling intervals
over the prediction horizon, that is Tp = Pδ. Likewise, general MPC formulation presented
above consider nonlinear prediction model in the discrete form

x̃i+1 = f(x̃i, ũi), i = k + j, j = 0, 1, 2, ..., x̃k = xk,
ỹi = Cx̃i.

(12)

Here ỹi ∈ Er is the vector of output variables, xk ∈ En is the actual state of the plant at time
instant k or its estimation on the base of measurement output. We shall say that the sequence
of vectors {ỹ k+1 , ỹk+2, ..., ỹk+P} represents the prediction of future plant behavior.
Similar to the cost functional (9), consider also its discrete analog given by

Jk = Jk(ȳ, ū) = ∑P
j=1

[
(ỹk+j − ry

k+j)
TRk+j(ỹk+j − ry

k+j)

+ (ũk+j−1 − ru
k+j−1)

TQk+j(ũk+j−1 − ru
k+j−1)

]
,

(13)

where Rk+j and Qk+j are the weight matrices as in the functional (9), ry
i and ru

i are the output
and input reference signals,

ȳ =
(

ỹk+1 ỹk+2 ... ỹk+P
)T ∈ ErP,

ū =
(

ũk ũk+1 ... ũk+P−1
)T ∈ EmP

are the auxiliary vectors.
The optimization problem (10), (11) can now be stated as follows

Jk(xk, ũk, ũk+1, ...ũk+P−1) → min
{ũk ,ũk+1,...,ũk+P−1}∈Ω∈EmP

, (14)

where Ω =
{

ū ∈ EmP : ũk+j−1 ∈ U, x̃k+j ∈ X, j = 1, 2, ..., P
}

is the admissible set.

Generally, the function J(xk, ũk, ũk+1, ...ũk+P−1) is a nonlinear function of mP variables and Ω
is a non-convex set. Therefore, the optimization task (14) is a nonlinear programming prob-
lem.
Now real-time MPC algorithm can be presented as follows:

1. Obtain the state estimation x̂k based on measurements yk using the observer.

2. Solve the nonlinear programming problem (14) subject to prediction model (12) with
initial conditions x̃k = x̂k and cost functional (13). It should be noted, that the value
of the function Jk(xk, ũk, ũk+1, ...ũk+P−1) is obtained by numerically integrating the pre-
diction model (12) and then substituting the predicted behavior x̄ ∈ EnP into the cost
function (13) given the programmed control {ũ k , ũk+1, ..., ũk+P−1} over the prediction
horizon and initial conditions x̂k.
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Here, K0
n[t, t + Tp] is the set of piecewise continuous vector functions over the interval

[t, t + Tp], U ⊂ Em is the set of feasible input values, X ⊂ En is the set of feasible state values.
Denote by ũ∗(τ) the solution of the optimization problem (10), (11). In order to implement
feedback loop, the obtained optimal programmed control ũ∗(τ) is used as the input only on
the time interval [t, t + δ], where δ << Tp. So, only a small part of ũ∗(τ) is implemented. At
time t + δ the whole procedure—prediction and optimization—is repeated again to find new
optimal programmed control over time interval [t + δ, t + δ + Tp]. Summarizing, the basic
MPC scheme works as follows:

1. Obtain the state estimation x̂ on the base of measurements y.

2. Solve the optimization problem (10), (11) subject to prediction model (8) with initial
conditions x̃|τ=t = x̂(t) and cost functional (9).

3. Implement obtained optimal control ũ∗(τ) over time interval [t, t + δ].

4. Repeat the whole procedure 1–3 at time t + δ.

From the previous discussion, the most significant MPC features can be noted:

• Both linear and nonlinear model of the plant can be used as a prediction model.

• MPC allows taking into account constraints imposed both on the input and output vari-
ables.

• MPC is the feedback control with the discrete entering of the measurement information
at each sampling instant 0, δ, 2δ, . . . .

• MPC control algorithms imply the repeated (at each sampling instant with interval δ)
on-line solution of the optimization problems. It is especially important from the real-
time implementation point of view, because fast calculations are needed.

3.2 MPC real-time implementation
In order for real-time implementation, piece-wise constant functions are used as a pro-
grammed control over the prediction horizon. That is, the programmed control ũ(τ) is pre-
sented by the sequence{ũ k , ũk+1, ..., ũk+P−1}, where ũi ∈ Em is the control input at the time
interval [iδ, (i + 1)δ] , δ is the sampling interval. Note that, P is a number of sampling intervals
over the prediction horizon, that is Tp = Pδ. Likewise, general MPC formulation presented
above consider nonlinear prediction model in the discrete form

x̃i+1 = f(x̃i, ũi), i = k + j, j = 0, 1, 2, ..., x̃k = xk,
ỹi = Cx̃i.

(12)

Here ỹi ∈ Er is the vector of output variables, xk ∈ En is the actual state of the plant at time
instant k or its estimation on the base of measurement output. We shall say that the sequence
of vectors {ỹ k+1 , ỹk+2, ..., ỹk+P} represents the prediction of future plant behavior.
Similar to the cost functional (9), consider also its discrete analog given by
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)T ∈ ErP,
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The optimization problem (10), (11) can now be stated as follows

Jk(xk, ũk, ũk+1, ...ũk+P−1) → min
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, (14)

where Ω =
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ū ∈ EmP : ũk+j−1 ∈ U, x̃k+j ∈ X, j = 1, 2, ..., P
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is the admissible set.

Generally, the function J(xk, ũk, ũk+1, ...ũk+P−1) is a nonlinear function of mP variables and Ω
is a non-convex set. Therefore, the optimization task (14) is a nonlinear programming prob-
lem.
Now real-time MPC algorithm can be presented as follows:

1. Obtain the state estimation x̂k based on measurements yk using the observer.

2. Solve the nonlinear programming problem (14) subject to prediction model (12) with
initial conditions x̃k = x̂k and cost functional (13). It should be noted, that the value
of the function Jk(xk, ũk, ũk+1, ...ũk+P−1) is obtained by numerically integrating the pre-
diction model (12) and then substituting the predicted behavior x̄ ∈ EnP into the cost
function (13) given the programmed control {ũ k , ũk+1, ..., ũk+P−1} over the prediction
horizon and initial conditions x̂k.
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3. Let {ũ ∗
k , ũ∗

k+1, ..., ũ∗
k+P−1} be the solution of the problem (14). Implement only the first

component ũ∗
k of the obtained optimal sequence over time interval [kδ, (k + 1)δ].

4. Repeat the whole procedure 1–3 at next time instant (k + 1)δ.
Note, that the algorithm stated above implies real-time solution of the nonlinear programming
problem at each sampling instant. The complexity of such a problem is determined by the
number of sampling intervals P.
The simplest way to reduce the optimization problem order is to decrease the prediction hori-
zon. But, it is necessary to keep in mind that the performance of the closed-loop system
depends strongly on the number P of samples. The quality of the processes is decreased if
the prediction horizon is reduced. Moreover, the system can lose stability if the quantity P is
sufficiently small.
So, the following approaches to reduce computational load can be proposed:

1. Using the control horizon. The positive integer number M < P is called the control
horizon if the following condition hold:

ũk+M−1 = ũk+M = ... = ũk+P−1.

Thus, the number of independent variables is decreased from mP to mM. This approach
allows to essentially reduce the optimization problem order. However, if the control
horizon M is too small, the closed-loop stability can be compromised and the quality of
the processes can decrease.

2. Increasing the sampling interval δ and reducing the number P of samples over the pre-
diction horizon. This also allows to decrease the optimization problem order while
preserving the value of the prediction horizon.

3. The computational consumption also depends on the prediction model used. So, one
needs to use as simple models as possible. But the prediction model should adequately
reflect the dynamics of the plant considered. The simplest case is using the linear pre-
diction model.

3.3 Linear MPC
In this particular case, MPC is based on the linear prediction model. These algorithms are
computationally efficient which is especially important from the real-time implementation
point of view.
Generally, linear prediction model is presented by

x̃i+1 = Ax̃i + Bũi, i = k + j, j = 0, 1, 2, ..., x̃k = xk,
ỹi = Cx̃i.

(15)

Suppose ū =
(

ũk ũk+1 ... ũk+P−1
)T is the programmed control over the prediction

horizon. Then, integrating (15) we obtain future outputs of the plant in the form

ȳ = Lxk + Mū, (16)

where

L =




CA
CA2

...
CAP


 , M =




CB 0 . . . 0

CAB
. . .

...
. . .

CAP−1B . . . CAB CB




.

Substituting (16) into (13) we get

Jk = Jk(xk, ū) = ūTHū + 2fT ū + g. (17)

Here we assumed that all weight matrices are equal, that is

Rk+1 = Rk+2 = ... = Rk+P = R,
Qk+1 = Qk+2 = ... = Qk+P = Q.

The matrix H and vector f in (17) are as follows

H = M′RM + Q, f = M′RLxk. (18)

It can easily be shown that in this case the optimization problem (14) is reduced to the
quadratic programming problem of the form

Jk(xk, ũk, ũk+1, ..., ũk+P−1) = ūTHū + 2fT ū + g → min
ū∈Ω⊂EmP

. (19)

Here H is a positive definite matrix and Ω is a convex set defined by the system of linear con-
straints. On-line solution of the optimization problem (19) at each sampling instant generally
leads to nonlinear feedback control law.
Note that the optimization problem (19) can be solved analytically for the unconstrained case.
The result is the linear controller

ũk = Kx̃k, (20)

which converges to the LQR-optimal one as P is increased. This convergence is obvious, be-
cause the discrete LQR controller minimizes the functional (13) with infinity prediction hori-
zon for linear model (15).

4. Model Predictive Control on the base of modal parametrical optimization

In this section a new approach to MPC control algorithm synthesis is considered. The key
feature of corresponding algorithms is that they guarantee linear closed-loop system stability
at each sampling period. It is necessary to remark that in the case of traditional MPC algorithm
implementation, described above, closed-loop system stability can be provided only for the
simplest case when we have a linear prediction model, quadratic cost functional and without
constraints.
Let us assume that the mathematical model of the plant to be controlled is described by the
following system of difference equations

x̂k+1 = F(x̂k, ûk, ϕ̂k),
ŷk = Cx̂k. (21)

Here ŷk ∈ Es is the vector of output variables, x̂k ∈ En is the state space vector, ûk ∈ Em is the
vector of controls, ϕ̂k ∈ El is the vector of external disturbances.
Equations (21) can be used as a basis for nonlinear prediction model construction. Suppose
that obtained prediction model is given by

x̃i+1 = f(x̃i, ũi), i = k + j, j = 0, 1, 2, ..., x̃k = xk,
ỹi = Cx̃i.

(22)
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3. Let {ũ ∗
k , ũ∗

k+1, ..., ũ∗
k+P−1} be the solution of the problem (14). Implement only the first

component ũ∗
k of the obtained optimal sequence over time interval [kδ, (k + 1)δ].

4. Repeat the whole procedure 1–3 at next time instant (k + 1)δ.
Note, that the algorithm stated above implies real-time solution of the nonlinear programming
problem at each sampling instant. The complexity of such a problem is determined by the
number of sampling intervals P.
The simplest way to reduce the optimization problem order is to decrease the prediction hori-
zon. But, it is necessary to keep in mind that the performance of the closed-loop system
depends strongly on the number P of samples. The quality of the processes is decreased if
the prediction horizon is reduced. Moreover, the system can lose stability if the quantity P is
sufficiently small.
So, the following approaches to reduce computational load can be proposed:

1. Using the control horizon. The positive integer number M < P is called the control
horizon if the following condition hold:

ũk+M−1 = ũk+M = ... = ũk+P−1.

Thus, the number of independent variables is decreased from mP to mM. This approach
allows to essentially reduce the optimization problem order. However, if the control
horizon M is too small, the closed-loop stability can be compromised and the quality of
the processes can decrease.

2. Increasing the sampling interval δ and reducing the number P of samples over the pre-
diction horizon. This also allows to decrease the optimization problem order while
preserving the value of the prediction horizon.

3. The computational consumption also depends on the prediction model used. So, one
needs to use as simple models as possible. But the prediction model should adequately
reflect the dynamics of the plant considered. The simplest case is using the linear pre-
diction model.

3.3 Linear MPC
In this particular case, MPC is based on the linear prediction model. These algorithms are
computationally efficient which is especially important from the real-time implementation
point of view.
Generally, linear prediction model is presented by

x̃i+1 = Ax̃i + Bũi, i = k + j, j = 0, 1, 2, ..., x̃k = xk,
ỹi = Cx̃i.

(15)

Suppose ū =
(

ũk ũk+1 ... ũk+P−1
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horizon. Then, integrating (15) we obtain future outputs of the plant in the form
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Substituting (16) into (13) we get

Jk = Jk(xk, ū) = ūTHū + 2fT ū + g. (17)

Here we assumed that all weight matrices are equal, that is

Rk+1 = Rk+2 = ... = Rk+P = R,
Qk+1 = Qk+2 = ... = Qk+P = Q.

The matrix H and vector f in (17) are as follows

H = M′RM + Q, f = M′RLxk. (18)

It can easily be shown that in this case the optimization problem (14) is reduced to the
quadratic programming problem of the form

Jk(xk, ũk, ũk+1, ..., ũk+P−1) = ūTHū + 2fT ū + g → min
ū∈Ω⊂EmP

. (19)

Here H is a positive definite matrix and Ω is a convex set defined by the system of linear con-
straints. On-line solution of the optimization problem (19) at each sampling instant generally
leads to nonlinear feedback control law.
Note that the optimization problem (19) can be solved analytically for the unconstrained case.
The result is the linear controller

ũk = Kx̃k, (20)

which converges to the LQR-optimal one as P is increased. This convergence is obvious, be-
cause the discrete LQR controller minimizes the functional (13) with infinity prediction hori-
zon for linear model (15).

4. Model Predictive Control on the base of modal parametrical optimization

In this section a new approach to MPC control algorithm synthesis is considered. The key
feature of corresponding algorithms is that they guarantee linear closed-loop system stability
at each sampling period. It is necessary to remark that in the case of traditional MPC algorithm
implementation, described above, closed-loop system stability can be provided only for the
simplest case when we have a linear prediction model, quadratic cost functional and without
constraints.
Let us assume that the mathematical model of the plant to be controlled is described by the
following system of difference equations

x̂k+1 = F(x̂k, ûk, ϕ̂k),
ŷk = Cx̂k. (21)

Here ŷk ∈ Es is the vector of output variables, x̂k ∈ En is the state space vector, ûk ∈ Em is the
vector of controls, ϕ̂k ∈ El is the vector of external disturbances.
Equations (21) can be used as a basis for nonlinear prediction model construction. Suppose
that obtained prediction model is given by
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Here xk ∈ En is the actual state of the plant at time instant k or its estimation on the base of
measurement output.
Let desired object dynamics is presented by the given vector sequences {rx

k} and {ru
k }, k =

0,1,2,... . The linear mathematical model of the plant, describing its behavior in the neighbour-
hood of the desired trajectory, can be obtained by performing the equations (21) linearization.
As a result of this action, we get the linear system of difference equations

x̄k+1 = Ax̄k + Būk + Hϕ̄k,
ȳk = Cx̄k, (23)

where x̄k ∈ En, ūk ∈ Em, ȳk ∈ Es, ϕ̄k ∈ El are the vectors of the state, control input, measure-
ments and external disturbances respectively. These vectors represent the deviations from the
desired trajectory. Next we shall consider only such situations when all matrices in equations
(23) have constant elements. In the framework of proposed approach, the control input over
the prediction horizon is generated by the controller of the form

ūk = W(q, h)ȳk. (24)

Here q is the shift operator, W(q, h) is the controller transfer function with the fixed structure
(that is the degrees of the polynomials in the numerator and denominator of all its components
are given and fixed), h ∈ Er is the vector of tuned parameters, which must be chosen on the
stage of control design.
The prediction model equations (22), closed by the feedback (24), can be presented as follows

x̃i+1 = f(x̃i, ũi), i = k + j, j = 0, 1, 2, ..., x̃k = xk,
ũi = ru

i + W(q, h)C(x̃i − rx
i ).

(25)

Let us assume that parameters vector h is chosen and fixed. Then we can solve system of
difference equations (25) with a given initial conditions for the instants i = k, k + 1, ..., k + P −
1. As a result we obtain vectors sequence {x̃i}, (i = k + 1, ..., k + P), which represents the
prediction of future plant behavior over the prediction horizon P. It must be noted, that the
control sequence ũk, ũk+1, ...ũk+P−1 over this horizon is determined uniquely by the choice
of parameter vector h. So, in this case the problem of control is reduced to the problem of
parameters vector h tuning.
The controlled processes quality over the prediction horizon P can be presented by the fol-
lowing cost functional

Jk = Jk({x̃i}, {ũi}) = Jk(W(q, h)) = Jk(h) ≥ 0, (26)

where {x̃i}, i = k + 1, ..., k + P, {ũi}, i = k, ..., k + P − 1 are the state and control vectors
sequences correspondently, which satisfies the system of equations (25). It is easy to see, that
the cost functional (26) is reduced to the function of parameter vector h.
Let us consider the following optimization problem

Jk = Jk(h) → inf
h∈ΩH

, (27)

where ΩH is a set of parameter vectors providing that the eigenvalues of the closed-loop
system (23), (24) are placed in the desired area C∆ inside a unit circle.
It is necessary to remark that the problem (27) is a nonlinear programming problem with an
extremely complicated definition of the cost function, which, in generall, has no analytical

representation and is given only algorithmically. Besides that, the specific character of the
problem (27) is also defined by the complicated constraints imposed, which determines the
admissible areas of eigenvalues displacement. It must be noted, that the dimension of the
optimization problem (27) is defined only by the dimension of parameter vector h and it does
not depend on the prediction horizon P value.

Definition 1. We shall say that the controller (24) has a full structure if the degrees of polyno-
mials in the numerators and denominators of the matrix W(q, h) components and the struc-
ture of parameter vector h are such that it is possible to assign any given roots for closed-loop
system (23),(24) characteristic polynomial ∆(z, h) by appropriate selection of parameter vector
h.

In order to get another form of the presented definition, consider the equations of the closed-
loop system (23),(24). They can be represented in the normal form as follows

x̄k+1 = Ax̄k + Būk + Hϕ̄k,
ȳk = Cx̄k,
ξk+1 = Ac(h)ξk + Bc(h)ȳk,
ūk = Cc(h)ξk + Dc(h)ȳk,

(28)

where ξk ∈ Eν is a controller (24) state vector. After applying Z-transformation to the system
of equations (28) with zero initial conditions, obtain

(Enz − A)x̄ = Bū + Hϕ̄,
(Eνz − Ac(h))ξ = Bc(h)Cx̄,
ū = Cc(h)ξ + Dc(h)Cx̄,
ȳ = Cx̄,

or (
Enz − A − BDc(h)C −BCc(h)

−Bc(h)C Eνz − Ac(h)

)(
x̄
ξ

)
=

(
H
0

)
ϕ̄.

Therefore, the closed-loop system characteristic polynomial ∆(z, h) is given by

∆(z, h) = det
(

Enz − A − BDc(h)C −BCc(h)
−Bc(h)C Eνz − Ac(h)

)
.

Let us denote the degree of the polinomial ∆(z, h) by nd.
Let find parameter vector h, which provide a given roots for the system (28) characteristic
polynomial. In other words, it is nesessary to find such parameter vector h that provide the
following identity

∆(z, h) ≡ ∆̃(z),

where ∆̃(z) is a given polynomial with degree nd, having desired roots. In order to find vector
h, equate the correspondent coefficients for the same degrees of z-variable. As a result obtain
the system of (nd + 1) nonlinear equations with r unknown components of vector h in the
form

L(h) = γ. (29)

It is evident that the controller (24) has a full structure if and only if the system of equations
(33) has a solution for any vector γ.
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Here xk ∈ En is the actual state of the plant at time instant k or its estimation on the base of
measurement output.
Let desired object dynamics is presented by the given vector sequences {rx

k} and {ru
k }, k =

0,1,2,... . The linear mathematical model of the plant, describing its behavior in the neighbour-
hood of the desired trajectory, can be obtained by performing the equations (21) linearization.
As a result of this action, we get the linear system of difference equations

x̄k+1 = Ax̄k + Būk + Hϕ̄k,
ȳk = Cx̄k, (23)

where x̄k ∈ En, ūk ∈ Em, ȳk ∈ Es, ϕ̄k ∈ El are the vectors of the state, control input, measure-
ments and external disturbances respectively. These vectors represent the deviations from the
desired trajectory. Next we shall consider only such situations when all matrices in equations
(23) have constant elements. In the framework of proposed approach, the control input over
the prediction horizon is generated by the controller of the form

ūk = W(q, h)ȳk. (24)

Here q is the shift operator, W(q, h) is the controller transfer function with the fixed structure
(that is the degrees of the polynomials in the numerator and denominator of all its components
are given and fixed), h ∈ Er is the vector of tuned parameters, which must be chosen on the
stage of control design.
The prediction model equations (22), closed by the feedback (24), can be presented as follows

x̃i+1 = f(x̃i, ũi), i = k + j, j = 0, 1, 2, ..., x̃k = xk,
ũi = ru

i + W(q, h)C(x̃i − rx
i ).

(25)

Let us assume that parameters vector h is chosen and fixed. Then we can solve system of
difference equations (25) with a given initial conditions for the instants i = k, k + 1, ..., k + P −
1. As a result we obtain vectors sequence {x̃i}, (i = k + 1, ..., k + P), which represents the
prediction of future plant behavior over the prediction horizon P. It must be noted, that the
control sequence ũk, ũk+1, ...ũk+P−1 over this horizon is determined uniquely by the choice
of parameter vector h. So, in this case the problem of control is reduced to the problem of
parameters vector h tuning.
The controlled processes quality over the prediction horizon P can be presented by the fol-
lowing cost functional

Jk = Jk({x̃i}, {ũi}) = Jk(W(q, h)) = Jk(h) ≥ 0, (26)

where {x̃i}, i = k + 1, ..., k + P, {ũi}, i = k, ..., k + P − 1 are the state and control vectors
sequences correspondently, which satisfies the system of equations (25). It is easy to see, that
the cost functional (26) is reduced to the function of parameter vector h.
Let us consider the following optimization problem

Jk = Jk(h) → inf
h∈ΩH

, (27)

where ΩH is a set of parameter vectors providing that the eigenvalues of the closed-loop
system (23), (24) are placed in the desired area C∆ inside a unit circle.
It is necessary to remark that the problem (27) is a nonlinear programming problem with an
extremely complicated definition of the cost function, which, in generall, has no analytical

representation and is given only algorithmically. Besides that, the specific character of the
problem (27) is also defined by the complicated constraints imposed, which determines the
admissible areas of eigenvalues displacement. It must be noted, that the dimension of the
optimization problem (27) is defined only by the dimension of parameter vector h and it does
not depend on the prediction horizon P value.

Definition 1. We shall say that the controller (24) has a full structure if the degrees of polyno-
mials in the numerators and denominators of the matrix W(q, h) components and the struc-
ture of parameter vector h are such that it is possible to assign any given roots for closed-loop
system (23),(24) characteristic polynomial ∆(z, h) by appropriate selection of parameter vector
h.

In order to get another form of the presented definition, consider the equations of the closed-
loop system (23),(24). They can be represented in the normal form as follows

x̄k+1 = Ax̄k + Būk + Hϕ̄k,
ȳk = Cx̄k,
ξk+1 = Ac(h)ξk + Bc(h)ȳk,
ūk = Cc(h)ξk + Dc(h)ȳk,

(28)

where ξk ∈ Eν is a controller (24) state vector. After applying Z-transformation to the system
of equations (28) with zero initial conditions, obtain

(Enz − A)x̄ = Bū + Hϕ̄,
(Eνz − Ac(h))ξ = Bc(h)Cx̄,
ū = Cc(h)ξ + Dc(h)Cx̄,
ȳ = Cx̄,

or (
Enz − A − BDc(h)C −BCc(h)

−Bc(h)C Eνz − Ac(h)

)(
x̄
ξ

)
=

(
H
0

)
ϕ̄.

Therefore, the closed-loop system characteristic polynomial ∆(z, h) is given by

∆(z, h) = det
(

Enz − A − BDc(h)C −BCc(h)
−Bc(h)C Eνz − Ac(h)

)
.

Let us denote the degree of the polinomial ∆(z, h) by nd.
Let find parameter vector h, which provide a given roots for the system (28) characteristic
polynomial. In other words, it is nesessary to find such parameter vector h that provide the
following identity

∆(z, h) ≡ ∆̃(z),

where ∆̃(z) is a given polynomial with degree nd, having desired roots. In order to find vector
h, equate the correspondent coefficients for the same degrees of z-variable. As a result obtain
the system of (nd + 1) nonlinear equations with r unknown components of vector h in the
form

L(h) = γ. (29)

It is evident that the controller (24) has a full structure if and only if the system of equations
(33) has a solution for any vector γ.
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It can be easy shown that if the parameter vector h consists of the coefficients of numerator
and denominator polynomials of matrix W(q, h), then the system (29) reduced to the linear
system of the form

Lh = γ, (30)

where L is a constant matrix. Note that for any case, the controller (24) has a full structure
only if the system (23) is fully controllable and observable.
Let us now refine the optimization problem (27) statement in suppose that the controller (23)
has a full structure and that the following set ΩH is determined as admissible set of the form

ΩH = {h ∈ Er : δi(h) ∈ C∆, i = 1, 2, ..., nd}. (31)

Here δi is the roots of the characteristic polynomial ∆(z, h), nd = deg∆(z, h).
Let consider two different variants of the desired areas C∆, depicted in Fig. 2. This areas are
located inside a unit circle, i. e. r < 1.

(a) area C∆1 (b) area C∆2

Fig. 2. The areas C∆1 and C∆2 of the desired root displacement

The formalized description for the desired areas C∆ are as follows:
C∆ = C∆1 = {z ∈ C1 : |z| ≤ r}, where r ∈ (0, 1) is a given real number;
C∆ = C∆2 = {z ∈ C1 : z = ρexp(±iϕ), 0 ≤ ρ ≤ r, 0 ≤ ϕ ≤ ψ(ρ)}, where r ∈ (0, 1) is a
given real number, ψ(ξ) is a real function of variable ξ ∈ (0, r], which takes the values on the
interval [0, π] and ψ(r) = 0.
The reasons of these areas introduction is obvious. The first area C∆1 determines the lower
bound for the closed-loop system stability margin and, therefore, the settling time for transient
processes. Second area C∆2 determines stability bound and, in addition, constraints on the
closed-loop system oscillations.
In order to form the algorithm for the problem (27) solution on the admissible set (31), let us
firstly perform the parametrization of the considered areas C∆ with the n-dimensional real
vectors on the base of the following statement.

Theorem 1. For any real vector γ ∈ End the roots of the polynomial ∆∗(z, γ), given by the formulas
presented below, are located inside the area C∆1 or on its bound. And reversly, if the roots of the some

polynomial ∆(z) are located inside the area C∆1 and, in addition, all its real roots are positive, then it
can be found such a vector γ ∈ End that the following identity holds ∆(z) ≡ ∆∗(z, γ). Here

∆∗(z, γ) =
d

∏
i=1

(z2 + a1
i (γ, r)z + a0

i (γ, r)), (32)

if nd is even, d = nd/2;

∆∗(z, γ) = (z − ad+1(γ, r))
d

∏
i=1

(z2 + a1
i (γ, r)z + a0

i (γ, r)), (33)

if nd is odd, d = [nd/2];

a1
i (γ, r) = −r

(
exp

(
− γ2

i1
2 +

√
γ4

i1
4 − γ2

i2

)
+ exp

(
− γ2

i1
2 −

√
γ4

i1
4 − γ2

i2

))
,

a0
i (γ, r) = r2exp

(
−γ2

i1
)

, i = 1, ..., d, ad+1(γ, r) = r exp
(
−γ2

d0
)

,
(34)

γ = {γ11, γ12, γ21, γ22, ..., γd1, γd2, γd0}. (35)

Proof If the nd is even, then the proof of the direct and reverse propositions arises from the
elementary properties of the quadratic trinomials in the formula (32). Really, for any given
pair of the real numbers γi1, γi2 the roots of the trinomial ∆∗

i (z) in (32) are presented by the
expression

zi
1,2 = r · exp


−

γ2
i1
2

±

√
γ4

i1
4

− γ2
i2


 .

From this expression it follows that |zi
1,2| ≤ r and, therefore, the roots zi

1,2 of the trinomial are
located inside the area C∆1 or on its bound, and this proves the direct proposition.
In order to prove reverse one, let consider some quadratic trinomial of the form ∆i(z) =
z2 + β1z + β0. By the conditions of the reverse proposition, the roots z1,2 of this trinomial are
located inside the area C∆1 and, if the roots are real numbers, then they are positive. In order
to locate the roots z1,2 inside the area C∆1, it is necessary and sufficient that the following
relations holds

1 − β1
r

+
β0

r2 ≥ 0, 1 − β0

r2 ≥ 0, 1 +
β1
r

+
β0

r2 ≥ 0. (36)

Besides that, the roots product z1z2 is positive in anycase if they are being complex conjugated
pair or positive real numbers. Therefore, the following inequality is true

β0 > 0. (37)

Let find such numbers γi1 and γi2 that the identity ∆∗
i (z) ≡ ∆i(z) is satisfied. By equating the

correspondent coefficients for the same degrees of z-variable, obtain

−r


exp


−

γ2
i1
2

+

√
γ4

i1
4

− γ2
i2


+ exp


−

γ2
i1
2

−

√
γ4

i1
4

− γ2
i2




 = β1,

r2exp(−γ2
i1) = β0,
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It can be easy shown that if the parameter vector h consists of the coefficients of numerator
and denominator polynomials of matrix W(q, h), then the system (29) reduced to the linear
system of the form

Lh = γ, (30)

where L is a constant matrix. Note that for any case, the controller (24) has a full structure
only if the system (23) is fully controllable and observable.
Let us now refine the optimization problem (27) statement in suppose that the controller (23)
has a full structure and that the following set ΩH is determined as admissible set of the form

ΩH = {h ∈ Er : δi(h) ∈ C∆, i = 1, 2, ..., nd}. (31)

Here δi is the roots of the characteristic polynomial ∆(z, h), nd = deg∆(z, h).
Let consider two different variants of the desired areas C∆, depicted in Fig. 2. This areas are
located inside a unit circle, i. e. r < 1.

(a) area C∆1 (b) area C∆2

Fig. 2. The areas C∆1 and C∆2 of the desired root displacement

The formalized description for the desired areas C∆ are as follows:
C∆ = C∆1 = {z ∈ C1 : |z| ≤ r}, where r ∈ (0, 1) is a given real number;
C∆ = C∆2 = {z ∈ C1 : z = ρexp(±iϕ), 0 ≤ ρ ≤ r, 0 ≤ ϕ ≤ ψ(ρ)}, where r ∈ (0, 1) is a
given real number, ψ(ξ) is a real function of variable ξ ∈ (0, r], which takes the values on the
interval [0, π] and ψ(r) = 0.
The reasons of these areas introduction is obvious. The first area C∆1 determines the lower
bound for the closed-loop system stability margin and, therefore, the settling time for transient
processes. Second area C∆2 determines stability bound and, in addition, constraints on the
closed-loop system oscillations.
In order to form the algorithm for the problem (27) solution on the admissible set (31), let us
firstly perform the parametrization of the considered areas C∆ with the n-dimensional real
vectors on the base of the following statement.

Theorem 1. For any real vector γ ∈ End the roots of the polynomial ∆∗(z, γ), given by the formulas
presented below, are located inside the area C∆1 or on its bound. And reversly, if the roots of the some

polynomial ∆(z) are located inside the area C∆1 and, in addition, all its real roots are positive, then it
can be found such a vector γ ∈ End that the following identity holds ∆(z) ≡ ∆∗(z, γ). Here

∆∗(z, γ) =
d

∏
i=1

(z2 + a1
i (γ, r)z + a0

i (γ, r)), (32)

if nd is even, d = nd/2;

∆∗(z, γ) = (z − ad+1(γ, r))
d

∏
i=1

(z2 + a1
i (γ, r)z + a0

i (γ, r)), (33)

if nd is odd, d = [nd/2];

a1
i (γ, r) = −r

(
exp

(
− γ2

i1
2 +

√
γ4

i1
4 − γ2

i2

)
+ exp

(
− γ2

i1
2 −

√
γ4

i1
4 − γ2

i2

))
,

a0
i (γ, r) = r2exp

(
−γ2

i1
)

, i = 1, ..., d, ad+1(γ, r) = r exp
(
−γ2

d0
)

,
(34)

γ = {γ11, γ12, γ21, γ22, ..., γd1, γd2, γd0}. (35)

Proof If the nd is even, then the proof of the direct and reverse propositions arises from the
elementary properties of the quadratic trinomials in the formula (32). Really, for any given
pair of the real numbers γi1, γi2 the roots of the trinomial ∆∗

i (z) in (32) are presented by the
expression

zi
1,2 = r · exp


−

γ2
i1
2

±

√
γ4

i1
4

− γ2
i2


 .

From this expression it follows that |zi
1,2| ≤ r and, therefore, the roots zi

1,2 of the trinomial are
located inside the area C∆1 or on its bound, and this proves the direct proposition.
In order to prove reverse one, let consider some quadratic trinomial of the form ∆i(z) =
z2 + β1z + β0. By the conditions of the reverse proposition, the roots z1,2 of this trinomial are
located inside the area C∆1 and, if the roots are real numbers, then they are positive. In order
to locate the roots z1,2 inside the area C∆1, it is necessary and sufficient that the following
relations holds

1 − β1
r

+
β0

r2 ≥ 0, 1 − β0

r2 ≥ 0, 1 +
β1
r

+
β0

r2 ≥ 0. (36)

Besides that, the roots product z1z2 is positive in anycase if they are being complex conjugated
pair or positive real numbers. Therefore, the following inequality is true

β0 > 0. (37)

Let find such numbers γi1 and γi2 that the identity ∆∗
i (z) ≡ ∆i(z) is satisfied. By equating the

correspondent coefficients for the same degrees of z-variable, obtain

−r


exp


−

γ2
i1
2

+

√
γ4

i1
4

− γ2
i2


+ exp


−

γ2
i1
2

−

√
γ4

i1
4

− γ2
i2




 = β1,

r2exp(−γ2
i1) = β0,
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and consequently

γi1 =
√
−ln (β0/r2),

γi2 =

√
− 1

4 ln
(

w r2

β0

)
ln

(
w β0

r2

)
, where w =

β2
1

2β0
− 1 +

√(
β2

1
2β0

− 1
)2

− 1.
(38)

Now let verify that the γi1 and γi2, given by the formulas (38), are the real numbers.
Really, from the inequalities (36), (37) it follows that 0 < β0/r2 ≤ 1, therefore −ln

(
β0/r2) ≥ 0

and γi1 is a real number.
Let show that the expression under radical in the formula for γi2 is nonnegative. For the
first, consider the case when the trinomial ∆i(z) has two real positive roots z1,2. Then his
coefficients must satisfies to the condition β2

1 − 4β0 ≥ 0, whence it follows that w ≥ 1 – is a
real number. As a result, taking into account (36), we obtain

ln
(

w · r2/β0

)
≥ 0. (39)

It could be noted that the inequalities (36) implies also the satisfaction of the inequality
β2

1 − 2β0 ≤ r2 + β0/r2. Hence, we have

wβ0 ≤ r2, and − ln
(

wβ0/r2
)
≥ 0. (40)

Thus from the inequalities (39) and (40) it is easy to see that the expression under radical in
the formula for γi2 is nonnegative and γi2 is a real number.
Consider now a case, when the trinomial ∆i(z) has a pair of complex-conjugate roots z1,2.
Then the following inequality is hold β2

1 − 4β0 < 0, and therefore w is a complex number,

which can be presented in the form w = β2
1/2β0 − 1 + i

√
1 −

(
β2

1/2β0 − 1
)2. It is not difficult

to see that |w| = 1, hence, the expression under the radical for γi2 has a form

γi2 =

√
−1

4

(
ln

(
r2

β0

)
+ i · argw

)(
ln

(
β0

r2

)
+ i · argw

)
=

√
1
4

(
ln2

(
r2

β0

)
+ arg2w

)
,

i.e. it is nonnegative and γi2 is a real number.
If the nd is odd, the polynomial ∆∗ has, in according to (33), an additional linear binomial, for
which the propositions of the theorem are evident.�
Now consider more difficult second variant of the admissible set C∆. Let us prove the analo-
gous theorem, which allows to perform parametrization of this area.

Theorem 2. For any real vector γ ∈ End the roots of the polynomial ∆∗(z, γ) (32),(33) are located
inside the area C∆2, and reversly, if the roots of the some polynomial ∆(z) are located inside the area
C∆2 and, in addition, all its real roots are positive, then it can be found such a vector γ ∈ End that the
following identity holds ∆(z) ≡ ∆∗(z, γ). Here

a1
i (γ, r) = −r

(
exp

(
−γ2

i1 + νi
)
+ exp

(
−γ2

i1 − νi
))

,
a0

i (γ, r) = r2exp
(
−2γ2

i1
)

, i = 1, ..., d, ad+1(γ, r) = r · exp(−γ2
d0),

(41)

where νi =
√

γ4
i1 − f (γi2)

(
ψ2

(
r · exp

(
−γ2

i1
))

+ γ4
i1
)
, i = 1, 2, ..., d; γ =

{γ11, γ12, γ21, γ22, ..., γd1, γd2, γd0}.
The function f is such that f (·) : (−∞,+∞) → (0, 1) and its inverse function exists in the whole
region of the definition; the function ψ(ξ) is a real function from the variable ξ ∈ (0, r], which takes
the values in the interval [0, π] and ψ(r) = 0.

Proof Similar to theorem 1, consider the properties of the quadratic trinomials in (32). Firstly,
let prove a direct proposition.
For any given pair of the real numbers γi1, γi2 the roots of the trinomial ∆∗

i (z) in (32) is given
by the expression zi

1,2 = r · exp(−γ2
i1 ± νi). Here two different variants are possible. If νi is a

real number, then the roots zi
1,2 are also real. Besides that, taking into account the properties

of the function f , the following inequality holds γ4
i1 − f (γi2)

(
ψ2 (r · exp(−γ2

i1)
)
+ γ4

i1
)
≤ γ4

i1.
Hence the roots are positive and |zi

1,2| ≤ r, that is zi
1,2 ∈ C∆2.

If νi is a complex number, then zi
1,2 is the pair of complex-conjugated roots and

|zi
1,2| = ρ = r · exp(−γ2

i1) ≤ r. Taking into account the properties of the function f , the
following inequality is valid

ϕ =
√

f (γi2)
(
ψ2

(
r · exp(−γ2

i1)
)
+ γ4

i1
)
− γ4

i1 ≤
√

ψ2
(
r · exp(−γ2

i1)
)
= ψ(ρ). (42)

Since the arg zi
1,2 = ±ϕ and, accordingly to (42), 0 ≤ ϕ ≤ ψ(ρ), then the roots zi

1,2 are located
inside the area C∆2, so the direct proposition is proven.
Let consider the reverse proposition. The roots z1,2 of some trinomial ∆i(z) = z2 + β1z +
β0 are located inside the area C∆2 in accordance with the reverse proposition if these roots
are positive real numbers. Notice that the coefficients of this trinomial must satisfy to the
inequalities (36),(37), because |z1,2| ≤ r and the roots product z1z2 is positive in any way.
Let find such numbers γi1, γi2 that the identity ∆∗

i (z) ≡ ∆i(z) holds. By equating the corre-
spondent coefficients for the same degrees of z-variable, obtain

−r
(

exp
(
−γ2

i1 + νi

)
+ exp

(
−γ2

i1 − νi

))
= βi, r2exp(−2γ2

i1) = β0,

hence
γi1 =

√
−0.5 · ln(β0/r2),

f (γi2) =
1

4
(
ψ2

(
r · exp(−γ2

i1)
)
+ γ4

i1
)


ln2

(
β0

r2

)
− ln2


 β2

1
2β0

− 1 +

√√√√
(

β2
1

2β0
− 1

)2

− 1





 .

Let us show that the γi2 is a real number. For γi1 the proof is equivalent to the such one in the
first theorem.
It is evident that the equation with respect to γi2 has a solution, if the expression in the right
part of it takes the values inside the interval (0,1). Let denote this expression by h. Notice that
the denominator for h is equal to zero only if z1 = z2 = r, but in this case γi2 can be chosen
as any real number. In general case, taking into account the proof of the theorem 1, it is not
difficult to see that h > 0. Besides that the following inequality holds

h < 1 − ln2
(

β2
1/2β0 − 1 +

√(
β2

1/2β0 − 1
)2 − 1

)
/ln2

(
β0/r2

)
,

hence the real number γi2 exists and this one is determined as a solution of the equation
f (γi2) = h.
If the nd is odd, the polynomial ∆∗ has, in accordance with (33), an additional linear binomial,
for which the propositions of the theorem are evident.�
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and consequently

γi1 =
√
−ln (β0/r2),

γi2 =

√
− 1

4 ln
(

w r2

β0

)
ln

(
w β0

r2

)
, where w =

β2
1

2β0
− 1 +

√(
β2

1
2β0

− 1
)2

− 1.
(38)

Now let verify that the γi1 and γi2, given by the formulas (38), are the real numbers.
Really, from the inequalities (36), (37) it follows that 0 < β0/r2 ≤ 1, therefore −ln

(
β0/r2) ≥ 0

and γi1 is a real number.
Let show that the expression under radical in the formula for γi2 is nonnegative. For the
first, consider the case when the trinomial ∆i(z) has two real positive roots z1,2. Then his
coefficients must satisfies to the condition β2

1 − 4β0 ≥ 0, whence it follows that w ≥ 1 – is a
real number. As a result, taking into account (36), we obtain

ln
(

w · r2/β0

)
≥ 0. (39)

It could be noted that the inequalities (36) implies also the satisfaction of the inequality
β2

1 − 2β0 ≤ r2 + β0/r2. Hence, we have

wβ0 ≤ r2, and − ln
(

wβ0/r2
)
≥ 0. (40)

Thus from the inequalities (39) and (40) it is easy to see that the expression under radical in
the formula for γi2 is nonnegative and γi2 is a real number.
Consider now a case, when the trinomial ∆i(z) has a pair of complex-conjugate roots z1,2.
Then the following inequality is hold β2

1 − 4β0 < 0, and therefore w is a complex number,

which can be presented in the form w = β2
1/2β0 − 1 + i

√
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i.e. it is nonnegative and γi2 is a real number.
If the nd is odd, the polynomial ∆∗ has, in according to (33), an additional linear binomial, for
which the propositions of the theorem are evident.�
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Let us show that the γi2 is a real number. For γi1 the proof is equivalent to the such one in the
first theorem.
It is evident that the equation with respect to γi2 has a solution, if the expression in the right
part of it takes the values inside the interval (0,1). Let denote this expression by h. Notice that
the denominator for h is equal to zero only if z1 = z2 = r, but in this case γi2 can be chosen
as any real number. In general case, taking into account the proof of the theorem 1, it is not
difficult to see that h > 0. Besides that the following inequality holds

h < 1 − ln2
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)2 − 1

)
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hence the real number γi2 exists and this one is determined as a solution of the equation
f (γi2) = h.
If the nd is odd, the polynomial ∆∗ has, in accordance with (33), an additional linear binomial,
for which the propositions of the theorem are evident.�
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Now let us show how introced areas C∆1 and C∆2 are related to the standart areas on the
complex plane, which are commonly used in the analysis and synthesis of the continuos time
systems.
Primarily, it may be noticed that the eigenvalues of the continues linear model and the discrete
linear model are connected by the following rule (Hendricks et al., 2008): if s is the eigenvalue
of the continuos time system matrix, then z = esT is the correspondent eigenvalue of the
discrete time system matrix, where T is the sampling period. Taking into account this relation,
let consider the examples of the mapping of some standart areas for continuous systems to the
areas for discrete systems.
Example 1 Let we have given area C = {s = x ± yj ∈ C1 : x ≤ −α}, depicted in Fig. 3. It is
evident that the points of the line x = −α are mapped to the points of the circle |z| = e−αT .
The area C itself is mapped on the disc |z| ≤ e−αT , as shown in Fig.3. This disc corresponds to
the area C∆1, which defines the degree of stability for discrete system.

Fig. 3. The correspondence of the areas for continuous and discrete system

Example 2 Consider the area

C = {s = x ± yj ∈ C1 : x ≤ −α, 0 ≤ y ≤ (−x − α)tgβ},

depicted in Fig. 4, where 0 ≤ β < π
2 and α > 0 is a given real numbers.

Let perform the mapping of the area C on the z-plane. It is evident that the vertex of the angle
(−α, 0) is mapped to the point with polar coordinates r = e−αT , ϕ = 0 on the plane z. Let now
map each segment from the set

Lγ = {s = x ± yj ∈ C1 : x = γ, γ ≤ −α, 0 ≤ y ≤ (−γ − α)tgβ}

to the z-plane. Each point s = γ ± yj of the segment Lγ is mapped to the point z = esT =

eγT±jyT on the plane z. Therefore, the points of the segment Lγ are mapped to the arc of the
circle with radius eγT if the following condition holds −α − π/(Ttgβ) < γ ≤ −α, and to the
whole circle if γ ≤ −α − π/(Ttgβ). Therefore, the maximum radius of the circle, which is
fullfilled by the points of the segment, is equal to r′ = e−αT−π/tgβ, corresponding with the
equality γ0 = −α − π/(Ttgβ). Notice that the rays, which constitutes the angle, mapped to
the logarithmic spirals. Moreover, the bound of the area on the plane z is formed by the arcs
of these spirals in accordace with the x varying from −α to γ0.

Fig. 4. The correspondence of the areas for continuous and discrete time systems

Let introduce the notation ρ = exT , and define the function ψ(ρ), which represents the con-
straints on the argument values while the radius ρ of the circle is fixed:

ψ(ρ) =

{
(−lnρ − αT)tgβ, i f ρ ∈ [r′, r],
π, i f ρ ∈ [0, r′].

The result of the mapping is shown on the Fig. 4. It can be noted that the obtained area reflects
the desired degree of the discrete time system stability and oscillations.
Let us use the results of the theorem 2 in order to formulate the computational algoritm for the
optimization problem (27) solution on the admissible set ΩH taking into account the condition
C∆ = C∆2. It is evident that the first case, where C∆ = C∆2, is a particular case of the second
one.
Consider a real vector γ ∈ End and form the polynomial ∆∗(z, γ) with the help of formulas
(32),(33),(41). Let require that the tuned parameters of the controller (24), defined by the vector
h ∈ Er, provides the identity

∆(z, h) ≡ ∆∗(z, γ), (43)

where ∆(z, h) is the characteristic polynomial of the closed-loop system with the degree nd.
By equating the correspondent coefficients for the same degrees of z-variable, we obtain the
following system of nonlinear equations

L(h) = χ(γ) (44)

with respect to unknown components of the parameters vector h. The last system has a solu-
tion for any given γ ∈ End due to the controller (24) has a full structure. Let consider that, in
general case, the system (44) has a nonunique solution. Then the vector h can be presented as
a set of two vectors h = {h̄, hc}, where hc ∈ Enc is a free component, h̄ is the vector that is
uniquely defined by the solution of the system (44) for the given vector hc.
Let introduce the following notation for the general solution of the system (44)

h = h∗ = {h̄∗(hc, γ), hc} = h∗(γ, hc) = h∗(ε),

where ε = {γ, hc} is a vector of the independent parameters with the dimension λ given by

λ = dim ε = dim γ + dim hc = nd + nc.
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Let form the equations of the prediction model, closed by the controller (24) with the obtained
parameter vector h∗

x̃i+1 = f(x̃i, ũi), i = k + j, j = 0, 1, 2, ..., x̃k = xk,
ũi = ru

i + W(q, h∗(ε))C(x̃i − rx
i ).

(45)

Now the functional Jk, which is given by (26) and computed on the solutions of the system
(45), becomes the function of the vector ε:

Jk = Jk ({x̃i}, {ũi}) = J∗k (W (q, h∗(ε))) = J∗k (ε). (46)

Theorem 3. Consider the optimization problem (27), where ΩH is the admissible set, given by (31),
and the desired area C∆ = C∆2. If the extremum of this problem is achieved at the some point hk0 ∈
ΩH, then there exists a vector ε ∈ Eλ such that

hk0 = h∗(εk0), with εk0 = arg min
ε∈Eλ

J∗k (ε). (47)

And reversly, if there exists such a vector εk0 ∈ Eλ, that satisfies to the condition (47), then the
following vector hk0 = h∗(εk0) is the solution of the optimization problem (27). In other words, the
problem (27) is equivalent to the unconstrained optimization problem of the form

J∗k = J∗k (ε) → inf
ε∈Eλ

. (48)

Proof Assume that the following condition is hold

hk0 = arg min
h∈ΩH

Jk(h), Jk0 = Jk(hk0). (49)

In this case, the characteristic polynomial ∆(z, hk0) of the closed-loop system (28) has the roots
that are located inside the area C∆2. Then, accordingly to the theorem 2, it can be found such
a vector γ = γk0 ∈ End , that ∆(z, hk0) ≡ ∆∗(z, γk0), where ∆∗ is a polynomial formed by the
formulas (32), (33). Hence, there exists such a vector ε = {γk0, hk0c}, for which the following
conditions is hold hk0 = h∗(εk0), J∗k (εk0) = Jk0. Here hk0c is the correspondent constituent
part of the vector hk0.
Now it is only remain to show that there no exists a vector ε01 ∈ Eλ that the condition
J∗k (ε01) < Jk0 is valid. Really, let suppose that such vector exists. But then for the vector
h∗(ε01) the following inequality takes place Jk(h∗(ε01) = J∗k (ε01) < Jk0. But this is not possi-
ble due to the condition (49). The reverse proposition is proved analogously.�
Let formulate the computational algorithm in order to get the solution of the optimization
problem (27) on the base of the theorems proved above.
The algorithm consists of the following operations:

1. Set any vector γ ∈ End and construct the polynomial ∆∗(z, γ) by formulas (32),(33), (41).

2. In accordance with the identity ∆(z, h) ≡ ∆∗(z, γ), form the system of nonlinear equa-
tions

L(h) = χ(γ), (50)

which has a solution for any vector γ. If the system (50) has a nonunique solution,
assign the vector of the free parameters hc ∈ Enc .

3. For a given vector ε = {γ, hc} ∈ Eλ solve the system of equations (50). As a result,
obtain vector h∗(ε).

4. Form the equations of the prediction model closed by the controller (24) with the pa-
rameter vector h∗(ε) and compute the value of the cost function J∗k (ε) (46).

5. Solve the problem (48) by using any numerical method for unconstrained minimization
and repeating the steps 3–5.

6. When the optimal solution εk0 = arg min
ε∈Eλ

J∗k (ε) is found, compute the parameter vector

hk0 = h∗(εk0) and accept them as a solution.

Now real-time MPC algorithm, which is based on the on-line solution of the problem (27), can
be formulated. This algorithm consists of the following steps:

• Obtain the state estimation x̂k on the base of measurements yk.

• Solve the optimization problem (27), using the algorithm stated above, subject to the
prediction model (22) with initial conditions x̃k = x̂k.

• Let hk0 be the solution of the problem (27). Implement controller (24) with the parame-
ter vector hk0 over time interval [kδ, (k + 1)δ], where δ is the sampling period.

• Repeat the whole procedure 1–3 at next time instant (k + 1)δ.

As a result, let notice the following important features of the proposed MPC-algorithm. For
the first, the linear closed-loop system stability is provided at each sampling interval. Sec-
ondly, the control is realised in the feedback loop. Thirdly, the dimension of the unconstrained
optimization problem is fixed and does not depend on the length of prediction horizon P.

5. Plasma Vertical Stabilization Based on the Model Predictive Control

Let us remember that SISO model (5) represents plasma dynamics in the vertical stabilization
process and limits (6) are imposed on the power supply system. It is necessary to transform
the system (5) to the state-space form for MPC algorithms implementation. Besides that, in
order to take into account the constraint imposed on the current, one more equation should
be added to the model (5). Finally, the linear model of the stabilization process is given by

ẋ = Ax + bu,
y = cx + du, (51)

where x ∈ E4 and the last component of x corresponds to VS converter current, y = (y1, y2) ∈
E2, y1 is the vertical velocity and y2 is the current in the VS-converter. We shall assume that
the model (51) describes the process accurately.
We can obtain a linear prediction model in the form (15) by the system (51) discretization. As
a result, we get

x̃i+1 = Ad x̃i + bdũi, x̃k = xk,
ỹi = Cd x̃i.

(52)

The constraints (6) form the system of linear inequalities given by

ũi ≤ VVS
max, i = k, ..., k + P − 1;

ỹi2 ≤ IVS
max, i = k + 1, ..., k + P.

(53)

These constraints define the admissible convex set Ω. The discrete analog of the cost func-
tional (7) with λ = 1 is given by

Jk = Jk(ȳ, ū) =
P

∑
j=1

(
ỹ2

k+j,1 + ũ2
k+j−1

)
. (54)
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ũi ≤ VVS
max, i = k, ..., k + P − 1;
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So, in this case MPC algorithm leads to real-time solution of the quadratic programming prob-
lem (19) with respect to the prediction model (52), constraints (53) and the cost functional (54).
From the experiments the following values for the sampling time and number of sampling
intervals over the horizon were obtained

δ = 0.004 sec, P = 250.

Hence, we have the following prediction horizon

Tp = Pδ = 1 sec .

Let us consider the MPC controller synthesis without taking into account the constraints im-
posed. Remember that in this case we obtain a linear controller (20) that is practically the
same as the LQR-optimal one. The transient response of the system closed by the controller is
presented in Fig. 5. The initial state vector x (0) = h is used, where h is a scaled eigenvector
of the matrix A corresponding to the only unstable eigenvalue. The eigenvector h is scaled to
provide the initial vertical velocity y1 = 0.03 m/sec. It can be seen from the figure that the
constraints (6) imposed on the voltage and current are violated.
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Now consider the MPC algorithm synthesis with constraints. Fig. 6 shows transient response
of the closed-loop system with constrained MPC-controller. It is not difficult to see that all
constraints imposed are satisfied. In order to reduce computational consumptions, the ap-
proaches proposed above in Section 3.2 can be implemented.

1. Experiments with using the control horizon were carried out. This experiments show
that the quality of stabilization remains approximately the same with control horizon
M = 50 and prediction horizon P = 250. So, optimization problem order can be signif-
icantly reduced.

2. Another approach is to increase the sampling interval up to δ = 0.005 sec and reduce
the number of samples down to P = 200. Hence, prediction horizon has the same
value Tp = Pδ = 1 sec. The optimization problem order is also reduced in this case
and consequently time consumptions at each sampling instant is decreased. However,
further increase of δ tends to compromise closed-loop system stability.

Now consider the processes of the plasma vertical stabilization on the base of new MPC-
scheme.
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Let us, for the first, transform system (5) into the state space form. As a result, we get

ẋ = Ax + bu,
y = cx + du, (55)

where x ∈ E3, y is the vertical velocity, u is the voltage in the VS-converter. We shall assume
that this model describes the process accurately.
As early, we can obtain linear prediction model by the system (55) discretization. So, we have
the following prediction model

x̃i+1 = Ad x̃i + bdũi, x̃k = xk,
ỹi = Cd x̃i.

(56)

Let also form the discrete linear model of the process, describing its behavior in the neigh-
bourhood of the zero equilibrium position. Such a model is obtained by the system (55) dis-
cretization and can be presented as follows

x̄k+1 = Ad x̄k + bdūk,
ȳk = Cd x̄k, (57)

where x̄k ∈ E3, ūk ∈ E1, ȳk ∈ E1. We shall form the control over the prediction horizon by the
linear proportional controller, that is given by

ūk = Kx̄k, (58)

where K ∈ E3 is the parameter vector of the controller. In the real processes control input
(58) is computed on the base of the state estimation, obtained with the help of asymptotic
observer. It must be noted that the controller (58) has a full structure, because the matrices of
the controllability and observability for the system (57) have a full rank.
Now consider the equations of the prediction model (56), closed by the controller (58). As a
result, we get

x̃i+1 = (Ad + bdK)x̃i, x̃k = xk,
ỹi = Cd x̃i.

(59)

The controlled processes quality over the prediction horizon P is presented by the cost func-
tional

Jk = Jk(K) =
P

∑
j=1

(
ỹ2

k+j + ũ2
k+j−1

)
. (60)
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So, in this case MPC algorithm leads to real-time solution of the quadratic programming prob-
lem (19) with respect to the prediction model (52), constraints (53) and the cost functional (54).
From the experiments the following values for the sampling time and number of sampling
intervals over the horizon were obtained

δ = 0.004 sec, P = 250.

Hence, we have the following prediction horizon

Tp = Pδ = 1 sec .

Let us consider the MPC controller synthesis without taking into account the constraints im-
posed. Remember that in this case we obtain a linear controller (20) that is practically the
same as the LQR-optimal one. The transient response of the system closed by the controller is
presented in Fig. 5. The initial state vector x (0) = h is used, where h is a scaled eigenvector
of the matrix A corresponding to the only unstable eigenvalue. The eigenvector h is scaled to
provide the initial vertical velocity y1 = 0.03 m/sec. It can be seen from the figure that the
constraints (6) imposed on the voltage and current are violated.
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Now consider the MPC algorithm synthesis with constraints. Fig. 6 shows transient response
of the closed-loop system with constrained MPC-controller. It is not difficult to see that all
constraints imposed are satisfied. In order to reduce computational consumptions, the ap-
proaches proposed above in Section 3.2 can be implemented.

1. Experiments with using the control horizon were carried out. This experiments show
that the quality of stabilization remains approximately the same with control horizon
M = 50 and prediction horizon P = 250. So, optimization problem order can be signif-
icantly reduced.

2. Another approach is to increase the sampling interval up to δ = 0.005 sec and reduce
the number of samples down to P = 200. Hence, prediction horizon has the same
value Tp = Pδ = 1 sec. The optimization problem order is also reduced in this case
and consequently time consumptions at each sampling instant is decreased. However,
further increase of δ tends to compromise closed-loop system stability.

Now consider the processes of the plasma vertical stabilization on the base of new MPC-
scheme.
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Let us, for the first, transform system (5) into the state space form. As a result, we get

ẋ = Ax + bu,
y = cx + du, (55)

where x ∈ E3, y is the vertical velocity, u is the voltage in the VS-converter. We shall assume
that this model describes the process accurately.
As early, we can obtain linear prediction model by the system (55) discretization. So, we have
the following prediction model

x̃i+1 = Ad x̃i + bdũi, x̃k = xk,
ỹi = Cd x̃i.

(56)

Let also form the discrete linear model of the process, describing its behavior in the neigh-
bourhood of the zero equilibrium position. Such a model is obtained by the system (55) dis-
cretization and can be presented as follows

x̄k+1 = Ad x̄k + bdūk,
ȳk = Cd x̄k, (57)

where x̄k ∈ E3, ūk ∈ E1, ȳk ∈ E1. We shall form the control over the prediction horizon by the
linear proportional controller, that is given by

ūk = Kx̄k, (58)

where K ∈ E3 is the parameter vector of the controller. In the real processes control input
(58) is computed on the base of the state estimation, obtained with the help of asymptotic
observer. It must be noted that the controller (58) has a full structure, because the matrices of
the controllability and observability for the system (57) have a full rank.
Now consider the equations of the prediction model (56), closed by the controller (58). As a
result, we get

x̃i+1 = (Ad + bdK)x̃i, x̃k = xk,
ỹi = Cd x̃i.

(59)

The controlled processes quality over the prediction horizon P is presented by the cost func-
tional

Jk = Jk(K) =
P

∑
j=1

(
ỹ2

k+j + ũ2
k+j−1

)
. (60)
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It is easy to see that the cost functional (60) becomes the function of three variables, which
are the components of the parameter vector K. It is important to note that the cost function
remains essentialy nonlinear for this variant of the MPC approach even in the case when the
prediction model is linear. It is a price for providing stability of the closed-loop linear system.
Consider the optimization problem (27) statement for the particular case of plasma vertical
stabilization processes

Jk = Jk(K) → min
K∈ΩK

, where ΩK = {K ∈ E3 : δi(K) ∈ C∆, i = 1, 2, 3}. (61)

Here δi are the roots of the closed-loop system (57), (58) characteristic polynomial ∆(z, K) with
the degree nd = 3. Let given desirable area be C∆ = C∆2, where r = 0.97 and the function
ψ(ρ) is presented by the formula

ψ(ρ) =

{
ln

(
r
ρ

)
tgβ, re−π/tgβ ≤ ρ ≤ r,

π, i f 0 < ρ ≤ re−π/tgβ,

where β = π/10. This area is presented on the Fig. 7.
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Let construct now the system of equations in accordance with the identity ∆(z, K) ≡ ∆∗(z, γ),
where γ ∈ E3 and the polynomial ∆∗(z, γ) is defined by the formulas (33), (41). As a result,
we obtain linear system with respect to unknown parameter vector K

L0 + L1K = χ(γ). (62)

Here vector L0 and square matrix L1 are constant for any sampling instant k. These are fully
defined by the matrices of the system (57). Besides that, the matrix L1 is nonsingular, hence
we can find the unique solution for system (62)

K = L̃0 + L̃1χ(γ), (63)

where L̃1 = L−1
1 and L̃0 = −L−1

1 L0. Substituting (63) into the prediction model (59) and then
into the cost functional (60), we get Jk = Jk(K) = J∗k (γ). That is the functional Jk becomes

the function of three indepent variables. Then, accordingly to the theorem 3, optimization
problem (61) is equivalent to the unconstrained minimization

J∗k = J∗k (γ) → min
γ∈E3

. (64)

Thus, in conformity with the algorithm of the MPC real-time implementation, presented in the
section 4 above, in order to form control input we must solve the unconstrained optimization
problem (64) at each sampling instant.
Consider now the processes of the plasma vertical stabilization. For the first, let us consider
the unconstrained case. Remember that the structure of the controller (58) is linear. So, if
the roots of the characteristic polynomial for the system (57) closed by the LQR-controller
are located inside the area C∆ then parameter vector K will be practically equivalent to the
matrix of the LQR-controller. The roots of the system closed by the discrete LQR are the
following z1 = 0.9591, z2 = 0.8661, z3 = 0.9408. This roots are located inside the area C∆.
So, the transient responce of the system closed by the MPC-controller, which is based on the
optimization (64), is approximately the same as presented in Fig. 5.
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Fig. 8. Transient response of the closed-loop system with constrained MPC-controller

Consider now the processes of plasma stabilization with the constraints (53) imposed. As
mentioned above, in order to take into account the constraint imposed on the current, the
additional equation should be added. It is necessary to remark that in the presence of the con-
straints, the optimization problem (64) becomes the nonlinear programming problem. Fig.8
shows transient responce of the closed-loop system with MPC-controller when the only con-
straint on the VS converter voltage is taked into account. It can be seen from the figure that
the constraint imposed on the voltage is satisfied, but the constraint on the current is violated.
Fig.9 shows transient responce of the closed-loop system with MPC-controller when both the
constraint on the VS converter voltage and current are taken into account. It is not difficult to
see that all the imposed constraints are satisfied.

6. Conclusion

The problem of plasma vertical stabilization based on the model predictive control has been
considered. It is shown that MPC algorithms are superior compared to the LQR-optimal con-
troller, because they allow taking constraints into account and provide high-performance con-
trol. It is also shown that in the case of the traditional MPC-scheme it is possible to reduce
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Let construct now the system of equations in accordance with the identity ∆(z, K) ≡ ∆∗(z, γ),
where γ ∈ E3 and the polynomial ∆∗(z, γ) is defined by the formulas (33), (41). As a result,
we obtain linear system with respect to unknown parameter vector K

L0 + L1K = χ(γ). (62)

Here vector L0 and square matrix L1 are constant for any sampling instant k. These are fully
defined by the matrices of the system (57). Besides that, the matrix L1 is nonsingular, hence
we can find the unique solution for system (62)

K = L̃0 + L̃1χ(γ), (63)

where L̃1 = L−1
1 and L̃0 = −L−1

1 L0. Substituting (63) into the prediction model (59) and then
into the cost functional (60), we get Jk = Jk(K) = J∗k (γ). That is the functional Jk becomes

the function of three indepent variables. Then, accordingly to the theorem 3, optimization
problem (61) is equivalent to the unconstrained minimization

J∗k = J∗k (γ) → min
γ∈E3

. (64)

Thus, in conformity with the algorithm of the MPC real-time implementation, presented in the
section 4 above, in order to form control input we must solve the unconstrained optimization
problem (64) at each sampling instant.
Consider now the processes of the plasma vertical stabilization. For the first, let us consider
the unconstrained case. Remember that the structure of the controller (58) is linear. So, if
the roots of the characteristic polynomial for the system (57) closed by the LQR-controller
are located inside the area C∆ then parameter vector K will be practically equivalent to the
matrix of the LQR-controller. The roots of the system closed by the discrete LQR are the
following z1 = 0.9591, z2 = 0.8661, z3 = 0.9408. This roots are located inside the area C∆.
So, the transient responce of the system closed by the MPC-controller, which is based on the
optimization (64), is approximately the same as presented in Fig. 5.
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Consider now the processes of plasma stabilization with the constraints (53) imposed. As
mentioned above, in order to take into account the constraint imposed on the current, the
additional equation should be added. It is necessary to remark that in the presence of the con-
straints, the optimization problem (64) becomes the nonlinear programming problem. Fig.8
shows transient responce of the closed-loop system with MPC-controller when the only con-
straint on the VS converter voltage is taked into account. It can be seen from the figure that
the constraint imposed on the voltage is satisfied, but the constraint on the current is violated.
Fig.9 shows transient responce of the closed-loop system with MPC-controller when both the
constraint on the VS converter voltage and current are taken into account. It is not difficult to
see that all the imposed constraints are satisfied.

6. Conclusion

The problem of plasma vertical stabilization based on the model predictive control has been
considered. It is shown that MPC algorithms are superior compared to the LQR-optimal con-
troller, because they allow taking constraints into account and provide high-performance con-
trol. It is also shown that in the case of the traditional MPC-scheme it is possible to reduce
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Fig. 9. Transient response of the closed-loop system with constrained MPC-controller

the computational load significantly using relatively small control horizon or by increasing
sample interval while preserving the processes quality in the closed-loop system.
New MPC approach was provided. This approach allows us to guarantee linear closed-loop
system stability. It’s implementation in real-time is connected with the on-line solution of the
unconstrained nonlinear optimization problem if there is not constraint imposed and with the
nonlinear programming problem in the presence of constraints. The significant feature of this
approach is that the dimension of the optimization problem is not depend on the prediction
horizon P. The algorithm for the real-time implementation of the suggested approach was
described. It allows us to use MPC algorithms to solve plasma vertical stabilization problem.
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the computational load significantly using relatively small control horizon or by increasing
sample interval while preserving the processes quality in the closed-loop system.
New MPC approach was provided. This approach allows us to guarantee linear closed-loop
system stability. It’s implementation in real-time is connected with the on-line solution of the
unconstrained nonlinear optimization problem if there is not constraint imposed and with the
nonlinear programming problem in the presence of constraints. The significant feature of this
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1. Introduction 

Tethered satellite systems have many potential applications, ranging from upper 
atmospheric research (Colombo et al., 1975) to momentum transfer (Nordley & Forward, 
2001; Williams et al., 2004). The major dynamical features of the system have been studied 
extensively (Misra & Modi, 1986), but there still remain open questions with regard to 
control (Blanksby & Trivailo, 2000).  Many of the open issues stem from the fact that there 
have been limited flight tests.  The most recent flight of the Young Engineers’ Satellite 2 
(YES-2) highlighted from its results that tether dynamic modelling is relatively mature, but 
that there is a need to provide fault tolerant design in the control and sensor subsystems 
(Kruijff et al., 2009).  
In applications such as momentum transfer and payload capture, it is imperative that 
robust, accurate and efficient controllers can be designed.  For example, although it is 
conceivable to use onboard thrusters to manipulate the motion of the tethered satellite, this 
negates some of the advantages of using tethers, i.e., little to no fuel expenditure in ideal 
circumstances.  The main source of control, therefore, has to be sought from manipulating 
the length of deployed tether.  This has two main aims: first, the length of tether directly 
controls the distance of the tether tip from the main spacecraft, and second, changes in 
tether length induce Coriolis-type forces on the system due to the orbital motion, which 
allows indirect control over the swing motion of the tether (librations).  Typically, control 
over the tether length is achieved via manipulating the tension at the mother satellite (Rupp, 
1975; Lorenzini et al., 1996).  This can help to prevent the tether from becoming slack – a 
situation that can lead to loss of control of the system. 
A variety of different control strategies have been proposed in the literature on tethered 
systems.  Much of the earlier work focused on controlling the deployment and retrieval 
processes (Xu et al., 1981; Misra & Modi, 1982; Fujii & Anazawa, 1994).  This was usually 
achieved by combining an open-loop length control scheme with feedback of the tether 
states, either appearing linearly or nonlinearly.  Other schemes were devoted to ensuring 
nonlinear asymptotic stability through the use of Lyapunov’s second method (Fujii & 
Ishijima, 1989; Fujii, 1991; Vadali & Kim, 1991).  Most of these techniques do not ensure well-
behaved dynamics, and can be hard to tune to make the deployment and retrieval fast.  

10
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Because deployment and retrieval is an inherent two-point boundary value problem, it 
makes much more sense to approach the problem from the point-of-view of optimal control. 
Several examples of the application of optimal control theory to tethered satellite systems 
can be found (Fujii & Anazawa, 1994; Barkow, 2003; Lakso & Coverstone, 2000).  However, 
the direct application of the necessary conditions for optimality leads to an extremely 
numerically sensitive two-point boundary value problem.  The state-costate equations are 
well-known to suffer from instability, but the tethered satellite problem is notorious because 
of the instability of the state equations to small errors in the control tension.  More recent 
work has focused on the application of direct transcription methods to the tethered satellite 
problem (Lakso & Coverstone, 2000; Williams, 2008; Williams & Blanksby, 2008).  This 
provides advantages with respect to robustness of convergence and is typically orders of 
magnitude faster than other methods. 
In recent work, the effect of the performance index used in solving the optimal control 
problem for tethered satellites was examined in detail (Williams, 2008).  The work in 
(Williams, 2008) was prompted by the fact that bang-bang tension control trajectories have 
been proposed (Barkow, 2003), which is extremely undesirable for controlling a flexible 
tether.  The conclusions reached in (Williams, 2008) suggest that an inelastic tether model 
can be sufficient to design the open-loop trajectory, provided the cost function is suitably 
selected.  Suitable costs include the square of the tether length acceleration, tension rate or 
tension acceleration.  These trajectories lead to very smooth variations in the dynamics, 
which ultimately improves the tracking capability of feedback controllers, and reduces the 
probability of instabilities. 
Much of the previous work on optimal control of tethered satellites has focused on 
obtaining solutions, as opposed to obtaining rapid solutions.  Some of the ideas that will be 
explored in this paper have been discussed in (Williams, 2004), which presented two 
approaches for implementing an optimal-based controller for tethered satellites.  One of the 
methods was based on quasilinearization of the necessary conditions for optimality 
combined with a pseudospectral discretization, whereas the second was a direct 
discretization of the continuous optimal control problem.  In (Williams, 2004), NPSOL was 
used as the nonlinear programming (NLP) solver, which implements methods based on 
dense linear algebra, and is significantly slower than the sparse counterpart SNOPT (Gill et 
al., 2002).   
The aforementioned YES-2 mission had the aim of deploying a 32 km long tether in two 
phases. The first phase had the objective of stabilizing the tether swinging motion 
(librations) at the local vertical with the tether length at 3.5 km. The second phase had the 
objective of inducing a sufficient swinging motion at the end of deployment to allow a 
specially designed payload to re-enter the atmosphere and be recovered in Khazikstan.  The 
deployment controller consisted of using a reference trajectory computed offline via direct 
transcription (Williams et al., 2008), in combination with a feedback controller to stabilize 
the deployment dynamics.  The feedback controller used a time-varying feedback gain 
calculated via a receding horizon approach documented in (Williams, 2005).  Flight results 
showed that despite very large perturbations from nominal, the tether was deployed 
successfully in the first phase. An issue with one of the sensors that measured the 
deployment rate caused the feedback controller to believe that the tether was being 
deployed too slowly. As a consequence, the tether was deployed too quickly. It has been 

shown that the tether was nonetheless fully deployed, making it the longest tether ever 
deployed in space. 
The aim of this Chapter is to explore the possibility of providing real-time optimal control 
for a tethered satellite system.  A realistic tether model is combined with a nonlinear Kalman 
filter for estimating the tether state based on available measurements.  A nonlinear model 
predictive controller is implemented to satisfy the mission requirements. 

 
2. System Model 

In order to generate rapid optimal trajectories and test closed-loop performance for a real 
system, it is necessary to introduce mathematical models of varying fidelity.  In this chapter, 
two models are distinguished: 1) a high fidelity truth model, 2) a low fidelity control model.  
A truth model is required for testing the closed-loop performance of the controller in a 
representative environment. Typically, the truth model will incorporate effects that are not 
present in the model used by the controller. In the simplest case, these can be environmental 
disturbances. Truth models are usually of higher fidelity than the control model, and as 
such, they become difficult to use for real-time closed-loop control. For this reason, it is 
necessary to employ a reduced order model in the controller.  It should be pointed out that a 
truth model will typically include a set of parameter perturbations that alter the 
characteristics of the simulated system compared to the assumptions made in the control 
model.  Such perturbations are used in Monte Carlo simulations of the closed-loop system to 
gather statistics on the controller performance. 
For the particular case of a tethered satellite system, there are a number of important 
dynamics that exist in the real system: 1) Rigid-body, librations of the tether in- and out-
plane, 2) Lateral string oscillations of the tether between the tether attachment points, 3) 
Longitudinal spring-mass oscillations of the tether, 4) Rigid body motions of the end bodies, 
5) Orbital perturbations caused by exchange of angular momentum from the tethered 
system with orbital angular momentum.  All of these dynamic modes are coupled to 
varying degrees.  However, the dominant dynamics are due to (1) and (2) as these directly 
impact the short-term response of the system. 
The following subsections derive the fundamental equations of motion for modeling the 
tethered system taking into account the dominant dynamics.  A simplified model suitable 
for model predictive control is then developed. 

 
2.1 Truth Model 
The most sophisticated models for tethered satellite systems treat the full effects of tether 
elasticity and flexibility. Examples include models based on discretization by assumed 
modes (Xu et al., 1986) or discretization by lumped masses (Kim & Vadali, 1995).  In a 
typical lumped mass model, the tether is discretized into a series of point masses connected 
by elastic springs. The tension in each element can be computed explicitly based on the 
positions of the adjacent lumped masses.  It is well known that the equations of motion for 
the system are ‘stiff’, referring to the fact that the dynamics occur over very different 
timescales, requiring small integration step sizes to capture the very high frequency modes.  
For a tethered satellite system, the high frequency modes are the longitudinal elastic modes, 
followed by the string modes of the tether, libration modes, and finally the orbital motion.  
For short duration missions or analysis, the longitudinal modes are unlikely to have a 
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Because deployment and retrieval is an inherent two-point boundary value problem, it 
makes much more sense to approach the problem from the point-of-view of optimal control. 
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can be found (Fujii & Anazawa, 1994; Barkow, 2003; Lakso & Coverstone, 2000).  However, 
the direct application of the necessary conditions for optimality leads to an extremely 
numerically sensitive two-point boundary value problem.  The state-costate equations are 
well-known to suffer from instability, but the tethered satellite problem is notorious because 
of the instability of the state equations to small errors in the control tension.  More recent 
work has focused on the application of direct transcription methods to the tethered satellite 
problem (Lakso & Coverstone, 2000; Williams, 2008; Williams & Blanksby, 2008).  This 
provides advantages with respect to robustness of convergence and is typically orders of 
magnitude faster than other methods. 
In recent work, the effect of the performance index used in solving the optimal control 
problem for tethered satellites was examined in detail (Williams, 2008).  The work in 
(Williams, 2008) was prompted by the fact that bang-bang tension control trajectories have 
been proposed (Barkow, 2003), which is extremely undesirable for controlling a flexible 
tether.  The conclusions reached in (Williams, 2008) suggest that an inelastic tether model 
can be sufficient to design the open-loop trajectory, provided the cost function is suitably 
selected.  Suitable costs include the square of the tether length acceleration, tension rate or 
tension acceleration.  These trajectories lead to very smooth variations in the dynamics, 
which ultimately improves the tracking capability of feedback controllers, and reduces the 
probability of instabilities. 
Much of the previous work on optimal control of tethered satellites has focused on 
obtaining solutions, as opposed to obtaining rapid solutions.  Some of the ideas that will be 
explored in this paper have been discussed in (Williams, 2004), which presented two 
approaches for implementing an optimal-based controller for tethered satellites.  One of the 
methods was based on quasilinearization of the necessary conditions for optimality 
combined with a pseudospectral discretization, whereas the second was a direct 
discretization of the continuous optimal control problem.  In (Williams, 2004), NPSOL was 
used as the nonlinear programming (NLP) solver, which implements methods based on 
dense linear algebra, and is significantly slower than the sparse counterpart SNOPT (Gill et 
al., 2002).   
The aforementioned YES-2 mission had the aim of deploying a 32 km long tether in two 
phases. The first phase had the objective of stabilizing the tether swinging motion 
(librations) at the local vertical with the tether length at 3.5 km. The second phase had the 
objective of inducing a sufficient swinging motion at the end of deployment to allow a 
specially designed payload to re-enter the atmosphere and be recovered in Khazikstan.  The 
deployment controller consisted of using a reference trajectory computed offline via direct 
transcription (Williams et al., 2008), in combination with a feedback controller to stabilize 
the deployment dynamics.  The feedback controller used a time-varying feedback gain 
calculated via a receding horizon approach documented in (Williams, 2005).  Flight results 
showed that despite very large perturbations from nominal, the tether was deployed 
successfully in the first phase. An issue with one of the sensors that measured the 
deployment rate caused the feedback controller to believe that the tether was being 
deployed too slowly. As a consequence, the tether was deployed too quickly. It has been 

shown that the tether was nonetheless fully deployed, making it the longest tether ever 
deployed in space. 
The aim of this Chapter is to explore the possibility of providing real-time optimal control 
for a tethered satellite system.  A realistic tether model is combined with a nonlinear Kalman 
filter for estimating the tether state based on available measurements.  A nonlinear model 
predictive controller is implemented to satisfy the mission requirements. 

 
2. System Model 

In order to generate rapid optimal trajectories and test closed-loop performance for a real 
system, it is necessary to introduce mathematical models of varying fidelity.  In this chapter, 
two models are distinguished: 1) a high fidelity truth model, 2) a low fidelity control model.  
A truth model is required for testing the closed-loop performance of the controller in a 
representative environment. Typically, the truth model will incorporate effects that are not 
present in the model used by the controller. In the simplest case, these can be environmental 
disturbances. Truth models are usually of higher fidelity than the control model, and as 
such, they become difficult to use for real-time closed-loop control. For this reason, it is 
necessary to employ a reduced order model in the controller.  It should be pointed out that a 
truth model will typically include a set of parameter perturbations that alter the 
characteristics of the simulated system compared to the assumptions made in the control 
model.  Such perturbations are used in Monte Carlo simulations of the closed-loop system to 
gather statistics on the controller performance. 
For the particular case of a tethered satellite system, there are a number of important 
dynamics that exist in the real system: 1) Rigid-body, librations of the tether in- and out-
plane, 2) Lateral string oscillations of the tether between the tether attachment points, 3) 
Longitudinal spring-mass oscillations of the tether, 4) Rigid body motions of the end bodies, 
5) Orbital perturbations caused by exchange of angular momentum from the tethered 
system with orbital angular momentum.  All of these dynamic modes are coupled to 
varying degrees.  However, the dominant dynamics are due to (1) and (2) as these directly 
impact the short-term response of the system. 
The following subsections derive the fundamental equations of motion for modeling the 
tethered system taking into account the dominant dynamics.  A simplified model suitable 
for model predictive control is then developed. 

 
2.1 Truth Model 
The most sophisticated models for tethered satellite systems treat the full effects of tether 
elasticity and flexibility. Examples include models based on discretization by assumed 
modes (Xu et al., 1986) or discretization by lumped masses (Kim & Vadali, 1995).  In a 
typical lumped mass model, the tether is discretized into a series of point masses connected 
by elastic springs. The tension in each element can be computed explicitly based on the 
positions of the adjacent lumped masses.  It is well known that the equations of motion for 
the system are ‘stiff’, referring to the fact that the dynamics occur over very different 
timescales, requiring small integration step sizes to capture the very high frequency modes.  
For a tethered satellite system, the high frequency modes are the longitudinal elastic modes, 
followed by the string modes of the tether, libration modes, and finally the orbital motion.  
For short duration missions or analysis, the longitudinal modes are unlikely to have a 
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significant effect on the overall motion (provided the tether remains taut).  Thus, in this 
model the effects of longitudinal vibrations are ignored, and the tether is divided into a 
series of point masses connected via inelastic links.  The geometric shortening of the 
distance to the tether tip is accounted for due to the changes in geometry of the system, but 
stretching of the tether is not.  The degree of approximation is controlled by the number of 
discretized elements that are used. 
The tether is modeled as consisting of a series of n  point masses connected via inelastic 
links, as shown in Fig. 1. The ( , , )x y z  coordinate system rotates at the orbit angular velocity 
and is assumed to be attached at the center of mass of the orbit (mother satellite).  Although 
not a necessary assumption in the model, it is assumed that the orbit of the mother satellite 
is prescribed and remains Keplerian. In general, this coordinate system would orbit in a 
plane defined by the classical orbital elements (argument of perigee, inclination, longitude 
of ascending node). In the presence of a Newtonian gravitational field, the orientation of the 
orbital plane does not affect the system dynamics. However, it does affect any aerodynamic 
or electrodynamic forces due to the nature of the Earth’s rotating atmosphere and magnetic 
field. These effects are not considered here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Discretized multibody tether model. 
 
The acceleration of a mass in the rotating frame is given by 
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where w k m= 2 3/ p  is the orbital angular velocity, = - 2(1 )p a e  is the semilatus rectum, 
m  is the Earth’s gravitational parameter, e is the orbit eccentricity, 1 cosek n= + , and a is 
the orbit semimajor axis. The contribution of forces due to the gravity-gradient is given by 
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Note that in Equation (1), the contributions due to the center of mass motion R  and 
corresponding true anomaly n  are cancelled with the Newtonian gravity terms for the 
system center of mass.  This is valid if the system is assumed to be in a Keplerian orbit. 
Define the tension vector in the j th segment as 
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where jm  is the mass of the jth cable mass, and ( , , )yx z

j jjF F F  is the vector of external forces 

acting on the jth mass in the orbital frame.  Substitution of Equations (4) through (6) into 
Equation (8) gives the governing equations of motion in spherical coordinates.  The 
equations of motion may be decoupled by employing a matrix transformation and forward 
substitution of the results.  By multiplying the vector of Equation (8) by the matrix 
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the general decoupled equations of motion can be expressed as 
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significant effect on the overall motion (provided the tether remains taut).  Thus, in this 
model the effects of longitudinal vibrations are ignored, and the tether is divided into a 
series of point masses connected via inelastic links.  The geometric shortening of the 
distance to the tether tip is accounted for due to the changes in geometry of the system, but 
stretching of the tether is not.  The degree of approximation is controlled by the number of 
discretized elements that are used. 
The tether is modeled as consisting of a series of n  point masses connected via inelastic 
links, as shown in Fig. 1. The ( , , )x y z  coordinate system rotates at the orbit angular velocity 
and is assumed to be attached at the center of mass of the orbit (mother satellite).  Although 
not a necessary assumption in the model, it is assumed that the orbit of the mother satellite 
is prescribed and remains Keplerian. In general, this coordinate system would orbit in a 
plane defined by the classical orbital elements (argument of perigee, inclination, longitude 
of ascending node). In the presence of a Newtonian gravitational field, the orientation of the 
orbital plane does not affect the system dynamics. However, it does affect any aerodynamic 
or electrodynamic forces due to the nature of the Earth’s rotating atmosphere and magnetic 
field. These effects are not considered here. 
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These equations may be nondimensionalized by utilizing the following relationships 
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Thus, the following nondimensional equations of motion are obtained 
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Equations (16) through (18) utilize the orbit true anomaly n  as independent variable, and L 
is a scaling length representing the length of each tether element when fully deployed.  The 
applicable boundary conditions are 
 
 + += = = ¥ =0 0 1 10, 0, , 0n nm u m u  (19) 
 
The equations (16) through (18) define the dynamics of the tethered satellite system using 
spherical coordinates.  These are not as general as Cartesian coordinates due to the 
singularity introduced when p pf =- 2 2,j .  This represents very large out of plane librational 
motion or very large out of plane lateral motion.  Although this is a limitation of the model, 
such situations need to be avoided for most practical missions. 
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These equations may be nondimensionalized by utilizing the following relationships 
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Equations (16) through (18) utilize the orbit true anomaly n  as independent variable, and L 
is a scaling length representing the length of each tether element when fully deployed.  The 
applicable boundary conditions are 
 
 + += = = ¥ =0 0 1 10, 0, , 0n nm u m u  (19) 
 
The equations (16) through (18) define the dynamics of the tethered satellite system using 
spherical coordinates.  These are not as general as Cartesian coordinates due to the 
singularity introduced when p pf =- 2 2,j .  This represents very large out of plane librational 
motion or very large out of plane lateral motion.  Although this is a limitation of the model, 
such situations need to be avoided for most practical missions. 
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2.1.1 Variable Length Case 
The tether is modeled as a collection of lumped masses connected by inelastic links, which 
makes dealing with the case of a variable length tether more difficult than if the tether was 
modeled as a single link.  In particular, it is necessary to have a state vector of variable 
dimension and to add and subtract elements from the model at appropriate times.  When 
the tether is treated as elastic, great care needs to be exercised to ensure that the introduction 
of new elements does not create unnecessary cable oscillations.  This can happen if the 
position of the new mass results in the incorrect tension in the new element.  However, for 
an inelastic tether, the introduction of a new mass occurs such that it is placed along the 
same line as the existing element.  Thus, the new initial conditions for the incoming element 
are that it has the same angles and angle rates as the existing element (closest to the 
deployer).  Alternative formulations based on the variation principle of Hamilton-
Ostrogradksi and which transform the deployed length to a fixed interval by means of a 
new spatial coordinate have also been used (Wiedermann et al., 1999).  However, this was 
not considered in this work. 
If the critical length for introduction of a new element is defined as L +* *1 k , then the 
new element is initialized with a length of *k  in nondimensional units, and the same length 
rate as the previous nth element.  During retrieval, elements must be removed.  Here, the 
nth element to be removed and the (n-1)th element need to be used to update the initial 
conditions for the new *n th element.  In this work, the position and velocity of the (n-1)th 
mass is used to initialize the *n th element.  Thus, let 
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where atan2 represents the four quadrant inverse tangent where the usual arctangent is 
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It should be noted that these updates keep the position and velocity of the (n-1)th mass the 
same across the update. The reason for this is that the positions and velocities of all 
subsequent masses depend on the position/velocity of the nth mass. Hence, if this is 
changed, then the position and velocity of all masses representing the tether change 
instantaneously. The accuracy of the updates depend on the transition parameter **k , which 
is used to monitor the length of the nth segment.  An element is removed when L < **

n k .  
Because the tether is inelastic, altering the length of the new nth element does not keep the 
total tether length or mass constant unless the nth and (n-1)th elements are tangential.  
Therefore, by choosing **k  small enough, the errors in the approximation can be made 
small. 
For control purposes, it is assumed that the rate of change of reel-rate is controlled.  Thus, 

n¢¢L  is specified or determined through a control law.  This means that the nth element is 
allowed to vary in length, but all other segments remained fixed in length.  The problem is 
to then solve for the unknown tension constraints that enforce constant total length of the 
remaining segments, as well as the acceleration of the nth segment.  Once these are known, 
they are back-substituted into Equations (16) and (17), as well as Equation (18) for the nth 
element.  The equations formed by the set (18) are linear in the tensions ju , and can thus be 
solved using standard techniques.  This assumes that the segment lengths, length rates, and 
length accelerations are specified.  In this work, LAPACK is utilized in solving the 
simultaneous equations. 

 
2.1.2 Fixed Length Case 
To simulate the case of a fixed length tether, Equations (18) are set to zero for = 1,...,j n , 
allowing the unknown tensions =, 1,...,ju j n  to be determined.  The resulting tensions are 
substituted back into the librational dynamics to determine the evolution of the system 
dynamics. 

 
2.2 Control Model 
The predominant modeling assumption that is used in the literature insofar as control of 
tethered satellite systems is concerned is that the system can be modeled with three degrees 
of freedom (Williams, 2008). In other words, when dealing with the librational motion of the 
system, it is sufficient to model it using spherical coordinates representing the dynamics of 
the subsatellite. This effectively treats the tether as a straight body, which can either be 
modeled as an inelastic or elastic rod. Early work has neglected the tether mass since its 
contribution to the librational motion can be considered relatively small (Fujii & Anazawa, 
1994). This is due to the fact that the tether is axisymmetric. When large changes in length 
are considered, the effect of tether mass becomes more important. Moreover, it is essential to 
include the effects of tether mass when designing tension control laws because there is a 
nonlinear relationship between tension and tether mass. However, when performing 
preliminary analyses, it is sufficient to ignore such effects and compensate for these later in 
the design. 
Although the assumption of treating the tether as a straight rod is often a good one, it can 
create some problems in practice. For example, all tether string vibrations are neglected, 
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2.1.1 Variable Length Case 
The tether is modeled as a collection of lumped masses connected by inelastic links, which 
makes dealing with the case of a variable length tether more difficult than if the tether was 
modeled as a single link.  In particular, it is necessary to have a state vector of variable 
dimension and to add and subtract elements from the model at appropriate times.  When 
the tether is treated as elastic, great care needs to be exercised to ensure that the introduction 
of new elements does not create unnecessary cable oscillations.  This can happen if the 
position of the new mass results in the incorrect tension in the new element.  However, for 
an inelastic tether, the introduction of a new mass occurs such that it is placed along the 
same line as the existing element.  Thus, the new initial conditions for the incoming element 
are that it has the same angles and angle rates as the existing element (closest to the 
deployer).  Alternative formulations based on the variation principle of Hamilton-
Ostrogradksi and which transform the deployed length to a fixed interval by means of a 
new spatial coordinate have also been used (Wiedermann et al., 1999).  However, this was 
not considered in this work. 
If the critical length for introduction of a new element is defined as L +* *1 k , then the 
new element is initialized with a length of *k  in nondimensional units, and the same length 
rate as the previous nth element.  During retrieval, elements must be removed.  Here, the 
nth element to be removed and the (n-1)th element need to be used to update the initial 
conditions for the new *n th element.  In this work, the position and velocity of the (n-1)th 
mass is used to initialize the *n th element.  Thus, let 
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From which 
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It should be noted that these updates keep the position and velocity of the (n-1)th mass the 
same across the update. The reason for this is that the positions and velocities of all 
subsequent masses depend on the position/velocity of the nth mass. Hence, if this is 
changed, then the position and velocity of all masses representing the tether change 
instantaneously. The accuracy of the updates depend on the transition parameter **k , which 
is used to monitor the length of the nth segment.  An element is removed when L < **

n k .  
Because the tether is inelastic, altering the length of the new nth element does not keep the 
total tether length or mass constant unless the nth and (n-1)th elements are tangential.  
Therefore, by choosing **k  small enough, the errors in the approximation can be made 
small. 
For control purposes, it is assumed that the rate of change of reel-rate is controlled.  Thus, 

n¢¢L  is specified or determined through a control law.  This means that the nth element is 
allowed to vary in length, but all other segments remained fixed in length.  The problem is 
to then solve for the unknown tension constraints that enforce constant total length of the 
remaining segments, as well as the acceleration of the nth segment.  Once these are known, 
they are back-substituted into Equations (16) and (17), as well as Equation (18) for the nth 
element.  The equations formed by the set (18) are linear in the tensions ju , and can thus be 
solved using standard techniques.  This assumes that the segment lengths, length rates, and 
length accelerations are specified.  In this work, LAPACK is utilized in solving the 
simultaneous equations. 

 
2.1.2 Fixed Length Case 
To simulate the case of a fixed length tether, Equations (18) are set to zero for = 1,...,j n , 
allowing the unknown tensions =, 1,...,ju j n  to be determined.  The resulting tensions are 
substituted back into the librational dynamics to determine the evolution of the system 
dynamics. 

 
2.2 Control Model 
The predominant modeling assumption that is used in the literature insofar as control of 
tethered satellite systems is concerned is that the system can be modeled with three degrees 
of freedom (Williams, 2008). In other words, when dealing with the librational motion of the 
system, it is sufficient to model it using spherical coordinates representing the dynamics of 
the subsatellite. This effectively treats the tether as a straight body, which can either be 
modeled as an inelastic or elastic rod. Early work has neglected the tether mass since its 
contribution to the librational motion can be considered relatively small (Fujii & Anazawa, 
1994). This is due to the fact that the tether is axisymmetric. When large changes in length 
are considered, the effect of tether mass becomes more important. Moreover, it is essential to 
include the effects of tether mass when designing tension control laws because there is a 
nonlinear relationship between tension and tether mass. However, when performing 
preliminary analyses, it is sufficient to ignore such effects and compensate for these later in 
the design. 
Although the assumption of treating the tether as a straight rod is often a good one, it can 
create some problems in practice. For example, all tether string vibrations are neglected, 
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which play a very important role in electrodynamic systems or systems subjected to long-
term perturbations.  Furthermore, large changes in deployment velocity can induce 
significant distortions to the tether shape, which ultimately affects the accuracy of the 
deployment control laws.  Earlier work focused much attention on the dynamics of tethers 
during length changes, particularly retrieval (Misra & Modi, 1986).  In the earlier work, 
assumed modes was typically the method of choice (Misra & Modi, 1982).  However, where 
optimal control methods are employed, high frequency dynamics can be difficult to handle 
even with modern methods.  For this reason, most optimal deployment/retrieval schemes 
consider the tether as inelastic.  

 
2.1 Straight, Inelastic Tether Model 
In this model, the tether is assumed to be straight and inextensible, uniform in mass, the end 
masses are assumed to be point masses, and the tether is deployed from one end mass only.  
The generalized coordinates are selected as the tether in-plane libration angle, q, the out-of-

plane tether libration angle, f, and the tether length, l. 
The radius vector to the center of mass may be written in inertial coordinates as 
 
 cos sinR Rn n= +R i j  (24) 
 
From which the kinetic energy due to translation of the center of mass is derived as 
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where = + +1 2tm m m m  is the total system mass, = -0

1 1 tm m m  is the mass of the mother 
satellite, tm  is the tether mass, 2m  is the subsatellite mass, and 0

1m  is the mass of the mother 
satellite prior to deployment of the tether. 
The rotational kinetic energy is determined via 
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where w  is the inertial angular velocity of the tether in the tether body frame 
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Thus we have that 
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1 22 2 / / 6t tm m
tm m m m m  is the system reduced mass.  The kinetic energy 

due to deployment is obtained as 
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which accounts for the fact that the tether is modeled as stationary inside the deployer and 
is accelerated to the deployment velocity after exiting the deployer.  This introduces a 
thrust-like term into the equations of motion, which affects the value of the tether tension. 
The system gravitational potential energy is (assuming a second order gravity-gradient 
expansion) 

 ( )m m
q f=- + -

* 2
2 2

3 1 3cos cos
2

m m lV
R R

 (30) 

The Lagrangian may be formed as 

 
( ) ( )
( ) ( )

22 2 2 * 2 2 21 1
2 2

* 2
1 2 2 2 21

2 3

[ cos ]

1 3cos cos
2

t

L m R R m l

m m m m m ll
m R R

n f n q f

m m
q f

= + + + +

+
+ + - -

   


 (31) 

 
Under the assumption of a Keplerian reference orbit for the center of mass, the 
nondimensional equations of motion can be written as 
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where / rl LL=  is the nondimensional tether length, Lr is a reference tether length, T is the 
tether tension, and n¢ =() d() / d .  The generalized forces qQ  and fQ  are due to distributed 
forces along the tether, which are typically assumed to be negligible. 

 
3. Sensor models 

The full dynamic state of the tether is not directly measurable.  Furthermore, the presence of 
measurement noise means that some kind of filtering is usually necessary before directly 
using measurements from the sensors in the feedback controller.  The following 
measurements are assumed to be available: 1) Tension force at the deployer, 2) Deployment 
rate, 3) GPS position of the subsatellite.  Models of each of these are developed in the 
subsections below. 
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which play a very important role in electrodynamic systems or systems subjected to long-
term perturbations.  Furthermore, large changes in deployment velocity can induce 
significant distortions to the tether shape, which ultimately affects the accuracy of the 
deployment control laws.  Earlier work focused much attention on the dynamics of tethers 
during length changes, particularly retrieval (Misra & Modi, 1986).  In the earlier work, 
assumed modes was typically the method of choice (Misra & Modi, 1982).  However, where 
optimal control methods are employed, high frequency dynamics can be difficult to handle 
even with modern methods.  For this reason, most optimal deployment/retrieval schemes 
consider the tether as inelastic.  

 
2.1 Straight, Inelastic Tether Model 
In this model, the tether is assumed to be straight and inextensible, uniform in mass, the end 
masses are assumed to be point masses, and the tether is deployed from one end mass only.  
The generalized coordinates are selected as the tether in-plane libration angle, q, the out-of-

plane tether libration angle, f, and the tether length, l. 
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which accounts for the fact that the tether is modeled as stationary inside the deployer and 
is accelerated to the deployment velocity after exiting the deployer.  This introduces a 
thrust-like term into the equations of motion, which affects the value of the tether tension. 
The system gravitational potential energy is (assuming a second order gravity-gradient 
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Under the assumption of a Keplerian reference orbit for the center of mass, the 
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where / rl LL=  is the nondimensional tether length, Lr is a reference tether length, T is the 
tether tension, and n¢ =() d() / d .  The generalized forces qQ  and fQ  are due to distributed 
forces along the tether, which are typically assumed to be negligible. 

 
3. Sensor models 

The full dynamic state of the tether is not directly measurable.  Furthermore, the presence of 
measurement noise means that some kind of filtering is usually necessary before directly 
using measurements from the sensors in the feedback controller.  The following 
measurements are assumed to be available: 1) Tension force at the deployer, 2) Deployment 
rate, 3) GPS position of the subsatellite.  Models of each of these are developed in the 
subsections below. 
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3.1 Tension Model 
The tension force measured at the deployer differs from the force predicted by the control 
model due to the presence of tether oscillations and sensor noise. The magnitude and 
direction of the force in the tether is obtained from the multibody tether model.  The tension 
force in the orbital frame is given by 
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where the w terms are zero mean, Gaussian measurement noise with covariance RT. 

 
3.2 Reel-Rate Model 
In general, the length of the deployed tether can be measured quite accurately.  In this 
chapter, the reel-rate is measured at the deployer according to 
 
 n n LL L ww¢= L +   (36) 
 
where Lw   is a zero mean, Gaussian measurement noise with covariance LR  . 

 
3.3 GPS Model 
GPS measurements of the two end bodies significantly improve the estimation performance 
of the system. The position of the mother satellite is required to form the origin of the orbital 
coordinate system (in case of non-Keplerian motion), and the position of the subsatellite 
allows observations of the subsatellite range and relative position (libration state).  Only 
position information is used in the estimator.  The processed relative position is modeled in 
the sensor model, as opposed to modeling the satellite constellation and pseudoranges.  The 
processed position error is modeled as a random walk process 
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where wx,y,z are zero mean white noise processes with covariance RGPS, and GPSt  is a time 
constant.  This model takes into account that the GPS measurement errors are in fact time-
correlated. 

 
4. State Estimation 

In order to estimate the full tether state, it is necessary to combine all of the measurements 
obtained from the sensors described in Section 3.  The most optimal way to combine the 
measurements is by applying a Kalman filter.  Various forms of the Kalman filter are 
available for nonlinear state estimation problems.  The two most commonly used filter 
implementations are the Extended Kalman Filter (EKF) and the Unscented Kalman Filter 
(UKF).  The UKF is more robust to filter divergence because it captures the propagation of 

uncertainty in the filter states to a higher order than the EKF, which only captures the 
propagation to first order.  The biggest drawback of the UKF is that it is significantly more 
expensive than the EKF.  Consider a state vector of dimension nx.  The EKF only requires the 
propagation of the mean state estimate through the nonlinear model, and three matrix 
multiplications of the size of the state vector (nx × nx).  The UKF requires the propagation of 
2nx + 1 state vectors through the nonlinear model, and the sum of vector outer products to 
obtain the state covariance matrix.  The added expense can be prohibitive for embedded 
real-time systems with small sampling times (i.e., on the order of milliseconds).  For the 
tethered satellite problem, the timescales of the dynamics are long compared to the available 
execution time.  Hence, higher-order nonlinear filters can be used to increase performance of 
the estimation without loss of real-time capability. 
Recently, an alternative to the UKF was introduced that employs a spherical-radial-cubature 
rule for numerically integrating the moment integrals needed for nonlinear estimation.  The 
filter has been called the Cubature Kalman Filter (CKF).  This filter is used in this chapter to 
perform the nonlinear state estimation. 

 
4.1 Cubature Kalman Filter 
In this section, the CKF main steps are summarized.  The justification for the methodology is 
omitted and may be found in (Guess & Haykin, 2009). 
The CKF assumes a discrete time process model of the form 
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the system measurement vector, vnk Îv   is the vector of process noise, assumed to be 
white Gaussian with zero mean and covariance v vn n

k
´ÎQ  , wnk Îw  is a vector of 

measurement noise, assumed to be white Gaussian with zero mean and covariance 
w wn n

k
´ÎR  .  For the results in this paper, the continuous system is converted to a discrete 

system by means of a fourth-order Runge-Kutta method. 
In the following, the process and measurement noise is implicitly augmented with the state 
vector as follows 
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The first step in the filtering process is to compute the set of cubature points as follows 
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where ˆ ax  is the mean estimate of the augmented state vector, and kP  is the covariance 
matrix.  The cubature points are then propagated through the nonlinear dynamics as follows 
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3.1 Tension Model 
The tension force measured at the deployer differs from the force predicted by the control 
model due to the presence of tether oscillations and sensor noise. The magnitude and 
direction of the force in the tether is obtained from the multibody tether model.  The tension 
force in the orbital frame is given by 
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where the w terms are zero mean, Gaussian measurement noise with covariance RT. 

 
3.2 Reel-Rate Model 
In general, the length of the deployed tether can be measured quite accurately.  In this 
chapter, the reel-rate is measured at the deployer according to 
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where wx,y,z are zero mean white noise processes with covariance RGPS, and GPSt  is a time 
constant.  This model takes into account that the GPS measurement errors are in fact time-
correlated. 
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filter has been called the Cubature Kalman Filter (CKF).  This filter is used in this chapter to 
perform the nonlinear state estimation. 
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The predicted mean for the state estimate is calculated from 
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The covariance matrix is predicted by 
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When a measurement is available, the augmented sigma points are propagated through the 
measurement equations 
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The mean predicted observation is obtained by 
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The innovation covariance is calculated using 
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The cross-correlation matrix is determined from 
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The gain for the Kalman update equations is computed from 
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The state estimate is updated with a measurement of the system ky  using 
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and the covariance is updated using 
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It is often necessary to provide numerical remedies for covariance matrices that do not 
maintain positive definiteness.  Such measures are not discussed here. 

 
5. Optimal Trajectory Generation 

Most of the model predictive control strategies that have been suggested in the literature are 
based on low-order discretizations of the system dynamics, such as Euler integration.  
Dunbar et al. (2002) applied receding horizon control to the Caltech Ducted Fan based on a 
B-spline parameterization of the trajectories.  In recent years, pseudospectral methods, and 
in particular the Legendre pseudospectral (PS) method (Elnagar, 1995; Ross & Fahroo, 2003), 
have been used for real-time generation of optimal trajectories for many systems. The 
traditional PS approach discretizes the dynamics via differentiation operators applied to 
expansions of the states in terms of Lagrange polynomial bases. Another approach is to 
discretize the dynamics via Gauss-Lobatto quadratures. The approach has been more fully 
described by Williams (2006).  The latter approach is used here. 

 
5.1 Discretization approach 
Instead of presenting a general approach to solving optimal control problems, the Gauss-
Lobatto approach presented in this section is restricted to the form of the problem solved 
here. The goal is to find the state and control history { }( ), ( )t tx u  to minimize the cost 
function 
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where Î  xnx  are the state variables, Î  unu  are the control inputs, Î t  is the time, 
´    : xn  is the Mayer component of cost function, i.e., the terminal, non-integral 

cost in Eq. (52), ´ ´     : x un n  is the Bolza component of the cost function, i.e., the 
integral cost in Eq. (52), Î ´    00 xn ny  are the initial point conditions, 

Î ´    fx nn
fy  are the final point conditions, and Î ´ ´     gx u nn n

Lg  and 

Î ´ ´     gx u nn n
Ug  are the lower and upper bounds on the path constraints. 

The basic idea behind the Gauss-Lobatto quadrature discretization is to approximate the 
vector field by an N th degree Lagrange interpolating polynomial 
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expanded using values of the vector field at the set of Legendre-Gauss-Lobatto (LGL) points.  
The LGL points are defined on the interval t Î -[ 1,1]  and correspond to the zeros of the 
derivative of the N th degree Legendre polynomial, t( )NL , as well as the end points –1 and 
1.  The computation time is related to the time domain by the transformation 
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where t= ( )t t  because of the shift in the computational domain.  The Lagrange 
polynomials may be expressed in terms of the Legendre polynomials as 
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Approximations to the state equations are obtained by integrating Eq. (60), 
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Eq. (62) can be re-written in the form of Gauss-Lobatto quadrature approximations as 
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where the entries of the ( )´ + 1N N  integration matrix   are derived by Williams (2006).  
The cost function is approximated via a full Gauss-Lobatto quadrature as 
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Thus the discrete states and controls at the LGL points ( )0 0,..., , ,...,N Nx x u u  are the 
optimization parameters, which means that the path constraints and box constraints are 
easily enforced. The continuous problem has been converted into a large-scale parameter 
optimization problem. The resulting nonlinear programming problem is solved using 
SNOPT in this work.  In all cases analytic Jacobians of the cost and discretized equations of 
motion are provided to SNOPT. 
Alternatives to utilization of nonlinear optimization strategies have also been suggested.  An 
example of an alternative is the use of iterative linear approximations, where the solution is 
linearized around the best guess of the optimal trajectory.  This approach is discussed in 
more detail for the pseudospectral method in (Williams, 2004). 

 
5.2 Optimal Control Strategy 
Using the notation presented above, the basic notion of the real-time optimal control 
strategy is summarized in Fig. 2.  For a given mission objective, a suitable cost function and 
final conditions would usually be known a priori.  This is input into the two-point boundary 
value problem (TPBVP) solver, which generates the open-loop optimal trajectories 

* *( ), ( )t tx u . The optimal control input is then used in the real-system, denoted by the 
“Control Actuators” block, producing the observation vector ( )kty .  This is fed into the CKF 
to produce a state estimate, which is then fed back to update the optimal trajectory by letting 

0t t= , and using ft t-  as the time to go. 
Imposing hard terminal boundary conditions can make the optimization problem infeasible 
as 0ft t-  .  In many applications of nonlinear optimal control, a receding horizon 
strategy is used, whereby the constraints are always imposed at the end of a finite horizon 

fT t t= - , where T  is a constant, rather than at a fixed time.  This can provide advantages 
with respect to robustness of the controller. This strategy, as well as some additional 
strategies, are discussed below. 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 2. Real-Time Optimal Control Strategy. 
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where Î  xnx  are the state variables, Î  unu  are the control inputs, Î t  is the time, 
´    : xn  is the Mayer component of cost function, i.e., the terminal, non-integral 

cost in Eq. (52), ´ ´     : x un n  is the Bolza component of the cost function, i.e., the 
integral cost in Eq. (52), Î ´    00 xn ny  are the initial point conditions, 

Î ´    fx nn
fy  are the final point conditions, and Î ´ ´     gx u nn n

Lg  and 

Î ´ ´     gx u nn n
Ug  are the lower and upper bounds on the path constraints. 
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derivative of the N th degree Legendre polynomial, t( )NL , as well as the end points –1 and 
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Approximations to the state equations are obtained by integrating Eq. (60), 
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Eq. (62) can be re-written in the form of Gauss-Lobatto quadrature approximations as 
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where the entries of the ( )´ + 1N N  integration matrix   are derived by Williams (2006).  
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optimization parameters, which means that the path constraints and box constraints are 
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value problem (TPBVP) solver, which generates the open-loop optimal trajectories 

* *( ), ( )t tx u . The optimal control input is then used in the real-system, denoted by the 
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to produce a state estimate, which is then fed back to update the optimal trajectory by letting 
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as 0ft t-  .  In many applications of nonlinear optimal control, a receding horizon 
strategy is used, whereby the constraints are always imposed at the end of a finite horizon 
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with respect to robustness of the controller. This strategy, as well as some additional 
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5.3 Issues in Real-Time Optimal Control 
Although the architecture for solving the optimal control problem presented in the previous 
section is capable of rapidly generating optimal trajectories, there are several important 
issues that need to be taken into consideration before implementing the method.  Some of 
these have already been discussed briefly, but because of their importance they will be 
reiterated in the following subsections. 

 
5.3.1 Initial Guess 
One issue that governs the success of the NLP finding a solution rapidly is the initial guess 
that is provided. Although convergence of SNOPT can be achieved from random guesses 
(Ross & Gong, 2008), the ability to converge from a bad guess is not really of significant 
benefit.  The main issue is the speed with which a feasible solution is generated as a function 
of the initial guess. It is conceivable for many scenarios that good initial guesses are 
available. For example, for tethered satellite systems, deployment and retrieval would 
probably occur from fixed initial and terminal points.  Therefore, one would expect that this 
solution would be readily available. In fact, in this work, it is assumed that these “reference” 
trajectories have already been determined. Hence, each re-optimization would take place 
with the initial guess provided from the previous solution, and the first optimization would 
take place using the stored reference solution.  In most circumstances then, the largest 
disturbance or perturbation would occur at the initial time, where the initial state may be 
some “distance” from the stored solution. Nevertheless, the stored solution is still a “good” 
guess for optimizing the trajectory. This essentially means that the study of the 
computational performance should be focused on the initial sample, which would 
conceivably take much longer than the remaining samples.  

 
5.3.2 Issues in Updating the Control 
For many systems, the delay in computing the new control sequences is not negligible.  
Therefore, it is preferable to develop methods that adequately deal with the computational 
delay for the general case.  The simplest way of updating the control input is illustrated in 
Fig. 3.  The method uses only the latest information and does not explicitly account for the 
time delay. At the time it t= , a sample of the system states is taken ( )ix t .  This information 
is used to generate a new optimal trajectory ( ), ( )i ix t u t .  However, the computation time 
required to calculate the trajectory is given by 1i i it t t+D = - .  During the delay, the 
previous optimal control input 1( )iu t-  is applied.  As soon as the new optimal control is 
available it is applied (at 1it t += ).  However, the new control contains a portion of time that 
has already expired.  This means that there is likely to be a discontinuity in the control at the 
new sample time 1it t += . The new control is applied until the new optimal trajectory, 
corresponding to the states sampled at 1( )ix t + , is computed. At this point, the process 
repeats until ft t= .  Note that although the updates occur in discrete time, the actual 
control input is applied at the actuator by interpolation of the reference controls. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Updating the Optimal Control using Only Latest Information. 

 
Due to sensor noise and measurement errors, the state sampled at the new sample time 

1( )ix t +  is unlikely to correspond to the optimal trajectory that is computed from 1( )i ix t + .  
Therefore, in this approach, it is possible that the time delay could cause instability in the 
algorithm because the states are never matching exactly at the time the new control is 
implemented.  To reduce the effect of this problem, it is possible to employ model prediction 
to estimate the states.  In this second approach, the sample time is not determined by the 
time required to compute the trajectory, but is some prescribed value.  The sampling time 
must be sufficient to allow the prediction of the states and to solve the resulting optimal 
control problem, solt .  Hence, solit tD > .  The basic concept is illustrated in Fig. 4.  At time 

it t= , a system state measurement is made ( )ix t .  This measurement, together with the 
previously determined optimal control and the system model, allows the system state to be 
predicted at the new sample time 1it t += , 
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The new optimal control is then computed from the state 1ˆ( )ix t + .  When the system reaches 

1it t += , the new control signal is applied, 1( )iu t+ . At the same time, a new measurement is 
taken and the process is repeated. This process is designed to reduce instabilities in the 
system and to make the computations more accurate. However, it still does not prevent 
discontinuities in the control, which for a tethered satellite system could cause elastic 
vibrations of the tether.  One way to produce a smooth control signal is to constrain the 
initial value of the control in the new computation so that 
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disturbance or perturbation would occur at the initial time, where the initial state may be 
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guess for optimizing the trajectory. This essentially means that the study of the 
computational performance should be focused on the initial sample, which would 
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required to calculate the trajectory is given by 1i i it t t+D = - .  During the delay, the 
previous optimal control input 1( )iu t-  is applied.  As soon as the new optimal control is 
available it is applied (at 1it t += ).  However, the new control contains a portion of time that 
has already expired.  This means that there is likely to be a discontinuity in the control at the 
new sample time 1it t += . The new control is applied until the new optimal trajectory, 
corresponding to the states sampled at 1( )ix t + , is computed. At this point, the process 
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 1 1 1( ) ( )i i i iu t u t+ + +=  (66) 
 
That is, the initial value of the new control is equal to the previously computed control at 
time 1it t += . It should be noted that the use of prediction assumes coarse measurement 
updates from sensors.  Higher update rates would allow the Kalman filter to be run up until 
the control sampling time, achieving the same effect as the state prediction (except that the 
prediction has been corrected for errors).  Hence, Fig. 4 shows the procedure with the 
predicted state replaced by the estimated state. 

 
5.3.3 Implementing Terminal Constraints 
In standard model predictive control, the future horizon over which the optimal control 
problem is solved is usually fixed in length.  Thus, the implementation of terminal 
constraints does not pose a theoretical problem because the aim is usually for stability, 
rather than hitting a target.  However, there are many situations where the final time may be 
fixed by mission requirements, and hence as 0ft t-   the optimal control problem 
becomes more and more ill-posed. This is particularly true if there is a large disturbance 
near the final time, or if there is some uncertainty in the model.  Therefore, it may be 
preferable to switch from hard constraints to soft constraints at some prespecified time 

critt t= , or if the optimization problem does not converge after critn  successive attempts.  It 
is important to note that if the optimization fails, the previously converged control is used 
until a new control becomes available. Therefore, after critn  failures, soft terminal 
constraints are used under the assumption that the fixed terminal conditions can not be 
achieved within the control limits.  The soft terminal constraints are defined by 
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The worst case scenario is for fixed time missions. However, where stability is the main 
issue, receding horizon strategies with fixed horizon length can be used.  Alternatively, the 
time to go can be used up until critt t= , at which point the controller is switched from a 
fixed terminal time to one with a fixed horizon length defined by critfT t t= - .  In this 
framework, the parameters critt  and critn  are design parameters for the system. 
It should also be noted that system requirements would typically necessitate an inner-loop 
controller be used to track the commands generated by the outer loop (optimal trajectory 
generator). An inner-loop is required for systems that have associated uncertainty in 
modeling, control actuation, or time delays.  In this chapter, the control is applied 
completely open-loop between control updates using a time-based lookup table.  The loop is 
closed only at coarse sampling times. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Updating the Optimal Control with Prediction and Initial Control Constraint. 

 
5.4 Rigid Model In-Loop Tests 
To explore the possibilities of real-time control for tethered satellite systems, a simple, but 
representative test problem is utilized.  Deployment and retrieval are two benchmark 
problems that provide good insight into the capability of a real-time controller.  Williams 
(2008) demonstrated that deployment and retrieval to and from a set of common boundary 
conditions leads to an exact symmetry in the processes.  That is, for every optimal 
deployment trajectory to and from a set of boundary conditions, there exists a retrieval 
trajectory that is mirrored about the local vertical.  However, it is also known that retrieval is 
unstable, in that small perturbations near the beginning of retrieval are amplified, whereas 
small perturbations near the beginning of deployment tend to remain bounded.  Therefore, 
to test the effectiveness of a real-time optimal controller, the retrieval phase is an ideal test 
case. 
The benchmark problem is defined in terms of the nondimensional parameters as: Minimize 
the cost 
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 0.01 4u£ £  (70) 
 
which is designed to prevent the tether from becoming slack, and to prevent the tether from 
severing. The control input for this test case is defined as ( )2

1 2/[ / ]r tu T m L m m mn= + . 

 
5.4.1 Preliminary Study on Computation Time 
To gauge the effectiveness of performing computations of the optimal control in real-time, 
the problem of tether retrieval was solved using cold-starts with random perturbations to 
the initial conditions.  Since the computation of the control is most critical at the initial time 
(because the initial state may be very far from the reference state), a numerical study of the 
performance of the solution algorithm was run for 1000 computations.  In terms of actual 
implementation, if the sampling time is short enough, subsequent convergence is almost 
always quicker than the initial computation. 
The retrieval problem is posed in nondimensional units, with a nondimensional time of 6 
rad. For a tether system in low Earth orbit at an altitude of 500 km, the total maneuver time 
is roughly 5450 sec.  The update time with a good guess of the trajectory averages 0.09 sec in 
MATLAB 2009a on a Core 2 Processor running Windows XP.  Clearly, this easily allows 
real-time computation of the trajectory with over 50000 samples.  However, as noted, the 
critical time is the first update when the trajectory may be far from the reference or when a 
good initial guess may not be available.  A study of 1000 computations with different initial 
conditions, but with the same infeasible guess for the trajectory was performed.  The initial 
conditions were distributed randomly in the ranges (0) 0.2dq £  rad, (0) 0.1dq¢ £ , and 

(0) 0.02dL £ .  Fig. 5 shows a summary of the results from these computations.  The level of 
discretization was set to be N = 30 for this study. The mean computation time was 
determined to be 0.164 sec.   
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Fig. 5.  Summary of Results from Study of Computation of Optimal Trajectories. 
 
The minimum time was 0.102 sec and the maximum time was 0.290 sec.  Even in the worst 
possible case, it would still be possible to implement a sampled-data feedback controller 
(using MATLAB) with roughly 18000 samples.  It should also be noted that convergence 
was achieved in every case. The CPU time as calculated in Windows represents the worst 

case that could be achieved using a dedicated embedded system.  The Windows scheduler 
can schedule the control process in- and out- at different times.  The resolution of the 
scheduler can be seen in the discrete banding of the mean CPU time in Fig. 5, rather than 
completely random times. 

 
5.4.2 Closed-Loop Control 
To examine the actual performance of the controller for dealing with disturbances, the 
control model is used with external perturbations included via the Qq  and QL  terms in the 
equations of motion.  For simplicity, the perturbations are generated randomly such that 

0.05Qq £  and 0.05QL £ . This corresponds to disturbances on the subsatellite on the 
order of several Newtons, whose actual values depend on the system geometry.  The 
number of major iterations was limited to 50. 
The terminal weighted matrix is selected as diag[100,100,100,100]f =S , and the controller 
is switched at 4 rad from hard terminal constraints to soft constraints. Numerical results are 
shown in Fig. 6. Fig. 6a and 6b shows that the terminal constraints are met reasonably 
accurately, despite not being enforced with hard constraints. The mean CPU time for the 
whole trajectory is 0.159 sec, the standard deviation is 0.0744 sec, the minimum time is 0.04 
sec, and the maximum time is 1.442 sec. Prior to the change in controller, the mean CPU 
time is 0.1265 sec, whereas after the change the mean CPU time increases to 0.223 sec.  
Therefore, the smooth control input in the terminal phases of the trajectory comes at the 
expense of a 76% increase in mean computation time.  This is still well within the sampling 
time of the controller. 

 
6. Closed-Loop Control in Simulation Environment 

The results presented in the previous section utilized tension as the control input. Tension 
has been widely used as the control input in the literature, but it has several drawbacks.  It 
introduces long-term errors in the trajectories because of inaccuracies in the system 
properties, errors in the gravity model, and tether oscillations. A better choice is to control 
the reel speed or rate of change of reel speed.  In the high fidelity simulation environment, 
the control is implemented as the rate of change of nondimensional reel rate. 
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 0.01 4u£ £  (70) 
 
which is designed to prevent the tether from becoming slack, and to prevent the tether from 
severing. The control input for this test case is defined as ( )2

1 2/[ / ]r tu T m L m m mn= + . 
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Fig. 6. Real-Time Computation of Retrieval Trajectory with 1 sec Sampling Time, Receding 
Horizon after 4tw = rad and Model Prediction of States with Continuous Control Enforced, 
a) Libration Dynamics, b) Length Dynamics, c) Control Tension, d) Computation Time. 

 
6.1 Simulation Environment 
The simulation environment used for testing the closed-loop control behavior is built in 
Simulink™, which is itself based on the MATLAB environment. Simulink provides a 
graphical approach for modeling and control of complex systems. It has the distinct 
advantage of being able to provide generated C-code targeting real-time operation directly 
from the underlying model. This feature requires additional supporting tools available from 
Mathworks.  In the context of the current chapter, a Simulink model is used to simulate four 
distinct elements of the system. Fig. 7 illustrates the interconnections of the four system 
elements.  These are: 1) Variable-Step, Multibody Propagation (bead tether model), 2) Sensor 
models, 3) Tether state estimation, and 4) Pseudospectral predictive control.  One of the 
complicating factors in simulating the predictive control system is that a high-fidelity, 
variable step integration algorithm is needed to propagate the multibody dynamic 
equations.  

Time

MPC_Time

MPC_Control

Truth_Observations

Variable-Step, Multibody Propagation

z
1

z
1

solveTime

ObservationTime

SensorMeasurements

MPC_Time

MPC_Control

SampleTime

StateEstimate

Tether State Estimation

SimulationTime

Truth_Observations SensorMeasurements

SensorModels

Pseudospectral
 Predictive

 Control

SampleTime

StateEstimate

 
Fig. 7. Simulink simulation model for closed-loop model predictive control. 

c) d) 

Although Simulink supports variable-step integration algorithms, it does not easily allow 
for the combination of variable-step integration and discrete sampling updates of the system 
being propagated.  For example, the multibody model requires regular checks on the length 
of the deploying segment for the introduction or removal of an element from the model.  To 
overcome this, a custom S-function block is used which employs the LSODA variable-step 
integration library.  The LSODA library is coded in Fortran, but was ported to C via f2c. 
The sensor models block implements the tension and GPS models for the system.  The tether 
state estimation block implements the Kalman filter for estimating the tether state in a 
discrete-time manner. Finally, the pseudospectral predictive control block implements the 
predictive controller. 

 
6.2 Example: Closed-Loop Control with State Estimator 
One of the future applications of tethered satellite systems is for capture and rendezvous of 
a satellite in a coplanar orbit.  In such an application, timing is critical for mission success.  A 
similar application where timing is not as critical is the deorbit of a payload, similar to the 
idea of the YES-2 mission. In these examples, the control objective is similar in that it 
requires the generation of a large in-plane swinging motion.  As an example, the control 
objective of rendezvous with a target satellite is used.  The rendezvous conditions have been 
derived in detail by Williams (2006) for the general case of circular and elliptical orbits as a 
function of tether length.   
The objective in this section is to deploy the tether from a length of 1 km to a length of 20 km 
to achieve a nondimensional in-plane libration rate of -1.5.  For a target satellite in a circular 
orbit, the reel-rate at capture must be zero.  The cost function that aids in minimizing tether 
oscillations is given in Eq. (68).  The tether mass density is 1 kg/km, the subsatellite mass is 
200 kg, and the orbit radius is 500 km.  The tension measurement noise is 0.5 N, the reel-rate 
noise is 0.05 m/s, and the GPS error terms noise are RGPS = 25 m2, GPS = 0.01 
(nondimensional).  Solutions are obtained using N = 30, with a fixed sampling time of 0.01 
rad  9 sec.  The final time is set at 12 rad in nondimensional units. 
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Fig. 6. Real-Time Computation of Retrieval Trajectory with 1 sec Sampling Time, Receding 
Horizon after 4tw = rad and Model Prediction of States with Continuous Control Enforced, 
a) Libration Dynamics, b) Length Dynamics, c) Control Tension, d) Computation Time. 
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Simulink™, which is itself based on the MATLAB environment. Simulink provides a 
graphical approach for modeling and control of complex systems. It has the distinct 
advantage of being able to provide generated C-code targeting real-time operation directly 
from the underlying model. This feature requires additional supporting tools available from 
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objective of rendezvous with a target satellite is used.  The rendezvous conditions have been 
derived in detail by Williams (2006) for the general case of circular and elliptical orbits as a 
function of tether length.   
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orbit, the reel-rate at capture must be zero.  The cost function that aids in minimizing tether 
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Fig. 8. Closed-loop optimal control of tethered satellite system, a) Tether tip trajectory, b) In-
plane libration angle, c) Nondimensional tether length, d) Nondimensional libration rate, e) 
Reel-rate, f) Measured tension and computation time. 
 
Fig. 8 shows the results of a closed-loop simulation in Simulink using the multibody tether 
model in combination with the CKF.  The results show that the tether is initially over-
deployed by about 20%, then reeled back-in to generate the swing velocity required for 
capture. The final conditions are met to within a fraction of a percent in all state variables 
despite the measurement errors and uncertainties. The peak reel-rate is approximately 7 
m/s, and the variation in reel-rate is smooth throughout the entire maneuver.  The average 
CPU time is 0.23 sec, peaking to 0.31 sec. 

 
7. Conclusion 

Modern computing technology allows the real-time generation of optimal trajectories for 
tethered satellites. An architecture that implements a closed-loop controller with a nonlinear 
state estimator using a subset of available measurements has been demonstrated for 
accurately deploying a tether for a rendezvous application. This strategy allows the 
controller to adapt to large disturbances by recalculating the entire trajectory to satisfy the 
mission requirements, rather than trying to force the system back to a reference trajectory 
computer offline. 
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Fig. 8. Closed-loop optimal control of tethered satellite system, a) Tether tip trajectory, b) In-
plane libration angle, c) Nondimensional tether length, d) Nondimensional libration rate, e) 
Reel-rate, f) Measured tension and computation time. 
 
Fig. 8 shows the results of a closed-loop simulation in Simulink using the multibody tether 
model in combination with the CKF.  The results show that the tether is initially over-
deployed by about 20%, then reeled back-in to generate the swing velocity required for 
capture. The final conditions are met to within a fraction of a percent in all state variables 
despite the measurement errors and uncertainties. The peak reel-rate is approximately 7 
m/s, and the variation in reel-rate is smooth throughout the entire maneuver.  The average 
CPU time is 0.23 sec, peaking to 0.31 sec. 
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accurately deploying a tether for a rendezvous application. This strategy allows the 
controller to adapt to large disturbances by recalculating the entire trajectory to satisfy the 
mission requirements, rather than trying to force the system back to a reference trajectory 
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1. Introduction    

More and more people are concerned about the negative phenomenon resulted by the 
negative effects of the growing traffic motorization. Traffic congestion is the primary direct 
impact which became everyday occurrence in the last decade. As world trade is 
continuously increasing, it is obvious that congestions represent also a growing problem. 
The capacity of the traffic networks saturates during rush hours. At the same time, the 
traditional traffic management is getting less effective in sustaining a manageable traffic 
flow. Therefore, external impacts appear causing new costs for the societies. As a possible 
solution the predictive control based strategy can be applied. The chapter investigates the 
applicability of MPC strategy specialized in urban traffic management in order to relieve 
traffic congestion, to reduce travel time and to improve homogeneous traffic flow. Over the 
theory the realization of the control method is also presented. Firstly we give a historical 
summary of adaptive traffic control. The brief results of MPC and its related methods in 
urban traffic control are presented. Then we introduce the modeling possibilities of urban 
traffic as the appropriate model means an important aspect of the control design. The use of 
MPC requires a state space theory approach. Therefore the so called Store-and-forward 
model is chosen which can be directly translated to state space. We analyze the model in 
details showing the real meaning of system matrices. The constraints of urban traffic system 
is also discussed which heavily influence modeling and control. The next section presents 
the simulation environment which is used to demonstrate the developed control methods. 
Thereinafter we present the main results of MPC in traffic application. The idea to apply 
MPC in urban traffic network is induced by the fact that the distance is relatively short 
between several intersections with traffic lights. Hence it is advisable to coordinate the 
operation of the intersection controller devices. Several intersections are near to each other 
in smaller or bigger networks, primarily in cities, the coordination is especially emphasized. 
The development of new control strategies is a real demand of nowadays. One of the 
possible solutions is the practical application of MPC. The aim of the control is to increase 
capacity. To test and validate our control strategy we apply it to a real-word transportation 
network where the actual system is not efficient enough to manage the traffic in rush hours. 
The simulation results show the effectiveness of the control design. After the presentation of 
the practical urban traffic MPC the distributive solution of MPC has to be discussed. As the 
computational demand depends on the size of the network an efficient calculation method is 
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sought to solve online the MPC problem. The classical scheme for adaptive road traffic 
management structure is usually based on control center which processes and computes all 
signal control for the network. Another method for the control system architecture is the 
decentralized and distributed control scheme. This approach has numerous economical and 
technological advantages. Distributed traffic control is developed using iterative solution. 
The so-called Jacobi iteration algorithm is an efficient method to solve constrained and 
nonlinear programming problem which the original problem can be transformed for. An 
additional feature of the developed strategy is the ability to manage priority. If a preferred 
vehicle arrives to any junction of the network it will be automatically indicated. Its stage will 
be handled with priority getting maximum green time as possible in every cycle until the 
vehicle will not leave the intersection. It means practically that the cost function is 
dynamically modified by the system weights depending of presence of any preferred 
vehicles. Finally we would like to introduce the robust MPC problem in traffic management 
as our future work. The robustness of the traffic management means that even with the 
presence of some disturbances the system is able to find optimal control solution. We 
discuss the modification of the traffic model introduced in third section since the chosen 
method requires a special model structure. 

 
2. Brief historical summary of adaptive road traffic control 

In case the distance is relatively short between several intersections with traffic lights it is 
advisable to co-ordinate the operation of the intersection controller devices. The 
coordination may include public transport devices and pedestrian traffic besides vehicles. 
Where several intersections are near to each other in smaller or bigger networks, primarily 
in cities, the coordination is especially emphasized. 
In the 1970's a new control strategy appears in the road traffic management. Beside the 
already extant fixed-time and traffic-actuated strategies the traffic-adaptive control is 
invented. A traffic control system that continuously optimizes the signal plan according to 
the actual traffic load is called an adaptive traffic control system. The essence of the 
functioning is that the changes to the active signal plan parameters are automatically 
implemented in response to the current traffic demand as measured by a vehicle detection 
system. Such system can be used as local or network-wide control. 
The appearance of the adaptivity induces new developments of traffic control methods. The 
first adaptive systems like SCOOT (Hunt et al., 1982) or SCATS (Lowrie, 1982) are based on 
heuristic optimization algorithms. In the 1980's new optimization methods are introduced 
based on rolling horizon optimization using dynamic programming. Some examples are 
OPAC (Gartner, 1983), PRODYN (Farges et al. 1983), and RHODES (Sen & Head, 1997). 
In the middle of the 1990's the first control method is introduced which adopts results of the 
modern control theory. The TUC system (Diakaki et al., 1999) applies a multivariable 
regulator approach to calculate in real time the network splits, while cycle time and offsets 
are calculated by other parallel algorithms. The basic methodology employed for split 
control by TUC is the formulation of the urban traffic control problem as a linear-quadratic 
(LQ) optimal control problem. The advantage of LQ control is the simplicity of the required 
real-time calculations which is an important aspect in network-wide signal control. 
However the algorithm has a main disadvantage. LQ control is not able to manage 
constraints on the control input (its importance is discussed in the next section). Therefore a 

 

posteriori application is needed to force the constraints which may lead to suboptimal 
solution. 
In the early 2000's the first results are published in the subject of MPC based traffic control. 
However these publications (e.g. Bellemans et al., 2002; Hegyi et al., 2003) are related to 
ramp metering and variable speed limit control of the freeway traffic management. MPC 
based urban traffic control approach is published by Tettamanti et al. (2008). The paper 
consists theory, realization and a real-word example. The main result is the possibility to 
overcome the disadvantage of the LQ problem mentioned above as the MPC method can 
take the constraints into consideration. These results constitute the basis of the chapter. The 
paper of Aboudolas et al. (2009) is published investigating large-scale traffic control problem 
and introducing the open-loop quadratic-programming control (QPC) as a possible method 
for optimal traffic management. The paper concludes that for the application of the QPC 
methodology in real time, the corresponding algorithms may be embedded in a rolling-
horizon (model-predictive) scheme which constitutes the part of future works. 
In 2010 as a development result of Tettamanti et al. (2008) the paper of Tettamanti & Varga 
(2010) is published which introduces a distributed realization of an MPC based traffic 
control system. The publication's results will be also enlightened in detail in the chapter. 

 
3. Urban traffic modeling 

Modeling and control are coherent notions in control theory as the model highly determines 
the applicable methods for control. In the previous chapter various control approaches were 
presented. All of them use an appropriate traffic modeling technique for functioning. 
Apparently, the modern control theory based traffic management strategies apply the state 
space approach. The state space modeling is derived from the so called Store-and-forward 
model (Gazis & Potts, 1963) which introduces a model simplification that enables the 
mathematical description of the traffic flow process. This modeling technique opens the way 
to the application of a number of highly efficient optimization methods such as LQ control, 
MPC, or robust LMI based control. Before to begin to investigate the MPC based traffic 
control the properties of the model have to be discussed in detail. 

 
3.1 From Store-and-forward traffic modeling to state space representation 
The following derivation of the state space model reflects the results of the paper of Diakaki 
et al. (1999).  
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Fig. 1. The Store-and-forward traffic model 
 
The two basic parts of an urban road traffic network are intersection and link. The 
combination of these elements constitutes the traffic network with link Zz  and junction 
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sought to solve online the MPC problem. The classical scheme for adaptive road traffic 
management structure is usually based on control center which processes and computes all 
signal control for the network. Another method for the control system architecture is the 
decentralized and distributed control scheme. This approach has numerous economical and 
technological advantages. Distributed traffic control is developed using iterative solution. 
The so-called Jacobi iteration algorithm is an efficient method to solve constrained and 
nonlinear programming problem which the original problem can be transformed for. An 
additional feature of the developed strategy is the ability to manage priority. If a preferred 
vehicle arrives to any junction of the network it will be automatically indicated. Its stage will 
be handled with priority getting maximum green time as possible in every cycle until the 
vehicle will not leave the intersection. It means practically that the cost function is 
dynamically modified by the system weights depending of presence of any preferred 
vehicles. Finally we would like to introduce the robust MPC problem in traffic management 
as our future work. The robustness of the traffic management means that even with the 
presence of some disturbances the system is able to find optimal control solution. We 
discuss the modification of the traffic model introduced in third section since the chosen 
method requires a special model structure. 

 
2. Brief historical summary of adaptive road traffic control 

In case the distance is relatively short between several intersections with traffic lights it is 
advisable to co-ordinate the operation of the intersection controller devices. The 
coordination may include public transport devices and pedestrian traffic besides vehicles. 
Where several intersections are near to each other in smaller or bigger networks, primarily 
in cities, the coordination is especially emphasized. 
In the 1970's a new control strategy appears in the road traffic management. Beside the 
already extant fixed-time and traffic-actuated strategies the traffic-adaptive control is 
invented. A traffic control system that continuously optimizes the signal plan according to 
the actual traffic load is called an adaptive traffic control system. The essence of the 
functioning is that the changes to the active signal plan parameters are automatically 
implemented in response to the current traffic demand as measured by a vehicle detection 
system. Such system can be used as local or network-wide control. 
The appearance of the adaptivity induces new developments of traffic control methods. The 
first adaptive systems like SCOOT (Hunt et al., 1982) or SCATS (Lowrie, 1982) are based on 
heuristic optimization algorithms. In the 1980's new optimization methods are introduced 
based on rolling horizon optimization using dynamic programming. Some examples are 
OPAC (Gartner, 1983), PRODYN (Farges et al. 1983), and RHODES (Sen & Head, 1997). 
In the middle of the 1990's the first control method is introduced which adopts results of the 
modern control theory. The TUC system (Diakaki et al., 1999) applies a multivariable 
regulator approach to calculate in real time the network splits, while cycle time and offsets 
are calculated by other parallel algorithms. The basic methodology employed for split 
control by TUC is the formulation of the urban traffic control problem as a linear-quadratic 
(LQ) optimal control problem. The advantage of LQ control is the simplicity of the required 
real-time calculations which is an important aspect in network-wide signal control. 
However the algorithm has a main disadvantage. LQ control is not able to manage 
constraints on the control input (its importance is discussed in the next section). Therefore a 

 

posteriori application is needed to force the constraints which may lead to suboptimal 
solution. 
In the early 2000's the first results are published in the subject of MPC based traffic control. 
However these publications (e.g. Bellemans et al., 2002; Hegyi et al., 2003) are related to 
ramp metering and variable speed limit control of the freeway traffic management. MPC 
based urban traffic control approach is published by Tettamanti et al. (2008). The paper 
consists theory, realization and a real-word example. The main result is the possibility to 
overcome the disadvantage of the LQ problem mentioned above as the MPC method can 
take the constraints into consideration. These results constitute the basis of the chapter. The 
paper of Aboudolas et al. (2009) is published investigating large-scale traffic control problem 
and introducing the open-loop quadratic-programming control (QPC) as a possible method 
for optimal traffic management. The paper concludes that for the application of the QPC 
methodology in real time, the corresponding algorithms may be embedded in a rolling-
horizon (model-predictive) scheme which constitutes the part of future works. 
In 2010 as a development result of Tettamanti et al. (2008) the paper of Tettamanti & Varga 
(2010) is published which introduces a distributed realization of an MPC based traffic 
control system. The publication's results will be also enlightened in detail in the chapter. 

 
3. Urban traffic modeling 

Modeling and control are coherent notions in control theory as the model highly determines 
the applicable methods for control. In the previous chapter various control approaches were 
presented. All of them use an appropriate traffic modeling technique for functioning. 
Apparently, the modern control theory based traffic management strategies apply the state 
space approach. The state space modeling is derived from the so called Store-and-forward 
model (Gazis & Potts, 1963) which introduces a model simplification that enables the 
mathematical description of the traffic flow process. This modeling technique opens the way 
to the application of a number of highly efficient optimization methods such as LQ control, 
MPC, or robust LMI based control. Before to begin to investigate the MPC based traffic 
control the properties of the model have to be discussed in detail. 

 
3.1 From Store-and-forward traffic modeling to state space representation 
The following derivation of the state space model reflects the results of the paper of Diakaki 
et al. (1999).  
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Fig. 1. The Store-and-forward traffic model 
 
The two basic parts of an urban road traffic network are intersection and link. The 
combination of these elements constitutes the traffic network with link Zz  and junction 
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Jj  which are defined geometrically exactly. Each signalized junction j  has its own sets 
of incoming jI  and outgoing jO  links. Figure 1. shows the coherence (link z ) of two 
neighboring intersections (M , N ) in the transportation network where MOz  and NIz . 
The dynamic of link z  is described by the conservation equation: 
 
             kskrkhkqTkxkx zzzzzz  =1  (1) 
 
where  kxz  measures the number of vehicles within link z , practically the length of queue, 
at time kT .  kqz  and  khz  are the inflow and outflow,  krz  and  ksz  are the demand 
and the exit flow during the sample period   TkkT 1,  . T  is the control interval and 

0,1..=k  is the discrete time index. For simplicity we assume henceforth that the cycle times 
are equal for each junction Jj , namely cjc TT =, . Moreover T  is also equal to cT .  krz  
and  ksz  represent typically the fluctuation between a parking lot and link z  or the effects 
of any non-controlled intersection between  M  and N . These disturbing flows can be 
considered as known perturbations if they can be well measured or estimated. In case of 
unknown disturbances robust control system is needed.  
Equation (1) is linear scalar equation for the portrayal of vehicles movement of a given link. 
But if we wish to define a whole traffic network each link has to be described by its 
conservation equation and what is more the equations needs to be interconnected. At this 
point we can change for state space representation which means the appearance of the state 
and control input vectors together with the coefficient system matrices. The general discrete 
LTI state space representation is the following: 
 

       kEdkBukAxkx  =1  
    kCxky =  (2) 

 
Using Equation (2), it is possible to describe the dynamics of an arbitrary urban traffic 
network (see Fig. 2 as an example). 
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Fig. 2. Dynamics in the urban traffic network 

 

The physical meaning of matrices and vectors is elementary to understand the model. The 
state equation form can be achieved using all conservation equations, arranging them in one 
linear matrix equality. In our case the state matrix A  is practically considered as an identity 
matrix. The elements of the state vector )(kx  represent the number of vehicles of each 
controlled link. The second term of the state equation is the product of input matrix B  and 
control input u . Vector u  contains the green times of all stages. Their numerical values are 
the results of a corresponding controller at each cycle. Naturally the number of states is 
equal to the number of controlled links in the network. The product  kBu  is arising from 
the part     khkqT zz   of Equation (1) which means the difference of the inflow and the 
outflow of a link during the control interval.  kqz  and  khz  are directly related to control 
input (green time), saturation flow ( S ) and turning rate ( t ) in a signalized network. To 
understand the construction of B  the parameters S  and t  have to be discussed. Saturation 
flow represents the outflow capacity of link Zz  during its green time. A standard value 
for saturation flow is  sec/0.5 vehS   which is considered constant in practice. Turning rate 
represents the distribution of turnings of vehicles from link jOz  to links NIw . These 
parameters are defined by the geometry and the rights of way in the traffic network and 
assumed to be known and constant or time varying. Then matrix  ijbB   can be constructed 
by the appropriate allocation of the combinations of saturation flow and turning rates. The 
diagonal values of B  are negative zS  as the product  kuS zz  represents the outflow from 
link z .  At the same time the inflow to the link z  has to be also characterized. Therefore the 
products zwztS ,  are placed in matrix B  such that zwzij tSb ,  when ji  .  The parameters 

zwt ,  ( MIw ) are the turning rates towards link z  from the links that enter junction M . 
Hence the inflow is resulted from the appropriate matrix-vector multiplication for all z . 
In state space representation the third term  kEd  of Equation (2) represents an additive 
disturbance where IE = .  kd  is composed of two type of data. On the one hand it is 
coming from the part     kskrT zz   of Equation (1) where  krz  and  ksz  are considered as 
measured disturbances. They reflect the difference of the demand and the exit flows of a link 
during the control interval. On the other hand there is demand  kpz  at the boundary of the 
traffic network (Figure 2.) which also has to be taken into consideration in the model. The 
traffic  kpz  intending to enter is a measurable value. Therefore it is simply added to the 
appropriate row of  kd .  
To end the state space description of the urban traffic the measurement equation has to be 
mentioned. As each output inside of the network is a measured state (number of vehicles of 
the link Zz ) the output equation is simplified to    kxky =  with IC = . Note that as the 
exit links of the network are not controlled they do not have to be confused with the 
outputs  ky . 
Finally, as three of the system matrices are identity matrix (discussed above) the general 
discrete LTI state space representation for urban traffic simplifies to the following form: 
 

       kdkBukxkx  =1  
    kxky =  (3) 



MPC in urban traffic management 255

 

Jj  which are defined geometrically exactly. Each signalized junction j  has its own sets 
of incoming jI  and outgoing jO  links. Figure 1. shows the coherence (link z ) of two 
neighboring intersections (M , N ) in the transportation network where MOz  and NIz . 
The dynamic of link z  is described by the conservation equation: 
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where  kxz  measures the number of vehicles within link z , practically the length of queue, 
at time kT .  kqz  and  khz  are the inflow and outflow,  krz  and  ksz  are the demand 
and the exit flow during the sample period   TkkT 1,  . T  is the control interval and 

0,1..=k  is the discrete time index. For simplicity we assume henceforth that the cycle times 
are equal for each junction Jj , namely cjc TT =, . Moreover T  is also equal to cT .  krz  
and  ksz  represent typically the fluctuation between a parking lot and link z  or the effects 
of any non-controlled intersection between  M  and N . These disturbing flows can be 
considered as known perturbations if they can be well measured or estimated. In case of 
unknown disturbances robust control system is needed.  
Equation (1) is linear scalar equation for the portrayal of vehicles movement of a given link. 
But if we wish to define a whole traffic network each link has to be described by its 
conservation equation and what is more the equations needs to be interconnected. At this 
point we can change for state space representation which means the appearance of the state 
and control input vectors together with the coefficient system matrices. The general discrete 
LTI state space representation is the following: 
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Using Equation (2), it is possible to describe the dynamics of an arbitrary urban traffic 
network (see Fig. 2 as an example). 
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The physical meaning of matrices and vectors is elementary to understand the model. The 
state equation form can be achieved using all conservation equations, arranging them in one 
linear matrix equality. In our case the state matrix A  is practically considered as an identity 
matrix. The elements of the state vector )(kx  represent the number of vehicles of each 
controlled link. The second term of the state equation is the product of input matrix B  and 
control input u . Vector u  contains the green times of all stages. Their numerical values are 
the results of a corresponding controller at each cycle. Naturally the number of states is 
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understand the construction of B  the parameters S  and t  have to be discussed. Saturation 
flow represents the outflow capacity of link Zz  during its green time. A standard value 
for saturation flow is  sec/0.5 vehS   which is considered constant in practice. Turning rate 
represents the distribution of turnings of vehicles from link jOz  to links NIw . These 
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disturbance where IE = .  kd  is composed of two type of data. On the one hand it is 
coming from the part     kskrT zz   of Equation (1) where  krz  and  ksz  are considered as 
measured disturbances. They reflect the difference of the demand and the exit flows of a link 
during the control interval. On the other hand there is demand  kpz  at the boundary of the 
traffic network (Figure 2.) which also has to be taken into consideration in the model. The 
traffic  kpz  intending to enter is a measurable value. Therefore it is simply added to the 
appropriate row of  kd .  
To end the state space description of the urban traffic the measurement equation has to be 
mentioned. As each output inside of the network is a measured state (number of vehicles of 
the link Zz ) the output equation is simplified to    kxky =  with IC = . Note that as the 
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outputs  ky . 
Finally, as three of the system matrices are identity matrix (discussed above) the general 
discrete LTI state space representation for urban traffic simplifies to the following form: 
 

       kdkBukxkx  =1  
    kxky =  (3) 
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3.2 Constraints of urban traffic control 
As store-and-forward modeling technique tries to express the real dynamics and states of 
the urban traffic there are several constraints which have to be taken into account. The most 
essential constraints of the urban network are determined by the geometry. It is evident that 
the maximum number of vehicles is defined by the length of link between two junctions. 
Naturally the vehicles are considered as passenger car unit (PCU) resulting from 
appropriate transformation (Webster & Cobbe, 1966). Thus the states are subject to the 
constraints: 

  maxzz xkx ,0    (4) 
 
If we consider a network the use of the states constraints can contribute to avoid the 
oversaturation in the controlled traffic area. In a control scheme beside the state constraints 
one can define output limitations too. However in our case the states constraints are 
identically to the output constraints as IC = . 
The control input is the next variable restricted by some constraints. The first constraint on 
u  is the interval of seconds of green time: 

 

  maxzzminz ukuu ,,    (5) 
 

Depending on the system setting minzu ,  (for lack of vehicles on link z ) can be zero. It means 
permanent red signal for the stage in the next control interval. The second control input 
constraint is represented by the linear combination of green times at junction Jj . The sum 
of the green times has to be lower as maxjT , : 
 

   maxjz

Oj

z

Tku ,
1=

 , Jj ...,,2,1  , (6) 

where jO  is the number of stages at junction j , jmaxj LTT =,  ( jL  is the fixed lost time 
resulted from the geometry of junction j ), and J is the number of controlled intersections. 

 
4. Simulation environment 

In the previous sections traffic modeling was introduced which can be used in control 
design. Moreover the simulation environment has to be discussed similarly as all the 
methods presented in this chapter were simulated and tested. For simulation we used traffic 
simulator (VISSIM, 2010), numerical computing software (MATLAB, 2010) and C++ 
programming language.  
VISSIM is a microscopic traffic simulation software for analyzing traffic operations. It is able 
to simulate network consisting of several intersections and allow the use of external control 
algorithm in the control processes. These properties make it suitable to use this software by 
reason of the several junctions and the control algorithms written in MATLAB. VISSIM uses 
a so-called psycho-physical driver behavior model based on the car-following model of 
(Wiedemann, 1974). The model describes all the cars found in the system. The vehicles are 
defined by both physical and psychical parameters (origin, destination, speed, driver 

 

behavior, vehicle type, etc.). The VISSIM simulation is based on an iteration process of 
acceleration and deceleration.   
The communication does not work directly between MATLAB and VISSIM as the 
simulation can only be accessed via Component Object Model (COM) interface (Roca, 2005). 
To control the communication a C++ application has to be created. The created C++ 
program manages the simulation process and controls the data transfer between the 
software (Figure 3.).  
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Fig. 3. The simulation process of the system model 

 
5. MPC based urban traffic management 

The aim of our research was to elaborate a control process related to network consisting of 
several junctions which perform the control of all the traffic lights in its sphere of action in a 
coordinated way depending on the traffic. The controller must be able to dynamically make 
the traffic signal set of the intersections. From the point of view of realization, this means 
that before every period a new traffic sign must be generated regarding all the traffic lights, 
in harmony with the present traffic. To solve the above, MPC technology was chosen since it 
is able to take all the constraints into consideration in course of the control input setting. To 
show the efficiency of MPC the control design was tested simulating a real-word traffic 
network. 
5.1 The MPC cost function 
The control objective is the minimization and balancing of the numbers of vehicles within 
the streets of the controlled network. This control objective is approached through the 
appropriate manipulation of the green splits at urban signalized junctions, assuming given 
cycle times and offsets. By employing the predictive control model, the dynamic 
determination (per cycle) of the traffic light’s period is possible either with the consideration 
of the natural constraints existing in the system introduced in Section 3.2.  
The state space equation for MPC design can be given as follows: 
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 (7) 

 

where x , d , B  and u  are elements of Equation (3) already discussed. x~  is a hyper vector 
of the state vectors, representing the number of vehicles standing at each controlled link of 
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3.2 Constraints of urban traffic control 
As store-and-forward modeling technique tries to express the real dynamics and states of 
the urban traffic there are several constraints which have to be taken into account. The most 
essential constraints of the urban network are determined by the geometry. It is evident that 
the maximum number of vehicles is defined by the length of link between two junctions. 
Naturally the vehicles are considered as passenger car unit (PCU) resulting from 
appropriate transformation (Webster & Cobbe, 1966). Thus the states are subject to the 
constraints: 

  maxzz xkx ,0    (4) 
 
If we consider a network the use of the states constraints can contribute to avoid the 
oversaturation in the controlled traffic area. In a control scheme beside the state constraints 
one can define output limitations too. However in our case the states constraints are 
identically to the output constraints as IC = . 
The control input is the next variable restricted by some constraints. The first constraint on 
u  is the interval of seconds of green time: 

 

  maxzzminz ukuu ,,    (5) 
 

Depending on the system setting minzu ,  (for lack of vehicles on link z ) can be zero. It means 
permanent red signal for the stage in the next control interval. The second control input 
constraint is represented by the linear combination of green times at junction Jj . The sum 
of the green times has to be lower as maxjT , : 
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where jO  is the number of stages at junction j , jmaxj LTT =,  ( jL  is the fixed lost time 
resulted from the geometry of junction j ), and J is the number of controlled intersections. 

 
4. Simulation environment 

In the previous sections traffic modeling was introduced which can be used in control 
design. Moreover the simulation environment has to be discussed similarly as all the 
methods presented in this chapter were simulated and tested. For simulation we used traffic 
simulator (VISSIM, 2010), numerical computing software (MATLAB, 2010) and C++ 
programming language.  
VISSIM is a microscopic traffic simulation software for analyzing traffic operations. It is able 
to simulate network consisting of several intersections and allow the use of external control 
algorithm in the control processes. These properties make it suitable to use this software by 
reason of the several junctions and the control algorithms written in MATLAB. VISSIM uses 
a so-called psycho-physical driver behavior model based on the car-following model of 
(Wiedemann, 1974). The model describes all the cars found in the system. The vehicles are 
defined by both physical and psychical parameters (origin, destination, speed, driver 

 

behavior, vehicle type, etc.). The VISSIM simulation is based on an iteration process of 
acceleration and deceleration.   
The communication does not work directly between MATLAB and VISSIM as the 
simulation can only be accessed via Component Object Model (COM) interface (Roca, 2005). 
To control the communication a C++ application has to be created. The created C++ 
program manages the simulation process and controls the data transfer between the 
software (Figure 3.).  
 

 
 

MATLAB 
 

CONTROL 
LOGIC 

 
 

VISSIM 
 

TRAFFIC 
NETWORK 

 
 

 
 

C++ 
PROGRAM 

 
SIMULATION 

AND 
COMMUNICATION  

CONTROL 
 

COM INTERFACE 
 
 

 
Fig. 3. The simulation process of the system model 

 
5. MPC based urban traffic management 

The aim of our research was to elaborate a control process related to network consisting of 
several junctions which perform the control of all the traffic lights in its sphere of action in a 
coordinated way depending on the traffic. The controller must be able to dynamically make 
the traffic signal set of the intersections. From the point of view of realization, this means 
that before every period a new traffic sign must be generated regarding all the traffic lights, 
in harmony with the present traffic. To solve the above, MPC technology was chosen since it 
is able to take all the constraints into consideration in course of the control input setting. To 
show the efficiency of MPC the control design was tested simulating a real-word traffic 
network. 
5.1 The MPC cost function 
The control objective is the minimization and balancing of the numbers of vehicles within 
the streets of the controlled network. This control objective is approached through the 
appropriate manipulation of the green splits at urban signalized junctions, assuming given 
cycle times and offsets. By employing the predictive control model, the dynamic 
determination (per cycle) of the traffic light’s period is possible either with the consideration 
of the natural constraints existing in the system introduced in Section 3.2.  
The state space equation for MPC design can be given as follows: 
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where x , d , B  and u  are elements of Equation (3) already discussed. x~  is a hyper vector 
of the state vectors, representing the number of vehicles standing at each controlled link of 
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the intersections. c  is a hyper vector combination of the previous state vector and d .  The 
disturbance d  is considered measured and constant during the horizons of kth step. Hence 
it is multiplied by the value of the current horizon. B~  is a lower triangular hyper matrix 
including the matrix B . g  is a hyper vector of the control input vectors (green times), 

...2,1k  a is the discrete time index, and N  is the length of the MPC horizon.  
The MPC algorithm needs the current values of the states at each control interval which 
means the exact knowledge of the numbers of vehicle. However the states can not be 
directly measured only estimated using appropriate measurement system (e.g. loop 
detectors) and estimation algorithm. A possible realization for state estimation was 
published in paper of Vigos et al. (2007) which is based on the well-known Kalman Filter 
algorithm (Welch & Bishop, 1995). The estimation error is neglected in the paper. 
The elements of B  are the combinations of turning rates and saturation flow as discussed in 
Section 3.1. Saturation flow is not measurable hence a standard value is determined 
(  sec/0.5 vehS  ). Usually the values of turning rates are also considered constant. 
Nevertheless, in practice the turnings vary around the nominal rates. Thus a continuous 
estimation may be applied to ameliorate the MPC algorithm. A possible way to estimate 
turning rates is to use a finite back stepped state observer, e.g. Moving Horizon Estimation 
(MHE) method (Kulcsár et al., 2005). 
Several choices of the objective function in the optimization literature have been reported. In 
this chapter we consider the following quadratic cost function characterized by the 
weighted system states and control inputs: 
 

            min~~
2
1

 kgRkgkxQkxkJ TT  (8) 

 
where 0Q  and 0R  are scalar weighting matrices.  Q  and R  have appropriately chosen 
tuning parameters in their diagonals. The weightings reflect that the control input variation 
is lightly punished compared to the state variation. The selection of the appropriate 
weightings is important, because this could influence (especially the end-point weight) the 
stability of the closed loop (Kwon & Pearson, 1978). To solve this minimization problem 
several mathematical software can be applied which provide built-in function for quadratic 
constrained optimization. The solution of optimization problem (8) leads to the 
minimization of the vehicle queues waiting for crossing intersections. The control input 
green time is defined corresponding to the states of intersection branches representing a 
fully adaptive traffic management.  
Different stability proofs exist for receding horizon control algorithms. Maciejowski (2002), 
Rawlings & Muske (1993) or Mayne et al. (2000) offer different methodological approaches. 
However the urban traffic is a special case. It is ensured that the system will not turn 
instable because of the hard physical constraints coming from the network geometry. 
Accordingly, there is a natural saturation in the system. The states can never grow 
boundlessly. The instability can appear only if there is an oversaturation in the network. To 
solve this problem we intend to apply the results of the invariant set theory (Blanchini &   
Miani, 2007) in the future. It is also has to be noted that if we choose a traffic area to control 
we do not deal with the traffic outside of the boundary of the network. Obviously the sphere 
of control action is also an important question in traffic management.  

 

5.2 Test network for simulation 
To test MPC technology in urban traffic management we choose a real-world test area 
situated in the 10th district of Budapest. The test network includes seven neighboring 
intersections (Figure 4.). 
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Fig. 4. Schematic representation of the test network consisting of seven junctions 
 
The dimension of the system is 36 which means that we intend to control 36 links. This area 
is suitable for testing our new control system since the included road stretches have a heavy 
traffic volume in rush hours. The current traffic management system is offline. The seven 
junctions are controlled individually. Three of them use fix time signal plan. In the other 
four intersections detectors help the controllers. They can slightly modify their fix programs. 
The current control is effective but only in case of normal traffic flow. If the volume of 
vehicles increases extremely, the system cannot manage the situation and traffic becomes 
congested before the stop lines. The biggest problem is that the controllers work locally and 
independently. Our new control design, however, takes the seven junctions into 
consideration as a real network. 
As the MPC cost function (8) represents a quadratic optimization problem the control input 
was calculated using the built-in quadprog function of MATLAB. 

 
5.3 Simulation results 
To prove the applicability of the MPC based control design it was compared with the 
current control system of the test network, which is a partly adaptive control strategy.  
The same input traffic volumes were set for both simulations. We used volume data for 
which the traffic lights were originally designed. The simulation provided similar results for 
both strategies as we expected. This means the current system is correctly designed, and 
manages non-extreme traffic flow with good results.  
To test the effectiveness of the two systems in case of heavier traffic we generated more 
intensive traffic flow during the simulation. The original input volumes were increased by 
10% in the network. This simulation showed different results to the previous case. The 
current system could manage the traffic less efficiently compared with the MPC based 
control system. The simulation time was 1 hour long. The results are presented in Table 1. 
All important traffic parameters changed in a right way. The new system can provide a very 
effective control in the test network.  
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the intersections. c  is a hyper vector combination of the previous state vector and d .  The 
disturbance d  is considered measured and constant during the horizons of kth step. Hence 
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tuning parameters in their diagonals. The weightings reflect that the control input variation 
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Miani, 2007) in the future. It is also has to be noted that if we choose a traffic area to control 
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situated in the 10th district of Budapest. The test network includes seven neighboring 
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Fig. 4. Schematic representation of the test network consisting of seven junctions 
 
The dimension of the system is 36 which means that we intend to control 36 links. This area 
is suitable for testing our new control system since the included road stretches have a heavy 
traffic volume in rush hours. The current traffic management system is offline. The seven 
junctions are controlled individually. Three of them use fix time signal plan. In the other 
four intersections detectors help the controllers. They can slightly modify their fix programs. 
The current control is effective but only in case of normal traffic flow. If the volume of 
vehicles increases extremely, the system cannot manage the situation and traffic becomes 
congested before the stop lines. The biggest problem is that the controllers work locally and 
independently. Our new control design, however, takes the seven junctions into 
consideration as a real network. 
As the MPC cost function (8) represents a quadratic optimization problem the control input 
was calculated using the built-in quadprog function of MATLAB. 

 
5.3 Simulation results 
To prove the applicability of the MPC based control design it was compared with the 
current control system of the test network, which is a partly adaptive control strategy.  
The same input traffic volumes were set for both simulations. We used volume data for 
which the traffic lights were originally designed. The simulation provided similar results for 
both strategies as we expected. This means the current system is correctly designed, and 
manages non-extreme traffic flow with good results.  
To test the effectiveness of the two systems in case of heavier traffic we generated more 
intensive traffic flow during the simulation. The original input volumes were increased by 
10% in the network. This simulation showed different results to the previous case. The 
current system could manage the traffic less efficiently compared with the MPC based 
control system. The simulation time was 1 hour long. The results are presented in Table 1. 
All important traffic parameters changed in a right way. The new system can provide a very 
effective control in the test network.  
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Parameter OLD 
STRATEGY 

MPC based 
strategy Variation 

Total travel time per vehicle [sec] 114 96 ↓ 16% 

Average speed [km/h] 20.6 24.9 ↑ 21% 

Average delay time per vehicle [sec] 68 56 ↓ 18% 

Average number of stops per vehicles 3.8 3.1 ↓ 18% 

Table 1. Average simulation results of the test network 
 
At the same time these simulations were run in a reduced environment. We diminished the 
number of junctions in the test network from seven to four. Namely the traffic lights at 
junctions 4., 5., 6. (see Figure 4.) work totally offline. The capacities of these locations 
increased apparently. So only the junctions 1., 2., 3., and 4. were kept in order to focus on the 
comparison of the two adaptive strategies.  
 

Parameter Old strategy MPC based 
strategy Variation 

Total travel time per vehicle [sec] 105 96 ↓ 9% 

Average speed [km/h] 20.5 23.5  ↑ 15% 
Average delay time per vehicle [sec] 64 52  ↓ 19% 

Average number of stops per vehicles 1.2 1.2 0% 

Table 2. Average simulation results of the test network with design input volumes  
 

Parameter Old strategy MPC based 
strategy Variation 

Total travel time per vehicle [sec] 110 96 ↓ 13% 

Average speed [km/h] 18.4 23.6 ↑ 28% 

Average delay time per vehicle [sec] 71 52 ↓ 27% 

Average number of stops per vehicles 1.5 1.2 ↓ 20% 

Table 3. Average simulation results of the test network with 10% augmentation of the design 
input volumes  
 
Alike above, the behavior of the reduced network was analyzed with normal and heavier 
input traffic volumes. The results ameliorated in both cases (see Table 2. and 3.). The 
simulation time was 2 hours long. 
The aim of the MPC based control is the minimization of the number of vehicles waiting at 
the stop line. The current system cannot adapt to the increased volume. The average queue 
length grew strongly during the simulations. However, the MPC strategy is able to manage 
heavier traffic situations real-time. Figure 5. represents the effectiveness of our system. It 
shows the variation of average queue lengths in the network. 
 

 

 
Fig. 5. The variation of average queue lengths in the two different control cases 

 
6. Distributed traffic management system based on MPC 

The classical scheme for adaptive road traffic management structure is based on control 
center which processes and computes all signal control for the network. Another method for 
the control system architecture is the decentralized and distributed control scheme. This 
approach has numerous economical and technological advantages.  
In this section we present a distributed control system scheme for urban road traffic 
management. The control algorithm is based on MPC involving Jacobi iteration algorithm to 
solve constrained and nonlinear programming problem. The distributed control design was 
also simulated and tested. 
6.1 The MPC cost function 
We refer to the results of Section 5.1. Substituting  kx~  and  kg  in Equation (8) one arrives 
to: 

       gggcqcgBqcgrIBBqgkJ TTTTTT

2
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2
1~~~

2
1  (9) 

 
where q  and r  are constants coming from the diagonal of  the scalar matrices Q  and R . 
As   is a constant term, finally one has the objective function to minimize: 
 

          min
2
1

 kgkkgkgkJ TT   (10) 

 
where   is constant matrix as it contains the combination of constant turning rates, 
saturation rates and fixed tuning parameters. At the same time   contains varying values 
coming from the current dynamics of the traffic area. 

 
6.2 Multivariable nonlinear programming to solve MPC problem 
The solution of the MPC cost function (10) represents a multivariable nonlinear problem 
subject to linear constraints. It formulates a standard quadratic optimization problem 
(Bertsekas & Tsitsiklis, 1997):  



MPC in urban traffic management 261

 

Parameter OLD 
STRATEGY 

MPC based 
strategy Variation 

Total travel time per vehicle [sec] 114 96 ↓ 16% 

Average speed [km/h] 20.6 24.9 ↑ 21% 

Average delay time per vehicle [sec] 68 56 ↓ 18% 

Average number of stops per vehicles 3.8 3.1 ↓ 18% 

Table 1. Average simulation results of the test network 
 
At the same time these simulations were run in a reduced environment. We diminished the 
number of junctions in the test network from seven to four. Namely the traffic lights at 
junctions 4., 5., 6. (see Figure 4.) work totally offline. The capacities of these locations 
increased apparently. So only the junctions 1., 2., 3., and 4. were kept in order to focus on the 
comparison of the two adaptive strategies.  
 

Parameter Old strategy MPC based 
strategy Variation 

Total travel time per vehicle [sec] 105 96 ↓ 9% 

Average speed [km/h] 20.5 23.5  ↑ 15% 
Average delay time per vehicle [sec] 64 52  ↓ 19% 

Average number of stops per vehicles 1.2 1.2 0% 

Table 2. Average simulation results of the test network with design input volumes  
 

Parameter Old strategy MPC based 
strategy Variation 

Total travel time per vehicle [sec] 110 96 ↓ 13% 

Average speed [km/h] 18.4 23.6 ↑ 28% 

Average delay time per vehicle [sec] 71 52 ↓ 27% 

Average number of stops per vehicles 1.5 1.2 ↓ 20% 

Table 3. Average simulation results of the test network with 10% augmentation of the design 
input volumes  
 
Alike above, the behavior of the reduced network was analyzed with normal and heavier 
input traffic volumes. The results ameliorated in both cases (see Table 2. and 3.). The 
simulation time was 2 hours long. 
The aim of the MPC based control is the minimization of the number of vehicles waiting at 
the stop line. The current system cannot adapt to the increased volume. The average queue 
length grew strongly during the simulations. However, the MPC strategy is able to manage 
heavier traffic situations real-time. Figure 5. represents the effectiveness of our system. It 
shows the variation of average queue lengths in the network. 
 

 

 
Fig. 5. The variation of average queue lengths in the two different control cases 

 
6. Distributed traffic management system based on MPC 

The classical scheme for adaptive road traffic management structure is based on control 
center which processes and computes all signal control for the network. Another method for 
the control system architecture is the decentralized and distributed control scheme. This 
approach has numerous economical and technological advantages.  
In this section we present a distributed control system scheme for urban road traffic 
management. The control algorithm is based on MPC involving Jacobi iteration algorithm to 
solve constrained and nonlinear programming problem. The distributed control design was 
also simulated and tested. 
6.1 The MPC cost function 
We refer to the results of Section 5.1. Substituting  kx~  and  kg  in Equation (8) one arrives 
to: 

       gggcqcgBqcgrIBBqgkJ TTTTTT

2
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1~~~

2
1  (9) 

 
where q  and r  are constants coming from the diagonal of  the scalar matrices Q  and R . 
As   is a constant term, finally one has the objective function to minimize: 
 

          min
2
1

 kgkkgkgkJ TT   (10) 

 
where   is constant matrix as it contains the combination of constant turning rates, 
saturation rates and fixed tuning parameters. At the same time   contains varying values 
coming from the current dynamics of the traffic area. 

 
6.2 Multivariable nonlinear programming to solve MPC problem 
The solution of the MPC cost function (10) represents a multivariable nonlinear problem 
subject to linear constraints. It formulates a standard quadratic optimization problem 
(Bertsekas & Tsitsiklis, 1997):  
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  min
2
1

 gggkJ TT   

 s. t. 0 hFg  (11) 
 
where matrix inequality hFg   incorporates the constraints (4), (5) and (6) already 
discussed in Section 3.1. 
If   is a positive semi definite matrix, (11) gives a convex optimization problem (Boyd &  
Vanderberghe, 2004). Otherwise one has to use the singular value decomposition method to 
  which results a convex problem. This means a linear transformation to the original 
problem (11).  
Using the duality theory (Bertsekas & Tsitsiklis, 1997) the primal problem can be formulated 
into Lagrange dual standard form. The basic idea in Lagrangian duality is to take the 
constraints into account by augmenting the objective function with a weighted sum of the 
constraint functions. We define the Lagrangian associated with the problem as: 
 
      hFgkJgL T  ,  (12) 
 
We refer to i  as the Lagrange multiplier associated with the ith inequality constraint of 
(11). The dual function is defined as the minimum value of the Lagrangian function. This 
can be easily calculated by setting gradient of Lagrangian to zero (Boyd & Vanderberghe, 
2004). This yields an optimal green time vector (16) which minimizes the primal problem. 
Hence one arrives to the dual of the quadratic programming problem: 
 

  min
2
1

  TT
DUAL wPkJ  

 s. t. 0  (13) 
 

where P  and w  are coming from the original problem:  
 
 TFFP 1  (14) 
 hFw   1  (15) 
 
It is shown that if   provides optimal solution for the  kJDUAL  problem then  
 
     TFg 1  (16) 
 
gives also an optimal solution for the primal problem (Rockafellar, 1970). 
The dual problem has a simple constraint set compared with the primal problem’s 
constraints. Hence expression (13) represents a standard minimization problem over 
nonnegative orthant. 
A very efficient method, the Jacobi iteration was found to solve the optimization problem. 
Since   is a positive semi definite matrix the jth diagonal element of P , given by  
 

 

 j
T
jjj ffp 1  (17) 

 
is positive. This means that for every j the dual cost function is strictly convex along the jth 
coordinate. Therefore the strict convexity is satisfied and it is possible to use the nonlinear 
Jacobi algorithm. Because the dual objective function is also quadratic the iteration can be 
written explicitly. Taking into account the form of the first partial derivative of the dual cost  
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the method is given by: 
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Where 0  is the stepsize parameter which should be chosen sufficiently small and some 
experimentation may be needed to obtain the appropriate range for  .  
The importance of this method, over its efficiency, is the ability to satisfy the positivity since 
equation (19) excludes negative solution for  . Thus, during the MPC control process at 
each (kth) step the optimal green times can be directly calculated from equation (16) after 
solving the problem (11). 

 
6.3 Realization of MPC based distributed traffic management system 
The economical and technological innovation of the above described control method is 
represented by the state-of-the-art control design and the optional decentralized realization 
at the same time. 
Generally, the architectures of traffic control systems can be central, decentralized, or mixed. 
The central management architecture is a frequent strategy based on a central processor 
which controls all signal controllers in the transportation network. Decentralized and mixed 
control systems are not so common applications yet. However they have many advantages 
and represent a new way in traffic control technology. Decentralized management systems 
carry a higher performance since they can distribute their computations between the traffic 
controllers. As well as they represent a higher operation safety because of their structural 
redundancy. Some of these distributed realizations are for example SCATS (Wolshon & 
Taylor, 1999) or Utopia (UTOPIA, 2010). 
The distributed technology can be used in any road traffic network which is equipped with 
adequate signal controllers and detectors, as well as communication between controllers is 
also required. 
Since the solution of the Jacobi algorithm (19) is an iteration process the computers can 
distribute their calculations during the operation cycle. Therefore it is suitable for the 
distributed realization of the MPC problem. Considering a large traffic network the 
following practical system realization can be applied. Firstly we define the nodes 
represented by the red cubes on Figure 6. The nodes are the head traffic controllers which 
participate in the resolution procedure. Every node covers a few intersections (traffic 
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Since   is a positive semi definite matrix the jth diagonal element of P , given by  
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Where 0  is the stepsize parameter which should be chosen sufficiently small and some 
experimentation may be needed to obtain the appropriate range for  .  
The importance of this method, over its efficiency, is the ability to satisfy the positivity since 
equation (19) excludes negative solution for  . Thus, during the MPC control process at 
each (kth) step the optimal green times can be directly calculated from equation (16) after 
solving the problem (11). 

 
6.3 Realization of MPC based distributed traffic management system 
The economical and technological innovation of the above described control method is 
represented by the state-of-the-art control design and the optional decentralized realization 
at the same time. 
Generally, the architectures of traffic control systems can be central, decentralized, or mixed. 
The central management architecture is a frequent strategy based on a central processor 
which controls all signal controllers in the transportation network. Decentralized and mixed 
control systems are not so common applications yet. However they have many advantages 
and represent a new way in traffic control technology. Decentralized management systems 
carry a higher performance since they can distribute their computations between the traffic 
controllers. As well as they represent a higher operation safety because of their structural 
redundancy. Some of these distributed realizations are for example SCATS (Wolshon & 
Taylor, 1999) or Utopia (UTOPIA, 2010). 
The distributed technology can be used in any road traffic network which is equipped with 
adequate signal controllers and detectors, as well as communication between controllers is 
also required. 
Since the solution of the Jacobi algorithm (19) is an iteration process the computers can 
distribute their calculations during the operation cycle. Therefore it is suitable for the 
distributed realization of the MPC problem. Considering a large traffic network the 
following practical system realization can be applied. Firstly we define the nodes 
represented by the red cubes on Figure 6. The nodes are the head traffic controllers which 
participate in the resolution procedure. Every node covers a few intersections (traffic 
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controllers) which do not participate in the computation. The distributed control network is 
represented by Figure 6. 
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Fig. 6. Distributed MPC control in urban traffic network 
 
The distributed computation is executed during the operation cycle as follows: 

1. Communication: At the end of the kth cycle all traffic controllers send their 
measurements (number of vehicles) to their node.  

2. Communication: The head controllers share the measurement data with the other 
nodes. 

3. Calculation (which is not the third step practically since it can be started parallel 
with step 1.): Node 1. starts iteration procedure. After some predefined iteration 
steps it forwards their computational results to the next node and so on. The 
transmitted data is the currently calculated vector s  where ,...,2,1s  (  
represents the final iteration step number specified previously). 

4. Communication: When the last node finishes the computation (which means 
practically that s ) it shares the optimal result (  ) with the other nodes.  

5. Calculation: The head controllers calculate their final calculation. Using Equation 
(16) the nodes do not need to execute the whole multiplication. But only the 
specified part of g  which contains the optimal green times of their traffic 
controllers. 

6. Communication: Finally the nodes pass the optimal green times to every traffic 
controllers for the next (k+1) cycle. 

If one wishes to control small traffic network with a few intersections the distributed 
solution is not certainly required. The calculation of one Jacobi iteration step means simple 
multiplications and additions of scalars. In case of few states (number of the controlled 
links) a single controller’s performance is sufficient to compute all signal sets of the network. 
Thus the system is working with redundancy which can be very useful at the same time. 
The controllers can continuously check their operation comparing their computation results. 
On the other hand, if one of the signal controllers fails in the network the system can go on 
with safe functioning.  
However with the growth of the number of the system states the computational demand 
increases quadratically. Therefore larger network requires the distributed solution of the 

 

MPC control. Certainly the solution method is also largely depends on the performance of 
the actual signal controllers and the communication system. 

 
6.4 Simulation of MPC based distributed control algorithm 
To verify the designed control system scheme a closed loop simulation environment was 
created (Section 4.). The traffic network used for the simulation is equivalent with the one 
applied in Section 5.2.  
As discussed before the appropriate setting for the stepsize parameter   requires some 
practical experimentation. This value strongly influences the performance of the calculation. 
Convergence can be shown when 1 n . However this value may lead to an unnecessarily 
slow rate of convergence for some problems.  
The values in Table 4.  shows the variation of the number of steps to achieve convergence. In 
case of our test network the smallest value with convergence was 0525.0 n . 
 

  Number of steps 
1n  6000  

5.0n  1000  

1.0n  200  

0525.0n  150  

Table 4. The variation of the number of steps to achieve convergence 
 
We also compared the computation times of the applied methods. Using the quadprog 
function of MATLAB the computation time was about 20 seconds. Conversely the Jacobi 
algorithm required less than 1 second on average which means 20 times faster calculation. It 
has to be noted that the Jacobi algorithm was not tested in a distributed way. However even 
with some communication time the Jacobi iteration is more efficient. On the one hand in our 
test network the number of states was quite few. The distributed solution is not needed. On 
the other hand the distributed realization is highly dependent on the current system 
configuration (measurement accuracy, communication speed, etc.).  

 
6.5 Vehicle priority management in MPC based urban control 
The design of an adaptive traffic control system comes with the desirable demand to 
incorporate vehicle priority management as well. Therefore an additional feature of the 
designed system is the ability to manage priority. 
The scope of the priority management has to be specified as some special vehicle classes 
(e.g. emergency vehicles) have top-level priority. Therefore they do not need any help from 
traffic lights to cross the intersections anytime. Our control deals vehicles which are favored 
compared to the others but not by all means. Vehicles of the public transport are typically of 
this sort. However one may differentiate the levels of importance even between public 
vehicles (e.g. an overland bus compared to a local bus).  
To operate such system these vehicles have to be able to communicate with the traffic 
controllers. If a preferred vehicle arrives to any junction of the network it may be 
automatically indicated by the traffic controller through radio frequency. Its stage can be 
handled with priority getting maximum green time as possible in every cycle until the 
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Fig. 6. Distributed MPC control in urban traffic network 
 
The distributed computation is executed during the operation cycle as follows: 

1. Communication: At the end of the kth cycle all traffic controllers send their 
measurements (number of vehicles) to their node.  

2. Communication: The head controllers share the measurement data with the other 
nodes. 

3. Calculation (which is not the third step practically since it can be started parallel 
with step 1.): Node 1. starts iteration procedure. After some predefined iteration 
steps it forwards their computational results to the next node and so on. The 
transmitted data is the currently calculated vector s  where ,...,2,1s  (  
represents the final iteration step number specified previously). 

4. Communication: When the last node finishes the computation (which means 
practically that s ) it shares the optimal result (  ) with the other nodes.  

5. Calculation: The head controllers calculate their final calculation. Using Equation 
(16) the nodes do not need to execute the whole multiplication. But only the 
specified part of g  which contains the optimal green times of their traffic 
controllers. 

6. Communication: Finally the nodes pass the optimal green times to every traffic 
controllers for the next (k+1) cycle. 

If one wishes to control small traffic network with a few intersections the distributed 
solution is not certainly required. The calculation of one Jacobi iteration step means simple 
multiplications and additions of scalars. In case of few states (number of the controlled 
links) a single controller’s performance is sufficient to compute all signal sets of the network. 
Thus the system is working with redundancy which can be very useful at the same time. 
The controllers can continuously check their operation comparing their computation results. 
On the other hand, if one of the signal controllers fails in the network the system can go on 
with safe functioning.  
However with the growth of the number of the system states the computational demand 
increases quadratically. Therefore larger network requires the distributed solution of the 

 

MPC control. Certainly the solution method is also largely depends on the performance of 
the actual signal controllers and the communication system. 

 
6.4 Simulation of MPC based distributed control algorithm 
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We also compared the computation times of the applied methods. Using the quadprog 
function of MATLAB the computation time was about 20 seconds. Conversely the Jacobi 
algorithm required less than 1 second on average which means 20 times faster calculation. It 
has to be noted that the Jacobi algorithm was not tested in a distributed way. However even 
with some communication time the Jacobi iteration is more efficient. On the one hand in our 
test network the number of states was quite few. The distributed solution is not needed. On 
the other hand the distributed realization is highly dependent on the current system 
configuration (measurement accuracy, communication speed, etc.).  

 
6.5 Vehicle priority management in MPC based urban control 
The design of an adaptive traffic control system comes with the desirable demand to 
incorporate vehicle priority management as well. Therefore an additional feature of the 
designed system is the ability to manage priority. 
The scope of the priority management has to be specified as some special vehicle classes 
(e.g. emergency vehicles) have top-level priority. Therefore they do not need any help from 
traffic lights to cross the intersections anytime. Our control deals vehicles which are favored 
compared to the others but not by all means. Vehicles of the public transport are typically of 
this sort. However one may differentiate the levels of importance even between public 
vehicles (e.g. an overland bus compared to a local bus).  
To operate such system these vehicles have to be able to communicate with the traffic 
controllers. If a preferred vehicle arrives to any junction of the network it may be 
automatically indicated by the traffic controller through radio frequency. Its stage can be 
handled with priority getting maximum green time as possible in every cycle until the 
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vehicle will not leave the intersection. It means practically that the cost function is 
dynamically modified by the system weights depending of the presence of any preferred 
vehicles. Accordingly for the sake of immediate reaction the given junction falls out of the 
scope of the coordinated traffic control until the vehicle will not leave the intersection. 
However it can be considered as disturbance.  
We refer to the original MPC cost function (8) where Q  is a diagonal weighting matrix: 
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Each diagonal element tunes a state (queue length of controlled links). If there is no preferred 
vehicle in the scope of control: nqqq  21 . By online modifying the weight iq  (according to 
the preferred vehicle's direction) one can assure priority. The measure of the modification of iq  
depends on the current level of priority. In practice, the appropriate choice of the weights is an 
empirical process as it strongly depends on the junction's properties. 

 
7. Future work: Robust MPC in urban traffic management 

As future work we introduce the problem of robustness in urban traffic management. In 
Section 3.1 all disturbances in the state space model were considered as known (measured) 
values and all possible uncertainties were neglected. These assumptions were taken by 
practical reasons. However for more precise traffic modeling these factors can be involved in 
the control scheme determining upper and lower bounds of the uncertainties. This implies 
the use of a suitable robust control method as well.  
The simplest approach to represent disturbances in the system is the bounded unknown 
external additive disturbance. In this case an additive term appears in the LTI state space 
model. This approach can deal with state disturbances. As a part of the Ph.D thesis of 
Löfberg (2003) a Minimax MPC is presented which can be eligible for traffic systems too. 
Another possibility to model the uncertainties is the polytopic paradigm. The system 
matrices  kA  and  kB  of an LTV state space description can be defined by a prespecified 
polytopic set: 
       LL BABABACo ,,,= 2211   (21) 
 

where Co  devotes to the convex hull and L  is the number of the vertices. Matrix  kA  can 
be used to express uncertainties of the states. In practice it means for example parking places 
along the road or non-controlled junctions in the network which result unmeasured state 
variation. Matrix  kB  can be used to represent uncertainties of the saturation flow rates 
which are also non-measurable parameters. For polytopic system Kothare et al. (1996) 
provide an efficient Minimax MPC solution which can be potentially applied in urban traffic 
management as well. 
There is another factor which can be taken into consideration in robust traffic control. In 
Section 5.1 the demands ( d ) intending to enter the network were assumed constant and 

 

measured disturbances. In effect they vary continuously. Therefore for fully exact solution 
varying demands should be considered in the MPC cost function. 

 
8. Conclusion 

This chapter introduced the aspects of MPC applied in urban traffic management. As the 
urban traffic is a complex system having special attributes the appropriate traffic model had 
to be discussed in details as well. At the same time MPC technology is suitable to control 
such complex system optimally and real-time. The main control aim was the optimal and 
coordinated control which can be satisfied. The applicability was demonstrated by several 
simulations. Furthermore a distributed technology was presented which can be very useful 
in practice particularly in large traffic network. As an additional feature of MPC based 
system we showed that an optional vehicle priority management can be easily implemented 
in the control design. Finally we introduced the possibility of the robust control in urban 
traffic which is a planned research scope in the future.  
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vehicle will not leave the intersection. It means practically that the cost function is 
dynamically modified by the system weights depending of the presence of any preferred 
vehicles. Accordingly for the sake of immediate reaction the given junction falls out of the 
scope of the coordinated traffic control until the vehicle will not leave the intersection. 
However it can be considered as disturbance.  
We refer to the original MPC cost function (8) where Q  is a diagonal weighting matrix: 
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Each diagonal element tunes a state (queue length of controlled links). If there is no preferred 
vehicle in the scope of control: nqqq  21 . By online modifying the weight iq  (according to 
the preferred vehicle's direction) one can assure priority. The measure of the modification of iq  
depends on the current level of priority. In practice, the appropriate choice of the weights is an 
empirical process as it strongly depends on the junction's properties. 

 
7. Future work: Robust MPC in urban traffic management 

As future work we introduce the problem of robustness in urban traffic management. In 
Section 3.1 all disturbances in the state space model were considered as known (measured) 
values and all possible uncertainties were neglected. These assumptions were taken by 
practical reasons. However for more precise traffic modeling these factors can be involved in 
the control scheme determining upper and lower bounds of the uncertainties. This implies 
the use of a suitable robust control method as well.  
The simplest approach to represent disturbances in the system is the bounded unknown 
external additive disturbance. In this case an additive term appears in the LTI state space 
model. This approach can deal with state disturbances. As a part of the Ph.D thesis of 
Löfberg (2003) a Minimax MPC is presented which can be eligible for traffic systems too. 
Another possibility to model the uncertainties is the polytopic paradigm. The system 
matrices  kA  and  kB  of an LTV state space description can be defined by a prespecified 
polytopic set: 
       LL BABABACo ,,,= 2211   (21) 
 

where Co  devotes to the convex hull and L  is the number of the vertices. Matrix  kA  can 
be used to express uncertainties of the states. In practice it means for example parking places 
along the road or non-controlled junctions in the network which result unmeasured state 
variation. Matrix  kB  can be used to represent uncertainties of the saturation flow rates 
which are also non-measurable parameters. For polytopic system Kothare et al. (1996) 
provide an efficient Minimax MPC solution which can be potentially applied in urban traffic 
management as well. 
There is another factor which can be taken into consideration in robust traffic control. In 
Section 5.1 the demands ( d ) intending to enter the network were assumed constant and 

 

measured disturbances. In effect they vary continuously. Therefore for fully exact solution 
varying demands should be considered in the MPC cost function. 

 
8. Conclusion 

This chapter introduced the aspects of MPC applied in urban traffic management. As the 
urban traffic is a complex system having special attributes the appropriate traffic model had 
to be discussed in details as well. At the same time MPC technology is suitable to control 
such complex system optimally and real-time. The main control aim was the optimal and 
coordinated control which can be satisfied. The applicability was demonstrated by several 
simulations. Furthermore a distributed technology was presented which can be very useful 
in practice particularly in large traffic network. As an additional feature of MPC based 
system we showed that an optional vehicle priority management can be easily implemented 
in the control design. Finally we introduced the possibility of the robust control in urban 
traffic which is a planned research scope in the future.  
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1. Introduction

Control systems with switching modes in which different dynamics are assigned are called
hybrid dynamical systems and are being actively researched (1–6). The continuous behavior
in the hybrid dynamical system is expressed generally by differential or difference equations,
while the discrete behavior is described by logics or state machines such as automata. If a sys-
tem can be regarded as a hybrid dynamical system, both continuous and discrete properties
can be dealt with concurrently. Therefore, a hybrid dynamical system has the ability to repre-
sent many systems as a single model without dividing into separate continuous and discrete
systems.
Power electronic circuits can also be regarded as hybrid dynamical systems as they share both
continuous and discontinuous behaviors(7–14). The continuous behavior of current or voltage
in such a system is subject to passive elements such as resistance, capacitance and inductance,
whereas the discontinuous element of switching devices such as MOSFETs and IGBTs yields
an on-off signal that is essentially discrete.
A conventional method currently being used for the control of dc-dc converters is PWM (Pulse
Width Modulation) with triangular wave. The average output voltage is controlled by PWM,
which determines on-off switching timing by employing relatively high carrier frequency.
However, the reference may vary in the half period of triangular wave carrier if the carrier
frequency is lowered to decrease switching loss for saving energy. Then, the average voltage
can no longer approximate the voltage reference. One possible reason is that the control fre-
quency is determined by the carrier frequency only. Another reason may be that the PWM
method focuses only on the average output characteristic and excludes switching property.
Therefore, a novel method is desired for dc-dc converters by considering switching property
explicitly as hybrid dynamical systems.
For synthesis of the hybrid dynamical system, various approaches have been proposed.
Specifically, modeling and synthesis based on mixed logical dynamical (MLD) systems
has much potential since the formulation is similar to the linear discrete time state space
representation(19). The solution of the design is obtained by solving an optimization prob-
lem with the help of model predictive control (MPC)(16; 17). It derives the optimal input to
minimize an estimation of a given cost function by predicting controlled variables for an MLD
system. Specifically, the problem is reduced to a mixed-integer linear or quadratic program-
ming (MILP or MIQP) problem. The method is expected to achieve better control performance
than that achieved by conventional methods when applied to the output control of a power
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Fig. 1. Topology of the step-down dc-dc converter.

converter. However, it is difficult to solve the optimal problem online because of the com-
putation burden caused by the control period of power converters being considerably short
compared to that in mechanical or process control systems.
This paper proposes a control method using the MPC for the output control problem of the
dc-dc converter. The considered system is described as an MLD system form. In our work(14),
one control period is divided into N submodels. Thus, additional auxiliary variables are
needed. In addition, the state variable among the submodels is handled as an averaged one.
The method in this paper, however. requires no averaging. The explicit switching law is given
as a direct gate signal for the switching devices. Moreover, it is emphasized that a quadratic
cost function which was not adopted in a previous work(14) is addressed in this paper so that
not only the tracking error but also the switching losses can be considered. The proposed
control method achieves quick tracking to the reference in transient state, while keeping the
switching frequency as small as possible in steady state. To verify the effectiveness of the
proposed method, numerical simulations and experimental results are illustrated.
This paper is organized as follows. In Section 2, a step-down dc-dc converter and MLD system
are introduced. Next, the optimization problem for the control is described. Following several
simulation results, Section 3 proposes a modified control method taking into account the com-
putation delay. Then, experimental results are shown in Section 4. Finally, Section 5 concludes
this paper. In the Appendix, formulation of constraints and transformation to mp-MIQP are
explained.

2. Preliminaries

In this section, a step-down dc-dc converter is considered as an example of power elec-
tronic circuits. After the formulation, an MLD system(19) and multi-parametric MIQP (mp-
MIQP)(18) are reviewed.

2.1 Step-down dc-dc converter
The circuit topology of the step-down dc-dc converter is shown in Fig. 1. The dc-dc con-
verter controls the load voltage vo with on-off switches S1 and S2. The resistance ro expresses
the load. The equivalent series resistance of the capacitor and the internal resistance of the
inductor are denoted by rc and rl , respectively, while xl and xc represent inductance and ca-
pacitance of the low-pass filtering stage, respectively. Switches S1 and S2 cannot be conducted
simultaneously. Together with diode D, switch S2 provides a path for the inductor current il

regardless of whether it is positive or negative. The continuous time state-space representa-
tion of the dc-dc converter shown in Fig. 1 is given by

ẋ(t) = Acx(t) + Bcu(t), (1)

y(t) = Ccx(t), (2)

where x(t) =
[
il(t) vo(t)

]′. Denoted by il(t) and vo(t) are the inductor current
and output voltage, respectively. The matrices Ac, Bc and Cc are given by Ac =[

− rl
xl

− 1
xl

ro
rc+ro

( 1
xc
− rcrl

xl
) − ro

rc+ro
( 1

xcro
+ rc

xl
)

]
, Bc =

[
1
xlrcro

xl(rc+ro)

]
and Cc =

[
0 1

]
, respectively.

Eqs. (1) and (2) are sampled by Ts. Hereafter, the discrete time is described anew as t. Thus,
the considered system is recast as follows.

x(t + 1) = Ax(t) + Bu(t), (3)

y(t) = Cx(t), (4)

where A = eAcTs , B =
∫ Ts

0
eAcτdτBc and C = Cc. Note that the value of input is limited to

either 0 or vs, which can be rewritten as follows.

(∀t) u(t) ∈ {0, vs}. (5)

2.2 Representation by MLD system(19)
A mixed logical dynamical (MLD) system is described by a linear dynamical equation with
linear mixed-integer inequalities so that discrete properties included in the process can be
introduced into the system using logical variables. One advantage is that the logical formula
can be described with linear inequalities and model predictive control can be applied.
The model of the dc-dc converter is rewritten to the MLD system representation. The auxiliary
δ of 0-1 variable is introduced as a new input variable to describe the discrete variable. The
variable is associated as follows.

[δ(t) = 1] → [z(t) = vs], (6)

[δ(t) = 0] → [z(t) = 0], (7)

where z(t) is,

0 ≤ z(t) ≤ vs. (8)

Eqs. (6) and (7) indicate that z(t) = vs if δ(t) = 1, whereas z(t) = 0, otherwise. By replacing
Eqs. (6) and (7) with their equivalent linear inequalities,

E1δ(t) + E2z(t) ≤ E3u(t) + E4x(t) + E5, (9)

where,

E1 =
[
0 vs −vs 0

]′ , (10)

E2 =
[
1 −1 1 −1

]′ , (11)

E3 = E4 = O, (12)

E5 =
[
vs 0 0 0

]′ . (13)



Off-line model predictive control of dc-dc converter 271

Fig. 1. Topology of the step-down dc-dc converter.

converter. However, it is difficult to solve the optimal problem online because of the com-
putation burden caused by the control period of power converters being considerably short
compared to that in mechanical or process control systems.
This paper proposes a control method using the MPC for the output control problem of the
dc-dc converter. The considered system is described as an MLD system form. In our work(14),
one control period is divided into N submodels. Thus, additional auxiliary variables are
needed. In addition, the state variable among the submodels is handled as an averaged one.
The method in this paper, however. requires no averaging. The explicit switching law is given
as a direct gate signal for the switching devices. Moreover, it is emphasized that a quadratic
cost function which was not adopted in a previous work(14) is addressed in this paper so that
not only the tracking error but also the switching losses can be considered. The proposed
control method achieves quick tracking to the reference in transient state, while keeping the
switching frequency as small as possible in steady state. To verify the effectiveness of the
proposed method, numerical simulations and experimental results are illustrated.
This paper is organized as follows. In Section 2, a step-down dc-dc converter and MLD system
are introduced. Next, the optimization problem for the control is described. Following several
simulation results, Section 3 proposes a modified control method taking into account the com-
putation delay. Then, experimental results are shown in Section 4. Finally, Section 5 concludes
this paper. In the Appendix, formulation of constraints and transformation to mp-MIQP are
explained.

2. Preliminaries

In this section, a step-down dc-dc converter is considered as an example of power elec-
tronic circuits. After the formulation, an MLD system(19) and multi-parametric MIQP (mp-
MIQP)(18) are reviewed.

2.1 Step-down dc-dc converter
The circuit topology of the step-down dc-dc converter is shown in Fig. 1. The dc-dc con-
verter controls the load voltage vo with on-off switches S1 and S2. The resistance ro expresses
the load. The equivalent series resistance of the capacitor and the internal resistance of the
inductor are denoted by rc and rl , respectively, while xl and xc represent inductance and ca-
pacitance of the low-pass filtering stage, respectively. Switches S1 and S2 cannot be conducted
simultaneously. Together with diode D, switch S2 provides a path for the inductor current il

regardless of whether it is positive or negative. The continuous time state-space representa-
tion of the dc-dc converter shown in Fig. 1 is given by

ẋ(t) = Acx(t) + Bcu(t), (1)

y(t) = Ccx(t), (2)

where x(t) =
[
il(t) vo(t)

]′. Denoted by il(t) and vo(t) are the inductor current
and output voltage, respectively. The matrices Ac, Bc and Cc are given by Ac =[

− rl
xl

− 1
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( 1
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]
and Cc =

[
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]
, respectively.

Eqs. (1) and (2) are sampled by Ts. Hereafter, the discrete time is described anew as t. Thus,
the considered system is recast as follows.

x(t + 1) = Ax(t) + Bu(t), (3)

y(t) = Cx(t), (4)

where A = eAcTs , B =
∫ Ts

0
eAcτdτBc and C = Cc. Note that the value of input is limited to

either 0 or vs, which can be rewritten as follows.

(∀t) u(t) ∈ {0, vs}. (5)

2.2 Representation by MLD system(19)
A mixed logical dynamical (MLD) system is described by a linear dynamical equation with
linear mixed-integer inequalities so that discrete properties included in the process can be
introduced into the system using logical variables. One advantage is that the logical formula
can be described with linear inequalities and model predictive control can be applied.
The model of the dc-dc converter is rewritten to the MLD system representation. The auxiliary
δ of 0-1 variable is introduced as a new input variable to describe the discrete variable. The
variable is associated as follows.

[δ(t) = 1] → [z(t) = vs], (6)

[δ(t) = 0] → [z(t) = 0], (7)

where z(t) is,

0 ≤ z(t) ≤ vs. (8)

Eqs. (6) and (7) indicate that z(t) = vs if δ(t) = 1, whereas z(t) = 0, otherwise. By replacing
Eqs. (6) and (7) with their equivalent linear inequalities,

E1δ(t) + E2z(t) ≤ E3u(t) + E4x(t) + E5, (9)

where,

E1 =
[
0 vs −vs 0

]′ , (10)

E2 =
[
1 −1 1 −1

]′ , (11)

E3 = E4 = O, (12)

E5 =
[
vs 0 0 0

]′ . (13)
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is obtained. Inequality (9) reflects that z(t) = vs if δ(t) = 1 whereas z(t) = 0 if δ(t) = 0.
Namely, δ(t) can be considered as the state of the switch: δ(t) = 1 if the switch is on, δ(t) = 0
otherwise. Note that z(t) in inequality (8) is an apparent continuous auxiliary variable.
As a result, Eqs. (3), (4) and (5) can be transformed into an MLD system consisting of one
standard linear discrete time state space representation and linear inequalities associated with
the constraints on the system,

x(t + 1) = Ax(t) + Bz(t), (14)

y(t) = Cx(t), (15)

subject to Eq. (9). (16)

2.3 Multi-parametric MIQP(18)
Multi-parametric MIQP (mp-MIQP) is a type of MIQP(18) parameterized by multiple param-
eters. The mp-MIQP parameterized by state x of the system is described as follows.

min
ν

ν′Hν + 2x′Fν + x′Yx + 2Cf ν + 2Cxx, (17)

subject to Gν ≤ W + Ex, (18)

where ν is

ν =
[
∆′ Ξ′]′ , (19)

∆ =
[
δ0 . . . δNp−1

]′ , (20)

Ξ =
[
z0 . . . zNp−1

]′ . (21)

In Eqs. (20) and (21), the predictive horizon in MPC is denoted by Np.
If solved, the optimal solution of mp-MIQP is given as the piece-wise affine state feedback
form. Namely, the explicit control law parameterized by the state x is obtained as follows.

ν = Kix + hi if x ∈ Xi, (22)

where Xi (i = 1, 2, . . .) are regions partitioned in the state space, and Ki and hi are the cor-
responding constant matrices and vectors, respectively. As Eq. (22) is available off-line, the
optimal input is determined online according to the state measured at each sampling.

3. Numerical simulation and revision of control method

In this section, the effectiveness of the method proposed in the previous section and the Ap-
pendix is shown by applying it to the output control of the dc-dc converter shown in Fig. 1.
The control objective is to achieve quick tracking to the reference in transient state with mini-
mal switching in steady state. For the purpose, mp-MIQP is exploited.

3.1 Simulation condition and state partition
The circuit and control parameters for simulation are listed in Tables 1 and 2, respectively.
Let us consider Eqs. (14) to (16) as the model for the dc-dc converter shown in Fig. 1. In
Eq. (45), H̃ and L are first set as zeros. Then, the setting of these matrices imply that focus
is only on tracking performance. The state partition obtained by off-line model predictive
control, (mp-MIQP) and its enlarged view are shown in Fig. 2. In each region of Fig. 2, the
optimal input sequence is assigned. The figure of state partition shown in Fig. 2 is generated

Table 1. Circuit parameters
source voltage vs 5.0 [V]

inductance xl 20 [µH]
internal resistance rl 25 [mΩ]

capacitance xc 2.2 [mF]
equivalent series resistance rc 60[mΩ]

load resistance ro 1[Ω]

Table 2. Control parameters
control period Ts 10 [µs]

predictive horizon Np 1, 3, 5
upper limit il,max 8.0 [A]

reference value vref 2.0 [V]

using of Multi-Parametric Toolbox(20). In Fig. 2, the number of state partitions is limited to
at most 2Np . Each partition is specified by linear inequalities. In each partition, the solution
of mp-MIQP given by Eq. (22) is assigned. To investigate to which partition it belongs, the
state

[
il vo

]′ at each sampling can be performed simply since the obtained state partition
is constructed by linear inequalities. Focus on the white region at the right bottom corner
in Fig. 2. Whenever the state

[
il vo

]′ enters the region, switch S1 shown in Fig. 1 is forced
to turn off since the constraint about the inductor current given by Eq. (37) can no longer be
satisfied.

3.2 Consideration of delay for computation of state distinction
Figs. 3 and 4 show simulation results for Np = 3 and Np = 5, respectively. Note that the
method described in the Appendix is utilized for each of the calculations. Figs. 3 and 4, also
indicate that the output voltage is kept at the specified value 2.0 [V] in steady state, while the
inductor current does not exceed its limit of 8[A]. In the simulation, the computation time of
state distinction for optimal input is assumed to be negligible. Little difference exists between
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Fig. 2. State partition for Np = 5 (left: whole, rigtht: closeup).
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is obtained. Inequality (9) reflects that z(t) = vs if δ(t) = 1 whereas z(t) = 0 if δ(t) = 0.
Namely, δ(t) can be considered as the state of the switch: δ(t) = 1 if the switch is on, δ(t) = 0
otherwise. Note that z(t) in inequality (8) is an apparent continuous auxiliary variable.
As a result, Eqs. (3), (4) and (5) can be transformed into an MLD system consisting of one
standard linear discrete time state space representation and linear inequalities associated with
the constraints on the system,

x(t + 1) = Ax(t) + Bz(t), (14)

y(t) = Cx(t), (15)

subject to Eq. (9). (16)

2.3 Multi-parametric MIQP(18)
Multi-parametric MIQP (mp-MIQP) is a type of MIQP(18) parameterized by multiple param-
eters. The mp-MIQP parameterized by state x of the system is described as follows.

min
ν

ν′Hν + 2x′Fν + x′Yx + 2Cf ν + 2Cxx, (17)

subject to Gν ≤ W + Ex, (18)

where ν is

ν =
[
∆′ Ξ′]′ , (19)

∆ =
[
δ0 . . . δNp−1

]′ , (20)

Ξ =
[
z0 . . . zNp−1

]′ . (21)

In Eqs. (20) and (21), the predictive horizon in MPC is denoted by Np.
If solved, the optimal solution of mp-MIQP is given as the piece-wise affine state feedback
form. Namely, the explicit control law parameterized by the state x is obtained as follows.

ν = Kix + hi if x ∈ Xi, (22)

where Xi (i = 1, 2, . . .) are regions partitioned in the state space, and Ki and hi are the cor-
responding constant matrices and vectors, respectively. As Eq. (22) is available off-line, the
optimal input is determined online according to the state measured at each sampling.

3. Numerical simulation and revision of control method

In this section, the effectiveness of the method proposed in the previous section and the Ap-
pendix is shown by applying it to the output control of the dc-dc converter shown in Fig. 1.
The control objective is to achieve quick tracking to the reference in transient state with mini-
mal switching in steady state. For the purpose, mp-MIQP is exploited.

3.1 Simulation condition and state partition
The circuit and control parameters for simulation are listed in Tables 1 and 2, respectively.
Let us consider Eqs. (14) to (16) as the model for the dc-dc converter shown in Fig. 1. In
Eq. (45), H̃ and L are first set as zeros. Then, the setting of these matrices imply that focus
is only on tracking performance. The state partition obtained by off-line model predictive
control, (mp-MIQP) and its enlarged view are shown in Fig. 2. In each region of Fig. 2, the
optimal input sequence is assigned. The figure of state partition shown in Fig. 2 is generated

Table 1. Circuit parameters
source voltage vs 5.0 [V]

inductance xl 20 [µH]
internal resistance rl 25 [mΩ]

capacitance xc 2.2 [mF]
equivalent series resistance rc 60[mΩ]

load resistance ro 1[Ω]

Table 2. Control parameters
control period Ts 10 [µs]

predictive horizon Np 1, 3, 5
upper limit il,max 8.0 [A]

reference value vref 2.0 [V]

using of Multi-Parametric Toolbox(20). In Fig. 2, the number of state partitions is limited to
at most 2Np . Each partition is specified by linear inequalities. In each partition, the solution
of mp-MIQP given by Eq. (22) is assigned. To investigate to which partition it belongs, the
state

[
il vo

]′ at each sampling can be performed simply since the obtained state partition
is constructed by linear inequalities. Focus on the white region at the right bottom corner
in Fig. 2. Whenever the state

[
il vo

]′ enters the region, switch S1 shown in Fig. 1 is forced
to turn off since the constraint about the inductor current given by Eq. (37) can no longer be
satisfied.

3.2 Consideration of delay for computation of state distinction
Figs. 3 and 4 show simulation results for Np = 3 and Np = 5, respectively. Note that the
method described in the Appendix is utilized for each of the calculations. Figs. 3 and 4, also
indicate that the output voltage is kept at the specified value 2.0 [V] in steady state, while the
inductor current does not exceed its limit of 8[A]. In the simulation, the computation time of
state distinction for optimal input is assumed to be negligible. Little difference exists between
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Fig. 2. State partition for Np = 5 (left: whole, rigtht: closeup).
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Fig. 4. Simulation result in case computation delay is negligible for Np = 5 (left: vo, right: il).

the two outputs shown in Figs. 3 and 4. In other words, the performance is almost identical
for Np = 3 and Np = 5 as long as the computation time is minimal.
On the other hand, as described later in the next section, the computation time should be
considered. because of the effects of various factors such as DSP performance and the number
of state partitions. In preliminary experiments, 5 [µs] and 8 [µs] for Np = 3 and Np = 5,
respectively, are obtained as average computation delay. Using the values, we set the delay
for determination of the switching signal after measurement of the state in the simulation.
Figs. 5 and 6 illustrate the simulation results under the assumption that the computation delay
is not negligible, i.e., the delay is assumed to exist for the computation. From Figs. 5 and 6,
the switching intervals that exceed 20[¯s] can be seen. Thus, the ripple effect increases as the
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Fig. 5. Simulation result in case computation delay is 5 [µs] for Np = 3 (left: vo, right: il).
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Fig. 6. Simulation result in case computation delay is 8 [µs] for Np = 5 (left: vo, right: il).
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Fig. 7. Simulation result with consideration of computation time for Np = 5 (left: vo, right: il).

difference widens between the value of the measured state and that of the input which is
determined after the delay.

3.3 Modification of control method
In the method proposed(21) in the Appendix, input is applied after examination of the region
in which the state belongs. However, as mentioned above, the performance is not necessarily
satisfactory due to the computation delay even if the horizon is small. Therefore, the con-
trol method should be slightly modified in order to consider the computation delay so that
performance is not degraded. Specifically, instead of the first one, the second element of the
optimal input sequence is applied to the system at the beginning of the next control period.
In addition, the first element of the optimal input sequence has to be used as that given at the
last sampling. In other words, the first element is not solved but is set as that given at the last
period, i.e., in the modified control method, δ0 and z0 in Eqs. (20) and (21), respectively, are
given in advance as the constants of the last optimized input sequence, not solved as the opti-
mized variables. Note that the modified control method requires Np > 1 due to the structure.
Fig. 7 depicts the simulation result by the modified method above mentioned. Compared with
Fig. 6, the result shown in Fig. 7 is improved in the sense that the ripple is reduced in steady
state.

4. Experimental result

In this section, we show the effectiveness of the modified proposed method(21) through exper-
iments. In addition, the effectiveness for consideration of the switching loss is demonstrated.
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the two outputs shown in Figs. 3 and 4. In other words, the performance is almost identical
for Np = 3 and Np = 5 as long as the computation time is minimal.
On the other hand, as described later in the next section, the computation time should be
considered. because of the effects of various factors such as DSP performance and the number
of state partitions. In preliminary experiments, 5 [µs] and 8 [µs] for Np = 3 and Np = 5,
respectively, are obtained as average computation delay. Using the values, we set the delay
for determination of the switching signal after measurement of the state in the simulation.
Figs. 5 and 6 illustrate the simulation results under the assumption that the computation delay
is not negligible, i.e., the delay is assumed to exist for the computation. From Figs. 5 and 6,
the switching intervals that exceed 20[¯s] can be seen. Thus, the ripple effect increases as the
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difference widens between the value of the measured state and that of the input which is
determined after the delay.

3.3 Modification of control method
In the method proposed(21) in the Appendix, input is applied after examination of the region
in which the state belongs. However, as mentioned above, the performance is not necessarily
satisfactory due to the computation delay even if the horizon is small. Therefore, the con-
trol method should be slightly modified in order to consider the computation delay so that
performance is not degraded. Specifically, instead of the first one, the second element of the
optimal input sequence is applied to the system at the beginning of the next control period.
In addition, the first element of the optimal input sequence has to be used as that given at the
last sampling. In other words, the first element is not solved but is set as that given at the last
period, i.e., in the modified control method, δ0 and z0 in Eqs. (20) and (21), respectively, are
given in advance as the constants of the last optimized input sequence, not solved as the opti-
mized variables. Note that the modified control method requires Np > 1 due to the structure.
Fig. 7 depicts the simulation result by the modified method above mentioned. Compared with
Fig. 6, the result shown in Fig. 7 is improved in the sense that the ripple is reduced in steady
state.

4. Experimental result

In this section, we show the effectiveness of the modified proposed method(21) through exper-
iments. In addition, the effectiveness for consideration of the switching loss is demonstrated.
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Fig. 8. Experimental result without consideration of computation delay (left: vo, right: il).
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Fig. 9. Experimental result with consideration of computation delay (left: vo, right: il).

The experiments are carried out on a DSP (Texas Instruments TMS3200C/F2812, operating
frequency: 150 [MHz], AD-converter: 12 [bit], conversion time: 80 [ns]).

4.1 Comparison of proposed method(21) and its modified method
Fig. 8 shows the experimental result obtained without considering the computation delay for
state distinction for Np = 5. Similar to simulation results shown in Fig. 4, many switchings
are described with intervals exceeding 20 [µs] although the control period is 10 [µs]. The
reason for the results is that the state transits to another which is not the predictive one, due
to the computation delay. Therefore, the computation delay for state distinction should be
considered in the experiments. Fig. 9 shows the experimental result upon consideration of the
computation delay. Note that the results shown in Fig. 9 are obtained by the modified control
method mentioned in the previous section.
Compared with the results shown in Fig. 8, the ripple effect is reduced as shown in Fig. 9. This
reduction occurs because the computation delay is considered in the latter result. Thus, the
effectiveness of the modified control method in Subsection 3.3 is demonstrated.

4.2 Consideration of switching loss
The shorter the control period, the more the switching losses tend to increase, as do the num-
ber of switchings. In the proposed method, the switching loss can be considered by incorpo-
rating it into the cost function. This can be achieved by setting Q = qINp−1 where q = 10−3

in Eq. (42). The experimental result is shown in Fig. 10. From Fig. 10, the output voltage is
tracked to the voltage reference even though the term to reduce switching is added into the
cost function. Fig. 10 also shows that the inductor current does not severely exceed the limit
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Fig. 10. Experimental result with consideration of computation delay and the switching loss
for Np = 5 (left: vo, right: il).
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Fig. 11. Experimental result of switching signal without/with consideration of the switching
loss for Np = 5 (left: without, that in Fig. 9, right: with, that in Fig. 10).

of 8 [A]. Fig. 11 shows the switching signals for Figs. 9 and 10. From the right of Fig. 11, the
switching frequency is reduced by considering the switching loss in the cost function given
by Eq. (45). Thus, both tracking performance and switching loss can be considered simultane-
ously in the proposed method.

5. Conclusions

In this paper, a novel control method for the dc-dc converter has been proposed. The dc-
dc converter has been modeled as a mixed logical dynamical (MLD) system since it has the
ability to combine continuous and discrete properties. For the control, a model predictive
control (MPC) based method has been introduced. The optimization problem has been solved
as a multi-parametric off-line programming problem. The result has been obtained as the
state space partition which makes the implementation feasible. As a result, computation time
is shortened without deteriorating control performance. Finally, it has been demonstrated that
the output voltage has been tracked to the reference at the expense of tracking performance by
introducing the term to reduce the switching in the cost function. In some cases, other factors
such as resistance loss in rl shown in Fig. 1 may need to be considered, although the cost
function given by Eq. (28) considers only the tracking performance and switching loss. Note,
however, that the factors represented as linear and/or quadratic forms of the state variable
can be incorporated into the cost function.
Further research includes robustness analysis in implementation and investigation of perfor-
mance for different cost functions as mentioned above.
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The experiments are carried out on a DSP (Texas Instruments TMS3200C/F2812, operating
frequency: 150 [MHz], AD-converter: 12 [bit], conversion time: 80 [ns]).

4.1 Comparison of proposed method(21) and its modified method
Fig. 8 shows the experimental result obtained without considering the computation delay for
state distinction for Np = 5. Similar to simulation results shown in Fig. 4, many switchings
are described with intervals exceeding 20 [µs] although the control period is 10 [µs]. The
reason for the results is that the state transits to another which is not the predictive one, due
to the computation delay. Therefore, the computation delay for state distinction should be
considered in the experiments. Fig. 9 shows the experimental result upon consideration of the
computation delay. Note that the results shown in Fig. 9 are obtained by the modified control
method mentioned in the previous section.
Compared with the results shown in Fig. 8, the ripple effect is reduced as shown in Fig. 9. This
reduction occurs because the computation delay is considered in the latter result. Thus, the
effectiveness of the modified control method in Subsection 3.3 is demonstrated.

4.2 Consideration of switching loss
The shorter the control period, the more the switching losses tend to increase, as do the num-
ber of switchings. In the proposed method, the switching loss can be considered by incorpo-
rating it into the cost function. This can be achieved by setting Q = qINp−1 where q = 10−3

in Eq. (42). The experimental result is shown in Fig. 10. From Fig. 10, the output voltage is
tracked to the voltage reference even though the term to reduce switching is added into the
cost function. Fig. 10 also shows that the inductor current does not severely exceed the limit
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of 8 [A]. Fig. 11 shows the switching signals for Figs. 9 and 10. From the right of Fig. 11, the
switching frequency is reduced by considering the switching loss in the cost function given
by Eq. (45). Thus, both tracking performance and switching loss can be considered simultane-
ously in the proposed method.

5. Conclusions

In this paper, a novel control method for the dc-dc converter has been proposed. The dc-
dc converter has been modeled as a mixed logical dynamical (MLD) system since it has the
ability to combine continuous and discrete properties. For the control, a model predictive
control (MPC) based method has been introduced. The optimization problem has been solved
as a multi-parametric off-line programming problem. The result has been obtained as the
state space partition which makes the implementation feasible. As a result, computation time
is shortened without deteriorating control performance. Finally, it has been demonstrated that
the output voltage has been tracked to the reference at the expense of tracking performance by
introducing the term to reduce the switching in the cost function. In some cases, other factors
such as resistance loss in rl shown in Fig. 1 may need to be considered, although the cost
function given by Eq. (28) considers only the tracking performance and switching loss. Note,
however, that the factors represented as linear and/or quadratic forms of the state variable
can be incorporated into the cost function.
Further research includes robustness analysis in implementation and investigation of perfor-
mance for different cost functions as mentioned above.
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Here, the proposed method(15) is reviewed in brief.
MIQP derives the values that minimize an estimation of a given cost function under con-
straints given by inequalities and/or equalities concerning integer variables. The MIQP for
Eqs. (14) to (16) is given as follows.

min
νt

ν′tS1νt + 2(S2 + x(t)′S3)νt, (23)

subject to F1νt ≤ F2 + F3x(t), (24)

where νt is

νt =
[
∆′

t Ξ′
t
]′ , (25)

∆t =
[
δ(0|t) . . . δ(Np − 1|t)

]′ , (26)

Ξt =
[
z(0|t) . . . z(Np − 1|t)

]′ . (27)

To derive the optimal input sequence for Eqs. (14) to (16), the following cost function is set.

J(x(t), ∆t, Ξt) =
Np

∑
k=1

‖y(k|t)− vref‖2
2

+ ∆′
t H̃∆t + 2L∆t, (28)

where vref denotes the constant voltage reference. In Eq. (28), the first term is associated with
the tracking performance whereas the switching loss can be also considered in the second and
third terms. Eq. (28) is rewritten as the general MIQP form of Eqs. (23) in order to solve the
minimization problem. By Eqs. (14) and (15), y(k|t) which is the predictive output k steps
ahead of t is described as follows.

y(k|t) = C(Akx(t) +
k−1

∑
j=0

Ak−j−1Bz(j))

= C(Akx(t) + GkΞk), (29)

where Gk =
[
Ak−1B Ak−2B . . . B

]
. By substituting Eq. (29) for Eq. (28), the minimization

problem for Eq. (28) is formalized as follows.

min
∆t , Ξt

( Np

∑
k=1

Ξ′
tG

′
kC′CGkΞt − 2

Np

∑
k=1

v′refCGkΞt

+ 2
Np

∑
k=1

x(t)′A′kC′CGkΞt + ∆′
t H̃∆t + 2L∆t

)
. (30)

Note that the irrelative terms for the minimization problem are omitted in Eq. (30). Connected
with Eq. (23), the optimization problem of Eq. (30) is transformed as

min
∆t , Ξt

[
∆t
Ξt

]′
S1

[
∆t
Ξt

]
+ 2(S2 + x(t)′S3)

[
∆t
Ξt

]
, (31)

where S1, S2 and S3 are,

S1 =




H̃ O

O
Np

∑
k=1

G′
kC′CGk


 ∈ R2Np×2Np , (32)

S2 =

[
L −

Np

∑
k=1

v′refCGk

]
∈ R1×2Np , (33)

S3 =

[
O

Np

∑
k=1

A′
kC′CGk

]
∈ R2×2Np , (34)

respectively.
Let us rewrite the constraint as the general form like inequality (24). Recall that only two
discrete inputs are permitted in the considered system. The constraint represented by Eq. (9)
is also transformed as

F̃1

[
∆t
Ξt

]
≤ F̃2 + F̃3x(t), (35)

where F̃1, F̃2 and F̃3 are, respectively,

F̃1 =




E1 O E2 O
. . .

. . .
O E1 O E2


 ∈ R4Np×2Np ,

F̃2 =




E5
...

E5


 ∈ R4Np , F̃3 =




E4 E4
...

...
E4 E4


 ∈ R4Np×2.

(36)

The constraints imposed on the inductor current limitation is are necessary to prevent damage
to the switching device from excessive current. More specifically, if the predictive inductor
current at t + 1, i.e., il(1|t), exceeds its limit, il,max, then the switch is forced to be off. Such an
additional condition can be described as

[il(1|t) > il,max] → [δ(0) = 0]. (37)

Transformed into the inequality, Eq. (37) is described as

il(1|t)− il,max ≤ M(1 − δ(0)), (38)

where M is the admissible upper limit of il . Since x =
[
il vo

]′, replaced the first row of A
and the first element of B with A1 and b1, respectively, il(1|t) is recast as,

il(1|t) =
[
a11 a12

]
x(t) + b1z(0), (39)

where
[
a11 a12

]
is the first row of A. Consequently, using Eq. (39), inequality (38) can be

expressed as

Mδ(0) + b1z(0) ≤ (M + il,max)−
[
a11 a12

]
x(t). (40)
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MIQP derives the values that minimize an estimation of a given cost function under con-
straints given by inequalities and/or equalities concerning integer variables. The MIQP for
Eqs. (14) to (16) is given as follows.

min
νt

ν′tS1νt + 2(S2 + x(t)′S3)νt, (23)

subject to F1νt ≤ F2 + F3x(t), (24)

where νt is

νt =
[
∆′

t Ξ′
t
]′ , (25)

∆t =
[
δ(0|t) . . . δ(Np − 1|t)

]′ , (26)

Ξt =
[
z(0|t) . . . z(Np − 1|t)

]′ . (27)

To derive the optimal input sequence for Eqs. (14) to (16), the following cost function is set.

J(x(t), ∆t, Ξt) =
Np

∑
k=1

‖y(k|t)− vref‖2
2

+ ∆′
t H̃∆t + 2L∆t, (28)

where vref denotes the constant voltage reference. In Eq. (28), the first term is associated with
the tracking performance whereas the switching loss can be also considered in the second and
third terms. Eq. (28) is rewritten as the general MIQP form of Eqs. (23) in order to solve the
minimization problem. By Eqs. (14) and (15), y(k|t) which is the predictive output k steps
ahead of t is described as follows.

y(k|t) = C(Akx(t) +
k−1

∑
j=0

Ak−j−1Bz(j))

= C(Akx(t) + GkΞk), (29)

where Gk =
[
Ak−1B Ak−2B . . . B

]
. By substituting Eq. (29) for Eq. (28), the minimization

problem for Eq. (28) is formalized as follows.

min
∆t , Ξt

( Np

∑
k=1

Ξ′
tG

′
kC′CGkΞt − 2

Np

∑
k=1

v′refCGkΞt

+ 2
Np

∑
k=1

x(t)′A′kC′CGkΞt + ∆′
t H̃∆t + 2L∆t

)
. (30)

Note that the irrelative terms for the minimization problem are omitted in Eq. (30). Connected
with Eq. (23), the optimization problem of Eq. (30) is transformed as

min
∆t , Ξt

[
∆t
Ξt

]′
S1

[
∆t
Ξt

]
+ 2(S2 + x(t)′S3)

[
∆t
Ξt

]
, (31)

where S1, S2 and S3 are,

S1 =




H̃ O

O
Np

∑
k=1

G′
kC′CGk


 ∈ R2Np×2Np , (32)

S2 =

[
L −

Np

∑
k=1

v′refCGk

]
∈ R1×2Np , (33)

S3 =

[
O

Np

∑
k=1

A′
kC′CGk

]
∈ R2×2Np , (34)

respectively.
Let us rewrite the constraint as the general form like inequality (24). Recall that only two
discrete inputs are permitted in the considered system. The constraint represented by Eq. (9)
is also transformed as

F̃1

[
∆t
Ξt

]
≤ F̃2 + F̃3x(t), (35)

where F̃1, F̃2 and F̃3 are, respectively,

F̃1 =




E1 O E2 O
. . .

. . .
O E1 O E2


 ∈ R4Np×2Np ,

F̃2 =




E5
...

E5


 ∈ R4Np , F̃3 =




E4 E4
...

...
E4 E4


 ∈ R4Np×2.

(36)

The constraints imposed on the inductor current limitation is are necessary to prevent damage
to the switching device from excessive current. More specifically, if the predictive inductor
current at t + 1, i.e., il(1|t), exceeds its limit, il,max, then the switch is forced to be off. Such an
additional condition can be described as

[il(1|t) > il,max] → [δ(0) = 0]. (37)

Transformed into the inequality, Eq. (37) is described as

il(1|t)− il,max ≤ M(1 − δ(0)), (38)

where M is the admissible upper limit of il . Since x =
[
il vo

]′, replaced the first row of A
and the first element of B with A1 and b1, respectively, il(1|t) is recast as,

il(1|t) =
[
a11 a12

]
x(t) + b1z(0), (39)

where
[
a11 a12

]
is the first row of A. Consequently, using Eq. (39), inequality (38) can be

expressed as

Mδ(0) + b1z(0) ≤ (M + il,max)−
[
a11 a12

]
x(t). (40)
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Add Eq. (40) as a new constraint to the last row of Eq. (36), then Eq. (36) is modified as follows.

F1 =

[
F̃1

M 0 . . . 0 b1 0 . . . 0

]
,

F2 =

[
F̃2

M + il,max

]
, F3 =

[
F̃3
A1

]
.

(41)

The switching loss can also be considered in the second and third terms in Eq. (28). In Eq. (28),
for example, L = O and H̃ is set with Q � 0 as follows.

H̃ = (Π1 − Π2)
′Q(Π1 − Π2), (42)

where Π1 and Π2 are, respectively,

Π1 =




0
...
0

INp−1


 ∈ R(Np−1)×Np , (43)

Π2 =


INp−1

0
...
0


 ∈ R(Np−1)×Np . (44)

Note that when H̃ and L are set above, the estimation of the cost function of Eq. (28) increases
in response to the number of switchings required. Therefore, the switching loss can be reduced
depending on Q in Eq. (42).
If the cost function is described, the optimal input sequence can be derived. However, it is
impractical to apply it to the considered dc-dc converter with a short control period since
the computation requires much solution time for every control period. Then, the method
above is transformed into mp-MIQP so that solving the optimization problem on-line is no
longer necessary. Eq. (28) is adopted as the cost function again for mp-MIQP. Then, Eq. (28) is
described as follows.

J(x, ∆, Ξ)

=
Np

∑
k=1

Ξ′G′
kC′CGkΞ + 2

Np

∑
k=1

x′A′kC′CGkΞ

+
Np

∑
k=1

x′A′kC′CAkx − 2
Np

∑
k=1

v′refCGkΞ

− 2
Np

∑
k=1

v′refCAkx + ∆′H̃∆ + 2L∆, (45)

where ∆ =
[
δ0 . . . δNp−1

]
and Ξ =

[
z0 . . . zNp−1

]
. Associated with Eq. (17), the opti-

mization problem of Eq. (45) is transformed as follows.

min
∆,Ξ

[
∆
Ξ

]′
H
[

∆
Ξ

]
+ 2x′F

[
∆
Ξ

]
+ x′Yx

+ 2Cf

[
∆
Ξ

]
+ 2Cxx, (46)

where H̃ = S1, F = S3 and Cf = S2, respectively. Note that there exists a clear difference
between notations of νt and ν. The former is utilized for MIQP while the latter is used for
mp-MIQP. The others are

Y =
Np

∑
k=1

A′kC′CAk, (47)

Cx = −
Np

∑
k=1

v′refCAk. (48)

The constraints are given by

F1

[
∆
Ξ

]
≤ F2 + F3x. (49)

Transformed as above, the optimization problem is solved offline as mp-MIQP. Then, the re-
sult is employed for on-line control.
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1. Introduction     

When airplane touches down and taxis on uneven runways with high speed, there is heavy 
ground impact and huge vertical load to the airframe. To improve safety and make 
passengers comfortable during landing, an effective landing gear capable of absorbing 
impact energy as much as possible is indispensable for modern airplane. Besides the basic 
function of reducing impact loads, the landing gear must also allow sufficient 
maneuverability during ground operation, which leads to conflicting requirements in terms 
of the suspension system (Krüger, 2000). Traditional landing gear consists of tires and 
passive shock absorbers, which can only be optimized before leaving factory to ensure the 
landing gear having a fairly good performance in particular design operational conditions, 
typically hard landings. However, due to its fixed structure, the passive shock absorber 
cannot always work well on various ground conditions and operational conditions. A heavy 
landing or a coarse runway may lead to significant deterioration of its performance, which is 
harmful to the fatigue life of the landing gear and of the airframe. 
Active control and semi-active control are widely used approach in the field of construction 
vibration control and vehicle suspension control. Compared with passive control, active and 
semi-active control has excellent tunable ability due to their flexible structure. Active control 
needs an external hydraulic source to supply energy for the system. The main drawback of 
active control approach is that its structure is very complex and the external energy may 
lead to instability of the system. The semi-active approach (Fig.1) modifies the damping 
characteristics by changing the size of the orifice area and does not introduce any external 
energy. Studies by Karnopp (Karnopp, 1983) for automotive applications also suggest that 
the efficiency of semi-active dampers is only marginally lower than of a fully active system, 
provided that a suitable control concept is used. In consideration of its simple structure and 
high reliability, semi-active control approach could be a better choice for landing gear 
systems. 
The main component of semi-active landing gear system is a tunable oleo-pneumatic shock 
absorber, which contains multidisciplinary and highly nonlinear dynamics. It is not an easy 
task to design an effective controller for such complex system. Krüger (Krüger, 2000) focuses 
his studies on optimization of taxiing performance of a semi-active landing gear. SIMPACK 
software is used to run simulation with a complete aircraft FEA model. Ghiringhelli builds a 
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complete aircraft landing simulation model in ADAMS software (Ghiringhelli et al., 2004). A 
semi-active PID control method is used to control the orifice area. His also studies sensitivity 
of the complete aircraft model to the variation of control parameters and compares the 
results obtained in the simulated drop tests between passive and semi-active approach 
(Ghiringhelli, 2000). Maemori et al. (Maemori et al., 2003) proposes an optimization method 
for a semi-active landing gear to handle variations in the maximum vertical acceleration of 
an aircraft during landing caused by the variation of the aircraft mass, which is always due 
to the variations in the number of passengers, and the amounts of cargo and fuel. Wang et 
al. (Wang et al., 1999) considers both taxiing and landing conditions. He uses a fuzzy 
controller to optimize the performance of the semi-active landing gear. But he does not 
consider the dynamics of the actuator. Mikulowski et al. (Mikulowski et al., 2008) discuss 
the application of piezo-actuators and magneto-rheological damper in the adaptive landing 
gear design. And there are some other researchers applying ER (Lou et al., 1993) or MR 
(Batterbee et al., 2007) technology in semi-active land gear system. All of the semi-active 
controllers designed above do not consider the actuator saturations (limited control 
amplitude and rate), which may lead to significant, undesirable deterioration in the closed-
loop performance and even closed-loop instability. 
 

 
Fig. 1. Structure of Semi-Active Controlled Shock Absorber 
 
Model predictive control refers to a class of control algorithms in which a dynamic model is 
used to predict and optimize control performance. The predictions are obtained from a 
dynamic model and the optimization problem is solved subject to constraints on input and 
output variables. So MPC is especially suited for constrained, digital control problems. 
Initially MPC has been widely used in the industrial processes with linear models, but 
recently some researchers have tried to apply MPC to other fields like automotive (Mehra et 
al., 1997) and aerospace (Hyochoong et al., 2004), and the nonlinear model is used instead of 
linear one due to the increasingly high demands on better control performance and rapidly 
developed powerful computing systems (Michael et al., 1998). To the semi-active landing 
gear control problem, the nonlinear model predictive control is a good choice considering its 
effectiveness to constrained control problems and continuously optimized performance. The 
goal of this paper is to introduce the design and the analysis of a nonlinear hierarchical 

 

control strategy, for semi-active landing gear systems in civil and military aircrafts, based on 
predictive control strategies. 

 
2. Dynamic Model of Semi-Active Landing Gear 

The structure mass of landing gear is divided into sprung mass and non-sprung mass. 
Sprung mass defined in the figure includes the airframe, the cylinder etc. Non-sprung mass 
includes the piston rod, wheel etc. The tire is modelled as a simple spring and the tunable 
damping is realized by a variable size orifice which is controlled by a high-speed solenoid 
valve. 
The governing dynamic equations of semi-active landing gear can be presented as the 
following: 
 Fgmzm sss     (1) 
 
 PFgmzm uuu    (2) 
 
Where mu is the unsprung mass, ms the sprung mass, uz the displacement of unsprung 

part, sz  the displacement of sprung part, P  the vertical force on the tire, F  the semi-active 
damper shock strut force. 
 

 
Fig. 2. System Model of Semi-Active Landing Gear 

 
2.1 Shock Struct Force Model 
Considering basics of the shock strut operation, a damping effect is produced by squeezing 
the compressed oil through the tunable orifice. In the pneumatic chamber, the enclosed air is 
compressed by the movement of the piston, which provides an air cushion spring. There is 
also friction produced between sliding parts. All these forces comprise the shock strut force 
(Yadav et al., 1991):  
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complete aircraft landing simulation model in ADAMS software (Ghiringhelli et al., 2004). A 
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controllers designed above do not consider the actuator saturations (limited control 
amplitude and rate), which may lead to significant, undesirable deterioration in the closed-
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used to predict and optimize control performance. The predictions are obtained from a 
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The governing dynamic equations of semi-active landing gear can be presented as the 
following: 
 Fgmzm sss     (1) 
 
 PFgmzm uuu    (2) 
 
Where mu is the unsprung mass, ms the sprung mass, uz the displacement of unsprung 

part, sz  the displacement of sprung part, P  the vertical force on the tire, F  the semi-active 
damper shock strut force. 
 

 
Fig. 2. System Model of Semi-Active Landing Gear 

 
2.1 Shock Struct Force Model 
Considering basics of the shock strut operation, a damping effect is produced by squeezing 
the compressed oil through the tunable orifice. In the pneumatic chamber, the enclosed air is 
compressed by the movement of the piston, which provides an air cushion spring. There is 
also friction produced between sliding parts. All these forces comprise the shock strut force 
(Yadav et al., 1991):  
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Friction force: 
 airmf FKF     (5) 

Total axial force in the shock strut: 
 oilfair FFFF    (6) 

 
where ρ is the oil density, iP is the initial pneumatic pressure of air chamber, iP  is the 

atmospheric pressure, 0A  is the effective oil action area, aA  is the effective air action area, 

dA  is the tunable oil orifice area, dC  is the tunable oil orifice flow coefficient, 0V  is the 

initial volume of air chamber, mK  is the coefficient of kinetic friction. 

  
2.2 Tire Force Model 
The vertical force P  on the tire is due to polytropic compression of air inside the tire. In 
order to simplify the mathematical model, the tire is treated as a linear spring here:  
 

 utut zCzKP     (7) 
 

where tK  is the stiffness coefficient of tire, and tC  the damp coefficient of tire. 

 
2.3 Model of High Speed Solenoid Valve 
Traditional solenoid valve (Fig.3) are simple in construction, rugged, relatively cheap to 
produce and have higher power-mass ratio, but they are not usually used for continuous 
and proportional control due to its high nonlinearity. Recently, some attempts are made in 
this kind of application using nonlinear control methods. According to our previous studies 
(Liu H. et al, 2008), we model a high speed solenoid valve by considering its mechanical, 
magnetic and electrical dynamics. 

 
Fig. 3. High-speed Solenoid Valve’s Structure 

 

(a) The mechanical dynamics of solenoid valve can be expressed as below: 
 
 vvfsvsvv FffxKKxCxm  0)(    (8) 

 
where vm  is the total mass of movable parts including armature, actuator pin, etc., sC  

viscous damping coefficient, sK  spring stiffness, fK  static flow coefficient, 0f  preloading 

force of spring, f  Coulomb friction, and vx  movable part displacement and is proportional 

to oil orifice area dA . 

 vvd xKA   (9) 
 
where vK  is the proportionality coefficient. 
(b)   The magnetic dynamics of solenoid valve can be summarized as following: 
The magnetomotive force is 
 mm ΦRNi   (10) 
 
where N  is the coil turns, i  current, mR  total magnetic reluctance, and   total magnetic 
flux. 
The electromagnetic force that acts on the armature of valve can be given by 
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where μ0 is the air permeability, r  the radius of armature, λ the leakage coefficient of the 
main air gap, and air  magnetic flux passing through the working air gap. 
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Ro and RL are corresponding to the magnetic reluctance of two part of magnetic flux paths.  
Due to the fact that λ, oR , LR , mR  are related to vx , and according to Eq. (10-12), the 
magnetic equations of solenoid valve can be simplified as: 
 
 2)( ixBF vv    (13) 
 
where B(xv) is a function of vx  and represents nonlinear magnetic dynamics of valve. vF  

depends on 2i , the square of electrical current. i  is the control input for solenoid valve. 
(b) Solenoid valve is also characterized by the electric equation: 
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Ro and RL are corresponding to the magnetic reluctance of two part of magnetic flux paths.  
Due to the fact that λ, oR , LR , mR  are related to vx , and according to Eq. (10-12), the 
magnetic equations of solenoid valve can be simplified as: 
 
 2)( ixBF vv    (13) 
 
where B(xv) is a function of vx  and represents nonlinear magnetic dynamics of valve. vF  

depends on 2i , the square of electrical current. i  is the control input for solenoid valve. 
(b) Solenoid valve is also characterized by the electric equation: 
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diixL
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ixdLiRiV v
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From the above equation, we can see that an inner loop to control current can be introduced 
to improve current input accuracy. According to (Malaguti et al., 2002), mechanical 
dynamics of solenoid valve is slow respect to electric one, so we obtain the simple electric 
equation. 

 
dt
dixLRiV v )( 0    (15) 

 
The inductance is supposed constant in the operating position and independent on current. 
And specific values of valve’s parameters can be found in (Liu H. et al., 2008). 

 
2.4 Full State Mode 
Assigning the states as us zzx 1 , us zzx  2 , uzx 3 , uzx 4 , vxx 5 , vxx 6 , 

ix 7 , and combining all the equations we obtain the full state model. 
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where F, Fair and Foil can be expressed as following, 
 
 oilairm FFKF  )1(   (23) 
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3. Design Objective of Oleopneumatic Shock Absorber in Landing Gear 
System 

The tasks of aircraft landing gears are complex and lead to a number of sometimes 
contradictory requirements. At touchdown, the landing gear has to perform its task of 
absorbing the aircraft vertical energy via the shock absorber and the horizontal energy by 
the brakes. At taxiing, the landing gear has to carry the aircraft over taxiways and runways 
of varying quality. The requirements for absorption of a hard touch-down and for 
comfortable rolling lead to a design conflict. 

 
3.1 Touchdown Phase 
At touchdown phase, the design objective of oleo-pneumatic shock absorber is aimed at 
reducing the maximum vertical load level introduced at the fuselage attachment and 
producing a possibly “balanced” set of landing structural loads at touchdown. To get 
optimal structural load, the impact energy should be equally distributed with respect to the 
shock absorber stroke. So the optimal structural load during touchdown is a constant value: 
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Fsao can be estimated by the total energy to be absorbed at touchdown, including kinetic 
energy and potential energy in vertical direction, and the expected stroke of shock absorber 
which is generally 90%-95%of the maximal stroke (the work done by drag and lift are 
omitted). 
It is hard for a conventional passive landing gear system to achieve this optimal target load. 
Semi-active landing gear system has a better performance due to its flexible structure, and is 
possible to reach the ideal effect if a suitable control method is used. Actually, stroke 1z  is 
needed to travel before structural load reaches saoF , and this part of the gear compression 

cannot overly reduced (Ghiringhelli et al., 2004). If 1z  is too short, the gear stiffness will be 
large and thus the longitudinal spin-up loads will increase sharply. That will lead to the 
reduction of unitary efficiency. So a reasonable choice is to use passive control till the 
structural load reaches saoF , and then change to semi-active control afterwards. That results 

sasF , a sub-optimal structural load solution. By using this scheme, the unitary efficiency of a 
landing gear system can be achieved though the efficiency of the shock absorber is 
decreased. 
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large and thus the longitudinal spin-up loads will increase sharply. That will lead to the 
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Fig. 4. Shock Absorber Efficiency Comparison 

 
3.2 Taxiing Phase 
At taxiing phase, the design objective of oleo-pneumatic shock absorber is aimed at filtering 
the unevenness of runway surface and providing a comfortable ground ride. It is expected 
that an aircraft rapidly returns to its original equilibrium state and have minimum vertical 
displacement when influenced by a runway excitation such as bump or cave. So the 
maximum vertical displacement of airframe over a test runway is an important criterion for 
shock absorber design. Another design criterion is root-mean-square (RMS) of airframe 
vertical acceleration by reason that ground induced vibrations become more and more of a 
problem as structures of modern aircraft become increasingly flexible. That will lead to 
shorten the fatigue life of the landing gear and of the airframe. 
The RMS of acceleration is defined as follows 
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with airframe’s vertical acceleration sz and reference value for acceleration evaluation srz . 

 
3.3 Transition From Touchdown to Taxiing 
The damping required to successfully encounter oscillations has to considerably larger for 
taxiing than for touchdown because the oleo stroke velocity at taxiing is significantly smaller 
than at touchdown. So there exists a transition between touchdown phase and taxiing phase. 
For passive landing gear, a standard solution is the use of a double-stage air spring or a taxi 
valve. At low stroke velocities (taxiing), high damping factor is achieved, while at high 
stroke velocity (touchdown), the valve reduces its damping factor. For our semi-active 
landing gear, the transition from touchdown phase to taxiing phase is also monitored by 

 

measurement of stroke velocity and the damping factor of the shock absorber is changed by 
variable-sized oil orifice. 

 
3.4 Dual Mode Controller 
Due to totally different design goal of landing gear during aircraft touchdown phase and 
taxiing phase, the semi-active controller should be able to switch from one mode to another. 
Thus a dual mode predictive controller will be proposed in the following sections. Fig.5 
shows the structure of the dual mode controller. 
 

 
Fig. 5. Controller Switching Between Touchdown Phase and Taxiing Phase 

 
4. Semi-Active Predictive Controller Design for Touchdown Phase 

It is noted that the hydraulic dynamics, pneumatic dynamics and fast valve dynamics make 
controls design very difficult. In order to achieve the ideal objective, a proper semi-active 
control method should be applied. Considering the highly nonlinear behaviour of landing 
gear, the classical linear control theory will be useless. The advances of nonlinear control 
theory make it possible to transform certain types of nonlinear systems to linear system 
(Slotine et al., 1991). 

 
4.1 Inverse Dynamics Controller 
The semi-active landing gear dynamic model (eq.16-25) can be simplified as a following 
SISO nonlinear system: 
 u)()( xgxfx    (28) 
 
 )(xcy   (29) 
 
Where, u  is the system input which stands for actuator’s driving voltage V , y  is the 
system output which stands for the shock absorber force F .  
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Where, u  is the system input which stands for actuator’s driving voltage V , y  is the 
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To deal with strong nonlinearities, generally an input-output linearization can be adopted 
during the system synthesis process.  The basic approach of input-output linearization is 
simply differentiating the output function y repeatedly until the input u  appears, and then 
designing u to cancel the nonlinearity (Slotine et al., 1991). However, the nonlinearity 
cancelling can not be carried out here because the relative degree of the semi-active landing 
gear system is undefined,  
Since the semi-active landing gear dynamic model consists of shock absorber’s model and 
high-speed solenoid valve’s model, we propose a cascade nonlinear inverse dynamics 
controller. First, an expected oil orifice area Ad for the shock absorber is directly computed 
by inversion of nonlinear model if control valve’s limited magnitude and rate are omitted, 
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Then a nonlinear tracking controller for high-speed solenoid valve can be designed to follow 
the expected movable parts position of solenoid valve. However, the practical actuator has 
magnitude and rate limitations. The maximum adjustable open area of the valve is 7.4mm2 
and switch frequency is 100Hz. So the optimal performance is not achievable.  
 

     
Fig. 6. Shock Absorber Efficiency and Control Input Comparison w/o Input Constraints 
 
From the above figures, we can see that the high-speed solenoid valve’s limited rate and 
magnitude have negative effects on the shock absorber if those input constraints are not 
considered during the controller synthesis process. 

 
4.2 Nonlinear Predictive Controller 
Model predictive control (MPC) is suitable for constrained, digital control problems. Initially 
MPC has been widely used in the industrial processes with linear models, but recently some 
researchers have tried to apply MPC to other fields like automotive and aerospace, and the 
nonlinear model is used instead of linear one due to the increasingly high demands on 
better control performance. However, optimization is a difficult task for nonlinear model 
predictive control (NMPC) problem. Generally a standard nonlinear programming method 
such as SQP is used. But it is the non-convex optimization method for constrained nonlinear 

 

problem, thus global optimum can not be obtained. Furthermore, due to its high 
computational requirement, SQP method is not suitable for online optimization. 
To the semi-active landing gear control problem, a nonlinear output-tracking predictive 
control approach (Lu, 1998) is adopted here considering its effectiveness to constrained 
control problems and real-time performance. The basic principle of this control approach is 
to get a nonlinear feedback control law by solving an approximate receding-horizon control 
problem via a multi-step predictive control formulation.  
The nonlinear state equation and output equation are defined by eq. (28-29). And the 
following receding-horizon problem can be set up for providing the output-tracking control: 
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subject to the state equations (28) and  
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where )()()( tytyte d .  
Then we shall approximate the above receding-horizon control problem by the following 
multi-step-ahead predictive control formulation. Define NTh / , with N is control 
number during the prediction horizon. The output )( khty  is approximated by the first-
order Taylor series expansion 
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where xxcC  /)( . The desired output )( khtyd  is predicted similarly by recursive 
first-order Taylor series expansions 
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where dtdp / is the differentiation operator. Combining the predictions of )( khty   

and  )( khtyd  , we obtain the prediction of the tracking error 
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Fig. 6. Shock Absorber Efficiency and Control Input Comparison w/o Input Constraints 
 
From the above figures, we can see that the high-speed solenoid valve’s limited rate and 
magnitude have negative effects on the shock absorber if those input constraints are not 
considered during the controller synthesis process. 

 
4.2 Nonlinear Predictive Controller 
Model predictive control (MPC) is suitable for constrained, digital control problems. Initially 
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researchers have tried to apply MPC to other fields like automotive and aerospace, and the 
nonlinear model is used instead of linear one due to the increasingly high demands on 
better control performance. However, optimization is a difficult task for nonlinear model 
predictive control (NMPC) problem. Generally a standard nonlinear programming method 
such as SQP is used. But it is the non-convex optimization method for constrained nonlinear 

 

problem, thus global optimum can not be obtained. Furthermore, due to its high 
computational requirement, SQP method is not suitable for online optimization. 
To the semi-active landing gear control problem, a nonlinear output-tracking predictive 
control approach (Lu, 1998) is adopted here considering its effectiveness to constrained 
control problems and real-time performance. The basic principle of this control approach is 
to get a nonlinear feedback control law by solving an approximate receding-horizon control 
problem via a multi-step predictive control formulation.  
The nonlinear state equation and output equation are defined by eq. (28-29). And the 
following receding-horizon problem can be set up for providing the output-tracking control: 
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subject to the state equations (28) and  
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where )()()( tytyte d .  
Then we shall approximate the above receding-horizon control problem by the following 
multi-step-ahead predictive control formulation. Define NTh / , with N is control 
number during the prediction horizon. The output )( khty  is approximated by the first-
order Taylor series expansion 
 
 Nktkhtttykhty  1)},()()]{([)()( xxxC   (33) 
 
where xxcC  /)( . The desired output )( khtyd  is predicted similarly by recursive 
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where dtdp / is the differentiation operator. Combining the predictions of )( khty   

and  )( khtyd  , we obtain the prediction of the tracking error 
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where xxfxF  /)()( . Approximating the cost function by the trapezoidal rule, it can be 
written as a quadratic function  
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Now the output-tracking receding-horizon optimal control problem is reduced to the 
problem of minimizing J with respect to v  subject to eq. (37), which is a quadratic 
programming problem. The closed-form optimal solution for this problem is  
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Then the closed-loop nonlinear predictive output-tracking control law is  
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Unlike the input-output feedback linearization control laws, the existence of the proposed 
nonlinear predictive output-tracking control does not depend on the requirement that the 
system have a relative degree. And more important, the actuator’s amplitude and rate 
constraints can be taken into account during the controller synthesis process. 

 
4.3 Numerical Simulation 
Based on the analysis described in previous sections, the numerical simulation of the semi-
active landing gear system responses are derived using MATLAB environment. The 
prototype of the simulation model is a semi-active landing gear comprehensive 

 

experimental platform we built, which can be reconfigured to accomplish tasks such as drop 
tests, taxi tests and shimmy tests.  The sprung mass of this system is 405kg and the 
unsprung mass is 15kg. The other parameters of the simulation model can be found in (Wu 
et al, 2007). Fig.7 is the photo of the experiment system. 
 

 
Fig. 7. Landing gear experiment platform 
 
Three kinds of control methods including passive control, inverse dynamics semi-active 
control and nonlinear predictive semi-active control are used in the computer simulation. 
The fixed size of oil orifice for passive control is optimized manually under following 
parameters: sinking speed is 2 m/s and aircraft sprung mass is 405 kg. In the process of 
simulation, the sprung mass remains constant and the comparison is taken in terms of 
different sinking speed: 1.5 m/s, 2 m/s and 2.5 m/s. For passive control, the orifice size is 
fixed. From the Figs. 8-10 and Table 1, when system parameters such as sinking speed 
change, the control performance of the passive control decreases greatly, for the fixed orifice 
size in passive control is designed under standard condition.  
 

 
Fig. 8. Efficiency Comparison under Normal Condition 
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Three kinds of control methods including passive control, inverse dynamics semi-active 
control and nonlinear predictive semi-active control are used in the computer simulation. 
The fixed size of oil orifice for passive control is optimized manually under following 
parameters: sinking speed is 2 m/s and aircraft sprung mass is 405 kg. In the process of 
simulation, the sprung mass remains constant and the comparison is taken in terms of 
different sinking speed: 1.5 m/s, 2 m/s and 2.5 m/s. For passive control, the orifice size is 
fixed. From the Figs. 8-10 and Table 1, when system parameters such as sinking speed 
change, the control performance of the passive control decreases greatly, for the fixed orifice 
size in passive control is designed under standard condition.  
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Conventional passive landing gear is especially optimized for heavy landing load condition, 
so the passive landing gear behaves even worse under light landing load condition. The 
performance of semi-active control is superior to that of passive one due to its tunable 
orifice size and nonlinear predictive semi-active control method has the best performance of 
all. Due to its continuous online compensation and consideration of actuator’s constraints, 
nonlinear predictive semi-active control method can both increase the efficiency of shock 
absorber and make the output smoother during the control interval, which can effectively 
alleviate the fatigue damage of both airframe and landing gear. 
 

 
Fig. 9. Efficiency Comparison under Light Landing Load Condition 
 

 
Fig. 10. Efficiency Comparison under Heavy Landing Load Condition 
 

Control Method Passive Semi-Active IDC Semi-Active Predictive 
Efficiency/( 10.2  sm ) 0.8483 0.8788 0.9048 

Efficiency/( 15.1  sm ) 0.8449 0.8739 0.9036 

Efficiency/( 15.2  sm ) 0.8419 0.8554 0.8813 

Table 1. Comparison of shock absorber efficiency 

 

4.4 Sensitivity Analysis 
Sometimes system parameters such as sinking speed, sprung weight and attitude of aircraft 
at touch down may be measured or estimated with errors, which will lead to bias of 
estimation for optimal target load. But the controller should behave robust to withstand 
certain measurement or estimation errors within reasonable scope so that the airframe will 
not suffer from large vertical load at touch down. 
Simulation of sensitivity analysis is conducted under the standard condition controller 
design: sinking speed is 2 m/s and aircraft sprung mass is 405 kg, introducing 10% errors 
for sinking speed and sprung mass individually. The actual sinking speed is measured by 
avionic equipments and the aircraft sprung mass is estimated by considering the weights of 
oil, cargo and passengers. The measurement and estimation errors will be less than the 
assumed maximal one. 
From the above Figs.11,12 simulation results, it can seen that the reasonable measuring error 
of sinking speed has little effect on the performance of nonlinear predictive semi-active 
controller, whilst estimating error of sprung mass has side effect to the control performance 
and shock absorber efficiency decreases a little. To further improve the performance under 
mass estimating error, it is possible to either simply introduce measurement of aircraft mass 
or develop robust controller which is non-sensitive to estimating the error of aircraft sprung 
mass. 

 
Fig. 11. Sensitivity to sink speed measuring error 
 

 
Fig. 12. Sensitivity to sprung mass estimating error 
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5. Semi-Active Predictive Controller Design for Taxiing Phase 

In this section, we will propose a nonlinear predictive controller incorporating radial basis 
function network (RBF) and backstepping design methodology (Kristic et al., 1995) for semi-
active controlled landing gear during aircraft taxiing. 

 
5.1 Hierarchical Controller Structure 
A hierarchical control structure which contains three control loops is adopted here. The 
outer loop determines the expected strut force of the semi-active shock absorber. At 
touchdown phase and taxiing phase, the computation of the expected strut force will be 
different due to different design objective. The middle loop is responsible for controlling of 
solenoid valve’s mechanical and magnetic dynamics. The high speed solenoid valve 
contains high nonlinearity and can not be regulated by traditional linear controller i.e. PID. 
We develop a RBF network to approximate the nonlinear dynamics which can not be 
precisely modelled and adopt backstepping, a constructive nonlinear control design method 
to stabilize the whole nonlinear system. The inner loop is the current loop. It ensures stable 
tracking of commanded current that middle loop outputs. 
 

 
Fig. 13. Hierarchical Controller Structure 

 
5.2 Background for RBF network 
A RBF network is typically comprised of a layer of radial basis activation functions with an 
associated Euclidean input mapping. The output is then taken as a linear activation function 
with an inner product or weighted average input mapping. 
In this paper, we use a weighted average mapping in the output node. The input-output 

relationship in a RBF with T
nxx ],,[ 1 x as an input is given by 
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The RBF network is a good approximator for general nonlinear function. For a nonlinear 
function FN, we can express it using RBF network with the following form, 
 

   ξθξθξθ TTT
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where θ is the vector of tunable parameters under ideal approximation condition, θ̂  under 
practical approximation condition, θ~ parameter approximation error, ε function 
reconstruction error. 

 
5.3 Outer Loop Design 
The function of the outer control loop is to produce a target strut force for semi-active shock 
absorber by using active control law. Then middle loop and inner loop controller will be 
designed to approximate the optimal performance that active controller achieves. 
 
(a) Skyhook Controller 
At the taxiing phase, the landing gear system acts like the suspension of ground vehicle. So 
we first adopt the most widely used active suspension control approach – the skyhook 
controller. At this control scheme the actuator generates a control force which is 
proportional to the sprung mass vertical velocity. The equation of skyhook controller can be 
expressed as the following form: 
 
 )()( 4211 xxCxxKF skydskysky    (46) 

 
In order to blend out low frequency components of the vertical velocity signal which results 
from the aircraft taxiing on sloped runways or long bumps, we modify it by adding high 
pass filter to the skyhook controller.  
 

 1xws
sx

k
s 
  (47) 

 
where kw  is roll off frequency of high pass filter. Thus we get the desired strut force. 
 
 sHPskydskyd xKxxCxxKF  )()( 4211    (48) 

 
where HPK  is a constant scale factor. 
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(b) Nonlinear Predictive Controller 
Compare with traditional skyhook controller, model predictive controller is more suitable 
for constrained nonlinear system like landing gear system or suspension system. Input and 
state constraints can be incorporated into the performance index to achieve best 
performance.  
The system model of outer loop controller is eq. (16-19), which can be expressed as follows: 
 
 daaa F)()( xgxfx     (49) 
 
where ],,,[ 4321 xxxxa x , dF  is the control input and the output equation is 1xy  . Then 
a similar receding-horizon problem can be set up for providing the output-tracking control: 
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subject to the state equations (49) and  
 
 0)( Ttea   (51) 
 
where )()()( 11 txtxte da  .  
Following a similar synthesis process as in section 4.2, we can get a closed-loop nonlinear 
predictive output-tracking control law to achieve approximate optimal active control 
performance. 

 
5.4 RBF-based Backstepping Design (Middle Loop) 
In this section we propose a RBF-based backstepping method to complete the design of the 
semi-active controller. Stability proofs are given.  
First we define the force tracking error as FFe d 1 . Differentiate and substitute from Eq. 
(16-25), 
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where ),( 521 xxG , ),,,,( 54321 xxxxxH is the nonlinear functions related to the strut 
dynamics. 

 

(a) First Step 
Select the desired solenoid valve movable part velocity as 
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where dxxe 662  . 
Consider the following Lyapunov function candidate 
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where 1  and 2  are positive definite matrices. Differentiate 2V  
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Then we choose the control input: 
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where ],,,[ 4321 xxxxa x , dF  is the control input and the output equation is 1xy  . Then 
a similar receding-horizon problem can be set up for providing the output-tracking control: 
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subject to the state equations (49) and  
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where )()()( 11 txtxte da  .  
Following a similar synthesis process as in section 4.2, we can get a closed-loop nonlinear 
predictive output-tracking control law to achieve approximate optimal active control 
performance. 

 
5.4 RBF-based Backstepping Design (Middle Loop) 
In this section we propose a RBF-based backstepping method to complete the design of the 
semi-active controller. Stability proofs are given.  
First we define the force tracking error as FFe d 1 . Differentiate and substitute from Eq. 
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where ),( 521 xxG , ),,,,( 54321 xxxxxH is the nonlinear functions related to the strut 
dynamics. 

 

(a) First Step 
Select the desired solenoid valve movable part velocity as 
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where dxxe 662  . 
Consider the following Lyapunov function candidate 
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(b) Second Step 
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where 1  and 2  are positive definite matrices. Differentiate 2V  
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Then we choose the control input: 
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Choose the tuning law as: 
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Therefore, the system is stable and the error will asymptotically converge to zero. 

 
5.5 Inner Loop Design 
The function of the inner loop is to precisely tracking of solenoid valve’s current. We apply a 
simple proportional control to the electrical dynamics as follows 
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where cK  is the controller gain. 
The above three control loops represent different time scales. The fastest is the inner loop 
due to its electrical characteristics. The next is the middle loop. It is faster than the outer loop 
because the controlled moving part’s inertial of the middle loop is much smaller than that of 
the outer loop. 

 

 

5.6 Numerical Simulation 
After touchdown, the taxiing process will last relatively a long time before aircraft stops. To 
simulate the road excitation of runway and taxiway, a random velocity excitation signal 

)(tw is introduced into Eq. (18).  

 )(43 twxx     (56) 
 
The simulation result is compared using airframe vertical displacement, which is one of the 
most important criterion for taxiing condition. Due to lack of self-tuning capability, the 
passive landing gear does not behave well and passes much of the road excitation to the 
airframe. That will be harmful for the aircraft structure and meanwhile make passages 
uncomfortable. The proposed semi-active landing gear effectively filters the unfriendly road 
excitation as we wish. 
 

 
Fig. 14. System Response Comparison under Random Input 
 
From the simulation results of both aircraft touch-down and taxiing conditions, we can see 
that the proposed semi-active controller gives the landing gear system extra flexibility to 
deal with the unknown and uncertain external environment. It will make the modern 
aircraft system being more intelligent and robust. 

 
6. Conclusion 

The application of model predictive control and constructive nonlinear control methodology 
to semi-active landing gear system is studied in this paper. A unified shock absorber 
mathematical model incorporates solenoid valve’s electromechanical and magnetic 
dynamics is built to facilitate simulation and controller design. Then we propose a 
hierarchical control structure to deal with the high nonlinearity. A dual mode model 
predictive controller as an outer loop controller is developed to generate the ideal strut force 
on both touchdown and taxiing phase. And a systematic adaptive backstepping design 
method is used to stabilize the whole system and track the reference force in the middle and 
inner loop. Simulation results show that the proposed control scheme is superior to the 
traditional control methods. 
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Therefore, the system is stable and the error will asymptotically converge to zero. 
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The application of model predictive control and constructive nonlinear control methodology 
to semi-active landing gear system is studied in this paper. A unified shock absorber 
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dynamics is built to facilitate simulation and controller design. Then we propose a 
hierarchical control structure to deal with the high nonlinearity. A dual mode model 
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