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Preface

Artificial neural networks may probably be the single most successful technology in
the last two decades which has been widely used in a large variety of applications in
various areas. An artificial neural network, often just called a neural network, is a
mathematical (or computational) model that is inspired by the structure and function
of biological neural networks in the brain. An artificial neural network consists of a
number of artificial neurons (i.e.,, nonlinear processing units) which are connected each
other via synaptic weights (or simply just weights). An artificial neural network can
“learn” a task by adjusting weights. There are supervised and unsupervised models.
A supervised model requires a “teacher” or desired (ideal) output to learn a task. An
unsupervised model does not require a “teacher,” but it leans a task based on a cost
function associated with the task. An artificial neural network is a powerful, versatile
tool. Artificial neural networks have been successfully used in various applications
such as biological, medical, industrial, control engendering, software engineering,
environmental, economical, and social applications. The high versatility of artificial
neural networks comes from its high capability and learning function. It has been
theoretically proved that an artificial neural network can approximate any continu-
ous mapping by arbitrary precision. Desired continuous mapping or a desired task is
acquired in an artificial neural network by learning.

The purpose of this book series is to provide recent advances of artificial neural net-
work applications in a wide range of areas. The series consists of two volumes: the first
volume contains methodological advances and biomedical applications of artificial
neural networks; the second volume contains artificial neural network applications in
industrial and control engineering.

This second volume begins with a part of artificial neural network applications in tex-
tile industries which are concerned with the design and manufacture of clothing as
well as the distribution and use of textiles. The part contains a review of various appli-
cations of artificial neural networks in textile and clothing industries as well as partic-
ular applications. A part of materials science and industry follows. This part contains
applications of artificial neural networks in material identification, and estimation of
material property, behavior, and state. Parts continue with food industry such as meat,
electric and power industry such as batteries, power systems, and power allocation
systems, mechanical engineering such as engines and machines, control and robotic
engineering such as nonlinear system control, induction motors, system identification,
signal and fault diagnosis systems, and robot manipulation.
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Preface

Thus, this book will be a fundamental source of recent advances and applications of
artificial neural networks in industrial and control engineering areas. The target audi-
ence of this book includes professors, college students, and graduate students in engi-
neering schools, and engineers and researchers in industries. I hope this book will be
a useful source for readers and inspire them.

Kenji Suzuki, Ph.D.
University of Chicago
Chicago, Illinois,
USA
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Textile Industry






Review of Application of Artificial Neural
Networks in Textiles and Clothing
Industries over Last Decades

Chi Leung Parick Hui, Ng Sau Fun and Connie Ip

Institute of Textiles and Clothing, The Hong Kong Polytechnic University,
Hong Kong SAR, PRC.

China

1. Introduction

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired
by the way biological nervous systems, such as the brain, process information. The key
element of this paradigm is the novel structure of the information processing system. It is
composed of a large number of highly interconnected processing elements (neurones)
working in unison to solve specific problems. ANNs, like people, learn by example. An
ANN is configured for a specific application, such as pattern recognition or data
classification, through a learning process. Learning in biological systems involves
adjustments to the synaptic connections that exist between the neurones. The ANN has
recently been applied in process control, identification, diagnostics, character recognition,
sensory prediction, robot vision, and forecasting.

In Textiles and Clothing industries, it involves the interaction of a large number of variables.
Because of the high degree of variability in raw materials, multistage processing and a lack
of precise control on process parameters, the relation between such variables and the
product properties is relied on the human knowledge but it is not possible for human being
to remember all the details of the process-related data over the years. As the computing
power has substantially improved over last decade, the ANN is able to learn such datasets
to reveal the unknown relation between various variables effectively. Therefore, the
application of ANN is more widespread in textiles and clothing industries over last decade.
In this chapter, it aims to review current application of ANN in textiles and clothing
industries over last decade. Based on literature reviews, the challenges encountered by
ANN used in the industries will be discussed and the potential future application of ANN
in the industries will also be addressed. The structure of this chapter comprises of seven
sections. The first section includes background of ANN, importance of ANN in textiles and
clothing and the arrangement of this chapter. In forthcoming three sections, they include
review of applications of ANN in fibres and yarns, in chemical processing, and in clothing
over last decade. Afterwards, challenges encountered by ANN used in textiles and clothing
industries will be discussed and potential future application of ANN in textiles and clothing
industries will be addressed in last section.
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2. Applications to fibres and yarns

2.1 Fibre classification

Kang and Kim (2002) developed an image system for the current cotton grading system of
raw cotton involving a trained artificial neural network with a good classifying ability.
Trash from a raw cotton image can be characterized by a captured color by a color CCD
camera and acquire color parameters. The number of trash particles and their content, size,
size distribution, and spatial density can be evaluated after raw cotton images of the
physical standards are thresholded and connectivity was checked. The color grading of raw
cotton can be influenced by trash. Therefore, the effect of trash on color grading was
investigated using a color difference equation that measured the color difference between a
trash-containing image and a trash-removed image. The artificial neural network, which has
eight color parameters as input data, was a highly reliable and useful tool for classifying
color grades automatically and objectively.

She et al., (2002) developed an intelligent system using artificial neural networks (ANN) and
image processing to classify two kinds of animal fibres objectively between merino and
mohair; which are determined in accordance with the complexity of the scale structure and
the accuracy of the model. An unsupervised artificial neural network was used to extract
eighty, fifty, and twenty implicit features automatically while image processing technique
was used to extract nine explicit features. Then the supervised ANN was employed to
classify these fibers, based on the features extracted with image processing and
unsupervised artificial neural networks. The classification with features extracted explicitly
by image processing is more accurate than with features from unsupervised artificial neural
networks but it required more effort for image processing and more prior knowledge. On
the contrary, the classification with combined unsupervised and supervised ANN was more
robust because it needed only raw images, limited image processing and prior knowledge.
Since only ordinary optical images taken with a microscope were employed, this approach
for many textile applications without expensive equipment such as scanning electron
microscopy can be developed.

Durand et al., (2007) studied different approaches for variable selection in the context of
near-infrared (NIR) multivariate calibration of the cotton-viscose textiles composition. First,
a model-based regression method was proposed. It consisted of genetic algorithm
optimization combined with partial least squares regression (GA-PLS). The second
approach was a relevance measure of spectral variables based on mutual information (MI),
which can be performed independently of any given regression model. As MI made no
assumption on the relationship between X and Y, non-linear methods such as feed-forward
artificial neural network (ANN) were thus encouraged for modeling in a prediction context
(MI-ANN). GA-PLS and MI-ANN models were developed for NIR quantitative prediction
of cotton content in cotton-viscose textile samples. The results were compared to full
spectrum (480 variables) PLS model (FS-PLS). The model required 11 latent variables and
yielded a 3.74% RMS prediction error in the range 0-100%. GA-PLS provided more robust
model based on 120 variables and slightly enhanced prediction performance (3.44% RMS
error). Considering MI variable selection procedure, great improvement can be obtained as
12 variables only were retained. On the basis of these variables, a 12 inputs of ANN model
was trained and the corresponding prediction error was 3.43% RMS error.

2.2 Yarn manufacture
Beltran et al., (2004) developed an artificial neural network (ANN) trained with
back-propagation encompassed all known processing variables that existed in different
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spinning mills, and then generalized this information to accurately predict yarn quality of
worsted spinning performance for an individual mill. The ANN was then subsequently
trained with commercial mill data to assess the feasibility of the method as a mill-specific
performance prediction tool. The ANN was a suitable tool for predicting worsted yarn
quality for a specific mill.

Farooq and Cherif (2008) have reported a method of predicting the leveling action point,
which was one of the important auto-leveling parameters of the drawing frame and strongly
influences the quality of the manufactured yarn, by using artificial neural networks (ANN).
Various leveling action point affecting variables were selected as inputs for training the
artificial neural networks, which was aimed to optimize the auto-leveling by limiting the
leveling action point search range. The Levenberg-Marquardt algorithm was incorporated
into the back-propagation to accelerate the training and Bayesian regularization was applied
to improve the generalization of the networks. The results obtained were quite promising
that the accuracy in computation can lead to better sliver CV% and better yarn quality.

2.3 Yarn-property prediction

Kuo et al., (2004) applied neural network theory to consider the extruder screw speed, gear
pump gear speed, and winder winding speed of a melt spinning system as the inputs and
the tensile strength and yarn count of spun fibers as the outputs. The data from the
experiments were used as learning information for the neural network to establish a reliable
prediction model that can be applied to new projects. The neural network model can predict
the tensile strength and yarn count of spun fibers so that it can provide a very good and
reliable reference for spun fiber processing.

Zeng et al., (2004) tried to predict the tensile properties (yarn tenacity) of air-jet spun yarns
produced from 75/25 polyester on an air-jet spintester by two models, namely neural
network model and numerical simulation. Fifty tests were undergone to obtain average yarn
tenacity values for each sample. A neural network model provided quantitative predictions
of yarn tenacity by using the following parameters as inputs: first and second nozzle
pressures, spinning speed, distance between front roller nip and first nozzle inlet, and the
position of the jet orifice in the first nozzle so that the effects of parameters on yarn tenacity
can be determined. Meanwhile, a numerical simulation provided a useful insight into the
flow characteristics and wrapping formation process of edge fibers in the nozzle of an air-jet
spinning machine; hence, the effects of nozzle parameters on yarn tensile properties can be
predicted. The result showed that excellent agreement was obtained between these two
methods. Moreover, the predicted and experimental values agreed well to indicate that the
neural network was an excellent method for predictors.

Lin (2007) studied the shrinkages of warp and weft yarns of 26 woven fabrics manufactured
by air jet loom by using neural net model which were used to determine the relationships
between the shrinkage of yarns and the cover factors of yarns and fabrics. The shrinkages
were affected by various factors such as loom setting, fabric type, and the properties of warp
and weft yarns. The neural net was trained with 13 experimental data points. A test on 13
data points showed that the mean errors between the known output values and the output
values calculated using the neural net were only 0.0090 and 0.0059 for the shrinkage ratio of
warp (S1) and weft (S2) yarn, respectively. There was a close match between the actual and
predicted shrinkage of the warp (weft) yarn. The test results gave R2 values of 0.85 and 0.87
for the shrinkage of the warp (i.e., S1) and weft (i.e., S2), respectively. This showed that the
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neural net produced good results for predicting the shrinkage of yarns in woven fabrics.
Different woven fabrics manufactured on different looms like rapier, gripper, etc., raw
material yarn ingredients (e.g., T/C x T/R, T/Rx T/R, T/C x C, etc.), and fabric structural
class (e.g., twill, satin, etc.) were examined to measure the shrinkage ratio of warp and weft
yarns. The developed neural net model was then used to train the obtained data and the
result showed that the prediction of yarn shrinkage in the off-loomed fabrics can be fulfilled
through a prediction model constructed with neural net.

Xu et al., (2007) studied a neural network method of analyzing cross-sectional images of a
wool/silk blended yarn. The process of original yarn cross-sectional images including image
enhancement and shape filtering; and the determination of characteristic parameters for
distinguishing wool and silk fibers in the enhanced yarn cross-sectional images were in the
study. A neural network computing approach, single-layer perceptrons, was used for
learning the target parameters. The neural network model had a good capability of tolerance
and learning. The study indicated that preparation of the yarn sample slices was critically
important to obtain undistorted fiber images and to ensure the accuracy of fiber recognition.
The overall error estimated for recognizing wool or silk fiber was 5%.

Khan et al., (2009) studied the performance of multilayer perceptron (MLP) and multivariate
linear regression (MLR) models for predicting the hairiness of worsted-spun wool yarns
objectively by examining 75 sets of yarns consisting of various top specifications and
processing parameters of shrink-resist treated, single-ply, pure wool worsted yarns. The
results indicated that the MLP model predicted yarn hairiness was more accurately than the
MLR model and showed that a degree of nonlinearity existed in the relationship between
yarn hairiness and the input factors considered. Therefore, the artificial neural network
(ANN) model had the potential for wide mill specific applications for high precision
prediction of hairiness of a yarn from limited top, yarn and processing parameters. The use
of the ANN model as an analytical tool may facilitate the improvement of current products
by offering alternative material specification and/or selection and improved processing
parameters governed by the predicted outcomes of the model. On sensitivity analysis on the
MLP model, yarn twist, ring size, average fiber length (hauteur) had the greatest effect on
yarn hairiness with twist having the greatest impact on yarn hairiness.

Unal et al, (2010) investigated the retained spliced diameter with regard to splicing
parameters and fiber and yarn properties. The yarns were produced from eight different
cotton types in three yarn counts (29.5, 19.7 and 14.8 tex) and three different twist
coefficients (crrex 3653, atex 4038, arex 4423). To investigate the effects of splicing parameters
on the retained spliced diameter, opening air pressure, splicing air pressure and splicing air
time were set according to an orthogonal experimental design. The retained spliced
diameter was calculated and predicted by using an artificial neural network (ANN) and
response surface methods. Analyses showed that ANN models were more powerful
compared with response surface models in predicting the retained spliced diameter of ring
spun cotton yarns.

2.4 Fibre and Yarn relationship

Admuthe and Apte (2010) used multiple regression model such as artificial neural network
(ANN) in an attempt to develop the relationship between fiber and yarn in the spinning
process. 30 different cotton fibres were selected covering all of the staple length groups of
cotton grown in India. The yarn (output) produced from the spinning process had a unique
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relationship with the fibers (input). However, ANN failed to develop exact relationships
between the fiber and the yarn, then a hybrid approach was used to achieving the solution.
Hence, a new hybrid technique, Adaptive Neuro-Fuzzy Inference System (ANFIS) which
was combined with subtractive clustering was used to predict yarn properties. The result
shown that the ANFIS gave better co-relation values. The test results show better accuracy
for all datasets when compared it to the ANN model.

3. Applications to fabrics

3.1 Fabric manufacture

Yao et al., (2005) investigated the predictability of the warp breakage rate from a sizing yarn
quality index using a feed-forward back-propagation network in an artificial neural network
system. An eight-quality index (size add-on, abrasion resistance, abrasion resistance
irregularity, hairiness beyond 3 mm, breaking strength, breaking strength irregularity,
breaking elongation, and breaking elongation irregularity) and warp breakage rates were
rated in controlled conditions. A good correlation between predicted and actual warp
breakage rates indicated that warp breakage rates can be predicted by neural networks. A
model with a single sigmoid hidden layer with four neurons was able to produce better
predictions than the other models of this particular data set in the study.

Behera and Karthikeyan (2006) described the method of applying artificial NNs for the
prediction of both construction and performance parameters of canopy fabrics. Based on the
influence on the performance of the canopy fabric, constructional parameters were chosen.
Constructional parameters were used as input for predicting the performance parameter in
forward engineering, and the parameters were reversed for the reverse engineering
prediction. Comparison between actual results and predicted results was made. The results
of the design prediction had excellent correlation with all the samples.

Behera and Goyal (2009) described the method of applying the artificial neural network for
the prediction performance parameters for airbag fabrics. The results of the ANN
performance prediction had low prediction error of 12% with all the samples and the
artificial neural network based on Error Back-propagation were found promising for a new
domain of design prediction technique. The prediction performance of the neural network
was based on the amount of training. The diversity of the data and the amount of data
resulted in better the mapping of the network, and better predictions. Therefore, airbag
fabrics could be successfully engineered using artificial neural network.

3.2 Fabric-property prediction

Ertugrul and Ucar (2000) have shown how the bursting strength of cotton plain knitted fabrics
can be predicted before manufacturing by using intelligent techniques of neural network and
neuro-fuzzy approaches. Fabric bursting strength affected by fabric weight, yarn breaking
strength, and yarn breaking elongation were input elements for the predictions. Both the
multi-layer feed-forward neural network and adaptive network based fuzzy inference system,
a combination of a radial basis neural network and the Sugeno-Takagi fuzzy system, were
studied. Both systems had the ability to learn training data successfully, and testing errors can
give an approximate knowledge of the bursting strength which fabric can be knitted.

Chen et al., (2001) proposed a neural network computing technique to predict fabric end-
use. One hundred samples of apparel fabrics for suiting, shirting, and blouse uses were
selected and fabric properties of extension, shear, bending, compression, and friction and
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roughness were measured by using the Kawabata KES instruments. Instrumental data of the
fabric properties and information on fabric end-uses were input into neural network
software to train a multilayer perceptron model. The prediction error rate from the
established neural network model was estimated by using a cross-validation method. The
estimated error rate for prediction was 0.07. The established neural network model could be
upgraded by inputting new fabric samples and be implemented for applications in garment
design and manufacture.

Shyr et al., (2004) have taken new approaches in using a one-step transformation process to
establish translation equations for total hand evaluations of fabrics by employing a stepwise
regression method and an artificial neural network. The key mechanical properties selected
from sixteen fabric mechanical properties based on a KES system, using the stepwise
regression selection method, were the parameters. The translation equations were
developed directly with parameters without a primary hand value transformation process.
114 polyester/cotton blended woven fabrics were selected for investigation. Four
mechanical properties LC, 2HG, B, and WT were the parameters for developing the
translation equations. The correlation coefficients of the translation equations developed
from the stepwise regression and artificial neural network methods were 0.925 and 0.955,
respectively. Both translation equations had high correlation coefficients between the
calculated and practical values. The approaches were identified effectively to develop
translation equations for new fabrics in the textile industry.

Behera and Mishra (2007) investigated the prediction of non-linear relations of functional
and aesthetic properties of worsted suiting fabrics for fabric development by an engineered
approach of a radial basis function network which was trained with worsted fabric
constructional parameters. Therefore, an objective method of fabric appearance evaluation
with the help of digital image processing was introduced. The radial basis function network
can successfully predict the fabric functional and aesthetic properties from basic fibre
characteristics and fabric constructional parameters with considerable accuracy. The
network prediction was in good correlation with the actual experimental data. There was
some error in predicting the fabric properties from the constructional parameters. The
variation in the actual values and predicted values was due to the small sample size.
Moreover, the properties of worsted fabrics were greatly influenced by the finishing
parameters which are not taken into consideration in the training of the network.

Murrells et al., (2009) employed an artificial neural network (ANN) model and a standard
multiple linear regression model for the prediction of the degree of spirality of single jersey
fabrics made from a total of 66 fabric samples produced from three types of 100% cotton
yarn samples including conventional ring yarns, low torque ring yarns and plied yarns. The
data were randomly divided into 53 and 13 sets of data that were used for training and
evaluating the performance of the predictive models. A statistical analysis was undertaken
to check the validity by comparing the results obtained from the two types of model with
relatively good agreement between predictions and actual measured values of fabric
spirality with a correlation coefficient, R, of 0.976 in out-of-sample testing. Therefore, the
results demonstrated that the neural network model produced superior results to predict
the degree of fabric spirality after three washing and drying cycles. Both the ANN and the
regression approach showed that twist liveliness, tightness factor and yarn linear density
were the most important factors in predicting fabric spirality. Twist liveliness was the major
contributor to spirality with the other factors such as yarn type, the number of feeders,
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rotational direction and gauge (needles/inch) of the knitting machine and dyeing method
having a minor influence.

Hadizadeh et al., (2009) used an ANN model for predicting initial load-extension behavior
(Young’s modulus) in the warp and weft directions of plain weave and plain weave
derivative fabrics by modeling the relationship between a combination of the yarn modular
length, yarn spacing, the ratio of occupied spacing to total length of yarn in one weave
repeat, and the yarn flexural rigidity with satisfactory accuracy. A single hidden layer feed-
forward ANN based on a back-propagation algorithm with four input neurons and one
output neuron was developed to predict initial modulus in the warp and weft directions.
Input values were defined as combination expressions of geometrical parameters of fabric
and yarn flexural rigidity, which were obtained from Leaf’s mathematical model. Data were
divided into two groups as training and test sets. A very good agreement between the
examined and predicted values was achieved and the model’s suitability was confirmed by
the low performance factor (PF/3) and the high coefficient of correlation.

Hadizadeh et al., (2010) introduced a new model based on an adaptive neuro-fuzzy
inference system (ANFIS) for predicting initial load-extension behavior of plain-woven
fabrics. Input values defined as combination expressions of geometrical parameters of fabric
and yarn flexural rigidity, yarn-spacing, weave angle and yarn modular length, which were
extracted from Leaf’s mathematical model. The results showed that the neuro-fuzzy system
can be used for modeling initial modulus in the warp and weft directions of plain-woven
fabrics. Outputs of the neuro-fuzzy model were also compared with results obtained by
Leaf’s models. The calculated results were in good agreement with the real data upon
finding the importance of inputs.

3.3 Fabric defect

Hu and Tsai (2000) used best wavelet packet bases and an artificial neural network (ANN)
to inspect four kinds of fabric defects. Multi-resolution representation of an image using
wavelet transform was a new and effective approach for analyzing image information
content. The values and positions for the smallest-six entropy were found in a wavelet
packet best tree that acted as the feature parameters of the ANN for identifying fabric
defects. They explored three basic considerations of the classification rate of fabric defect
inspection comprising wavelets with various maximum vanishing moments, different
numbers of resolution levels, and differently scaled fabric images. The results showed that
the total classification rate for a wavelet function with a maximum vanishing moment of
four and three resolution levels can reach 100%, and differently scaled fabric images had no
obvious effect on the classification rate.

Shiau et al., (2000) constructed a back-propagation neural network topology to automatically
recognize neps and trash in a web by color image processing. The ideal background color
under moderate conditions of brightness and contrast to overcome the translucent problem
of fibers in a web, specimens were reproduced in a color BMP image file format. With a
back-propagation neural network, the RGB (red, green, and blue) values corresponding with
the image pixels were used to perform the recognition, and three categories (i.e., normal
web, nep, and trash) can be recognized to determine the numbers and areas of both neps
and trash. According to experimental analysis, the recognition rate can reach 99.63% under
circumstances in which the neural network topology is 3-3-3. Both contrast and brightness
were set at 60% with an azure background color. The results showed that both neps and
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trash can be recognized well, and the method was suitable not only for cotton and man-
made fibers of different lengths, but also for different web thicknesses as to a limit of 32.9
g/m2.

Choi et al., (2001) developed a new method for a fabric defect identifying system by using
fuzzy inference in multi-conditions. The system has applied fuzzy inference rules, and the
membership function for these rules to adopt a neural network approach. Only a small
number of fuzzy inference rules were required to make the identifications of non-defect,
slub (warp direction), slub (weft direction), nep, and composite defect. One fuzzy inference
rule can replace many crisp rules. This system can be used to design a reliable system for
identifying fabric defects. Experimental results with this approach have demonstrated the
identification ability which was comparable to that of a human inspector.

Huang and Chen (2001) investigated an image classification by a neural-fuzzy system for
normal fabrics and eight kinds of fabric defects. This system combined the fuzzification
technique with fuzzy logic and a back-propagation learning algorithm with neural
networks. Four inputs featured the ratio of projection lengths in the horizontal and vertical
directions, the gray-level mean and standard deviation of the image, and the large number
emphasis (LNE) based on the neighboring gray level dependence matrix for the defect area.
The neural network was also implemented and compared with the neural-fuzzy system. The
results demonstrated that the neural-fuzzy system was superior to the neural network in
classification ability.

Saeidi et al., (2005) described a computer vision-based fabric inspection system implemented
on a circular knitting machine to inspect the fabric under construction. The detection of
defects in knitted fabric was performed and the performance of three different spectral
methods, namely, the discrete Fourier transform, the wavelet and the Gabor transforms
were evaluated off-line. Knitted fabric defect-detection and classification was implemented
on-line. The captured images were subjected to a defect-detection algorithm, which was
based on the concepts of the Gabor wavelet transform, and a neural network as a classifier.
An operator encountering defects also evaluated the performance of the system. The fabric
images were broadly classified into seven main categories as well as seven combined
defects. The results of the designed system were compared with those of human vision.
Shady et al., (2006) developed a new method for knitted fabric defect detection and
classification using image analysis and neural networks. Images of six different induced
defects (broken needle, fly, hole, barré, thick and thin yarn) were used in the analysis.
Statistical procedures and Fourier Transforms were utilized in the feature extraction effort
and neural networks were used to detect and classify the defects. The results showed
success in classifying most of the defects but the classification results for the barré defect
were not identified using either approach due to the nature of the defect shape which
caused it to interfere with other defects such as thick/thin yarn defects. The results of using
the Fourier Transform features extraction approach were slightly more successful than the
statistical approach in detecting the free defect and classifying most of the other defects.
Yuen et al., (2009) explored a novel method to detect the fabric defect automatically with a
segmented window technique which was presented to segment an image for a three layer
BP neural network to classify fabric stitching defects. This method was specifically designed
for evaluating fabric stitches or seams of semi-finished and finished garments.

A fabric stitching inspection method was proposed for knitted fabric in which a segmented
window technique was developed to segment images into three classes using a
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monochrome single-loop ribwork of knitted fabric: (1) seams without sewing defects; (2)
seams with pleated defects; and (3) seams with puckering defects caused by stitching faults.
Nine characteristic variables were obtained from the segmented images and input into a
Back Propagation (BP) neural network for classification and object recognition. The
classification results demonstrated that the inspection method developed was effective in
identifying the three classes of knitted-fabric stitching. It was proved that the classifier with
nine characteristic variables outperformed those with five and seven variables and the
neural network technique using either BP or radial basis (RB) was effective for classifying
the fabric stitching defects. By using the BP neural network, the recognition rate was 100%.
The experiment results showed that the method developed in this study is feasible and
applicable.

3.4 Sewing

Jeong et al, (2000) constructed a neural network and subjoined local approximation
technique for application to the sewing process by selecting optimal interlinings for woolen
fabrics. Men’s woolen suitings and ten optimal interlinings were selected and matched. A
single hidden layer neural network was constructed with five input nodes, ten hidden
nodes, and two output nodes. Both input and output of the mechanical parameters
measured on the KES-FB system were used to train the network with a back-propagation
learning algorithm. The inputs for the fabrics were tensile energy, bending rigidity, bending
hysteresis, shear stiffness, and shear hysteresis, while outputs for the interlinings were
bending rigidity and shear stiffness. This research presented a few methods for improving
the efficiency of the learning process. The raw data from the KES-FB system were
nonlinearly normalized, and input orders were randomized. The procedure produced a
good result because the selection agreed well with the experts’ selections. Consequently, the
results showed that the neural network and subjoined techniques had a strong potential for
selecting optimum interlinings for woolen fabrics.

Hui et al., (2007) investigated the use of artificial neural networks (ANN) to predict the
sewing performance of woven fabrics for efficient planning and control for the sewing
operation. This was based on the physical and mechanical properties of fabrics such as the
critical parameters of a fabric constructional and behavioural pattern as all input units and
to verify the ANN techniques as human decision in the prediction of sewing performance of
fabrics by testing 109 data sets of fabrics through simple testing system and the sewing
performance of each fabric’s specimen by the domain experts. Among 109 input-output data
pairs, 94 were used to train the proposed back-propagation (BP) neural network for the
prediction of the unknown sewing performance of a given fabric, and 15 were used to test
the proposed BP neural network. A three-layered BP neural network that consists of 21
input units, 21 hidden units, and 16 output units was developed. The output units of the
model were the control levels of sewing performance in the areas of puckering, needle
damages, distortion, and overfeeding. After 10,000 iterations of training of BP neural
network, the neural network converged to the minimum error level. The evaluation of the
model showed that the overall prediction accuracy of the developed BP model was at 93 per
cent which was the same as the accuracy of prediction made by human assessment. The
predicted values of most fabrics were found to be in good agreement with the results of
sewing tests carried out by domain experts.
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3.5 Seam performance

Hui and Ng (2009) investigated the capability of artificial neural networks based on a back
propagation algorithm with weight decay technique and multiple logarithm regression
(MLR) methods for modeling seam performance of fifty commercial woven fabrics used for
the manufacture of men’s and women’s outerwear based on seam puckering, seam flotation
and seam efficiency. The developed models were assessed by verifying Mean Square Error
(MSE) and Correlation Coefficient (R-value) of test data prediction. The results indicated
that the artificial neural network (ANN) model has better performance in comparison with
the multiple logarithm regression model. The difference between the MSE of predicting in
these two models for predicting seam puckering, seam flotation, and seam efficiency was
0.0394, 0.0096, and 0.0049, respectively. Thus, the ANN model was found to be more
accurate than MLR, and the prediction errors of ANNs were low despite the availability of
only a small training data set. However, the difference in prediction errors made by both
models was not significantly high. It was found that MLR models were quicker to construct,
more transparent, and less likely to overfit the minimal amount of data available. Therefore,
both models were effectively predicting the seam performance of woven fabrics.

Onal et al., (2009) studied the effect of factors on seam strength of webbings made from
polyamide 6.6 which were used in parachute assemblies as reinforcing units for providing
strength by using both Taguchi’s design of experiment (TDOE) as well as an artificial neural
network (ANN), then compared them with the strength physically obtained from mechanical
tests on notched webbing specimens. It was established from these comparisons, in which the
root mean square error was used as an accuracy measure, that the predictions by ANN were
better predictions of the experimental seam strength of jointed notched webbing in accuracy
than those predicted by TDOE. An L8 design was adopted and an orthogonal array was
generated. The contribution of each factor to seam strength was analyzed using analysis of
variance (ANOVA) and signal to noise ratio methods. From the analysis, the TDOE revealed
(based on SNR performance criteria) that the fabric width, folding length of joint and
interaction between the folding length of joint and the seam design affected seam strength
significantly. An optimal configuration of levels of factors was found by using TDOE.

4. Applications to chemical processing

Huang and Yu (2001) used image processing and fuzzy neural network approaches to
classify seven kinds of dyeing defects including filling band in shade, dye and carrier spots,
mist, oil stain, tailing, listing, and uneven dyeing on selvage. The fuzzy neural classification
system was constructed by a fuzzy expert system with the neural network as a fuzzy
inference engine so it was more intelligent in handling pattern recognition and classification
problems. The neural network was trained to become the inference engine using sample
data. Region growing was adopted to directly detect different defect regions in an image.
Seventy samples, ten samples for each defect, were obtained for training and testing. The
results demonstrated that the fuzzy neural network approach could precisely classify the
defective samples by the features selected.

5. Applications to clothing

5.1 Pattern fitting prediction
Hu et al., (2009) developed a system to utilize the successful experiences and help the
beginners of garment pattern design (GPD) through optimization methods by proposing a
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hybrid system (NN-ICEA) based on neural network (NN) and immune co-evolutionary
algorithm (ICEA) to predict the fit of the garments and search optimal sizes. ICEA takes NN
as fitness function and procedures including clonal proliferation, hypermutation and co-
evolution search the optimal size values. A series of experiments with a dataset of 450 pieces
of pants was conducted to demonstrate the prediction and optimization capabilities of NN-
ICEA. In the comparative studies, NN-ICEA was compared with NN-genetic algorithm to
show the value of immune-inspired operators. Four types of GPD method have been
summarized and compared. The research was a feasible and effective attempt aiming at a
valuable problem and provides key algorithms for fit prediction and size optimization. The
algorithms can be incorporated into garment computer-aided design system (CAD).

5.2 Clothing sensory comfort

Wong et al,, (2003) investigated the predictability of clothing sensory comfort from
psychological perceptions by using a feed-forward back-propagation network in an artificial
neural network (ANN) system. Wear trials were conducted ten sensory perceptions
(clammy, clingy, damp, sticky, heavy, prickly, scratchy, fit, breathable, and thermal) and
overall clothing comfort (comfort) which were rated by twenty-two professional athletes in
a controlled laboratory. Four different garments in each trial and rate the sensations above
during a 90-minute exercising period were scored as input into five different feed-forward
back-propagation neural network models, consisting of six different numbers of hidden and
output transfer neurons. The results showed a good correlation between predicted and
actual comfort ratings with a significance of p<0.001. Good agreement between predicted
and actual clothing comfort perceptions proved that the neural network was an effective
technique for modeling the psychological perceptions of clothing sensory comfort. The
predicted comfort score generated from the model with the log-sigmoid hidden neurons
and the linear output neuron had a better fit with the actual comfort score than other models
with different combinations of hidden and output neurons. Compared with statistical
modeling techniques, the neural network was a fast, flexible, predictive tool with a self-
learning ability for clothing comfort perceptions.

Wong et al., (2004) investigated the process of human psychological perceptions of clothing
related sensations and comfort to develop an intellectual understanding of and
methodology for predicting clothing comfort performance from fabric physical properties.
Various hybrid models were developed using different modeling techniques by studying
human sensory perception and judgement processes. By combining the strengths of
statistics (data reduction and information summation), a neural network (self-learning
ability), and fuzzy logic (fuzzy reasoning ability), hybrid models were developed to
simulate different stages of the perception process. Results showed that the TS-TS-NN-FL
model had the highest ability to predict overall comfort performance from fabric physical
properties. The three key elements in predicting psychological perceptions of clothing
comfort from fabric physical properties were data reduction and summation, self-learning,
and fuzzy reasoning. The model was shown that these three elements can generated the best
predictions compared with other hybrid models.

All research outputs in application of ANN in textiles and clothing areas over last decade
are summarized as shown in Appendix.
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6. Challenges encountered by ANN used in textiles and clothing industries

In the application of ANN in different disciplines of textiles and clothing industries, there
are the following limitations which has encountered.

Fibre classification: More powerful learning strategies are required to improve the
classification accuracy made by the ANN.

Yarn manufacture: Additional work is needed to accurately model the occurrence of
spinning ends-down and neps by using the ANN. To improve the predictions on such
parameters, additional mill-specific data and further developments of the ANN simulations
are necessary.

Yarn-property prediction: Some researchers reported that yarn tenacity decreases when
spinning speed exceeds a certain value, say, 210 m/min. Since we used an air-jet spinstester
in this research, spinning speed could not exceed 200 m/min because of the restriction of the
machine, so the decreasing trend of yarn tenacity could not be predicted. In addition, the
difficulty in developing a universal empirical model that can accurately predict yarn
hairiness for different mills stems from the variability in processing methodologies and
equipment.

As many independent variables exist, further difficulty arises in covering the entire range of
parameters with the capability of interpolating and extrapolating experimental observations
or mill measurements and to take into account the interactive contribution between each
input factor. It is, therefore, desirable to possess the capacity to discover regularities directly
from the data being modeled, that can dynamically evolve with time taking into account
changes in materials’ specifications and processing techniques within a given mill. The MLP
model, one of ANN model does possess this characteristic and has the potential for wider
applicability in industry.

Fabric manufacture: To improve the correlation between actual and predicted values, in the
case of reverse engineering, constraints are posed to limit the ranges of constructional
parameters in ANN.

Fabric-property prediction: Besides the possibility of trying different ANN configurations,
the quantity and the quality of training data are also very important to the results. Even
though we do not include coefficient of variation (CV) values in the training pairs as inputs,
we have concluded that the ANN has a higher chance of giving big errors if the data include
many training pairs with high CV values because they feed inconsistent information to the
ANN. For future work, we suggest that there should be enough training pairs and the CV
values of these data should also be known for higher reliability.

In addition, prediction performance can be further improved by including these parameters
as input during the training phase. In few cases, the network has predicted contradictory
trends which are found difficult to be explained. Also, the neural network model
outperformed the multiple regression models in predicting the angle of spirality using data
that were not used to train the network. This indicates that it is worthwhile using the more
complex ANN technique if a large amount of different types of data are available.

Fabric defect: Since neps and trash in a web can be recognized, yarn quality is able to
improve using a reference for adjusting manufacturing parameters. In addition, the CCD
(charge coupled device) must be mounted, despite the scanner, because of on-line
considerations. Patterned and complex fabrics can be inspected as well as plain fabrics.
Further research such as a neuro-fuzzy expert system can identify actual defect types like
reed marks, mispicks, pilling, finger marks, and others.
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Since this research is limited by the speed of the knitting machine, further studies are
required to inspect the fabric defects in higher speed, circular knitting machines.
Application of ANN in fabric defect is still needed to be done in two major aspects: (1) the
applicability of the developed method in studying other manufacturing defects needs to be
validated; and (2) the current 2-D-based investigation needs to be extended to three-
dimensional (3-D) space for actual manual inspection.

Seam performance: In these comparisons, RMSE values were used as comparative metrics.
As a result, it can be said that ANN appears to be a reliable and useful tool in characterizing
the effect of some critical manufacturing parameters on the seam strength of webbing if a
sufficient number of replicated experimental data are available to train the ANN.
Applications to Chemical Processing: Fuzzification maps the input feature value to fuzzy
sets and the dimensions of the feature space are increased. When fuzzy sets are
appropriately chosen, they can increase the separated ability of classes in the feature space.
This allows the fuzzy neural network model to fit input-output data more accurately with
enhanced classification ability.

Pattern fitting prediction: The current scale is definitely not enough to study all sizes of the
garment. In order to present the fuzzy and stochastic nature of the garment and body sizes,
it should be modeled as fuzzy vector or stochastic vector. In addition, it is valuable to
incorporate NN-ICEA into garment CAD system and thus the 2D and 3D effects of
garments can provide intuitive impressions.

Clothing sensory comfort: The functions and interrelationships of individual sensory
perceptions and comfort are unknown. It is difficult to learn their relationships using ANN.
In conclusion, the major challenges of using ANN in textiles and clothing industries are lack
of sufficient data for learning and long computational time required for handling a large
size of dataset. To improve the performance of ANN models, some major factors shall be
considered to include the determination of adequate model inputs, data division and
preprocessing, choice of suitable network architecture, careful selection of some internal
parameters that control the optimization method, stopping criteria, and model validation.

7. Potential future application of ANN in textiles and clothing industries

A large number of applications of ANN in textiles and clothing industries are used

feedforward and Kohonen networks. The other types of artificial neural networks such as

recurrent neural network, associative neural network and dynamic neural networks (refer to

http:/ /en.wikipedia.org/wiki/ Types_of_artificial neural_networks website) are rarely

used. Meanwhile, quite a few areas remains insufficiently explored such as knitting,

nonwoven fabrics and finishing control. Exploring such areas using new ANN models is a

new trend in future research.

In the future research, the following issues shall be taken into consideration to the

application of ANN in textiles and clothing industries.

a. improve the data collection method for training ANNSs such as online data captured
from the process

b. improve the feature-extraction procedures before the data can be fed to an ANN

c. improve extrapolation ability of the system to strengthen the prediction capability

d. improve the user-friendly interface between user and machine

These issues are important for further development of using ANN in textiles and clothing

industries. Further research works shall deal with such issues in order to set up intelligent

systems in textiles and clothing fields instead of human judgment.
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8. Appendix
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1. Introduction

Such as other fields, textile industry, deal with numerous large inputs and possible outputs
parameters and always feed with a complex interdependence between parameters, it is
highly unlikely that an exact mathematical model will ever be developed. Furthermore,
since there are many dependent and independent variables during different textile progress,
it becomes difficult to conduct and to cover the entire range of the parameters. Moreover,
the known and unknown variables cannot be interpolated and extrapolated in a reasonable
way based on experimental observations or mill measurements due to the shortage of
knowledge on the evaluation of the interaction and significance at weight contributing from
each variable. For example, it is quite difficult to develop some universal practical models
that can accurately predict yarn quality for different mills (Chattopadhyay & Guha, 2004).
Statistical models have also shown up their limitations in use —not least their sensitivity to
rogue data—and are rarely used in any branch of the textile industry as a decision-making
tool. The mechanistic models proposed by various authors overtly simplify the case to make
the equations manageable and pay the price with their limited accuracy. In any case, the
vast volume of process parameter- related data is hardly ever included in these models,
making them unsuitable for application in an industrial scenario.

By using neural networks, it seems to be possible to identify and classify different textile
properties (Guruprasad & Behera, 2010). Some of the studies reported in recent years on the
application of neural networks are discussed hereunder.

2. Fiber classification

The usual tests for fiber identification (usually chemical tests), in addition to being difficult
to perform, are almost always destructive in nature.

Leonard et al., 1998 had used Near-infrared (NIR) spectroscopy as input data to a neural
network to identify fibers in both original and normalised spectra. The performance of the
network was judged by computing the root mean square error of prediction (RMSEP) and
was compared with similar results given by multiple linear regressions (MLR).

Accurate classification of animal fibers used in the wool industry is very difficult. Some
techniques distinguish these fibers from patterns of their cuticular scales and others from
their physical and chemical properties. However, classification of animal fibers is actually a
typical task of pattern recognition and classification (Leonard et al., 1998). She et al., 2002
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developed an intelligent fiber classification system to objectively identify and classify two
types of animal fibers, merino and mohair, by two different methods based on image
processing and artificial neural network. There are considerable variations in the shape and
contour of the scale cells and their arrangement within the cuticle. They used these two
systems based on how the scale features of the animal fibers were extracted. The data was
cast images of fibers captured by optical microscopy. Then they applied principal
component analysis (PCA) to reduce the dimension of input images and extract an optimal
linear feature before applying neural network. Furthermore neural network classifiers
generalize better when they have a small number of independent inputs. Finally they used
an unsupervised neural network in which the outputs used as inputs in the supervised
network (a multilayer perception with a back propagation algorithm) for classification while
the fiber classes were the outputs of the output layer. For the unsupervised network,
learning rate at 0.005 (step size) was set which linearly decayed to 0.0005 within the first 100
epochs and three different numbers of units in the hidden layer (80, 50, and 20) was used.
Multilayer perception used for fiber classification had a hyperbolic tangent activation
function in the processing elements of the hidden layer and output layer. They also
compared their two systems and concluded that neural network system was more robust
since only raw images were used and by developing more powerful learning strategies, the
classification accuracy of model would be improved (She et al., 2002).

There are some studies which have been introduced different design of neural network
classifier to categorize different type of fibers based on their colors too.

Raw cotton contains various kinds of trash, such as leaf, bark, and seed coat. The content of
each of these trash particles is vital for deciding upon the cleaning process (Xu et al., 1999).
For instance, the trash and color of raw cotton are very important and decisive factors in the
current cotton grading system that determine spinning quality and market value.

For many years, the USDA (United States Department of Agriculture) has used both a visual
grading method by trained classers and an instrumental method with HVI (High Volume
Instrument) systems to evaluate the color and trash of raw cotton. However it is expensive,
slow, and a time consuming process (Kang & Kim, 2002). Xu et al., 1999 used three
classification techniques (sum of squares, fuzzy, and neural network) into four groups (bark,
leaf, hairy seed coats, and smooth seed coat). They applied two hidden layer with four and
six neurons and their results showed that the neural network clustering method
outperformed the other used two methods (Xu et al., 1999).

Kang & Kim, 2002 developed an image system to characterize trash from a raw cotton image
captured by a color CCD camera and acquired color parameters. They trained and tested
neural network based on back propagation algorithm using color parameters as input data
from physical standard samples. A sigmoid function was used for an error back propagation
model and the number of input and output nodes was eight and seven respectively in
accordance with the color parameters and seven grades in the subcategories. The results
predicted by neural network were compared with the grades that classers judged (Kang &
Kim, 2002).

3. Yarn, fabric, nonwoven and cloth defect detection and categorization

In general, textile quality control is determined by measuring a large number of properties
(including mechanical and physical properties, and etc), which in many cases can only be
done by skilled workers or expensive equipments (Lien & Lee, 2002). Generally, In textile
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industry, textiles are inspected manually for defects, but some problems arise in this visual
inspection, such as excessive time consumed, human subjective factors, stress on mind and
body, and fatigue. These problems further influence production volume and inspection
accuracy. Therefore, techniques that can replace manual inspection have emerged (Kuo &
Lee, 2003). In recent years, neural networks have been used to inspect yarn, fabric and cloth
defects and to identify their types (Kuo, 2003). Neural networks are among the best classifier
used for fault detection due to their non-parametric nature and ability to describe complex
decision regions.

A key issue in many neural network applications is to determine which of the available
input features should be used for modeling (Kumar, 2003). Mostly, researchers have used
different ways for feature selection based on image processing methods in conjunction with
neural network. An image acquisition setup that yields suitable images is crucial for a
reliable and accurate judgment. This system is usually including the specimen, the camera
or scanner and the illumination assembly (Bahlmann et al., 1999). Some studied have used
near sensor image processing (NSIP) technology as well. Most researchers had converted the
original color image to gray level image to improve the computer processing speed and
reducing the dimensions of information. However, Tilocca et al., 2002 presented a method to
fabric inspection based both on gray levels and 3D range profile data of the sample (Tilocca,
2002). Most studies usually have employed histogram equalization, noise reduction
operation by filtering, etc to improve visual appearance of the image (Jeon, 2003). When
they use image technology in conjunction with neural networks, some problems may occur;
For example recognizable rate of defect may be related to light source conditions (Kuo &
Lee, 2003). Since a fine feature selection can simplify problem identification by ranking the
feature and those features that do not affect the identification capability can be removed to
increase operation efficiency and decrease the cost of evaluation systems without losing
accuracy (Lien & Lee, 2002). So some studies have applied principal component analysis
(PCA) as pre processing methods to reduce the dimension of feature vectors (Kumar, 2003).
Usually, in ANN, the available data are divided into three groups. The first group is the
training set. The second group is the validation set, which is useful when the network begins
to over-fit the data so the error on the validation set typically begins to rise; during this time
the training is stopped for a specified number of iterations (max fails) and the weights and
biases at the minimum of the validation error are returned. The last group is the
performance test set, which is useful to plot the test set error during the training process
(Liu, 2001).

Data are further processed to extract specific features which are then transmitted to either
supervised or unsupervised neural network for identification and classification. This feature
extraction step is in accordance with textural structure, the difference in gray levels, the
shape and size of the defects and etc (Kuo et al., 2003) and it is necessary to improve the
performance of the neural network classifier (Tilocca, 2002). Consequently, a large amount
of study is usually related to this step to extract useful information from images and feed
them to neural network as input to recognize and categorize yarn, nonwoven, fabric, and
garment defects.

In supervised systems, the neural network can establish its own data base after it has
learned different defects with different properties. Most researchers have been used multi
layer feed forward back propagation Neural network since it is a nonlinear regressional
algorithm and can be used for learning and classifying distinct defects.
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There are numerous publications on neural network applications addressing wide variety of
textile defects including yarn, fabric and garment defects. Some of the studies reported on
this application of neural networks are discussed hereunder.

3.1 Yarn defects

Sliver levelness is one of the critical factors when producing quality yarn products in
spinning processes. However, it is difficult to model the drafting process exactly since these
controls do not need to model the process and can handle very complicate processes, they
are useful. Moreover, they possess the ability to improve the intelligence of systems working
in an uncertain, imprecise, noisy environment. Therefore, Huang & Chang, 2001 developed
an auto leveling system with a drawing frame using fuzzy self-organizing and neural
network applied on a laboratory scale drawing frame with two drafting zones and two-
sliver doubling samples. They used a three layer neural network model to compute the
Jacobean matrix, which was needed in training the weights and thresholds on-line. A back
propagation learning algorithm was used to tune the connection weights and thresholds
and the unipolar sigmoid function as the activation function to compute the output of a
node. Levelness performance was evaluated by the CV% of sliver products in which their
results showed that neural network controller yielded more level slivers than the fuzzy self-
organizing controller. The neural network controller kept learning from the feedback of the
output linear density and generated the control action by the feed linear density and the
desired output linear density. The weight and thresholds of the neural network controller
were tuned on-line, leading to reduced variance in the output with respect to the desired
value (Huang & Chang, 2001).

It is well known that spinning process is a complex manufacturing system with the
uncertainty and the imprecision, in which raw materials, processing methodologies, and
equipments and so on all influence the yarn quality (Yin & Yu, 2007). Yarn physical
properties like strength, appearance, abrasion and bending are the most important
parameters, affecting on the quality and performance of end products and also cost of the
yarn to fabric process (Cheng & Lam, 2003).

Lien & Lee, 2002 reported feature selection for textile yarn grading to select the properties of
minimum standard deviation and maximum recognizable distance between clusters to achieve
effectiveness and reduce grading process costs. Yarn features were ranked according to
importance with the distance between clusters (EDC) which could be applied to either
supervised or unsupervised systems. However, they used a back propagation neural network
learning process, a mathematical method and a normal algebraic method to verify feature
selection and explained the observed results. A thirty sets data were selected containing
twenty data as training sets and the other ten data as testing sets. Each of these data were the
properties of single yarn strength, 100 meter weight, yarn evenness, blackboard neps, single
yarn breaking strength, and 100-meter weight tolerance (Lien & Lee, 2002).

A performance prediction of the spliced cotton yarns was estimated by Cheng & Lam, 2003
using a regression model and also a neural network model. Different spliced yarn properties
such as strength, bending, abrasion, and appearance were merged into a single score which
was then used to analyze the overall performance of the yarns by those two models. The
appearance of the spliced yarns was expressed as the retained yarn appearance (RYA)
which 5 was identical, 3 was acceptable and 1 was fail values. They used the transfer
functions of hyperbolic tangent sigmoid transfer function and linear transfer function.
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According to their analytical results, the neural network model (R=0.98) gave a more
accurate prediction that the regression model (R=0.74) (Cheng & Lam, 2003).

It is well known that worsted spinning process is a complex manufacturing system and
there are many dependent and independent variables during spinning which becomes
difficult to conduct and cover the entire range of the parameters using mathematical and
empirical models. Yin & yu, 2007 firstly analyze all the variables collected from the mill
through grey superior analysis (GS) in order to select the important variables and as a result
better improve the yarn quality before ANNs model (multi-layer perceptron) was used by
adopting the back-propagation neural network (BP) to estimate the validity of the input
variables. In their research, they evaluated yarn qualities i.e. yarn unevenness, strength,
extension at break, and ends-down per 1000 spindle hours; by means of inputs including the
processing parameters such as fiber properties, spinning method, and process variables
influencing on the yarn properties and spinning performance. From the 77 sets of data, 69
lots were selected at random to serve as learning set and the residual eight sets data were
recorded as test sets. A one layer hidden layer was decided based on experiments by
achieving the highest coefficient using back propagation learning. The prediction accuracy,
A (%) and relative coefficient, R (%), between the predicted values and achieved values were
calculated in order to validate the approaches of the variables selection. The comparison of
the performance of ANNs model using grey superior analysis (GS), subjective and empirical
approach (SE), and multilinear regress method (MLR) showed that the model using the
input variables selected by GS was superior to that by SE and MLR. They also simulated the
spinning of the worsted yarn with the high coincidence using the processing data in the
mills based on the artificial neural networks and grey superior analysis (Yin & yu, 2007).
One of the important properties of yarns is unevenness. Mass or weight variation per unit
length of yarn is defined as unevenness or irregularity. It can adversely influence many of
the properties of textile materials such as tenacity, yarn faults, twist variation, abrasion,
pilling, soil retention, drape, absorbency, reflectance or luster. Unevenness in blended yarns
is depended mainly on the physical properties of fibers (fiber cross section deviation, length
and length uniformity etc.), number of fibers and fiber location or positioning in the yarn
cross section, blend ratio and working performance of the yarn spinning machine.
Therefore, Demiryurek & Koc, 2009 developed an artificial neural network and a statistical
model to predict the unevenness of polyester/viscose blended open-end rotor spun yarns.
They used a back propagation multi layer perceptron network and a mixture process
crossed regression model with two process variables (yarn count and rotor speed). They
selected blend ratio, yarn count and the rotor speed as input parameters and unevenness of
the yarns as output parameter. Sigmoid function was used as activation function, and
number of hidden layer was determined as 25, the learning rate and momentum were
optimized at 0.2 and 0.0 respectively in this study. They compared the result of both
presented model and it was concluded that both models had satisfactory and acceptable
results, however the correlation coefficient of neural network (0.98) was slightly greater than
statistical model (0.93) and the mean square errors (0.077) were identical. The mean absolute
percentage error was also calculated and was %1.58 and %0.73 for the ANN and statistical
model respectively. Contrary to general opinion of the more reliable prediction of ANN
than statistical models, they reported that statistical model developed was more reliable
than ANN and by increasing the number of experiments, prediction performance of ANN
would increase (Demiryurek & Koc, 2009).
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2.2 Woven fabric defects

Image processing analyses in conjunction with neural networks have been widely used for
woven and knitted fabric defect detection and grading.

Karras et al., 1998 investigated a vision based system to detect textile defects from the
textural properties of their corresponding wavelet transformed images. They applied
supervised (multilayer perceptrons trained with the back propagation algorithm) and
unsupervised (Kohonen's self organizing feature maps) neural classification techniques by
exploiting information coming from textural analysis and SVD in the wavelet transformed
original images to provide second order information about pixel intensities and localize
important information respectively. They considered defect detection as the approximation
of the defect spatial probability distribution within the original image. The inputs to the
MLP and SOFM networks were the 24 features contain 1009 patterns of the feature vector
extracted from each sliding window. 280 out of the 1009 patterns belonged to the long and
thin defective area of the upper side, while the rest belonged to the class of non defective
areas. Reported classification accuracy was an overall 98.50% (Karras et al., 1998).

Tilocca et al., 2002 presented a direct method to fabric inspection based both on gray levels
and 3D range profile data of the sample. They used a smart vision sensor for image
acquisition system. The neural network was trained to classify three different categories
which were normal fabric, defect with a marked 3D component and defect with no 3D
component. A three layered feed forward neural network with sigmoid activation function
and back propagation learning algorithm by a fixed learning rate at 0.2. They extracted 1500
training patterns including nondefective region, defects with marked 3D characteristics, and
defects without 3D marks and another group of 500 patterns constituted the test sets. The
number of hidden neurons was adjusted by trial and error at 24. They obtained the
percentage of right, unknown, and wrong classifications for each class, both for the training
and test sets. Percentage of test clean patterns correctly classified was almost 92%, showing
that the ANN was able to identify and separate defective from nondefective regions. They
suggested using this system for on-line monitoring of fabric defects since no further
transformation of the data was needed before classification (Tilocca et al., 2002).

At present, fabric inspection still relies on the human eye, and the reliability and accuracy of
the results are based on inspectors. Wrinkles in cloth usually develop with deformation during
wearing, after washing and drying, and with folding during storage and it is not easy even for
trained observers to judge the wrinkles. Mori & Komiyama, 2002 used gray scale image
analysis of six kinds of plain fabrics to evaluate visual features of wrinkles in plain fabrics
made from cotton, linen, rayon, wool, silk, and polyester using neural network. The angular
second moment, contrast, correlation, and entropy were extracted from the gray level co-
occurrence matrix and fractal dimension from fractal analysis of the image as input and the
mean sensory value presenting the grade of wrinkled fabrics as output. The hidden units had
logistic function as transfer function. Eight sets of data were selected arbitrarily as training
data and the seven remaining data sets for testing the neural networks were used. They used a
training algorithm with Kalman filter to tune the network in order to maximize the accuracy of
the visual evaluation system. Sum of the square error (SSE) was used as total output error of
the network. Overtraining was occurred in the region of more than 200 learning cycles,
therefore they decided 150 learning cycles for checking or testing the network. They also
compared the accuracy of the evaluating system for wrinkled images captured by the digital
camera method with that for wrinkled images captured by the color scanner method and
observed better accuracy for the color scanner than digital camera (Mori & Komiyama, 2002).
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Kuo & Lee, 2003 used a back-propagation neural network for recognizing woven fabric
defects. They used an image system (filtered and threshold images) to distinguished holes,
oil stains, wrap-lacking and weft-lacking defects. Maximum length, maximum width and
gray level of the defects were presented as the input units of the neural network. They used
a back propagation neural network by eight defect samples for off line training. The initial
learning rate was 0.1; keeping reducing to 0.01 and the momentum factor was 0.5. The error
mean square value converged to 0.05 after 45000 iterations. According to their test, the
recognizable rate of warp-lacking and weft-lacking was up to 95%, and up to 100% for holes
and oil stains (Kuo & Lee, 2003). Kuo et al, 2003 used an image system for dynamic
inspection of plain white fabrics using a linear scan digital camera with direct light to take
images. The corresponding fabric conveying speed was 50 cm/s. the back propagation
neural network of this research comprised an input layer with three input units (maximum
length of the defect, maximum width of defect, and gray level value of the defect), a hidden
layer, and an output layer by three output units. They reported average overall recognition
rates up to 90% (Kuo et al., 2003).

Segmentation of defects provides accurate distinguishing of size and location of defects.
Therefore, Kumar, 2003 investigated an approach to segment a variety of local textile (twill
and plain weave fabrics) defects using feed-forward neural network. Since every fabric
defect alters the gray-level arrangement of neighboring pixels, he extracted the feature
vector for every pixel of backlighting captured images and applied a pre-processing using
normalization of the feature vectors followed by principal component analysis (PCA) to
reduce the dimension of feature vectors. He also used post-processed operation (a 9*9
median filtering) to generate the required output values. Hyperbolic tangent sigmoid
activation function was chosen and the weights were updated using Levenberg-Marquardt
algorithm for faster convergence rate. The network was trained for the maximum of 1000
steps with the learning rate of 0.01 and the training was stopped if the maximum
performance gradient of 1e-10 was reached. Finally, a low-cost web inspection system based
on linear neural network with a single layer to evaluate real fabric samples was proposed
since the web inspection based on defect segmentation required additional DSP hardware,
which would increase the cost of the inspection system (Kumar, 2003).

Pilling may be defined as a surface fabric fault comprising of circular accumulations of
entangled fibers that cling to the fabric surface thereby affecting the appearance and handle
of the fabric. The pilling of fabrics is a serious problem for the apparel industry and in
particular wool knitwear fabrics. The formations of pills occur as a consequence of
mechanical action during washing or wear (Beltran et al., 2005). The development of pills on
a fabric surface, spoils the original appearance and hand, initiates garment attrition and
reduces serviceability. Therefore evaluating pilling degree (from grade 5 which means no
pilling to grade 1 which is very severe pilling) of fabric is important and usually it is
inspected visually. Because of the inconsistency and inaccuracy of rating results obtained
with the visual method, more reliable and objective methods for pilling evaluation are
desirable for the textile industry. Chen & Huang, 2004 evaluated and graded fabric pilling
based on light projection using image analysis and neural network to overcome the common
difficulty of interference with fabric pill information from fabric color and pattern. Firstly,
they eliminated interference with pilling information from fabric color and pattern. Their
method was included a device to acquire the projected cross-sectional images, detecting the
profile of projected images, segmenting pills appearing on converted gray images,
extracting of a pill's feature index, and finally assessing pilling grade by Kohonen self
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organizing feature map neural network. There were ten input neurons corresponding to ten
feature indexes and five output nodes representing five cluster centers (five pilling grades)
by training twenty kinds of samples including colored and patterned pilled worsted fabrics.
The total number of iterations in the training process was 400, and the learning rate was
initialized to be 0.02.They concluded that the objective pilling grade was in good agreement
with the subjective pilling grade. The correlation coefficient for training and testing samples
were reported up to 0.94 and 1 respectively (Chen & Huang, 2004).

Beltran et al., 2005 also used artificial neural networks to model the multi-linear relationship
between fiber, yarn and fabric properties and their effect on the pilling propensity of pure
wool knitted fabrics. They used key fiber (diameter, CV, diameter > 30 pm and curvature),
top (Hauteur, CV, short fiber <30mm, bundle strength and strain), yarn (count, hairiness,
thin and thick places, twist factor, folding twist ratio) and fabric properties (cover factor) as
quantitative inputs (normalized data) along with their corresponding pilling intensities in
an ANN to predict the pilling performance of knitted wool fabrics. The corresponding mean
pill rating was served as the target output. 105 sets of randomized data were assigned to
training, 20 sets were assigned for cross validation and 10 data sets were selected for testing
the network. The network consisted of a single hidden layer multi layer perception trained
with the error back propagation algorithm possessing hyperbolic tanh activation function in
both the hidden and output layers (Beltran et al., 2005).

Zhang et al., 2010 investigated an approach for fabric defect classification using radial basis
function (RBF) network improved by Gaussian mixture model (GMM). First, the gray level
arrangement in the neighborhood of each pixel was extracted as the feature. This raw
feature was subject to principal component analysis (PCA) which adopted the between class
scatter matrix as the generation matrix to eliminate the variance within the same class.
Second, the RBF network with Gaussian kernel was used as the classifier because of the
nonlinear discrimination ability and support for multi-output. To train the classifier, GMM
was introduced to cluster the feature set and precisely estimate the parameter in Gaussian
RBF, in which each cluster strictly conforms to a multi-variance Gaussian distribution. Thus
the parameter of each kernel function in RBF network could be acquired from a
corresponding cluster. The proposed algorithm was experimented on fabric defect images
with nine classes (mould, miss weft, damaged, double pick, cloud pick, coarse end, color
smear, broken edge, and filling end) and achieved superior performance. Fabric images
were collected under the back-lighting condition with the cloth moving speed of 100
m/min. in the training process, 30 images of each class were processed and repeated 5
times. They also compared the performance of three classifiers including ANN (9-16-10 feed
forward structure using back propagation algorithm), SVM (Support Vector Machine which
can automatically determine support vectors from the sample set which is normalized and
preprocessed by PCA using Gaussian function as kernel), and RBF network on fabric defect
classification. These schemes were evaluated on the same nine classes of fabric defect
images. The training and test process was repeated five times to get an average
performance. The result was measured by correct classification rate (CCR) which was
defined as the number of correctly classified images divided by the number of total images.
They found that ANN had the worst performance with an average CCR of 74% while the
performance of RBF network was the best with CCR of 83.2% and the performance of SVM
was sensitive to the parameters. Therefore, they reported that RBF network was an
appropriate choice for the real time fabric defect classification. It has to be noted that this
work was the first time that the RBF network was applied in fabric defect classification



Artificial Neural Network Prosperities in Textile Applications 43

which achieved excellent performance in combination with GMM in comparison with
classical feed forward network (Zhang et al., 2010).

2.3 Knitted fabric defects

The apparent quality of knitted fabrics can be divided into two categories. First, the fabrics
with a large number of area faults that were occurring in the knitting process and eventually
make them useless. In the second category, there are inputted faults that originate from yarn
faults and the apparent quality of yarn is directly related to the configuration of fibers on its
surface (Liu et al., 2001). Different studies have been reported and identified both problems
simultaneously or separately.

Detecting and classifying knitted fabric defects using image analysis and neural network
were performed by Shady et al., 2006. They utilized two approaches including statistical
procedures and fourier transforms to extract image features for six different knitted fabric
defects using a defect free fabric as a control sample. All images were processed using
histogram equalization and then converted to grayscale images. The feature vectors were
used as input vectors to the network and six types of defects including broken needle, fly,
hole, barre, thick yarn and thin yarn were identified and classified. Two neural networks
were trained and tested for each feature extraction approach. The first one contained seven
neurons in the input layer representing the seven features of the statistical approach, and
seven neurons in the output layer representing the sic different defects and the free defect
sample. This network was successful only in classifying broken needle, hole, thick and thin
yarn defects. In the second neural network, six neurons were used in the input layer
representing the features and seven neurons in the output layer representing the six defects
and the free defect sample. The worst results were observed for the barre defects. In their
work, the neural network was trained by the learning vector quantization (LVQ) algorithm
to detect and classify the knitted fabric defects. Their results showed success in classifying
most of the defects excluding barre defects (Shady et al., 2006).

Fabric spirality is a problem which affects the esthetics and quality of knitted fabrics. This
problem is complex and there is a large amount of data required to establish quantitative
relationship to model this phenomenon accurately. an artificial neural network model was
proposed by Murrells et al., 2009 for the prediction of the degree of spirality of single jersey
fabrics made from 100% cotton conventional and modified ring spun yarns from a number
of factors considered to have the potential to influence fabric spirality after wash and dry
relaxation such as twist liveliness, yarn type, yarn linear density, fabric tightness factor, the
number of feeders, rotational direction, gauge of knitting machine and dyeing method. They
compared ANN model (R=0.976) with a multiple regression model (R=0.970) and concluded
that ANN model produced superior results to predict the degree of fabric spirality after
three washing and drying cycles. The hyperbolic tangent sigmoid transfer function was
assigned as the activation function in the hidden layer and the linear function was used in
the output layer. During the process, 60%, 20%, and remaining 20% of the original data were
set aside for training, validation, and testing respectively. They also investigated the relative
importance of the investigated factors influencing the spirality of the fabric and tried
various network structures with one hidden layer and finally demonstrated that multilayer
feed forward network based on Levenberg-Marquardt learning algorithm had better results.
Furthermore, both the ANN and the regression approach showed that twist liveliness,
tightness factor, and yarn linear density were the most important factors in predicting fabric
spirality (Murrells et al., 2009).
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Semnani & Vadood, 2009 applied the artificial neural network (ANN) to predict the
apparent quality of weft knitted fabrics. They considered, only the appearance of the safe
knitted fabric without any knitting faults, tightened fibers with uniform configuration, big
faults with less area, non-uniform and extended faults with spread configuration, and small
spread faults such as non-uniform coating fibers and short tangled hairs had been
considered (Semnani & Vadood, 2009).

There are some variables in the applied neural network where their variation affects on the
obtained results are significant. These variables include the number of hidden layers, the
number of neurons in hidden layers, the value of max fail and the percentage of validation
and testing data.

Therefore, Semnani & Vadood, 2009 applied genetic algorithm in their research because of
its intuitiveness, ease of implementation and the ability to effectively solve highly nonlinear,
mixed integer optimization problems. Their results showed that the ANN could be
optimized very well by the genetic algorithm method and the designed ANN was very
accurate and applicable to predict the apparent parameters. Their optimized ANN was
formed from two hidden layers, in which the first hidden layer had 8 and the second layer
had 7 neurons, one neuron for output layer, five epochs for max fail, 20% available data for
test and 10% of available data for validation (Semnani & Vadood, 2009).

2.4 Nonwoven defects

Liu et al., 2010 proposed an algorithm based on wavelet transform (feature extraction
procedure) and learning vector quantization (LVQ) neural network for nonwoven
uniformity identification and grading. Six hundred and twenty-five nonwoven images of
five different grades, 125 images of each grade, were decomposed at four different levels
with five wavelet bases of Daubechies family, and two kinds of energy values L! and L2
extracted from the high frequency subbands were used as the input features of the LVQ
neural network solely and jointly. The network outputs were class labels, which were
defined with five integer numbers, from 1 to 5, denoting five different uniformity grades.
The number of neurons in hidden layer, training epochs and goal, of the LVQ neural
network were as 5, 200 and 0.01 respectively. They used the identification accuracy of each
grade and average identification accuracy (AIA%) of five grades as performance parameters.
Their results were expressed and compared five wavelet bases (dby, dbs, dbs, dbs, and dbso)
and even different features (L1, L2, and L1UL?) at the four levels (level 1 to 4). They noted
three points as Firstly, with the same feature set and decomposition level, the length of the
filter had little effect in performance in all methods. Secondly, with the same feature set and
wavelet base, the decomposition level had a significant effect in the performance in all
methods. Thirdly, the highest identification accuracy was gotten at the crossing point dbs or
dbs and level 3 (Liu et al., 2010).

Liu et al., 2010 presented a method to recognize the visual quality of nonwoven by
combining wavelet texture analysis, Bayesian neural network and outlier detection. Each
nonwoven image was decomposed with orthogonal wavelet bases at four levels and two
textural features, norm-1 and norm-2, which were used as the input of Bayesian neural
network for training and test. To detect the outlier in the training set, the scaled outlier
probability was introduced to increase its robustness. All nonwoven samples were classified
into five grades according to visual qualities (such as surface uniformity, the condition of
pilling, wrinkles and defects). Each image was individually normalized to zero mean and
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unit variance before wavelet transform. They reported with the increase of decomposition
level, the average classification error and cross entropy of training and test set decreased
sharply and the recognition accuracy of the five grades was also affected (Liu et al., 2010).

2.5 Cloth defects

Quality inspection of garments is an important aspect of clothing manufacturing. For many
textile products, a major quality control requirement is judging seam quality visually by
human experts. Presently, this is still accomplished by human experts, which is very time
consuming and suffers from variability due to human subjectivity. Consequently,
investigations about automated seam quality classification and an implementation of an
automated seam classificator are highly desirable. Bahlmann et al., 1999 presented a method
for automated quality control of textile seams by a scale of five grades (from grade 5 which
was best to grade 1 which was worst). Their system was consisting of an image acquisition
setup (to record seams structures), an algorithm for locating the seam (transforming acquired
seam images to normalize position), a feature extraction stage (based on fourier coefficients of
one dimensional image columns) and a neural network of the self organizing map type
(SOFM) for feature classification. The classification results were documented by three aspects
including the classification confusion matrix, the inspection of the NMSE (normalized mean
square error), and an investigation of the resulting Kohonen map. The classification rate
amounted to 80% correct classifications, the rest differed from the correct grade by one and
their results were not worse than the human exports error (Bahlmann et al., 1999).

Because of the special property of the knitted fabric which is very easy to be pleated,
puckered or distorted in stitching, automatic inspection of stitching is necessary. Yuen et al.,
2009 proposed a hybrid model (integration of genetic algorithm and neural network) to
classify garment defects. Firstly, to process the garment sample images captured by digital
camera, they used a morphological filter and a method based on genetic algorithms to find
out an optimal structuring element. They also presented a segmented window technique to
segment images into pixel blocks under three classes using monochrome single-loop
ribwork of knitted garments caused by stitching (seams without swing defects, seams with
pleated defects and seams with puckering defects). Four characteristic variables (size of the
seams and defective regions, average intensity value, standard deviation and entropy value)
were collected to describe the segmented regions and input into back propagation neural
network to provide decision support in defect classification. The number of the nodes was
set as 10 by many experiments. The training function of the neural network was a gradient-
descending method based on momentum and an adaptive learning rate. The learning
function of connection weights and threshold values was a momentum-learning method
based on gradient descending. Twenty two images of each class were used as training
samples and the other ten images were testing samples. They did not report any
misclassified sample and the identification rate was 100% (Yuen et al., 2009).

3. Yarn and fabric properties prediction and modeling

The main objective of many scientific studies in textile is to reveal the complex functional
relationships that exist between structural parameters of fiber, yarn and fabric properties. If
the relationships between different parameters that determine the specific yarn or fabric
property are known, they can be used to optimize that particular property for different end-
use applications so as to minimize the cost. Predictive modeling methodologies, which are
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complex and inherently nonlinear, can be used to identify the different levels of
combinations of process parameters and material variables that yield the desired fabric
property. Since the network can accurately capture the nonlinear relationships between
input and output parameters, they have extremely good predictive power (Behera &
Muttagi, 2005). The use of an artificial neural network model as an analytical tool may
facilitate material specification/selection and improved processing parameters governed by
the predicted outcomes of the model (Khan et al., 2002).

An ANN model adjusts itself to establish the relation between the input and the output. In
spite to this, an ANN model does not require any explicit formula but instead it is an
implicit model by itself where it can be trained to adopt and adjust itself to perform certain
tasks (Nirmal, 2010).

3.1 Mechanical behavior prediction of textiles

Breaking elongation properties of yarns influence the performance of them during winding,
warping, and weaving. Yarn elongation like other yarn properties is chiefly influenced by
fiber properties, yarn twist, and yarn count. Because there is a strong correlation between
yarn elongation and loom efficiency, it would be very helpful if a prediction model could
forecast yarn elongation accurately (Majumdar & Majumdar, 2002). Furthermore, breaking
strength of yarn is the one of the most important physical property of yarn as it is the main
parameter for physical quality control. It takes a long time for the yarn producer to get the
experimental results for the physical properties of yarn. Therefore, faster determination of
yarn physical properties is needed (Dayik, 2009). Generally, modeling and prediction of
yarn properties based on fiber properties and process parameters have been considered by
many researchers such as mechanistic models, statistical regression models (Gharehaghaiji et
al.,, 2007). In recent years, artificial neural network models have been widely used to predict
different kind of yarn and fabric mechanical properties based on process parameters and
fiber and yarn parameters. Among the various kinds of learning algorithms for the neural
network, back propagation is the most widely used.

Majumdar & Majumdar, 2004 predicted the breaking elongation of ring cotton yarns by
three modeling methodologies including mathematical, statistical and artificial network by
back propagation learning algorithm. 72 and 15 samples, respectively, were used for
training and testing the three prediction models. They tried five different network
structures with one hidden layer by different number of neurons (6, 8, 10, 12, and 14) in the
hidden layer. Learning rate and momentum were optimized at 0.1 and 0.0, respectively. The
neural network with ten nodes in the hidden layer had the best prediction results in the
testing sets after 2500 iterations. Inputs to these models were constituent cotton fiber
properties (fiber bundle tenacity, elongation, upper half mean length, uniformity index,
micronaire, reflectance degree, and yellowness) measured by high-volume instruments
(HVI) along with yarn count (Ne). They used statistical parameters such as the correlation
coefficient (R) between the actual and predicted breaking elongation, mean squared error,
mean absolute error (%), cases with more than 10% error, maximum error (%), and
minimum error (%) to judge the predictive power of various models and concluded that
neural network model had showed the best prediction results. The correlation coefficient
between actual and predicted elongation was R=0.938 for the ANN model, R=0.731 for the
mathematical model and R=0.870 for the statistical model. Percent of maximum error was
also reported for ANN, mathematical and statistical models which were 13.23%, 34.04%, and
15.60% respectively. The only output of each prediction model was the breaking elongation
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of yarns. They also measured the relative importance of various cotton fiber properties
using neural network model (Majumdar & Majumdar, 2004).

Behera & Muttagi, 2005 compared the ability of three modeling methodologies based on
mathematical, empirical and artificial neural network based on radial basis function (RBF)
(using orthogonal least square learning procedure) to predict fabric properties. The inputs to
the network were fabric constructional parameter, yarn bending rigidities and outputs were
fabric initial tensile moduli. Before feeding to network, the input-output data set was scaled
down to be within (0, 1), by dividing each value by the maximum value of the overall data.
Data were randomly divided into 14 sets and 4 sets of input-output pairs for training and
testing the network respectively. They also studied the effect of network design parameters
on error of prediction. The effects of neurons number of the hidden layer, error goal, and
bias constant on prediction performance of RBF network were assessed. They observed that
ANN model produced the lease error as well as minimum range of error as compared to the
other modeling methods and ANN required a much smaller data set than the one required
for conventional regression analysis. For example, percentage prediction error for warp and
weft way fabric tensile modulus were respectively 10.2% and 8.63% for ANN, 20.4% and
12.33% for empirical model and 20.53% and 13.65% for mathematical model. They also
predicted bending rigidity of woven fabric by these three models and ANN had a better and
accurate result than those two models (Behera & Muttagi, 2005).

Gharehaghaji et al., 2007 investigated tensile properties modeling of cotton-covered nylon
core yarns by artificial neural networks based on back propagation algorithm and multiple
linear regression methods which the first method had better performance than the second.
They predicted breaking strength and breaking elongation simultaneously as output and by
using count of core part, count of sheath part, twist factor of core-spun yarn and pretension
as input. In order to eliminate the effect units of input and output parameters, data
normalizing was carried out. The data set of 54 samples was divided randomly into 5
subsets, each containing 10 or 11 samples, to train and test the network five times by using
four sets as training set and one subset as testing set. Overfitting was prevented by using
weight decay technique. The adaptive learning rate with momentum training algorithm
(optimized at 0.9) was used to enhance the training performance. They determined the
number of hidden neurons and the number of hidden layers by trial and error by using 20
topologies with different number of hidden layers and numbers. Their results showed a two
hidden layers by eight nodes into first hidden layer and six nodes into second hidden layer
gave the best topology. They assessed their models using verifying mean square error (MSE)
and correlation coefficient (R-value). The difference between the MSE value of two models
for predicting breaking elongation and breaking strength of testing data were 0.119 and
0.365 respectively (Gharehaghaiji et al., 2007).

Dayik, 2009 determined the breaking strength of 100% cotton yarn properties by using Gene
expression programming, neural network and classical statistical approach (multiple
regression algorithms) and compared the predictive power of them by correlation coefficient
(R-square) and mean square error (MSE). The inputs were included foreign matter,
micronaire, uniformity, elongation, strength of fiber, length of fiber, short fiber index and
neps which were collected for a three month period data. He used seven different neural
network architectures which were including multilayer perception, Generalized feed
forward, Modular network, Jordan/Elman, Self organizing map, Principal component and
Recurrent network to identify the best one. However the best results were obtained from the
generalized feed forward neural network algorithms. He examined the predictive power by
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multiple linear regression analysis. The statistical method showed very much worse
performance than genetic and neural network since physical properties of yarn depends on
many various factors and the relations between these factors are highly nonlinear and
complex. Performance of genetic model (98.88%) was better than artificial neural network
(94.00%) in his research (Dayik, 2009).

The effects of splicing parameters, fiber and yarn properties on the tenacity and elongation
of spliced yarns were investigated by Unal et al., 2010 using artificial neural network (ANN)
and response surface model (RSM). In the ANN analysis, a multilayer feed-forward network
with one hidden layer trained by back propagation algorithm was used. In the first phase,
the back propagation algorithm was applied for 100 epochs. The optimum learning rate of
0.01 and momentum coefficient of 0.3 used in back propagation was determined in terms of
several trials. In the second phase of training, 500 epochs were performed for conjugate
gradient descent algorithm. As activation functions, a hyperbolic function was used in the
hidden layer and linear functions were used in the input and output layers. Of the 89 yarn
samples, 76 samples were chosen as the training set at random, while 22 samples (25%) were
chosen for the testing set.

They produced yarns from eight different cotton types, having three different counts and
three different twist coefficients. Six parameters including fiber length, fiber diameter, yarn
count, yarn twist, opening air pressure and splicing air pressure in the input layer were
selected and a neural network with seven hidden neurons for yarn tenacity analysis and
another neural network with six parameters including fiber length, short fiber content, yarn
count, yarn twist, opening air pressure and splicing air pressure in the input layer and six
hidden neurons for breaking elongation were determined as well. The results of the ANN
analysis were similar to the results of RSM except for the effect of splicing air pressure and
ANN showed more powerful results in comparison RSM model since it is more capable of
explaining non-linear relations (Unal et al., 2010).

ANN appears to be a reliable and useful tool in characterizing the effect of some critical
manufacturing parameters on the seam strength of webbing, if a sufficient number of
replicated experimental data are available to train the ANN. Onal et al., 2009 studied the
effect of fabric width, folding length of joint, seam design and seam type on seam strength of
notched webbings for the parachute assemblies using both Taguchi's design of experiment
(TDOE) and an artificial neural network (ANN) and then compared them with strength
physically obtained from mechanical tests on notched webbing specimens. They used a four
layer, feed forward, back propagation ANN model with a five hidden layer neurons and
one output neuron to output seam strength. Input variables were fabric width, folding
length of joint, seam design and seam type. 60 training patterns and 10 testing patterns were
used to train and test the network. It was established from these comparisons, in which the
root mean square error was used as an accuracy measure, that the predictions by ANN were
better in accuracy than those predicted by TDOE (Onal et al., 2009).

Hadizadeh et al., 2009 presented an ANN model for predicting initial load-extension
behavior of plain weave and plain weave derivative fabrics. They developed a single hidden
layer feed forward ANN based on a back propagation algorithm with four input neurons
(using a combination of parameters of Leaf's equation instead of individual parameters) and
one output neuron to predict initial modulus in both warp and weft directions. In their
research, the input and measured values were normalized so that they would have zero
mean and unity standard deviation and they used Levenberg-Marquardt learning
algorithm. Five different cases of ANN with different number of neurons in hidden layer
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and different data were considered to train and test the network. The number of neurons in
the hidden layer was experimentally verified on the basis of the performance factor. In case
one, 18 Leaf and Kandil's data were inputted to the network. In case two, the ANN was
consist of 31 samples of plain weave experimental values of produced fabrics. They used
their data in conjunction Leaf's data in case three. In case four, their fabric samples of plain
weave and plain weave derivatives were considered while in case five, Leaf's data in
addition to their data were applied to network. The model's suitability was confirmed by the
low performance factor (PF/3) and the high coefficient of correlation. Their proposed ANN
model was suitable for the prediction load-extension behavior of plain weave and plain
weave derivatives of fabrics (Hadizadeh et al., 2009).

Shear stiffness is one of the important properties of worsted fabrics which depends on yarn
properties and fabric parameters. As a nonlinear problem, predicting the shear stiffness can
be realized by an alternative modeling method, that is, by using the artificial neural network
(ANN) model. Chen et al., 2009 modeled the relationship between yarn properties, fabric
parameters, and shear stiffness of worsted fabrics using two stage neural network models.
First, the yarn properties and fabric parameters were selected by utilizing an input variable
selection method to find the most relevant yarn properties and fabric parameters as the
input variables to fit the small-scale artificial neural network model. The first stage was
consisting two parts. The first part took the human knowledge on the shear stiffness into
account (VAK) and the second part was a data sensitivity criterion based on a distance
method (Sk). Second, the artificial neural network model of the relationship between yarn
properties, fabric parameters, and shear stiffness of fabrics was established.

They used a feed forward ANN by six yarn properties and fabric parameters (warp cover
factor, warp twist factor, weft twist factor, warp linear density, weft linear density, and fiber
specific surface area) as inputs, one hidden layer with four neurons, and shear stiffness of
fabrics as output trained with the help of the error back propagation algorithm. In order to
avoid overfitting, the Bayesian framework were used in the training procedure. 39 data points
and 1 data point were used for training and testing set respectively. They used the primitive
variables to rank data, not their transformations as those in the PCA. Hence, the variables had
clear physical meanings. Their results showed accurate prediction (up to average error of
0.209%) by the small-scale artificial neural network model and a reasonably good artificial
neural network model could be achieved with relatively few data points by integrating with
the input variable selecting method developed in their research (Chen et al., 2009).

Needle punching is a well-known nonwoven process of converting fibrous webs into self-
locking or coherent structures using barbed needles. The barbed needles pull the fibers from
the surface of web and reorientate them in the thickness direction leading to a complex
three-dimensional (3D) structure. The nonwoven structural depends on different
parameters. Rawal et al., 2009 predict the bulk density and tensile properties of needle
punched nonwoven structures from main process parameters including web area density,
depth of needle penetration, and punch density by Artificial Neural Network (ANN)
modeling technique (back propagation learning algorithm). Two different ANN models
were developed, one for predicting fabric bulk density and another for predicting the tensile
strength in the machine and cross machine directions. Only one hidden layer with 8 nodes
was used and transfer function in the hidden and output layers was log-sigmoid. Learning
rate and momentum was optimized at 0.6 and 0.8 respectively. Web area density, punch
density, and depth of needle penetration were considered as inputs. Training was stopped
when the error in the unseen or testing data sets approached at the minimum level. 21 data
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sets were randomly chosen for the training of ANN and 6 sets were used for the testing
purpose. The simultaneous effect of more than one parameter on bulk density and tensile
properties of needle punched nonwoven structures have been investigated based upon the
results of trained ANN models. A comparison was also made between the experimental and
predicted values of fabric bulk density and tensile strength in the machine and cross machine
directions in unseen or test data sets. It has been inferred that the ANN models had achieved
good level of generalization that is further ascertained by the acceptable level of mean absolute
error obtained between predicted and experimental results (Rawal et al., 2009).

3.2 Prediction of the other textile properties

The material properties of engineering fabrics that are used to manufacture airbag can not
be modeled easily by the available nonlinear elastic-plastic shell elements. A nonlinear
membrane element that incorporates an elaborate tissue material model has been widely
used by the auto industry for the airbag simulation studies, this model is highly
computation intensive and does not differentiate between the various physical properties of
the fabrics like fiber denier, the polymer fiber, and weave pattern. Keshavaraj et al., 1996
introduced a feed forward neural network to determine permeability and biaxial stress-
strain relationships for nylon and polyester fabrics used in airbags. The network used for
permeability prediction was a three input nodes (281, 323, and 373 K temperature levels),
four hidden nodes and one output node. The predictions provided by the neural network
model were better for the polyester fabrics than they were for the nylon fabrics. The effects
of the type of fabrics, i.e., denier and weave type, with nylons and calendering in case of
polyester, biaxial strain, biaxial stress, and pressure drop while predicting biaxial stress of
fabric under a biaxial deformation were considered in their model. The model prediction
was within a #3 MPa error limit which was agreed very well with the experimental data
(Keshavaraj et al., 1996).

Classical pressure drop models set up for porous media do not accurately model pressure
drops through fabric structures but they give information about the location of flow through
fabric structures and about the specific characteristics of cloths which may influence
pressure drop values. A neural network (NN) approach is then carried out in order to model
experimental data by taking into account specific characteristics of cloths as input neurons,
and to analyze the relative importance of each input variable on pressure drops. Brasquet &
Cloirec., 2000 studied pressure drops through several textile fabrics using classical models
(Ergun's equation, Carmen's dimensionless approach, and Comiti-Renaud's model),
statistical tool, and neural network. The models were tested by three different definitions for
the specific surface area, on the fabric, yarn, and opening scale, respectively. Different kinds
of cloth were used, in terms of fiber type such as activated carbon fibers and their
precursors, rayon fibers. In the first part, they measured air and water pressure drops
induced by these different cloths as a function of fluid velocity experimentally and secondly,
using classical models set up for particular media in order to locate the flow and then a
statistical approach by neural network were considered. They chose input neurons in a
multilayer perceptron network (fluid properties-u, p, Re- and fabric characteristics -
thickness, density, number of openings and raw material) in order to predict pressure drop
values as the output neuron. The number of hidden neurons was statistically optimized as
four with hyperbolic tangent function as transfer function. Network training set was carried
out with 400 data and a validation set of 183 data was also performed. 200 data was used to
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test the generalization ability of the trained neural network. They calculated absolute
averaged relative errors (AARE) to assess the performance of their network (Brasquet &
Cloirec., 2000).

The work 'bagging' is essentially a perception by people of the three dimensional shape of a
bagged garment. Subjective judgments of the degree of garment bagging vary with different
people and also depend on garment types. Garment bagging is a kind of three-dimensional
residual deformation during wear, which can be characterized by a few parameters such as
bagging height, volume, shape, and fabric surface pattern. Yeung et al., 2002 developed a
method to evaluate garment bagging by image processing with three different modeling
including multiple regression, liner modeling and neural network. These models were able
to provide predictive powers of R2? value of 0.92, 0.93, and 0.94 respectively. Firstly, they
evaluated fabric bagging by capturing digitized images of bagged fabrics, image processing
of the capture images, and recognizing bagging magnitude from these criteria. They used
the eight criteria as input variables to predict subjective perceptions of bagging, employing a
two-layer feed forward neural network with back propagation learning algorithm. The
hidden layer included thirteen neurons with tan-sigmoid transfer functions to learn
nonlinear and linear relationships between input and output. Ten samples and six samples
were used to train and test the network respectively. The ability of network to predict
bagging was reported R2=0.94 (Yeung et al., 2002).

Tokarska, 2004 presented modeling of woven fabric permeability (dynamic air permeability)
features by means of neural network (multilayer perceptron). His analysis of the flow
properties was based on observations of their behavior during impact air flow. He used
apparent density, warp twist, and weft twist for the input layer, while the output layer was
the integral of the function p(t), that is the actual pressure impulse generated on a fabric
under impact air flow conditions, using a back propagation method to teach the network.
He obtained the quality of his neural model by means of an index p, which is given the
standard deviation of errors for the output variables divided to the standard deviation of the
target output variable (Tokarska, 2004).

Fabric hand is commonly used for assessing fabric quality and prospective performance in a
particular end use. Subjective assessments treat fabric hand as a psychological reaction
obtained from the sense of touch, based on the experience and sensitivity of humans.
Prediction of these psychological perceptions of hand based on fabric properties is very
difficult. Hui et al., 2004 predicted sensory hand based on fabric properties using a resilient
back propagation multilayer feed forward neural network. Twelve fabric properties were fed
into the input layer then they propagated forward through two hidden layers and then
fourteen biopolar pairs of sensory fabric hand attributes arrived at the output layer. The
output was normalized since the log sigmoid activation functions were used on each layer.
Mean square error (MSE) was set to 1e-8 and to avoid network over fitting, they used Larsen's
early stopping methodology to reduce the generalization error of the network. Correlation
between output and target values were reported greater than 0.9 (Hui et al., 2004).

There are numerous factors which broadly classified into yarn quality, condition of warp
preparation, and loom actions and conditions which can affect the performance of warp
yarns in weaving. The weaving performance of a yarn is generally expressed in terms of
warp breakage rate in weaving. Yao et al., 2005 investigated the predictability of the wrap
breakage rate from a sizing yarn quality index using a feed forward back propagation
network. They rated an eight quality index including size add-on, abrasion resistance,
abrasion resistance irregularity, hairiness beyond 3 mm, breaking strength, breaking
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strength irregularity, breaking elongation and breaking elongation irregularity as input
layer and warp breakage rates as output layer in controlled conditions. Hidden layer with 1,
4, and 8 neurons were tested. The learning method was back propagation with momentum,
and single step learning with a sequential presentation sequence was selected as learning
strategy. They suggested a model with a single sigmoid hidden layer with four neurons to
produce better predictions than the other models and prepared sixty records for training
and ten records for testing the network. The stop condition had been mean absolute error
(MAE= 0.148), mean square error (MSE= 0.0364), root mean square error (RMSE= 0.191),
and mean absolute percentage error (MAPE= 5.58) and correlation was reported R= 99.5%.
(Yao et al., 2005).

Comfort is one of the most important attributes of textiles used in clothing. Clothing comfort
is influenced by different fabric, environment and human factors. Thermal properties of
clothing are one of the most important aspects of clothing comfort in which analyzing the
relationship between various fabric parameters and comfort properties are essential.
Bhattacharjee & Kothari, 2007 reported a study on the predictability of the steady-state and
transient thermal properties of fabrics (thermal resistance and maximum instantaneous heat
transfer) using a feed forward, back propagation artificial neural network system. They
made a comparison with two different network architectures, one with two sequential
networks working in tandem fed with a common input and another with a single network
that gave two outputs and the first one (mean error percentage of 8.61%) gave better results
than the second one (mean error percentage of 10.42%). First model was able to predict the
steady-state and transient thermal behavior with a good coefficient of determination (R2=
0.94) as compared with the second model (R2= 0.69). A three layered network with two
hidden layers was used in both of the cases. The input parameters including type of weave
warp and weft count, thread density, thickness and areal density were considered. A
sigmoid transfer function 'tansig' was used for input and hidden layers and a linear function
was used for the output layer. The training function used was a quasi-Newton algorithm
based on the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update and regularization
was carried out to avoid over fitting (Bhattacharjee & Kothari, 2007).

Capillary rise in porous media is a frequently occurring phenomenon which occurs in
dyeing of textile fabrics, and a variety of other fields. An artificial neural network was
employed by Ahadian et al., 2007 to predict the time of capillary rise for a known given
height. Their network's inputs were density, surface tension, and viscosity for the liquids
and particle size, bulk density, packing density, and surface free energy for the powders.
The output layer of the network corresponded to the time of capillary rise in order to reach a
given height (i.e. 0.036 m ). A training set (136 times of capillary rise) and a testing set (18
times of capillary rise) was chosen for the network. Networks were trained using the
Levenberg- Marquardt back propagation algorithm. A linear activation function was used in
output layer of the networks. All the input and output data were normalized to the interval
[-1 to 1] before training and testing. Two statistical parameters namely the product moment
correlation coefficient (r2) and the performance factor (PF/3) were used to correlate the
actual experimentally obtained times of capillary rise. The results showed that their artificial
neural network was able to predict the time of capillary rise (i.e. r2 = 0.91, PF/3=55). In
comparison, the Lucas-Washburn's calculations gave the worst correlations (12 = 0.11, PF/3
=1016) (Ahadian et al., 2007).

Furthermore, thermodynamic and transport properties of liquids are fundamental in
processes involving liquid flow and heat and mass transfer. Two most important of these
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properties are surface tension and viscosity which are modeled using two artificial neural
networks (ANNSs) by Ahadian et al., 2008. The surface tension predictor network had six
inputs, namely: particle size, bulk density, packing density and surface free energy of the
powders as well as the density of the probe liquids together with the capillary rise time of
the liquids in the corresponding powders. The viscosity predictor network had surface
tension as an extra input. The results of the present work clearly showed that the artificial
neural network approach is able to predict the surface tension (i.e. r2 = 0.95, PF/3 = 16) and
viscosity (i.e. 12 = 0.998 , PF/3 = 13) of the probe liquids with unsurpassed accuracy
(Ahadian et al., 2008).

There is a need for a reliable forecasting system which can quantitatively predict the
hairiness of a resultant yarn from its processing parameters prior to yarn formation. The
development of such a system is potentially challenging owing to the complex nature of the
worsted spinning pipeline, where wool fibers undergo a series of different processes before
being converted into a yarn. Khan et al., 2009 evaluated the performance of multilayer
perceptron (MLP) and multivariate linear regression (MLR) models for predicting the
hairiness of worsted-spun wool yarns from various top, yarns and processing parameters.
Their results indicated that MLP model predicted yarn hairiness more accurately than the
MLR model. They used some factors including yarn twist, ring size, average fiber length,
fiber diameter and yarn count on the basis of sensitivity analysis as inputs. Five different
random partitions of the database into training and validation sets were generated. For each
partition, both models were independently trained using the training set and their responses
to the validation set assessed. Both MLR and MLP models were capable of achieving a good
fit to the measured hairiness values, as evidenced by the high mean R2 values of 0.910 and
0.949, respectively. This study also demonstrated that the hairiness of a yarn could be
predicted to a high precision from limited top, yarn and processing parameters, and that the
ANN-based yarn hairiness prediction model had the potential for wide mill specific
applications (Khan et al., 2009).

One of the most important properties of clothes is their ability to help the body’s thermal
system to keep the body temperature in its natural range, even if the environmental
conditions or physical activities are outside the body’s ideal range. Perspiring is one of the
most important effects of physical activities in warm weather for shedding the body’s
excessive heat. Therefore, the basic requirement of a fabric worn next to the skin is to
transfer this moisture to the atmosphere to reach comfort through the avoidance of a feeling
of wetness and clamminess and also through the generation of a situation for the best
surface evaporation of moisture. Mokhtari Yazi et al., 2009 evaluated the transmission of
heat and moisture by differential modeling as an artificial neural network a double-surface
knitted fabric containing hydrophilic and hydrophobic fibers. Input data was made from
temperature and moisture values for the bottom and top surfaces of the fabric; the number
depended on the time of each experiment and was different for each sample. The
connections of network nodes corresponded to the partial differential equation of
propagation as forward time-centered spaces (three advanced Euler methods). The results
were analyzed to find a suitable fabric with optimum comfort. The final results showed that
a fabric made of micro polyester filaments and cotton yarns on the bottom and top surfaces,
respectively, had the best heat and moisture transfer (Mokhtari Yazi et al., 2009).

Giri Dev et al., 2009 modeled and predicted water retention capacities of the membranes
under different hydrolyzing conditions using empirical as well as artificial neural network
(ANN model) by alkali concentration, temperature and time as inputs. Both statistical model
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and ANN model had showed a very good relationship (R2) between the experimental and
predicted response values and both models had an error percentage less than 2% indicating
the reliability of the model developed (Giri Dev et al., 2009).

Needle punching is a well-known nonwoven process of converting fibrous webs into self-
locking or coherent structures using barbed needles. Rawal et al., 2009 predict the bulk
density and tensile properties of needle punched nonwoven structures from main process
parameters including web area density, depth of needle penetration, and punch density by
Artificial Neural Network (ANN) modeling technique (back propagation learning
algorithm). Two different ANN models were developed, one for predicting fabric bulk
density and another for predicting the tensile strength in the machine and cross machine
directions. The number of nodes in the hidden layer and learning parameters, i.e., learning
rate and momentum was optimized at 8, 0.6, and 0.8, respectively. Training was ceased
when the error in the unseen or testing data sets approached at the minimum level. Out of
27 available data sets, 21 sets were randomly chosen for the training of ANN and remaining
six sets were used for the testing purpose. The simultaneous effect of more than one
parameter on bulk density and tensile properties of needle punched nonwoven structures
have been investigated based upon the results of trained ANN models. A comparison was
also made between the experimental and predicted values of fabric bulk density (R= 0.907)
and tensile strength in the machine (R= 0.986) and cross machine directions (R= 0.982) in
unseen or test data sets. It has been inferred that the ANN models had achieved good level
of generalization that is further ascertained by the acceptable level of mean absolute error
obtained between predicted and experimental results (Rawal et al., 2009).

Bio-composite materials are gaining high popularity due to its various advantages such as
renewable, biodegradable, low in cost, light weight, low density, widely available and
possess high specific mechanical properties. Nirmal, 2010 predict frictional performance of
treated betelnut fiber reinforced polyester (T-BFRP) composite using artificial neural
network configuration. To predict the friction coefficient of the T-BFRP composite, the ANN
model was subjected to three different input parameters; normal loads (5-30 N), sliding
distances (0-6.72 km) and fiber orientations (anti-parallel, parallel and normal orientations).
Prior to inputting the data to the ANN network, data coding was performed to the input
parameters. Network had a two hidden layer with 10 neurons in the first hidden layer
followed by 20 neurons in the second hidden layer. The learning process of a developed
ANN model was based on a gradient search with least preferred sum squared errors
between the predicted and the actual values. He considered the trial and error ANN model
based on method where various neuron configuration, layer configuration and transfer
function configuration. Results obtained from the developed ANN model were compared
with experimental results. It was found that the experimental and numerical results showed
good accuracy when the developed ANN model was trained with Levenberg- Marqurdt
training function (Nirmal, 2010).

4. Process behaviour prediction

Yarn properties and spinning performance are influenced by fiber properties (mean fiber
diameter, mean fiber length, diameter distribution, fiber strength, and etc), yarn
specifications (linear density, twist level), and operational parameters (ring size, traveler
weight, spinning speed). Because there are many independent variables, it becomes difficult
to cover the entire range of parameters in order to interpolate and extrapolate experimental
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observations or mill measurements and take into account the interactive contribution of
each independent variable. Unlike conventional techniques, which are often limited by strict
assumptions of normality, linearity, and variable independence, ANN's are universal
approximators, which, by possessing the capacity to learn directly from the data being
modeled, are able to find associations or discover regularities within a set of patterns, where
the volume or variation within the data is large or the relationships between variables are
dynamic and nonlinear. For a given fiber spun to pre-determined yarn specifications, the
spinning performance of the yarn usually varies from mill to mill. For this reason, it is
necessary to develop an empirical model that can encompass all known processing variables
that exist in different spinning mills, and then generalize this information and be able to
accurately predict yarn quality for an individual mill (Beltran et al., 2004).

The degree of spinnability of a fiber is very difficult to assess with the current range of
instruments available. Pynckels et al., 1995 described an experiment of 29 fiber properties of
twenty types of cotton to predict spinnability of fibers. A yarn was considered to be
unspinnable if there were more than five breakages during the first three minutes of
spinning. They trained a neural network with 700 spinnable and 700 unspinnable yarns data
to predict the spinnability from fiber properties and process parameters. In the test data set,
90% of spinnable fibers and 95% of the unspinnable fibers was classified correctly (Pynckels
etal., 1995).

Beltran et al., 2004 reported a method for predicating worsted spinning performance with an
artificial neural network trained with back propagation learning rule. The applicability of
ANN for predicting spinning performance was first evaluated against a well established
prediction and benchmarking tool. The ANN was then subsequently trained with
commercial mill data to assess the feasibility of the method as a mill specific performance
prediction tool. Incorporating mill specific data resulted in an improved fit to the
commercial mill data set. Top properties, yarn specifications, and processing information
were designated as the input vectors for the input layer. They found that as the number of
mill-specific data sets increased, further improvements in prediction accuracy would arise
(Beltran et al., 2004).

Mean fiber diameter, diameter distribution, hauteur, fiber length distribution, fiber bundle
tenacity, curvature, short fiber content, yarn count, twist, draft, spinning speed, ring size,
and traveler weight served as inputs to the neural network and the number of fibers in a
cross section, unevenness CV%, unevenness U%, thin places per kilometer, neps per
kilometer, yarn tenacity, elongation at break, breaking force, end-down per 1000 spindle
hours, index of irregularity, thick places per kilometer, and hairiness served as the target
spinning performance outputs. A total of 250 sets of training data were randomly generated.
The first 180 data sets were used for network training, 20 data sets were set aside for cross-
validation, and the last 50 data sets were used to evaluate the trained network's
performance. The input data were normalized so those were bounded within the prescribed
range of 1 and 0. They tested different numbers of neurons in hidden layer and indicated
that a reduction in the training error occurred as the number of hidden nodes increased. To
overcome the likelihood of over-fitting from excessive training, they invoked the cross-
validation stop criteria. They observed that the cross validation mean squared error
exponentially fell to 6.0 * 10- over 800 training epochs. Therefore 800 epochs represented the
point where sufficient training had occurred prior to over fitting of the specific solutions
within the training set. By incorporating mill-specific data results in an improved fit to the
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commercial mill data set, suggesting that their proposed method had the ability to predict
the spinning performance of a specific mill accurately (Beltran et al., 2004).

Melt spinning is the most economically useful method for producing artificial fibers in the
industry. In melt spinning, as-spun fibers are evaluated according to yarn count and tensile
strength, and the draw ratio is the major factor affecting the quality of as-spun fibers. The
neural network computation can be divided into two parts: pre-teaching computation and
reversing the adjusted weight value. Kuo et al., 2004 considered the extruder screw speed,
gear pump gear speed, and winder winding speed of a melt spinning system as the inputs
and the tensile strength and yarn count of as-spun fibers as the outputs for neural network
by the delta learning rule. The data from experiments were used as learning information for
the neural network to establish a reliable prediction model. They had adopted a three layer
neural network consisting of a three neuron input layer, a twelve neuron hidden layer, and
a two neuron output layer; focusing on the tensile strength and yarn count of as-spun fibers.
They applied the delta learning rule to the neural network, with a sigmoid transfer function.
The neural network prediction model was verified by ten entries of new data. In tensile
strength prediction, the error of the neural network was +2%. When compared with one
standard difference of the experiment, 96.86% of the predictive values lied within *1
0=3.1419%. In yarn count prediction, the error of the neural network was *2%. When
compared with one standard difference of the experiment, 97.96% of the predictive values
lied within +1 0=2.0418%. Their neural network model could predict the tensile strength and
yarn count of as-spun fibers to provide a very good and reliable reference for as-spun fiber
processing (Kuo et al., 2004).

Meltblowing has become an important industrial technique because of its ability to produce
fabrics of microfiber structure, which are ideally suited for filtration media, thermal
insulators, battery separators, and oil sorbents. In this process, the fiber forming mechanism
is very complicated and the quality of the produced web depends on many processing
variables such as die temperature, air temperatures, air flow rate, extruder temperature, die
to collector distance, polymer throughput rate, resin melt flow rate, die geometry
parameters and etc. therefore meltblowing is a highly complex, multivariable, and nonlinear
process, leading to the extreme difficulty in theoretically modeling the process. However,
process modeling is essential for the control of optimization and an on-line prediction is
very useful for process monitoring and quality control. Melt blown process is of highly
dimensional and nonlinear complexity. Sun et al., 1996 investigated back-propagation
neural networks (BPNNs) for modeling the melt blown process and on-line predicting the
product specifications such as fiber diameter and web thickness. By comparison of several
network topology structures (6-3-1, 6-4-1, 6-5-1, 6-6-1, 6-4-3-1, etc) and different transfer
functions (sigmoid, quadratic), the network 6-4-1 (i.e. six nodes in the input layer, four
nodes in the hidden layer and two nodes in the output layer) was chosen using a sigmoid
function as its transfer function. The network inputs were included extruder temperature,
die temperature, melt flow rate, air temperature at die, air pressure at die, and die-to
collector distance (DCD) and they were normalized. The output of the fiber diameter was
obtained by neural computing. The network training was based on 160 sets of the training
samples and the trained network was tested with 70 sets of test samples which were
different from the training data. The test results showed a good agreement to the actual
measurements. The maximum absolute error between the predicted fiber diameter and the
actual values was less than 1.5 pm. By using the tested neural network, they also predicted
the effect of process variables on the fiber diameter. The most valuable result of their
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research was development of a technique which had been proved to be suitable for
modeling and on-line preidicting of the meltblowing process in order to optimal control of
the process and of practical significance to advanced meltblown processes (Sun et al., 1996).

5. Color coordinates conversion, color separation and categorization, color
matching recipe prediction

One of the most important textile characteristics is undoubtedly color (Thevenet et al., 2002).
Color quality control is one very important step in any textiles, however excellent the fabric
material itself is, if it lacks good color, then it may still result in dull sale (Kuo et al., 2007).
Many transformations affect the color of textile materials. Nevertheless, they can be divided
into two groups. The first group concerns dyeing and printing stages, and is mainly
governed by chemical rules, because the color attributes, which are added to the textile
structure, are chemically fixed to the product (Thevenet et al., 2002). Expected depth of
shade, color, color fastnesses and surface characteristics etc. are very important qualities
which are necessary to be achieved in the dyed goods. If, these properties are different from
that of the expected standard, the product has to either been reprocessed or discarded (Balci
et al., 2008). Color separation is most important item in pattern printing process so as to
secure integrity of printed fabrics product (Kuo et al., 2007). Furthermore, in textile printing
it is very difficult to control all the process parameters; therefore using artificial neural
networks for recipe calculation (concentration of each dye in the printing paste) have been
investigated which enable the relationship between reflectance values and concentrations to
be mapped.

Once the selected neural network is sufficiently trained with a set of known input (colour
values) and output data (concentrations of each dye), it will predict the concentrations for an
unknown set of coloured samples. One of the advantages of neural networks is their
capability to establish relations between input and output data without explicit
programming of Kubelka-Munk equations or analytical knowledge into the model (Golob et
al., 2008).

The second group concerns blending and the transformations of structure of roving
(assembly of fibers), which is spun and then woven or knitted. In this case, the color
transformation is not governed by chemical rules, because during blending or spinning, no
chemical compounds are added. So this group is rather physically governed, because color
alterations are just produced by a different fibers organization. The aim of the model is to
predict the color obtained when fibers, with different colors, are blended. When the blend is
homogenous, the color obtained can be predicted very well by theoretical and empirical
models (Thevenet et al., 2002).

Thevenet et al., 2002 described a model based on neural networks to predict color alteration
after spinning process (roving to yarn). Their network was a multilayer feed-forward
network. The first system using to predict the entire reflectance spectra was wavelength
dependent, but its performance is not very satisfactory. The scaled conjugate gradient
algorithm was incorporated into the back propagation procedure to reduce the training
phase. Once the wavelength independence of the transformation was established, a second
system, whose performances agree with the experimental curves, was proposed (Thevenet
etal., 2002).

Kuo et al., 2007 proposed a printed fabrics computerized color separation system based on
backward-propagation neural network, whose primary function was to separate rich color
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of printed fabrics pattern so as to reduce time-consuming manual color separation color
matching of current players. What it adopted was RGB color space, expressed in red, green,
and blue. Genetic algorithm was used to pre-process as the first phase of operation process.
A gene algorithm was used to find smaller sub images alternative of original fabric in color
distribution, for later color separation algorithm use to reduce the operation of color
separation. In order to find sub-images with same color distribution as original image, they
adopted Histogram Intersection to measure color similarity of sub-image and original
image. In terms of color separation algorithm, their research relied on supervised backward-
propagation neural network to conduct color separation of printed fabrics RGB sub-image,
and utilized PANTONE® standard color ticket to do color matching, so as to realize accurate
color separation (Kuo et al., 2007).

Balci et al., 2008 presented an artificial neural network (multilayer perceptron) modeling by
Levenberg-Marquardt (LM) algorithm for predicting the colorimetric values of the stripped
cotton woven fabrics dyed using commercial reactive dyes. They used 90 different network
structures with 15 different number of nodes in the hidden layer, 3 level of inputs (10 inputs,
7inputs, and 6 inputs) and 2 level of MSE value of results as stopping criteria in order to get
the best fitting model to predict the L* and AE colorimetric values of stripped cotton
samples. In order to establish these networks, they used type of the reactive dyes, type of the
reducing agents, concentration of the reducing agents and caustic, working temperature and
time, presence of the leveling agent and original colorimetric values (L*, a* b*) of dyed
samples measured before stripping processes as inputs, and L* and AE values of stripped
samples measured after stripping process as outputs. After the prediction, the suitable
working parameters can be chosen and the processes can be started. Therefore, this may
make the stripping process for re-correction of the faulty materials more cost-effective [A5].
Golob et al., 2008 demonstrated the possibility of using counter-propagation neural
networks (based on Kohonen ANN) to identify the combinations of dyes in textile printing
paste formulations. An existing collection of 1430 printed samples produced with 10 dyes
was used for neural network training. The reflectance values served as input data and the
known concentrations of single dye or two dyes were used for printing each sample. Some
variations of neural network parameters were tested to determine the best model, and a
cross-validation method was used to estimate the generalization error. Also, some
modifications of input and output data were made to improve the learning capabilities
(Balci et al., 2008).

Metamerism is one of the most fundamental perceptual phenomena of the visual system
and can be visualized when a part of colored samples in spite of having different spectral
reflectance data give the same color coordinates (i. e. match in color) under one specified
condition. Moradian & Amani Tehran, 2000 studied the application of artificial neural
network (fully connected feed forward network) for the quantification of metamerism. Data
from 98 real metameric pairs with visual assessment values were used for training (90 data
set) and testing (8 data set) of the network. Many types of networks with different
architecture, activation function and input were examined to achieve the best results. A
network comprising of one hidden layer with 5 nodes with Tansig as the activation function
provided the best prediction. The normalized L*C*H was regarded as the best-input
candidate for the network. The final trained network showed a good degree of correlation
with visual assessment deviating only by 20% (PF/4=20) and could therefore be a good
candidate as a substitute for the previously proposed metameric indices. Metameric indices
at their best, deviate by approximately 40% (PF/4=36) from visual assessments.
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Fluorescent dyes present difficulties for match prediction due to their variable excitation
and emission characteristics, which depend on a variety of factors. An empirical approach is
therefore favored, such as that used in the artificial neural network method. Bezerra &
Hawkyard, 2000 described the production of a database with four acid dyes (two fluorescent
and two non-fluorescent) along with the large number of mixture dyeing that were carried
out. The data were used to construct a network connecting reflectance values with
concentrations in formulations. Their multilayer perceptron network was trained using back
propagation algorithm. Network topology was constituted of one input layer (three nodes),
one hidden layer (four nodes) and one output layer (five nodes). the networks’ input layers
were fed with SRF, XYZ or L*a*b* values of each sample in order to predict, in the output
layer, the dye concentrations (C) applied. A linear activation function was used in the input
and output layers, and the logistic sigmoid function in the hidden layers. All the data were
normalized before training and testing, and all the networks were trained using the same
learning rate (0.5 ® 0.01) and momentum term (0.5 — 0.1). The 311 samples produced were
divided in two groups: a training set (283 samples) and a testing set (28 samples). Their
results showed that, although time consuming, the presented approach was viable and
accurate (Bezerra & Hawkyard, 2000).

Ameri et al., 2005 used the fundamental color stimulus as the input for a fixed optimized
neural network match prediction system. Four sets of data having different origins (i.e.
different substrate, different colorant sets and different dyeing procedures) were used to
train and test the performance of the network. The input layer was consistent of the
measured surface spectral reflectance of the target color centers at 16 wavelengths of 20 nm
intervals throughout the visible range of the spectrum between 400-700 nm. The output
layer was corresponded to the concentrations of the colorants. The network was trained
using the scaled conjugate gradient back propagation algorithm. A positive linear activation
function was used in the output layer whilst the logsig function was used in the hidden
layer. Training was made to continue over 100000 epochs running three times. The results
showed that the use of fundamental color stimulus greatly reduced the errors as depicted by
the MSE and A Cave data and improved the performance of the neural network prediction
system (Ameri et al., 2005).

Ameri et al., 2006 used different transformed reflectance functions as input for a fixed
genetically optimized neural network match prediction system. Two different sets of data
depicting dyed samples of known recipes but metameric to each other were used to train
and test the network. The transformation based on matrix R of the decomposition theory
showed promising results, since it gave very good colorant concentration predictions when
trained by the first set data dyed with one set of colorants while being tested by a
completely different second set of data dyed with a different set of colorants (PF/4 always
being less than 10). The network was trained using the Levenberg-Marquardt back
propagation algorithm. The error goal was fixed at MSE 0.001. All the input and output data
were normalized before training and testing (Ameri et al., 2006).

6. Conclusion

Neural network technique is used to model non-linear problems and predict the output
values for given input parameters. Most of the textile processes and the related quality
assessments are non-linear in nature and hence, neural networks find application in textile
technology.
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ANN may be defined as structures comprised of densely interconnected adaptive simple
processing elements that are capable of performing massively parallel computations for data
processing and knowledge representation. There are many different types of neural
networks varying fundamentally. The most commonly used type of ANN in textile industry
is the multilayered perceptron (MLP) trained neural network. MLP is a feed-forward neural
network. In most textile applications a feed-forward network with a single layer of hidden
units is used with a sigmoid activation function for the units (Balci et al., 2008).

Some studies have decided the number of unites in the hidden layer upon by conducing the
trail and error, or genetic algorithm or other optimizing methods and a network with the
minimum test-set error is to be used for further analysis.

The number of input and output neurons depends on the type of textile problems.

Many of the techniques reported require many feature extraction procedures before the data
can feed to a neural network and data is afforded by different measurements including
feature extracted from images, experiments based on standards based on their own tests or
other gathered measurements.

Some studies have discussed different type of pre processing and post processing methods.
Many papers have applied and compared the performance of different mathematical,
statistical, or experimental models and predictions with neural network for different textile
applications and in most of them, neural network models predict process, grading, or
behavior of features more accurate than other methods.

The performance of the network is judged by computing the root mean square error (MSE),
Sum of the square error (SSE), moment correlation coefficient (r), percentage error (%E),
coefficient of variation (%CV), gamma factor (y), performance factor (PF/4), and etc in order
to analyze the results.

Since neural networks are known to be good at solving classification problems, it is not
surprising that much research has been done in the area of textile classification, particularly
fault identification and classification. The current 2D-based investigation needs to be
extended to 3D space for actual manual inspection.
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1. Introduction

Needle-punched nonwoven is an industrial fabric used in wide range of applications areas.
The physical structure of needle-punched nonwoven is very complex in nature and
therefore engineering the fabric according the required properties is difficult. Because of
this, the basic mathematical modeling is not very successful for predicting various
important properties of the fabrics.

In recent days, artificial neural networks (ANN) have shown a great assurance for modeling
non-linear processes. Rajamanickam et al., 1997 and Ramesh et al., 1995 used ANN to model
the tensile properties of air jet yarn. The ANN model had also been used to model to assess
the set marks and also the relaxation curve of yarn after dynamic loading (Vangheluwe et
al., 1993 and 1996). Luo & David, 1995 used the HVI experimental test results to train the
neural nets and predict the yarn strength. Researchers also made an attempt to build models
for predicting ring or rotor yarn hairiness using a back propagation ANN model by Zhu &
Ethridge, 1997. Fan & Hunter, 1998 developed ANN for predicting the fabric properties
based on fibre, yarn and fabric constructional parameters and suggested the suitable
computer programming for development of neural network model using back-propagation
simulator. Wen et al., 1998 used back-propagation neural network model for classification of
textile faults. Postle, 1997 enlighten on measurement and fabric categorisation and quality
evaluation by neural networks. Park et al., 2000 also enlightened the use of fuzzy logic and
neural network method for hand evaluation of outerwear knitted fabrics. Gong & Chen,
1999 found that the use of neural network is very effective for predicting problems in
clothing manufacturing. Xu et al., 1999 used three clustering analysis technique viz. sum of
squares, fuzzy and neural network for cotton trash classification. They found neural
network clustering yields the highest accuracy, but it needs more computational time for
network training. Vangheluwe et al., 1993 found Neural nets showed good results assessing
the visibility set marks in fabrics. The review of literature shows that the ANN model is a
powerful and accurate tool for predicting a nonlinear relationship between input and output
variables.

Jute, polypropylene, jute-polypropylene blended and polyester needle punched nonwoven
fabrics have been prepared using series of textile machinery normally used in needle-
punching process for preparation of the fabric samples. Textile materials are compressive in
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nature. It has been reported by various authors that the effect of compression behaviour of
jute-polypropylene (Debnath & Madhusoothanan, 2007) and polyester (Midha et al., 2004) is
largely influenced by fibre linear density, blend ratios of fibres, fabric weight, web laying
type, needling density and depth of needle penetration. Kothari & Das, 1992 and 1993
explained that the compression behaviour of needle-punched nonwoven fabrics is
dependent on fibre fineness, proportion of finer fibre present in different layers of
nonwoven fabrics, and fabric weight for polyester and polypropylene fibres. In the present
study, some of these important factors, viz. fabric weight, blend proportion, three different
types of fibres and needling density, have been taken into consideration for modeling of the
compression behaviour. Jute, polypropylene and polyester fibres have been used in this
study. Woollenisation of jute has been done to develop crimp in the fibre. This study also
elaborates the effect of number of hidden layers and simulation cycles for jute-
polypropylene blended and polyester needle-punched nonwoven fabrics. Different fabric
properties like fabric weight, needling density, blend composition of the fibres are the basic
variables selected as input variables. The output variables are selected as air permeability,
tensile, and compression properties.

Under tensile properties, tenacity and initial modulus of jute-polypropylene blended needle
punched nonwoven fabric both in machine (lengthwise) and transverse (width wise)
directions have been predicted accurately using artificial neural network. Empirical models
have also been developed for the tensile properties and found that artificial neural network
models are more accurate than empirical models. Prediction of tensile properties by ANN
model shows considerably lower error than empirical model when the inputs are beyond
the range of inputs, which were used for developing the model. Thus the prediction by
artificial neural network model shows better results than that by empirical model even for
the extrapolated input variables.

The jute-polypropylene blended needle-punched nonwoven fabric samples were produced
as per a statistical factorial design for prediction of air permeability. The efficiency of
prediction of two models has been experimentally verified wherein some of the input
variables were beyond the range over which the models were developed. The predicted air
permeability values from both the models have been compared statistically. An attempt has
also been made to study the effect of number of hidden layer in neural network model. The
highest correlation has been found in artificial neural network with three hidden layers. The
neural network model with three hidden layer shows less prediction error followed by two
hidden layers, empirical model and artificial neural network with one hidden layer.
Artificial neural network model with three hidden layers predicts the value of air
permeability with minimum error when inputs are beyond the range of inputs used for
developing the model.

Initial thickness, percentage compression, thickness loss and percentage compression
resilience are the compression properties predicted using artificial neural network model of
needle-punched nonwoven fabrics produced from polyester and jute-polypropylene blended
fibres varying fabric weight, needling density, blend ratio of jute and polypropylene, and
polyester fibre. A very good correlation (R2 values) with minimum error between the
experimental and the predicted values of compression properties have been obtained by
artificial neural network model with two and three hidden layers. An attempt has also been
made for experimental verification of the predicted values for the input variables not used
during the training phase. The prediction of compression properties by artificial neural
network model in some particular sample is less accurate due to lack of learning during
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training phase. The three hidden layered artificial neural network models take more time for
computation during training phase but the predicted results are more accurate with less
variations in the absolute error in the verification phase. This study will be useful to the
industry for designing the needle-punched nonwoven fabric made out of jute-polypropylene
blended or polyester fibres for desired fabric properties. The cost for design and development
of desired needle-punched fabric property of the said nonwovens can also be minimised.

2. Materials and methods

2.1 Materials

Polypropylene fibre of 0.44 tex fineness, 80 mm length; jute fibres of Tossa-4 grade and
polyester fibre of 51 mm length and 0.33 tex fineness fibre of were used to prepare the fabric
samples. Some important properties of fibres are presented in Table 1. Sodium hydroxide
and acetic acid were used for woollenisation of the jute.

Property Jute Polypropylene Polyester
Fibre fineness (tex) 2.08 0.44 0.33
Density (g/cm3) 1.45 0.91 1.38
Tensile strength (cN/tex) 30.1 34.5 34.83
Breaking elongation (%) 1.55 54.13 51.00
Moisture regain (%) at 65% RH 12.5 0.05 0.40

Table 1. Properties of jute, polypropylene and polyester fibres

2.2 Methods

2.2.1 Preparation of jute, jute-polypropylene blended and polyester fabrics

The raw jute fibres do not produce good quality fabric because there is no crimp in these
fibres. To develop crimp before the fabric production, the jute fibres were treated with 18%
(w/v) sodium hydroxide solution at 30°C using the liquor-to-material ratio of 10:1, as
suggested by Sao & Jain, 1995. After 45 min of soaking, the jute fibres were taken out,
washed thoroughly in running water and treated with 1% acetic acid. The treated fibres
were washed again and then dried in air for 24 h. This process apart from introducing about
2 crimps/cm also results in weight loss of ~9.5%.

The jute reeds were opened in a roller and clearer card, which produces almost mesh-free
stapled fibre. The woollenised jute and polypropylene fibres were opened by hand
separately and blended in different blend proportions (Table 2). The blended materials were
thoroughly opened by passing through one carding passage.

The blended fibres were fed to the lattice of the roller and clearer card at a uniform and
predetermined rate so that a web of 50 g/m? can be achieved. The fibrous web coming out
from the card was fed to feed lattice of cross-lapper and cross-laid webs were produced with
cross-lapping angle of 20°. The web was then fed to the needling zone. The required
needling density was obtained by adjusting the throughput speed.

Different web combinations, as per fabric weight (g/m?) requirements were passed through
the needling zone of the machine for a number of times depending upon the punch density
required. A punch density of 50 punches/cm? was given on each passage of the web,
changing the web face alternatively. The fabric samples were produced as per the variables
presented in Table 2.
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Fabric Fa‘pric Needling density Wooillenised Polyp.ropylene Polyester
code weight punches,/ cm? jute fibre fibre
g/m?2 % % %
1 250 150 40 60 -
2 250 350 40 60 -
3 450 150 40 60 -
4 450 350 40 60 -
5 250 250 60 40 -
6 250 250 20 80 -
7 450 250 60 40 -
8 450 250 20 80 -
9 350 150 60 40 -
10 350 150 20 80 -
11 350 350 60 40 -
12 350 350 20 80 -
13 350 250 40 60 -
14 350 250 40 60 -
15 350 250 40 60 -
16 393 150 0 100 -
17 440 150 0 100 -
18 410 250 0 100 -
19 392 350 0 100 -
20 241 150 100 0 -
21 310 250 100 0 -
22 303 350 100 0 -
23 300 150 80 20 -
24 276 250 80 20 -
25 205 350 80 20 -
26 415 300 - - 100
27 515 300 - - 100
28 680 300 - - 100
29 815 300 - - 100

Table 2. Experimental design of fabric samples

The polyester fabric samples were made from parallel-laid webs, which were obtained by
feeding opened fibres in the TAIRO laboratory model with stationary flat card (2009a). The
fine web emerging out from the card was built up into several layers in order to obtain
desired level of fabric weight (Table 2). The needle punching of all parallel-laid polyester
fabric samples was carried out in James Hunter Laboratory Fiber Locker [Model 26 (315
mm)] having a stroke frequency of 170 strokes/min. The machine speed and needling
density were selected in such a way that in a single passage 50 punches/cm? of needling
density could be obtained on the fabric. The web was passed through the machine for a
number of times depending upon the needling density required, e.g. the web was passed 6
times through the machine to obtain fabric with 300 punches/cm2. The needling was done
alternatively on each side of the polyester fabric.
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The needle dimension of 15 x 18 x 36 x R/SP 3% x ¥4 x 9 was used for all jute-polypropylene,
jute and polyester samples. The depth of needle penetration was also kept constant at 11
mm in all the cases.

The actual fabric weights of the final needle-punched fabric samples were measured
considering the average weight of randomly cut 1 m2 sample at 5 different places from each
sample.

2.2.2 Measurement of tenacity and initial modulus

The mechanical properties like tenacity and initial modulus were measured both in the
machine and transverse directions (Debnath et al., 2000a) of the fabric using an Instron
tensile tester (Model 4301). The size of sample and the rate of straining were chosen
according to ATSM standard D1117-80 (sample size 7.6 cm x 2.5 cm, cross head transverse
speed 300 mm/min). Breaking load verses elongation curves were plotted for all the tests.
The tenacity was calculated by normalising the breaking load by fabric weight and width of
the specimen as suggested by Hearle & Sultan, 1967. The initial modulus was calculated
from the load elongation curves.

2.2.3 Measurement of air permeability

The air permeability measurements were done using the Shirley (SDL-21) air permeability
tester (Debnath & Madhusoothanan, 2010b). The test area was 5.07 cm2. The pressure range
= 0.25 mm and flow range = 0.04 - 350 cc/sec. The airflow in cubic cm at 10 mm water head
pressure was measured. The air permeability of fabric samples was calculated using the
formula (1) given below (Sengupta et al., 1985 and Debnath et al., 2006).

ap=AE 192 1)
TA

Where, AP = air permeability of fabric in m3/m2/sec, AF = air flow through fabric in
cm3/sec at 10 mm water head pressure and TA = test specimen area in cm? for each sample.

2.2.4 Measurement of compression properties

The initial thickness (Debnath & Madhusoothanan, 2010a), compression, thickness loss and
compression resilience were calculated from the compression and decompression curves.
For measuring these properties, a thickness tester was used (Subramaniam et al., 1990). The
pressure foot area was 5.067 cm? (diameter = ¢2.54 cm). The dial gauge with a least count of
0.01 mm and maximum displacement of 10.5 mm was attached to the thickness tester. The
compression properties were studied under a pressure range between 1.55 kPa and 51.89
kPa.

The initial thickness of the needle-punched fabrics was observed under the pressure of 1.55
kPa (Debnath & Madhusoothanan, 2007). The corresponding thickness values were
observed from the dial gauge for each corresponding load of 1.962 N. A delay of 30 s was
given between the previous and next load applied. Similarly, 30 s delay was also allowed
during decompression cycle at every individual load of 1.962 N. This compression and
recovery thickness values for corresponding pressure values are used to plot the
compression-recovery curves.

The percentage compression (Debnath & Madhusoothanan, 2007), percentage thickness loss
(Debnath & Madhusoothanan, 2009a and Debnath & Roy, 1999) and percentage
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compression resilience (Debnath & Madhusoothanan, 2007, 2009a and 2009b), were
estimated using the following relationships (2,3,4):

Compression (%) = TOT;H x100 (04
0
Thickness loss (%) = To—Tp x100 3)
To
. e oy _ W
Compression resilience (%) = x100 4)

c

where Tj is the initial thickness; Tj, the thickness at maximum pressure; T, the recovered
thickness; W, the work done during compression; and W/, the work done during recovery
process.

The average of ten readings from different places for each sample was considered. The
coefficient of variation was less than 6% in all the cases.

All these tests were carried out in the standard atmospheric condition of
65 + 2% RH and 20 + 2°C. The fabrics were conditioned for 24 h in the above mentioned
atmospheric conditions before testing.

2.2.5 Empirical model

An empirical equation of second order polynomial (Box & Behnken, 1960) was derived to
predict the mechanical properties (Debnath et al. 2000a) like tenacity and initial modulus,
and physical property like air permeability (Debnath et al. 2000a) were predicted from the
results obtained from the samples produced using Box and Behnken factorial design.

2 2 2
Y =58+ 5 X+ 5Xo+ B Xg+P11Xy +PuXy +PpXs +PBnX1Xy +B13X1 Xz + S XXz (B)

Where, Y = predicted fabric property (tenacity or initial modulus or air permeability), X; =
fabric weight, X> = needling density, X3 = percentage of polypropylene, f is the constant
and f; is the coefficient of the variable X;. The predicted values of fabric properties were then
compared with the actual values and error (6) was calculated.

A-P

E (%)= x100 (6)
Where, E is error in percentage, A is the actual experimental values and P is the predicted
values from models.

2.2.6 Artificial neural network model

The physiology of neurons present in biological neural system such as human nervous system
was the fundamental idea behind developing the ANNs. This computational model was
trained to capture nonlinear relationship between input and output variables with scientific
and mathematical basis. In recent days, commonly used model is layered feed-forward neural
network with multi layer perceptions and back propagation learning algorithms (Vangheluwe
et al., 1993, Rajamanickam et al., 1997, Zhu & Ethridge, 1997 and Wen et al., 1998).
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The ANNSs are computing systems composed of a number of highly interconnected layers of
simple neuron like processing elements, which process information by their dynamic
response to external inputs. The information passed through the complete network by linear
connection with linear or nonlinear transformations. The weights were determined by
training the neural nets. Once the ANN was trained, it was used for predicting new sets of
inputs. Multi layer feed-forward neural network architecture (Figure 1) was used for
predicting the tenacity, initial modulus, air permeability, initial thickness, percentage
compression, thickness loss and compression resilience properties of fabrics (Debnath et al.,
2000a, 2000b and Debnath & Madhusoothanan, 2008). The circle in Figure 3.5 represents the
neurons arranged in five layers as one input, one output and three hidden layers. Three
neurons in the input layer, three hidden layers, each layer consisting of three neurons and
one neuron in the output layer. HL-1, HL-2 and HL-3 are 1st, 2nd and 3rd hidden layers
respectively, whereas i and j are two different neurons in two different layers. The neuron
(i) in one layer was connected with the neuron (j) in next layer with weights (Wj) as
presented in the Figure 1.

The data were scaled down between 0 and 1 by normalizing them with their respective
values. The ANN was trained with known sets of input-output data pairs.

Input Hidden Layers Output
Layer [ | Layer
1" HL-1 HL-2 HL-3

Variable

Variable

Fig. 1. Neural architecture of the fabric property

3. Results and discussion

3.1 Modelling of tenacity and initial modulus

The empirical and ANN models for tensile properties have been developed from the
experimental values (Debnath et al., 2000a) of fifteen sets of selected fabric samples as
shown in Table 3.

The constants and coefficients of the empirical model for the fifteen fabric sample sets (Table
3) were calculated with the help of multiple regression analysis, are given in Table 4.

The ANN was trained up to 64,000 cycles to obtain optimum weights for the same sample
sets used to develop emperical model (Table 3). The weights of ANN for tenacity and initial
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modulus on both machine and transverse direction were presented in Table 5. Tables 6 and
7 show the experimental, predicted values and their prediction error for tenacity and initial
modulus respectively.

The Table 6 shows a very good correlation (R2 values) between the experimental and
predicted tenacity values by ANN than by empirical model in both the machine and
transverse directions of the fabrics. Similar trend was also observed in the case of initial
modulus (Table 7).

The ANN models of tenacity and initial modulus show much lower absolute percentage
error and mean absolute percentage error than that of empirical model (Tables 6 and 7). The
standard deviation of mean absolute percentage error also follows the similar trend. This

Fabric | Fabric weight | Needling density | Woollenised jute | Polypropylene fibre
code g/m?2 punches/cm? % %
1 250 150 40 60
2 250 350 40 60
3 450 150 40 60
4 450 350 40 60
5 250 250 60 40
6 250 250 20 80
7 450 250 60 40
8 450 250 20 80
9 350 150 60 40
10 350 150 20 80
11 350 350 60 40
12 350 350 20 80
13 350 250 40 60
14 350 250 40 60
15 350 250 40 60

Table 3. Fabric samples for development of Emperical and ANN models

Table 4. Coefficients and constants of empirical models of tenacity and initial modulus

Tenacity Initial Modulus

Machine Transverse Machine Transverse

direction direction direction direction
i -9.882 -9.157 -7.448E-01 -2.832E-01
B 1.484E-02 1.228E-02 1.925E-03 2.806E-03
B 3.129E-02 2.610E-02 6.544E-03 5.279E-03
B 1.362E-01 1.833E-01 -4.700E-03 -2.063E-02
S -6.084E-06 -1.817E-06 -3.908E-06 -7.840E-06
P -2.838E-05 -2.682E-05 -1.388E-05 -1.941E-05
B3 -5.033E-04 -3.787E-04 -3.216E-05 6.992E-05
P2 -3.068E-05 -2.155E-05 1.835E-06 1.147E-05
Bz | -5.0170E-05 -1.157E-04 1.817E-05 2.775E-05
3 -1.251E-04 -1.849E-04 2.242E-05 2.596E-05
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Weights between the Tenacity Initial modulus
layers number Machine Transverse Machine Transverse
direction direction direction direction
1st and 2nd Wi -4.053 1.185 0.379 -6.844
Wiz 1.363 -2.341 11.313 1.539
Wi 2.035 5.420 2.564 -2.829
W -4.530 -0.496 0.919 16.684
W2 3.401 -0.667 -16.856 4141
Was 7.707 5.064 -9.534 -0.370
Wai 5.997 3.669 -4.380 -1.518
Wi -6.298 0.890 2.876 -7.049
Wis -7.736 -9.883 4.257 1.298
2nd and 3rd Wi 1.207 3.113 -2.472 -0.752
Wi 1.689 -6.265 10.783 3.987
Wi -3.273 0.630 -3.429 -2.242
Wo -17.135 -8.309 1.478 2.702
W2 5.736 3.556 -2.926 -0.151
Wos 10.765 2.652 0.811 6.455
Wiy 3.907 -12.208 -5.815 -8.148
Wso -6.176 5.439 3.362 -3.522
Wiss 4.880 -5.658 0.882 9.483
3rd and 4th Wi -12.307 3.779 1.784 -1.669
Wi 3.732 -5.345 6.455 4.879
Wis -11.562 6.306 -5.127 -4.866
Wo 10.984 -2.423 -0.415 2.262
W2 0.739 1.605 -9.454 2.647
Wos 6.466 -1.513 0.686 -2.908
Wiy 2.598 -2.440 -0.643 -0.846
Wi -13.977 3.412 4.862 -7.376
Wiss -1.486 -4.109 0.810 7.533
4th and 5th Wio 1.979 4.550 2.702 5.054
Wao 12.652 -7.022 11.945 8.722
Wiso -9.348 7.491 -3.734 -4.757

Table 5. Weights of ANN model for tenacity and initial modulus
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Tenacity in the machine direction Tenacity in the transverse direction
. Predicted Predicted
Fabric Exp tenacity Absolute error Exp tenacit Absolute error
. 0, . y (o)
code | tenacity (cN/Tex) (%) tenacity (cN/Tex) (%)

(eN/TeX) g p TANN | Emp | ANN |/ T M5 0 TANN | Emp | ANN

1 0.513 0.827 | 0.514 | 61.65 | 00.04 2.220 2.540 | 2.222 | 14.43 | 00.09

2 1.357 1.214 | 1.355 | 10.57 | 00.20 2.000 1.775 | 1.961 | 11.23 | 01.97

3 1.279 1.423 | 1.277 | 11.22 | 00.20 2484 | 2.708 | 2.462 | 09.05 | 00.89

4 0.896 0.579 | 0.901 | 35.32 | 00.55 1.402 1.081 | 1.402 | 22.86 | 00.04

5 0.544 0.466 | 0.545 | 14.39 | 00.22 0.827 | 1.020 | 0.845 | 23.36 | 02.13

6 1.837 | 1.743 | 1.838 | 05.15 | 00.01 3.819 | 3.530 | 3.818 | 07.56 | 00.02

7 0.551 0.646 | 0.544 | 17.17 | 01.23 0.931 1.220 | 0.922 | 31.02 | 00.95

8 1.443 1.521 | 1.444 | 05.43 | 00.07 2998 | 2.805 | 2.994 | 06.44 | 00.33

9 0.435 0.197 | 0.433 | 54.71 | 00.51 1.611 1.098 | 1.603 | 31.88 | 00.50
10 1.996 1.774 | 1.996 | 11.12 | 00.01 3.916 3.885 | 3.914 | 00.81 | 00.07
11 0247 | 0.468 | 0.248 | 90.00 | 00.69 0.610 | 0.641 | 0.601 | 05.18 | 01.35
12 0.806 1.044 | 1.001 | 29.55 | 24.22 1.435 | 1.949 | 1.425 | 35.79 | 00.71
13 1.345 1.356 | 1.348 | 00.84 | 00.22 2296 | 2.313 | 2.315 | 00.75 | 00.80
14 1.391 1.356 | 1.348 | 02.51 | 03.11 2609 | 2313 | 2.315 | 11.33 | 11.28
15 1.332 1.356 | 1.348 | 01.78 | 01.15 2.035 | 2.313 | 2.315 | 13.68 | 13.75

‘R? values 0.879 | 0.990 0911 | 0.994

Mean absolute percentage error | 23.43 | 02.16 15.03 | 02.33
SD of absolute percentage error | 26.34 | 06.15 11.34 | 04.21

Exp - Experimental; Emp - Empirical model and ANN - Artificial Neural Network Model

Table 6. Experimental and predicted tenacity values by empirical and ANN models

indicates that the prediction by ANN model is closer to the experimental values and
variations of error among the samples were also lower than the prediction by empirical
model. This could be due to the fact that the prediction by empirical model is not very
accurate when the relationship between the inputs and outputs is nonlinear (Debnath et al.
2000a).

3.1.1 Verification of tenacity and initial modulus models

An attempt was made to predict the tenacity and initial modulus in machine direction and
in transverse direction to understand the accuracy of the models. The ANNs and empirical
models were then presented to three sets of inputs, which have not appeared during the
modeling phase as shown in Table 8. The input variables were selected in such a way that
one input variable is beyond the range with which the ANN was trained or empirical model
was developed. The Table 8 indicates that the prediction errors of ANNs were lower in both
the directions of the fabric for tenacity and initial modulus in comparison with that of
empirical model (Debnath et al., 2000a).

In Table 8 the predicted tenacity and initial modulus values by ANN gives higher absolute
percentage error than the predicted values in Tables 6 and 7. This may be due to the fact that
the selected input variables (Table 8) were beyond the range over which the empirical or
ANN models were developed (Debnath et al., 2000a). However, in most of the cases of
prediction ANNSs give lesser absolute percentage error than the empirical model.



Modelling of Needle-Punched Nonwoven Fabric Properties Using Artificial Neural Network 75

Initial modulus in the machine direction Initial Modul}ls n the transverse
direction
Fabric Predicted Absolute Predicted Absolute
code Exp |initial modulus error Exp |initial modulus error
(CN/Tex) (CN/ Tex) (%) (cN/Tex) (CN/TeX) (%)
Emp | ANN | Emp | ANN Emp | ANN | Emp | ANN
1 0.396 0.307 | 0.394 | 22.44 | 00.38 | 0.550 0.377 | 0.556 | 31.42 | 01.11
2 0.736 0.589 | 0.736 | 19.96 | 00.08 | 0.451 0.377 | 0.433 | 16.46 | 04.12
3 0.271 0.418 | 0.270 | 54.19 | 00.30 | 0.444 0.518 | 0.445 | 16.75 | 00.36
4 0.685 0.773 | 0.685 | 12.97 | 00.00 | 0.804 0.976 | 0.805 | 21.51 | 00.19
5 0.494 0.542 | 0.495 | 09.76 | 00.12 0.400 0.578 | 0.422 | 43.77 | 05.40
6 0.418 0.606 | 0.420 | 44.85 | 00.36 | 0.551 0.623 | 0.552 | 13.05 | 00.20
7 0.805 0.617 | 0.804 | 23.30 | 00.06 | 0.906 0.834 | 0.908 | 07.93 | 00.18
8 0.874 0.826 | 0.874 | 05.51 | 00.02 | 1.279 1.104 | 1.278 | 13.70 | 00.06
9 0.325 0.365 | 0.326 | 12.50 | 00.34 | 0.529 0.527 | 0.520 | 00.45 | 01.74
10 0.511 0.412 | 0.511 | 19.33 | 00.02 0.480 0.581 | 0.479 | 21.01 | 00.27
11 0.496 0.594 | 0.496 | 19.89 | 00.00 | 0.753 0.652 | 0.752 | 13.40 | 00.12
12 0.861 0.820 | 0.860 | 04.72 | 00.09 | 0.912 0.914 | 0.908 | 00.25 | 00.43
13 0.644 0.700 | 0.718 | 02.34 | 04.94 | 0.836 0.835 | 0.847 | 00.13 | 01.40
14 0.688 0.700 | 0.718 | 01.64 | 04.23 | 0.815 0.835 | 0.847 | 02.47 | 04.04
15 0.727 0.700 | 0.718 | 03.73 | 01.23 | 0.854 0.835 | 0.847 | 02.21 | 07.71
‘R? values 0.703 | 0.997 0.803 | 0.997

Mean absolute percentage error | 17.14 | 00.81 13.63 | 01.36
SD of absolute percentage error | 15.23 | 01.57 12.48 | 01.73

Exp - Experimental; Emp - Empirical model and ANN - Artificial Neural Network Model

Table 7. Experimental and predicted initial modulus values by empirical and ANN models

3.2 Modelling of Air permeability

The emperical and ANN models were developed from selected fifteen sets of fabric samples
as shown in Table 3. The empirical model (7) derived using Box and Behnken factorial
design for predicting the air permeability is given below.

AP = - 8.54E-3X; +2.695E-3X, - 4.58E-2X3 +3.05E-6X12 +9.925E-6 X2 +3.578E-4 X532 -
- 1.79E-5X1X> +5.076E-5X1X3 - 3.846E-5X>X3 + 5.401 @)

Where, AP= air permeability (m3/m2/s) X; = fabric weight (g/m?), X, = needling density
(punches/cm?) and X3 = percentage polypropylene content in the blend ratio of
polypropylene and woollenised jute. Since the coefficient of determination (R2 = 0.97) value
is very high, we can conclude that the empirical model fits the data very well.

During training the ANN models for air permeability, the minimum prediction error for all
ANN models was obtained within 40,000 cycles (Debnath et al., 2000b). Table 9 depicts the
interconnecting weights used for calculating the air permeability of ANN model with three
hidden layers, where, Wi, - Interconnecting weights between the neuron (m) in one layer
and neuron (n) in next layer.
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. Tenacity (cN/Tex) Initial Modulus (cN/Tex)
Fabric D Exp Prediction AE (%) Prediction AE (%)
code Exp
Emp | ANN | Emp |ANN Emp | ANN | Emp | ANN
16 MD | 1.6730 | 1.9886 | 1.9960 | 18.86 | 19.31 |0.4968| 0.4445 | 0.4750 | 10.53 | 04.38
CD | 3.7860 | 4.6575 | 3.9150 | 23.02 | 03.41 |0.3123| 0.7559 | 0.2366 | 142.0 | 24.24
18 MD | 2.2947 | 1.4784 | 1.9958 | 35.57 | 13.02 [0.8467| 0.8582 | 0.8401 | 01.36 | 00.77
CD | 4.3700 | 3.3917 | 3.9157 | 22.38 | 10.40 |1.2551| 1.2542 | 1.2434 | 00.07 | 00.93
1 MD | 0.0240 |-2.2031 | 0.0221 - 07.91 [0.3194| 0.3875 | 0.2968 | 21.32 | 7.08
CD | 0.0850 |-2.3606 | 0.0975 - 14.71 10.9759| 0.8271 | 1.0112 | 15.24 | 3.62
D - Test direction of sample; MD - Machine direction; CD - Cross direction, Exp -
Experimental;

Emp - Empirical model and ANN - Artificial Neural Network model, AE - Absolute error

Table 8. Experimental verification of predicted results (tenacity and initial modulus)

Weights between the layers Istand 2nd | 2nd and 3rd | 3rd and 4th

W 6.110 -21.555 -2.205

W12 1.811 11.242 -0.073

Wi -9.048 0.859 -2.135

Wy -14.213 -2.992 -0.163

Wa 8.363 0.675 -23.549

Was -3.274 4.588 -25.085

Wiy -11.762 -10.013 16.168

Wia 1.202 -13.005 -4.871

Wiss -11.006 -2.470 -11.349
. Wi Wao Wi
Weights between 4th and 5t layers 10465 8905 5133

Table 9. Weights of ANN model with three hidden layers for air permeability

The Table 10 shows the correlation between experimental and predicted values of air
permeability. It is clear that the ‘R?’ values for ANN of three hidden layers were maximum
followed by empirical model, two layers and single hidden layer ANN respectively. From
the Table 10 it can also be observed that the average absolute error was found minimum
while using ANN with three hidden layers, followed by ANN with two hidden layers,
empirical model and ANN by single hidden layer respectively. The standard deviation of
absolute error also follows the same trend. The ANN model with single hidden layer has
low correlation between the experimental and predicted values (Debnath et al., 2000b). This
may be because the ANN with one hidden layer has only two neurons. Both the number of
neurons and the hidden layers are responsible for the accuracy in the predicted model. The
ANN with three hidden layers shows the best, predicted results. The empirical model is not
as good as ANN of three hidden layers. Though, the correlation between the experimental
and predicted values of empirical model is higher than ANN model with two hidden layers,
but the mean percentage absolute error is quite high in the case of empirical model than
ANN with two or three hidden layers. This is probably due to the fact that the empirical
model may require a larger sample size when the relationship between input and output
variables is nonlinear (Fan & Hunter, 1998).
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Fabric | Exp Erl\r;[}z)lclileclal Artificial neural network models
code | AP | p o AP| AE, % | 1 H/l“PPre AE, %|2 HL Pre AP|AE, % [3 HL Pre AP|AE, %
1 | 2285 | 2368 | 0336 | 2426 |0671| 2516 |1010| 2311 |01.15
2 | 2659 | 2543 | 0439 | 2629 |0127| 2672 |0047| 2671 |0042
3 | 1308 | 1585 | 11.40 | 1467 |1219| 1506 |1513| 1334 |01.98
4 | 0966 | 0617 | 3610 | 1425 |4745| 0887 |0821| 0962 |0049
5 | 2663 | 2495 | 0630 | 2244 |1572| 2580 |03.10| 2665 |00.07
6 | 2682 | 2503 | 0667 | 2620 |0231| 2612 |0261| 2670 | 0047
7 | 078 | 0725 | 07.74 | 1379 |7538| 0901 |14.66| 0796 |01.22
8 |1262] 1391 | 1019 | 1519 |2031| 1366 |0819| 1.395 |10.54
9 | 1856 | 1.693 | 0875 | 1534 |1735| 1639 |11.67| 1.898 |02.26
10 | 2361 | 2058 | 1281 | 2197 |0696| 2216 |0615| 2382 |00.89
11 | 1.627 | 1.664 | 0225 | 1732 |0645| 1684 |03.45| 1701 |0454
12 | 1.824 | 1.722 | 0563 | 2015 |1046| 1867 |0231| 1.826 |00.09
13 | 1675 | 1542 | 07.93 | 1.676 |00.05| 1.674 |0070| 1677 |00.14
14 | 1677 | 1542 | 0802 | 1.676 |00.05| 1674 |0017| 1677 |00.04
15 | 1672 | 1542 | 0779 | 1.676 |0020| 1.674 |00.07| 1.677 |00.29

RY 00.97 00.82 00.96 00.99

Mean Ab(s%ute Error | 5998 14.85 05.79 01.58
SDER 07.94 20.67 05.23 02.73

Exp - Experimental; Emp - Empirical model ; Pre - Predicted; HL - Hidden layer; AE -
Absolute error; AP - Air permeability in m3/m?2/s and SDER - Standard deviation of
percentage absolute error

Table 10. Experimental and predicted air permeability values by empirical and ANN models
- absolute error and correlation

3.2.1 Verification of air permeability models

The trained ANN with three hidden layers (3HL) and the empirical models were then used
to predict the air permeabilityproperty of six different sets of input pairs. The input
variables are selected in such a way that one or two input variables are beyond the range,
with which the ANN was trained and empirical model was developed (Table 11).

It can be observed that, the percentage absolute error with ANN, ranges between 00.60 and
14.62. However, the percentage absolute error is between 04.32 and 30.00, while predicting
with empirical model. The prediction of air permeability was more accurate with ANN,
compared to empirical model even when the inputs are beyond the range of modeling
(Debnath et al., 2000Db).

3.3 Modelling of compression properties

The ANN models for initial thickness (IT), percentage compression (C), percentage thickness
loss (TL) and percentage compression resilience (CR) have been developed from the selected
twenty-five sets of fabric samples and corresponding experimental values of compression
properties shown in (Table 12).
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. . Air permeability (m3/m?2/s
Fabric Fal.)rlc Needllmg Blend ratio }I)’redicted l Alfsohite) error,
code weight density (Polypropylene:Jute)] Exp values (%)
(g/m?) |(punches/cm?)
ANN | Emp | ANN | Emp
20 241 150 00:100 2.6923 | 2.6760 |3.5000| 00.60 | 30.00
21 310 250 00:100 2.5641 | 2.6692 |2.9528| 04.10 | 15.15
22 303 350 00:100 2.8679 | 2.6728 |3.3924| 06.80 | 18.28
23 300 150 20:80 24576 | 2.6292 |2.3512| 06.98 | 04.32
24 276 250 20:80 2.4951 | 2.6523 |2.6497| 06.30 | 06.19
25 205 350 20:80 3.1381 | 2.6791 |3.8188| 14.62 | 21.69
Exp - Experimental; Emp - Empirical model and ANN - Artificial Neural Network Model
Table 11. Experimental verification of predicted results of air permeability values
Fabric Fal.)ric Needl.ing qullenised Polyp.ropylene Polyester T c TL | CrR
weight| density jute fibre fibre o o o
code g/m?2 |punches/cm? % % % mm| % ’ b
1 250 150 40 60 - 3.54 | 53.64 | 25.46 | 32.67
2 250 350 40 60 - 3.02|46.73 | 25.98 | 32.29
3 450 150 40 60 - 4.41| 44.8 | 20.68 | 32.92
4 450 350 40 60 - 3.8 |36.47 | 17.68 | 33.87
5 250 250 60 40 - 3.02|52.48 | 30.69 | 29.48
6 250 250 20 80 - 4.27 | 54.88 | 27.82 | 32.27
7 450 250 60 40 - 4.39|37.24 | 20.69 | 30.99
8 450 250 20 80 - 3.88| 37.8 | 18.63 | 31.28
9 350 150 60 40 - 3.45|50.24 | 25.16 | 32.77
10 350 150 20 80 - 4.48|50.06 | 24.49 | 31.52
11 350 350 60 40 - 3.12|44.91|25.51 | 31.73
12 350 350 20 80 - 3.38|43.75 | 23.25 | 30.99
13 350 250 40 60 - 3.29|45.16 | 22.06 | 33.25
14 350 250 40 60 - 3.94|42.45|21.84|33.15
15 350 250 40 60 - 3.66 | 44.09 | 21.68 | 33.33
16 393 150 0 100 - 5.87 | 54.92 | 25.05 | 28.56
17 440 150 0 100 - 5.7754.97 | 25.15 | 28.2
18 392 350 0 100 - 4.08|37.51| 17.4 | 35.05
19 241 150 100 0 - 2.51|41.18 | 20.61 | 30.29
20 303 350 100 0 - 2.84|41.85|22.23 3043
21 300 150 80 20 - 3.18|39.98 | 18.47 | 35.32
22 205 350 80 20 - 2.47|47.42|25.22 | 28.98
23 415 300 - - 100 |3.54|42.93 | 9.89 |54.33
24 515 300 - - 100 |4.14|37.00 | 8.36 |56.69
25 815 300 - - 100 |5.62|23.78 | 6.65 | 53.85

Table 12. Experimental design for compression properties

The ANN was trained separately up to certain number of cycles to obtain optimum weights
for each compression properties. The number of cycles to achieve optimum weights for



Modelling of Needle-Punched Nonwoven Fabric Properties Using Artificial Neural Network

79

initial thickness, percentage compression, thickness loss (%) and percentage compression
resilience are found between 320000 and 5120000 cycles as presented in Table 13. A very
large number of simulation cycles was required because more number of input variables
was used to develop the ANN model (Debnath & Madhusoothanan, 2008)..

Compression property

Number of cycle

One hidden layer | Two hidden layers | Three hidden layers
Initial thickness, mm 2560000 2560000 2560000
Percentage compression 1280000 2560000 5120000
Percentage thickness loss 320000 1280000 2560000
Compression resilience, % 640000 2560000 5120000

Table 13. Optimum number of cycles of one, two and three hidden layered ANN models for

compression properties

The optimum weights of ANN for initial thickness, percentage compression, thickness loss
(%) and percentage compression resilience are shown in Table 14.

Weights between the|  Initial Percentage Percentage Percentage
layers number thickness | compression | thicknessloss |compression resilience
Ist and 2nd
Wi -7.825 -9.697 -0.797 1.497
Wi -3.144 6.650 1.176 -1.003
Wis 0.821 -1.560 1.221 -4.777
Wiy 3.338 2.949 8.374 14.286
Woy 0.394 4.034 2.738 5.181
W, 0.801 -11.441 -4.945 8.240
Wos 2.356 -12.284 -0.218 3.091
Woy 3.839 0.981 -7.399 -8.415
W1 0.587 4.742 -0.658 -3.937
W, 0.418 2.487 8.743 -2.320
W3 5.436 9.689 -3.318 -2.272
Wy -2.470 8.814 -0.340 0.617
W 4.336 -0.697 -1.058 2.704
Wi 1.140 6.674 -5.424 2.298
Was -2.877 -11.909 8.539 -3.649
Wy -1.919 -2.500 1.827 4.803
W1 2.555 3.046 0.206 0.552
Ws; 0.428 -1.342 -1.456 4.349
W3 -3.728 -0.608 -2.002 0.192
Wiy -0.958 1.000 1.431 0.350
2nd and 3rd
Wn -1.958 5.796 2.126 0.474
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Wiz 8.015 10.795 -5.784 -0.253
Wis 1.747 0.628 -3.575 6.556
Woy 6.622 2.771 0.908 3.378
Wan -2.664 -5.510 4.585 13.901
Was -2.217 -2.485 0.170 0.471
Wi -1.255 0.661 -1.004 -2.508
Wi -4.467 -1.092 3.731 -8.715
Wss -3.381 7.313 2431 4.162
Wa -1.670 -6.856 0.762 9.749
Wi -4.480 -3.497 -8.304 -11.644
Wy -1.602 0.590 3.243 -6.180
3rd and 4th
Wi 1.780 -0.951 -1.025 7.269
Wiz -4.432 5.588 -6.411 -
Wa -1.488 -0.675 0.401 -14.560
Wa 7.351 5.949 9.564 -
Wi -1.375 0.999 3.754 7.599
Ws) 1.381 -11.087 3.248 -
4th and 5th

Wi -1.442 -0.432 -1.923 -
Woo 13.259 8.769 12.222 -

Table 14. Weights of ANN model for compression properties

Tables 15 to 18 show the experimental and predicted values of initial thickness, compression
(%), percentage thickness loss and percentage compression resilience respectively. These
tables also indicate the effect of number of hidden layers on the percentage error, standard
deviation and correlation between the experimental and predicted results for the
corresponding compression properties.

Table 15 shows a very good correlation (R2? values) between the experimental and the
predicted initial thickness values by ANN. Among the results obtained, the ANN with three
hidden layers presents comparatively highest R? value with lowest error. The standard
deviation of percentage absolute error is also found to be less in the case of ANN model
with three hidden layers. Similar trend has also been observed in case of percentage
compression and percentage thickness loss as depicted in Tables 14 and 15 respectively. The
ANN model with two hidden layers performs better in terms of percentage error and
standard deviation of percentage error in the case of percentage compression resilience
(Table 16). In the cases where average error for the ANN models with three different hidden
layers shows more or less similar values, the priority is given to the standard deviation of
errors (Debnath & Madhusoothanan, 2008). This study shows that in majority of the cases,
the three hidden layered ANN models present better results for predicting compression
properties of needle-punched fabrics. Though the three hidden layered ANN models take
more time during training phase, the predicted results are more accurate in comparison to
ANN models with one and two hidden layers, with less variations in the absolute error
(Debnath et al., 2000a).
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] Initial thickness, mm
Fci)b;;c Exp ANN Predicted Absolute error, %
1HL 2 HL 3 HL 1HL 2 HL 3 HL
1 354 | 3.531 3.539 3.546 0.259 0.034 0.171
2 3.02 | 3.046 3.019 3.036 0.868 0.030 0.520
3 441 4.369 4.398 4.351 0.932 0.266 1.349
4 38 3.785 3.780 3.783 0.399 0.524 0.443
5 3.02 | 3.012 3.012 2.995 0.272 0.261 0.821
6 427 | 4.287 4.267 4.272 0.399 0.071 0.041
7 439 | 4.398 4.383 4.407 0.187 0.149 0.384
8 3.88 3.930 3.878 3.916 1.298 0.053 0.939
9 3.45 3.601 3.538 3.580 4.379 2.564 3.771
10 448 | 4.456 4.482 4472 0.540 0.043 0.181
11 312 | 3133 3.166 3.139 0.432 1.479 0.598
12 3.38 3.364 3.389 3.359 0.484 0.256 0.634
13 329 | 3.627 3.648 3.630 10.229 10.870 10.343
14 394 | 3.627 3.648 3.630 7.956 7.421 7.861
15 3.66 | 3.627 3.648 3.630 0.915 0.338 0.812
16 5.87 | 5.867 5.870 5.869 0.053 0.002 0.025
17 577 | 5.777 5.771 5.773 0.117 0.017 0.056
18 4.08 | 4.074 4.087 4.083 0.159 0.168 0.061
19 2.51 2.578 2.614 2.558 2.724 4124 1.904
20 284 | 2847 2.857 2.831 0.262 0.603 0.333
21 3.18 3.038 3.030 3.062 4.469 4.708 3.712
22 247 | 2460 2.440 2478 0.415 1.200 0.332
23 3.54 | 3.540 3.540 3.540 0.000 0.003 0.010
24 414 | 4.140 4.140 4.140 0.001 0.006 0.005
25 562 | 5.620 5.620 5.621 0.000 0.004 0.016
R2 - 0.9868 0.9872 0.9875 - - -
Mean Oir(fo";bsomte - - - 1.51 141 141
SD of % absolute error | - - - 2.6071 2.6932 2.55

Exp - Experimental; 1THL - One hidden layer; 2HL - Two hidden layers; 3HL - Three
hidden layers; and SD - Standard deviation

Table 15. Experimental and predicted values of initial thickness by ANN model
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Percentage compression, %
Fabric -
code Exp ANN Predicted Absolute error, %

1HL 2 HL 3 HL 1HL 2 HL 3 HL
1 53.64 54.126 53.638 53.648 0.906 0.003 0.015
2 46.73 48.817 46.729 46.727 4.467 0.003 0.006
3 44.8 44.536 44.807 44.789 0.589 0.016 0.025
4 36.47 36.223 36.473 36.453 0.677 0.007 0.047
5 52.48 50.449 52.638 52.486 3.869 0.301 0.011
6 54.88 54.333 54.883 54.872 0.997 0.006 0.015
7 37.24 37.576 38.740 37.240 0.902 4.028 0.001
8 37.8 38.590 38.159 37.800 2.089 0.951 0.001
9 50.24 48.230 50.358 50.224 4.001 0.234 0.031
10 50.06 50.703 50.411 50.078 1.285 0.701 0.037
11 4491 45.650 44.035 44.912 1.648 1.949 0.004
12 43.75 43.949 43.581 43.756 0.454 0.386 0.013
13 45.16 44.244 43.780 43.863 2.028 3.056 2.871
14 42.45 44.244 43.780 43.863 4.227 3.133 3.329
15 44.09 44.244 43.780 43.863 0.350 0.704 0.514
16 54.92 54.807 54.930 54.951 0.205 0.019 0.056
17 54.97 54.896 54.954 54.943 0.135 0.029 0.050
18 37.51 36.873 37.269 37.515 1.699 0.641 0.012
19 41.18 41.666 40.616 41.178 1.181 1.369 0.005
20 41.85 42.787 41.536 41.842 2.240 0.751 0.019
21 39.98 40.793 39.785 39.984 2.033 0.489 0.009
22 4742 47.242 47.570 47.423 0.376 0.316 0.007
23 4293 42.933 42.928 42.927 0.007 0.004 0.007
24 37 36.997 37.002 37.003 0.007 0.005 0.007
25 23.78 23.780 23.780 23.791 0.001 0.001 0.047

R2 - 0.9839 0.9941 0.9971 - - -
Meanof % absolute | - - 1453 | 0764 | 0285
SD of Z‘;rilis"lute - - - 138 | 1117 | 0856
Exp - Experimental; 1HL - One hidden layer; 2HL - Two hidden layers; 3HL - Three

hidden layers; and SD - Standard deviation

Table 16. Experimental and predicted values of percentage compression by ANN model
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) Thickness loss, %
F;b;: Exp ANN Predicted Absolute error, %
1HL 2 HL 3 HL 1HL 2 HL 3 HL
1 25.46 25.547 26.448 25.462 0.341 3.881 0.007
2 25.98 27.399 26.468 25.976 5.462 1.879 0.017
3 20.68 20.574 21.035 20.676 0.515 1.717 0.018
4 17.68 17.147 17.720 17.662 3.013 0.225 0.100
5 30.69 30.660 30.689 30.688 0.096 0.003 0.007
6 27.82 26.361 26.453 27.813 5.244 4913 0.025
7 20.69 20.634 20.739 20.686 0.271 0.235 0.019
8 18.63 18.564 18.189 18.621 0.357 2.369 0.047
9 25.16 25.200 25.057 25.157 0.159 0.410 0.011
10 24.49 24.554 24.250 24.508 0.261 0.981 0.073
11 25.51 25.488 25.465 25.509 0.087 0.176 0.002
12 23.25 23.236 23.087 23.264 0.060 0.702 0.060
13 22.06 22.064 21.843 21.851 0.017 0.982 0.946
14 21.84 22.064 21.843 21.851 1.024 0.015 0.052
15 21.68 22.064 21.843 21.851 1.770 0.753 0.790
16 25.05 24,994 25.279 25.016 0.225 0.914 0.134
17 25.15 24.733 25.035 25.169 1.657 0.456 0.075
18 17.4 17.817 17.708 17.401 2.396 1.772 0.008
19 20.61 21.149 20.642 20.611 2.614 0.154 0.005
20 22.23 21.340 22.208 22.229 4.002 0.100 0.003
21 18.47 18.334 18.472 18.469 0.734 0.011 0.004
22 25.22 25.207 25.219 25.220 0.053 0.005 0.002
23 9.89 9.876 9.881 9.892 0.144 0.091 0.020
24 8.36 8.368 8.358 8.357 0.096 0.027 0.036
25 6.65 6.652 6.652 6.657 0.037 0.025 0.101
R2 - 0.9926 0.9954 0.9999 - - -

Mean of % absolute

error

1.225 0.912 0.102

SD of % absolute error -

1.655 1.259 0.234

Exp - Experimental; 1THL - One hidden layer; 2HL - Two hidden layers; 3HL - Three
hidden layers; and SD - Standard deviation

Table 17. Experimental and predicted values of percentage thickness loss by ANN model
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Compression resilience, %
Fabric -
code Exp ANN Predicted Absolute error, %
1HL 2 HL 3 HL 1HL 2 HL 3 HL
1 32.67 32.864 32.568 32.684 0.594 0.312 0.044
2 32.29 32.041 32.253 31.838 0.772 0.115 1.401
3 32.92 30.169 32.805 32.923 8.356 0.350 0.009
4 33.87 33.917 33.640 33.624 0.139 0.679 0.725
5 29.48 29.334 29.375 29.514 0.495 0.357 0.115
6 3227 32.324 31.931 31.832 0.169 1.051 1.358
7 30.99 31.959 30.700 30.997 3.126 0.935 0.022
8 31.28 30.803 30.890 31.256 1.523 1.248 0.076
9 32.77 33.355 32.304 32.802 1.784 1.422 0.097
10 31.52 30.943 31.071 31.445 1.830 1.425 0.237
11 31.73 31.471 31.735 31.374 0.817 0.016 1.122
12 30.99 31.581 31.029 32.012 1.907 0.127 3.297
13 33.25 33.123 33.162 33.307 0.383 0.266 0.172
14 33.15 33.123 33.162 33.307 0.083 0.035 0.474
15 33.33 33.123 33.162 33.307 0.622 0.505 0.069
16 28.56 29.678 28.624 28.577 3.915 0.223 0.058
17 28.2 29.141 28.083 28.212 3.337 0.414 0.041
18 35.05 34.855 35.006 35.083 0.557 0.125 0.094
19 30.29 30.234 30.215 30.319 0.183 0.249 0.096
20 3043 30.477 30.399 29.597 0.154 0.103 2.736
21 35.32 35.221 35.130 35.283 0.281 0.537 0.105
22 28.98 29.010 28.998 30.004 0.105 0.064 3.533
23 54.33 54.335 54.340 54.330 0.008 0.018 0.001
24 56.69 56.684 56.687 56.689 0.010 0.005 0.001
25 53.85 53.851 53.837 53.850 0.002 0.025 0.001
R2 - 0.9919 0.9996 0.9977 - - -
Mean of % absolute | - - 12461 | 0424 | 0635
SD of % absolute error - - - 1.8555 0.450 1.055
Exp - Experimental; 1THL - One hidden layer; 2HL - Two hidden layers; 3HL - Three
hidden layers; and SD - Standard deviation

Table 18. Experimental and predicted values of compression resilience by ANN model
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3.3.1 Verification of Models for compression properties

Further, attempts have been made to predict the compression properties to understand the
perfection of the models. The ANNs models were then used to four sets of inputs, which
have not been utilized during the modeling phase as shown in Table 19. Table 20 indicates
the prediction of compression properties and respective absolute errors by ANNs models
during verification phase.

Fabric | Fabric weight Needl'mg Woollenised jute | Polypropylene | Polyester
code g/m?2 density % % %
punches/cm?
18 410 250 0 100 0
21 310 250 100 0 0
24 276 250 80 20 0
28 680 300 0 0 100

Table 19. Samples for experimental verification of ANN model for compression properties

Table 20 presents the predicted compression values of untrained fabric samples by ANN
models, showing higher absolute percentage error than the predicted compression values of
trained fabric samples as shown in Tables 15 to 18. Specifically, in case of sample code 28, all
the properties predicted during verification are high. Two samples of this category (100%
jute) have been used during the training phase (Table 10). This might be the reason for
higher error in sample code 28 (Debnath & Madhusoothanan, 2008). Hence, the learning
process by ANN itself is very poor compared to other samples, this ultimately increases the
error during verification (Table 20).

Initial thickn mpression
Fa ¢ caiess Compression with | Thickness loss with C,O, pressio
. with 3 hidden - . resilience with 3
Fabric 3 hidden layer 3 hidden layer .
layer o o hidden layer
code % % o
mm %

E P A E P A E P A E P A
18 | 5.07 |5.25| 3.53 |38.07 | 54.88 | 44.17 |17.87 | 19.17 | 7.26 | 34.1230.73 | 9.95
21 | 247 |3.17|28.47 |43.96 | 29.20 | 33.59 | 22.38 | 27.85 | 24.46 | 32.89 | 17.41 | 47.05
24 | 3.00 |2.91| 3.09 |41.53 | 48.57 | 16.95 | 21.59 | 30.68 | 42.12 | 30.71 | 27.80 | 9.48
28 | 513 |5.26| 254 [2235|2395| 715 | 6.19 | 6.76 | 9.24 |54.21 | 56.62 | 4.44
E - Experimental; P - Predicted and A - Absolute error %

Table 20. Experimental verification of predicted results on compression properties

4. Conclusions

From this study it is clear that the tensile and air permeability property of needle punched
non-woven fabric can be predicted from two different methodologies- empirical and ANN
models. The ANN model for prediction of tensile properties of needle punched non-woven
is much more accurate compared to the empirical model. Prediction of tensile properties by
ANN model shows considerably lower error than empirical model even when the inputs
were beyond the range of inputs, which were used for developing the model.
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It can also be concluded that ANNs can be used effectively even for predicting nonlinear
relationship between the process parameters and fabric properties.

Both the methods can be implemented successfully as far as the air permeability of such
needled fabric is concerned. The prediction accuracy of the ANN with three hidden layers is
the best amongst all the predicting models used in this work. The ANN with three hidden
layers is the best, which, gives highest correlation with lowest prediction error between
actual and predicted values of air permeability of needle punched non-woven. The ANN
with three hidden layers also shows lesser error when compared to an empirical model even
when input variables are extrapolated over which the models were developed.

ANNSs can be used effectively for predicting nonlinear relationship between the process
parameters and the fabric compression properties.

The number of cycles to achieve optimum weights for initial thickness, percentage
compression, thickness loss (%) and percentage compression resilience are found between
320000 and 5120000 cycles.

There is a very good correlation (R2 values) with minimum error between the experimental
and predicted initial thickness, percentage compression and thickness loss values by ANN
with three hidden layers.

The standard deviation of percentage absolute error is also found to be less in the case of
ANN model with three hidden layers for initial thickness, percentage compression and
percentage thickness loss. The ANN model with two hidden layers performs better in terms
of percentage error and standard deviation in the case of percentage compression resilience.

The three hidden layered ANN models take more time for computation during training
phase but the predicted results are more accurate with less variations in the absolute error in
the verification phase.

Based on the experiences the ANN model can be well used to model and predict other
important properties of needle-punched nonwoven fabrics made of different fibre materials.
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1. Introduction

Artificial Neural Networks (ANN) are used nowadays in a broad range of areas such as
pattern recognition, finances, data mining, battle scene analysis, process control, robotics,
etc. Application of ANN in the field of spectroscopy has generated a long-standing interest
of scientists, engineers and application specialists. The ANN" capability of producing fast,
reliable and accurate spectral data processing has become, in many cases, a bridging
mechanism between science and application. A particular example of how ANN can
transform plasma emission spectroscopy, that is quit challenging to model, into a turnkey
ready to use device is described in this Chapter.

Laser-Induced Breakdown Spectroscopy (LIBS) is a material-composition analytical technique
gaining increased interest last decade in various application fields, such as geology,
metallurgy, pharmaceutical, bio-medical, environmental, industrial process control and others
(Cremer & Radziemski, 2006; Miziolek et al., 2006). It is in essence a spectroscopic analysis of
light emitted by the hot plasma created on a sample by the laser-induced breakdown. LIBS
offers numerous advantages as compared to the standard elemental analysis techniques (X-ray
fluorescence or X-ray diffraction spectroscopy, inductively coupled plasma spectroscopy, etc.),
such as: capability of remote analysis in the field, compact instrumentation, detection of all
elements and high spatial resolution. Such features as minimum or no sample preparation
requirement and dust mitigation using “cleaning” laser shots are especially important for field
geology and remotely operated rover-based instruments.

As result, LIBS instruments have been selected as payloads for the 2011 Mars Science
Laboratory mission led by the National Aeronautics and Space Administration (Lanza et al.,
2010) and the ExoMars mission on Mars planned for 2018 and led by European Space
Agency (Escudero-Sanz et al., 2008).

Despite of the advantages, the main challenge is still the retrieval of accurate information
from measured spectra. LIBS spectral signals, composed mostly of narrow emission lines,
are complex nonlinear functions of concentrations of measured constituents and instrument

' © Government of Canada 2010
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parameters. The most important contributors to this nonlinearity are spectral overlapping,
self-absorption, and the so-called matrix effects. These effects are caused by chemical
properties and morphological features of the sample matrix that can change the intensity of
the emitted lines (Eppler et al., 1996; Harmon et al., 2006). In addition, the ambience such as
pressure, temperature and gas type can vary the heat loss and confinement effect in LIBS
that results in a change of spectra (lida, 1990; Lui & Cheung, 2003). All this leads to large
errors in concentration measurements of minor or trace elements performed in different
materials. This became a serious impeding factor for using full advantages of LIBS in
analytical geochemistry in either field geology or planetary exploration.

Common quantitative spectral data processing algorithms, based on calibration curve method
have been successfully applied in some cases (St-Onge et al., 2002; Cho et al., 2001), but they
are limited to application in one class of material and require a priory knowledge about the
tested sample. An alternative method, called calibration-free method, relies on plasma model
to calculate plasma temperature using several spectral lines. It shows encouraging results,
however also subject to a number of limitations (Ciucci et al., 1999; Aguilera et al., 2009).
Classification & identification techniques are also used in conjunction with LIBS to define
material identity and even composition. In relatively simple cases classification and
identification of samples can be achieved by evaluating the line ratios or the patterns of a
LIBS spectrum (Monch et al., 1997, Samek et al., 2001; Sattmann et al, 1998). More
sophisticated classification methods such as, principle components analysis (PCA), soft
independent modeling of class analogy (SIMCA) and partial least-squares discriminant
analysis (PLS-DA), have been studied and produced very promising results (Sirven et al.,
2007; Clegg et al., 2009). However, the above techniques being based on linear processing
have difficulty to take into account nonlinear effects.

ANN data processing offers to address the above challenges as having the potential to solve
nonlinear problems (Gurney, 1997; Haykin, 1999). The capabilities of ANN in this area have
started to be explored recently almost simultaneously by few groups. Inakollu (Inakollu et
al., 2009) used ANN to predict the element concentrations in aluminium alloys from its LIBS
spectrum. Ferreira (Ferreira et al., 2008) selected a set of wavelengths through the “wrapper”
algorithm and then determined the concentration of copper in soil samples by ANN.
Sattmann (Sattmann et al., 1998) discriminated PVC from other polymers with the distinct
chlorine 725.66 nm line. Ramil (Ramil et al., 2008) classified the LIBS spectra of 36
archaeological ceramics into three groups by ANN. The possibility of using ANN to predict
composition in natural rocks explored in our earlier works by Motto-Ros (Motto-Ros et al.,
2008) and Koujelev (Koujelev et al., 2009). We also demonstrated the capability of mineral
and rock sample identification with LIBS combined with ANN (Koujelev et al., 2010). The
potential of ANN to analyse LIBS spectra has been proven in these studies.

It is important to note that performing LIBS on geological material: minerals, rocks, and
soils, is especially challenging. These materials can vary from silica-based basalt rock to
iron-rich hematite mineral. They exhibit serious matrix effect thus the conventional
calibration curve method will not be applicable for quantitative study (retrieval of
composition). Most importantly, without prior knowing the matrix identity, choosing an
appropriate calibration curve is impossible. Identification, or qualitative analysis, is also
difficult to achieve since there are over few thousand types of minerals so learning all their
spectra seems impractical. In fact, applying LIBS on rocks, soils or minerals have been
reported in several studies. Menut (Menut et al.,, 2006) demonstrated the potential of
probing europium in argillaceous rocks preconditioned in europium solution. Sharma
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(Sharma et al., 2007) combined LIBS with Raman spectroscopy to evaluate mineral rocks.
Bousquet (Bousquet et al., 2007) measured the chromium concentration in 22 soil samples
doped with chromium. Calibration curve was obtained from the five kaolinite soil samples
only. They also performed classification by principal components analyses (Sirven et al.,
2006). Belkov (Belkov et al., 2009) showed the possibility of measuring the carbon content in
11 soil samples. The calibration curve was fit by an exponential function within 2% to 8%
range. Gaft (Gaft et al., 2009) evaluated the performance of LIBS in sulphur analyses of
minerals, alloys, and coal mixtures. Two calibration curves were established for two sets of
coal mixtures. From these examples one can observe that the application of LIBS on
geological analysis is mainly demonstrative and descriptive. Samples were artificially doped
and the calibration curves were conditional, either limited by sample type or concentration
range. In term of quantitative and qualitative aspects, the application on geological samples
still remains challenging to the LIBS community.

This chapter presents a review of our earlier work as well as some new results. The focus is
made on how we apply and optimise ANN in a particular spectroscopy application. The
chapter is structured in the following way. After the introduction, the section describing the
principles of LIBS will be presented so, that the particularities of the LIBS data are
introduced. Some pre-processing techniques are presented in the LIBS section. The next,
section is devoted to different ANN architectures used for particular types of data analysis
and the targeted applications. The first sub-section describes material identification analysis,
the second sub-section describes quantitative mineralogy analysis, and the third sub-section
describes quantitative elemental analysis. Conclusions and future works are discussed in the
last section of the chapter.

2. LIBS technique

Before we discuss different ANN spectral processing schemes, it is important to define the
experimental settings where the raw spectra are obtained. It is also very important to
address what types of materials are studied and what pre-processing routines are applied
before the data are inputted to the network.

A typical LIBS system includes a laser, optical elements to focus laser beam and to collect
plasma emission, and a spectrometer (Fig. 1). In our studies, the laser source is a Q-switch
Nd:YAG laser (Spectra Physics, LPY150, 1064nm, 7 ns) operating at 1 Hz repetition rate with
pulse energy of 20 m]J. The pulse energy is monitored by Joule-meter and adjusted by a \/2
plate and a polariser. The beam is focused to a 50 pm spot to ablate the sample. The plasma
emission is collected and delivered to the Ocean Optics LIBS 2000 spectrometer (200 - 970
nm, 0.1 mm resolution) through an optical fibre. In the majority of our experiments, the
distance between the sample and the collection optics was 10 cm. The delays between
instruments are controlled by a pulse delay generator (BNC 575). The spectra are recorded
and analysed with a computer and dedicated software. It worth noting that these
parameters are typical for a low-power LIBS system that may be used on a remote platform,
such as planetary rover, or as a hand-held instrument in the field conditions.

Different types of geological materials are studied in our experiments. The samples of
standard geological materials, mostly silicates in our cases, are supplied in form of powder
with certified elemental composition by the Brammer Standard Company Inc. They are
pressed into tablets for easy handling and sampling. Another set of natural rock and mineral
samples is obtained from Miners Inc (part number: K4009). For these samples, only major
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composition elements were known based on the type of mineral. Powder-based samples are
used to train, validate and test the composition retrieval algorithm, while the natural rocks
and minerals are used only to test the mineral identification capability.
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Fig. 1. Experimental configuration of a LIBS system.

Concentration (fraction)

Std name SiO, Al,O3 MgO Ca0O Na,O K,0 TiO, Fe,O3 MnO
Rock71306  0.0062 0.001 0.218 0.3002 0.0003 “ 0.00038 0.00015 0.0021 0.00108
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Fig. 2. Examples of LIBS spectra for materials with different composition.

Let us consider few examples of raw LIBS spectra. Spectral signatures of a carbonate rock
(Rock 71306) and an andesite (JA1l) are shown in Fig. 2. Due to large difference in
compositions of these two materials, their discrimination can be easily arranged. Here, a
monitoring of intensities of several key atomic lines (Si, Al, Ca, Ti and Fe in this case) can be
employed. Therefore, identification or classification of types of minerals with a strong
difference in composition can be easily achieved using simple logic algorithms. In this case,
we rather care about the presence of specific spectral lines than the exact measurement of
their intensity and correspondence to elemental concentration.
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The situation however, can be much more complex when one deals with identification of
materials with high degree of similarity, or with retrieval of compositional data
(quantitative analysis). Such an example is presented in Fig. 3. Here the strategy for these
two applications may diverge. Such, that for material identification the spectral lines
showing the largest deviations between materials (Mg in this example) should be used.
However, for quantitative analysis it is rather useful to select the spectral lines that exhibit
near-linear correspondence of the intensity and the element concentration (Ti 330 nm - 340
nm lines in this example). This is why the material identification and quantitative analysis
that will be discussed in the following sections rely on different spectral line selection.

Concentration (fraction)

Stdname SiO, AlL,Oy MgO CaO Na,O K,O TiO, Fe,03 MnO
AndesiteJA1 0.6397 0.1522 0.0157 0.057 0.0384 0.0077 0.0085 0.0707 0.00157
AndesiteJA2 0.5642 0.1541 0.076 0.0629 0.0311 0.0181 0.0066 0.0621 0.00108
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Fig. 3. Examples of LIBS spectra for materials with similar composition.

Once LIBS spectra are acquired from the sample of interest, several pre-processing steps are
performed. Pre-processing techniques are very important for proper conditioning of the
data before feeding them to the network and account for about 50 % of success of the data
processing algorithm. The following major steps in data conditioning are employed before
the spectral data are inputted to the ANN.

a.

Averaging of LIBS spectra. Usually, averaging of up to a hundred of spectral samples
(laser shots) may be used to increase signal to noise ratio. The averaging factor depends
on experimental conditions and the desired sensitivity.

Background subtraction. The background is defined as a smooth part of the spectrum
caused by several factors, such as, dark current, continuum plasma emission, stray
light, etc. It can be cancelled out by use of polynomial fit.

Selection of spectral lines for the ANN processing. Each application requires its own set
of selected spectral lines for the processing. This will be discussed in greater details in
the following sections.

Calculation of normalised spectral line intensities. In order to account for variations in
laser pulse energy, sample surface and other experimental conditions the internal
normalization is employed. In our studies, we normalize the spectra on the intensity of O
777 nm line. This is the most convenient element for normalization since all our samples
contain oxygen and there is always a contribution of atmospheric oxygen in the spectra in
normal ambient conditions. The line intensities are calculated by integrating the
corresponding spectral outputs within the full width half-maximum (FWHM) linewidth.
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After this pre-processing, the amount of data is greatly reduced to the number of selected
normalized spectral line intensities, which are submitted to the ANN.

3. ANN processing of LIBS data

The ANN usually used by researchers to process LIBS data and reported in our earlier
works is a conventional three-layer structure, input, hidden, and output, built up by
neurons as shown in (Fig. 4). Each neuron is governed by the log-sigmoid function. The first
input layer receives LIBS intensities at certain spectral lines, where one neuron normally
corresponds to one line.

A typical broadband spectrometer has more than a thousand channels. Inputting to the
network the whole spectrum increases the network complexity and computation time. Our
attempts to use the full spectrum as an input to ANN were not successful. As a result, we
selected certain elemental lines as reference lines to be an input to ANN. General criteria for
the line selection are the following: good signal to noise ratio (SNR); minimal overlapping
with other lines; minimal self-absorption; and no saturation of the spectrometer channel.

Weights w; Layer1 Layer2 Layer3

Inputs x; m—p- @ —>Output 1

Biasb—/ n=f Zwl.xl.—b

1
Su)= Toor 1w

Fig. 4. Basic structure of an artificial neural network.

These criteria eliminate many lines which are commonly used by other spectroscopic
techniques. For example, the Na 589 nm doublet saturates the spectrometer easily, thus is
not selected. The C 247.9 nm can be confused with Fe 248.3 nm, therefore is avoided. At the
same time, the relatively weak Mg 881 nm line is preferred to 285 nm line since it is located
in a region with less interference from other lines. In addition to these general rules, some
specific requirements for line selection imposed by particular applications are discussed in
the following sections.

The number of neurons in the hidden layer is adjusted for faster processing and more
accurate prediction. Each neuron at the output layer is associated either to a learnt material
(identification analysis) or an element which concentration is measured (quantitative
analysis). The output neurons return a value between 0 and 1 which represents either the
confidence level (CL) in identification or a fraction of elemental composition in quantitative
processing.

The weights and biases are optimized through the feed-forward back-propagation
algorithm during the learning or training phase. To perform ANN learning we use a
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training data set. Then to verify the accuracy of the ANN processing we use validation data
set. Training and validation data sets are acquired from the same samples but at different
locations (Fig. 5). In this particular example ten spectra collected at each location and
averaged to produce one input spectrum per location. Five cleaning laser shots are fired at
each location before the data acquisition.

Learning set
Validation set

Fig. 5. Acquiring learning and validation spectra from a pressed tablet sample. The ten spots
on the left are laser breakdown craters corresponding to the data sets. An emission
collection lens is shown on the right in the picture.

3.1 Material identification

Material identification has been demonstrated recently with a conventional three-layer feed-
forward ANN (Koujelev et al., 2010). High success rate of the identification algorithm has
been demonstrated with using standard samples made of powders (Fig. 6). However, a need
for improvements has been identified to ensure the identification is stable with given large
variations of natural rocks in terms of surface condition, inhomogeneity and composition
variations (Fig. 7). Indeed, the drop in identification success rate between validation set and
the test set composed of natural minerals and rocks is from 87 % to 57 % (Fig. 6). Note, at the
output layer, the predicted output of each neuron may be of any value between 0 (complete
mismatch) and 1 (perfect match). The material is counted as identified when the ANN
output shows CL above threshold of 70 % (green dashed line). If all outputs are below this
threshold, the test result is regarded as unidentified. Additional, soft threshold is introduced
at 45 % (orange dashed line) such that if the maximum CL falls between 45 % and 70 %, the
sample is regarded as a similar class.

An improved design of ANN structure incorporating a sequential learning approach has
been proposed and demonstrated (Lui & Koujelev, 2010). Here we review those
improvements and provide a comparative analysis of the conventional and the constructive
leaning network.

Achieving high efficiency in material identification, using LIBS requires a special attention
to the selection of spectral lines used as input to the network. In addition to the above
described considerations, we added an extra rational for the line selection. Lines with large
variability in intensity between different materials, having pronounced matrix effects were
preferred. In such a way we selected 139 lines corresponding to 139 input nodes of the
ANN. The optimized number of neurons in the hidden layer was 140, and the number of
output layer nodes was 41 corresponding to the number of materials used in the training
phase.
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Fig. 6. Identification results for ANN with conventional training: powder tablets validation

and natural rock & mineral test. Green colour corresponds to confidence levels for correct
identification and red colour corresponds to mis-identification ANN outputs.
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Fig. 7. Natural rock & mineral samples and their powder tablets counterparts.
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Fig. 8. Sequential training diagram.

:’[ 5th ANN training ] E} Trained ANN

When dealing with a conventional training the identification success rate drops rapidly if
natural rock samples are subject to measurement on the ANN trained with powder made
samples. This is, as we believe, due to overfitting of ANN. To avoid overfitting, the number
of training cases must be sufficiently large, usually a few times more than the number of
variables (i.e., weights and biases) in the network (Moody, 1992). If the network is trained
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only by the average spectrum of each sample corresponding to 41 training cases, then the
ANN is most likely to be overfitted. To improve the generalization of the network, the
sequential training was adopted as an ANN learning technique (Kadirkamanathan et al.,
1993; Rajasekaran et al., 2002 and 2006).

The early stopping also helps the performance by monitoring the error of the validation data
after each back-propagation cycle during the training process. The training ends when the
validation error starts to increase (Prechelt, 1998). In our LIBS data sets there are five
averaged spectra per sample, each used in its own step of the training sequence. At each
step, the ANN is trained by a subset of spectra with the early stopping criterion and the
optimized weights and biases are transferred as the initial values to the second training with
another subset. This procedure repeats until all subsets are used.

The algorithm implementation is illustrated in (Fig. 9). While the mean square error (MSE)
decreases going through 5 consecutive steps (upper graph), the validation success rate
grows up (bottom graph).
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Fig. 9. Identification algorithm programmed in the LabView environment: the training
phase.

Using a standard laptop computer the learning phase is usually completed in less than 20
minutes. Once the learning is complete, the identification can be performed in quasi real
time. The LIBS-ANN algorithm and control interface is shown in (Fig. 10).

Identification can be performed on each single laser shot spectrum, on the averaged
spectrum, or continuously. The acquired spectrum displayed is of the Ilmenite mineral
sample in the given example. When the material is identified, the composition
corresponding to this material is displayed. Note, that the identification algorithm does not
calculate the composition based on the spectrum, but takes the tabular data from the
training library. The direct measurement of material’'s composition is possible with
quantitative ANN analysis.

In the event if the sample shows low CL for all ANN outputs it is treated as unknown. In
such a case, more spectra may be acquired to clarify the material identity. If it is confirmed
by several measurements that the sample is unknown to the network, it can be added to the
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training library and the ANN can be re-trained with the updated dataset. Thus, for a remote
LIBS operation, this mode "learn as you go" adds frequently encountered spectra on the site
as the reference spectra. This mode offers a solution for precise identification without
dealing with too large database of reference materials spectra beforehand. The exact identity
or a terrestrial analogue (in case of a planetary exploration scenario) can be defined based on
more detailed quantitative analysis, possibly, in conjunction with data from other sensors.
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Fig. 10. Identification algorithm programmed in the LabView environment: how it works for
a test sample that has been identified. Upper-left section defines the hardware control
parameters. Bottom-left section defines the spectral analysis parameters (spectral lines).
Top-right part displays the acquired spectrum. Bottom-right section displays identification
results.

The results of validation and natural rock test identification are shown in (Fig 11) in the
form of averaged CL outputs. The CL values corresponding to mis-identification (red) are
lower than for the conventional training, especially for the part with natural rocks. All
identifications are correct in this case. The standard powder set includes similar powders of
andesite, anorthosite and basalt which are treated as different classes during the trainings.
Therefore, non-zero outputs may be obtained for their similar counterparts. The lower red
outputs in sequential training suggests it is more subtle to handle similar class. Note that
both training methods confuse andesite JA3, with other andesites. According to the certified
data, the concentrations of major oxides for JA3 always lie between those of other andesites.
As a result, there are no distinct spectral features to differentiate JA3 from other andesites.
Therefore, mis-identification in this particular case can be acceptable.
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Fig. 11. Identification results for ANN with sequential training: powder tablets validation
and natural rock & mineral test. Green colour corresponds to confidence levels for correct
identification and red colour corresponds to mis-identification ANN outputs.
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The last two samples, fluorite and molybdenite, are selected to evaluate the network’s
response to an unknown sample. The technique is capable of differentiating new samples.
Certainly, if our certified samples included fluorite or molybdenite, the ANN would have
been spotted these samples easily due to the distinct Mo and F emission lines.

The comparative of summary the results of the ANN with sequential training with those of
another ANN trained by conventional method are shown in Table 1. Here, the conventional
method is referred as a single training with one average spectrum for each sample. The
prediction of the sequential LIBS-ANN improves with the increasing number of sequential
trainings. After the 5th training, its performance surpasses that of the conventional LIBS-
ANN. The rate of correct identification rises from 82.4% to 90.7%, while the incorrect
identification rate drops from 2% to 0.5%. This is equivalent to only two false identifications
out of 410 test spectra from the validation set. The rock identification shown is done on 50-
averaged spectra. The correct identification rate for the sequential training method is 100%.
In conventional training, it is only 57% with the rest results regarded as “undetermined”.
The outstanding performance of the sequential ANN shows a better generalization and
robustness of the network.

Average rate (%)
ki
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3
. .. ko) < g &
Material set Training method g g = B
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Conventional 87.1 2.0 97.9 11.0
Validation set Sequential After 1st 82.4 2.0 96.7 15.6
(powders) tfamin After3rd | 885 1.7 97.5 9.8
5 After5th | 907 0.5 99.5 8.8
Conventional 57.1 0 100 429
Test set (natural
r'ocks & Five level' s‘equentlal 100 0 100 0
minerals)! training

Table 1. Validation and test result of the ANN trained by sequential and conventional
methods. Average spectrum of a sample is used for testing.

3.2 Mineralogy analysis

Measuring presence of different minerals in natural rock mixtures is an important analysis
that is commonly done in geological surveys. On one hand, LIBS relies on atomic spectral
signatures directly indicating elemental composition of the material, therefore material
crystalline structure does not appear to be present in the measurement. On the other hand,
the information on the material physical and chemical parameters is present in the LIBS
signal in a form of matrix effect. This, in fact, means that materials with the same elemental
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Fig. 12. Mineralogy analysis on the sample made of mixture of basalt, dolomite, kaolin and
ilmenite. Red circles indicate unidentified prediction.

composition but different crystalline structure (or other physical or chemical properties)
produce LIBS spectra with different ratios of spectral line intensities. Thus, mineralogy
analysis can be done based on LIBS measurement where the ratios & intensities of the
spectral lines are processed to deduce the identity of the mineral matrix.

One can implement this using the identification algorithm described in the previous section.
The methodology relies on a series of measurement produced in different locations of the
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rock, soil or mixture, where only one mineral type is identified in each location. Then, the
quantitative mineralogy content in percents is generated for the sample based on the total
result.

In this section, we describe a mineralogy analysis algorithm and tests that were performed
in a particular low-signal condition. LIBS setup, described earlier, was used with a larger
distance between the collection aperture and a sample. The distance was increased up to 50
cm thus resulting in 25 times smaller signal-to-noise ratio. This simulates realistic conditions
of a field measurement. Since a lens of longer focal length was used, a larger crater was
produced.

Because of low-signal condition, we adjusted ANN structure to produce result that is more
reliable. First, the peak value is used in this case instead of FWHM-integrated value used
earlier to represent the spectral line intensity. In a condition of weak lines, the FWHM value
is difficult to define. Second, the intensities of several spectral lines per element were
averaged to produce one input value to the ANN. Consequently, the ANN structure
included 10 input nodes (first layer) corresponding to the following input elements: Al, Ca,
Fe, K, Mg, Mn, Na, P, Si and Ti. The output layer contained 38 nodes corresponding to the
number of mineral samples in the library. The hidden layer consisted of 40 neurons. The
sequential training described above was used.

In order to test the performance of quantitative mineralogy, an artificial sample was made
based on the mixture of certified powders. Four minerals such as, ilmenite, basalt, dolomite
and kaolin, were placed in a pellet so that clusters with visible boundaries can be formed
after pressing the tablet (Fig. 12a). The measurements were produced by a map of 15x15
locations with a spacing of 1 mm where LIBS spectra were taken (Fig. 12b). Ten
measurement spectra were taken at each location. They are averaged and processed by
ANN algorithm.

Figure 12c shows the resulting mineralogy surface map. Since the colours of mineral
powders were different, one may easily compare the accuracy of the LIBS mineralogy
mapping with the actual mineral content. The results of the scan are summarised in the
Table 2. The achieved overall accuracy is 2.5 % that is an impressive result demonstrating
the high potential of the technique.

Mineral Basalt Dolomite Kaolin [Imenite
LIBS-ANN measurement, % 17.8 21.8 45.8 13.8
True value, % 22.2 18.2 46.9 12.7
Deviation, % 44 3.6 11 1.1
Average deviation, % 25

Table 2. Test result of the LIBS-ANN mineralogy mapping.

It should be noted that the true data are calculated as percentages of the mineral parts
present on the scanned surface. These percentages are not representative of the entire
surface of the sample or volume content. This becomes an obvious observation if one
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considers that the large non-scanned area at the edge of the sample is covered by basalt,
while its abundance is small on the scanned area. Therefore, the selection of the scanning
area becomes very important issue if the results are to be generalised on entire sample.

3.3 Quantitative material composition analysis

The mineralogy analysis based on identification ANN can be used to estimate material
elemental composition. This estimation however may largely deviate from true values,
because it is based on the assumption that each type of mineral (or reference material) has
well defined elemental composition. In reality, the concentrations of the elements may vary
in the same type of mineral. Moreover, very often one element can substitute another
element (either partially or completely) in the same type of mineral.

This section describes the ANN algorithm for quantitative elemental analysis based directly
on the intensities of spectral lines obtained by LIBS. The ANN for quantitative assay
requires much higher precision than the sample identification. The output neurons now
predict the concentrations, which can range from parts per million up to a hundred
percents. Thus, to improve the accuracy of the prediction, we introduce the following
changes to the structure of a typical ANN and the learning process.

In our earlier development of quantitative analysis of geological samples, the ANN
consisted of multiple neurons at the output layer. Each output neuron returned the
concentration of one oxide (Motto-Ros et al., 2008). This network, however, can suffer from
undesirable cross-talk. During training process, an update of any weights or biases by one
output can change the values of other output neurons, which may be optimized already.
Therefore, in this current algorithm, we propose using several networks and each network
has only one output neuron dedicated to one element’s concentration (Fig. 13). For
geological materials, we use conventional representation of concentration of element’s oxide
form.

Similar to identification algorithm in low-signal condition, the spectral lines identified for
the same element are averaged producing one input value per element. This minimizes the
noise due to individual fluctuation of lines.

Since the concentration of the oxide can cover a wide range, during the back-propagation
training, the network unavoidably favour the fitting of high concentration values and cause
inaccurate predictions at low concentration elements. To minimize this bias, the input and
desired output values are rescaled with their logarithm to reduce the data span and increase
the weight of the low-value data during the training.

Without the matrix effect, the concentration of an element can simply be determined by the
intensity of its corresponding line by using a calibration curve. In reality, the presence of
other elements or oxides introduces non-linearity. To present this concept in an ANN,
additional inputs corresponding to other elements are added. Those inputs however should
be allowed to play only secondary role as compared to the input from the primary element.
In other words, the weights and biases of the primary neurons should weight more than
others should.

To implement this idea, the ANN training is split into two steps. In the first training, only
the average line intensity of the oxide of interest is fed to the network. This average intensity
is duplicated to several input neurons to improve the convergence and accuracy. The
weights and biases obtained from this training are carried forward to the second training of
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Fig. 13. Architecture of the expanded ANN for the constructive training. The blue dashed
box indicates the structure of the ANN corresponding to the 1st step training. The red
dashed box shows the neurons and connections added to the initial network (blue) during
the 2nd training (constructive). In the 2nd training, the weights and biases of the blue neurons
are initialled with the values obtained from the first training, while the weights and biases of
the red neurons are initialized with small values much lower than those of blue neurons.
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Fig. 14. Screenshots of the training interface of the quantitative LIBS-ANN algorithm
programmed in LabView environment. Dynamics of the ANN learning and validation error
while training is shown: (a) - during the 1st step training; (b) - in the beginning of the 2nd
step training; (c) - at the end of the training. On each screenshot: the menu on the left
defines training parameters; the graph in middle-top shows mean square error (MSE) for the
training set; the graph in middle-bottom shows MSE for the validation set; the graph in
right-top shows predicted concentration vs. certified concentration for the training set; the
graph in right-bottom shows predicted concentration vs. certified concentration for the
validation set.
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a larger network. The expanded network is constructed from the first network with
additional neurons which handle other spectral lines. This two-step training is referred as
constructive training. Accuracy is verified by validation data set simultaneously with
training (Fig. 14).

This figure illustrates training dynamics on the ANN part responsible for CaO
measurement. In the first step of training the ANN has one input value per material that is
copied to 10 input neurons. The number of hidden neurons is 10 and there is only one
output neuron. As we see, the validation error is very noisy and reaches rather big value at
the end of the training (~50%) (Fig. 14a). Concentration plot shows large scattering. When
the second training starts the error goes down abruptly. In this case the network is
expanded to 18 input neurons (10 for CaO line and 8 for the rest of elements, one input per
element). The number of hidden neurons is 18 and there is one output neuron
corresponding to CaO concentration. The validation error and the level of noise get
gradually reduced. At the end of the training it reaches 17 % (averaged value for the data
set). Taking into account that the span of data reaches four orders of magnitude, this is a
very good unprecedented performance.

A comparison of the performance between a typical ANN using conventional training and a
re-structured ANN with constructive training is shown in (Fig. 15a, b). In general, the
predictions by the constructive ANN fall excellently on the ideal line (i.e., predicted output
corresponds to certified value). Although the performance is similar at high concentration
region (>10%), the data from the conventional ANN method start to deviate at low
concentration regime. The scattering of data becomes very large at the very low
concentration region (< 0.1%). Some data points fall outside the displayable range of the
plot (e.g. the low concentrated TiO, and MnO). This observation supports the importance of
data rescaling for accurate predictions at low concentration range.

The performance of validation for different oxides is summarized in Table 3. The validation
by the constructive method is significantly better than that of the conventional training. The
deviation of all predictions is less than 20%. The prediction of SiO» concentration is similar
in both approaches since it is the most abundant oxide in almost all samples. For the
conventional ANN method, the deviations of most prediction are in general higher. This is
attributed to the cross-talk of the neurons. The deviation for MnO is incredibly large as it is
usually in the form of impurity of tens of ppm. Thus the bias in training makes the
prediction of these low concentrated oxides less accurate.

Oxide ALOs; | CaO | FeO | KO | MgO | MnO | NaO | SiO. | TiO;

Constructive

ANN error (%) 17.7 141 | 143 | 169 | 140 18.9 10.7 7.7 16.6

Conventional

ANN error (%) 21.3 333 | 442 | 334 | 532 | 1525 | 359 73 86.6

Table 3. A comparison of the validation error between the constructive and conventional
ANN.



110 Artificial Neural Networks - Industrial and Control Engineering Applications

1
< L
5 0.1
=]
o
(0]
£
c
S o001 ¢
=]
Y
=]
[=
3
c 0001 f
]
o
T
()
=]
2
T 0.0001
g
o ©AR03 DOCa0 aFeO 0K  ©MgO
MnO ONa20 <©Si02  OTiO2
0.00001 ; ; ‘
0.00001 0.0001 0.001 0.01 0.1 1
Certified Concentration (fraction)
1
b)
: -
5 0.1
=
Q
©
£
S 001
=)
o
=
c
w i)
£ 0001 | 5)
S 0
®
.§ O [m]
T 0.0001
1 3 a
a o)
©AR03 0OCaO 4AFeO  OK2  ©MgOo
o MnO ONa20 ©Si02 OTiO2
0.00001 . w ‘ .
0.00001 0.0001 0.001 0.01 0.1 1

Certified Concentration (fraction)

Fig. 15. A comparison of the validation performance between a typical ANN with
conventional training (a) and the ANN with constructive training (b).



Artificial Neural Networks for Material Identification, Mineralogy and
Analytical Geochemistry Based on Laser-Induced Breakdown Spectroscopy 111

The prediction of oxide concentration by the constructive ANN is evaluated by four certified
samples, which were not part of the training process. They were unknown to network thus
simulating a new sample. The oxide concentrations obtained are compared with those
calculated using the calibration curve method and a conventional ANN algorithm (Fig. 16).
Among these three techniques, both the calibration curve method and the conventional
ANN give inaccurate prediction for most oxides (Table 4).

For the calibration curve method, the deviation is mainly due to the serious matrix effects of
the geological samples.
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Fig. 16. Comparison of the concentration prediction of the four samples (andesite JA2, basalt
BCR2, iron ore, orthoclase gabbro) by the constructive ANN, conventional ANN and the
calibration curve method.

The prediction of SiO; has the least deviation as it is the major constitution (i.e., the matrix)
of the samples. Minor components such as Al,O3, CaO, FeO and MgO have errors of about
20 to 30%. Impurities, like MnO, NayO and TiO,, suffer most from the matrix effect and have
the worst predictions, which is 40% to 250% inaccuracy.

The conventional ANN has comparable result as that of the calibration curve. Yet their
deviation is caused by the limitation of the ANN discussed earlier. The errors for MnO,
NaO and TiO; are still the worst at 50% to over 300% level. For Al,O3;, CaO and FeO, the
variations are around 20%. However, due to cross-talking of the output neutrons, the
prediction of SiO; is even worse than that obtained from the calibration curve method.
Nevertheless, the predictions at low concentration scattered seriously, revealing the bias of
high-concentration fitting during the training process.

With the modified ANN, the accuracy of the prediction is drastically enhanced. Those
scattered data from the calibration curve method and classical ANN at the low
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concentration region are now brought back to the ideal line. Both the major oxides (SiO»
and ADLOs) and the impurities (MnO and NayO) have similar performance of deviations
below 20%. The matrix effect and the poor accuracy at low concentration that appear in
other methods are no longer observed in the optimized constructive ANN technique.

Oxide ALO; | CaO | FeO | KO | MgO | MnO | NayO | SiO; | TiO:

Constructive
ANN 2.8 10.2 0.6 6.0 16.7 8.0 8.1 5.6 10.7
deviation (%)

Conventional
ANN 18.1 241 229 47.0 25.3 47.2 71.6 17.8 | 360.3
deviation (%)

Calibration
curve 203 | 196 | 209 | 376 | 29.0 | 672 | 2413 | 83 40.0
deviation (%)

Table 4. The average deviation of the prediction from the certified value for each oxide of
the four unknown samples.

Given the success of these two types of analysis demonstrated above: identification and
quantitative, we merged them in one software tool to facilitate data analysis (Fig. 17).

The identification part uses ANN with 139 input neurons, 140 hidden and 41 output neurons,
and the quantitative ANN uses constructive architecture. Two outputs are produced from a
single LIBS data acquisition: material identification and its composition prediction. Even if the
sample cannot be identified, its composition is still accurately predicted.

4. Conclusion

We demonstrate application of supervised ANN architectures to spectroscopic analysis
based on LIBS data. Two distinct processing approaches are described targeting material
identification and quantitative material composition analysis.

In the first application, such features as early stopping and sequential training are
introduced enabling exceptional robustness of the algorithm. While the algorithm was
trained using standard powder-based samples, a 100% successful identification is achieved
using set of natural rocks and minerals as test samples. Application of material identification
in quantitative mineralogy analysis is demonstrated using artificial mineral mixture. Overall
accuracy of 2.5% is achieved.

In the second application, we introduced constructive learning to ensure algorithm stability
and robustness, but at the same time to account for matrix effects. The accuracy better than
20% is achieved for nine elements measured in their oxide form (AL,Os, CaO, FeO, KO,
MgO, MnO, Na;O, SiO, and TiO) in the working range from 10 parts per million up to a
hundred percent. It is worth noting that this accuracy is reached with no assumption on the
type of the material. Geological samples of mineralogy different than those used for training
the algorithm were successfully tested. This demonstrates the ability of the constructive
ANN technique to overcome highly nonlinear multi-dimensional problem caused by matrix
effects in LIBS data.
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Fig. 17. Measurement of a new sample composition by quantitative ANN-LIBS algorithm
implemented in LabView environment complemented by material identification ANN
analysis. Upper-left section defines the network parameters and hardware control
parameters. Top-right part displays the acquired spectrum. Bottom-right section displays
the results of ANN analysis (from left to right): sample identity (Coulsonite in this case) and
its tabulated composition, then the sample composition predicted by quantitative ANN, and
finally the difference between the predicted composition and the tabulated composition.

Based on the above algorithms, the integrated software tool has been developed. It provides
identification, mineralogy, and composition analysis with a single acquisition of LIBS
spectra. The future works will be directed toward verification of stability of the algorithms
with data acquired in different experimental settings. Use of sequential training for
quantitative composition analysis is proposed to enhance this stability. We plan to
implement comprehensive validation tests in laboratory and in field conditions.
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1. Introduction

In today's industry, it is imperative that a thorough knowledge of the mechanical properties
of materials be known to the designer in order to come up with a design of parts, tools, or
instruments that will meet the highly competitive industrial requirements. It is well known
that mechanical properties of various materials are in turn highly affected by the manner in
which they are subjected to loadings of both static and fatigue types, and by its
manufacturing process, in particular the heat treatment the material receives during its
manufacturing. This further makes it required to perform the proper experiments and
laboratory tests with regard to fatigue in the field of fatigue mechanics in order to obtain the
necessary knowledge for the material properties for design purposes. It is emphasized that
such properties obtained from monotonic tests are of no value and by no means
recommended. To this end, on one hand metallurgical engineers often attempt to obtain
their desired material properties and efficiencies by making variations in the parameters
governing the manufacturing process. On the other hand, yet, the high costs of fatigue tests
as compared with those of the simple monotonic tests, as well as the need for complex
testing equipment are the major drawbacks in the way of such tests, encouraging the use of
approximate and empirical mathematical models based on the data obtained from the
monotonic tests. This has been quite evident among researchers and industry alike, as
indeed indicated by the variety of ongoing articles published in the field. In the area of
materials engineering as well, the knowledge of the effect of different manufacturing
processing parameters on the material properties in view of the highly expensive nature of
the tests are also of particular interest. Use of Artificial Neural Network (ANN) models is
considered as a less expensive, less tedious, more efficient, and highly reliable alternative
means for the estimation of the material fatigue properties using the data obtained from the
monotonic tests. In addition, the ANN methodology was also employed for the parameter
estimation related to the manufacturing process of materials. The method was also used to
investigate and infer the manner in which such material properties are affected by variations
in the parameters that are the main governing elements of these properties. Many
researchers have indeed pursued such applications in their studies (Bucar et al., 2006; Genel,
2004; Han, 1995; Lee et al., 1999; Liao et al., 2008; Malinov et al., 2001; Mathew et al., 2007;
Mathur et al. 2007; Park & Kang, 2007; Pleune & Chopra, 2000; Srinivasan et al., 2003;
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Venkatessh & Rack, 1999). Once the ANN model is trained properly, it will be able to offer
an appropriate estimate of the required output using the given input parameters.

In this chapter, it is first attempted to give an account of the necessity and benefits of the
ANN methodology as pertained to the mechanical properties of materials followed by an
exposition of the necessary knowledge for the proper use of this strong and valuable
technique. This chapter will then close by the introduction and discussion of a case study.

2. Artificial Neural Network; an overview

In recent years, Artificial Neural Network (ANN) has been applied in many fields including
function approximation and prediction. Artificial neural network is a kind of information
processing technology, good at handling problems in which complex nonlinear relations
exist among the input and output variables. The main idea of neural network approach
resembles the human brain functioning. Artificial neural networks are based on the
structure and functioning of the biological nervous system. Neurons are the basic unit or
building blocks of the brain. The human brain consists of about 101! neurons, leading in
about 1000 trillion connections. A neuron receives many input signals but it produces only
one output signal at a time.

Back propagation network is made up of a large number of interconnected neurons. The
neurons are arranged in layers: one input layer, one output layer, and one or more hidden
layer(s) between the input layer and the output layer. Each neuron in the input layer is
connected to every neuron in the hidden layer which in turn is connected to the neuron in
the output layer. This topology results in a network commonly known as the Multilayer
Perceptron, abbreviated as MLP. In the conventional MLP network, there is no connection
between neurons in the same layer. The connection between two neurons is called synapse,
and each synapse has an associated strength or weight, which influences the output of the
neuron. Neurons in the input layer receive the input signals from each training pattern. The
outputs of the neurons in the input layer are exactly the same as the input signals to those
neurons. The neurons in the hidden layer then receive the output of the input neurons. This
signal is then run through a nonlinear activation function to produce the output of each
neuron of the hidden layer. The output of the neurons of the last hidden layer is in turn sent
as an input to each output neuron. The more the number of hidden neurons, the more
complex the model becomes. The predicted output is compared with the desired output and
the error is sent back to the hidden layer for improving the prediction. The neural network
architecture is described by the number of hidden layers, the number of neurons in each
layer, the form of activation function used to nonlinearise the input-output relationship,
training algorithms, the learning rate, momentum rate, and other pertinent parameters used
in the network.

Implementation of a neural network requires one to make three main decisions, namely the
structure, ie., the network topology, the type of activation functions, and the learning
algorithm. The structure of the network deals with the number of hidden layers used in the
network as well as the number of nodes used in each layer. The activation function refers to
the transfer function for the neurons of each layer except for the input layer which uses an
identity activation function. The notion of learning refers to the use of a suitable learning
algorithm in the network training process.

Before training, the network architecture must be defined. As a general rule, the number of
neurons must be large enough to be able to map the implicit relationship existing between
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the input and output variables for a given problem. On the other hand, it must not be overly
large, since otherwise its connection weights may not be accurately estimated from the
available training data.

Depending on the structure of a neural network designed for use in a certain problem, two
general neural networks can be designed, namely feedback and feedforward neural
networks. The most widely used algorithms are in general feedforward networks, which is
simple from the viewpoint of structure and easily analyzed mathematically. The back
propagation neural network scheme, with a strong learning ability in training and mapping
the relations between inputs and outputs, is the most commonly used network model
(Koker et al., 2007).

The ANN model applied in materials science belongs to a novel branch subject-Material
Metrics. ANNSs are parallel-interconnected networks of simple computational elements that
are intended to interact with the objects of the real-world in a similar way to the biological
nervous system (Muc & Gurba, 2001). Formally, an ANN is an oriented graph in which the
nodes represent a set of processing units, called neurons, or processing elements, and the
connections represent the information flow channels. Each connection between two neurons
has an associated value called weight (Wij) which specifies the strength of the connection
from unit i to unit j (Bahrami et al., 2005). The choice of a specific class of networks for the
simulation of a nonlinear and complex problem depends on a variety of factors such as the
accuracy desired and the prior information concerning the input-output pairs (Mousavi
Anijdan et al, 2005). The most popular ANN in materials science and engineering
investigations is the feedforward multi-layer perceptron, where the neurons are arranged
into an input layer, one or more hidden layers, and an output layer (Muc & Gurba, 2001;
Bahrami et al., 2005; Mousavi Anijdan et al., 2005; Song et al., 1995). A schematic description
of a three-layer feedforward network is given in Fig. 1. Assuming that the network consists
of n, p, and m neurons in the input, hidden, and output layers, respectively, the net input
(zj) to node j in the hidden layer is of the form

3= LWy =1 20mp 1)

Fig. 1. A schematic description of artificial neural network configuration
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, where x; is the input of node j of the input layer, Wj is the connection weight associated
with node i of the input layer and node j of the hidden layer, and b; is the bias associated
with node j of the hidden layer. The bias neurons do not take any input and they emit a
constant output value across weighted connections to the neurons in the next layer.

Each neuron consists of a transfer function expressing internal activation level. The output
(h) from a neuron is determined by transforming its input using a suitable transfer function
as follows:

hj—f(ZV\/ijxi+ij , j=12,.p @)

i=1

Generally, the transfer functions are sigmoid function, hyperbolic tangent and linear
function (Fogel, 1994; Wong & Y. W. Wong, 1995).
In the output layer, the net input z to node k is of the form:

p
zk:Zijh/+bk , k=1,2,...,m ®)
j=1
The output yi of node k of the output layer is then written as:
4
V=8l X Wihj+b | , k=1,2,.,m (4)
j=1

To estimate the degree of accuracy of the network, the database is split into two sub-groups:
the so-called learning phase used to determine the weights associated with each
interconnection (training process), and the test or validation phase, which verifies that the
network is able to predict examples not previously learnt (validation process). The training
process consists of determining the weights that produce from the inputs the best fit of the
predicted outputs over the entire training data set. An input vector is then introduced in the
input layer and is propagated through the network all through the output layer. The
difference between the computed output vector and the target vector is then used to
determine the weights using an optimization procedure in order to minimize the suitable
error function. This form of training is termed the back propagation training algorithm
(Mousavi Anijdan, 2005). There are several variables that have an effect on the ANN
training. These variables are the number of training data points (N), network size (number
of hidden layer and neurons in each layer), and number of training iterations or epochs (C).
To find the best set of these variables and parameters, these parameters should be varied
and then the best combinations chosen.

An important step in building a neural network model is called training, the process of
fitting the network to the experimental data and this is a computationally intensive process.
Learning in an MLP neural network model involves the use of a gradient descent algorithm
in an iterative manner to minimize the mean square error between the actual outputs of the
network and the desired outputs in response to given inputs. Training in an MLP network is
performed by a forward followed by a backward operation. The network produces its actual
output for a certain input pattern using the current connection weights. Subsequently, the
backward operation is carried out to modify the weights in an attempt to decrease the error
between the actual and desired outputs. The updates in the weights are affected by two
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parameters, namely the learning rate n and momentum coefficient a. The learning rate
defines the speed for the changes that are taking place in the connection weights. The
momentum coefficient is introduced to improve the learning process to make the learning
process faster by adding a term to the weight adjustment proportional to the previous
weight change.

The error is computed using Eqgs. (5) known as average squared error. Here, N denotes the
total number of samples in training set:

MSE=L3 (02 =13 (1) 6
Ni:1 ! Ni:1 ' '

Once each input pattern is presented to the neural network and the network error
corresponding to that input pattern is calculated, this error is propagated back through the
network and the weights are adjusted according to the well-known backpropagation of
error learning rule. The next input pattern is then presented to the network and the process
repeats until all the input patterns get the chance to be presented to the network. When all
the input patterns are presented to the network once, one epoch is said to be completed in
the training process. This process is iterated for as many epochs as needed for the error to
reach a desired minimum level, at which time, the network is said to have learned the
problem in consideration. Finally, the test data are used to verify the non-linear relationship
between the input and output data sets.

NN models can be used for accurate interpolation within the range of input variables used
for building the model. As far as extrapolation beyond the experimental range used in the
training set, one must be careful not to place overly trust in the network response, as it may
not produce a reliable result for inputs too far beyond.

2.1 Neural network training algorithms

Artificial neural networks are used as an interdisciplinary tool in many types of nonlinear
problems. In order to design a neural network for a certain problem, one needs a training
algorithm. As neural networks function based on samples (patterns), it is necessary to
prepare a set of examples representing the problem in the forms of system inputs and
outputs. During the training process, the weights and biases in the network are adjusted to
minimize the error to obtain a high-performance for the problem.

There are various training algorithms used in neural network applications. It is normally not
a simple task to predict which of these training algorithms will be the most appropriate one
for any problem. It generally depends on a number of factors such as the network
architecture, and the application at hand (pattern recognition, classification, or function
approximation). Other issues that may also be important could be the data structure and
uniformity of the training set, as these will affect the system accuracy and performance.
During the training process, it is important to avoid overtraining in an effort to obtain the
best fit. This is a potential problem with the use of powerful non-linear regression methods
in neural network modeling. An over-trained model tends to remember the relationship
between input and output variables and therefore lacks generalization capability (Mathew
et al., 2008).

During the training session, the network weights are continuously adjusted until the
difference between the predicted output and experimental value is minimized, i.e. the error
function defined as the sum of squares of the difference between predicted and



122 Artificial Neural Networks - Industrial and Control Engineering Applications

experimental value on all the input patterns reaches a set limit or the number of
predetermined training operations or epochs are completed, whichever comes first.
Levenburg-Marquardt algorithm, Quasi-Newton algorithm, and Steepest-Descent method
are some of the optimization techniques employed in the training of the neural networks.
From these learning algorithms, the one most used in training the MLP networks is the
Levenburg-Marquardt algorithm due to its fast convergence. Accordingly, a brief account of
this algorithms is presented below.

The back propagation learning algorithm which is based on the first order gradient of the
network error enjoys the benefit of simple implementation as well as the ease of its use. Yet,
it suffers from the disadvantage of a slow convergence. The Levenberg-Marquardt
algorithm (Hagan & Menhaj, 1994) is a step taken towards solving the problem of slow
convergence of the BP method. The LM method is based on a second order gradient of the
network error. The fast convergence is the immediate consequence of the fact that the
algorithm takes advantage of making use of only an approximation for the Hessian matrix
instead of doing a thorough computation of this matrix. It also avoids the singularity of that
matrix by adding a small term in the approximate calculation of the matrix. It is well known
that the LM algorithm performs much faster than the usual BP rule at the cost of requiring
more memory. The Levenberg-Marquardt training algorithm was indeed found to be the
fastest training algorithm to date.

Once the training of the network is completed, the ability of the trained neural network to
correctly generalize must be checked out using some input-output data not included in the
training set. This set is commonly known as the test set or validation set. This set is normally
prepared by randomly taking some 20 to 25 percent of the original data set. It is noted that
each pattern from the validation set must lie within the range defined by the entire training set.

3. Some remarks in the use of Neural Networks

To develop a neural network with good performance, an adequate quantity of experimental
data must be available. During the training and testing sessions, the network architecture,
learning algorithm, and other parameters of the neural network should also be optimised to
the specific problem under investigation. When the neural network is sufficiently optimal,
and trained based on these data, it then becomes possible to generate satisfactory results
when presented with any new input pattern it has never experienced before.

As the number of neurons in the hidden layer increases, so does the number of connections
and weights to be fitted. The number of neurons and the number of hidden layers cannot be
increased without limit because one may reach a situation where the number of the
connections to be fitted is larger than the number of the data pairs available for training.
Though the neural network can still be trained, the case is mathematically undetermined.
Mathematically it is not possible to determine more fitting parameters than the available
data points. For example, two data points are required as a minimum for linear regression,
three data points for second order polynomial (parabolic) regression and so on. In practice,
for a reliable regression, much more data than the minimum amounts are used to increase
statistical significance. For example, if we use two points to determine a slope through linear
regression, the standard error of the slope calculated will be infinitely large. A slope
determined through two points has no statistical significance (Sha & Edwards, 2007).

In order to increase the efficiency of the neural network training techniques, it is necessary
to use a large database consisting of sufficient number of training patterns to cover the
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entire working space of the problem under study. Neural network modelling cannot replace
experimentation; in fact it relies entirely on past experimental results, and because of the fact
that experiments can be expensive, time consuming, and dangerous, researchers focus on
the neural network methods. The neural network technique is actually most effective when
large amount of data are already available in the literature. In such cases, the neural network
is an effective way of storing and analyzing, with some artificial intelligence, the large
amount and wide range of data from different sources. Because of the randomness of the
data, the large size of the data, and the multiple natures of the input variables in most cases,
it is usually difficult to extract physical rules governing the large data set or quantitative
physical theories that can describe the problem data. Hence, a neural network model is ideal
for such situations. In fact, if a limited amount of systematic data is available, efforts would
be better spent on developing physical models rather than statistical or neural network
models.

It is noted that the errors obtained for the testing sets are more important than the errors
obtained for the training sets, due to the fact that the errors for the testing sets are normally
much larger and would not compare well with the errors for the training sets. One must also
note that it is more effective to develop separate models for individual output variables.
This is because the training time increases significantly when the number and nature of
outputs increases. Therefore, setting up a series of neural network models, with each model
dealing with only one output variable significantly improves the network learning and
simplifies and speeds up the training of the neural network model.

When determining the inputs, it is imperative to use independent variables as inputs. In
fact, if there was only one input variable, a neural network would be no better than the
conventional, simple regression. A neural network in this case does no more or better than
the "Moving Average" or similar "Trend Line" functions, or even "Smoothed Line" in
Microsoft Excel. A neural network is best used to model complicated interactions between
several numbers of input parameters (Sha & Edwards, 2007).

All through experiences in the use of neural networks in engineering problems, it is
determined that certain types of networks are normally more appropriate for certain
problems. For instance, and to be more specific, it is realized that to predict the fatigue life of
materials or to predict the mechanical behaviour of materials under monotonic and cyclic
loading, the Multilayer Neural Network along with the Back-Propagation learning
algorithms have been proven to be very effective and accurate, especially when there is
sufficient training data (Abdalla & Hawileh; 2010).

4. Case study: Estimation of cyclic strain hardening exponent and cyclic
strength coefficient of steels by artificial neural networks (Ghajar et al., 2008)

In many field test situations, it may be desirable to convert the measured strains to stress in
order to estimate fatigue life. Stress-strain response of some steels can change significantly
when subjected to inelastic strains as this may occur at notch roots due to cyclic loading.
When fatigue failure occurs, particularly at low cycle fatigue, such inelastic straining is
generally present. Hence, the cyclic stress-strain curve may better represent the steel’s stress-
strain response than the monotonic stress-strain curve (Society of Automotive Engineers
[SAE], 2000). The relationship between cyclic strain amplitude, Ae/2, and cyclic stress
amplitude, Ac/2, can be expressed as (Stephens et al., 2001):
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Ag/2 = As/2E+(Ac/2K')1/n ©6)

, where K' is the cyclic strength coefficient, n' is the cyclic strain hardening exponent, and E is
the modulus of elasticity. The two fatigue properties needed in this correlation are K' and n'.
The cyclic strength coefficient, K', and the cyclic strain hardening exponent, n', are often
determined from the cyclic stress plastic strain curve. A family of stabilized hysteresis loops
at different strain amplitudes can be used to obtain the cyclic stress-strain curve for a given
material. The tips from the family of multiple loops are connected, as shown in Fig. 2, to
form the cyclic stress-strain curve. Three methods commonly used to obtain the cyclic stress-
strain curve are the companion, incremental-step, and multiple-step test methods (Stephens
et al., 2001). These test methods are time-consuming and the testing equipment is more
complicated and expensive than that required for monotonic tension tests, while monotonic
stress-strain properties are commonly available in handbooks. Therefore, it is more desirable
to use approximation methods for estimating the values of K' and n'.

' n'
g =K (&ap)

Strain

JR00E 120 ksi (140 MPa)

Fig. 2. Stable hysteresis loops for determining the cyclic stress-strain curve and comparison
with the monotonic stress-strain curve (Stephens et al., 2001).

An approximation of K' and n' can also be calculated from the low-cycle fatigue properties
by using (Stephens et al., 2001):

K = Glf/ (SIf)b/C
@)
n'=b/c

, Where o't is the fatigue strength coefficient, &'r is the fatigue ductility coefficient, b is the
fatigue strength exponent, and c is the fatigue ductility exponent. This estimation method
has its problems and errors. It requires, in the first place, the four empirical constants that
must be obtained from fatigue tests. Furthermore, estimating cyclic stress-strain curves
based on fatigue properties could lead to considerable errors in certain situations (Kim et al.,
2002). So, it is recommended that the values of K' and n' obtained from direct fitting of the
experimental data are used in fatigue design rather than those calculated from Eq. 7
(Stephens et al., 2001).
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It is therefore useful to estimate cyclic strength coefficient and cyclic strain hardening
exponent on the basis of monotonic tensile tests properties, reported in handbooks or simply
obtainable from experiments. By doing so, one can covert cyclic strain to cyclic stress only
by using tensile test properties.

In this work, the MLP network with back propagation algorithms is used for the estimation
of cyclic strain hardening exponent, n', and the cyclic strength coefficient, K', of steels. The
K' and n' are estimated by two separate networks. For these estimations steels tensile data
used as input to the ANN model, are extracted from the literature (SAE, 2001; Kim et al.,
2002; Roessle & Fatemi, 2000). In order to enhance training performance, both input and
output variables are normalized before the network is trained. In order to investigate the
influence of input parameters on the estimation of n' and K', several networks having
different combinations of tensile data are considered. The mean square error (MSE) between
the desired output and the ANN response is used.

A broad range of 82 steels is used for modeling n'. One set of data consist of 60 values was
used for training the network and another consisting of 22 values was used for testing the
trained network. Preliminary examinations were performed on different combinations of oy,
Sw, RA%, BHN and E as input data to the ANNs in order to determine the parameters affecting
the n' estimation. Finally three combinations of tensile data were selected from among them as
follows: (oy, Sy and BHN), (oy, Sy, RA% and BHN), and (oy, Sy , RA%, BHN and E).

A number of neural network architectures with different number of neurons in the hidden
layer (2 to 10 neurons) were also investigated to select the best one. A summary of the
results is presented in Table 1. The results indicate that the best architecture involves 7
neurons for the first combination (cy , Sy and BHN), 9 neurons for the second (oy , Su, RA%
and BHN), and 6 neurons for the last (6y , Su, RA% , BHN and E).

Neurons in the Regression for the Regression for the No. Of

Input sets hidden layers training data test data Iterations
o,,5,/BHN 6 0.890 0.563 363

7 0.913 0.716 367

7 0.973 0.726 550
o,,5,,BHN,RA% 8 0.967 0.792 120

9 0.973 0.865 112

5 0.913 0.379 700
o,,5,,BHN,RA%,E ¢ 0.962 0.702 700

7 0.910 0.205 1000

Table 1. Networks details and architectures of n'

As mentioned earlier, the performance of the networks was evaluated by calculating MSE
errors. In order to assess the validity of the networks and their accuracy, it is often useful to
perform regression analysis between the network response and the corresponding target.
Obviously, the closer these two data are, the better the performance of the network is. Fig. 3
shows the regression analysis for the best set of input for the test and training data. The
regression results of the training data illustrate that networks were trained with a high
accuracy. Furthermore, comparison of the regression results of the test data indicates that
the set of inputs (cy , Su, RA% and BHN) provided the best prediction, R=0.866, followed by
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the set (o , Sy and BHN). The difference in accuracy observed among the different input sets
shows the importance of input parameters for predicting n'. It may be concluded that oy , Sy
, RA% and BHN have relatively established effects on the prediction of n' while the effect of
E is not only immaterial, but also confusing.
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— Best Linear Fit = Best Linear Fit
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Predicted
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Fig. 3. Regression analysis of n' for the train and test data and (oy , Su, RA% and BHN) as
the ANN input.

In addition, the test data were used for a new prediction based on Eq. 7 to evaluate ANN
test results. Fig. 4 shows the results of this estimation. By comparing ANN and Eq. 7 results
(Fig. 3 and 4) it may be concluded that the ANN estimations were more accurate than Eq.7.
Therefore, such estimations seem desirable, especially considering the time and effort that
are required to obtain the fatigue properties used in the approximations by Eq.7, as
compared with the monotonic tensile properties used in ANN predictions.
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O Eq.3Points

Best Linear Fit
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Experimental

Fig. 4. Regression analysis of approximated n' based on Eq. 7 for the test data.
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Finally, based on the regression analysis results, it is possible to claim that the ANN with
(oy, Su, RA% and BHN) input set is a useful method for the prediction of cyclic strain
hardening exponent.

For K' estimation, the properties of 48 steels reported in the literature (SAE, 2001; Kim et al.,
2002; Roessle & Fatemi, 2000) were used. 36 values of data were used for training the network
and the others consisting of 12 data values were used for testing the trained network.

Three combinations of tensile data consisting of oy, Sy, RA%, BHN and E were used to
determine the parameters affecting the K' estimation in the same manner as in the case of n'.
A number of neural network architectures with different number of neurons in the hidden
layer (2 to 10 neurons) were also investigated to select the best one. The summary of the
results are provided in Table 2. Clearly, the best architecture is associated with 6 neurons for
the combination (oy, Sy and BHN), 8 neurons for (oy, Sy, RA% and BHN), and 7 neuron for
(oy, Su, RA% , BHN and E).

Neurons in the Regression for ~ Regression for No. Of

Input sets hidden layers the training data the test data  Iterations
o,,5, BHN 6 0.998 0.901 320

7 0.995 0.896 200

6 0.999 0.926 229
,,5,,BHN,RA% 7 0.994 0.931 87

8 0.996 0.953 100

6 0.999 0.913 166
0,,5,,BHN,RA%, E 7 0.999 0.925 185

8 0.999 0.853 200

Table 2. Networks details and architectures of K'

As mentioned previously, the performance of the networks was evaluated by calculating the
MSE errors. In order to assess the validity of the networks and their accuracies, the
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Fig. 5. Regression analysis of K' for the train and test data and (cy , Su, RA% and BHN) as
ANN input.
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regression analysis was performed between the network response and the corresponding
target. Fig. 5 indicates the regression analysis for the best set of input for the test and training
data. It may be seen from this figure that the value of K' obtained from the trained network is
in close agreement with its experimental value. Moreover, the regression results of test data
illustrate that amongst the input sets, the set (cy, Su, RA% and BHN) set of inputs yielded the
best prediction, R=0.953, followed by the set (cy, Sy, RA%, BHN and E). Similar to the case of n'
estimation, it can be concluded that oy, Sy, RA% and BHN have relatively effects on the
prediction of K' while the effect of E is not only immaterial, but also confusing.

Additionally, the test data were used for a new prediction based on Eq. 7. Comparing the
results of this estimation and experimental values for K' is depicted in Fig. 6. There is a poor
agreement between the experimental values of K' and the predictions obtained from Eq. 7.
From Fig. 5 and 6, it can be concluded that the ANN estimations are more accurate than Eq.
7. Therefore, the ANN method is preferred, especially by considering that it only requires
monotonic tensile properties.

Finally, similar to n', based on the regression analysis results, it is possible to claim that the
ANN with (oy, Sy, RA% and BHN) input set is a useful method for the prediction of cyclic
strength coefficient.

Cyclic strain hardening exponent and cyclic strength coefficient of steels, which characterize
the stable curves of true stress amplitude versus true plastic strain amplitude, were
predicted by ANN with high accuracy of 0.865 and 0.953% respectively while accuracy of
estimations based on approximate relations (Eq. 7) are 0.693 and 0.726%.

It was concluded that predicted stable cyclic true stress-strain curve properties by trained
neural network are more accurate compared to approximate relations based on low-cycle
fatigue properties.
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Fig. 6. Regression analysis of of approximated K' based on Eq. 7 for test data.

5. Conclusion

This chapter presents an exposition of the benefits and advantages of the neural network
technique in the solution of engineering problems as a whole and materials science
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problems in particular. A general overview of the neural network models is given followed
by the introduction of a case study related to some fatigue properties of steels. It is
emphasized that neural network models are effective techniques for modelling the problems
in material science as the technique will help a material scientist with the determination and
estimation of the complex and often nonlinear relationship governing the input/output data
obtained within an experimental setup. As such, neural network techniques are still an
ongoing research area as applied to the problems in material science and engineering.
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1. Introduction

At present, the main method of the ceramic tool and die materials research is still the
traditional “trial-error’” method which needs a large number of experiments to determine the
optimum material compositions. This traditional method requires researchers to repeat
experiments and to face to the complex preparation processes as well as the high cost of the
experiments, and so on. Therefore, the utilization of advanced and even intelligent design
technologies for ceramic material design is extremely necessary.

The computational intelligence (CI) technique, as an offshoot of artificial intelligence (Al), is
a kind of heuristic algorithm including three categories: neural network, fuzzy system and
evolutionary computation. Genetic algorithm (GA) and artificial neural network (ANN) are
the two important computational intelligence techniques.

In recent, the two techniques especially the ANN have got successful application in the
material design of ceramics and metal matrix composites, etc. For instance, some researchers
used ANN to predict the functional properties of ceramic materials from compositions
(Scott et al, 2007) or the bending strength and hardness of particulate reinforced Al-Si-Mg
aluminum matrix composites (Altinkok & Korker, 2004) or the mechanical properties of
ceramic tool (Huang et al, 2002) or the percentage of alumina in AlO3/SiC ceramic cakes
and the pore volume fraction (Altinkok & Korker, 2005), etc.

ANN is a kind of self-learning technology and back propagation (BP) neural network is one
of the simply and commonly used network architectures. BP is based on the gradient
descent method where connection weights and thresholds are modified in a direction
corresponding to the negative gradient of a backward-propagated error measure (Jiang &
Adeli, 2004). Although BP neural network has an advantage of high accuracy, it is often
plagued by the local minimum point, low convergence or oscillation effects. In order to
overcome the disadvantage of BP neural network, GA is usually used to improve the BP
neural network. GA has a strong searching capability and high probability in finding the
global optimum solution which is suitable for the early stage of data searching. Although
these two techniques seem quite different in the number of involved individuals and the
process scheme, they can provide more power of problem solving than either alone (Yen &
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Lu, 2002; Yao, 1999; Gen & Cheng, 2000). Therefore, many researchers have attempted to use
GA to improve BP neural network in order to achieve the complementary advantages
(Sexton, 1998; Gupta & Sexton, 1999).

Some successful examples of the improved BP neural network which were optimized by GA
had been reported to optimize successfully the flow stress of 304 stainless steel under cold and
warm compression (Anijdan et al, 2007) or the surface roughness in end milling Inconel 718
(Ozcelik et al, 2005) or the plasma processes (Kim & Bae, 2005), etc. In literature (Zemin et al,
2010), BP neural network was used to predict punch radius based on the results of air-bending
experiments of sheet metal. This prediction model was proved to be effective by experiments.
The compositions and hot pressing parameters are two important factors which can greatly
affect the mechanical properties of ceramic materials. In the present study, the standard BP
neural network and the improved BP neural network are used in the optimum design of
both compositions and hot pressing parameters of ZrO,/TiBz/ Al;O; nano-micro-composite
ceramic tool and die material.

2. The improved BP Neural Network

BP neural network is multi-layered forward feed neural network which is based on the error
back-propagation algorithm. And the study of BP neural network can be divided into two
steps which named forward-propagation process and back-propagation process,
respectively. In forward-propagating process, the input is the known sample data and the
information will be transmitted in turn for the hidden layer and the output layer. And the
error between actual output and expected output is calculated in output layer. The back-
propagation process is that the calculated error will modify each connection weight and
threshold along the original way. The above two processes are iterated and repeated until
the error satisfies the condition.

Fig. 1 is the structure of BP neural network. The network is multilayer which is composed of
some connection neurons according to certain rules. It mainly consists of input layer, hidden
layer and output layer, and each layer has independent neuron constitution. The layers are
connected by the weights which can express the link degree between the neurons. And the
hidden layer is composed of at least one or more layers.

Input layer Hidden layer Outputlayer

XN - 75y .
X2 §
Y2
Xn .
‘n

Fig. 1. The structure of BP neural network

The improved BP neural network means using GA to optimize the BP neural network. The
commonly improved BP neural network mainly has three methods. One is using GA to
improve the structure of BP neural network which is marked as GA-BP I; the second is using
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GA to identify the initial connection weight and threshold of BP neural network which is
marked as GA-BP II; while the third is using GA not only to identify the initial connection
weight and threshold but also to improve the structure of BP neural network which is marked
as GA-BP III. The latter two kinds of algorithms will further be discussed in the present study.

2.1 The GA-BP Il algorithm

BP neural network is very sensitive to the initial vectors and different initial values may lead
to completely different results. Especially in the specific calculation process, the related
initial values are usually determined randomly or by experience. Once the initial value is
not properly determined, it would lead to effect of oscillation or seldom convergence. Even
if it is convergent, the process will be quite slow because of the too long time of training or
falling into local minimum. And the best connection weights distribution can not be
achieved. Used GA to optimize the connection weight and threshold of BP neural network
(GA-BP II) can solve the kind of problem.

The principle of the GA-BP II algorithm is as follows: using GA to optimize the connection
weights and thresholds of BP neural network from its searching space which contains all the
available individuals. Then, the BP network is trained with these connection weights and
thresholds so that the error between BP actual output and target output could be reduced.

2.2 The algorithm of GA-BP Il

Most of the research literatures focused on the utilization of various improved GA to optimize
the connection weight and threshold ignoring the importance of the structure of BP neural
network and its close relationship between the structure and the connection weight. In the
present study, an improved algorithm of BP neural network with GA (GA-BP III) is used for
the optimum design of nano-micro-composite ceramic tool and die materials. In this
algorithm, GA is used to fully optimize BP neural network including the comprehensive
optimization of the structure, the initial connection weight and the threshold.

It is reported that the structure of BP neural network could greatly affect the network
processing capabilities. Redundant nodes and connections are not allowed existing in a
good structure. However, the design of the structure of BP neural network had not
rigorously and systematically theoretical guidance and remains largely dependent on a
person's experience. Using GA to solve the optimization problem of the structure can be
transformed into the process of biological evolution that can be obtained through the
selection, crossover and mutation, etc.

According to the Kolmogorov theorem, for three-layer BP neural network, it can achieve any
given mapping. When the number of the hidden layer neurons is enough, it can use any
degree of accuracy to approximate any non-linear mapping. The neurons in the input layer
and output layer are determined on the specific problem; only the number of neurons in the
hidden layer is variable. Thus, how to determine the number of the hidden layer neurons
has become a very important issue which is the optimum object of the structure of BP neural
network. If the number of neurons in the hidden layer is too little, the network may not be
trained satisfyingly with the results, or the network is not robust enough with the poor
fault-tolerance. If too many, they will make learning time too long and the error is not
necessarily the smallest. So there exist an optimal number of the hidden layer neurons.

It is assumed that the BP neural network is hierarchically fully connected and only the
neurons of two adjacent layers are possible to be connected and must be connected. If the
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input and output vector values are in the real number space and there are no effects
between the connected two neurons, the weight of the two connected neurons will be zero.
Under the known condition of the input and output neurons, the number of the neurons in
the hidden layer could only correspond to the number of the connection weight.

Thus, the principle of the GA-BP III algorithm is as following: Before the optimization, GA is
used to optimize the number of connection weight, the best connection weight and
threshold for BP neural network from its searching space which contains all the available
individuals. After that, a global optimum solution can be achieved. Then the last generation
of individuals is decoded and the corresponding structure of BP neural network, initial
connection weights and thresholds can be achieved. With these values work as the structure
and the initial value, samples are then trained to obtain the precise optimization. The
optimum structure of BP neural network and these connection weights and thresholds could
reduce the error between the output of BP neural network and the target output. Therefore,
the results became more accurate.

2.2.1 Encoding

For the BP neural network with n-d-m three-layer where n is the number of neurons of the
input layer, d is the number of neurons of the hidden layer and m is the number of neurons
of the output layer, the floating-point type number is used for the connection weight and
threshold to be encoded. Link the encoding which is encoded by the order of first
connection weights then thresholds to a long string. The length of the string L is:

L=nxd+d+dxm+m 1)

The scope of d can be ascertained by the empirical formula of the hidden layer neurons (Zhu
& Shi, 2006) given below:

d=vn+m+a 2)

Where n and m can be determined based on the actual problem, « is a constant in the range
of 1 to 10. Thus, once the length of the string L is determined, the number of hidden layer
neurons and then the network structure of BP neural network can be determined. The
individual value after decoding is the corresponding connection weight and threshold.

2.2.2 Determination of the fitness function
The relationship between the input and output of the network is available as following (Gu
et al, 2006):

d n
YkZZij'f{ZWij'Xﬁej]H‘k (3)
=1 i-1

where f is the transfer function between layers, X; is the actual input of the neuron i of the
input layer, Wj; is the connection weight from the neuron i of the input layer to the neuron j
of the hidden layer, 0; is the threshold of the neuron j of the hidden layer, Vj is the
connection weight from the neuron j of the hidden layer to the neuron k of the output layer,
1y is the threshold of the neuron k of the output layer, and Y; is the actual output of the



Optimum Design and Application of Nano-Micro-Composite Ceramic Tool and
Die Materials with Improved Back Propagation Neural Network 135

neuron k of the output layer. According to the error between the actual output and the target
output, a least-squares error function E can be defined as (Gu et al, 2006):

2
P m
E(W,V,0,1)=— 3 3 (T0 - vd) @)
P g=1i=1

Where p is the total number of the training samples, T and Y7 is the target output and the
actual output of the neuron i of the input layer, respectively when the gth training sample
trains.
In order to integrate GA and BP, the fitness function of GA is selected as following (Gu et al,
2006):

1

(W, V,01)=—— -
( D= EW,V,00)+1

©)

In this way, once the outputs are available through the BP computation, the relating outputs
are transferred to the fitness function for comparing and determining the final value. While
the fitness values are being updated from generation to generation, a new generation of the
population will be produced and do the same evaluation. When fitness of the population
reaches the maximum, the output error of the network will become the minimum. This
process will continue until the end of predetermined generation.

3. Experimental

ZrO,/TiBz/ Al;O3 nano-micro-composite ceramic tool and die material is a typical three
phase composite material in which zirconia is the matrix reinforced with titanium diboride
and alumina. High purity nanometer sized ZrO, and micrometer sized TiB, and ALOs
powders were used as the starting materials with average sizes of 39nm, 1.5um and 1.0um,
respectively. According to the required volume fraction, the raw material powders were
blended. The mixtures were subsequently homogenized with absolute alcohol media and
Polyethylene Glycol (PEG) in a ball mill for 48h. After milling the slurry was dried in
vacuum and screened.

In the experiment of compositions optimization, the samples were then formed by vacuum
hot pressing (HP) technique under the hot pressing temperature of 1445°C, pressure of
30MPa and time duration of 60min. Sintered bodies were cut with a diamond wheel into
samples of 3mmx4mmx»30mm. The flexural strength was measured in an electronic
universal testing machine (model INSTRON-5569) by means of the three-point bending
method with a span of 20mm and a loading rate of 0.5mm/min. The Vickers hardness was
tested by the testing machine (model Hv-120) with a load of 196N and a holding time of 15s.
The fracture toughness was determined by the indentation method. The experimental data
for the compositions optimization are listed in Table 1.

In the optimization process of hot pressing parameters, the pressure was kept as 35MPa
limited by the hot pressing equipment. The sintering temperature was initially selected from
1420 to 1480°C and the holding time was initially selected in the range of 20-80min. All the
selected hot pressing parameters are shown in Table 2. According to the processing
technologies mentioned above, the materials were prepared and the mechanical properties
were tested.
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Number | Vzio2 | Vris2 | Varos | Hardness Flexural Fracture toughness
(%) (%) (%) (GPa) strength (MPa) (MPa 'm/2)
1 90 5 5 10.03 619 9.76
2 85 5 10 10.20 501 10.59
3 80 5 15 10.36 509 9.95
4 85 10 5 10.37 617 10.51
5 80 10 10 10.71 612 11.37
6 75 10 15 10.19 565 12.20
7 80 15 5 9.82 513 7.86
8 75 15 10 10.22 524 7.91
9 70 15 15 10.14 520 8.11

Table 1. The compositions and mechanical properties of ZrO,/TiB/ Al,O3 ceramic material

Number Sintering Holding | Hardness Flexural Fracture

temperature | time (min) (GPa) strength (MPa) toughness
(°C) (MPa ml/2)

1 1430 60 13.59 1055 10.57

2 1440 60 13.78 1010 10.26

3 1450 60 13.48 878 9.54

4 1460 60 13.15 914 9.74

5 1470 60 13.26 835 9.27

6 1450 20 13.23 569 8.68

7 1450 40 12.93 671 9.91

8 1450 80 13.69 785 9.49

Table 2. The hot pressing parameters and mechanical properties of ZrO,/TiB,/ Al,O3
ceramic material

4. The compositions optimization

4.1 The compositions optimization based on the standard BP algorithm

The BP neural network can achieve the nonlinear relationship between the compositions and
the mechanical properties. If there are sufficient training data, proper change of the structure
of the BP neural network which includes the number of neurons in input layer, hidden layer
and output layer, and the number of the hidden layer, the BP neural network model of the
optimal compositions can be established. Material compositions can then be optimized
through the complex non-linear relationship between the compositions of the materials
preparation and the mechanical properties. In this paper, the training sample data of standard
BP neural network are the experimental data of the compositions optimization (Table 1).

The hardness, flexural strength and fracture toughness are the main mechanical properties
of ceramic tool and die materials. When the processing techniques are determined, the
mechanical properties of ceramic tool and die material are mainly decided by the
compositions. Therefore, the inputs of the BP neural network model are the contents of each
composition and the outputs are the three mechanical properties of the given materials.
Therefore the model has three input neurons and three output neurons. The sigmoid-type
function is adopted for the input layer to the hidden layer as the transfer function and
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linear-type function is adopted for the hidden layer to the output layer. And the simulated
data are listed in Table 3.

Number Vzio2 Vrigz | Vapos | Number Vzioz Vrig2 Vanos

(%) (%) (%) (%) (%) (%)
1 85 6 9 12 80 14 6
2 85 7 8 13 75 11 14
3 85 8 7 14 75 12 13
4 85 9 6 15 75 13 12
5 80 6 14 16 75 14 11
6 80 7 13 17 60 10 30
7 80 8 12 18 60 15 25
8 80 9 11 19 60 20 20
9 80 11 9 20 60 25 15
10 80 12 8 21 60 30 10
11 80 13

Table 3. The simulated data in compositions optimization

According to the theory of the BP neural network, the computing process is programmed
with neural network toolbox in MATLAB. Training function is using ‘trainlm” function and
network performance parameters are using MSE function which is the mean square error
between the expected output value and the actual output value to measure the network
performance. The training parameters are set as following:

net.trainparam.show=10

net.train.param.goal=0.001

net.trainParam.epochs=100

net.trainParam.lr=0.01

Other parameters are set by default.

Through the calculation of the error between the actual output value and the expected
output value, and according to the BP neural network model, the number of hidden layer
neurons is initially chosen as 6. So, the final structure of standard BP neural network is
3x6x3. Based on this BP model, the compositions are optimized and the mechanical
properties are then predicted. The predicted mechanical properties are listed in Table 4.
After 62 times of iterations, the training curve of BP neural network is converged to the
specified accuracy of 0.001 (Fig. 2). And the mean square error MSE is 1.24.

According to the predicted results, the best flexural strength is 643MPa and the best
hardness of the materials is 9.94GPa with the corresponding volume fractions of
85vol%ZrO,, 8vol%TiB, and 7vol%Al:0s, and the corresponding fracture toughness is
11.14MPa m1/2. The highest fracture toughness is 11.76MPa m!/2 with the corresponding
volume fractions of 75vol%ZrO,, 14vol%TiB, and 11vol%AlLOs, but the corresponding
hardness and flexural strength is low. From comprehensive consideration, it seems that the
mechanical properties of ZrO,/TiB,/Al,O3 nano-micro-composite ceramic tool and die
material with the corresponding volume fractions of 85vol%ZrO,, 8vol%TiB, and
7vol% AlO; is the best. So, this composition is the optimum composition in prediction.



138 Artificial Neural Networks - Industrial and Control Engineering Applications

Number | Vzoz2 | Vris2 | Varos | Hardness Flexural Fracture toughness
(%) (%) (%) (GPa) strength (MPa) (MPa m/2)

1 85 6 9 9.22 546 10.91
2 85 7 8 9.06 611 11.05
3 85 8 7 9.94 643 11.14
4 85 9 6 9.89 643 10.38
5 80 6 14 9.89 506 11.27
6 80 7 13 9.88 510 11.11
7 80 8 12 9.15 543 11.11
8 80 9 11 9.87 594 9.33
9 80 11 9 9.89 594 7.36
10 80 12 8 9.00 565 6.87
11 80 13 7 9.72 547 7.24
12 80 14 6 9.75 530 11.54
13 75 11 14 9.04 568 9.68
14 75 12 13 9.06 542 8.39
15 75 13 12 9.88 528 7.95
16 75 14 11 9.28 525 11.76
17 60 10 30 9.24 451 5.91
18 60 15 25 9.81 504 6.28
19 60 20 20 9.11 576 9.77
20 60 25 15 9.12 483 10.97
21 60 30 10 9.46 454 11.05

Table 4. The predicted results of standard BP algorithm in compositions optimization

0 10 20 30 40 50 60
61 Epochs

Fig. 2. The training curve of BP neural network of standard BP algorithm
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4.2 The compositions optimization based on GA-BP Il algorithm

According to the formerly established BP model in which the number of the neurons of
hidden layer is 6 and the structure of the BP model is 3x6x3, GA-BP II algorithm is used to
optimize the compositions and the predicted mechanical properties are listed in Table 5.

Number | Vzio2 | Vmis2 | Varos | Hardness |  Flexural strength Fracture toughness
(%) | (%) (%) (GPa) (MPa) (MPa m1/2)

1 85 6 9 10.29 563 10.49
2 85 7 8 10.36 625 10.16
3 85 8 7 10.43 645 10.07
4 85 9 6 10.36 636 10.25
5 80 6 14 10.35 496 10.88
6 80 7 13 10.38 505 11.72
7 80 8 12 10.29 558 11.73
8 80 9 11 10.23 599 11.51
9 80 11 9 10.24 617 11.10
10 80 12 8 10.22 614 10.53
11 80 13 7 10.25 585 9.54
12 80 14 6 10.10 541 8.49
13 75 11 14 10.25 595 11.85
14 75 12 13 10.26 590 11.14
15 75 13 12 10.26 565 9.87
16 75 14 11 10.25 538 8.61
17 60 10 30 10.12 511 9.94
18 60 15 25 9.92 458 10.49
19 60 20 20 9.97 517 10.16
20 60 25 15 9.63 516 10.07
21 60 30 10 9.12 462 10.25

Table 5. The predicted results of GA-BP II algorithm in compositions optimization

After about 100 generations of searching, the fitness and square error have been stabilized
respectively as shown in Fig.3. After 12 times of iterations, the training curve of BP neural
network of GA-BP II algorithm is converged to the specified precision of 0.001 which is
shown in Fig.4. The mean square error MSE is 1.05 and the elapsed-time is 144.20s.
According to the predicted results in Table 5, the maximum flexural strength and hardness of
the materials is 645MPa and 10.43GPa,respectively, when the volume fractions of ZrO,, TiB,
and ALO; is 85vol%, 8vol% and 7vol%respectively while the fracture toughness is
10.07MPa m?/2 which is only the better one. The maximum fracture toughness of the material
is 11.85MPa m1/2 with the corresponding volume fractions of 70vol%ZrO,, 11vol%TiB; and
14vol%AlO;, while the corresponding flexural strength and hardness is only 595MPa and
10.25GPa, respectively. Compared with the two compositions, the mechanical properties of the
material with the volume fractions of 85vol%ZrO,, 8vol % TiB; and 7vol % Al,Os is the better.
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Fig. 3. The curve of square error and fitness of GA-BP II in compositions optimization

10’

10 1 1 1 1 1
0 2 4 6 8 10 12

12 Epochs

Fig. 4. The training curve of BP neural network of GA-BP II algorithm in compositions
optimization

4.3 The compositions optimization based on GA-BP Il algorithm

According to the compositions optimization, the input layer neuron number is 3, the output
layer neuron number is 3, and the number of hidden layer neurons is set to d. According to
GA-BP III algorithm, the string length L can be determined as L=3+7d. In accordance with
the empirical formula (Eq. 2) which can determine the range of hidden layer neurons, the
range of d is 4-13. According to the principle of GA-BP III algorithm, the corresponding
computing process is programmed and run with MATLAB 7.0 software. The corresponding
parameters are set as following: the initial population number N=30, the cross probability
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P.=0.8, the mutation probability Pn=0.1 and the error e=0.001. When the error reaches the
intended target, the training process of BP neural network is then stopped.

In the process of GA optimization, with the increase of the evolution of generation, the
fitness and square error are becoming convergent and finally achieve the best value. At this
stage, the corresponding connection weights and thresholds of the BP neural network
become the optimum. Their individuals are decoded as follows: -0.33, 1.00, 0.00, -0.64, -0.09,
0.18, -0.61, -0.38, 0.13, -0.27, -0.27, 0.91, -0.55, 0.72, 0.57, 0.33, -0.48, 0.36, -0.51, -0.19, -0.19, -
0.05, 0.13, -0.32, -0.52, 0.24, -0.78, 0.29, 0.39, 0.13, -0.46, 0.00, 0.00, 0.47, 1.00, -0.32, -0.59, 0.36, -
0.07, -0.40, -0.34, -0.28, -0.22, -1.00, -0.28, -0.61, 0.19, 0.49, -0.82, 0.00, 0.10, 0.52, 0.63, -0.48,
0.96, -0.89, 0.23, 0.11, -0.59. Based on the above 59 parameters and L=3+7d, the number of
hidden layer neurons is ascertained as 8. Therefore the structure of BP neural network is
3x8x3 and the last 11 parameters are the threshold values. Some connection weights in the
list above are found to be 0.00 which indicate that the connection between the two
neighboring neurons is invalid.

Hidden layer

Zr,0 Hardness

TiB, Flexural
strength

ALO; —p ’ K Fracture
toughness

Fig. 5. The structure of BP neural network of GA-BP III algorithm in compositions
optimization

The concrete structure of BP neural network is the improved BP neural network optimized
by GA which is shown in Fig.5. It can be seen that the first neuron of input layer and the
third neuron of hidden layer is no connection. The third neuron of hidden layer and the
second and the third neurons of output layer are also connectionless. The data within the
range of the experimental results are selected as the data for prediction in order to get the
optimum compositions corresponding to the best mechanical properties.

After about 100 generations of searching, the fitness and the square error have been
stabilized respectively as shown in Fig.6. The curve of BP training target is shown in Fig.7. It
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indicates that the BP neural network has 8 iterations convergence to the specified accuracy.
The elapsed-time is 129.939s and MSE is 0.1491.
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Fig. 6. The curve of square error and fitness of GA-BP III algorithm in compositions
optimization
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Fig. 7. The training curve of BP neural network of GA-BP III algorithm in compositions
optimization

The predicted results of GA-BP III algorithm are given in Table 6. It indicates that the
highest flexural strength is 685MPa and the highest hardness is 10.74GPa with the
corresponding volume fractions of 85vol%ZrO,, 8vol%TiB; and 7vol%AlOs. The fracture
toughness with the same compositions is 10.38MPa.m1/2 which is slightly less than the best
value 11.72 MPa.m1/2 when the volume fraction of ZrO,, TiB; and Al,O3 is 80%, 9% and 11%,
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respectively. While the flexural strength and hardness with the latter compositions is only
568 MPa and 10.72GPa, respectively. It suggests that comprehensive good mechanical
properties of the namo-micro-composite ceramic tool and die material ZrO,/TiB,/ Al,O3 can
be achieved when the volume fraction of ZrO,, TiB, and AlOs; is 85%, 8% and 7%,
respectively.

Number | Vzo2 | Vrig2 | Varos | Hardness Flexural Fracture toughness
(%) (%) (%) (GPa) strength (MPa) (MPa m1/2)
1 85 6 9 10.41 581 10.33
2 85 7 8 10.62 652 10.24
3 85 8 7 10.74 685 10.38
4 85 9 6 10.68 674 10.50
5 80 6 14 10.58 525 10.73
6 80 7 13 10.69 537 11.28
7 80 8 12 10.72 547 11.63
8 80 9 11 10.72 568 11.72
9 80 11 9 10.66 662 10.66
10 80 12 8 10.47 657 9.94
11 80 13 7 10.10 590 9.15
12 80 14 6 9.89 538 8.39
13 75 11 14 10.33 539 11.41
14 75 12 13 10.42 519 10.50
15 75 13 12 10.46 510 9.69
16 75 14 11 10.43 517 8.90
17 60 10 30 9.74 567 7.33
18 60 15 25 9.75 567 7.27
19 60 20 20 9.76 567 7.24
20 60 25 15 9.06 407 7.05
21 60 30 10 9.76 506 5.75

Table 6. The predicted results of GA-BP III algorithm in compositions optimization

4.4 Results and discussion

According to the above predicted results of three algorithms (BP/GA-BP II/GA-BP III) and
the analysis, 85%ZrO,, 8vol%TiB, and 7vol% Al,Oj; are chosen as the optimum compositions
since material with the ingredients will have the best flexural strength, the best hardness
and the better fracture toughness. Then, ZrO,/TiB,/ Al,O3 nano-micro-composite ceramic
tool and die material with the above optimum compositions is prepared with the vacuum
hot pressing techniques described in section 3. Compared with the above two algorithms,
the GA-BP III algorithm has less iteration number, shorter elapsed-time and smaller MSE.
Both the experimental data and the predicted data of these kinds of methods mentioned
above are all listed in Table 7 as well as the relative errors between the predicted and
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experimental data. It can be seen that the two kinds of the improved algorithms of both GA-
BP II algorithm and GA-BP III algorithm all have higher prediction accuracy than the
standard BP algorithm. However, the GA-BP III algorithm has the least relative error among
the three algorithms. The least relative error of the hardness, flexural strength and fracture
toughness is 1.8%, 1.4% and 0.7%, respectively which is approximately 38%, 20% and 32% of
that of GA-BP II algorithm and 20%, 19% and 9% of that of standard BP algorithm. The
predicted data of GA-BP III algorithm better coincide with the experimental data. Therefore,
it can well be used in the compositional design of ceramic tool and die materials with high
accuracy of prediction and high reliability.

Hardness | Relative Flexural Relative Fracture Relative
(GPa) error strength error toughness error
(%) (MPa) (%) (MPa m!/2) (%)
Experimental 10.95 / 694 / 10.30 /
Standard BP 9.94 9.2 643 7.4 11.14 8.1
GA-BPII 10.43 47 645 7.1 10.07 22
GA-BPIIT 10.74 1.8 685 1.4 10.38 0.7

Table 7. Comparison of the optimal results of three algorithms and experimental results of
the ZrO, based ceramic tool and die material with 8vol%TiB; and 7vol % Al,O3

5. The optimization of hot pressing parameters

As is known, the mechanical properties of ceramic materials depend on the composition and
microstructure of the material. So in addition to the material compositions, the hot pressing
parameters are the main factors affecting the microstructure and the mechanical properties.
When one of the hot pressing parameters is changed, the sample material is needed to
prepare and the mechanical properties have to be tested. If it is necessary, microstructural
and phase analysis will even be needed to do. This will result in the disadvantages of high
cost and long time-consuming, etc. In this section, the standard BP neural network and the
improved BP neural network GA-BP II and GA-BP III are used to optimize the hot pressing
parameters of ZrO,/TiB,/ A1, O; namo-micro-composite ceramic tool and die materials. And
based on the optimum results, the materials are then prepared and mechanical properties
are tested in order to validate the optimization algorithms.

5.1 The optimization of hot pressing parameters based on the standard BP algorithm
BP neural network can also be used to achieve the nonlinear mapping relationship between
the hot pressing parameters and the mechanical properties of the ceramic tool and die
material.

The training sample data of BP neural network are the experimental data (Table 2). The
input is the hot pressing parameters, including the sintering temperature and holding time.
And the output is the main mechanical properties, including hardness, flexural strength and
fracture toughness. Simulated data are selected from all the data in range of the sintering
temperature and holding time, which are listed in Table 8.

Based on the actual optimal problem, there are two inputs and three outputs of the BP
neural network model. Therefore, the BP model is then established, which has two input
neurons and three output neurons. The transfer function is sigmoid-type and linear-type in
the hidden layer and output layer, respectively.
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Number Sintering .Holdin.g Number Sintering 'Holdin.g
temperature (°C) | time (min) temperature (°C) | time (min)
1 1420 20 11 1460 20
2 1420 40 12 1460 40
3 1420 60 13 1460 80
4 1420 80 14 1470 20
5 1430 20 15 1470 40
6 1430 40 16 1470 80
7 1430 80 17 1480 20
8 1440 20 18 1480 40
9 1440 60 19 1480 60
10 1440 80 20 1480 80

Table 8. The simulated data in the optimization of hot pressing parameters

According to the theory of the BP neural network, the computing process is programmed
with neural network toolbox in MATLAB. Training function is using ‘trainlm” function and
network performance parameters is using MSE function. The training parameters are set as
the same as that in the compositions optimization. And other parameters are set by default.

Number Sintering Holding | Hardness Flexural Fracture toughness
temperature (°C)| time (min) (GPa) | strength (MPa) (MPam'/2 )
1 1420 20 13.55 726 10.26
2 1420 40 13.58 751 10.03
3 1420 60 12.94 1151 12.15
4 1420 80 12.55 1104 11.10
5 1430 20 13.55 722 10.23
6 1430 40 13.49 764 10.47
7 1430 80 12.70 1085 11.97
8 1440 20 13.45 673 9.76
9 1440 60 13.78 1001 10.27
10 1440 80 13.24 984 11.23
11 1460 20 13.19 543 8.52
12 1460 40 12.72 700 10.13
13 1460 80 13.80 722 8.54
14 1470 20 13.29 521 8.21
15 1470 40 12.80 700 9.91
16 1470 80 14.43 614 6.37
17 1480 20 14.00 371 6.04
18 1480 40 13.20 635 8.73
19 1480 60 13.16 816 9.40
20 1480 80 14.53 618 5.90

Table 9. The predicted results of standard BP algorithm in the optimization of hot pressing
parameters
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According to the BP neural network model, the number of hidden neurons is initially
chosen as 6, so the neural network structure is 2x6x3. Based on this BP model, the hot
pressing parameters are optimized and the mechanical properties are obtained by
prediction. Because of the differences of the initial data, the BP neural network is easy to be
shocked, especially in the optimization parameters. Under such circumstances, four times of
the separate BP neural network prediction and simulation is carried out, but the result of
each MSE is not the same. The MSE = 6.45 is selected which is nearly the average value in
the four times, and the predicted results are listed in Table 9. After 40 times of iterations, the
training curve of BP neural network is converged to the specified precision of 0.001.
According to the predicted results, the highest flexural strength and fracture toughness of
the materials is 1151MPa and 12.15 MPa m/2, respectively when the sintering temperature
is 1420°C and the holding time is 60min, while the hardness is just 12.94GPa. The highest
hardness of the material is 14.53GPa which corresponds to the sintering temperature of
1480°C and the holding time of 80min. In this case, the flexural strength of the material is
618MPa and the fracture toughness is 5.90 MPa m!/2. The hardness of the material which is
prepared with these hot pressing parameters reaches the highest, but both flexural strength
and fracture toughness are relative low. Compared with the mechanical properties of the
ceramic tool and die materials prepared with different hot pressing parameters, it seems
that the ceramic tool and die material which is fabricated with sintering temperature of
1420°C and holding time of 60min has better comprehensive mechanical properties.
Therefore, these hot pressing parameters are the optimum hot pressing parameters for the
fabrication of ZrO,/TiB,/ Al,O3 namo-micro-composite ceramic tool and die material.

5.2 The optimization of hot pressing parameters based on GA-BP Il algorithm
According to the formerly established BP model where the number of the neurons of hidden
layer is 6 and the structure of the BP model is 2x6x3, the GA-BP II algorithm is then utilized to
optimize the hot pressing parameters. The mechanical properties are obtained and given in
Table 10. After 40 times of iterations, the training curve of BP neural network of GA-BP II
algorithm is converged to the specified precision of 0.001. The mean square error MSE is 4.27.
After analyzing the predicted results, the material is prepared with the sintering
temperature of 1420°C and the holding time of 60min. It has the best flexural strength and
the best fracture toughness which is 1052MPa and 10.59 MPa m1/2, respectively. Under the
same hot pressing parameters, however, the hardness of the material is 13.36GPa which is
slightly lower. The highest hardness of the material amounts to be 14.28GPa where the
corresponding sintering temperature is 1420°C and the holding time is 80min, while the
flexural strength is 1051MPa and the fracture toughness is 10.40 MPa m!/2. Compared with
the mechanical properties of ceramic tool and die material which is prepared in different hot
pressing parameters, it suggests that the comprehensive good mechanical properties of
ZrO,/TiBy/ Al,O3 namo-micro-composite ceramic tool and die material can be achieved
when the sintering temperature is 1420°C and the holding time is 60min.

5.3 The optimization of hot pressing parameters based on GA-BP Il algorithm

According to the actual problem, the input layer neuron number is 2, the output layer
neuron number is 3, and the number of hidden layer neurons is set to d. According to GA-
BP III algorithm, the string length L can be determined as L=3+6d. In accordance with the
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Number Sintering Holding | Hardness Flexural Fracture toughness
temperature (°C) | time (min) (GPa) | strength (MPa) (MPam /2 )
1 1420 20 14.25 1042 10.39
2 1420 40 14.27 1035 10.51
3 1420 60 13.36 1052 10.59
4 1420 80 14.28 1051 10.40
5 1430 20 13.37 776 9.91
6 1430 40 14.17 1037 10.31
7 1430 80 13.26 1050 10.30
8 1440 20 12.82 624 9.92
9 1440 60 13.78 1010 10.26
10 1440 80 13.31 1035 10.54
11 1460 20 12.83 857 8.42
12 1460 40 12.42 870 9.77
13 1460 80 13.86 597 8.21
14 1470 20 12.15 1006 8.94
15 1470 40 12.29 1005 8.92
16 1470 80 13.29 985 8.87
17 1480 20 12.23 1000 8.87
18 1480 40 13.62 826 7.63
19 1480 60 14.05 704 7.53
20 1480 80 13.25 831 9.11

Table 10. The predicted results of GA-BP II algorithm in the optimization of hot pressing
parameters

empirical formula (Eq. 2) which can determine the range of hidden layer neurons, the range
of d is 3-12. According to the principle of GA-BP III algorithm, the computing process are
programmed and run with MATLAB 7.0 software. The corresponding parameters are set as
following: the initial population number N=30, the cross probability P.=0.8, the mutation
probability P,=0.1 and the error e=0.001. When the error reaches the intended target, the
training parameters of BP neural network is then stopped.

The individuals of the connection weight and thresholds are decoded as follows: 0.32, -0.14,
0.36, -0.29, 0.24, 0.16, 0.24, -0.88, -0.24, 0.16, -0.16, 0.60, 0.44, -0.69, -0.40, 0.03, 0.26, 1, 0.39, -0.29,
0.21,-0.49, 0.00, 1, -0.20, -1, -1, -0.68, 0.00, 0.00, 0.35, 0.02, 0.32, -0.27, 1, 0.09, -0.13, -0.23, 0.15.
Based on the above 39 parameters and L=3+6d, the number of hidden layer neurons is
ascertained as 6. Therefore, the structure of BP neural network is 2x6x3 and the last 9
parameters are the threshold values. The structure is shown in Fig.8 which is the optimal BP
neural network of GA-BP III algorithm. It can be seen that the second neuron of input layer
and the fifth neuron of hidden layer is no connection. The sixth neuron of hidden layer and
the second and third neurons of output layer are also connectionless. After about 100
generations of searching, the fitness and the square error have been stabilized respectively
as shown in Fig. 9. The curve of BP training target is shown in Fig. 10. It is shown that the BP
neural network has 45 iterations convergence to the specified accuracy. The elapsed-time is
155.584s and the MSE is 0.1643.
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Fig. 8. The structure of BP neural network for GA-BP III algorithm simulation in the
optimization of hot pressing parameters
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Fig. 9. The curve of square error and fitness of GA-BP III algorithm in the optimization of
hot pressing parameters

The predicted results of GA-BP III algorithm are given in Table 11. It can be seen that the
optimum flexural strength and the optimum fracture toughness is 1010MPa and 10.40
MPa m?/2 respectively when the material is prepared with the sintering temperature of
1420°C and the holding time of 60min. The hardness of the material fabricated in these hot
pressing parameters is 13.43GPa. The optimum hardness is 14.14GPa which is
corresponding to the sintering temperature of 1420°C and the holding time of 80min, while
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Number Sintering Holding | Hardness| Flexural strength| Fracture toughness
temperature (°C)| time (min)] (GPa) (MPa) (MPa ml/2 )
1 1420 20 13.72 1002 10.91
2 1420 40 13.70 1004 10.38
3 1420 60 13.43 1010 10.40
4 1420 80 14.14 804 9.55
5 1430 20 13.71 996 10.34
6 1430 40 13.71 1005 10.38
7 1430 80 14.02 858 8.06
8 1440 20 13.62 818 9.80
9 1440 60 13.78 1005 10.27
10 1440 80 14.06 897 8.20
11 1460 20 12.08 768 9.82
12 1460 40 11.95 827 9.31
13 1460 80 13.52 493 8.56
14 1470 20 11.69 850 9.96
15 1470 40 12.30 885 9.67
16 1470 80 13.63 427 8.38
17 1480 20 11.70 857 9.96
18 1480 40 12.96 909 9.19
19 1480 60 13.42 715 8.46
20 1480 80 13.66 431 8.37

Table 11. The predicted results of GA-BP III algorithm in the optimization of hot pressing
parameters

the flexural strength and fracture toughness is just 804MPa and 9.55MPa m1/2, respectively.
Both values are obviously lower than the optimum. Therefore, the optimum hot pressing
parameters are that the sintering temperature is 1420°C and the holding time is 60min which
is the same as that of GA-BP II algorithm.

J 5 10 15 20 25 30 35 40 45
45 Epochs

Fig. 10. The training curve of BP neural network of GA-BP III algorithm in the optimization
of hot pressing parameters
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5.4 Results and discussion

According to the predicted results of three algorithms, the sintering temperature of 1420°C and
holding time of 60min are determined as the optimum hot pressing parameters. Then, with
these optimized hot pressing parameters, ZrO,/TiB,/Al,O3 nano-micro composite ceramic
tool and die material with the above optimum compositions is prepared by means of the
vacuum hot pressing technique described in section 3 and mechanical properties are tested.

Hardness | Relative | Flexural | Relative Fracture [Relative
(GPa) error strength error toughness | error
(%) (MPa) (%) (MPaml/2 ) (%)
Experimental 13.3 / 937.0 / 10.17 /
Standard BP 12.9 2.8 1151.5 228 11.10 9.1
GA-BP II 134 0.9 1052.5 12.3 10.60 42
GA-BPIII 134 0.9 1009.7 7.8 10.40 22

Table 12. Comparison of the optimal results of three algorithms and experimental results in
the optimization of hot pressing parameters

Table 12 gives the experimental mechanical properties of the ZrO,/TiB,/ A1, O3 nano-micro-
composite ceramic tool and die material which is prepared under the optimum hot pressing
parameters. The predicted results and the relative errors are both listed.

Compared with the experimental values, the least relative error of flexural strength and
fracture toughness is 7.8% and 2.2% obtained by GA-BP III algorithm which is approximately
63% and 48% of that of GA-BP II algorithm and 34% and 24 % of that of standard BP algorithm.
The least relative error of hardness is 0.9% obtained by GA-BP III algorithm which is the same
as that obtained by GA-BP II algorithm. In addition to the same relative error of hardness by
GA-BP II algorithm, other relative errors of mechanical properties by GA-BP III are the least.
So the predicted results of GA-BP III algorithm are the most accurate in these three algorithms.
The predicted data of GA-BP III algorithm better coincide with the experimental data.
Therefore, it can well be utilized for the optimum design of hot pressing parameters of ceramic
tool and die materials with high accuracy of prediction and reliability.

6. Conclusion

With the utilization of GA-BP III algorithm for the compositional design of nano-micro-
composite ceramic tool and die material, the iteration number could noticeably be reduced
and results are more accurate. It can avoid the local minimum problem and can present
more accurate and reliable results. And it also can overcome the disadvantages of both long
time and slow speed of the standard BP neural network. Preparation experiments of
ZrO,/TiBy/ Al;O3 nano-micro-composite ceramic tool and die material indicate that the
relative error between the experimental and predicted results of the hardness, flexural
strength and fracture toughness is 1.8%, 1.4% and 0.7%, respectively by the GA-BP III
algorithm which is the least relative error among three kinds of algorithms. The predicted
data better coincide with the experimental data high accuracy of prediction.

The GA-BP IIl algorithm can also well be used in the optimization of hot pressing
parameters of nano-micro-composite ceramic tool and die material. It can reduce the
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number of iterations. The optimization results are more precise. The GA-BP III algorithm
can avoid falling into local minimum which is the shortcoming of standard BP algorithm,
and can obtain more accurate and reliable optimization results. Compared with the
experimental results and the predicted result of standard BP neural network, it indicates
that the improved BP algorithms, especially GA-BP III algorithm are suitable for the
optimization of hot pressing parameters of ZrO/TiBz/ Al;O3; nano-micro-composite ceramic
tool and die materials.

Therefore, the GA-BP III algorithm is one of the fast, effective and reliable algorithms in the
optimum design of both compositions and hot pressing parameters of nano-micro-
composite ceramic tool and die materials. It suggests that it can also be effectively applied in
the material design area of other ceramic composites.
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1. Introduction

Low alloy steels are the most demanding materials that are used in industrial processes such
as hot stripping. Hot stripping is a severe plastic deformation which is applied on cast steels
for a variety of shapes and sizes. A hot strip mill consists of, from start to finish, reheat
furnaces, roughing mill, finishing mill, runout table with accelerated cooling and finally a
coiler, as shown in Figure 1.

Reheating Furnace
l- | & 0§ 0 | I
N BN BN BN . . Rllﬂ()l!t
G Table

Roughing Fle[Si]lllmg
Mill

Coiler

Fig. 1. Schematic illustration of hot strip mill.

The process enhances the properties of steels by several metallurgical mechanisms which
take place in different parts of the hot strip mill. This process is illustrated in Figure 2 which
includes following metallurgical phenomena:

1. Austenitization, dissolution of microalloy compounds and homogenization of the
chemical segregation in the reheating furnace.

2. Deformation and reduction of reheated slab to intermediate thickness which is
accompanied with recrystallization, grain growth and precipitation of alloying and
microalloy elements in roughing and finishing mills.

3. Phase transformation and precipitation during cooling and decreasing the heat to room
temperature (Ryu, 2008), (Gonzalez, 2002).

These mechanisms by refinement of structure bring about a simultaneous improvement in

strength and toughness (Singh et al., 1998).
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1.1 Grain size effect on mechanical properties

Grain size is an important aspect of microstructure with respect to mechanical properties of
steels. The ferrite in low carbon steels is typically strengthened by grain refinement,
precipitation hardening, and, to a lesser extent, solid-solution strengthening. Grain
refinement is the most desirable strengthening mechanism because as mentioned earlier it
improves not only strength but also toughness. According to equation (1) indicating the
Hall-Petch relation, fine grain size produces higher yield strength, (oyiea) (Parker, 1997):

-1/2
oyield = Ojpit + kyda / (1)

where oiyit is the yield strength for a polycrystalline material, ky is a constant, and dq is a
measure of the ferrite grain size. Grain size also has an effect on the ultimate tensile strength
by changing work-hardening rate. Work-hardening takes place within the grains during
plastic deformation according to Morrison (Ryu, 2008):

n=>5/(10+dg /%) )

Static recovery

Static recrystallization

Recrystallised
A structure
Dynamic

S

Equiaxed structure

Fig. 2. Related metallurgical phenomena.

where n is work-hardening exponent and d, is grain size. Ferrite mainly nucleates at the
austenite grain boundaries and thus a finer austenite grains produces fine ferrite grains.
Further ferrite refinement can be achieved by transformation from deformed austenite grains
because, deformation increases ferrite nucleation rate (Parker, 1997). The effects of chemical
composition on these properties are an important parameter as well as thermo-mechanical
processing features such as temperature and final dimensions (Ryu, 2008). The additions of
some alloying elements affect ferrite transformation and thus control the amount of phases
present in the final matrix. The presence of microalloying elements generally control the grain
size and provide precipitation strengthening and have a significant impact on the strength
(Singh et al.,, 1998). Therefore, estimating of strength and grain size of hot stripped steel
products depends on thermo-mechanical behavior of steel, microstructure evolution and
phase transformation, during hot rolling stages and cooling period. These are complicated
metallurgical phenomena and strongly depend on chemical composition, therefore developing
a physical model to analysis these parameters and predict strength as well as final grain size, is
cumbersome. Also, the accuracy of the models developed so far is somehow questionable and



Application of Bayesian Neural Networks to
Predict Strength and Grain Size of Hot Strip Low Carbon Steels 155

are not suitable for practical purposes. Traditionally, setting the tolerances is carried out by
making several samples and checking the final results by trial and error approach. Generally,
these procedures are expensive and time-consuming especially in such a complex
metallurgical phenomena. Consequently, the overall effects of these features can have an effect
on rolling design and therefore too many experimental trials are needed to achieve ideal
tolerances. Since estimating these properties of low carbon steel strips in terms of chemical
composition and thermo-mechanical parameters is desirable from engineering view point,
several models are introduced based upon different neural network methods. These models
are capable of understand very complex and unknown relationships between inputs and
output data. Furthermore, the models can explore the effect of the individual input on output
which can be extremely difficult in the experimental tasks. Achieved model for estimating
tensile strength can be used as a quantitative tool to predict the final tensile strength of these
commercial low carbon steels with different of input variables. Moreover analysis of the effect
of input parameters on results may leads to design new steels with different input parameters.
In the present work also, by selecting more relevant inputs and using hybrid Bayesian
Artificial Neural Network (ANN) model assisted with Reversible-Jump Markov Chain Monte
Carlo (RIMCMC, also known as trans-dimensional MCMC), the prediction of final grain size
in low carbon steel strips is carried out.

2. Method

2.1 Artificial Neural Networks

A neural network is an interconnected network of a set of simple processing units which are
connected by a set of connections called "weights". They can learn the given information by
a set of examples and transfer them to their structure. The method which is inspired from
studying the human brain, is capable of recognizing complex patterns of the training data
and can be applied to regression and classification tasks. The training is an optimization
procedure by finding a set of weights which combined with processing units, describes the
data pattern. There are several advantages in this method. Firstly, there is no need to choose
the behavior of the model in advance. Secondly, its need to train data, does not grow as fast
as other conventional regression methods and therefore, growing the complexity and
dimensionality of the problem doesn't need any further data (Botlani-Esfahani et al., 2009a).
Basic ANN model with k outputs is

m d
fi(x,w)= wyy + lekj tanh(w;o + Ziw/ix,v) (3)
i= i=

where x is a d-dimensional input vector, w denotes the weights, and indices i and j correspond
to input and hidden units, respectively (Lampinen & Vehtari, 2001). Arrangement of layers
and units in an ANN called architecture (Doan & Yuiliong, 2004). Figure 3 sketches schematic
architecture of a feed forward ANN model. In each layer, units receive their input from
previous layer’s units and send their output to units in the following layer. Output of each
hidden unit is the transfer function response to the weighted sum of its inputs.

The number of units in input and output layers are dictated by the problem, but the number
of hidden units which control the complexity of the model, must be determined.
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Fig. 3. Schematic architecture of Artificial Neural Network model.

The processing units for computational convenience, like nonlinear hyperbolic tangent
sigmoid functions are easily differentiable, and are employed in the present model,
Equation (4):

2
tanh(x) = (1+exp(-2x)) 1 @)

Traditionally the complexity of the ANN has been controlled with early stopping. In which
part of the training data is used to train the network and other part is used to control the
complexity of the model. Early stopping is inefficient because the effective complexity may
be much less than the number of parameters in the model. Consequently, tow different
Bayesian Learning paradigm for ANN was employed to train models.

2.2 Bayesian learning for ANN

In the Bayesian framework which has introduced by MacKay (MacKay, 1992) the weights of
the network are considered as random variables and the posterior distribution of the
weights updated according to Bayes’ rule (Xu et al., 2006):

Posterior — lzkelzho'od x prior 5)
Evidence
This equation in terms of Artificial Neural Networks is:
(D]9)p(9)
p(elD) =00 gjpye ©
p(D)

where p(0) is prior distribution for the model parameters 8 ,D = {(x(1),y(1)),..., (x(n),y(n))} is
observing data and L(¢|D) is likelihood function that gives the probability of the observed
data as function of the unknown model parameters (Lampinen & Vehtari, 2001).
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2.3 Reversible jump Markov Chain Monte Carlo method

Neal has introduced an implementation of Bayesian learning for ANN in which, difficult
integrations accompanied with this framework are performed using Markov Chain Monte
Carlo (MCMC). In this application samples (in model parameters space) are generated using
a Markov Chain Monte Carlo to estimate the desired posterior distributions (Lampinen &
Vehtari, 2001). In practical problems like the present study, it is usual to measure many
variables, but it is not necessarily known which one of them is relevant and required to
solve the problem. To make the model more explainable or to reduce the measurement cost
and the computation time, it may be useful to select a model with smaller set of input
variables (Lampinen & Vehtari, 2001). As a consequence, RIMCMC method is applied for
this modeling. This algorithm allows jumps between models with different dimensional
parameter spaces with respect to the number of inputs chosen in the model. RIMCMC visits
the models according to their posterior probability which allows it to be used for model
selection (Vehtari & Lampinen, 2002). The grain size model was achieved by this method.

2.4 Bayesian Regularized Neural Network (BRNN)
Conventional performance function of neural network which optimization applied on it, has
general form of:

Fomse=13 (e =3 1, -a)’ "
NZY NS

where mse is mean of squared error. If the performance function is changed by adding a
term that contains mean of squared weights (msw), yield:

msereg = ymse + (1 — y)msw (8)

where v is the performance ratio, and
1& 5,
msw =— Z w; )
n j=1

Using this performance function leads to smaller network weights and biases, which makes
the network response to be smoother and less likely to over-fit (MathWorks). The main
remaining problem is to find the ideal value for the performance ratio. Choosing too large
ratio increases over-fitting likelihood and too small ratio prevents network to fit adequately
the training data (MacKay, 1992). To find out the best regularization, as mentioned before
MacKay in his Bayesian framework suggests, assuming the weights and biases as random
variables with specified distributions and related the regularization parameters to these
distributions. Another approach suggested by Foresee (Botlani-Esfahani et al., 2009b) in
which the Levenberg-Marquardt method that is a rapid optimization algorithm employed
for training. The (BRNN) automatically can control the complexity of the model and prevent
the over-fitting of training data set. As a result, this model has good prediction accuracy and
according to MacKay, (MacKay, 1992) in Bayesian framework, there is no need for test data
set to control the specified network architecture. The acquired model by this approach can
reveal a good generalization, even if its architecture is an over optimized (MathWorks).
Consequently, the trial and error approach for finding ideal architecture is reduced. This
approach was applied to acquire ideal model for prediction of tensile strength of steel strips
because of its good accuracy as well as fast convergence speed.
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2.5 Experimental database

Since an ANN model is empirical, its performance depends on the dataset used for training.

Annual products data report of Isfahan Mobarakeh Steel Company (MSC) were used for this

modeling, which input parameters for tensile strength modeling consisted of:

i.  Final thickness

ii. Initial and final weight

iii. Initial width

iv. Reheating furnace temperature, roughing temperature, finishing temperature and
coiling temperature

v. The chemical composition, consisting 14 different elements

vi. The carbon equivalent according to the following formula:

Ceq = C +Si/25 + (Mn+Cr)/16 + (Cr+Ni+Mo)/20 + V/15 (10)

where elements are expressed in weight percent.

About 70234 examples each consisting of corresponding input and output were available for
modeling tensile strength. Some further information about the variables are given in Table 1.
These examples were normalized so that they had zero mean and unity standard deviation
before computations.

Data set that was used to model grain size consisted of 624 metallographic images. At this
company, these images are classified into three groups according to ASTM (E-112), this
standard assigns larger numbers to finer grain structures. Figure 4 shows an example of
such a database. Further information is also given in Table 2. The input parameters are
chemical composition of the strips which include 14 elements. Additional input variables are
given in Table 3.
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Fig. 4. One sample of data, microstructure of produced steel with ASTM grain size no. 9.0.
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Variables min max mean SD
_ Final 15 16 5.244903 3.155532
Thickness(mm)
Final Weight(kg) 5097 28030 18502.91 3214.769
Weli“g‘ﬁ;ig) 5202 28660 18874.26 3264.811
Wig;ﬁzfim) 650 1850 1277.022 205.7713
Ti‘;;;?fé) 1164 1296 1229.77 23.4407
?;’I‘;f(‘}fg 932 1122 1058.281 14.00645
E‘:;h({,ncg) 782 960 881.1131 2332006
Coiling Temp(°C) 517 729 610.5108 18.02052
C (wt %) 0.03 0.21 0.126968 0.02545
Inputs Si (wt %) 0 0.347 0.070235 0.084277
Mn (wt %) 0.175 1.38 0.658662 0.206133
P (wt %) 0.001 0.026 0.006786 0.002377
S (wt %) 0 0.02 0.008637 0.002686
Cu (wt %) 0 0.264 0.029318 0.011597
Al (wt %) 0.007 0.093 0.045926 0.010957
N (ppm) 15 90 39.784 9.221
Nb (wt %) 0 0.06 0.004854 0.009032
V (wt %) 0 0.043 0.003378 0.001607
Ti (wt %) 0 0.042 0.001654 0.002318
Mo (wt %) 0 0.022 0.003654 0.004104
Cr (Wt %) 0.001 0.194 0.011992 0.008007
Ni (wt %) 0.016 0.243 0.028205 0.004679
Ceq (Wt %) 0.068032  0.437799 0.2443845 0.0534388
Output  Strength (MPa) 299 659 444.64 48.68

SD: Standard Deviation Ceq: Carbon Equivalent

Table 1. Input and output parameter information.

Number of Samples

ASTM (E-112) grain no

162
294
167

8.5
9
9.5

Table 2. Output Data Information

2.6 Network training

As mentioned the (BRNN) models have a good predictive accuracy (generalization) and
specified network architecture in Bayesian framework doesn’t need of test data to adjust its
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complexity. However, there is still a need for an independent set of data to evaluate the
ideal network predictive accuracy on unseen data. In this respect, 10% of the total data were
kept for validation. In the case of tensile strength several models were examined for finding
the best network architecture. The network architecture was started with a few hidden units
in a single hidden layer and as the number of hidden units increased the squared error sum
on both training and test data, decreased. As expected from performance function of the
BRNN, (Equation 8), when the number of training data is raised, the number of weights
must also increase. When the number of hidden units is placed within one layer, the
accuracy of the results is less than when two layers are used. This also indicates that more
weights are needed in two layer network. Finally, the ideal network was determined with
23-60-50-1 architecture. Training stopped when the squared error sum, the squared weights
sum and performance ratio (which are the criteria for training evaluation) became stable.
Since network training is an optimization procedure, the calculations can become
cumbersome. For example, for 4541 parameters, more than 55 hours was taken when a dual
3.2 GHz processor, with 2 gigabyte memory, was used.

For finding ideal model for grain size prediction the modeling database was divided into
training and test sets, which include 60 and 40 percents of data respectively. Training was
started with (14-8-3) architecture and model selection procedure was evaluated by an
internal procedure of RIMCMC algorithm, as mentioned in sec. 2.3. The result of this
training indicated a chain of network parameters. When this chain converged into a stable
distribution, a sample of the chain (network parameters) was selected on the bases of
minimum classification error of the model on test dataset.

No. Inputs min max Mean SD
1 C (wt%) 0.032 0.179 0.1272 0.0312
2 Si (wt%) 0.008 0.218 0.0637 0.0798
3 Mn (wt%) 0.191 1.15 0.6466 0.211
4 P (wt%) 0.002 0.025 0.0072 0.0022
5 S (wt%) 0.001 0.02 0.0089 0.0029
6 Cu (wt%) 0.004 0.078 0.03 0.0109
7 Al (wt%) 0.015 0.075 0.0454 0.0119
8 N (ppm) 16 75 38 8.8
9 Nb (wt%) 0 0.045 0.0051 0.0105
10 V (wt%) 0 0.011 0.003 0.0014
11 Ti (wt%) 0 0.042 0.0017 0.0031
12 Mo (wt%) 0 0.019 0.0038 0.0045
13 Cr (wt%) 0.004 0.194 0.0131 0.012
14 Ni (wt%) 0.02 0.042 0.03 0.0034

SD: Standard Deviation

Table 3. Input parameter information

2.7 Calculation of the weights of individual input variable

Extracting effective information from a neural network model is not as easy as conventional
linear regression because the discovered relationships with neural network are much more
complicated. However when the output layer only consists of one neuron the dependency of



Application of Bayesian Neural Networks to
Predict Strength and Grain Size of Hot Strip Low Carbon Steels 161

output variable on inputs is same as network dependency to input parameters (Botlani-
Esfahani et al.,, 2009b). On the other hand, in feed-forward networks the path which the
effects of the input parameters carried is straightforward from input layer to output layer.
Therefore, the weights which fan out the input units can be considered as their significance,
like the impact of inputs on output in linear models. The relative importance of individual
input variable on output variable can be expressed as: (Xu et al., 2006)

[o_J=1 (11)

where Wj; is the connection weight from i input neuron to j hidden neuron, N, S are the
number of input parameters and hidden neurons, respectively. This approach was
employed to investigate the relative importance of input parameters on tensile strength
however, in case of grain size such task has carried out automatically by the algorithm.

3. Results and discussion

3.1 Performance of the model

Scatter diagrams of model predictions versus experimental data for both training data and
validation data are used as a means of showing the tensile strength model generalization.
Figure 5, indicates that the correlation coefficients of training and validation data are close to
one, and their differences are negligible. Therefore, it is clear that, the network predictions
are in good agreement with experimental data.

Calculation of the misclassification error on test data is a popular way to show the prediction
accuracy (generalization) of a classifier model. This error is calculated according to:

>"|test data—model result|
number of test data

Misclassification error = x 100 (12)

Therefore, grain size model revealed just 2.439 percent misclassification error, which is very
low and indicates that, this model has good generalization. More information about
misclassified error is available in Table 4.

Number of Misclassified Test Target Data Model Result
2 9 85
2 9.5 9

Table 4. misclassified case

3.2 Sensitivity analysis

Figure 6 shows the importance of input variable relevancies on tensile strength which were
analyzed by the method mentioned in section 2.7. Figure 6 shows that silicon, carbon,
manganese, copper, nickel and chromium give a large contribution to the strength.
Moreover, microalloy elements such as niobium, vanadium and titanium, though less than
other elements, have a similar effect of strength. Among the processing features, the width
and thickness of the strip revealed remarkable influence on tensile strength (Botlani-
Esfahani et al., 2009b).



162 Artificial Neural Networks - Industrial and Control Engineering Applications

The depicting effect of mentioned factors and their interactions with one another, two
parameters were altered at a time and other parameters were kept on their mean values
which are tabulated in Table 1. As mentioned RIMCMC method can select potentially useful
inputs according to marginal probabilities of inputs. The result of this analysis indicates the
importance of Si, Mn and C contents on grain refinement which is significantly greater than
the concentration of other elements. The most effective element for grain refinement is
recognized to be that of vanadium. However, its concentration in these steels is very low.
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Fig. 5. Behavior of tensile strength model on (a) training data (b) test data.
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3.3 Tensile strength model

Carbon has a major effect on steel properties and increases the strength by interstitial solid
solution strengthening. This effect is more pronounced in ferritic steels. In ferritic-pearlitic
steels, the carbon content raises pearlite volume which in turn leads to the increase of alloy
strength (Singh et al., 1998). Silicon is one of the principal deoxidizers used in steel-making,
Figure 7a shows silicon effect which enhances the strength by suppressing precipitation of
cementite from austenite. Thus carbon remains in austenite for subsequent strengthening
(Bhadeshia et al., 2003). The effect is more pronounced in steels with lower carbon
concentration because silicon dissolves in the ferrite. Manganese promotes stronger steels by
stabilizing austenite and solid solution strengthening (Singh et al., 1998). The increase in
strength is dependent upon the carbon content as is shown in Figure 7b. However the
concentration of microalloy elements is low, they have a significant influence on several
stages of rolling. Unlike alloying elements that alter the structure of iron, microalloy
elements have a great affinity to combine with other elements such as carbon and nitrogen.
This results in precipitation of several secondary phases (Meyer, 2001). Model reveals the
effect of niobium concentration as the most effective microalloy. Niobium contributes
towards the prevention of austenite grain coarsening during reheating period and retards
the recrystallization temperature during rolling. Niobium also reduces the transformation
temperature by solute drag effect (Singh et al., 1998),( Hulka, 2003). Figure 7c shows that the
addition of 0.025 wt% Nb, improves tensile strength more than that of 0.04 wt%. For
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instance in a steel with a carbon content of 0.15wt%, addition of 0.025% Nb increases tensile
strength by 150 MPa.
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Figure 8a, displays the effect of strip thickness versus manganese content on the final tensile
strength. The results indicate a drop in tensile strength when final thickness is increased.
This can be attributed to lower cooling rate of thicker strips. Therefore, coarsening takes
place and the tensile strength decreases (Singh et al., 1998). This figure also illustrates the
more influential effects of manganese on thinner strips. Figure 8b reveals the significance of
finishing temperature verses the carbon concentration on tensile strength. It shows that by
decreasing finishing temperature, the final tensile strength increases. Inter-pass
recrystallization and grain growth prevention my causes this effect (Preloscan et al., 2002).
The influence of temperatures on tensile strength is not significant when compared with that
of chemical composition (in specified ranges) (Botlani-Esfahani et al., 2009b).
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Fig. 8. Interaction of processing feature (a) Final thickness and manganese concentration, (b)
Finishing temperature and carbon concentration.



166 Artificial Neural Networks - Industrial and Control Engineering Applications

3.4 Grain size model results

The result of this analysis indicates the importance of Si, Mn and C contents on grain
refinement which is significantly greater than the concentration of other elements. The most
effective element for grain refinement is recognized to be that of vanadium. However, its
concentration in these steels is very low. For testing, the results of the model are depicted
when the concentrations of elements are on their mean values which mentioned in Table 2
and the microalloying elements (i.e. Nb, Ti and V) are not present. Figure 9 shows the model
result of this analysis. Manganese stabilizes austenite, therefore decreases austenite to ferrite
transformation temperature and hence refines the grain structure. In addition, manganese

ASTM no

" 0.02 004 006 008 01 012 014 016 018 0.2
Si (Wt %)

V=0.008, Nb.Ti=0 ( Wt % )

0.9+

0.8

Mn (Wt % )

& 002 0.04 006 0.08 0.1 012 014 016 0.18 0.2
Si(Wt%)

Fig. 9. Model result in respect of silicon and manganese concentration in 0.015 wt %C and
0.035 wt%Al. (a) Absence micro-alloying elements. (b) Minor addition of vanadium (0.008
wt %).
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can enhance the precipitation strengthening of vanadium microalloyed steels and to a lesser
extent, niobium microalloyed steels (keytosteel). Figure 9a reveals determining role of
silicon on grain size in the absence of microalloying elements (i.e. Nb, Ti and V). The figure
shows that silicon concentration divides the figure into three regions include finer, mild and
coarser grain structures. This figure also indicates that increasing Si content, increases grain
size. This is because silicon is a ferrite stabilizer and promotes ferrite grain growth
(Umemoto et al., 2001). Figure 9b shows that addition of small amount of vanadium
(0.008wt %) to steel severely contracts the coarser grain region. Vanadium acts as a
scavenger for oxides, and forms nano-scale inter-phase precipitations. This is mainly due to
the rapid rate of austenite to ferrite transformation which produces these nano-scale
precipitates (Bhadeshia & Honeycombe, 2006). Furthermore, addition of vanadium also
reduces the finer grain area somewhat. This is because, vanadium is strong carbide former
and the majority of such elements is ferrite stabilizer and therefore, promotes ferrite grain
growth (Zhang & Ren, 2003). The net effect of this minor vanadium addition is to decrease
the sensitivity of grain size to silicon content, and also reduction of coarse grain area.

4. Conclusions

1. The effects of chemical composition and process variables on the tensile strength of hot
strip mill products were modeled by Artificial Neural Network (ANN) moreover a
Bayesian ANN model assisted by RIMCMC is capable of predicting the grain size of hot
strip low carbon steels and can be used as a function of steel composition. The results of
both models are shown to be consistent with experimental data (acquired from
Mobarakeh Steel Company data).

2. The relative importance of each input variable was evaluated by sensitivity analysis for
tensile strength. The influence of chemical composition on final tensile strength is much
more pronounced than process parameters. Furthermore, grain size model recognizes
the effects of relevant elements in grain refining. These are manganese, silicon and
vanadium. Silicon concentration shows determining role this effect have not reported in
the literature and vanadium reveals great impact on grain refining phenomena.

3. The results show the effects of the parameters are too complex to model with a simple
linear regression technique. The developed ANN models can be used as guide to
control the final mechanical properties of commercial carbon steel products. The major
advantage of these methods is selection of useful inputs in complex problems with
many inputs. Because many problems in materials science and engineering are similar,
this method is useful for solving them.
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1. Introduction

Coal is a chemically and physically heterogeneous and combustible substance that consists
of both organic and inorganic compounds. It currently is a major energy source worldwide,
especially among many developing countries, and will continue to be so for many years
(Miller, 2005).The chemical analysis of coal includes proximate and ultimate analyses. The
proximate analysis gives the relative amounts of moisture, volatile matter, and ash, as well
as the fixed carbon content of the coal. The ultimate or elemental analysis gives the amounts
of carbon, hydrogen, nitrogen, sulfur, and oxygen in the coal (Miller, 2005).

The measure of the amount of energy that a given quantity of coal will produce when
burned is kown as calorific value or heating value. Heating value is a rank parameter and a
complex function of the elemental composition of the coal, but it is also dependent on the
maceral and mineral composition (Hower and Eble, 1996). It can be determined
experimentally using a calorimeter.

Many equations have been developed for the estimation of gross calorific value (GCV)
based on proximate analysis and/or ultimate analysis (Mason and Gandhi, 1983; Mesroghli
et al., 2009; Given et al., 1986; Parikh et al., 2005; Custer, 1951; Spooner, 1951; Mazumdar,
1954; Channiwala and Parikh, 2002; Majumder et al., 2008).

Regression analyses and data for 775 U.S. coal samples (with less than 30% dry ash) were
used by Mason and Gandhi (1983) to develop an empirical equation that estimates the
calorific value (CV) of coal based on its C, H, S, and ash contents (all on dry basis). Their
empirical equation, expressed in SI units, is:

CV = 0.472C + 1.48H + 0.193S + 0.107A - 12.29 (MJ/kg) )

Given et al. (1986) developed an equation to calculate the calorific value of U.S. coals from
their elemental composition; expressed in SI units, their equation is:

CV =0.3278C + 1.419H + 0.092575 - 0.13790 + 0.637 (M]/Kg) (2)

Neural networks, as a new mathematical method, have been used extensively in research
areas related to industrial processes (Zhenyu and Yongmo, 1996; Jorjani et al., 2007; Specht,
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1991; Chen et al, 1991; Wasserman, 1993; Chehreh Chelgani et al., 2008; Hansen and

Meservy, 1996; Patel et al., 2007; Mesroghli et al., 2009; Bagherieh et al., 2008; Jorjani et al.,

2008; Chehreh Chelgani et al., 2010; Khandelwal and Singh, 2010; Sahu et al., 2010;

Yao et al., 2005; Patel et al., 2007, Salehfar and Benson, 1998; Wu et al., 2008; Karacan,

2007).

Patel et al. (2007) predicted the GCV of coal utilizing 79 sets of data using neural network

analyses based on proximate analysis, ultimate analysis, and the density of helium. They

found that the input set of moisture, ash, volatile matter, fixed carbon, carbon, hydrogen,
sulfur, and nitrogen yielded the best prediction and generalization accuracy.

Mesroghli et al. (2009) investigated the relationships of ultimate analysis and proximate

analysis with GCV of U.S. coal samples by regression analysis and artificial neural network

methods. The input set of C, Hexclusive of moisture (Hex) , N, Oexclusive of moisture (Oex), S, moisture,
and ash was found to be the best predictor.

The adaptive neuro-fuzzy inference system (ANFIS), which consists of both artificial neural

networks and fuzzy logic, has been used widely in research areas related to industrial

processes (Boyacioglu and Avci, 2010; Esen and Inalli, 2010; Soltani et al., 2010; Pena et al.,

2010; Chong-lin et al., 2009).

The aim of the present work is to assess the properties of 4540 samples of U.S. coal from 25

states with reference to the GCV and possible variations with respect to ultimate and

proximate analyses using multi-variable regression, the SPSS software package, and the

ANFIS, MATLAB software package.

This work is an attempt to answer the following important questions:

a. Is it possible to generate precise linear or non-linear equations between ultimate and
proximate analysis parameters and GCV for different U.S. coal samples that have a
wide range of calorific values from 4.82 to 34.85 MJ/kg?

b. Is ANFIS a better tool than regression analysis for improving accuracy and decreasing
errors in the estimation of the calorific value of coal?

c. Is it possible to improve the accuracy of predictions by changing “total hydrogen and
oxygen in coal (H and O)” to “Hey, Oex, and moisture?”

This work is different from previously published work because it involves the first use of

ANFIS to predict the GCV of coal.

2. Experimental data

The data that were used to examine the proposed approaches were obtained from the U.S.
Geological Survey Coal Quality (COALQUAL) database, open file report 97-134 (Bragg et
al., 2009). Samples with more than 50% ash and samples that had a proximate analysis
and/or an ultimate analysis different from 100% were excluded from the database.

Analysis results for a total of 4540 coal samples were used.

The sampling procedures and chemical analytical methods are available at the following
website: http://energy.er.usgs.gov/products/databases/CoalQual/index.htm. The number
of samples and the range of GCV for different states are shown in Table 1.

Table 2 shows the ranges of input variables, i.e.,, C, H, Hey, N, O, Oy, total sulfur, ash,
moisture, and volatile matter, that were used in predicting GCV.
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State Number of samples Range of GCV (M]/kg)
Alabama 679 6.05-34.80
Alaska 51 8.65-27.42
Arizona 10 18.54-24.36
Arkansas 52 5.57-34.68
Colorado 172 7.24-33.81
Georgia 25 24.03-34.85
Indiana 101 19.23-28.96
Iowa 73 16.03-26.59
Kansas 19 20.87-28.86
Kentucky 720 18.68-34.03
Maryland 40 23.04-33.48
Missouri 68 23.83-28.63
Montana 140 5.55-20.63
New Mexico 114 8.81-32.15
North Dakota 124 4.85-13.61
Ohio 398 16.43-31.14
Oklahoma 25 23.89-33.31
Pennsylvania 498 13.58-33.10
Tennessee 42 24.61-33.48
Texas 33 9.54-27.74
Utah 103 4.82-30.14
Virginia 368 19.49-34.80
Washington 10 13.14-27.45
West Virginia 340 14.29-34.75
Wyoming 335 6.27-34.23

Table 1. Number of samples and range of GCV (as-received) for different U.S. states

Variable (%) Minimum Maximum Mean Std. Deviation
Moisture 0.4 49.60 8.90 9.90
Volatile matter ~ 3.80 55.70 32.30 6.32
Ash 0.90 32.90 10.84 5.97
Hydrogen 1.70 8.10 5.27 0.69
Carbon 24.10 89.60 65.72 12.02
Nitrogen 0.20 241 1.29 0.33
Oxygen 0.90 54.70 14.86 11.27
Sulfur 0.07 17.30 1.90 1.73
Hex 0.19 5.86 4.36 0.79
Oex 0.09 22.14 7.50 3.27

Table 2. Ranges of proximate and ultimate analyses of coal samples (as-received)
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3. Methods

3.1 Regression analysis

Regression nalysis is a statistical tool that is used to investigate the relationships between
variables. Usually, the investigator seeks to ascertain the causal effect of one variable upon
another. To explore such issues, the investigator assembles data on the underlying variables
of interest and employs regression analysis to estimate the quantitative effect of the causal
variables upon the variable that they influence. The investigator also typically assesses the
statistical significance of the estimated relationships, that is, the degree of confidence that
the true relationship is close to the estimated relationship (An introduction to regression
analysis, Alan O. Sykes).

Linear regression estimates the coefficients of the linear equation, involving one or more
independent variables, which are required to have a reliable prediction of the value of the
dependent variable. All variables must pass the tolerance criterion to be entered in the
equation, regardless of the entry method specified. The default tolerance level is 0.0001.
Also, a variable is not entered if it would cause the tolerance of another variable already in
the model to drop below the tolerance criterion. All independent variables selected are
added to a single regression model. However, different entry methods can be specified for
different subsets of variables. Method selection allows specifying how independent
variables will be entered into the analysis. Using different methods, a variety of regression
models can be selected from the same set of variables (SPSS Inc., 2004).

Non-linear regression is a method of finding a non-linear model of the relationship between
the dependent variable and a set of independent variables. Unlike traditional linear
regression, which is restricted to estimating linear models, non-linear regression can
estimate models with arbitrary relationships between independent and dependent variables.
This is accomplished using iterative estimation algorithms (SPSS Inc., 2004).

In this study, both single-variable and multi-variable regressions were used to develop
correlations between ultimate and proximate analyses of coal samples with their gross
calorific value (GCV). A stepwise procedure for selecting variables was used, and the
variables were entered sequentially into the model. The first variable considered for use in
the equation was the one with the largest positive or negative correlation with the
dependent variable. This variable was entered into the equation only if it satisfied the
criterion for entry. The next variable, with the largest partial correlation, was considered as
the second input to the equation. The procedure stops when there are no variables that meet
the entry criterion (SPSS Inc., 2004).

3.2 Adaptive neuro fuzzy inference system

In the artificial intelligence field, the term “neuro-fuzzy” refers to combinations of artificial
neural networks and fuzzy logic. Fuzzy modeling and neural networks have been recognized
as powerful tools that can facilitate the effective development of models and integrate
information from different sources, such as empirical models, physical laws, or measurements
and heuristics (Babuska, 1998); these two tools were combined in order to achieve readability
and learning ability at the same time (Jantzen, 1998). The neuro-fuzzy approach in the fuzzy
modeling research field is divided into two areas: 1) linguistic fuzzy modeling that is focused
on interpretability, mainly the Mamdani model and 2) precise fuzzy modeling that is focused
on accuracy, mainly the Takagi-Sugeno-Kang (TSK) model (Wikimedia Foundation Inc., 2009).
ANFIS is an architecture that is functionally equivalent to a Takagi-Sugeno-Kang-type fuzzy
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rule base (Jang & Sun, 1995); it is a class of adaptive, multi-layer, feed-forward networks that is
functionally equivalent to a fuzzy inference system.
A fuzzy rule in a Sugeno fuzzy model has the form of:

If xis Aand yis B thenz=f(x, y), 3)

where A and B are input fuzzy sets in the antecedent, and, usually, z = f(x, y) is a zero- or
first-order polynomial function in the consequent. The fuzzy reasoning procedure for the
first-order Sugeno fuzzy model and equivalent ANFIS structure is shown in Fig. 1.

Here, the defuzzification procedure in the Mamdani fuzzy model is replaced by the
operation of the weighted average in order to avoid the time-consuming procedure of
defuzzification. Defuzzification refers to the way a crisp value is extracted from a fuzzy set
as a representative value (Jang and Sun, 1995).

Jang and Sun (1995) and Jantzen (1998) have provided more details about the ANFIS
architecture, learning algorithms, and training methods.

A B
N Wi f = poxcray

_wf+wf,

A | X el Y EZ%) f e v
/ \ W, = pX gy, =W f WS,

X v
X ¥
(a)

Fig. 1. (a) The Sugeno fuzzy model reasoning; (b) equivalent ANFIS structure (Jang and Sun,
1995)

4. Results and discussion

4.1 Relationships between GCV and individual input variables

By a least squares mathematical method, the correlation coefficients (R2) of C, H, Hex, N, O,
Oey, total sulfur, ash, moisture, and volatile matter with GCV were determined to be +0.99, -
0.25, +0.72, +0.52, -0.86, -0.51, +0.01, -0.05, -0.85, and +0.03, respectively. From the above-
mentioned results, it can be concluded that the worthy relationships are for carbon with
positive effect and oxygen with negative effect, because they are rank parameters; and
moisture with negative effect, because it is also a rank parameter at low rank coals and
because it is a diluent with respect to heating value. Non-linear relationships between
individual input variables and GCV were examined as well, but the results were not better
than the results obtained when the linear procedure was used.
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4.2 Multi-variable relationships of GCV with ultimate and proximate analysis
parameters

The best-correlated linear equations, using a stepwise procedure between the various
mentioned parameters and GCV, can be presented as follows:

a. Ash, moisture, and volatile matter inputs:

GCV (M]/kg) =37.777 - 0.647M - 0.387A - 0.089VM R2=10.97 4)

b. Carbon, hydrogen, nitrogen, oxygen, sulfur, and ash inputs:
GCV (M]/kg) =5.833 + 0.284C - 0.3210 + 1.031H + 0.519N - 0.046Ash

R2=0.994 @)
c. Carbon, hydrogen exclusive of moisture, nitrogen, oxygen exclusive of moisture, sulfur,
moisture, and ash inputs:

GCV (M]/kg) = 26.452 + 0.074C - 0.405M + 0.89Hex - 0.446 Ocx - 0.256Ash - 0.1955

R2=0.995 (6)
Estimated deviations of GCV from target values for equations (4) through (6) are shown in
Table 3.

GCV deviation from target (M]/kg) Eq. (4) Eq. (5) Eq. (6)
Less than 0.5 39.4% 71.7% 78.2%
Less than 1 72.5% 95.2% 96.5%
More than 1 27.2% 4.8% 3.5%

Table 3. Estimated deviations of GVC from target values for various linear regression
equations

The non-linear equations were examined as well, and the exponential equation was the best
predictor of GCV. The results for the input sets of (a), (b), and (c) are shown in the following
equations:

a. Ash, moisture, and volatile matter inputs:

GCV =182.667 + 37.564e-0.027M _ () 381e0.042VM — 182.79¢0.002A R2=0.988 (7)
b. Carbon, hydrogen, nitrogen, oxygen, sulfur, and ash inputs:
GCV = -156.641 - 0.091e0074 + 60.15e0004C — 13.95¢-03221 + (), 33e0648N + 109.88500050 — 0,318 0363
R2 = 0.995 ®)

c. Carbon, hydrogen exclusive of moisture, nitrogen, oxygen exclusive of moisture, sulfur,
moisture, and ash inputs:

GCV =-278.474 + 4.487e0.016C + 24.485e-0.019M + 7.173e0.013N + 76.532e0.012Hex +

189.349e-0.0010ex - 0.033e0.221S - 4.727e0.021A  R2=0.999 9)

The estimation of GCV deviations from target values for equations (7) through (9) are
shown in Table 4. By comparing Tables 3 and 4, it can be concluded that exponential
equations are more precise than linear equations for predicting the GCV of coal.
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GCV deviation from target (MJ/kg) Eq. (7) Eq. (8) Eq. (9)
Less than 0.5 60% 28.98% 74.8%
Less than 1 86.65% 71.34% 99.1%
More than 1 13.35% 28.66% 0.9%

Table 4. Estimation of the deviations of GCV from target values for various non-linear
regression equations

4.3 ANFIS prediction

Three input sets, (a), (b) and (c), were used to determine whether ANFIS is able to predict
GCV better than regression. This was done using the ANFIS menu in the MATLAB software
package to identify the relationships between GCV and input variables.

In a neuro-fuzzy inference system, the first step is to determine the system inputs and
outputs that will be used to predict GCV. In this study, input set (a) was comprised of three
variables, i.e., ash, volatile matter, and moisture; input set (b) was comprised of six
variables, i.e., C, H, N, O, S, and ash; input set (c) was comprised of seven variables, i.e., C,
Hex, N, Oey, S, ash, and moisture.

The Sugeno fuzzy inference system was used in this research. The output functions in the
Sugeno system are linear or constant. A rule in the fuzzy Sugeno model is:

If input 1 = x and input 2 =y, then the outputis z=ax + by + ¢ (10)

In the Sugeno system, for a zero-order model, the z plane is constant (a = b = 0). The plane of
z;, the output of any rule, is weighted by wi. The final output of the system is the weighted
average of all outputs, which is calculated as follows:

final output = 111— 11)
2 W
i=1
The subtractive clustering scheme was used to cluster data; the best-designed, neuro-fuzzy
system for input sets (a), (b), and (c) were systems with three, five, and twelve clusters,
respectively. For input set (a), the range of influence, squash factor, accept ratio, and reject
ratio were selected as 0.5, 1.25, 0.5, and 0.15, respectively; for input set (b), they were 0.35,
1.25, 0.5, and 0.15, respectively; and, for input set (c), they were 0.25, 1.2, 0.5, and 0.125,
respectively. The Gaussian membership function was used. For training of the ANFIS, the
hybrid method was used with 3200 sets of data; the remaining 1340 sets of data were used

Training set Testing set Number of
Model  Basis Model inputs e 18 membership R2
size size .
functions
a  Asreceived St volatile matter, 5, 1340 3 0.997
moisture
b Asreceived C,H,N,O,S, ash 3200 1340 5 0.999
¢ Asreceived e N Qev Siash, 554, 1340 12 0.999
moisture

Table 5. Details of the best-correlated neuro-fuzzy models
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for testing. For the training stage, we selected 100 epochs. Details of the best-correlated
neuro-fuzzy models are shown in Table 5. As Table 5 shows, the designed neuro-fuzzy
systems can predict the GCV with acceptable correlation coefficients (R of 0.997 , 0.999,
and 0.999 for the ( a), (b), and (c) input sets, respectively.

As an example, the neuro-fuzzy design structure for model (c) to predict GCV is shown in
Fig. 2.

Thge estimates of the deviations of the GCV from target values produced by the neuro-fuzzy
models are shown in Table 6. It can be seen that the prediction precision of GCV from
ANFIS and using all three input sets (a), (b), and (c) (Table 6) are better than those from
linear and non- linear regression (Tables 3 and 4).

Srpnt rile autputet autput

Fig. 2. ANFIS model structure for the prediction of GCV using input set (c)

Model a Model b Model c
GCV deviation from target (MJ/kg) (3-member (5-member (12-member
function) function) function)
Less than 0.5 83% 97.6% 99.4%
Less than 1 99.4% 100% 100%
More than 1 0.5% 0% 0%

Table 6. Estimation of deviations of GCV from target values for neuro-fuzzy models

The GCV predicted (GCVp) by ANFIS in the testing stage for input sets (a), (b), and (c)
compared to the actual values determined in the laboratory (GCV,) are shown in Figs. 3, 4,
and 5, respectively. The distributions of the differences between actual and estimated GCVs
are shown in Figs. 6, 7, and 8 for input sets (a), (b), and (c), respectively.

5. Technical considerations

According to Egs. (4) through (9) and the results presented in Tables 3 and 4, it can be seen
that the exponential equations are better than linear equations for predicting GCV; among
the exponential equations, Eq (9) is the most suitable equation. A correlation coefficient of
0.999 and a deviation from experimentally calculated GCVs that was only 0.9 % more than
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Fig. 4. ANFIS-estimated GCV in testing stage versus actual determined value (model b)
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Fig. 5. ANFIS-estimated GCV in testing stage versus actual determined value (model c)
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Fig. 6. Distribution of difference between actual and estimated GCV in testing stage (model a)
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Fig. 8. Distribution of difference between actual and estimated GCV in testing stage (model c)

0.5 (MJ/kg) were achieved by Eq (9). With reference to the above results, it can be concluded
that the input set of carbon, hydrogen exclusive of moisture, nitrogen, oxygen exclusive of
moisture, sulfur, moisture, and ash can be used as the best and most-reliable input for the
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prediction of the GCV of coal using exponential equations. Restating “hydrogen and
oxygen” in the form of “hydrogen exclusive of moisture, oxygen exclusive of moisture, and
moisture” can decrease the errors and deviations from experimentally calculated GCV by
regression. According to Table 5, which presents the correlation coefficients of the ANFIS
models for the (a), (b), and (c) input sets, the correlation coefficients in the test stage were
determined ot be 0.997 (model a) to 0.999 (models b and c). In addition, Table 6, which
presents the deviations of the ANFIS model predictions from targets values, shows that the
errors and deviations from experimentally calculated GCVs in ANFIS models are less than
those produced by regression models. Although Mesroghli et al. (2009) reported that
artificial neural network is not better or very different from regression results when the
proximate and ultimate analyses are the GCV predictors. However, in the current work, a
suitable, structured ANFIS model predicted GCV with a high precision that has not been
reported in previous published works.

6. Conclusions

¢ In this work, proximate and ultimate analyses of 4540 coal samples from 25 U.S. states
and two mathematical modelling methods, i.e., multi-variable regression and adaptive
neuro-fuzzy interface systems were used to estimate GCV.

e  The best-correlated linear equation was achieved using input set (c) (C, Hex, N, Ocy,
S, M, ash) with a correlation coefficient of 0.995. The results also showed that, for
input set (c), the difference between actual and predicted values of GCV in about
78% of the data was less than 0.5 MJ/kg, and, in 96% of the data, the difference was
less than 1 MJ/kg.

e Exponential equations provided improved correlation coefficients in comparison to
linear equations. The best result was achieved using input set (c) with a correlation
coefficient of 0.999. The difference between actual and predicted values of GCV in
about 75% of the data was less than 0.5 MJ/kg, and, in 99% of the data, the
difference was less than 1 MJ/kg.

e The neuro-fuzzy modeling system improved prediction accuracy for input sets (a),
(b), and (c).

e  The neuro-fuzzy rules that were designed using 3, 5, and 12 membership functions
can predict the GCV with R2 = 0.997, 0.999, and 0.999, respectively. They also
produced a deviation from target values of less than 0.5 MJ/kg for about 83, 97,
and 99% of data, respectively, and less than 1 MJ/kg for about 99, 100, and 100% of
data for input sets (a), (b), and (c), respectively.

e The GCV prediction precision achieved in the current work using neuro-fuzzy
systems has not been reported previously in the literature.
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1. Introduction

This chapter deals with the detector of saturation level in the magnetic (iron) core of a
welding transformer. It is based on an artificial neural network (ANN) and requires only the
measurement of the transformer’s primary current. The saturation level detector could be
the substantial component of a middle frequency resistance spot welding system (RSWS),
where the welding current and the flux density in the welding transformer’s iron core are
closed-loop controlled by two hysteresis controllers. The resistance spot welding systems,
described in different realizations (Brown, 1987), are widely used in the automotive
industry. Although the alternating or direct currents (DC) can be used for welding, this
chapter focuses on the resistance spot welding system (Fig. 1) with DC welding current. The
resistances of the two secondary windings R, R3 and characteristics of the rectifier diodes,
connected to these windings, can slightly differ. Reference (Klop¢i¢ et al., 2008) shows that
combination of these small differences can result in increased DC component in welding
transformer’s iron core flux density. It causes increasing iron core saturation with the high
impact on the transformer’s primary current i;, where currents spikes eventually appear,
leading to the over-current protection switch-off of the entire system. However, the
problematic current spikes can be prevented either passively or actively (Klop¢i¢ et al.,
2008). When the current spikes are prevented actively, closed-loop control of the welding
current and iron core flux density is required (Klop¢i¢ et al., 2008). Thus, the welding
current and the iron core flux density must be measured. While the welding current is
normally measured by the Rogowski coil (Ramboz, 1996), the iron core flux density can be
measured by the Hall sensor or by a probe coil wound around the iron core. In the case, the
flux density value is obtained by the analogue integration of the voltage induced in the
probe coil (Dezelak et al., 2008). Integration of the induced voltage can be unreliable due to
the unknown integration constant in the form of the remanent flux and the drift in analogue
electronic components. The drift can be kept under control by the use of closed-loop
compensated analogue integrator.

An advanced, the two hysteresis controllers based control of the RSWS, where the current
spikes are prevented actively by the closed-loop control of the welding current and flux
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density in the welding transformer’s iron core, is presented in (Klop¢i¢ et al., 2008). The
modified solution requires measuring of the welding current, while instead of measured
flux density only information about saturation level in the iron core is required (DeZelak et
al.,, 2010). Some methods, tested on welding transformer’s iron core, that can be applied for
saturation level detection are presented in (DeZelak et al., 2008). All these methods require
the Hall sensor or probe coils which make them less interesting for applications in the
industrial RSWS, due to the relatively high sensitivity on vibrations, the mechanical stresses
and the high temperatures. In order to overcome these problems, an ANN based iron core
saturation level detector is introduced in this work. Additionally the method proposed for
the detecting saturation level of the complete loaded RSWS, completed by ANN, is
presented. Its only (single) input is the measured transformer’s primary current.

The ANN, applied in the iron core saturation level detector, is trained to recognize the
waveform of the current spikes, which appear in the primary current when the iron core is
approaching the saturated region. Before the ANN can be applied, its structure must be
defined first, and then the ANN must be trained using an appropriate learning method
(Pihler et al., 1997). In this paper, the ANN structure appropriate for saturation detection in
the transformer’s iron core and the appropriate learning method are found with the help of
properly build dynamic model of the RSWS (DeZelak et al., 2010). The mentioned dynamic
model includes models of the hysteresis controllers and the ANN based saturation level
detector. The well-known trial and error method was used for defining ANN structure. It is
shown that the three-layer ANN with 30 neurons in the first layer, 7 neurons in the second
layer, and 1 neuron in the third layer, gives acceptable results. ANN is trained by the
resilient backpropagation rule, where the measured and calculated samples of transformer’s
primary current, with different known levels of saturation in the iron core, are used. The
calculated and measured results, presented in this paper, show that the proposed ANN
based iron core saturation level detector can be used as a part of the discussed RSWS,
improving performances of the entire system

2. Dynamic model of the resistance spot welding system

The resistance spot welding system consists of a full wave output rectifier, a single phase
transformer, an H-bridge inverter and an input rectifier. It is shown in Fig. 1 and described
in (Klop¢i¢ et al., 2008). The three-phase alternating current (AC) voltages u1, uz and us,
supplied from the electric grid, are rectified in the input rectifier in order to produce the DC
bus voltage. This voltage is used in the H-bridge inverter, where different switching
patterns and modulation techniques can be applied, to generate AC voltage ug, required for
supply of the welding transformer. The welding transformer has one primary and two
secondary windings. They are marked with indices 1, 2 and 3, respectively. The currents, the
number of turns, the resistances and the leakage inductances of the primary and two
secondary welding transformer’s windings are denoted by iy, is, i3, N1, N2, N3, R1, Ro, Rs, and
Lo1, Loz, Loa. The effects of the eddy current losses are accounted for by the resistor Rre, while
Ry and Ly, are the resistance and inductance of the load. The output rectifier diodes D and
D, are connected to both transformer’s secondary coils. They generate the DC welding
current iy which has a DC value a few times higher than the amplitudes of AC currents i,
and i3 that appear in the transformer’s secondary coils without rectifier diodes.
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Fig. 1. The resistance spot welding system

The supply voltage of the primary coil of the transformer could be generated on the
different ways (Stumberger et al., 2010). In the existent system, widely spread in the
automotive industry, this voltage is generated by the H-bridge inverter applying pulse
width modulation (PWM) at switching frequency of f =1 kHz. The PWM principle is shown
in Fig. 2a, where u; is the triangular voltage, User is the reference voltage for PWM, Ty, is the
period of H-bridge inverter output voltage, un, is the gate driver input voltage, S1, S4 and Sz,
Sz are the pairs of IGBT-s in the H-bridge inverter (Sabate et al., 1990).

Additionally Fig. 2b shows the AC voltage generated by the H-bridge applied by PWM,
where Upc is the DC-bus voltage.

a) b
u (V) V)
u
Uref +UDC
T, t(s)
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NI Sy S5 NI Ty
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£(s)
Fig. 2. The PWM principle (a) and the AC voltage generated by the H-bridge applied by
PWM (b)
As references (Klop¢i¢ et al., 2008) and (Dezelak et al., 2010) show, the resistances of the
secondary windings Ry, R3 and the characteristics of the rectifier diodes could be slightly
different. These differences can cause DC component in welding transformer’s iron core flux
density, which causes increasing iron core saturation with the essential impact on the
transformer’s primary current i;, where currents spikes appear, leading to the over-current
protection switch-off of the entire system.
Aforementioned phenomena could be confirmed by the appropriate dynamic model (Leon
& Semlyen, 1994) of the complete resistance spot welding system. In this work the model is
built with the programme package Matlab/Simulink based on the following set of equations

1) -@®).
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up = Rair+Loy(di/ db)+ Nu(d ¢ /dt) 1)
0 = Roio+Loa(din/ db)+ Na(d ¢ /dt)+dip:+ Ruir+Li(d(in+ i3)/ dt) @)
0 = Raiz+Loa(dis/ db)- Na(d ¢ /dt)+dips+ Ruip+Ly(d(in+ i3)/ dt) €)
Niip+Naia- Naiz=H(B)Lic+25B/ o (4)

i =i+ i3 ®)

i1 = iret ip (6)

ire = Ni(d ¢ /dt)/ Rre @)

¢ =BAr. @)

0 = Nuir+ Naix-Nii3 ®)

In set of equations (1) - (8) ¢ stands for magnetic flux, dip1 and dip, are nonlinear
characteristics of the output rectifier diodes D1 and D,, H(B) is the magnetizing curve of the
iron core material, § is the air gap, B is the iron core flux density, o is the permeability of the
vacuum, lic is the average length of the magnetic flux line in the iron core, Are is the cross-
section of the transformer’s iron core and 0 is the magnetomotive force. Parameters that
appear in (1) - (8) are shown in Table 1 and in Table 2.

Parameter Value Unit
Are 0.001385 m2
13 10 um
Lic 0.313 m
f 1000 Hz
Ry 0.01357 Q
R» 20 nQ
Rs 20 uQ
Ry 100 uQ
L1 0.035 mH
Lo 1 nH
Lo 1 nH
L 1 pH
Ny 55 /
N 1 /
N3 1 /

Table 1. Parameters of RSWS dynamic model



Artificial Neural Network Applied for Detecting the

Saturation Level in the Magnetic Core of a Welding Transformer 187
dip;-1(A) dip; - u (V) dip; - i (A) dips - u (V)
0 0 0 0
0.003 0.6 0.011 0.6
0.014 0.65 0.053 0.65
0.059 0.7 0.25 0.7
0.247 0.75 117 0.75
1.05 0.8 5.52 0.8
443 0.85 25.9 0.85
18.75 0.9 121.5 0.9
79.3 0.95 570 0.95
335 1 2675 1
1418 1.05 12555 1.05
6000 1.1 58912 1.1
25378 1.15 400416 1.15
107334 1.2 1297043 1.2

Table 2. Nonlinear characteristics of the output rectifier diodes D - (dip1) and D: - (dip2)

With the appropriate dynamic model the two behaviours of RSWS, the symmetrical and
asymmetrical, could be simulated. Firstly, the symmetrical behaviour is considered by
parameters shown in Table 3, while obtained results are shown in Fig. 3. The resistances R
and R; in the two secondary welding transformer’s windings are equal, as well the
characteristics of the output rectifier diodes D; and D,. Fig. 3 shows the time dependent
primary current i; and the magnetic flux density B in the time window of ¢ = 0.1s.

Parameter Value Unit
Ry 20 pQ
Rs 20 nQ
D characteristic - dip; /
D, characteristic - dip; /

Table 3. Parameters for symmetrical behaviour of the resistance spot welding system

Different resistances R, and Rz and different characteristics of the output rectifier diodes D,
and D; could cause undesired asymmetry of the spot welding system. In case of considering
values shown in Table 4, the asymmetrical time dependent magnetic flux density B could be
obtained by the appropriate model of RSWS. In this way, when the magnetic flux density B
reaches the saturation level the current spikes appear in the primary current i1, as shown in
Fig. 4.

Parameter Value Unit
Ry 20 pQ
R3 15 pQ
D characteristic - dip; /
D, characteristic - dip» /

Table 4. Parameters for asymmetrical behaviour of the resistance spot welding system
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Fig. 3. Symmetrical behaviour of the resistance spot welding system
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Fig. 4. Asymmetrical behaviour of the resistance spot welding system

As Fig. 4 shows, the iron core becomes more and more saturated, which leads to currents
spikes in the primary current i; and finally to the over-current protection switch-off. The
unwanted current spikes can be prevented passively by using pairs of rectifier diodes with
matched characteristics, or actively (Klopci¢ et al., 2008) by controlling the saturation level in
the iron core. In the letter case, a saturation detector, which generates a signal when the
preset saturation level is reached, is indispensable for preventing the iron core saturation.
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This work evaluates the methods appropriate for the detecting saturation level in the stand
alone transformer’s iron core and in the transformer operating in the resistance spot welding
system. These methods actually detect the instant when the iron core starts to become
saturated and generate signals which are used in the control algorithm to prevent iron core
saturation. All of the presented methods are based on the ANN which is applied as an
additionally tool for the detection of transformer's core saturation.

3. The detecting saturation level in the transformer’s iron core

In this section, the saturation level detection of the stand alone transformer’s iron core, is
described (Dezelak et al., 2008). The iron core of a welding transformer, which is normally
installed in an industrial resistance spot welding system, is shown in Fig. 5. For test
purposes, the actual primary and secondary windings were replaced with only one primary
coil, which was able to produce the same magnetomotive force as the primary and
secondary winding, together. In Fig. 5, u denotes the primary voltage, i1 is the primary
current, ¢ is the length of the air gap, while Age is the cross-section of the iron core. A
measurement coil is wound around the iron core for measurement purposes. The primary
and measurement coils have the same number of turns N.

N

Are
‘ )
10

Ui

N

Fig. 5. The iron core of a welding transformer

The proposed method is based on calculation of dynamic inductance Lq (9), where u is the
measured induced voltage (10) and i is the measured transformer’s primary current. Fig. 6
shows the dynamic inductance as a function of primary current i. The dynamic inductance is
defined by (11), where (i) is the magnetically nonlinear iron core characteristic shown in
Fig. 6. In the given case, the magnetically nonlinear characteristic of the welding
transformer’s iron core (i) was determined experimentally using numerical integration
(12).

Lq=u/(di/dt) )
u=dy/dt (10)
La=oy/al (11)

() = (0) +J (u(r)-Ry i(r))dr (12)
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In (12) (¢) is the time behaviour of the flux linkage, i1(f) and u(f) are the measured primary
current and voltage, while R; stands for the resistance of the primary winding.
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Fig. 6. The dynamic inductance and magnetically nonlinear iron core characteristic

When the value of dynamic inductance Lq4(i), shown in Fig. 6b, drops under the value of Lq(i)
= 0.0003 Vs/A, which is reached at i = 8 A, the iron core can be considered as saturated.
However, the signal that represents dynamic inductivity Lqg(i) calculated by (9) is
contaminated with noise, as shown in Fig. 6d. The contamination with the noise is
substantially increased in the vicinity of the reversal points of the hysteresis, which makes
reliable iron core saturation level detection almost impossible.

This problem can be effectively solved by supplementing the calculated values of the
dynamic inductivity in the vicinity of the reversal points of the hysteresis by a signal
generated by an artificial neural network. The artificial neural network is a parallel multi
layer information processing structure, with possibility to include expert knowledge into
existent process. Fig. 7 shows the three-layer artificial neural network, where xi, x2, ... stand
for input parameters or signals, w(xi)1;, W(x2)2, W(x1)2, W(X2)2, ..., Wss are the weight
coefficients, 1, 2, 3, ..., 6 are the sum blocks, while tansj; and lin stand for the sigmoid and
linear activation functions. Additionally zi, z, z3, ..., z are the output signals of the sum
blocks, while yi, y, y3, ..., y are output signals of the neurons (Hassoun, 1995). The number
of neurons used in the three-layer artificial neural network shown in Fig. 7 is six - three in
the first layer, 2 in the second layer and 1 in the output layer. The neural network can be
supplemented with the bias vector for the each individual neuron. The artificial neural
networks accumulate the knowledge during the training process, while the effectiveness of
the artificial neural network depends on the quality of the training procedure. The
fundamental aim of the training procedure is to adjust all weights in artificial neural
network to obtain minimal deviations between the target and calculated outputs (Hoyong et
al., 1993).
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Fig. 7. The example of the three layers artificial neural network

In this chapter the error backpropagation method is applied. For that reason the
characteristic input patterns must be selected, while the target signal is generated with
respect to the input patterns. Training with the error backpropagation learning rule consists
of the initialization of all weights (and bias) with randomly selected initial values and
calculations of all outputs signals from each neuron. As soon as the output value of the last
neuron in the output layer is calculated, the squared error for this (last) neuron can be
calculated and then errors for the rest of neurons, from the output layer towards the input
layer can be defined too. Finally, when errors of each neuron are obtained, the new values of
all weights (and bias) can be calculated and the entire procedure can start with the new
iteration. The number of iterations of described procedure is called the number of epochs.
The iterations stop when the error reaches predefined value or the maximal number of
epochs (iterations) is reached. In the given case, the learning signal was build of 170 patterns
(signals) obtained by measurements, while the target signal was defined afterwards and was
set to the values one (saturated) or zero (not saturated). Fig. 8 shows five of these patterns.
In the case when the value of the target signal (Tar.) equals one, the iron core is considered
as saturated. After extensive testing of different net configurations, the final artificial neural
network configuration was defined. It contains three-layer with 50 neurons in the first layer,
8 neurons in the second - hidden layer, and with one neuron in the third - output layer.
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Fig. 8. The learning and targets signals in the case of the saturation level detection of the
transformer’s iron core
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Once the artificial neural network is trained, which means that all of the weights and bias
are set, it can be tested. First with the patterns used in the training procedure (Fig. 9 left) and
then with the new samples which were not used in the training procedure (Fig. 9 right).
Results presented in Fig. 9 show that the artificial neural network trained in this way is
appropriate for saturation level detection in the transformer’s iron core. However, the
results of extended analysis showed that the proposed method gives unreliable results when
the level of iron core saturation further increases. Fig. 10 shows the results obtained by the
artificial neural network for the case when transformer’s iron core was highly saturated. Fig.
10 shows output signal of artificial neural network before (Out) and after (Out’) the final bias
value (Out’ = 0 means iron core is not saturated, Out’" = 1 means iron core is saturated).
According to the artificial neural network output signals the highly saturated iron core is

not saturated at all.
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Fig. 9. Testing of the ANN with the patterns used in the training procedure (left) and with
the new samples which were not used in the training procedure (right)

The results presented show that the artificial neural network is not reliable enough to be
used for iron core saturation level detection as a stand alone algorithm. However, it could be
very useful as a supplement to the existing algorithms for iron core saturation detection
which fails when approaching reversal point on the hysteresis loop. In this region the
artificial neural network can provide reliable information that the system is approaching
reversal point of the hysteresis loop, which can be used to stabilize existing algorithms for

iron core saturation level detection.
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Fig. 10. Testing of the ANN with the patterns of the highly saturated transformer’s iron core
before Out (left) and after Out’ (right) the final bias value
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4. The detecting saturation level in the resistance spot welding system

Now the algorithm for detecting the saturation level in the iron core of the transformer
operating in the resistance spot welding system can be presented. One of the possible
solutions for active prevention of the current spikes, is the closed-loop control of the iron
core flux density and welding current with two hysteresis controllers (Klopci¢ et al., 2008).
Thus, the iron core flux density and the welding current must be measured. The iron core
flux density can be measured by the Hall sensor or by a probe coil wound around the iron
core, while the welding current is normally measured by the Rogowski coil. The flux density
value is obtained by an analogue integration of the voltage induced in the probe coil. It is
well known that the integration of the induced voltage could be unreliable due to the drift in
analogue electronic components and the unknown integration constant in the form of
remanent flux. Because of the mentioned drawback, this work proposes an improved
solution. Instead to measure the flux density only the information about the saturation level
in the welding transformer’s iron core is required (Fig. 11). In Fig. 11 S; - Sy stand for the
adequate switching of the transistors.

— - i
Hysteresis Controller

S -S4

F = E

Input rectifier
Inverter
Iron core

Fig. 11. The closed-loop control of the transformer primary current i; and welding current ir,
using the hysteresis controller and the ANN

To obtain the information about the saturation level an ANN can be applied as an effective
tool, where the ANN single input is the measured transformer’s primary current i; (DeZelak
et al., 2010). The idea is to replace one hysteresis controller with ANN. Basically the ANN is
trained to recognize the waveform of the current spikes, which appear in the primary
current when the iron core is approaching the saturated region.

4.1 Hysteresis control with saturation detector

The H - bridge inverter output voltage up (Fig. 1) is equal to DC voltage, while its polarity
depends on the pair of transistors that are switched on. When all four transistors are
switched off, the voltage uy equals zero. The welding current i, increases when the primary
voltage of the transformer uy differs from zero. On the other hand the welding current tends
towards zero when up equals zero. The magnetic flux density increases when +DC bus
voltage is applied and decreases when-DC bus voltage is applied. As soon as the magnetic
flux density exceeds its limit, the transformer’s iron core becomes highly saturated, which
causes current spikes in the transformer’s primary current i;. The advanced control of the
RSWS can be applied to prevent the current spikes. The authors in (Klop¢i¢ et al., 2008)
proposed an advanced hysteresis control of the RSWS based on two hysteresis controllers.
The first one is used for the closed-loop control of the welding current while the seco