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Preface

Artifi cial neural networks may probably be the single most successful technology in 
the last two decades which has been widely used in a large variety of applications in 
various areas.  An artifi cial neural network, oft en just called a neural network, is a 
mathematical (or computational) model that is inspired by the structure and function 
of biological neural networks in the brain.  An artifi cial neural network consists of a 
number of artifi cial neurons (i.e., nonlinear processing units) which are connected each 
other via synaptic weights (or simply just weights).  An artifi cial neural network can 
“learn” a task by adjusting weights.  There are supervised and unsupervised models.  
A supervised model requires a “teacher” or desired (ideal) output to learn a task.  An 
unsupervised model does not require a “teacher,” but it leans a task based on a cost 
function associated with the task.  An artifi cial neural network is a powerful, versatile 
tool.  Artifi cial neural networks have been successfully used in various applications 
such as biological, medical, industrial, control engendering, soft ware engineering, 
environmental, economical, and social applications.  The high versatility of artifi cial 
neural networks comes from its high capability and learning function.  It has been 
theoretically proved that an artifi cial neural network can approximate any continu-
ous mapping by arbitrary precision.  Desired continuous mapping or a desired task is 
acquired in an artifi cial neural network by learning.  

The purpose of this book series is to provide recent advances of artifi cial neural net-
work applications in a wide range of areas.  The series consists of two volumes: the fi rst 
volume contains methodological advances and biomedical applications of artifi cial 
neural networks; the second volume contains artifi cial neural network applications in 
industrial and control engineering.  

This second volume begins with a part of artifi cial neural network applications in tex-
tile industries which are concerned with the design and manufacture of clothing as 
well as the distribution and use of textiles.  The part contains a review of various appli-
cations of artifi cial neural networks in textile and clothing industries as well as partic-
ular applications.  A part of materials science and industry follows.  This part contains 
applications of artifi cial neural networks in material identifi cation, and estimation of 
material property, behavior, and state.  Parts continue with food industry such as meat, 
electric and power industry such as batt eries, power systems, and power allocation 
systems, mechanical engineering such as engines and machines, control and robotic 
engineering such as nonlinear system control, induction motors, system identifi cation, 
signal and fault diagnosis systems, and robot manipulation.



X Preface

Thus, this book will be a fundamental source of recent advances and applications of 
artifi cial neural networks in industrial and control engineering areas.  The target audi-
ence of this book includes professors, college students, and graduate students in engi-
neering schools, and engineers and researchers in industries.  I hope this book will be 
a useful source for readers and inspire them.

Kenji Suzuki, Ph.D.
University of Chicago

Chicago, Illinois, 
USA
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Review of Application of Artificial Neural 
Networks in Textiles and Clothing 

Industries over Last Decades 
Chi Leung Parick Hui, Ng Sau Fun and Connie Ip 

Institute of Textiles and Clothing, The Hong Kong Polytechnic University, 
Hong Kong SAR, PRC. 

China  

1. Introduction 
An Artificial Neural Network (ANN) is an information processing paradigm that is inspired 
by the way biological nervous systems, such as the brain, process information. The key 
element of this paradigm is the novel structure of the information processing system. It is 
composed of a large number of highly interconnected processing elements (neurones) 
working in unison to solve specific problems. ANNs, like people, learn by example. An 
ANN is configured for a specific application, such as pattern recognition or data 
classification, through a learning process. Learning in biological systems involves 
adjustments to the synaptic connections that exist between the neurones. The ANN has 
recently been applied in process control, identification, diagnostics, character recognition, 
sensory prediction, robot vision, and forecasting. 
In Textiles and Clothing industries, it involves the interaction of a large number of variables. 
Because of the high degree of variability in raw materials, multistage processing and a lack 
of precise control on process parameters, the relation between such variables and the 
product properties is relied on the human knowledge but it is not possible for human being 
to remember all the details of the process-related data over the years. As the computing 
power has substantially improved over last decade, the ANN is able to learn such datasets 
to reveal the unknown relation between various variables effectively. Therefore, the 
application of ANN is more widespread in textiles and clothing industries over last decade. 
In this chapter, it aims to review current application of ANN in textiles and clothing 
industries over last decade. Based on literature reviews, the challenges encountered by 
ANN used in the industries will be discussed and the potential future application of ANN 
in the industries will also be addressed. The structure of this chapter comprises of seven 
sections. The first section includes background of ANN, importance of ANN in textiles and 
clothing and the arrangement of this chapter. In forthcoming three sections, they include 
review of applications of ANN in fibres and yarns, in chemical processing, and in clothing 
over last decade. Afterwards, challenges encountered by ANN used in textiles and clothing 
industries will be discussed and potential future application of ANN in textiles and clothing 
industries will be addressed in last section. 
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2. Applications to fibres and yarns 
2.1 Fibre classification 
Kang and Kim (2002) developed an image system for the current cotton grading system of 
raw cotton involving a trained artificial neural network with a good classifying ability. 
Trash from a raw cotton image can be characterized by a captured color by a color CCD 
camera and acquire color parameters. The number of trash particles and their content, size, 
size distribution, and spatial density can be evaluated after raw cotton images of the 
physical standards are thresholded and connectivity was checked. The color grading of raw 
cotton can be influenced by trash. Therefore, the effect of trash on color grading was 
investigated using a color difference equation that measured the color difference between a 
trash-containing image and a trash-removed image. The artificial neural network, which has 
eight color parameters as input data, was a highly reliable and useful tool for classifying 
color grades automatically and objectively.  
She et al., (2002) developed an intelligent system using artificial neural networks (ANN) and 
image processing to classify two kinds of animal fibres objectively between merino and 
mohair; which are determined in accordance with the complexity of the scale structure and 
the accuracy of the model. An unsupervised artificial neural network was used to extract 
eighty, fifty, and twenty implicit features automatically while image processing technique 
was used to extract nine explicit features. Then the supervised ANN was employed to 
classify these fibers, based on the features extracted with image processing and 
unsupervised artificial neural networks. The classification with features extracted explicitly 
by image processing is more accurate than with features from unsupervised artificial neural 
networks but it required more effort for image processing and more prior knowledge. On 
the contrary, the classification with combined unsupervised and supervised ANN was more 
robust because it needed only raw images, limited image processing and prior knowledge. 
Since only ordinary optical images taken with a microscope were employed, this approach 
for many textile applications without expensive equipment such as scanning electron 
microscopy can be developed. 
Durand et al., (2007) studied different approaches for variable selection in the context of 
near-infrared (NIR) multivariate calibration of the cotton–viscose textiles composition. First, 
a model-based regression method was proposed. It consisted of genetic algorithm 
optimization combined with partial least squares regression (GA–PLS). The second 
approach was a relevance measure of spectral variables based on mutual information (MI), 
which can be performed independently of any given regression model. As MI made no 
assumption on the relationship between X and Y, non-linear methods such as feed-forward 
artificial neural network (ANN) were thus encouraged for modeling in a prediction context 
(MI–ANN). GA–PLS and MI–ANN models were developed for NIR quantitative prediction 
of cotton content in cotton–viscose textile samples. The results were compared to full 
spectrum (480 variables) PLS model (FS-PLS). The model required 11 latent variables and 
yielded a 3.74% RMS prediction error in the range 0–100%. GA–PLS provided more robust 
model based on 120 variables and slightly enhanced prediction performance (3.44% RMS 
error). Considering MI variable selection procedure, great improvement can be obtained as 
12 variables only were retained. On the basis of these variables, a 12 inputs of ANN model 
was trained and the corresponding prediction error was 3.43% RMS error. 

2.2 Yarn manufacture 
Beltran et al., (2004)  developed an artificial neural network (ANN) trained with  
back-propagation encompassed all known processing variables that existed in different 
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spinning mills, and then generalized this information to accurately predict yarn quality of 
worsted spinning performance for an individual mill. The ANN was then subsequently 
trained with commercial mill data to assess the feasibility of the method as a mill-specific 
performance prediction tool. The ANN was a suitable tool for predicting worsted yarn 
quality for a specific mill.  
Farooq and Cherif (2008) have reported a method of predicting the leveling action point, 
which was one of the important auto-leveling parameters of the drawing frame and strongly 
influences the quality of the manufactured yarn, by using artificial neural networks (ANN). 
Various leveling action point affecting variables were selected as inputs for training the 
artificial neural networks, which was aimed to optimize the auto-leveling by limiting the 
leveling action point search range. The Levenberg–Marquardt algorithm was incorporated 
into the back-propagation to accelerate the training and Bayesian regularization was applied 
to improve the generalization of the networks. The results obtained were quite promising 
that the accuracy in computation can lead to better sliver CV% and better yarn quality. 

2.3 Yarn-property prediction 
Kuo et al., (2004) applied neural network theory to consider the extruder screw speed, gear 
pump gear speed, and winder winding speed of a melt spinning system as the inputs and 
the tensile strength and yarn count of spun fibers as the outputs. The data from the 
experiments were used as learning information for the neural network to establish a reliable 
prediction model that can be applied to new projects. The neural network model can predict 
the tensile strength and yarn count of spun fibers so that it can provide a very good and 
reliable reference for spun fiber processing. 
Zeng et al., (2004) tried to predict the tensile properties (yarn tenacity) of air-jet spun yarns 
produced from 75/25 polyester on an air-jet spintester by two models, namely neural 
network model and numerical simulation. Fifty tests were undergone to obtain average yarn 
tenacity values for each sample. A neural network model provided quantitative predictions 
of yarn tenacity by using the following parameters as inputs: first and second nozzle 
pressures, spinning speed, distance between front roller nip and first nozzle inlet, and the 
position of the jet orifice in the first nozzle so that the effects of parameters on yarn tenacity 
can be determined. Meanwhile, a numerical simulation provided a useful insight into the 
flow characteristics and wrapping formation process of edge fibers in the nozzle of an air-jet 
spinning machine; hence, the effects of nozzle parameters on yarn tensile properties can be 
predicted. The result showed that excellent agreement was obtained between these two 
methods. Moreover, the predicted and experimental values agreed well to indicate that the 
neural network was an excellent method for predictors.  
Lin (2007) studied the shrinkages of warp and weft yarns of 26 woven fabrics manufactured 
by air jet loom by using neural net model which were used to determine the relationships 
between the shrinkage of yarns and the cover factors of yarns and fabrics. The shrinkages 
were affected by various factors such as loom setting, fabric type, and the properties of warp 
and weft yarns. The neural net was trained with 13 experimental data points. A test on 13 
data points showed that the mean errors between the known output values and the output 
values calculated using the neural net were only 0.0090 and 0.0059 for the shrinkage ratio of 
warp (S1) and weft (S2) yarn, respectively. There was a close match between the actual and 
predicted shrinkage of the warp (weft) yarn. The test results gave R2 values of 0.85 and 0.87 
for the shrinkage of the warp (i.e., S1) and weft (i.e., S2), respectively. This showed that the 
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neural net produced good results for predicting the shrinkage of yarns in woven fabrics. 
Different woven fabrics manufactured on different looms like rapier, gripper, etc., raw 
material yarn ingredients (e.g., T/C × T/R, T/R × T/R, T/C × C, etc.), and fabric structural 
class (e.g., twill, satin, etc.) were examined to measure the shrinkage ratio of warp and weft 
yarns. The developed neural net model was then used to train the obtained data and the 
result showed that the prediction of yarn shrinkage in the off-loomed fabrics can be fulfilled 
through a prediction model constructed with neural net. 
Xu et al., (2007) studied a neural network method of analyzing cross-sectional images of a 
wool/silk blended yarn. The process of original yarn cross-sectional images including image 
enhancement and shape filtering; and the determination of characteristic parameters for 
distinguishing wool and silk fibers in the enhanced yarn cross-sectional images were in the 
study. A neural network computing approach, single-layer perceptrons, was used for 
learning the target parameters. The neural network model had a good capability of tolerance 
and learning. The study indicated that preparation of the yarn sample slices was critically 
important to obtain undistorted fiber images and to ensure the accuracy of fiber recognition. 
The overall error estimated for recognizing wool or silk fiber was 5%. 
Khan et al., (2009) studied the performance of multilayer perceptron (MLP) and multivariate 
linear regression (MLR) models for predicting the hairiness of worsted-spun wool yarns 
objectively by examining 75 sets of yarns consisting of various top specifications and 
processing parameters of shrink-resist treated, single-ply, pure wool worsted yarns. The 
results indicated that the MLP model predicted yarn hairiness was more accurately than the 
MLR model and showed that a degree of nonlinearity existed in the relationship between 
yarn hairiness and the input factors considered. Therefore, the artificial neural network 
(ANN) model had the potential for wide mill specific applications for high precision 
prediction of hairiness of a yarn from limited top, yarn and processing parameters. The use 
of the ANN model as an analytical tool may facilitate the improvement of current products 
by offering alternative material specification and/or selection and improved processing 
parameters governed by the predicted outcomes of the model. On sensitivity analysis on the 
MLP model, yarn twist, ring size, average fiber length (hauteur) had the greatest effect on 
yarn hairiness with twist having the greatest impact on yarn hairiness. 
Ünal et al., (2010) investigated the retained spliced diameter with regard to splicing 
parameters and fiber and yarn properties. The yarns were produced from eight different 
cotton types in three yarn counts (29.5, 19.7 and 14.8 tex) and three different twist 
coefficients (αTex 3653, αTex 4038, αTex 4423). To investigate the effects of splicing parameters 
on the retained spliced diameter, opening air pressure, splicing air pressure and splicing air 
time were set according to an orthogonal experimental design. The retained spliced 
diameter was calculated and predicted by using an artificial neural network (ANN) and 
response surface methods. Analyses showed that ANN models were more powerful 
compared with response surface models in predicting the retained spliced diameter of ring 
spun cotton yarns. 

2.4 Fibre and Yarn relationship 
Admuthe and Apte (2010) used multiple regression model such as artificial neural network 
(ANN) in an attempt to develop the relationship between fiber and yarn in the spinning 
process. 30 different cotton fibres were selected covering all of the staple length groups of 
cotton grown in India. The yarn (output) produced from the spinning process had a unique 
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relationship with the fibers (input). However, ANN failed to develop exact relationships 
between the fiber and the yarn, then a hybrid approach was used to achieving the solution. 
Hence, a new hybrid technique, Adaptive Neuro-Fuzzy Inference System (ANFIS) which 
was combined with subtractive clustering was used to predict yarn properties. The result 
shown that the ANFIS gave better co-relation values. The test results show better accuracy 
for all datasets when compared it to the ANN model.  

3. Applications to fabrics 
3.1 Fabric manufacture 
Yao et al., (2005) investigated the predictability of the warp breakage rate from a sizing yarn 
quality index using a feed-forward back-propagation network in an artificial neural network 
system. An eight-quality index (size add-on, abrasion resistance, abrasion resistance 
irregularity, hairiness beyond 3 mm, breaking strength, breaking strength irregularity, 
breaking elongation, and breaking elongation irregularity) and warp breakage rates were 
rated in controlled conditions. A good correlation between predicted and actual warp 
breakage rates indicated that warp breakage rates can be predicted by neural networks. A 
model with a single sigmoid hidden layer with four neurons was able to produce better 
predictions than the other models of this particular data set in the study. 
Behera and Karthikeyan (2006) described the method of applying artificial NNs for the 
prediction of both construction and performance parameters of canopy fabrics. Based on the 
influence on the performance of the canopy fabric, constructional parameters were chosen. 
Constructional parameters were used as input for predicting the performance parameter in 
forward engineering, and the parameters were reversed for the reverse engineering 
prediction. Comparison between actual results and predicted results was made. The results 
of the design prediction had excellent correlation with all the samples.  
Behera and Goyal (2009) described the method of applying the artificial neural network for 
the prediction performance parameters for airbag fabrics. The results of the ANN 
performance prediction had low prediction error of 12% with all the samples and the 
artificial neural network based on Error Back-propagation were found promising for a new 
domain of design prediction technique. The prediction performance of the neural network 
was based on the amount of training. The diversity of the data and the amount of data 
resulted in better the mapping of the network, and better predictions. Therefore, airbag 
fabrics could be successfully engineered using artificial neural network. 

3.2 Fabric-property prediction 
Ertugrul and Ucar (2000) have shown how the bursting strength of cotton plain knitted fabrics 
can be predicted before manufacturing by using intelligent techniques of neural network and 
neuro-fuzzy approaches. Fabric bursting strength affected by fabric weight, yarn breaking 
strength, and yarn breaking elongation were input elements for the predictions. Both the 
multi-layer feed-forward neural network and adaptive network based fuzzy inference system, 
a combination of a radial basis neural network and the Sugeno-Takagi fuzzy system, were 
studied. Both systems had the ability to learn training data successfully, and testing errors can 
give an approximate knowledge of the bursting strength which fabric can be knitted. 
Chen et al., (2001) proposed a neural network computing technique to predict fabric end-
use. One hundred samples of apparel fabrics for suiting, shirting, and blouse uses were 
selected and fabric properties of extension, shear, bending, compression, and friction and 
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roughness were measured by using the Kawabata KES instruments. Instrumental data of the 
fabric properties and information on fabric end-uses were input into neural network 
software to train a multilayer perceptron model. The prediction error rate from the 
established neural network model was estimated by using a cross-validation method. The 
estimated error rate for prediction was 0.07. The established neural network model could be 
upgraded by inputting new fabric samples and be implemented for applications in garment 
design and manufacture. 
Shyr et al., (2004) have taken new approaches in using a one-step transformation process to 
establish translation equations for total hand evaluations of fabrics by employing a stepwise 
regression method and an artificial neural network. The key mechanical properties selected 
from sixteen fabric mechanical properties based on a KES system, using the stepwise 
regression selection method, were the parameters. The translation equations were 
developed directly with parameters without a primary hand value transformation process. 
114 polyester/cotton blended woven fabrics were selected for investigation. Four 
mechanical properties LC, 2HG, B, and WT were the parameters for developing the 
translation equations. The correlation coefficients of the translation equations developed 
from the stepwise regression and artificial neural network methods were 0.925 and 0.955, 
respectively. Both translation equations had high correlation coefficients between the 
calculated and practical values. The approaches were identified effectively to develop 
translation equations for new fabrics in the textile industry. 
Behera and Mishra (2007) investigated the prediction of non-linear relations of functional 
and aesthetic properties of worsted suiting fabrics for fabric development by an engineered 
approach of a radial basis function network which was trained with worsted fabric 
constructional parameters. Therefore, an objective method of fabric appearance evaluation 
with the help of digital image processing was introduced. The radial basis function network 
can successfully predict the fabric functional and aesthetic properties from basic fibre 
characteristics and fabric constructional parameters with considerable accuracy. The 
network prediction was in good correlation with the actual experimental data. There was 
some error in predicting the fabric properties from the constructional parameters. The 
variation in the actual values and predicted values was due to the small sample size. 
Moreover, the properties of worsted fabrics were greatly influenced by the finishing 
parameters which are not taken into consideration in the training of the network.  
Murrells et al., (2009) employed an artificial neural network (ANN) model and a standard 
multiple linear regression model for the prediction of the degree of spirality of single jersey 
fabrics made from a total of 66 fabric samples produced from three types of 100% cotton 
yarn samples including conventional ring yarns, low torque ring yarns and plied yarns. The 
data were randomly divided into 53 and 13 sets of data that were used for training and 
evaluating the performance of the predictive models. A statistical analysis was undertaken 
to check the validity by comparing the results obtained from the two types of model with 
relatively good agreement between predictions and actual measured values of fabric 
spirality with a correlation coefficient, R, of 0.976 in out-of-sample testing. Therefore, the 
results demonstrated that the neural network model produced superior results to predict 
the degree of fabric spirality after three washing and drying cycles. Both the ANN and the 
regression approach showed that twist liveliness, tightness factor and yarn linear density 
were the most important factors in predicting fabric spirality. Twist liveliness was the major 
contributor to spirality with the other factors such as yarn type, the number of feeders, 
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rotational direction and gauge (needles/inch) of the knitting machine and dyeing method 
having a minor influence.  
Hadizadeh et al., (2009) used an ANN model for predicting initial load-extension behavior 
(Young’s modulus) in the warp and weft directions of plain weave and plain weave 
derivative fabrics by modeling the relationship between a combination of the yarn modular 
length, yarn spacing, the ratio of occupied spacing to total length of yarn in one weave 
repeat, and the yarn flexural rigidity with satisfactory accuracy. A single hidden layer feed-
forward ANN based on a back-propagation algorithm with four input neurons and one 
output neuron was developed to predict initial modulus in the warp and weft directions. 
Input values were defined as combination expressions of geometrical parameters of fabric 
and yarn flexural rigidity, which were obtained from Leaf’s mathematical model. Data were 
divided into two groups as training and test sets. A very good agreement between the 
examined and predicted values was achieved and the model’s suitability was confirmed by 
the low performance factor (PF/3) and the high coefficient of correlation. 
Hadizadeh et al., (2010) introduced a new model based on an adaptive neuro-fuzzy 
inference system (ANFIS) for predicting initial load–extension behavior of plain-woven 
fabrics. Input values defined as combination expressions of geometrical parameters of fabric 
and yarn flexural rigidity, yarn-spacing, weave angle and yarn modular length, which were 
extracted from Leaf’s mathematical model. The results showed that the neuro-fuzzy system 
can be used for modeling initial modulus in the warp and weft directions of plain-woven 
fabrics. Outputs of the neuro-fuzzy model were also compared with results obtained by 
Leaf’s models. The calculated results were in good agreement with the real data upon 
finding the importance of inputs. 

3.3 Fabric defect 
Hu and Tsai (2000) used best wavelet packet bases and an artificial neural network (ANN) 
to inspect four kinds of fabric defects. Multi-resolution representation of an image using 
wavelet transform was a new and effective approach for analyzing image information 
content. The values and positions for the smallest-six entropy were found in a wavelet 
packet best tree that acted as the feature parameters of the ANN for identifying fabric 
defects. They explored three basic considerations of the classification rate of fabric defect 
inspection comprising wavelets with various maximum vanishing moments, different 
numbers of resolution levels, and differently scaled fabric images. The results showed that 
the total classification rate for a wavelet function with a maximum vanishing moment of 
four and three resolution levels can reach 100%, and differently scaled fabric images had no 
obvious effect on the classification rate. 
Shiau et al., (2000) constructed a back-propagation neural network topology to automatically 
recognize neps and trash in a web by color image processing. The ideal background color 
under moderate conditions of brightness and contrast to overcome the translucent problem 
of fibers in a web, specimens were reproduced in a color BMP image file format. With a 
back-propagation neural network, the RGB (red, green, and blue) values corresponding with 
the image pixels were used to perform the recognition, and three categories (i.e., normal 
web, nep, and trash) can be recognized to determine the numbers and areas of both neps 
and trash. According to experimental analysis, the recognition rate can reach 99.63% under 
circumstances in which the neural network topology is 3-3-3. Both contrast and brightness 
were set at 60% with an azure background color. The results showed that both neps and 
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trash can be recognized well, and the method was suitable not only for cotton and man-
made fibers of different lengths, but also for different web thicknesses as to a limit of 32.9 
g/m2.  
Choi et al., (2001) developed a new method for a fabric defect identifying system by using 
fuzzy inference in multi-conditions. The system has applied fuzzy inference rules, and the 
membership function for these rules to adopt a neural network approach. Only a small 
number of fuzzy inference rules were required to make the identifications of non-defect, 
slub (warp direction), slub (weft direction), nep, and composite defect. One fuzzy inference 
rule can replace many crisp rules. This system can be used to design a reliable system for 
identifying fabric defects. Experimental results with this approach have demonstrated the 
identification ability which was comparable to that of a human inspector. 
Huang and Chen (2001) investigated an image classification by a neural-fuzzy system for 
normal fabrics and eight kinds of fabric defects. This system combined the fuzzification 
technique with fuzzy logic and a back-propagation learning algorithm with neural 
networks. Four inputs featured the ratio of projection lengths in the horizontal and vertical 
directions, the gray-level mean and standard deviation of the image, and the large number 
emphasis (LNE) based on the neighboring gray level dependence matrix for the defect area. 
The neural network was also implemented and compared with the neural-fuzzy system. The 
results demonstrated that the neural-fuzzy system was superior to the neural network in 
classification ability. 
Saeidi et al., (2005) described a computer vision-based fabric inspection system implemented 
on a circular knitting machine to inspect the fabric under construction. The detection of 
defects in knitted fabric was performed and the performance of three different spectral 
methods, namely, the discrete Fourier transform, the wavelet and the Gabor transforms 
were evaluated off-line. Knitted fabric defect-detection and classification was implemented 
on-line. The captured images were subjected to a defect-detection algorithm, which was 
based on the concepts of the Gabor wavelet transform, and a neural network as a classifier. 
An operator encountering defects also evaluated the performance of the system. The fabric 
images were broadly classified into seven main categories as well as seven combined 
defects. The results of the designed system were compared with those of human vision.  
Shady et al., (2006) developed a new method for knitted fabric defect detection and 
classification using image analysis and neural networks. Images of six different induced 
defects (broken needle, fly, hole, barré, thick and thin yarn) were used in the analysis. 
Statistical procedures and Fourier Transforms were utilized in the feature extraction effort 
and neural networks were used to detect and classify the defects. The results showed 
success in classifying most of the defects but the classification results for the barré defect 
were not identified using either approach due to the nature of the defect shape which 
caused it to interfere with other defects such as thick/thin yarn defects. The results of using 
the Fourier Transform features extraction approach were slightly more successful than the 
statistical approach in detecting the free defect and classifying most of the other defects. 
Yuen et al., (2009) explored a novel method to detect the fabric defect automatically with a 
segmented window technique which was presented to segment an image for a three layer 
BP neural network to classify fabric stitching defects. This method was specifically designed 
for evaluating fabric stitches or seams of semi-finished and finished garments.  
A fabric stitching inspection method was proposed for knitted fabric in which a segmented 
window technique was developed to segment images into three classes using a 
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monochrome single-loop ribwork of knitted fabric: (1) seams without sewing defects; (2) 
seams with pleated defects; and (3) seams with puckering defects caused by stitching faults. 
Nine characteristic variables were obtained from the segmented images and input into a 
Back Propagation (BP) neural network for classification and object recognition. The 
classification results demonstrated that the inspection method developed was effective in 
identifying the three classes of knitted-fabric stitching. It was proved that the classifier with 
nine characteristic variables outperformed those with five and seven variables and the 
neural network technique using either BP or radial basis (RB) was effective for classifying 
the fabric stitching defects. By using the BP neural network, the recognition rate was 100%. 
The experiment results showed that the method developed in this study is feasible and 
applicable. 

3.4 Sewing 
Jeong et al., (2000) constructed a neural network and subjoined local approximation 
technique for application to the sewing process by selecting optimal interlinings for woolen 
fabrics. Men’s woolen suitings and ten optimal interlinings were selected and matched. A 
single hidden layer neural network was constructed with five input nodes, ten hidden 
nodes, and two output nodes. Both input and output of the mechanical parameters 
measured on the KES-FB system were used to train the network with a back-propagation 
learning algorithm. The inputs for the fabrics were tensile energy, bending rigidity, bending 
hysteresis, shear stiffness, and shear hysteresis, while outputs for the interlinings were 
bending rigidity and shear stiffness. This research presented a few methods for improving 
the efficiency of the learning process. The raw data from the KES-FB system were 
nonlinearly normalized, and input orders were randomized. The procedure produced a 
good result because the selection agreed well with the experts’ selections. Consequently, the 
results showed that the neural network and subjoined techniques had a strong potential for 
selecting optimum interlinings for woolen fabrics. 
Hui et al., (2007) investigated the use of artificial neural networks (ANN) to predict the 
sewing performance of woven fabrics for efficient planning and control for the sewing 
operation. This was based on the physical and mechanical properties of fabrics such as the 
critical parameters of a fabric constructional and behavioural pattern as all input units and 
to verify the ANN techniques as human decision in the prediction of sewing performance of 
fabrics by testing 109 data sets of fabrics through simple testing system and the sewing 
performance of each fabric’s specimen by the domain experts. Among 109 input-output data 
pairs, 94 were used to train the proposed back-propagation (BP) neural network for the 
prediction of the unknown sewing performance of a given fabric, and 15 were used to test 
the proposed BP neural network. A three-layered BP neural network that consists of 21 
input units, 21 hidden units, and 16 output units was developed. The output units of the 
model were the control levels of sewing performance in the areas of puckering, needle 
damages, distortion, and overfeeding. After 10,000 iterations of training of BP neural 
network, the neural network converged to the minimum error level. The evaluation of the 
model showed that the overall prediction accuracy of the developed BP model was at 93 per 
cent which was the same as the accuracy of prediction made by human assessment. The 
predicted values of most fabrics were found to be in good agreement with the results of 
sewing tests carried out by domain experts.  
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3.5 Seam performance 
Hui and Ng (2009) investigated the capability of artificial neural networks based on a back 
propagation algorithm with weight decay technique and multiple logarithm regression 
(MLR) methods for modeling seam performance of fifty commercial woven fabrics used for 
the manufacture of men’s and women’s outerwear based on seam puckering, seam flotation 
and seam efficiency. The developed models were assessed by verifying Mean Square Error 
(MSE) and Correlation Coefficient (R-value) of test data prediction. The results indicated 
that the artificial neural network (ANN) model has better performance in comparison with 
the multiple logarithm regression model. The difference between the MSE of predicting in 
these two models for predicting seam puckering, seam flotation, and seam efficiency was 
0.0394, 0.0096, and 0.0049, respectively. Thus, the ANN model was found to be more 
accurate than MLR, and the prediction errors of ANNs were low despite the availability of 
only a small training data set. However, the difference in prediction errors made by both 
models was not significantly high. It was found that MLR models were quicker to construct, 
more transparent, and less likely to overfit the minimal amount of data available. Therefore, 
both models were effectively predicting the seam performance of woven fabrics. 
Onal et al., (2009) studied the effect of factors on seam strength of webbings made from 
polyamide 6.6 which were used in parachute assemblies as reinforcing units for providing 
strength by using both Taguchi’s design of experiment (TDOE) as well as an artificial neural 
network (ANN), then compared them with the strength physically obtained from mechanical 
tests on notched webbing specimens. It was established from these comparisons, in which the 
root mean square error was used as an accuracy measure, that the predictions by ANN were 
better predictions of the experimental seam strength of jointed notched webbing in accuracy 
than those predicted by TDOE. An L8 design was adopted and an orthogonal array was 
generated. The contribution of each factor to seam strength was analyzed using analysis of 
variance (ANOVA) and signal to noise ratio methods. From the analysis, the TDOE revealed 
(based on SNR performance criteria) that the fabric width, folding length of joint and 
interaction between the folding length of joint and the seam design affected seam strength 
significantly. An optimal configuration of levels of factors was found by using TDOE.  

4. Applications to chemical processing 
Huang and Yu (2001) used image processing and fuzzy neural network approaches to 
classify seven kinds of dyeing defects including filling band in shade, dye and carrier spots, 
mist, oil stain, tailing, listing, and uneven dyeing on selvage. The fuzzy neural classification 
system was constructed by a fuzzy expert system with the neural network as a fuzzy 
inference engine so it was more intelligent in handling pattern recognition and classification 
problems. The neural network was trained to become the inference engine using sample 
data. Region growing was adopted to directly detect different defect regions in an image. 
Seventy samples, ten samples for each defect, were obtained for training and testing. The 
results demonstrated that the fuzzy neural network approach could precisely classify the 
defective samples by the features selected. 

5. Applications to clothing 
5.1 Pattern fitting prediction 
Hu et al., (2009) developed a system to utilize the successful experiences and help the 
beginners of garment pattern design (GPD) through optimization methods by proposing a 
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hybrid system (NN-ICEA) based on neural network (NN) and immune co-evolutionary 
algorithm (ICEA) to predict the fit of the garments and search optimal sizes. ICEA takes NN 
as fitness function and procedures including clonal proliferation, hypermutation and co-
evolution search the optimal size values. A series of experiments with a dataset of 450 pieces 
of pants was conducted to demonstrate the prediction and optimization capabilities of NN-
ICEA. In the comparative studies, NN-ICEA was compared with NN-genetic algorithm to 
show the value of immune-inspired operators. Four types of GPD method have been 
summarized and compared. The research was a feasible and effective attempt aiming at a 
valuable problem and provides key algorithms for fit prediction and size optimization. The 
algorithms can be incorporated into garment computer-aided design system (CAD). 
 

5.2 Clothing sensory comfort 
Wong et al., (2003) investigated the predictability of clothing sensory comfort from 
psychological perceptions by using a feed-forward back-propagation network in an artificial 
neural network (ANN) system. Wear trials were conducted ten sensory perceptions 
(clammy, clingy, damp, sticky, heavy, prickly, scratchy, fit, breathable, and thermal) and 
overall clothing comfort (comfort) which were rated by twenty-two professional athletes in 
a controlled laboratory. Four different garments in each trial and rate the sensations above 
during a 90-minute exercising period were scored as input into five different feed-forward 
back-propagation neural network models, consisting of six different numbers of hidden and 
output transfer neurons. The results showed a good correlation between predicted and 
actual comfort ratings with a significance of p<0.001. Good agreement between predicted 
and actual clothing comfort perceptions proved that the neural network was an effective 
technique for modeling the psychological perceptions of clothing sensory comfort. The 
predicted comfort score generated from the model with the log-sigmoid hidden neurons 
and the linear output neuron had a better fit with the actual comfort score than other models 
with different combinations of hidden and output neurons. Compared with statistical 
modeling techniques, the neural network was a fast, flexible, predictive tool with a self-
learning ability for clothing comfort perceptions.  
Wong et al., (2004) investigated the process of human psychological perceptions of clothing 
related sensations and comfort to develop an intellectual understanding of and 
methodology for predicting clothing comfort performance from fabric physical properties. 
Various hybrid models were developed using different modeling techniques by studying 
human sensory perception and judgement processes. By combining the strengths of 
statistics (data reduction and information summation), a neural network (self-learning 
ability), and fuzzy logic (fuzzy reasoning ability), hybrid models were developed to 
simulate different stages of the perception process. Results showed that the TS-TS-NN-FL 
model had the highest ability to predict overall comfort performance from fabric physical 
properties. The three key elements in predicting psychological perceptions of clothing 
comfort from fabric physical properties were data reduction and summation, self-learning, 
and fuzzy reasoning. The model was shown that these three elements can generated the best 
predictions compared with other hybrid models. 
All research outputs in application of ANN in textiles and clothing areas over last decade 
are summarized as shown in Appendix. 
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6. Challenges encountered by ANN used in textiles and clothing industries 
In the application of ANN in different disciplines of textiles and clothing industries, there 
are the following limitations which has encountered. 
Fibre classification: More powerful learning strategies are required to improve the 
classification accuracy made by the ANN. 
Yarn manufacture: Additional work is needed to accurately model the occurrence of 
spinning ends-down and neps by using the ANN. To improve the predictions on such 
parameters, additional mill-specific data and further developments of the ANN simulations 
are necessary. 
Yarn-property prediction: Some researchers reported that yarn tenacity decreases when 
spinning speed exceeds a certain value, say, 210 m/min. Since we used an air-jet spinstester 
in this research, spinning speed could not exceed 200 m/min because of the restriction of the 
machine, so the decreasing trend of yarn tenacity could not be predicted. In addition, the 
difficulty in developing a universal empirical model that can accurately predict yarn 
hairiness for different mills stems from the variability in processing methodologies and 
equipment. 
As many independent variables exist, further difficulty arises in covering the entire range of 
parameters with the capability of interpolating and extrapolating experimental observations 
or mill measurements and to take into account the interactive contribution between each 
input factor. It is, therefore, desirable to possess the capacity to discover regularities directly 
from the data being modeled, that can dynamically evolve with time taking into account 
changes in materials’ specifications and processing techniques within a given mill. The MLP 
model, one of ANN model does possess this characteristic and has the potential for wider 
applicability in industry. 
Fabric manufacture: To improve the correlation between actual and predicted values, in the 
case of reverse engineering, constraints are posed to limit the ranges of constructional 
parameters in ANN.  
Fabric-property prediction: Besides the possibility of trying different ANN configurations, 
the quantity and the quality of training data are also very important to the results. Even 
though we do not include coefficient of variation (CV) values in the training pairs as inputs, 
we have concluded that the ANN has a higher chance of giving big errors if the data include 
many training pairs with high CV values because they feed inconsistent information to the 
ANN. For future work, we suggest that there should be enough training pairs and the CV 
values of these data should also be known for higher reliability. 
In addition, prediction performance can be further improved by including these parameters 
as input during the training phase. In few cases, the network has predicted contradictory 
trends which are found difficult to be explained. Also, the neural network model 
outperformed the multiple regression models in predicting the angle of spirality using data 
that were not used to train the network. This indicates that it is worthwhile using the more 
complex ANN technique if a large amount of different types of data are available. 
Fabric defect: Since neps and trash in a web can be recognized, yarn quality is able to 
improve using a reference for adjusting manufacturing parameters. In addition, the CCD 
(charge coupled device) must be mounted, despite the scanner, because of on-line 
considerations. Patterned and complex fabrics can be inspected as well as plain fabrics. 
Further research such as a neuro-fuzzy expert system can identify actual defect types like 
reed marks, mispicks, pilling, finger marks, and others. 
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Since this research is limited by the speed of the knitting machine, further studies are 
required to inspect the fabric defects in higher speed, circular knitting machines. 
Application of ANN in fabric defect is still needed to be done in two major aspects: (1) the 
applicability of the developed method in studying other manufacturing defects needs to be 
validated; and (2) the current 2-D-based investigation needs to be extended to three-
dimensional (3-D) space for actual manual inspection. 
Seam performance: In these comparisons, RMSE values were used as comparative metrics. 
As a result, it can be said that ANN appears to be a reliable and useful tool in characterizing 
the effect of some critical manufacturing parameters on the seam strength of webbing if a 
sufficient number of replicated experimental data are available to train the ANN.  
Applications to Chemical Processing: Fuzzification maps the input feature value to fuzzy 
sets and the dimensions of the feature space are increased. When fuzzy sets are 
appropriately chosen, they can increase the separated ability of classes in the feature space. 
This allows the fuzzy neural network model to fit input-output data more accurately with 
enhanced classification ability. 
Pattern fitting prediction: The current scale is definitely not enough to study all sizes of the 
garment. In order to present the fuzzy and stochastic nature of the garment and body sizes, 
it should be modeled as fuzzy vector or stochastic vector. In addition, it is valuable to 
incorporate NN-ICEA into garment CAD system and thus the 2D and 3D effects of 
garments can provide intuitive impressions. 
Clothing sensory comfort: The functions and interrelationships of individual sensory 
perceptions and comfort are unknown. It is difficult to learn their relationships using ANN. 
In conclusion, the major challenges of using ANN in textiles and clothing industries are lack 
of sufficient data for learning and long computational time required for handling a large 
size of dataset. To improve the performance of ANN models, some major factors shall be 
considered to include the determination of adequate model inputs, data division and 
preprocessing, choice of suitable network architecture, careful selection of some internal 
parameters that control the optimization method, stopping criteria, and model validation. 

7. Potential future application of ANN in textiles and clothing industries 
A large number of applications of ANN in textiles and clothing industries are used 
feedforward and Kohonen networks. The other types of artificial neural networks such as 
recurrent neural network, associative neural network and dynamic neural networks (refer to 
http://en.wikipedia.org/wiki/Types_of_artificial_neural_networks website) are rarely 
used. Meanwhile, quite a few areas remains insufficiently explored such as knitting, 
nonwoven fabrics and finishing control. Exploring such areas using new ANN models is a 
new trend in future research. 
In the future research, the following issues shall be taken into consideration to the 
application of ANN in textiles and clothing industries. 
a. improve the data collection method for training ANNs such as online data captured 

from the process 
b. improve the feature-extraction procedures before the data can be fed to an ANN 
c. improve extrapolation ability of the system to strengthen the prediction capability 
d. improve the user-friendly interface between user and machine 
These issues are important for further development of using ANN in textiles and clothing 
industries. Further research works shall deal with such issues in order to set up intelligent 
systems in textiles and clothing fields instead of human judgment. 
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1. Introduction 
Such as other fields, textile industry, deal with numerous large inputs and possible outputs 
parameters and always feed with a complex interdependence between parameters, it is 
highly unlikely that an exact mathematical model will ever be developed. Furthermore, 
since there are many dependent and independent variables during different textile progress, 
it becomes difficult to conduct and to cover the entire range of the parameters. Moreover, 
the known and unknown variables cannot be interpolated and extrapolated in a reasonable 
way based on experimental observations or mill measurements due to the shortage of 
knowledge on the evaluation of the interaction and significance at weight contributing from 
each variable. For example, it is quite difficult to develop some universal practical models 
that can accurately predict yarn quality for different mills (Chattopadhyay & Guha, 2004). 
Statistical models have also shown up their limitations in use—not least their sensitivity to 
rogue data—and are rarely used in any branch of the textile industry as a decision-making 
tool. The mechanistic models proposed by various authors overtly simplify the case to make 
the equations manageable and pay the price with their limited accuracy. In any case, the 
vast volume of process parameter- related data is hardly ever included in these models, 
making them unsuitable for application in an industrial scenario. 
By using neural networks, it seems to be possible to identify and classify different textile 
properties (Guruprasad & Behera, 2010). Some of the studies reported in recent years on the 
application of neural networks are discussed hereunder. 

2. Fiber classification 
The usual tests for fiber identification (usually chemical tests), in addition to being difficult 
to perform, are almost always destructive in nature. 
Leonard et al., 1998 had used Near-infrared (NIR) spectroscopy as input data to a neural 
network to identify fibers in both original and normalised spectra. The performance of the 
network was judged by computing the root mean square error of prediction (RMSEP) and 
was compared with similar results given by multiple linear regressions (MLR). 
Accurate classification of animal fibers used in the wool industry is very difficult. Some 
techniques distinguish these fibers from patterns of their cuticular scales and others from 
their physical and chemical properties. However, classification of animal fibers is actually a 
typical task of pattern recognition and classification (Leonard et al., 1998). She et al., 2002 
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developed an intelligent fiber classification system to objectively identify and classify two 
types of animal fibers, merino and mohair, by two different methods based on image 
processing and artificial neural network. There are considerable variations in the shape and 
contour of the scale cells and their arrangement within the cuticle. They used these two 
systems based on how the scale features of the animal fibers were extracted. The data was 
cast images of fibers captured by optical microscopy. Then they applied principal 
component analysis (PCA) to reduce the dimension of input images and extract an optimal 
linear feature before applying neural network. Furthermore neural network classifiers 
generalize better when they have a small number of independent inputs. Finally they used 
an unsupervised neural network in which the outputs used as inputs in the supervised 
network (a multilayer perception with a back propagation algorithm) for classification while 
the fiber classes were the outputs of the output layer. For the unsupervised network, 
learning rate at 0.005 (step size) was set which linearly decayed to 0.0005 within the first 100 
epochs and three different numbers of units in the hidden layer (80, 50, and 20) was used. 
Multilayer perception used for fiber classification had a hyperbolic tangent activation 
function in the processing elements of the hidden layer and output layer. They also 
compared their two systems and concluded that neural network system was more robust 
since only raw images were used and by developing more powerful learning strategies, the 
classification accuracy of model would be improved (She et al., 2002). 
There are some studies which have been introduced different design of neural network 
classifier to categorize different type of fibers based on their colors too. 
Raw cotton contains various kinds of trash, such as leaf, bark, and seed coat. The content of 
each of these trash particles is vital for deciding upon the cleaning process (Xu et al., 1999). 
For instance, the trash and color of raw cotton are very important and decisive factors in the 
current cotton grading system that determine spinning quality and market value.  
For many years, the USDA (United States Department of Agriculture) has used both a visual 
grading method by trained classers and an instrumental method with HVI (High Volume 
Instrument) systems to evaluate the color and trash of raw cotton. However it is expensive, 
slow, and a time consuming process (Kang & Kim, 2002). Xu et al., 1999 used three 
classification techniques (sum of squares, fuzzy, and neural network) into four groups (bark, 
leaf, hairy seed coats, and smooth seed coat). They applied two hidden layer with four and 
six neurons and their results showed that the neural network clustering method 
outperformed the other used two methods (Xu et al., 1999).   
Kang & Kim, 2002 developed an image system to characterize trash from a raw cotton image 
captured by a color CCD camera and acquired color parameters. They trained and tested 
neural network based on back propagation algorithm using color parameters as input data 
from physical standard samples. A sigmoid function was used for an error back propagation 
model and the number of input and output nodes was eight and seven respectively in 
accordance with the color parameters and seven grades in the subcategories. The results 
predicted by neural network were compared with the grades that classers judged (Kang & 
Kim, 2002).  

3. Yarn, fabric, nonwoven and cloth defect detection and categorization 
In general, textile quality control is determined by measuring a large number of properties 
(including mechanical and physical properties, and etc), which in many cases can only be 
done by skilled workers or expensive equipments (Lien & Lee, 2002). Generally, In textile 
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industry, textiles are inspected manually for defects, but some problems arise in this visual 
inspection, such as excessive time consumed, human subjective factors, stress on mind and 
body, and fatigue. These problems further influence production volume and inspection 
accuracy. Therefore, techniques that can replace manual inspection have emerged (Kuo & 
Lee, 2003). In recent years, neural networks have been used to inspect yarn, fabric and cloth 
defects and to identify their types (Kuo, 2003). Neural networks are among the best classifier 
used for fault detection due to their non-parametric nature and ability to describe complex 
decision regions.  
A key issue in many neural network applications is to determine which of the available 
input features should be used for modeling (Kumar, 2003). Mostly, researchers have used 
different ways for feature selection based on image processing methods in conjunction with 
neural network. An image acquisition setup that yields suitable images is crucial for a 
reliable and accurate judgment. This system is usually including the specimen, the camera 
or scanner and the illumination assembly (Bahlmann et al., 1999). Some studied have used 
near sensor image processing (NSIP) technology as well. Most researchers had converted the 
original color image to gray level image to improve the computer processing speed and 
reducing the dimensions of information. However, Tilocca et al., 2002 presented a method to 
fabric inspection based both on gray levels and 3D range profile data of the sample (Tilocca, 
2002). Most studies usually have employed histogram equalization, noise reduction 
operation by filtering, etc to improve visual appearance of the image (Jeon, 2003). When 
they use image technology in conjunction with neural networks, some problems may occur; 
For example recognizable rate of defect may be related to light source conditions (Kuo & 
Lee, 2003). Since a fine feature selection can simplify problem identification by ranking the 
feature and those features that do not affect the identification capability can be removed to 
increase operation efficiency and decrease the cost of evaluation systems without losing 
accuracy (Lien & Lee, 2002). So some studies have applied principal component analysis 
(PCA) as pre processing methods to reduce the dimension of feature vectors (Kumar, 2003). 
Usually, in ANN, the available data are divided into three groups. The first group is the 
training set. The second group is the validation set, which is useful when the network begins 
to over-fit the data so the error on the validation set typically begins to rise; during this time 
the training is stopped for a specified number of iterations (max fails) and the weights and 
biases at the minimum of the validation error are returned. The last group is the 
performance test set, which is useful to plot the test set error during the training process 
(Liu, 2001). 
Data are further processed to extract specific features which are then transmitted to either 
supervised or unsupervised neural network for identification and classification. This feature 
extraction step is in accordance with textural structure, the difference in gray levels, the 
shape and size of the defects and etc (Kuo et al., 2003) and it is necessary to improve the 
performance of the neural network classifier (Tilocca, 2002). Consequently, a large amount 
of study is usually related to this step to extract useful information from images and feed 
them to neural network as input to recognize and categorize yarn, nonwoven, fabric, and 
garment defects. 
In supervised systems, the neural network can establish its own data base after it has 
learned different defects with different properties. Most researchers have been used multi 
layer feed forward back propagation Neural network since it is a nonlinear regressional 
algorithm and can be used for learning and classifying distinct defects. 
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There are numerous publications on neural network applications addressing wide variety of 
textile defects including yarn, fabric and garment defects. Some of the studies reported on 
this application of neural networks are discussed hereunder. 

3.1 Yarn defects 
Sliver levelness is one of the critical factors when producing quality yarn products in 
spinning processes. However, it is difficult to model the drafting process exactly since these 
controls do not need to model the process and can handle very complicate processes, they 
are useful. Moreover, they possess the ability to improve the intelligence of systems working 
in an uncertain, imprecise, noisy environment. Therefore, Huang & Chang, 2001 developed 
an auto leveling system with a drawing frame using fuzzy self-organizing and neural 
network applied on a laboratory scale drawing frame with two drafting zones and two-
sliver doubling samples. They used a three layer neural network model to compute the 
Jacobean matrix, which was needed in training the weights and thresholds on-line. A back 
propagation learning algorithm was used to tune the connection weights and thresholds 
and the unipolar sigmoid function as the activation function to compute the output of a 
node. Levelness performance was evaluated by the CV% of sliver products in which their 
results showed that neural network controller yielded more level slivers than the fuzzy self-
organizing controller. The neural network controller kept learning from the feedback of the 
output linear density and generated the control action by the feed linear density and the 
desired output linear density. The weight and thresholds of the neural network controller 
were tuned on-line, leading to reduced variance in the output with respect to the desired 
value (Huang & Chang, 2001). 
It is well known that spinning process is a complex manufacturing system with the 
uncertainty and the imprecision, in which raw materials, processing methodologies, and 
equipments and so on all influence the yarn quality (Yin & Yu, 2007). Yarn physical 
properties like strength, appearance, abrasion and bending are the most important 
parameters, affecting on the quality and performance of end products and also cost of the 
yarn to fabric process (Cheng & Lam, 2003). 
Lien & Lee, 2002 reported feature selection for textile yarn grading to select the properties of 
minimum standard deviation and maximum recognizable distance between clusters to achieve 
effectiveness and reduce grading process costs. Yarn features were ranked according to 
importance with the distance between clusters (EDC) which could be applied to either 
supervised or unsupervised systems. However, they used a back propagation neural network 
learning process, a mathematical method and a normal algebraic method to verify feature 
selection and explained the observed results. A thirty sets data were selected containing 
twenty data as training sets and the other ten data as testing sets. Each of these data were the 
properties of single yarn strength, 100 meter weight, yarn evenness, blackboard neps, single 
yarn breaking strength, and 100-meter weight tolerance  (Lien & Lee, 2002). 
A performance prediction of the spliced cotton yarns was estimated by Cheng & Lam, 2003 
using a regression model and also a neural network model. Different spliced yarn properties 
such as strength, bending, abrasion, and appearance were merged into a single score which 
was then used to analyze the overall performance of the yarns by those two models. The 
appearance of the spliced yarns was expressed as the retained yarn appearance (RYA) 
which 5 was identical, 3 was acceptable and 1 was fail values. They used the transfer 
functions of hyperbolic tangent sigmoid transfer function and linear transfer function. 
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According to their analytical results, the neural network model (R=0.98) gave a more 
accurate prediction that the regression model (R=0.74) (Cheng & Lam, 2003). 
It is well known that worsted spinning process is a complex manufacturing system and 
there are many dependent and independent variables during spinning which becomes 
difficult to conduct and cover the entire range of the parameters using mathematical and 
empirical models. Yin & yu, 2007 firstly analyze all the variables collected from the mill 
through grey superior analysis (GS) in order to select the important variables and as a result 
better improve the yarn quality before ANNs model (multi-layer perceptron) was used by 
adopting the back-propagation neural network (BP) to estimate the validity of the input 
variables. In their research, they evaluated yarn qualities i.e. yarn unevenness, strength, 
extension at break, and ends-down per 1000 spindle hours; by means of inputs including the 
processing parameters such as fiber properties, spinning method, and process variables 
influencing on the yarn properties and spinning performance. From the 77 sets of data, 69 
lots were selected at random to serve as learning set and the residual eight sets data were 
recorded as test sets. A one layer hidden layer was decided based on experiments by 
achieving the highest coefficient using back propagation learning. The prediction accuracy, 
A (%) and relative coefficient, R (%), between the predicted values and achieved values were 
calculated in order to validate the approaches of the variables selection. The comparison of 
the performance of ANNs model using grey superior analysis (GS), subjective and empirical 
approach (SE), and multilinear regress method (MLR) showed that the model using the 
input variables selected by GS was superior to that by SE and MLR. They also simulated the 
spinning of the worsted yarn with the high coincidence using the processing data in the 
mills based on the artificial neural networks and grey superior analysis (Yin & yu, 2007).  
One of the important properties of yarns is unevenness. Mass or weight variation per unit 
length of yarn is defined as unevenness or irregularity. It can adversely influence many of 
the properties of textile materials such as tenacity, yarn faults, twist variation, abrasion, 
pilling, soil retention, drape, absorbency, reflectance or luster. Unevenness in blended yarns 
is depended mainly on the physical properties of fibers (fiber cross section deviation, length 
and length uniformity etc.), number of fibers and fiber location or positioning in the yarn 
cross section, blend ratio and working performance of the yarn spinning machine. 
Therefore, Demiryurek & Koc, 2009 developed an artificial neural network and a statistical 
model to predict the unevenness of polyester/viscose blended open-end rotor spun yarns. 
They used a back propagation multi layer perceptron network and a mixture process 
crossed regression model with two process variables (yarn count and rotor speed). They 
selected blend ratio, yarn count and the rotor speed as input parameters and unevenness of 
the yarns as output parameter. Sigmoid function was used as activation function, and 
number of hidden layer was determined as 25, the learning rate and momentum were 
optimized at 0.2 and 0.0 respectively in this study. They compared the result of both 
presented model and it was concluded that both models had satisfactory and acceptable 
results, however the correlation coefficient of neural network (0.98) was slightly greater than 
statistical model (0.93) and the mean square errors (0.077) were identical. The mean absolute 
percentage error was also calculated and was %1.58 and %0.73 for the ANN and statistical 
model respectively. Contrary to general opinion of the more reliable prediction of ANN 
than statistical models, they reported that statistical model developed was more reliable 
than ANN and by increasing the number of experiments, prediction performance of ANN 
would increase (Demiryurek & Koc, 2009).  
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2.2 Woven fabric defects 
Image processing analyses in conjunction with neural networks have been widely used for 
woven and knitted fabric defect detection and grading. 
Karras et al., 1998 investigated a vision based system to detect textile defects from the 
textural properties of their corresponding wavelet transformed images. They applied 
supervised (multilayer perceptrons trained with the back propagation algorithm) and 
unsupervised (Kohonen's self organizing feature maps) neural classification techniques by 
exploiting information coming from textural analysis and SVD in the wavelet transformed 
original images to provide second order information about pixel intensities and localize 
important information respectively. They considered defect detection as the approximation 
of the defect spatial probability distribution within the original image. The inputs to the 
MLP and SOFM networks were the 24 features contain 1009 patterns of the feature vector 
extracted from each sliding window. 280 out of the 1009 patterns belonged to the long and 
thin defective area of the upper side, while the rest belonged to the class of non defective 
areas. Reported classification accuracy was an overall 98.50% (Karras et al., 1998). 
Tilocca et al., 2002 presented a direct method to fabric inspection based both on gray levels 
and 3D range profile data of the sample. They used a smart vision sensor for image 
acquisition system.  The neural network was trained to classify three different categories 
which were normal fabric, defect with a marked 3D component and defect with no 3D 
component. A three layered feed forward neural network with sigmoid activation function 
and back propagation learning algorithm by a fixed learning rate at 0.2. They extracted 1500 
training patterns including nondefective region, defects with marked 3D characteristics, and 
defects without 3D marks and another group of 500 patterns constituted the test sets. The 
number of hidden neurons was adjusted by trial and error at 24. They obtained the 
percentage of right, unknown, and wrong classifications for each class, both for the training 
and test sets. Percentage of test clean patterns correctly classified was almost 92%, showing 
that the ANN was able to identify and separate defective from nondefective regions. They 
suggested using this system for on-line monitoring of fabric defects since no further 
transformation of the data was needed before classification (Tilocca et al., 2002). 
At present, fabric inspection still relies on the human eye, and the reliability and accuracy of 
the results are based on inspectors. Wrinkles in cloth usually develop with deformation during 
wearing, after washing and drying, and with folding during storage and it is not easy even for 
trained observers to judge the wrinkles. Mori & Komiyama, 2002 used gray scale image 
analysis of six kinds of plain fabrics to evaluate visual features of wrinkles in plain fabrics 
made from cotton, linen, rayon, wool, silk, and polyester using neural network. The angular 
second moment, contrast, correlation, and entropy were extracted from the gray level co-
occurrence matrix and fractal dimension from fractal analysis of the image as input and the 
mean sensory value presenting the grade of wrinkled fabrics as output. The hidden units had 
logistic function as transfer function. Eight sets of data were selected arbitrarily as training 
data and the seven remaining data sets for testing the neural networks were used. They used a 
training algorithm with Kalman filter to tune the network in order to maximize the accuracy of 
the visual evaluation system. Sum of the square error (SSE) was used as total output error of 
the network. Overtraining was occurred in the region of more than 200 learning cycles, 
therefore they decided 150 learning cycles for checking or testing the network. They also 
compared the accuracy of the evaluating system for wrinkled images captured by the digital 
camera method with that for wrinkled images captured by the color scanner method and 
observed better accuracy for the color scanner than digital camera (Mori & Komiyama, 2002). 
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Kuo & Lee, 2003 used a back-propagation neural network for recognizing woven fabric 
defects. They used an image system (filtered and threshold images) to distinguished holes, 
oil stains, wrap-lacking and weft-lacking defects. Maximum length, maximum width and 
gray level of the defects were presented as the input units of the neural network. They used 
a back propagation neural network by eight defect samples for off line training. The initial 
learning rate was 0.1; keeping reducing to 0.01 and the momentum factor was 0.5. The error 
mean square value converged to 0.05 after 45000 iterations. According to their test, the 
recognizable rate of warp-lacking and weft-lacking was up to 95%, and up to 100% for holes 
and oil stains (Kuo & Lee, 2003). Kuo et al., 2003 used an image system for dynamic 
inspection of plain white fabrics using a linear scan digital camera with direct light to take 
images. The corresponding fabric conveying speed was 50 cm/s. the back propagation 
neural network of this research comprised an input layer with three input units (maximum 
length of the defect, maximum width of defect, and gray level value of the defect), a hidden 
layer, and an output layer by three output units. They reported average overall recognition 
rates up to 90% (Kuo et al., 2003). 
Segmentation of defects provides accurate distinguishing of size and location of defects. 
Therefore, Kumar, 2003 investigated an approach to segment a variety of local textile (twill 
and plain weave fabrics) defects using feed-forward neural network. Since every fabric 
defect alters the gray-level arrangement of neighboring pixels, he extracted the feature 
vector for every pixel of backlighting captured images and applied a pre-processing using 
normalization of the feature vectors followed by principal component analysis (PCA) to 
reduce the dimension of feature vectors. He also used post-processed operation (a 9*9 
median filtering) to generate the required output values. Hyperbolic tangent sigmoid 
activation function was chosen and the weights were updated using Levenberg-Marquardt 
algorithm for faster convergence rate. The network was trained for the maximum of 1000 
steps with the learning rate of 0.01 and the training was stopped if the maximum 
performance gradient of 1e-10 was reached. Finally, a low-cost web inspection system based 
on linear neural network with a single layer to evaluate real fabric samples was proposed 
since the web inspection based on defect segmentation required additional DSP hardware, 
which would increase the cost of the inspection system (Kumar, 2003). 
Pilling may be defined as a surface fabric fault comprising of circular accumulations of 
entangled fibers that cling to the fabric surface thereby affecting the appearance and handle 
of the fabric. The pilling of fabrics is a serious problem for the apparel industry and in 
particular wool knitwear fabrics. The formations of pills occur as a consequence of 
mechanical action during washing or wear (Beltran et al., 2005). The development of pills on 
a fabric surface, spoils the original appearance and hand, initiates garment attrition and 
reduces serviceability. Therefore evaluating pilling degree (from grade 5 which means no 
pilling to grade 1 which is very severe pilling) of fabric is important and usually it is 
inspected visually. Because of the inconsistency and inaccuracy of rating results obtained 
with the visual method, more reliable and objective methods for pilling evaluation are 
desirable for the textile industry. Chen & Huang, 2004 evaluated and graded fabric pilling 
based on light projection using image analysis and neural network to overcome the common 
difficulty of interference with fabric pill information from fabric color and pattern. Firstly, 
they eliminated interference with pilling information from fabric color and pattern. Their 
method was included a device to acquire the projected cross-sectional images, detecting the 
profile of projected images, segmenting pills appearing on converted gray images, 
extracting of a pill's feature index, and finally assessing pilling grade by Kohonen self 
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organizing feature map neural network. There were ten input neurons corresponding to ten 
feature indexes and five output nodes representing five cluster centers (five pilling grades) 
by training twenty kinds of samples including colored and patterned pilled worsted fabrics. 
The total number of iterations in the training process was 400, and the learning rate was 
initialized to be 0.02.They concluded that the objective pilling grade was in good agreement 
with the subjective pilling grade. The correlation coefficient for training and testing samples 
were reported up to 0.94 and 1 respectively (Chen & Huang, 2004).  
Beltran et al., 2005 also used artificial neural networks to model the multi-linear relationship 
between fiber, yarn and fabric properties and their effect on the pilling propensity of pure 
wool knitted fabrics. They used key fiber (diameter, CV, diameter > 30 μm and curvature), 
top (Hauteur, CV, short fiber <30mm, bundle strength and strain), yarn (count, hairiness, 
thin and thick places, twist factor, folding twist ratio) and fabric properties (cover factor) as 
quantitative inputs (normalized data) along with their corresponding pilling intensities in 
an ANN to predict the pilling performance of knitted wool fabrics. The corresponding mean 
pill rating was served as the target output. 105 sets of randomized data were assigned to 
training, 20 sets were assigned for cross validation and 10 data sets were selected for testing 
the network. The network consisted of a single hidden layer multi layer perception trained 
with the error back propagation algorithm possessing hyperbolic tanh activation function in 
both the hidden and output layers (Beltran et al., 2005). 
Zhang et al., 2010 investigated an approach for fabric defect classification using radial basis 
function (RBF) network improved by Gaussian mixture model (GMM). First, the gray level 
arrangement in the neighborhood of each pixel was extracted as the feature. This raw 
feature was subject to principal component analysis (PCA) which adopted the between class 
scatter matrix as the generation matrix to eliminate the variance within the same class. 
Second, the RBF network with Gaussian kernel was used as the classifier because of the 
nonlinear discrimination ability and support for multi-output. To train the classifier, GMM 
was introduced to cluster the feature set and precisely estimate the parameter in Gaussian 
RBF, in which each cluster strictly conforms to a multi-variance Gaussian distribution. Thus 
the parameter of each kernel function in RBF network could be acquired from a 
corresponding cluster. The proposed algorithm was experimented on fabric defect images 
with nine classes (mould, miss weft, damaged, double pick, cloud pick, coarse end, color 
smear, broken edge, and filling end) and achieved superior performance. Fabric images 
were collected under the back-lighting condition with the cloth moving speed of 100 
m/min. in the training process, 30 images of each class were processed and repeated 5 
times. They also compared the performance of three classifiers including ANN (9-16-10 feed 
forward structure using back propagation algorithm), SVM (Support Vector Machine which 
can automatically determine support vectors from the sample set which is normalized and 
preprocessed by PCA using Gaussian function as kernel), and RBF network on fabric defect 
classification. These schemes were evaluated on the same nine classes of fabric defect 
images. The training and test process was repeated five times to get an average 
performance. The result was measured by correct classification rate (CCR) which was 
defined as the number of correctly classified images divided by the number of total images. 
They found that ANN had the worst performance with an average CCR of 74% while the 
performance of RBF network was the best with CCR of 83.2% and the performance of SVM 
was sensitive to the parameters. Therefore, they reported that RBF network was an 
appropriate choice for the real time fabric defect classification. It has to be noted that this 
work was the first time that the RBF network was applied in fabric defect classification 
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which achieved excellent performance in combination with GMM in comparison with 
classical feed forward network (Zhang et al., 2010). 

2.3 Knitted fabric defects 
The apparent quality of knitted fabrics can be divided into two categories. First, the fabrics 
with a large number of area faults that were occurring in the knitting process and eventually 
make them useless. In the second category, there are inputted faults that originate from yarn 
faults and the apparent quality of yarn is directly related to the configuration of fibers on its 
surface (Liu et al., 2001). Different studies have been reported and identified both problems 
simultaneously or separately. 
Detecting and classifying knitted fabric defects using image analysis and neural network 
were performed by Shady et al., 2006. They utilized two approaches including statistical 
procedures and fourier transforms to extract image features for six different knitted fabric 
defects using a defect free fabric as a control sample. All images were processed using 
histogram equalization and then converted to grayscale images. The feature vectors were 
used as input vectors to the network and six types of defects including broken needle, fly, 
hole, barre, thick yarn and thin yarn were identified and classified. Two neural networks 
were trained and tested for each feature extraction approach. The first one contained seven 
neurons in the input layer representing the seven features of the statistical approach, and 
seven neurons in the output layer representing the sic different defects and the free defect 
sample. This network was successful only in classifying broken needle, hole, thick and thin 
yarn defects. In the second neural network, six neurons were used in the input layer 
representing the features and seven neurons in the output layer representing the six defects 
and the free defect sample. The worst results were observed for the barre defects.  In their 
work, the neural network was trained by the learning vector quantization (LVQ) algorithm 
to detect and classify the knitted fabric defects. Their results showed success in classifying 
most of the defects excluding barre defects (Shady et al., 2006). 
Fabric spirality is a problem which affects the esthetics and quality of knitted fabrics. This 
problem is complex and there is a large amount of data required to establish quantitative 
relationship to model this phenomenon accurately. an artificial neural network model was 
proposed by Murrells et al., 2009 for the prediction of the degree of spirality of single jersey 
fabrics made from 100% cotton conventional and modified ring spun yarns from a number 
of factors considered to have the potential to influence fabric spirality after wash and dry 
relaxation such as twist liveliness, yarn type, yarn linear density, fabric tightness factor, the 
number of feeders, rotational direction, gauge of knitting machine and dyeing method. They 
compared ANN model (R=0.976) with a multiple regression model (R=0.970) and concluded 
that ANN model produced superior results to predict the degree of fabric spirality after 
three washing and drying cycles. The hyperbolic tangent sigmoid transfer function was 
assigned as the activation function in the hidden layer and the linear function was used in 
the output layer. During the process, 60%, 20%, and remaining 20% of the original data were 
set aside for training, validation, and testing respectively. They also investigated the relative 
importance of the investigated factors influencing the spirality of the fabric and tried 
various network structures with one hidden layer and finally demonstrated that multilayer 
feed forward network based on Levenberg-Marquardt learning algorithm had better results. 
Furthermore, both the ANN and the regression approach showed that twist liveliness, 
tightness factor, and yarn linear density were the most important factors in predicting fabric 
spirality (Murrells et al., 2009).  
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Semnani & Vadood, 2009 applied the artificial neural network (ANN) to predict the 
apparent quality of weft knitted fabrics. They considered, only the appearance of the safe 
knitted fabric without any knitting faults, tightened fibers with uniform configuration, big 
faults with less area, non-uniform and extended faults with spread configuration, and small 
spread faults such as non-uniform coating fibers and short tangled hairs had been 
considered (Semnani & Vadood, 2009).  
There are some variables in the applied neural network where their variation affects on the 
obtained results are significant. These variables include the number of hidden layers, the 
number of neurons in hidden layers, the value of max fail and the percentage of validation 
and testing data.  
Therefore, Semnani & Vadood, 2009 applied genetic algorithm in their research because of 
its intuitiveness, ease of implementation and the ability to effectively solve highly nonlinear, 
mixed integer optimization problems. Their results showed that the ANN could be 
optimized very well by the genetic algorithm method and the designed ANN was very 
accurate and applicable to predict the apparent parameters. Their optimized ANN was 
formed from two hidden layers, in which the first hidden layer had 8 and the second layer 
had 7 neurons, one neuron for output layer, five epochs for max fail, 20% available data for 
test and 10% of available data for validation (Semnani & Vadood, 2009).  

2.4 Nonwoven defects 
Liu et al., 2010 proposed an algorithm based on wavelet transform (feature extraction 
procedure) and learning vector quantization (LVQ) neural network for nonwoven 
uniformity identification and grading. Six hundred and twenty-five nonwoven images of 
five different grades, 125 images of each grade, were decomposed at four different levels 
with five wavelet bases of Daubechies family, and two kinds of energy values L1 and L2 
extracted from the high frequency subbands were used as the input features of the LVQ 
neural network solely and jointly. The network outputs were class labels, which were 
defined with five integer numbers, from 1 to 5, denoting five different uniformity grades. 
The number of neurons in hidden layer, training epochs and goal, of the LVQ neural 
network were as 5, 200 and 0.01 respectively. They used the identification accuracy of each 
grade and average identification accuracy (AIA%) of five grades as performance parameters. 
Their results were expressed and compared five wavelet bases (db2, db4, db6, db8, and db10) 
and even different features (L1, L2, and L1UL2) at the four levels (level 1 to 4). They noted 
three points as Firstly, with the same feature set and decomposition level, the length of the 
filter had little effect in performance in all methods. Secondly, with the same feature set and 
wavelet base, the decomposition level had a significant effect in the performance in all 
methods. Thirdly, the highest identification accuracy was gotten at the crossing point db4 or 
db6 and level 3 (Liu et al., 2010). 
Liu et al., 2010 presented a method to recognize the visual quality of nonwoven by 
combining wavelet texture analysis, Bayesian neural network and outlier detection. Each 
nonwoven image was decomposed with orthogonal wavelet bases at four levels and two 
textural features, norm-1 and norm-2, which were used as the input of Bayesian neural 
network for training and test. To detect the outlier in the training set, the scaled outlier 
probability was introduced to increase its robustness. All nonwoven samples were classified 
into five grades according to visual qualities (such as surface uniformity, the condition of 
pilling, wrinkles and defects). Each image was individually normalized to zero mean and 



Artificial Neural Network Prosperities in Textile Applications 

 

45 

unit variance before wavelet transform. They reported with the increase of decomposition 
level, the average classification error and cross entropy of training and test set decreased 
sharply and the recognition accuracy of the five grades was also affected (Liu et al., 2010).  

2.5 Cloth defects 
Quality inspection of garments is an important aspect of clothing manufacturing. For many 
textile products, a major quality control requirement is judging seam quality visually by 
human experts. Presently, this is still accomplished by human experts, which is very time 
consuming and suffers from variability due to human subjectivity. Consequently, 
investigations about automated seam quality classification and an implementation of an 
automated seam classificator are highly desirable. Bahlmann et al., 1999 presented a method 
for automated quality control of textile seams by a scale of five grades (from grade 5 which 
was best to grade 1 which was worst). Their system was consisting of an image acquisition 
setup (to record seams structures), an algorithm for locating the seam (transforming acquired 
seam images to normalize position), a feature extraction stage (based on fourier coefficients of 
one dimensional image columns) and a neural network of the self organizing map type 
(SOFM) for feature classification. The classification results were documented by three aspects 
including the classification confusion matrix, the inspection of the NMSE (normalized mean 
square error), and an investigation of the resulting Kohonen map. The classification rate 
amounted to 80% correct classifications, the rest differed from the correct grade by one and 
their results were not worse than the human exports error (Bahlmann et al., 1999). 
Because of the special property of the knitted fabric which is very easy to be pleated, 
puckered or distorted in stitching, automatic inspection of stitching is necessary. Yuen et al., 
2009 proposed a hybrid model (integration of genetic algorithm and neural network) to 
classify garment defects. Firstly, to process the garment sample images captured by digital 
camera, they used a morphological filter and a method based on genetic algorithms to find 
out an optimal structuring element. They also presented a segmented window technique to 
segment images into pixel blocks under three classes using monochrome single-loop 
ribwork of knitted garments caused by stitching (seams without swing defects, seams with 
pleated defects and seams with puckering defects). Four characteristic variables (size of the 
seams and defective regions, average intensity value, standard deviation and entropy value) 
were collected to describe the segmented regions and input into back propagation neural 
network to provide decision support in defect classification. The number of the nodes was 
set as 10 by many experiments. The training function of the neural network was a gradient-
descending method based on momentum and an adaptive learning rate. The learning 
function of connection weights and threshold values was a momentum-learning method 
based on gradient descending. Twenty two images of each class were used as training 
samples and the other ten images were testing samples. They did not report any 
misclassified sample and the identification rate was 100% (Yuen et al., 2009). 

3. Yarn and fabric properties prediction and modeling 
The main objective of many scientific studies in textile is to reveal the complex functional 
relationships that exist between structural parameters of fiber, yarn and fabric properties. If 
the relationships between different parameters that determine the specific yarn or fabric 
property are known, they can be used to optimize that particular property for different end-
use applications so as to minimize the cost. Predictive modeling methodologies, which are 
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complex and inherently nonlinear, can be used to identify the different levels of 
combinations of process parameters and material variables that yield the desired fabric 
property. Since the network can accurately capture the nonlinear relationships between 
input and output parameters, they have extremely good predictive power (Behera & 
Muttagi, 2005). The use of an artificial neural network model as an analytical tool may 
facilitate material specification/selection and improved processing parameters governed by 
the predicted outcomes of the model (Khan et al., 2002).  
An ANN model adjusts itself to establish the relation between the input and the output. In 
spite to this, an ANN model does not require any explicit formula but instead it is an 
implicit model by itself where it can be trained to adopt and adjust itself to perform certain 
tasks (Nirmal, 2010).  

3.1 Mechanical behavior prediction of textiles 
Breaking elongation properties of yarns influence the performance of them during winding, 
warping, and weaving. Yarn elongation like other yarn properties is chiefly influenced by 
fiber properties, yarn twist, and yarn count. Because there is a strong correlation between 
yarn elongation and loom efficiency, it would be very helpful if a prediction model could 
forecast yarn elongation accurately (Majumdar & Majumdar, 2002). Furthermore, breaking 
strength of yarn is the one of the most important physical property of yarn as it is the main 
parameter for physical quality control. It takes a long time for the yarn producer to get the 
experimental results for the physical properties of yarn. Therefore, faster determination of 
yarn physical properties is needed (Dayik, 2009). Generally, modeling and prediction of 
yarn properties based on fiber properties and process parameters have been considered by 
many researchers such as mechanistic models, statistical regression models (Gharehaghaji et 
al., 2007). In recent years, artificial neural network models have been widely used to predict 
different kind of yarn and fabric mechanical properties based on process parameters and 
fiber and yarn parameters. Among the various kinds of learning algorithms for the neural 
network, back propagation is the most widely used.  
Majumdar & Majumdar, 2004 predicted the breaking elongation of ring cotton yarns by 
three modeling methodologies including mathematical, statistical and artificial network by 
back propagation learning algorithm. 72 and 15 samples, respectively, were used for 
training and testing the three prediction models.  They tried five different network 
structures with one hidden layer by different number of neurons (6, 8, 10, 12, and 14) in the 
hidden layer. Learning rate and momentum were optimized at 0.1 and 0.0, respectively. The 
neural network with ten nodes in the hidden layer had the best prediction results in the 
testing sets after 2500 iterations. Inputs to these models were constituent cotton fiber 
properties (fiber bundle tenacity, elongation, upper half mean length, uniformity index, 
micronaire, reflectance degree, and yellowness) measured by high-volume instruments 
(HVI) along with yarn count (Ne). They used statistical parameters such as the correlation 
coefficient (R) between the actual and predicted breaking elongation, mean squared error, 
mean absolute error (%), cases with more than 10% error, maximum error (%), and 
minimum error (%) to judge the predictive power of various models and concluded that 
neural network model had showed the best prediction results. The correlation coefficient 
between actual and predicted elongation was R=0.938 for the ANN model, R=0.731 for the 
mathematical model and R=0.870 for the statistical model. Percent of maximum error was 
also reported for ANN, mathematical and statistical models which were 13.23%, 34.04%, and 
15.60% respectively. The only output of each prediction model was the breaking elongation 
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of yarns. They also measured the relative importance of various cotton fiber properties 
using neural network model (Majumdar & Majumdar, 2004). 
Behera & Muttagi, 2005 compared the ability of three modeling methodologies based on 
mathematical, empirical and artificial neural network based on radial basis function (RBF) 
(using orthogonal least square learning procedure) to predict fabric properties. The inputs to 
the network were fabric constructional parameter, yarn bending rigidities and outputs were 
fabric initial tensile moduli. Before feeding to network, the input-output data set was scaled 
down to be within (0, 1), by dividing each value by the maximum value of the overall data. 
Data were randomly divided into 14 sets and 4 sets of input-output pairs for training and 
testing the network respectively. They also studied the effect of network design parameters 
on error of prediction. The effects of neurons number of the hidden layer, error goal, and 
bias constant on prediction performance of RBF network were assessed. They observed that 
ANN model produced the lease error as well as minimum range of error as compared to the 
other modeling methods and ANN required a much smaller data set than the one required 
for conventional regression analysis. For example, percentage prediction error for warp and 
weft way fabric tensile modulus were respectively 10.2% and 8.63% for ANN, 20.4% and 
12.33% for empirical model and 20.53% and 13.65% for mathematical model. They also 
predicted bending rigidity of woven fabric by these three models and ANN had a better and 
accurate result than those two models (Behera & Muttagi, 2005). 
Gharehaghaji et al., 2007 investigated tensile properties modeling of cotton-covered nylon 
core yarns by artificial neural networks based on back propagation algorithm and multiple 
linear regression methods which the first method had better performance than the second. 
They predicted breaking strength and breaking elongation simultaneously as output and by 
using count of core part, count of sheath part, twist factor of core-spun yarn and pretension 
as input. In order to eliminate the effect units of input and output parameters, data 
normalizing was carried out. The data set of 54 samples was divided randomly into 5 
subsets, each containing 10 or 11 samples, to train and test the network five times by using 
four sets as training set and one subset as testing set. Overfitting was prevented by using 
weight decay technique. The adaptive learning rate with momentum training algorithm 
(optimized at 0.9) was used to enhance the training performance. They determined the 
number of hidden neurons and the number of hidden layers by trial and error by using 20 
topologies with different number of hidden layers and numbers. Their results showed a two 
hidden layers by eight nodes into first hidden layer and six nodes into second hidden layer 
gave the best topology. They assessed their models using verifying mean square error (MSE) 
and correlation coefficient (R-value). The difference between the MSE value of two models 
for predicting breaking elongation and breaking strength of testing data were 0.119 and 
0.365 respectively (Gharehaghaji et al., 2007). 
Dayik, 2009 determined the breaking strength of 100% cotton yarn properties by using Gene 
expression programming, neural network and classical statistical approach (multiple 
regression algorithms) and compared the predictive power of them by correlation coefficient 
(R-square) and mean square error (MSE). The inputs were included foreign matter, 
micronaire, uniformity, elongation, strength of fiber, length of fiber, short fiber index and 
neps which were collected for a three month period data. He used seven different neural 
network architectures which were including multilayer perception, Generalized feed 
forward, Modular network, Jordan/Elman, Self organizing map, Principal component and 
Recurrent network to identify the best one. However the best results were obtained from the 
generalized feed forward neural network algorithms. He examined the predictive power by 
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multiple linear regression analysis. The statistical method showed very much worse 
performance than genetic and neural network since physical properties of yarn depends on 
many various factors and the relations between these factors are highly nonlinear and 
complex. Performance of genetic model (98.88%) was better than artificial neural network 
(94.00%) in his research (Dayik, 2009).  
The effects of splicing parameters, fiber and yarn properties on the tenacity and elongation 
of spliced yarns were investigated by Unal et al., 2010 using artificial neural network (ANN) 
and response surface model (RSM). In the ANN analysis, a multilayer feed-forward network 
with one hidden layer trained by back propagation algorithm was used. In the first phase, 
the back propagation algorithm was applied for 100 epochs. The optimum learning rate of 
0.01 and momentum coefficient of 0.3 used in back propagation was determined in terms of 
several trials. In the second phase of training, 500 epochs were performed for conjugate 
gradient descent algorithm. As activation functions, a hyperbolic function was used in the 
hidden layer and linear functions were used in the input and output layers. Of the 89 yarn 
samples, 76 samples were chosen as the training set at random, while 22 samples (25%) were 
chosen for the testing set. 
They produced yarns from eight different cotton types, having three different counts and 
three different twist coefficients. Six parameters including fiber length, fiber diameter, yarn 
count, yarn twist, opening air pressure and splicing air pressure in the input layer were 
selected and a neural network with seven hidden neurons for yarn tenacity analysis and 
another neural network with six parameters including fiber length, short fiber content, yarn 
count, yarn twist, opening air pressure and splicing air pressure in the input layer and six 
hidden neurons for breaking elongation were determined as well. The results of the ANN 
analysis were similar to the results of RSM except for the effect of splicing air pressure and 
ANN showed more powerful results in comparison RSM model since it is more capable of 
explaining non-linear relations (Unal et al., 2010). 
ANN appears to be a reliable and useful tool in characterizing the effect of some critical 
manufacturing parameters on the seam strength of webbing, if a sufficient number of 
replicated experimental data are available to train the ANN. Onal et al., 2009 studied the 
effect of fabric width, folding length of joint, seam design and seam type on seam strength of 
notched webbings for the parachute assemblies using both Taguchi's design of experiment 
(TDOE) and an artificial neural network (ANN) and then compared them with strength 
physically obtained from mechanical tests on notched webbing specimens. They used a four 
layer, feed forward, back propagation ANN model with a five hidden layer neurons and 
one output neuron to output seam strength. Input variables were fabric width, folding 
length of joint, seam design and seam type. 60 training patterns and 10 testing patterns were 
used to train and test the network. It was established from these comparisons, in which the 
root mean square error was used as an accuracy measure, that the predictions by ANN were 
better in accuracy than those predicted by TDOE (Onal et al., 2009). 
Hadizadeh et al., 2009 presented an ANN model for predicting initial load-extension 
behavior of plain weave and plain weave derivative fabrics. They developed a single hidden 
layer feed forward ANN based on a back propagation algorithm with four input neurons 
(using a combination of parameters of Leaf's equation instead of individual parameters) and 
one output neuron to predict initial modulus in both warp and weft directions. In their 
research, the input and measured values were normalized so that they would have zero 
mean and unity standard deviation and they used Levenberg-Marquardt learning 
algorithm. Five different cases of ANN with different number of neurons in hidden layer 
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and different data were considered to train and test the network. The number of neurons in 
the hidden layer was experimentally verified on the basis of the performance factor. In case 
one, 18 Leaf and Kandil's data were inputted to the network. In case two, the ANN was 
consist of 31 samples of plain weave experimental values of produced fabrics. They used 
their data in conjunction Leaf's data in case three. In case four, their fabric samples of plain 
weave and plain weave derivatives were considered while in case five, Leaf's data in 
addition to their data were applied to network. The model's suitability was confirmed by the 
low performance factor (PF/3) and the high coefficient of correlation. Their proposed ANN 
model was suitable for the prediction load-extension behavior of plain weave and plain 
weave derivatives of fabrics (Hadizadeh et al., 2009). 
Shear stiffness is one of the important properties of worsted fabrics which depends on yarn 
properties and fabric parameters. As a nonlinear problem, predicting the shear stiffness can 
be realized by an alternative modeling method, that is, by using the artificial neural network 
(ANN) model. Chen et al., 2009 modeled the relationship between yarn properties, fabric 
parameters, and shear stiffness of worsted fabrics using two stage neural network models. 
First, the yarn properties and fabric parameters were selected by utilizing an input variable 
selection method to find the most relevant yarn properties and fabric parameters as the 
input variables to fit the small-scale artificial neural network model. The first stage was 
consisting two parts. The first part took the human knowledge on the shear stiffness into 
account (VAk) and the second part was a data sensitivity criterion based on a distance 
method (Sk). Second, the artificial neural network model of the relationship between yarn 
properties, fabric parameters, and shear stiffness of fabrics was established.  
They used a feed forward ANN by six yarn properties and fabric parameters (warp cover 
factor, warp twist factor, weft twist factor, warp linear density, weft linear density, and fiber 
specific surface area) as inputs, one hidden layer with four neurons, and shear stiffness of 
fabrics as output trained with the help of the error back propagation algorithm. In order to 
avoid overfitting, the Bayesian framework were used in the training procedure. 39 data points 
and 1 data point were used for training and testing set respectively. They used the primitive 
variables to rank data, not their transformations as those in the PCA. Hence, the variables had 
clear physical meanings. Their results showed accurate prediction (up to average error of 
0.209%) by the small-scale artificial neural network model and a reasonably good artificial 
neural network model could be achieved with relatively few data points by integrating with 
the input variable selecting method developed in their research (Chen et al., 2009). 
Needle punching is a well-known nonwoven process of converting fibrous webs into self-
locking or coherent structures using barbed needles. The barbed needles pull the fibers from 
the surface of web and reorientate them in the thickness direction leading to a complex 
three-dimensional (3D) structure. The nonwoven structural depends on different 
parameters. Rawal et al., 2009 predict the bulk density and tensile properties of needle 
punched nonwoven structures from main process parameters including web area density, 
depth of needle penetration, and punch density by Artificial Neural Network (ANN) 
modeling technique (back propagation learning algorithm). Two different ANN models 
were developed, one for predicting fabric bulk density and another for predicting the tensile 
strength in the machine and cross machine directions. Only one hidden layer with 8 nodes 
was used and transfer function in the hidden and output layers was log-sigmoid. Learning 
rate and momentum was optimized at 0.6 and 0.8 respectively. Web area density, punch 
density, and depth of needle penetration were considered as inputs. Training was stopped 
when the error in the unseen or testing data sets approached at the minimum level. 21 data 
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sets were randomly chosen for the training of ANN and 6 sets were used for the testing 
purpose. The simultaneous effect of more than one parameter on bulk density and tensile 
properties of needle punched nonwoven structures have been investigated based upon the 
results of trained ANN models. A comparison was also made between the experimental and 
predicted values of fabric bulk density and tensile strength in the machine and cross machine 
directions in unseen or test data sets. It has been inferred that the ANN models had achieved 
good level of generalization that is further ascertained by the acceptable level of mean absolute 
error obtained between predicted and experimental results (Rawal et al., 2009). 

3.2 Prediction of the other textile properties  
The material properties of engineering fabrics that are used to manufacture airbag can not 
be modeled easily by the available nonlinear elastic-plastic shell elements. A nonlinear 
membrane element that incorporates an elaborate tissue material model has been widely 
used by the auto industry for the airbag simulation studies, this model is highly 
computation intensive and does not differentiate between the various physical properties of 
the fabrics like fiber denier, the polymer fiber, and weave pattern. Keshavaraj et al., 1996 
introduced a feed forward neural network to determine permeability and biaxial stress-
strain relationships for nylon and polyester fabrics used in airbags. The network used for 
permeability prediction was a three input nodes (281, 323, and 373 K temperature levels), 
four hidden nodes and one output node. The predictions provided by the neural network 
model were better for the polyester fabrics than they were for the nylon fabrics. The effects 
of the type of fabrics, i.e., denier and weave type, with nylons and calendering in case of 
polyester, biaxial strain, biaxial stress, and pressure drop while predicting biaxial stress of 
fabric under a biaxial deformation were considered in their model. The model prediction 
was within a ±3 MPa error limit which was agreed very well with the experimental data 
(Keshavaraj et al., 1996).    
Classical pressure drop models set up for porous media do not accurately model pressure 
drops through fabric structures but they give information about the location of flow through 
fabric structures and about the specific characteristics of cloths which may influence 
pressure drop values. A neural network (NN) approach is then carried out in order to model 
experimental data by taking into account specific characteristics of cloths as input neurons, 
and to analyze the relative importance of each input variable on pressure drops. Brasquet & 
Cloirec., 2000 studied pressure drops through several textile fabrics using classical models 
(Ergun's equation, Carmen's dimensionless approach, and Comiti-Renaud's model), 
statistical tool, and neural network. The models were tested by three different definitions for 
the specific surface area, on the fabric, yarn, and opening scale, respectively. Different kinds 
of cloth were used, in terms of fiber type such as activated carbon fibers and their 
precursors, rayon fibers. In the first part, they measured air and water pressure drops 
induced by these different cloths as a function of fluid velocity experimentally and secondly, 
using classical models set up for particular media in order to locate the flow and then a 
statistical approach by neural network were considered. They chose input neurons in a 
multilayer perceptron network (fluid properties-μ, ρ, Re- and fabric characteristics –
thickness, density, number of openings and raw material) in order to predict pressure drop 
values as the output neuron. The number of hidden neurons was statistically optimized as 
four with hyperbolic tangent function as transfer function. Network training set was carried 
out with 400 data and a validation set of 183 data was also performed. 200 data was used to 
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test the generalization ability of the trained neural network. They calculated absolute 
averaged relative errors (AARE) to assess the performance of their network (Brasquet & 
Cloirec., 2000). 
The work 'bagging' is essentially a perception by people of the three dimensional shape of a 
bagged garment. Subjective judgments of the degree of garment bagging vary with different 
people and also depend on garment types. Garment bagging is a kind of three-dimensional 
residual deformation during wear, which can be characterized by a few parameters such as 
bagging height, volume, shape, and fabric surface pattern. Yeung et al., 2002 developed a 
method to evaluate garment bagging by image processing with three different modeling 
including multiple regression, liner modeling and neural network. These models were able 
to provide predictive powers of R2 value of 0.92, 0.93, and 0.94 respectively. Firstly, they 
evaluated fabric bagging by capturing digitized images of bagged fabrics, image processing 
of the capture images, and recognizing bagging magnitude from these criteria. They used 
the eight criteria as input variables to predict subjective perceptions of bagging, employing a 
two-layer feed forward neural network with back propagation learning algorithm. The 
hidden layer included thirteen neurons with tan-sigmoid transfer functions to learn 
nonlinear and linear relationships between input and output.  Ten samples and six samples 
were used to train and test the network respectively. The ability of network to predict 
bagging was reported R2=0.94 (Yeung et al., 2002).   
Tokarska, 2004 presented modeling of woven fabric permeability (dynamic air permeability) 
features by means of neural network (multilayer perceptron). His analysis of the flow 
properties was based on observations of their behavior during impact air flow. He used 
apparent density, warp twist, and weft twist for the input layer, while the output layer was 
the integral of the function p(t), that is the actual pressure impulse generated on a fabric 
under impact air flow conditions, using a back propagation method to teach the network. 
He obtained the quality of his neural model by means of an index ρ, which is given the 
standard deviation of errors for the output variables divided to the standard deviation of the 
target output variable (Tokarska, 2004). 
Fabric hand is commonly used for assessing fabric quality and prospective performance in a 
particular end use. Subjective assessments treat fabric hand as a psychological reaction 
obtained from the sense of touch, based on the experience and sensitivity of humans. 
Prediction of these psychological perceptions of hand based on fabric properties is very 
difficult. Hui et al., 2004 predicted sensory hand based on fabric properties using a resilient 
back propagation multilayer feed forward neural network. Twelve fabric properties were fed 
into the input layer then they propagated forward through two hidden layers and then 
fourteen biopolar pairs of sensory fabric hand attributes arrived at the output layer. The 
output was normalized since the log sigmoid activation functions were used on each layer. 
Mean square error (MSE) was set to 1e-8 and to avoid network over fitting, they used Larsen's 
early stopping methodology to reduce the generalization error of the network. Correlation 
between output and target values were reported greater than 0.9 (Hui et al., 2004).   
There are numerous factors which broadly classified into yarn quality, condition of warp 
preparation, and loom actions and conditions which can affect the performance of warp 
yarns in weaving. The weaving performance of a yarn is generally expressed in terms of 
warp breakage rate in weaving. Yao et al., 2005 investigated the predictability of the wrap 
breakage rate from a sizing yarn quality index using a feed forward back propagation 
network. They rated an eight quality index including size add-on, abrasion resistance, 
abrasion resistance irregularity, hairiness beyond 3 mm, breaking strength, breaking 
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strength irregularity, breaking elongation and breaking elongation irregularity as input 
layer and warp breakage rates as output layer in controlled conditions. Hidden layer with 1, 
4, and 8 neurons were tested. The learning method was back propagation with momentum, 
and single step learning with a sequential presentation sequence was selected as learning 
strategy. They suggested a model with a single sigmoid hidden layer with four neurons to 
produce better predictions than the other models and prepared sixty records for training 
and ten records for testing the network. The stop condition had been mean absolute error 
(MAE= 0.148), mean square error (MSE= 0.0364), root mean square error (RMSE= 0.191), 
and mean absolute percentage error (MAPE= 5.58) and correlation was reported R= 99.5%. 
(Yao et al., 2005). 
Comfort is one of the most important attributes of textiles used in clothing. Clothing comfort 
is influenced by different fabric, environment and human factors. Thermal properties of 
clothing are one of the most important aspects of clothing comfort in which analyzing the 
relationship between various fabric parameters and comfort properties are essential. 
Bhattacharjee & Kothari, 2007 reported a study on the predictability of the steady-state and 
transient thermal properties of fabrics (thermal resistance and maximum instantaneous heat 
transfer) using a feed forward, back propagation artificial neural network system. They 
made a comparison with two different network architectures, one with two sequential 
networks working in tandem fed with a common input and another with a single network 
that gave two outputs and the first one (mean error percentage of 8.61%) gave better results 
than the second one (mean error percentage of 10.42%). First model was able to predict the 
steady-state and transient thermal behavior with a good coefficient of determination (R2= 
0.94) as compared with the second model (R2= 0.69). A three layered network with two 
hidden layers was used in both of the cases. The input parameters including type of weave 
warp and weft count, thread density, thickness and areal density were considered. A 
sigmoid transfer function 'tansig' was used for input and hidden layers and a linear function 
was used for the output layer. The training function used was a quasi-Newton algorithm 
based on the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update and regularization 
was carried out to avoid over fitting (Bhattacharjee & Kothari, 2007). 
Capillary rise in porous media is a frequently occurring phenomenon which occurs in 
dyeing of textile fabrics, and a variety of other fields. An artificial neural network was 
employed by Ahadian et al., 2007 to predict the time of capillary rise for a known given 
height. Their network's inputs were density, surface tension, and viscosity for the liquids 
and particle size, bulk density, packing density, and surface free energy for the powders. 
The output layer of the network corresponded to the time of capillary rise in order to reach a 
given height ( i.e. 0.036 m ). A training set (136 times of capillary rise) and a testing set (18 
times of capillary rise) was chosen for the network. Networks were trained using the 
Levenberg- Marquardt back propagation algorithm. A linear activation function was used in 
output layer of the networks. All the input and output data were normalized to the interval 
[-1 to 1] before training and testing. Two statistical parameters namely the product moment 
correlation coefficient (r2) and the performance factor (PF/3) were used to correlate the 
actual experimentally obtained times of capillary rise. The results showed that their artificial 
neural network was able to predict the time of capillary rise (i.e. r2 = 0.91, PF/3=55). In 
comparison, the Lucas-Washburn's calculations gave the worst correlations (r2 = 0.11, PF/3 
= 1016) (Ahadian et al., 2007). 
Furthermore, thermodynamic and transport properties of liquids are fundamental in 
processes involving liquid flow and heat and mass transfer. Two most important of these 
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properties are surface tension and viscosity which are modeled using two artificial neural 
networks (ANNs) by Ahadian et al., 2008. The surface tension predictor network had six 
inputs, namely: particle size, bulk density, packing density and surface free energy of the 
powders as well as the density of the probe liquids together with the capillary rise time of 
the liquids in the corresponding powders. The viscosity predictor network had surface 
tension as an extra input. The results of the present work clearly showed that the artificial 
neural network approach is able to predict the surface tension (i.e. r2 = 0.95, PF/3 = 16) and 
viscosity (i.e. r2 = 0.998 , PF/3 = 13) of the probe liquids with unsurpassed accuracy 
(Ahadian et al., 2008). 
There is a need for a reliable forecasting system which can quantitatively predict the 
hairiness of a resultant yarn from its processing parameters prior to yarn formation. The 
development of such a system is potentially challenging owing to the complex nature of the 
worsted spinning pipeline, where wool fibers undergo a series of different processes before 
being converted into a yarn. Khan et al., 2009 evaluated the performance of multilayer 
perceptron (MLP) and multivariate linear regression (MLR) models for predicting the 
hairiness of worsted-spun wool yarns from various top, yarns and processing parameters. 
Their results indicated that MLP model predicted yarn hairiness more accurately than the 
MLR model. They used some factors including yarn twist, ring size, average fiber length, 
fiber diameter and yarn count on the basis of sensitivity analysis as inputs. Five different 
random partitions of the database into training and validation sets were generated. For each 
partition, both models were independently trained using the training set and their responses 
to the validation set assessed. Both MLR and MLP models were capable of achieving a good 
fit to the measured hairiness values, as evidenced by the high mean R2 values of 0.910 and 
0.949, respectively. This study also demonstrated that the hairiness of a yarn could be 
predicted to a high precision from limited top, yarn and processing parameters, and that the 
ANN-based yarn hairiness prediction model had the potential for wide mill specific 
applications (Khan et al., 2009). 
One of the most important properties of clothes is their ability to help the body’s thermal 
system to keep the body temperature in its natural range, even if the environmental 
conditions or physical activities are outside the body’s ideal range. Perspiring is one of the 
most important effects of physical activities in warm weather for shedding the body’s 
excessive heat. Therefore, the basic requirement of a fabric worn next to the skin is to 
transfer this moisture to the atmosphere to reach comfort through the avoidance of a feeling 
of wetness and clamminess and also through the generation of a situation for the best 
surface evaporation of moisture. Mokhtari Yazi et al., 2009 evaluated the transmission of 
heat and moisture by differential modeling as an artificial neural network a double-surface 
knitted fabric containing hydrophilic and hydrophobic fibers. Input data was made from 
temperature and moisture values for the bottom and top surfaces of the fabric; the number 
depended on the time of each experiment and was different for each sample. The 
connections of network nodes corresponded to the partial differential equation of 
propagation as forward time-centered spaces (three advanced Euler methods). The results 
were analyzed to find a suitable fabric with optimum comfort. The final results showed that 
a fabric made of micro polyester filaments and cotton yarns on the bottom and top surfaces, 
respectively, had the best heat and moisture transfer (Mokhtari Yazi et al., 2009). 
Giri Dev et al., 2009 modeled and predicted water retention capacities of the membranes 
under different hydrolyzing conditions using empirical as well as artificial neural network 
(ANN model) by alkali concentration, temperature and time as inputs. Both statistical model 
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and ANN model had showed a very good relationship (R2) between the experimental and 
predicted response values and both models had an error percentage less than 2% indicating 
the reliability of the model developed (Giri Dev et al., 2009). 
Needle punching is a well-known nonwoven process of converting fibrous webs into self-
locking or coherent structures using barbed needles. Rawal et al., 2009 predict the bulk 
density and tensile properties of needle punched nonwoven structures from main process 
parameters including web area density, depth of needle penetration, and punch density by 
Artificial Neural Network (ANN) modeling technique (back propagation learning 
algorithm). Two different ANN models were developed, one for predicting fabric bulk 
density and another for predicting the tensile strength in the machine and cross machine 
directions. The number of nodes in the hidden layer and learning parameters, i.e., learning 
rate and momentum was optimized at 8, 0.6, and 0.8, respectively. Training was ceased 
when the error in the unseen or testing data sets approached at the minimum level. Out of 
27 available data sets, 21 sets were randomly chosen for the training of ANN and remaining 
six sets were used for the testing purpose. The simultaneous effect of more than one 
parameter on bulk density and tensile properties of needle punched nonwoven structures 
have been investigated based upon the results of trained ANN models. A comparison was 
also made between the experimental and predicted values of fabric bulk density (R= 0.907) 
and tensile strength in the machine (R= 0.986) and cross machine directions (R= 0.982) in 
unseen or test data sets. It has been inferred that the ANN models had achieved good level 
of generalization that is further ascertained by the acceptable level of mean absolute error 
obtained between predicted and experimental results (Rawal et al., 2009). 
Bio-composite materials are gaining high popularity due to its various advantages such as 
renewable, biodegradable, low in cost, light weight, low density, widely available and 
possess high specific mechanical properties. Nirmal, 2010 predict frictional performance of 
treated betelnut fiber reinforced polyester (T-BFRP) composite using artificial neural 
network configuration. To predict the friction coefficient of the T-BFRP composite, the ANN 
model was subjected to three different input parameters; normal loads (5–30 N), sliding 
distances (0–6.72 km) and fiber orientations (anti-parallel, parallel and normal orientations). 
Prior to inputting the data to the ANN network, data coding was performed to the input 
parameters. Network had a two hidden layer with 10 neurons in the first hidden layer 
followed by 20 neurons in the second hidden layer. The learning process of a developed 
ANN model was based on a gradient search with least preferred sum squared errors 
between the predicted and the actual values. He considered the trial and error ANN model 
based on method where various neuron configuration, layer configuration and transfer 
function configuration. Results obtained from the developed ANN model were compared 
with experimental results. It was found that the experimental and numerical results showed 
good accuracy when the developed ANN model was trained with Levenberg– Marqurdt 
training function (Nirmal, 2010). 

4. Process behaviour prediction 
Yarn properties and spinning performance are influenced by fiber properties (mean fiber 
diameter, mean fiber length, diameter distribution, fiber strength, and etc), yarn 
specifications (linear density, twist level), and operational parameters (ring size, traveler 
weight, spinning speed). Because there are many independent variables, it becomes difficult 
to cover the entire range of parameters in order to interpolate and extrapolate experimental 
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observations or mill measurements and take into account the interactive contribution of 
each independent variable. Unlike conventional techniques, which are often limited by strict 
assumptions of normality, linearity, and variable independence, ANN's are universal 
approximators, which, by possessing the capacity to learn directly from the data being 
modeled, are able to find associations or discover regularities within a set of patterns, where 
the volume or variation within the data is large or the relationships between variables are 
dynamic and nonlinear. For a given fiber spun to pre-determined yarn specifications, the 
spinning performance of the yarn usually varies from mill to mill. For this reason, it is 
necessary to develop an empirical model that can encompass all known processing variables 
that exist in different spinning mills, and then generalize this information and be able to 
accurately predict yarn quality for an individual mill (Beltran et al., 2004). 
The degree of spinnability of a fiber is very difficult to assess with the current range of 
instruments available. Pynckels et al., 1995 described an experiment of 29 fiber properties of 
twenty types of cotton to predict spinnability of fibers. A yarn was considered to be 
unspinnable if there were more than five breakages during the first three minutes of 
spinning. They trained a neural network with 700 spinnable and 700 unspinnable yarns data 
to predict the spinnability from fiber properties and process parameters. In the test data set, 
90% of spinnable fibers and 95% of the unspinnable fibers was classified correctly (Pynckels 
et al., 1995). 
Beltran et al., 2004 reported a method for predicating worsted spinning performance with an 
artificial neural network trained with back propagation learning rule. The applicability of 
ANN for predicting spinning performance was first evaluated against a well established 
prediction and benchmarking tool. The ANN was then subsequently trained with 
commercial mill data to assess the feasibility of the method as a mill specific performance 
prediction tool. Incorporating mill specific data resulted in an improved fit to the 
commercial mill data set. Top properties, yarn specifications, and processing information 
were designated as the input vectors for the input layer. They found that as the number of 
mill-specific data sets increased, further improvements in prediction accuracy would arise 
(Beltran et al., 2004). 
Mean fiber diameter, diameter distribution, hauteur, fiber length distribution, fiber bundle 
tenacity, curvature, short fiber content, yarn count, twist, draft, spinning speed, ring size, 
and traveler weight served as inputs to the neural network and the number of fibers in a 
cross section, unevenness CV%, unevenness U%, thin places per kilometer, neps per 
kilometer, yarn tenacity, elongation at break, breaking force, end-down per 1000 spindle 
hours, index of irregularity, thick places per kilometer, and hairiness served as the target 
spinning performance outputs. A total of 250 sets of training data were randomly generated. 
The first 180 data sets were used for network training, 20 data sets were set aside for cross-
validation, and the last 50 data sets were used to evaluate the trained network's 
performance. The input data were normalized so those were bounded within the prescribed 
range of 1 and 0. They tested different numbers of neurons in hidden layer and indicated 
that a reduction in the training error occurred as the number of hidden nodes increased. To 
overcome the likelihood of over-fitting from excessive training, they invoked the cross-
validation stop criteria. They observed that the cross validation mean squared error 
exponentially fell to 6.0 * 10-3 over 800 training epochs. Therefore 800 epochs represented the 
point where sufficient training had occurred prior to over fitting of the specific solutions 
within the training set. By incorporating mill-specific data results in an improved fit to the 
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commercial mill data set, suggesting that their proposed method had the ability to predict 
the spinning performance of a specific mill accurately (Beltran et al., 2004).  
Melt spinning is the most economically useful method for producing artificial fibers in the 
industry. In melt spinning, as-spun fibers are evaluated according to yarn count and tensile 
strength, and the draw ratio is the major factor affecting the quality of as-spun fibers. The 
neural network computation can be divided into two parts: pre-teaching computation and 
reversing the adjusted weight value. Kuo et al., 2004 considered the extruder screw speed, 
gear pump gear speed, and winder winding speed of a melt spinning system as the inputs 
and the tensile strength and yarn count of as-spun fibers as the outputs for neural network 
by the delta learning rule. The data from experiments were used as learning information for 
the neural network to establish a reliable prediction model. They had adopted a three layer 
neural network consisting of a three neuron input layer, a twelve neuron hidden layer, and 
a two neuron output layer; focusing on the tensile strength and yarn count of as-spun fibers. 
They applied the delta learning rule to the neural network, with a sigmoid transfer function. 
The neural network prediction model was verified by ten entries of new data. In tensile 
strength prediction, the error of the neural network was ±2%. When compared with one 
standard difference of the experiment, 96.86% of the predictive values lied within ±1 
σ=3.1419%. In yarn count prediction, the error of the neural network was ±2%. When 
compared with one standard difference of the experiment, 97.96% of the predictive values 
lied within ±1 σ=2.0418%. Their neural network model could predict the tensile strength and 
yarn count of as-spun fibers to provide a very good and reliable reference for as-spun fiber 
processing (Kuo et al., 2004). 
Meltblowing has become an important industrial technique because of its ability to produce 
fabrics of microfiber structure, which are ideally suited for filtration media, thermal 
insulators, battery separators, and oil sorbents. In this process, the fiber forming mechanism 
is very complicated and the quality of the produced web depends on many processing 
variables such as die temperature, air temperatures, air flow rate, extruder temperature, die 
to collector distance, polymer throughput rate, resin melt flow rate, die geometry 
parameters and etc. therefore meltblowing is a highly complex, multivariable, and nonlinear 
process, leading to the extreme difficulty in theoretically modeling the process. However, 
process modeling is essential for the control of optimization and an on-line prediction is 
very useful for process monitoring and quality control. Melt blown process is of highly 
dimensional and nonlinear complexity. Sun et al., 1996 investigated back-propagation 
neural networks (BPNNs) for modeling the melt blown process and on-line predicting the 
product specifications such as fiber diameter and web thickness. By comparison of several 
network topology structures (6-3-1, 6-4-1, 6-5-1, 6-6-1, 6-4-3-1, etc) and different transfer 
functions (sigmoid, quadratic), the network 6-4-1 (i.e. six nodes in the input layer, four 
nodes in the hidden layer and two nodes in the output layer) was chosen using a sigmoid 
function as its transfer function. The network inputs were included extruder temperature, 
die temperature, melt flow rate, air temperature at die, air pressure at die, and die-to 
collector distance (DCD) and they were normalized. The output of the fiber diameter was 
obtained by neural computing. The network training was based on 160 sets of the training 
samples and the trained network was tested with 70 sets of test samples which were 
different from the training data. The test results showed a good agreement to the actual 
measurements. The maximum absolute error between the predicted fiber diameter and the 
actual values was less than 1.5 μm. By using the tested neural network, they also predicted 
the effect of process variables on the fiber diameter. The most valuable result of their 
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research was development of a technique which had been proved to be suitable for 
modeling and on-line preidicting of the meltblowing process in order to optimal control of 
the process and of practical significance to advanced meltblown processes (Sun et al., 1996). 

5. Color coordinates conversion, color separation and categorization, color 
matching recipe prediction 
One of the most important textile characteristics is undoubtedly color (Thevenet et al., 2002). 
Color quality control is one very important step in any textiles, however excellent the fabric 
material itself is, if it lacks good color, then it may still result in dull sale (Kuo et al., 2007). 
Many transformations affect the color of textile materials. Nevertheless, they can be divided 
into two groups. The first group concerns dyeing and printing stages, and is mainly 
governed by chemical rules, because the color attributes, which are added to the textile 
structure, are chemically fixed to the product (Thevenet et al., 2002). Expected depth of 
shade, color, color fastnesses and surface characteristics etc. are very important qualities 
which are necessary to be achieved in the dyed goods. If, these properties are different from 
that of the expected standard, the product has to either been reprocessed or discarded (Balci 
et al., 2008). Color separation is most important item in pattern printing process so as to 
secure integrity of printed fabrics product (Kuo et al., 2007). Furthermore, in textile printing 
it is very difficult to control all the process parameters; therefore using artificial neural 
networks for recipe calculation (concentration of each dye in the printing paste) have been 
investigated which enable the relationship between reflectance values and concentrations to 
be mapped. 
Once the selected neural network is sufficiently trained with a set of known input (colour 
values) and output data (concentrations of each dye), it will predict the concentrations for an 
unknown set of coloured samples. One of the advantages of neural networks is their 
capability to establish relations between input and output data without explicit 
programming of Kubelka-Munk equations or analytical knowledge into the model (Golob et 
al., 2008).  
The second group concerns blending and the transformations of structure of roving 
(assembly of fibers), which is spun and then woven or knitted. In this case, the color 
transformation is not governed by chemical rules, because during blending or spinning, no 
chemical compounds are added. So this group is rather physically governed, because color 
alterations are just produced by a different fibers organization. The aim of the model is to 
predict the color obtained when fibers, with different colors, are blended. When the blend is 
homogenous, the color obtained can be predicted very well by theoretical and empirical 
models (Thevenet et al., 2002). 
Thevenet et al., 2002 described a model based on neural networks to predict color alteration 
after spinning process (roving to yarn). Their network was a multilayer feed-forward 
network. The first system using to predict the entire reflectance spectra was wavelength 
dependent, but its performance is not very satisfactory. The scaled conjugate gradient 
algorithm was incorporated into the back propagation procedure to reduce the training 
phase. Once the wavelength independence of the transformation was established, a second 
system, whose performances agree with the experimental curves, was proposed (Thevenet 
et al., 2002).  
Kuo et al., 2007 proposed a printed fabrics computerized color separation system based on 
backward-propagation neural network, whose primary function was to separate rich color 
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of printed fabrics pattern so as to reduce time-consuming manual color separation color 
matching of current players. What it adopted was RGB color space, expressed in red, green, 
and blue. Genetic algorithm was used to pre-process as the first phase of operation process. 
A gene algorithm was used to find smaller sub images alternative of original fabric in color 
distribution, for later color separation algorithm use to reduce the operation of color 
separation. In order to find sub-images with same color distribution as original image, they 
adopted Histogram Intersection to measure color similarity of sub-image and original 
image. In terms of color separation algorithm, their research relied on supervised backward-
propagation neural network to conduct color separation of printed fabrics RGB sub-image, 
and utilized PANTONE® standard color ticket to do color matching, so as to realize accurate 
color separation (Kuo et al., 2007). 
Balci et al., 2008 presented an artificial neural network (multilayer perceptron) modeling by 
Levenberg-Marquardt (LM) algorithm for predicting the colorimetric values of the stripped 
cotton woven fabrics dyed using commercial reactive dyes. They used 90 different network 
structures with 15 different number of nodes in the hidden layer, 3 level of inputs (10 inputs, 
7inputs, and 6 inputs) and 2 level of MSE value of results as stopping criteria in order to get 
the best fitting model to predict the L* and ∆E colorimetric values of stripped cotton 
samples. In order to establish these networks, they used type of the reactive dyes, type of the 
reducing agents, concentration of the reducing agents and caustic, working temperature and 
time, presence of the leveling agent and original colorimetric values (L*, a*, b*) of dyed 
samples measured before stripping processes as inputs, and L* and ΔE values of stripped 
samples measured after stripping process as outputs. After the prediction, the suitable 
working parameters can be chosen and the processes can be started. Therefore, this may 
make the stripping process for re-correction of the faulty materials more cost-effective [A5]. 
Golob et al., 2008 demonstrated the possibility of using counter-propagation neural 
networks (based on Kohonen ANN) to identify the combinations of dyes in textile printing 
paste formulations. An existing collection of 1430 printed samples produced with 10 dyes 
was used for neural network training. The reflectance values served as input data and the 
known concentrations of single dye or two dyes were used for printing each sample. Some 
variations of neural network parameters were tested to determine the best model, and a 
cross-validation method was used to estimate the generalization error. Also, some 
modifications of input and output data were made to improve the learning capabilities 
(Balci et al., 2008). 
Metamerism is one of the most fundamental perceptual phenomena of the visual system 
and can be visualized when a part of colored samples in spite of having different spectral 
reflectance data give the same color coordinates (i. e. match in color) under one specified 
condition. Moradian & Amani Tehran, 2000 studied the application of artificial neural 
network (fully connected feed forward network) for the quantification of metamerism. Data 
from 98 real metameric pairs with visual assessment values were used for training (90 data 
set) and testing (8 data set) of the network. Many types of networks with different 
architecture, activation function and input were examined to achieve the best results. A 
network comprising of one hidden layer with 5 nodes with Tansig as the activation function 
provided the best prediction. The normalized L*C*H was regarded as the best-input 
candidate for the network. The final trained network showed a good degree of correlation 
with visual assessment deviating only by 20% (PF/4=20) and could therefore be a good 
candidate as a substitute for the previously proposed metameric indices. Metameric indices 
at their best, deviate by approximately 40% (PF/4=36) from visual assessments.  
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Fluorescent dyes present difficulties for match prediction due to their variable excitation 
and emission characteristics, which depend on a variety of factors. An empirical approach is 
therefore favored, such as that used in the artificial neural network method. Bezerra & 
Hawkyard, 2000 described the production of a database with four acid dyes (two fluorescent 
and two non-fluorescent) along with the large number of mixture dyeing that were carried 
out. The data were used to construct a network connecting reflectance values with 
concentrations in formulations. Their multilayer perceptron network was trained using back 
propagation algorithm. Network topology was constituted of one input layer (three nodes), 
one hidden layer (four nodes) and one output layer (five nodes). the networks’ input layers 
were fed with SRF, XYZ or L*a*b* values of each sample in order to predict, in the output 
layer, the dye concentrations (C) applied. A linear activation function was used in the input 
and output layers, and the logistic sigmoid function in the hidden layers. All the data were 
normalized before training and testing, and all the networks were trained using the same 
learning rate (0.5 ® 0.01) and momentum term (0.5 → 0.1). The 311 samples produced were 
divided in two groups: a training set (283 samples) and a testing set (28 samples). Their 
results showed that, although time consuming, the presented approach was viable and 
accurate (Bezerra & Hawkyard, 2000). 
Ameri et al., 2005 used the fundamental color stimulus as the input for a fixed optimized 
neural network match prediction system. Four sets of data having different origins (i.e. 
different substrate, different colorant sets and different dyeing procedures) were used to 
train and test the performance of the network. The input layer was consistent of the 
measured surface spectral reflectance of the target color centers at 16 wavelengths of 20 nm 
intervals throughout the visible range of the spectrum between 400-700 nm. The output 
layer was corresponded to the concentrations of the colorants. The network was trained 
using the scaled conjugate gradient back propagation algorithm. A positive linear activation 
function was used in the output layer whilst the logsig function was used in the hidden 
layer. Training was made to continue over 100000 epochs running three times. The results 
showed that the use of fundamental color stimulus greatly reduced the errors as depicted by 
the MSE and ∆ Cave data and improved the performance of the neural network prediction 
system (Ameri et al., 2005).  
Ameri et al., 2006 used different transformed reflectance functions as input for a fixed 
genetically optimized neural network match prediction system. Two different sets of data 
depicting dyed samples of known recipes but metameric to each other were used to train 
and test the network. The transformation based on matrix R of the decomposition theory 
showed promising results, since it gave very good colorant concentration predictions when 
trained by the first set data dyed with one set of colorants while being tested by a 
completely different second set of data dyed with a different set of colorants (PF/4 always 
being less than 10). The network was trained using the Levenberg-Marquardt back 
propagation algorithm. The error goal was fixed at MSE 0.001. All the input and output data 
were normalized before training and testing (Ameri et al., 2006).  

6. Conclusion 
Neural network technique is used to model non-linear problems and predict the output 
values for given input parameters. Most of the textile processes and the related quality 
assessments are non-linear in nature and hence, neural networks find application in textile 
technology. 
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ANN may be defined as structures comprised of densely interconnected adaptive simple 
processing elements that are capable of performing massively parallel computations for data 
processing and knowledge representation. There are many different types of neural 
networks varying fundamentally. The most commonly used type of ANN in textile industry 
is the multilayered perceptron (MLP) trained neural network. MLP is a feed-forward neural 
network. In most textile applications a feed-forward network with a single layer of hidden 
units is used with a sigmoid activation function for the units (Balci et al., 2008).  
Some studies have decided the number of unites in the hidden layer upon by conducing the 
trail and error, or genetic algorithm or other optimizing methods and a network with the 
minimum test-set error is to be used for further analysis. 
The number of input and output neurons depends on the type of textile problems. 
Many of the techniques reported require many feature extraction procedures before the data 
can feed to a neural network and data is afforded by different measurements including 
feature extracted from images, experiments based on standards based on their own tests or 
other gathered measurements.   
Some studies have discussed different type of pre processing and post processing methods. 
Many papers have applied and compared the performance of different mathematical, 
statistical, or experimental models and predictions with neural network for different textile 
applications and in most of them, neural network models predict process, grading, or 
behavior of features more accurate than other methods. 
The performance of the network is judged by computing the root mean square error (MSE), 
Sum of the square error (SSE), moment correlation coefficient (r), percentage error (%E), 
coefficient of variation (%CV), gamma factor (γ), performance factor (PF/4), and etc in order 
to analyze the results.  
Since neural networks are known to be good at solving classification problems, it is not 
surprising that much research has been done in the area of textile classification, particularly 
fault identification and classification. The current 2D-based investigation needs to be 
extended to 3D space for actual manual inspection. 
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1. Introduction    
Needle-punched nonwoven is an industrial fabric used in wide range of applications areas. 
The physical structure of needle-punched nonwoven is very complex in nature and 
therefore engineering the fabric according the required properties is difficult. Because of 
this, the basic mathematical modeling is not very successful for predicting various 
important properties of the fabrics. 
In recent days, artificial neural networks (ANN) have shown a great assurance for modeling 
non-linear processes. Rajamanickam et al., 1997 and Ramesh et al., 1995 used ANN to model 
the tensile properties of air jet yarn. The ANN model had also been used to model to assess 
the set marks and also the relaxation curve of yarn after dynamic loading (Vangheluwe et 
al.,  1993 and 1996). Luo & David, 1995 used the HVI experimental test results to train the 
neural nets and predict the yarn strength. Researchers also made an attempt to build models 
for predicting ring or rotor yarn hairiness using a back propagation ANN model by Zhu & 
Ethridge, 1997. Fan & Hunter, 1998 developed ANN for predicting the fabric properties 
based on fibre, yarn and fabric constructional parameters and suggested the suitable 
computer programming for development of neural network model using back-propagation 
simulator. Wen et al., 1998 used back-propagation neural network model for classification of 
textile faults. Postle, 1997 enlighten on measurement and fabric categorisation and quality 
evaluation by neural networks. Park et al.,  2000 also enlightened the use of fuzzy logic and 
neural network method for hand evaluation of outerwear knitted fabrics. Gong & Chen, 
1999 found that the use of neural network is very effective for predicting problems in 
clothing manufacturing. Xu et al.,  1999 used three clustering analysis technique viz. sum of 
squares, fuzzy and neural network for cotton trash classification. They found neural 
network clustering yields the highest accuracy, but it needs more computational time for 
network training. Vangheluwe et al.,  1993 found Neural nets showed good results assessing 
the visibility set marks in fabrics. The review of literature shows that the ANN model is a 
powerful and accurate tool for predicting a nonlinear relationship between input and output 
variables. 
Jute, polypropylene, jute-polypropylene blended and polyester needle punched nonwoven 
fabrics have been prepared using series of textile machinery normally used in needle-
punching process for preparation of the fabric samples. Textile materials are compressive in 
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nature. It has been reported by various authors that the effect of compression behaviour of 
jute-polypropylene (Debnath & Madhusoothanan, 2007) and polyester (Midha et al., 2004) is 
largely influenced by fibre linear density, blend ratios of fibres, fabric weight, web laying 
type, needling density and depth of needle penetration. Kothari & Das, 1992 and 1993 
explained that the compression behaviour of needle-punched nonwoven fabrics is 
dependent on fibre fineness, proportion of finer fibre present in different layers of 
nonwoven fabrics, and fabric weight for polyester and polypropylene fibres. In the present 
study, some of these important factors, viz. fabric weight, blend proportion, three different 
types of fibres and needling density, have been taken into consideration for modeling of the 
compression behaviour. Jute, polypropylene and polyester fibres have been used in this 
study. Woollenisation of jute has been done to develop crimp in the fibre. This study also 
elaborates the effect of number of hidden layers and simulation cycles for jute-
polypropylene blended and polyester needle-punched nonwoven fabrics. Different fabric 
properties like fabric weight, needling density, blend composition of the fibres are the basic 
variables selected as input variables. The output variables are selected as air permeability, 
tensile, and compression properties. 
Under tensile properties, tenacity and initial modulus of jute-polypropylene blended needle 
punched nonwoven fabric both in machine (lengthwise) and transverse (width wise) 
directions have been predicted accurately using artificial neural network. Empirical models 
have also been developed for the tensile properties and found that artificial neural network 
models are more accurate than empirical models. Prediction of tensile properties by ANN 
model shows considerably lower error than empirical model when the inputs are beyond 
the range of inputs, which were used for developing the model. Thus the prediction by 
artificial neural network model shows better results than that by empirical model even for 
the extrapolated input variables. 
The jute-polypropylene blended needle-punched nonwoven fabric samples were produced 
as per a statistical factorial design for prediction of air permeability. The efficiency of 
prediction of two models has been experimentally verified wherein some of the input 
variables were beyond the range over which the models were developed. The predicted air 
permeability values from both the models have been compared statistically. An attempt has 
also been made to study the effect of number of hidden layer in neural network model. The 
highest correlation has been found in artificial neural network with three hidden layers. The 
neural network model with three hidden layer shows less prediction error followed by two 
hidden layers, empirical model and artificial neural network with one hidden layer. 
Artificial neural network model with three hidden layers predicts the value of air 
permeability with minimum error when inputs are beyond the range of inputs used for 
developing the model. 
Initial thickness, percentage compression, thickness loss and percentage compression 
resilience are the compression properties predicted using artificial neural network model of 
needle-punched nonwoven fabrics produced from polyester and jute-polypropylene blended 
fibres varying fabric weight, needling density, blend ratio of jute and polypropylene, and 
polyester fibre. A very good correlation (R2 values) with minimum error between the 
experimental and the predicted values of compression properties have been obtained by 
artificial neural network model with two and three hidden layers. An attempt has also been 
made for experimental verification of the predicted values for the input variables not used 
during the training phase. The prediction of compression properties by artificial neural 
network model in some particular sample is less accurate due to lack of learning during 
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training phase. The three hidden layered artificial neural network models take more time for 
computation during training phase but the predicted results are more accurate with less 
variations in the absolute error in the verification phase. This study will be useful to the 
industry for designing the needle-punched nonwoven fabric made out of jute-polypropylene 
blended or polyester fibres for desired fabric properties. The cost for design and development 
of desired needle-punched fabric property of the said nonwovens can also be minimised. 

2. Materials and methods 
2.1 Materials 
Polypropylene fibre of 0.44 tex fineness, 80 mm length; jute fibres of Tossa-4 grade and 
polyester fibre of 51 mm length and 0.33 tex fineness fibre of  were used to prepare the fabric 
samples. Some important properties of fibres are presented in Table 1. Sodium hydroxide 
and acetic acid were used for woollenisation of the jute. 
 

Property Jute Polypropylene Polyester 
Fibre fineness (tex) 2.08 0.44 0.33 

Density (g/cm3) 1.45 0.91 1.38 
Tensile strength (cN/tex) 30.1 34.5 34.83 
Breaking elongation (%) 1.55 54.13 51.00 

Moisture regain (%) at 65% RH 12.5 0.05 0.40 

Table 1. Properties of jute, polypropylene and polyester fibres 

2.2 Methods 
2.2.1 Preparation of jute, jute-polypropylene blended and polyester fabrics 
The raw jute fibres do not produce good quality fabric because there is no crimp in these 
fibres. To develop crimp before the fabric production, the jute fibres were treated with 18% 
(w/v) sodium hydroxide solution at 30°C using the liquor-to-material ratio of 10:1, as 
suggested by Sao & Jain, 1995. After 45 min of soaking, the jute fibres were taken out, 
washed thoroughly in running water and treated with 1% acetic acid. The treated fibres 
were washed again and then dried in air for 24 h. This process apart from introducing about 
2 crimps/cm also results in weight loss of ∼ 9.5%. 
The jute reeds were opened in a roller and clearer card, which produces almost mesh-free 
stapled fibre. The woollenised jute and polypropylene fibres were opened by hand 
separately and blended in different blend proportions (Table 2). The blended materials were 
thoroughly opened by passing through one carding passage. 
The blended fibres were fed to the lattice of the roller and clearer card at a uniform and 
predetermined rate so that a web of 50 g/m2 can be achieved. The fibrous web coming out 
from the card was fed to feed lattice of cross-lapper and cross-laid webs were produced with 
cross-lapping angle of 20°. The web was then fed to the needling zone. The required 
needling density was obtained by adjusting the throughput speed. 
Different web combinations, as per fabric weight (g/m2) requirements were passed through 
the needling zone of the machine for a number of times depending upon the punch density 
required. A punch density of 50 punches/cm2 was given on each passage of the web, 
changing the web face alternatively. The fabric samples were produced as per the variables 
presented in Table 2. 
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Fabric 
code 

Fabric 
weight 
g/m2 

Needling density 
punches/cm2 

Woollenised 
jute 
% 

Polypropylene 
fibre 

% 

Polyester 
fibre 

% 
1 250 150 40 60 - 
2 250 350 40 60 - 
3 450 150 40 60 - 
4 450 350 40 60 - 
5 250 250 60 40 - 
6 250 250 20 80 - 
7 450 250 60 40 - 
8 450 250 20 80 - 
9 350 150 60 40 - 
10 350 150 20 80 - 
11 350 350 60 40 - 
12 350 350 20 80 - 
13 350 250 40 60 - 
14 350 250 40 60 - 
15 350 250 40 60 - 
16 393 150 0 100 - 
17 440 150 0 100 - 
18 410 250 0 100 - 
19 392 350 0 100 - 
20 241 150 100 0 - 
21 310 250 100 0 - 
22 303 350 100 0 - 
23 300 150 80 20 - 
24 276 250 80 20 - 
25 205 350 80 20 - 
26 415 300 - - 100 
27 515 300 - - 100 
28 680 300 - - 100 
29 815 300 - - 100 

Table 2. Experimental design of fabric samples 

The polyester fabric samples were made from parallel-laid webs, which were obtained by 
feeding opened fibres in the TAIRO laboratory model with stationary flat card (2009a). The 
fine web emerging out from the card was built up into several layers in order to obtain 
desired level of fabric weight (Table 2). The needle punching of all parallel-laid polyester 
fabric samples was carried out in James Hunter Laboratory Fiber Locker [Model 26 (315 
mm)] having a stroke frequency of 170 strokes/min. The machine speed and needling 
density were selected in such a way that in a single passage 50 punches/cm2 of needling 
density could be obtained on the fabric. The web was passed through the machine for a 
number of times depending upon the needling density required, e.g. the web was passed 6 
times through the machine to obtain  fabric with 300 punches/cm2. The needling was done 
alternatively on each side of the polyester fabric. 
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The needle dimension of 15 × 18 × 36 × R/SP 3½ × ¼ × 9 was used for all jute-polypropylene, 
jute and polyester samples. The depth of needle penetration was also kept constant at 11 
mm in all the cases. 
The actual fabric weights of the final needle-punched fabric samples were measured 
considering the average weight of randomly cut 1 m2 sample at 5 different places from each 
sample. 

2.2.2 Measurement of tenacity and initial modulus 
The mechanical properties like tenacity and initial modulus were measured both in the 
machine and transverse directions (Debnath et al., 2000a) of the fabric using an Instron 
tensile tester (Model 4301). The size of sample and the rate of straining were chosen 
according to ATSM standard D1117-80 (sample size 7.6 cm x 2.5 cm, cross head transverse 
speed 300 mm/min). Breaking load verses elongation curves were plotted for all the tests. 
The tenacity was calculated by normalising the breaking load by fabric weight and width of 
the specimen as suggested by Hearle & Sultan, 1967. The initial modulus was calculated 
from the load elongation curves. 

2.2.3 Measurement of air permeability 
The air permeability measurements were done using the Shirley (SDL-21) air permeability 
tester (Debnath & Madhusoothanan, 2010b). The test area was 5.07 cm2. The pressure range 
= 0.25 mm and flow range = 0.04 – 350 cc/sec. The airflow in cubic cm at 10 mm water head 
pressure was measured. The air permeability of fabric samples was calculated using the 
formula (1) given below (Sengupta et al., 1985 and Debnath et al., 2006). 

 AP = 
  
AF
TA

×10−2  (1) 

Where, AP = air permeability of fabric in m3/m2/sec, AF = air flow through fabric in 
cm3/sec at 10 mm water head pressure and TA = test specimen area in cm2 for each sample. 

2.2.4 Measurement of compression properties 
The initial thickness (Debnath & Madhusoothanan, 2010a), compression, thickness loss and 
compression resilience were calculated from the compression and decompression curves. 
For measuring these properties, a thickness tester was used (Subramaniam et al., 1990). The 
pressure foot area was 5.067 cm2 (diameter = φ2.54 cm). The dial gauge with a least count of 
0.01 mm and maximum displacement of 10.5 mm was attached to the thickness tester. The 
compression properties were studied under a pressure range between 1.55 kPa and 51.89 
kPa. 
The initial thickness of the needle-punched fabrics was observed under the pressure of 1.55 
kPa (Debnath & Madhusoothanan, 2007). The corresponding thickness values were 
observed from the dial gauge for each corresponding load of 1.962 N. A delay of 30 s was 
given between the previous and next load applied. Similarly, 30 s delay was also allowed 
during decompression cycle at every individual load of 1.962 N. This compression and 
recovery thickness values for corresponding pressure values are used to plot the 
compression-recovery curves. 
The percentage compression (Debnath & Madhusoothanan, 2007), percentage thickness loss 
(Debnath & Madhusoothanan, 2009a and Debnath & Roy, 1999) and percentage 
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compression resilience (Debnath & Madhusoothanan, 2007, 2009a and 2009b), were 
estimated using the following relationships (2,3,4): 

 Compression (%) = 
  

T0 −T1
T0

×100  (2) 

 Thickness loss (%) = 
  

T0 −T2
T0

×100  (3) 

 Compression resilience (%) =
  

Wc
,

Wc
×100  (4) 

where T0 is the initial thickness; T1, the thickness at maximum pressure; T2, the recovered 
thickness; Wc, the work done during compression; and Wc′, the work done during recovery 
process. 
The average of ten readings from different places for each sample was considered. The 
coefficient of variation was less than 6% in all the cases. 
All these tests were carried out in the standard atmospheric condition of  
65 ± 2% RH and 20 ± 2°C. The fabrics were conditioned for 24 h in the above mentioned 
atmospheric conditions before testing. 

2.2.5 Empirical model 
An empirical equation of second order polynomial (Box & Behnken, 1960) was derived to 
predict the mechanical properties (Debnath et al. 2000a) like tenacity and initial modulus, 
and physical property like air permeability (Debnath et al. 2000a)  were predicted from the 
results obtained from the samples produced using Box and Behnken factorial design. 

Y =    β0 + β1X1 + β2X2 + β3X3 + β11X1
2
+ β22X2

2
+ β33X3

2
+ β12X1X2 + β13X1X3 + β23X2X3 (5) 

Where, Y = predicted fabric property (tenacity or initial modulus or air permeability), X1 = 
fabric weight, X2 = needling density, X3 = percentage of polypropylene, β0 is the constant 
and βi is the coefficient of the variable Xi. The predicted values of fabric properties were then 
compared with the actual values and error (6) was calculated. 

 E (%)= 
  
A −P

A
×100 (6) 

Where, E is error in percentage, A is the actual experimental values and P is the predicted 
values from models. 

2.2.6 Artificial neural network model 
The physiology of neurons present in biological neural system such as human nervous system 
was the fundamental idea behind developing the ANNs. This computational model was 
trained to capture nonlinear relationship between input and output variables with scientific 
and mathematical basis. In recent days, commonly used model is layered feed-forward neural 
network with multi layer perceptions and back propagation learning algorithms (Vangheluwe 
et al., 1993, Rajamanickam et al., 1997, Zhu & Ethridge, 1997 and Wen et al., 1998). 
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The ANNs are computing systems composed of a number of highly interconnected layers of 
simple neuron like processing elements, which process information by their dynamic 
response to external inputs. The information passed through the complete network by linear 
connection with linear or nonlinear transformations. The weights were determined by 
training the neural nets. Once the ANN was trained, it was used for predicting new sets of 
inputs. Multi layer feed-forward neural network architecture (Figure 1) was used for 
predicting the tenacity, initial modulus, air permeability, initial thickness, percentage 
compression, thickness loss and compression resilience properties of fabrics (Debnath et al., 
2000a, 2000b and Debnath & Madhusoothanan, 2008). The circle in Figure 3.5 represents the 
neurons arranged in five layers as one input, one output and three hidden layers. Three 
neurons in the input layer, three hidden layers, each layer consisting of three neurons and 
one neuron in the output layer. HL-1, HL-2 and HL-3 are 1st, 2nd and 3rd hidden layers 
respectively, whereas  i and j are two different neurons in two different layers. The neuron 
(i) in one layer was connected with the neuron (j) in next layer with weights (Wij) as 
presented in the Figure 1. 
The data were scaled down between 0 and 1 by normalizing them with their respective 
values. The ANN was trained with known sets of input-output data pairs. 
 

 
Fig. 1. Neural architecture of the fabric property 

3. Results and discussion 
3.1 Modelling of tenacity and initial modulus 
The empirical and ANN models for tensile properties have been developed from the 
experimental values (Debnath et al., 2000a) of fifteen sets of selected fabric samples as 
shown in Table 3. 
The constants and coefficients of the empirical model for the fifteen fabric sample sets (Table 
3) were calculated with the help of multiple regression analysis, are given in Table 4. 
The ANN was trained up to 64,000 cycles to obtain optimum weights for the same sample 
sets used to develop emperical model (Table 3). The weights of ANN for tenacity and initial 
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modulus on both machine and transverse direction were presented in Table 5. Tables 6 and 
7 show the experimental, predicted values and their prediction error for tenacity and initial 
modulus respectively. 
The Table 6 shows a very good correlation (R2 values) between the experimental and 
predicted tenacity values by ANN than by empirical model in both the machine and 
transverse directions of the fabrics. Similar trend was also observed in the case of initial 
modulus (Table 7). 
The ANN models of tenacity and initial modulus show much lower absolute percentage 
error and mean absolute percentage error than that of empirical model (Tables 6 and 7). The 
standard deviation of mean absolute percentage error also follows the similar trend. This 
 

Fabric 
code 

Fabric weight 
g/m2 

Needling density 
punches/cm2 

Woollenised jute 
% 

Polypropylene fibre 
% 

1 250 150 40 60 
2 250 350 40 60 
3 450 150 40 60 
4 450 350 40 60 
5 250 250 60 40 
6 250 250 20 80 
7 450 250 60 40 
8 450 250 20 80 
9 350 150 60 40 

10 350 150 20 80 
11 350 350 60 40 
12 350 350 20 80 
13 350 250 40 60 
14 350 250 40 60 
15 350 250 40 60 

Table 3. Fabric samples for development of Emperical and ANN models 
 

Tenacity Initial Modulus 
 Machine 

direction 
Transverse 
direction 

Machine 
direction 

Transverse 
direction 

β0 -9.882 -9.157 -7.448E-01 -2.832E-01 
β1 1.484E-02 1.228E-02 1.925E-03 2.806E-03 
β2 3.129E-02 2.610E-02 6.544E-03 5.279E-03 
β3 1.362E-01 1.833E-01 -4.700E-03 -2.063E-02 
β11 -6.084E-06 -1.817E-06 -3.908E-06 -7.840E-06 
β22 -2.838E-05 -2.682E-05 -1.388E-05 -1.941E-05 
β33 -5.033E-04 -3.787E-04 -3.216E-05 6.992E-05 
β12 -3.068E-05 -2.155E-05 1.835E-06 1.147E-05 
β13 -5.0170E-05 -1.157E-04 1.817E-05 2.775E-05 
β23 -1.251E-04 -1.849E-04 2.242E-05 2.596E-05 

Table 4. Coefficients and constants of empirical models of tenacity and initial modulus 
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Tenacity Initial modulus 
Weights between the 

layers number Machine 
direction 

Transverse 
direction 

Machine 
direction 

Transverse 
direction 

W11 -4.053 1.185 0.379 -6.844 
W12 1.363 -2.341 11.313 1.539 
W13 2.035 5.420 2.564 -2.829 
W21 -4.530 -0.496 0.919 16.684 
W22 3.401 -0.667 -16.856 4.141 
W23 7.707 5.064 -9.534 -0.370 
W31 5.997 3.669 -4.380 -1.518 
W32 -6.298 0.890 2.876 -7.049 

1st and 2nd 

W33 -7.736 -9.883 4.257 1.298 
W11 1.207 3.113 -2.472 -0.752 
W12 1.689 -6.265 10.783 3.987 
W13 -3.273 0.630 -3.429 -2.242 
W21 -17.135 -8.309 1.478 2.702 
W22 5.736 3.556 -2.926 -0.151 
W23 10.765 2.652 0.811 6.455 
W31 3.907 -12.208 -5.815 -8.148 
W32 -6.176 5.439 3.362 -3.522 

2nd  and 3rd 

W33 4.880 -5.658 0.882 9.483 
W11 -12.307 3.779 1.784 -1.669 
W12 3.732 -5.345 6.455 4.879 
W13 -11.562 6.306 -5.127 -4.866 
W21 10.984 -2.423 -0.415 2.262 
W22 0.739 1.605 -9.454 2.647 
W23 6.466 -1.513 0.686 -2.908 
W31 2.598 -2.440 -0.643 -0.846 
W32 -13.977 3.412 4.862 -7.376 

3rd and 4th 

W33 -1.486 -4.109 0.810 7.533 
W10 1.979 4.550 2.702 5.054 
W20 12.652 -7.022 11.945 8.722 

4th and 5th 

W30 -9.348 7.491 -3.734 -4.757 

 

Table 5. Weights of ANN model for tenacity and initial modulus 
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Tenacity in the machine direction Tenacity in the transverse direction 
Predicted 
tenacity 

(cN/Tex) 

Absolute error
(%) 

Predicted 
tenacity 

(cN/Tex) 

Absolute error 
(%) 

Fabric 
code 

Exp 
tenacity

(cN/Tex)
Emp ANN Emp ANN

Exp 
tenacity

(cN/Tex)
Emp ANN Emp ANN 

1 0.513 0.827 0.514 61.65 00.04 2.220 2.540 2.222 14.43 00.09 
2 1.357 1.214 1.355 10.57 00.20 2.000 1.775 1.961 11.23 01.97 
3 1.279 1.423 1.277 11.22 00.20 2.484 2.708 2.462 09.05 00.89 
4 0.896 0.579 0.901 35.32 00.55 1.402 1.081 1.402 22.86 00.04 
5 0.544 0.466 0.545 14.39 00.22 0.827 1.020 0.845 23.36 02.13 
6 1.837 1.743 1.838 05.15 00.01 3.819 3.530 3.818 07.56 00.02 
7 0.551 0.646 0.544 17.17 01.23 0.931 1.220 0.922 31.02 00.95 
8 1.443 1.521 1.444 05.43 00.07 2.998 2.805 2.994 06.44 00.33 
9 0.435 0.197 0.433 54.71 00.51 1.611 1.098 1.603 31.88 00.50 

10 1.996 1.774 1.996 11.12 00.01 3.916 3.885 3.914 00.81 00.07 
11 0.247 0.468 0.248 90.00 00.69 0.610 0.641 0.601 05.18 01.35 
12 0.806 1.044 1.001 29.55 24.22 1.435 1.949 1.425 35.79 00.71 
13 1.345 1.356 1.348 00.84 00.22 2.296 2.313 2.315 00.75 00.80 
14 1.391 1.356 1.348 02.51 03.11 2.609 2.313 2.315 11.33 11.28 
15 1.332 1.356 1.348 01.78 01.15 2.035 2.313 2.315 13.68 13.75 

‘R2’ values 0.879 0.990   0.911 0.994  
Mean absolute percentage error 23.43 02.16  15.03 02.33 
SD of absolute percentage error 26.34 06.15  11.34 04.21 
Exp – Experimental; Emp – Empirical model and ANN – Artificial Neural Network Model 

Table 6. Experimental and predicted tenacity values by empirical and ANN models 
indicates that the prediction by ANN model is closer to the experimental values and 
variations of error among the samples were also lower than the prediction by empirical 
model. This could be due to the fact that the prediction by empirical model is not very 
accurate when the relationship between the inputs and outputs is nonlinear (Debnath et al. 
2000a). 

3.1.1 Verification of tenacity and initial modulus models 
An attempt was made to predict the tenacity and initial modulus in machine direction and 
in transverse direction to understand the accuracy of the models. The ANNs and empirical 
models were then presented to three sets of inputs, which have not appeared during the 
modeling phase as shown in Table 8. The input variables were selected in such a way that 
one input variable is beyond the range with which the ANN was trained or empirical model 
was developed. The Table 8 indicates that the prediction errors of ANNs were lower in both 
the directions of the fabric for tenacity and initial modulus in comparison with that of 
empirical model (Debnath et al., 2000a). 
In Table 8 the predicted tenacity and initial modulus values by ANN gives higher absolute 
percentage error than the predicted values in Tables 6 and 7. This may be due to the fact that 
the selected input variables (Table 8) were beyond the range over which the empirical or 
ANN models were developed (Debnath et al., 2000a). However, in most of the cases of 
prediction ANNs give lesser absolute percentage error than the empirical model. 
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Initial modulus in the machine direction Initial Modulus in the transverse 
direction 

Predicted 
initial modulus 

(cN/Tex) 

Absolute 
error 
(%) 

Predicted 
initial modulus

(cN/Tex) 

Absolute 
error 
(%) 

Fabric 
code Exp 

(cN/Tex)
Emp ANN Emp ANN

Exp 
(cN/Tex)

Emp ANN Emp ANN 
1 0.396 0.307 0.394 22.44 00.38 0.550 0.377 0.556 31.42 01.11 
2 0.736 0.589 0.736 19.96 00.08 0.451 0.377 0.433 16.46 04.12 
3 0.271 0.418 0.270 54.19 00.30 0.444 0.518 0.445 16.75 00.36 
4 0.685 0.773 0.685 12.97 00.00 0.804 0.976 0.805 21.51 00.19 
5 0.494 0.542 0.495 09.76 00.12 0.400 0.578 0.422 43.77 05.40 
6 0.418 0.606 0.420 44.85 00.36 0.551 0.623 0.552 13.05 00.20 
7 0.805 0.617 0.804 23.30 00.06 0.906 0.834 0.908 07.93 00.18 
8 0.874 0.826 0.874 05.51 00.02 1.279 1.104 1.278 13.70 00.06 
9 0.325 0.365 0.326 12.50 00.34 0.529 0.527 0.520 00.45 01.74 

10 0.511 0.412 0.511 19.33 00.02 0.480 0.581 0.479 21.01 00.27 
11 0.496 0.594 0.496 19.89 00.00 0.753 0.652 0.752 13.40 00.12 
12 0.861 0.820 0.860 04.72 00.09 0.912 0.914 0.908 00.25 00.43 
13 0.644 0.700 0.718 02.34 04.94 0.836 0.835 0.847 00.13 01.40 
14 0.688 0.700 0.718 01.64 04.23 0.815 0.835 0.847 02.47 04.04 
15 0.727 0.700 0.718 03.73 01.23 0.854 0.835 0.847 02.21 07.71 
‘R2’ values 0.703 0.997   0.803 0.997  

Mean absolute percentage error 17.14 00.81   13.63 01.36 
SD of absolute percentage error 15.23 01.57   12.48 01.73 

Exp – Experimental; Emp – Empirical model and ANN – Artificial Neural Network Model 

Table 7. Experimental and predicted initial modulus values by empirical and ANN models 

3.2 Modelling of Air permeability 
The emperical and ANN models were developed from selected fifteen sets of fabric samples 
as shown in Table 3. The empirical model (7) derived using Box and Behnken factorial 
design for predicting the air permeability is given below. 
 

AP = – 8.54E-3X1 +2.695E-3X2 – 4.58E-2X3 +3.05E-6X12 +9.925E-6X22 +3.578E-4X32 
– 1.79E-5X1X2 +5.076E-5X1X3 – 3.846E-5X2X3   + 5.401 

(7) 
 

Where, AP= air permeability (m3/m2/s)  X1 = fabric weight (g/m2), X2 = needling density 
(punches/cm2) and X3 = percentage polypropylene content in the blend ratio of 
polypropylene and woollenised jute. Since the coefficient of determination (R2 = 0.97) value 
is very high, we can conclude that the empirical model fits the data very well. 
During training the ANN models for air permeability, the minimum prediction error for all 
ANN models was obtained within 40,000 cycles (Debnath et al., 2000b). Table 9 depicts the 
interconnecting weights used for calculating the air permeability of ANN model with three 
hidden layers, where, Wmn – Interconnecting weights between the neuron (m) in one layer 
and neuron (n) in next layer. 
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Tenacity (cN/Tex) Initial Modulus (cN/Tex) 
Prediction AE (%) Prediction AE (%) Fabric 

code D Exp 
 Emp ANN Emp ANN

Exp 
Emp ANN Emp ANN 

MD 1.6730 1.9886 1.9960 18.86 19.31 0.4968 0.4445 0.4750 10.53 04.38 
16 

CD 3.7860 4.6575 3.9150 23.02 03.41 0.3123 0.7559 0.2366 142.0 24.24 
MD 2.2947 1.4784 1.9958 35.57 13.02 0.8467 0.8582 0.8401 01.36 00.77 

18 
CD 4.3700 3.3917 3.9157 22.38 10.40 1.2551 1.2542 1.2434 00.07 00.93 
MD 0.0240 -2.2031 0.0221 - 07.91 0.3194 0.3875 0.2968 21.32 7.08 

21 
CD 0.0850 -2.3606 0.0975 - 14.71 0.9759 0.8271 1.0112 15.24 3.62 

D – Test direction of sample; MD - Machine direction; CD – Cross direction, Exp – 
Experimental; 

Emp – Empirical model and ANN – Artificial Neural Network model, AE – Absolute error 

Table 8. Experimental verification of predicted results (tenacity and initial modulus) 
 

Weights between the layers 1st and 2nd 2nd and 3rd 3rd and 4th 
W11 6.110 -21.555 -2.205 
W12 1.811 11.242 -0.073 
W13 -9.048 0.859 -2.135 
W21 -14.213 -2.992 -0.163 
W22 8.363 0.675 -23.549 
W23 -3.274 4.588 -25.085 
W31 -11.762 -10.013 16.168 
W32 1.202 -13.005 -4.871 

 

W33 -11.006 -2.470 -11.349 
W10 W20 W30 Weights between 4th and 5th layers 10.465 -8.925 5.433 

Table 9. Weights of ANN model with three hidden layers for air permeability 

The Table 10 shows the correlation between experimental and predicted values of air 
permeability. It is clear that the ‘R2’ values for ANN of three hidden layers were maximum 
followed by empirical model, two layers and single hidden layer ANN respectively. From 
the Table 10 it can also be observed that the average absolute error was found minimum 
while using ANN with three hidden layers, followed by ANN with two hidden layers, 
empirical model and ANN by single hidden layer respectively. The standard deviation of 
absolute error also follows the same trend. The ANN model with single hidden layer has 
low correlation between the experimental and predicted values (Debnath et al., 2000b). This 
may be because the ANN with one hidden layer has only two neurons. Both the number of 
neurons and the hidden layers are responsible for the accuracy in the predicted model. The 
ANN with three hidden layers shows the best, predicted results. The empirical model is not 
as good as ANN of three hidden layers. Though, the correlation between the experimental 
and predicted values of empirical model is higher than ANN model with two hidden layers, 
but the mean percentage absolute error is quite high in the case of empirical model than 
ANN with two or three hidden layers. This is probably due to the fact that the empirical 
model may require a larger sample size when the relationship between input and output 
variables is nonlinear (Fan & Hunter, 1998). 
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Empirical 
Model Artificial neural network models Fabric 

code 
Exp 
AP 

Pre AP AE, % 1 HL Pre 
AP AE, % 2 HL Pre AP AE, % 3 HL Pre AP AE, % 

1 2.285 2.368 03.36 2.426 06.71 2.516 10.10 2.311 01.15 
2 2.659 2.543 04.39 2.629 01.27 2.672 00.47 2.671 00.42 
3 1.308 1.585 11.40 1.467 12.19 1.506 15.13 1.334 01.98 
4 0.966 0.617 36.10 1.425 47.45 0.887 08.21 0.962 00.49 
5 2.663 2.495 06.30 2.244 15.72 2.580 03.10 2.665 00.07 
6 2.682 2.503 06.67 2.620 02.31 2.612 02.61 2.670 00.47 
7 0.786 0.725 07.74 1.379 75.38 0.901 14.66 0.796 01.22 
8 1.262 1.391 10.19 1.519 20.31 1.366 08.19 1.395 10.54 
9 1.856 1.693 08.75 1.534 17.35 1.639 11.67 1.898 02.26 
10 2.361 2.058 12.81 2.197 06.96 2.216 06.15 2.382 00.89 
11 1.627 1.664 02.25 1.732 06.45 1.684 03.45 1.701 04.54 
12 1.824 1.722 05.63 2.015 10.46 1.867 02.31 1.826 00.09 
13 1.675 1.542 07.93 1.676 00.05 1.674 00.70 1.677 00.14 
14 1.677 1.542 08.02 1.676 00.05 1.674 00.17 1.677 00.04 
15 1.672 1.542 07.79 1.676 00.20 1.674 00.07 1.677 00.29 

‘R2’ 00.97  00.82  00.96  00.99  
Mean Absolute Error 

(%) 09.28  14.85  05.79  01.58 

SDER 07.94  20.67  05.23  02.73 
Exp – Experimental; Emp – Empirical model ; Pre – Predicted; HL – Hidden layer; AE – 
Absolute error; AP  - Air permeability in m3/m2/s and SDER – Standard deviation of 

percentage absolute error 

Table 10. Experimental and predicted air permeability values by empirical and ANN models 
– absolute error and correlation 

3.2.1 Verification of air permeability models 
The trained ANN with three hidden layers (3HL) and the empirical models were then used 
to predict the air permeabilityproperty of six different sets of input pairs. The input 
variables are selected in such a way that one or two input variables are beyond the range, 
with which the ANN was trained and empirical model was developed (Table 11).  
It can be observed that, the percentage absolute error with ANN, ranges between 00.60 and 
14.62. However, the percentage absolute error is between 04.32 and 30.00, while predicting 
with empirical model.  The prediction of air permeability was more accurate with ANN, 
compared to empirical model even when the inputs are beyond the range of modeling 
(Debnath et al., 2000b). 

3.3 Modelling of compression properties 
The ANN models for initial thickness (IT), percentage compression (C), percentage thickness 
loss (TL) and percentage compression resilience (CR) have been developed from the selected 
twenty-five sets of fabric samples and corresponding experimental values of compression 
properties shown in (Table 12). 
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Air permeability (m3/m2/s) 
Predicted 

values 
Absolute error, 

(%) 
Fabric 
code 

Fabric 
weight 
(g/m2) 

Needling 
density 

(punches/cm2)

Blend ratio 
(Polypropylene:Jute) Exp 

ANN Emp ANN Emp 
20 241 150 00 :100 2.6923 2.6760 3.5000 00.60 30.00 
21 310 250 00 :100 2.5641 2.6692 2.9528 04.10 15.15 
22 303 350 00 :100 2.8679 2.6728 3.3924 06.80 18.28 
23 300 150 20 : 80 2.4576 2.6292 2.3512 06.98 04.32 
24 276 250 20 : 80 2.4951 2.6523 2.6497 06.30 06.19 
25 205 350 20 : 80 3.1381 2.6791 3.8188 14.62 21.69 

Exp – Experimental; Emp – Empirical model and ANN – Artificial Neural Network Model 

Table 11. Experimental verification of predicted results of air permeability values 
 

Fabric 
code 

Fabric 
weight 
g/m2 

Needling 
density 

punches/cm2

Woollenised
jute 
% 

Polypropylene
fibre 

% 

Polyester 
fibre 

% 

IT 
mm

C 
% 

TL 
% 

CR 
% 

1 250 150 40 60 - 3.54 53.64 25.46 32.67 
2 250 350 40 60 - 3.02 46.73 25.98 32.29 
3 450 150 40 60 - 4.41 44.8 20.68 32.92 
4 450 350 40 60 - 3.8 36.47 17.68 33.87 
5 250 250 60 40 - 3.02 52.48 30.69 29.48 
6 250 250 20 80 - 4.27 54.88 27.82 32.27 
7 450 250 60 40 - 4.39 37.24 20.69 30.99 
8 450 250 20 80 - 3.88 37.8 18.63 31.28 
9 350 150 60 40 - 3.45 50.24 25.16 32.77 
10 350 150 20 80 - 4.48 50.06 24.49 31.52 
11 350 350 60 40 - 3.12 44.91 25.51 31.73 
12 350 350 20 80 - 3.38 43.75 23.25 30.99 
13 350 250 40 60 - 3.29 45.16 22.06 33.25 
14 350 250 40 60 - 3.94 42.45 21.84 33.15 
15 350 250 40 60 - 3.66 44.09 21.68 33.33 
16 393 150 0 100 - 5.87 54.92 25.05 28.56 
17 440 150 0 100 - 5.77 54.97 25.15 28.2 
18 392 350 0 100 - 4.08 37.51 17.4 35.05 
19 241 150 100 0 - 2.51 41.18 20.61 30.29 
20 303 350 100 0 - 2.84 41.85 22.23 30.43 
21 300 150 80 20 - 3.18 39.98 18.47 35.32 
22 205 350 80 20 - 2.47 47.42 25.22 28.98 
23 415 300 - - 100 3.54 42.93 9.89 54.33 
24 515 300 - - 100 4.14 37.00 8.36 56.69 
25 815 300 - - 100 5.62 23.78 6.65 53.85 

Table 12. Experimental design for compression properties 

The ANN was trained separately up to certain number of cycles to obtain optimum weights 
for each compression properties. The number of cycles to achieve optimum weights for 
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initial thickness, percentage compression, thickness loss (%) and percentage compression 
resilience are found between 320000 and 5120000 cycles as presented in Table 13. A very 
large number of simulation cycles was required because more number of input variables 
was used to develop the ANN model (Debnath & Madhusoothanan, 2008).. 
 

Number of cycle 
Compression property 

One hidden layer Two hidden layers Three hidden layers 
Initial thickness, mm 2560000 2560000 2560000 

Percentage compression 1280000 2560000 5120000 
Percentage thickness loss 320000 1280000 2560000 
Compression resilience, % 640000 2560000 5120000 

Table 13. Optimum number of cycles of one, two and three hidden layered ANN models for 
compression properties 

The optimum weights of ANN for initial thickness, percentage compression, thickness loss 
(%) and percentage compression resilience are shown in Table 14. 
 
Weights between the 

layers number 
Initial 

thickness 
Percentage 

compression
Percentage 

thickness loss 
Percentage 

compression resilience 
1st and 2nd     

W11 -7.825 -9.697 -0.797 1.497 
W12 -3.144 6.650 1.176 -1.003 
W13 0.821 -1.560 1.221 -4.777 
W14 3.338 2.949 8.374 14.286 
W21 0.394 4.034 2.738 5.181 
W22 0.801 -11.441 -4.945 8.240 
W23 2.356 -12.284 -0.218 3.091 
W24 3.839 0.981 -7.399 -8.415 
W31 0.587 4.742 -0.658 -3.937 
W32 0.418 2.487 8.743 -2.320 
W33 5.436 9.689 -3.318 -2.272 
W34 -2.470 8.814 -0.340 0.617 
W41 4.336 -0.697 -1.058 2.704 
W42 1.140 6.674 -5.424 2.298 
W43 -2.877 -11.909 8.539 -3.649 
W44 -1.919 -2.500 1.827 4.803 
W51 2.555 3.046 0.206 0.552 
W52 0.428 -1.342 -1.456 4.349 
W53 -3.728 -0.608 -2.002 0.192 
W54 -0.958 1.000 1.431 0.350 

2nd  and 3rd     
W11 -1.958 5.796 2.126 0.474 
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W12 8.015 10.795 -5.784 -0.253 
W13 1.747 0.628 -3.575 6.556 
W21 6.622 2.771 0.908 3.378 
W22 -2.664 -5.510 4.585 13.901 
W23 -2.217 -2.485 0.170 0.471 
W31 -1.255 0.661 -1.004 -2.508 
W32 -4.467 -1.092 3.731 -8.715 
W33 -3.381 7.313 2.431 4.162 
W41 -1.670 -6.856 0.762 9.749 
W42 -4.480 -3.497 -8.304 -11.644 
W43 -1.602 0.590 3.243 -6.180 

3rd and 4th     
W11 1.780 -0.951 -1.025 7.269 
W12 -4.432 5.588 -6.411 – 
W21 -1.488 -0.675 0.401 -14.560 
W22 7.351 5.949 9.564 – 
W31 -1.375 0.999 3.754 7.599 
W32 1.381 -11.087 3.248 – 

4th and 5th     
W10 -1.442 -0.432 -1.923 – 
W20 13.259 8.769 12.222 – 

Table 14. Weights of ANN model for compression properties 

Tables 15 to 18 show the experimental and predicted values of initial thickness, compression 
(%), percentage thickness loss and percentage compression resilience respectively. These 
tables also indicate the effect of number of hidden layers on the percentage error, standard 
deviation and correlation between the experimental and predicted results for the 
corresponding compression properties. 
Table 15 shows a very good correlation (R2 values) between the experimental and the 
predicted initial thickness values by ANN. Among the results obtained, the ANN with three 
hidden layers presents comparatively highest R2 value with lowest error. The standard 
deviation of percentage absolute error is also found to be less in the case of ANN model 
with three hidden layers. Similar trend has also been observed in case of percentage 
compression and percentage thickness loss as depicted in Tables 14 and 15 respectively. The 
ANN model with two hidden layers performs better in terms of percentage error and 
standard deviation of percentage error in the case of percentage compression resilience 
(Table 16). In the cases where average error for the ANN models with three different hidden 
layers shows more or less similar values, the priority is given to the standard deviation of 
errors (Debnath & Madhusoothanan, 2008). This study shows that in majority of the cases, 
the three hidden layered ANN models present better results for predicting compression 
properties of needle-punched fabrics. Though the three hidden layered ANN models take 
more time during training phase, the predicted results are more accurate in comparison to 
ANN models with one and two hidden layers, with less variations in the absolute error 
(Debnath et al., 2000a). 



Modelling of Needle-Punched Nonwoven Fabric Properties Using Artificial Neural Network   

 

81 

 
Initial thickness, mm 

ANN Predicted Absolute error, % 
Fabric 
code Exp 

1 HL 2 HL 3 HL  1 HL 2 HL 3 HL 
1 3.54 3.531 3.539 3.546  0.259 0.034 0.171 
2 3.02 3.046 3.019 3.036  0.868 0.030 0.520 
3 4.41 4.369 4.398 4.351  0.932 0.266 1.349 
4 3.8 3.785 3.780 3.783  0.399 0.524 0.443 
5 3.02 3.012 3.012 2.995  0.272 0.261 0.821 
6 4.27 4.287 4.267 4.272  0.399 0.071 0.041 
7 4.39 4.398 4.383 4.407  0.187 0.149 0.384 
8 3.88 3.930 3.878 3.916  1.298 0.053 0.939 
9 3.45 3.601 3.538 3.580  4.379 2.564 3.771 

10 4.48 4.456 4.482 4.472  0.540 0.043 0.181 
11 3.12 3.133 3.166 3.139  0.432 1.479 0.598 
12 3.38 3.364 3.389 3.359  0.484 0.256 0.634 
13 3.29 3.627 3.648 3.630  10.229 10.870 10.343 
14 3.94 3.627 3.648 3.630  7.956 7.421 7.861 
15 3.66 3.627 3.648 3.630  0.915 0.338 0.812 
16 5.87 5.867 5.870 5.869  0.053 0.002 0.025 
17 5.77 5.777 5.771 5.773  0.117 0.017 0.056 
18 4.08 4.074 4.087 4.083  0.159 0.168 0.061 
19 2.51 2.578 2.614 2.558  2.724 4.124 1.904 
20 2.84 2.847 2.857 2.831  0.262 0.603 0.333 
21 3.18 3.038 3.030 3.062  4.469 4.708 3.712 
22 2.47 2.460 2.440 2.478  0.415 1.200 0.332 
23 3.54 3.540 3.540 3.540  0.000 0.003 0.010 
24 4.14 4.140 4.140 4.140  0.001 0.006 0.005 
25 5.62 5.620 5.620 5.621  0.000 0.004 0.016 
R2 – 0.9868 0.9872 0.9875  – – – 

Mean of % absolute 
error – – – 1.51 1.41 1.41 

SD of % absolute error – – – 2.6071 2.6932 2.55 
Exp – Experimental; 1HL – One hidden layer; 2HL – Two hidden layers; 3HL – Three 

hidden layers; and SD – Standard deviation 
 
Table 15. Experimental and predicted values of initial thickness by ANN model 
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Percentage compression, % 

ANN Predicted Absolute error, % 
Fabric 
code Exp 

1 HL 2 HL 3 HL  1 HL 2 HL 3 HL 
1 53.64 54.126 53.638 53.648  0.906 0.003 0.015 
2 46.73 48.817 46.729 46.727  4.467 0.003 0.006 
3 44.8 44.536 44.807 44.789  0.589 0.016 0.025 
4 36.47 36.223 36.473 36.453  0.677 0.007 0.047 
5 52.48 50.449 52.638 52.486  3.869 0.301 0.011 
6 54.88 54.333 54.883 54.872  0.997 0.006 0.015 
7 37.24 37.576 38.740 37.240  0.902 4.028 0.001 
8 37.8 38.590 38.159 37.800  2.089 0.951 0.001 
9 50.24 48.230 50.358 50.224  4.001 0.234 0.031 

10 50.06 50.703 50.411 50.078  1.285 0.701 0.037 
11 44.91 45.650 44.035 44.912  1.648 1.949 0.004 
12 43.75 43.949 43.581 43.756  0.454 0.386 0.013 
13 45.16 44.244 43.780 43.863  2.028 3.056 2.871 
14 42.45 44.244 43.780 43.863  4.227 3.133 3.329 
15 44.09 44.244 43.780 43.863  0.350 0.704 0.514 
16 54.92 54.807 54.930 54.951  0.205 0.019 0.056 
17 54.97 54.896 54.954 54.943  0.135 0.029 0.050 
18 37.51 36.873 37.269 37.515  1.699 0.641 0.012 
19 41.18 41.666 40.616 41.178  1.181 1.369 0.005 
20 41.85 42.787 41.536 41.842  2.240 0.751 0.019 
21 39.98 40.793 39.785 39.984  2.033 0.489 0.009 
22 47.42 47.242 47.570 47.423  0.376 0.316 0.007 
23 42.93 42.933 42.928 42.927  0.007 0.004 0.007 
24 37 36.997 37.002 37.003  0.007 0.005 0.007 
25 23.78 23.780 23.780 23.791  0.001 0.001 0.047 
R2 – 0.9839 0.9941 0.9971  – – – 

Mean of % absolute 
error – – –  1.453 0.764 0.285 

SD of % absolute 
error – – –  1.386 1.117 0.856 

Exp – Experimental; 1HL – One hidden layer; 2HL – Two hidden layers; 3HL – Three 
hidden layers; and SD – Standard deviation 

Table 16. Experimental and predicted values of percentage compression by ANN model 
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Thickness loss, % 

ANN Predicted Absolute error, % 
Fabric 
code Exp 

1 HL 2 HL 3 HL  1 HL 2 HL 3 HL 
1 25.46 25.547 26.448 25.462  0.341 3.881 0.007 
2 25.98 27.399 26.468 25.976  5.462 1.879 0.017 
3 20.68 20.574 21.035 20.676  0.515 1.717 0.018 
4 17.68 17.147 17.720 17.662  3.013 0.225 0.100 
5 30.69 30.660 30.689 30.688  0.096 0.003 0.007 
6 27.82 26.361 26.453 27.813  5.244 4.913 0.025 
7 20.69 20.634 20.739 20.686  0.271 0.235 0.019 
8 18.63 18.564 18.189 18.621  0.357 2.369 0.047 
9 25.16 25.200 25.057 25.157  0.159 0.410 0.011 
10 24.49 24.554 24.250 24.508  0.261 0.981 0.073 
11 25.51 25.488 25.465 25.509  0.087 0.176 0.002 
12 23.25 23.236 23.087 23.264  0.060 0.702 0.060 
13 22.06 22.064 21.843 21.851  0.017 0.982 0.946 
14 21.84 22.064 21.843 21.851  1.024 0.015 0.052 
15 21.68 22.064 21.843 21.851  1.770 0.753 0.790 
16 25.05 24.994 25.279 25.016  0.225 0.914 0.134 
17 25.15 24.733 25.035 25.169  1.657 0.456 0.075 
18 17.4 17.817 17.708 17.401  2.396 1.772 0.008 
19 20.61 21.149 20.642 20.611  2.614 0.154 0.005 
20 22.23 21.340 22.208 22.229  4.002 0.100 0.003 
21 18.47 18.334 18.472 18.469  0.734 0.011 0.004 
22 25.22 25.207 25.219 25.220  0.053 0.005 0.002 
23 9.89 9.876 9.881 9.892  0.144 0.091 0.020 
24 8.36 8.368 8.358 8.357  0.096 0.027 0.036 
25 6.65 6.652 6.652 6.657  0.037 0.025 0.101 
R2 – 0.9926 0.9954 0.9999  – – – 

Mean of % absolute 
error – – –  1.225 0.912 0.102 

SD of % absolute error – – –  1.655 1.259 0.234 
Exp – Experimental; 1HL – One hidden layer; 2HL – Two hidden layers; 3HL – Three 

hidden layers; and SD – Standard deviation 
 
Table 17. Experimental and predicted values of percentage thickness loss by ANN model 
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Compression resilience, % 

ANN Predicted Absolute error, % 
Fabric 
code Exp 

1 HL 2 HL 3 HL  1 HL 2 HL 3 HL 
1 32.67 32.864 32.568 32.684  0.594 0.312 0.044 
2 32.29 32.041 32.253 31.838  0.772 0.115 1.401 
3 32.92 30.169 32.805 32.923  8.356 0.350 0.009 
4 33.87 33.917 33.640 33.624  0.139 0.679 0.725 
5 29.48 29.334 29.375 29.514  0.495 0.357 0.115 
6 32.27 32.324 31.931 31.832  0.169 1.051 1.358 
7 30.99 31.959 30.700 30.997  3.126 0.935 0.022 
8 31.28 30.803 30.890 31.256  1.523 1.248 0.076 
9 32.77 33.355 32.304 32.802  1.784 1.422 0.097 
10 31.52 30.943 31.071 31.445  1.830 1.425 0.237 
11 31.73 31.471 31.735 31.374  0.817 0.016 1.122 
12 30.99 31.581 31.029 32.012  1.907 0.127 3.297 
13 33.25 33.123 33.162 33.307  0.383 0.266 0.172 
14 33.15 33.123 33.162 33.307  0.083 0.035 0.474 
15 33.33 33.123 33.162 33.307  0.622 0.505 0.069 
16 28.56 29.678 28.624 28.577  3.915 0.223 0.058 
17 28.2 29.141 28.083 28.212  3.337 0.414 0.041 
18 35.05 34.855 35.006 35.083  0.557 0.125 0.094 
19 30.29 30.234 30.215 30.319  0.183 0.249 0.096 
20 30.43 30.477 30.399 29.597  0.154 0.103 2.736 
21 35.32 35.221 35.130 35.283  0.281 0.537 0.105 
22 28.98 29.010 28.998 30.004  0.105 0.064 3.533 
23 54.33 54.335 54.340 54.330  0.008 0.018 0.001 
24 56.69 56.684 56.687 56.689  0.010 0.005 0.001 
25 53.85 53.851 53.837 53.850  0.002 0.025 0.001 
R2 – 0.9919 0.9996 0.9977  – – – 

Mean of % absolute 
error – – –  1.2461 0.424 0.635 

SD of % absolute error – – –  1.8555 0.450 1.055 
Exp – Experimental; 1HL – One hidden layer; 2HL – Two hidden layers; 3HL – Three 

hidden layers; and SD – Standard deviation 
 
Table 18. Experimental and predicted values of  compression resilience by ANN model 
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3.3.1 Verification of Models for compression properties 
Further, attempts have been made to predict the compression properties to understand the 
perfection of the models. The ANNs models were then used to four sets of inputs, which 
have not been utilized during the modeling phase as shown in Table 19. Table 20 indicates 
the prediction of compression properties and respective absolute errors by ANNs models 
during verification phase. 
 

Fabric 
code 

Fabric weight 
g/m2 

Needling 
density 

punches/cm2 

Woollenised jute
% 

Polypropylene 
% 

Polyester 
% 

18 410 250 0 100 0 
21 310 250 100 0 0 
24 276 250 80 20 0 
28 680 300 0 0 100 

Table 19. Samples for experimental verification of ANN model for compression properties 

Table 20 presents the predicted compression values of untrained fabric samples by ANN 
models, showing higher absolute percentage error than the predicted compression values of 
trained fabric samples as shown in Tables 15 to 18. Specifically, in case of sample code 28, all 
the properties predicted during verification are high. Two samples of this category (100% 
jute) have been used during the training phase (Table 10). This might be the reason for 
higher error in sample code 28 (Debnath & Madhusoothanan, 2008). Hence, the learning 
process by ANN itself is very poor compared to other samples, this ultimately increases the 
error during verification (Table 20). 
 

Initial thickness 
with 3 hidden 

layer 
mm 

Compression with 
3 hidden layer 

% 

Thickness loss with
3 hidden layer 

% 

Compression 
resilience with 3 

hidden layer 
% 

Fabric 
code 

E P A E P A E P A E P A 
18 5.07 5.25 3.53 38.07 54.88 44.17 17.87 19.17 7.26 34.12 30.73 9.95 
21 2.47 3.17 28.47 43.96 29.20 33.59 22.38 27.85 24.46 32.89 17.41 47.05 
24 3.00 2.91 3.09 41.53 48.57 16.95 21.59 30.68 42.12 30.71 27.80 9.48 
28 5.13 5.26 2.54 22.35 23.95 7.15 6.19 6.76 9.24 54.21 56.62 4.44 

E – Experimental; P – Predicted and A – Absolute error % 

Table 20. Experimental verification of predicted results on compression properties 

4. Conclusions 
From this study it is clear that the tensile and air permeability property of needle punched 
non-woven fabric can be predicted from two different methodologies– empirical and ANN 
models. The ANN model for prediction of tensile properties of needle punched non-woven 
is much more accurate compared to the empirical model. Prediction of tensile properties by 
ANN model shows considerably lower error than empirical model even when the inputs 
were beyond the range of inputs, which were used for developing the model.  
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It can also be concluded that ANNs can be used effectively even for predicting nonlinear 
relationship between the process parameters and fabric properties. 
Both the methods can be implemented successfully as far as the air permeability of such 
needled fabric is concerned. The prediction accuracy of the ANN with three hidden layers is 
the best amongst all the predicting models used in this work. The ANN with three hidden 
layers is the best, which, gives highest correlation with lowest prediction error between 
actual and predicted values of air permeability of needle punched non-woven. The ANN 
with three hidden layers also shows lesser error when compared to an empirical model even 
when input variables are extrapolated over which the models were developed. 
ANNs can be used effectively for predicting nonlinear relationship between the process 
parameters and the fabric compression properties. 
The number of cycles to achieve optimum weights for initial thickness, percentage 
compression, thickness loss (%) and percentage compression resilience are found between 
320000 and 5120000 cycles.  
There is a very good correlation (R2 values) with minimum error between the experimental 
and predicted initial thickness, percentage compression and thickness loss values by ANN 
with three hidden layers.  
The standard deviation of percentage absolute error is also found to be less in the case of 
ANN model with three hidden layers for initial thickness, percentage compression and 
percentage thickness loss. The ANN model with two hidden layers performs better in terms 
of percentage error and standard deviation in the case of percentage compression resilience.  
The three hidden layered ANN models take more time for computation during training 
phase but the predicted results are more accurate with less variations in the absolute error in 
the verification phase. 
Based on the experiences the ANN model can be well used to model and predict other 
important properties of needle-punched nonwoven fabrics made of different fibre materials. 
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1. Introduction 
Artificial Neural Networks (ANN) are used nowadays in a broad range of areas such as 
pattern recognition, finances, data mining, battle scene analysis, process control, robotics, 
etc. Application of ANN in the field of spectroscopy has generated a long-standing interest 
of scientists, engineers and application specialists. The ANN’ capability of producing fast, 
reliable and accurate spectral data processing has become, in many cases, a bridging 
mechanism between science and application. A particular example of how ANN can 
transform plasma emission spectroscopy, that is quit challenging to model, into a turnkey 
ready to use device is described in this Chapter.  
Laser-Induced Breakdown Spectroscopy (LIBS) is a material-composition analytical technique 
gaining increased interest last decade in various application fields, such as geology, 
metallurgy, pharmaceutical, bio-medical, environmental, industrial process control and others 
(Cremer & Radziemski, 2006; Miziolek et al., 2006). It is in essence a spectroscopic analysis of 
light emitted by the hot plasma created on a sample by the laser-induced breakdown. LIBS 
offers numerous advantages as compared to the standard elemental analysis techniques (X-ray 
fluorescence or X-ray diffraction spectroscopy, inductively coupled plasma spectroscopy, etc.), 
such as:  capability of remote analysis in the field, compact instrumentation, detection of all 
elements and high spatial resolution. Such features as minimum or no sample preparation 
requirement and dust mitigation using “cleaning“ laser shots are especially important for field 
geology and remotely operated rover-based instruments. 
As result, LIBS instruments have been selected as payloads for the 2011 Mars Science 
Laboratory mission led by the National Aeronautics and Space Administration (Lanza et al., 
2010) and the ExoMars mission on Mars planned for 2018 and led by European Space 
Agency (Escudero-Sanz et al., 2008). 
Despite of the advantages, the main challenge is still the retrieval of accurate information 
from measured spectra. LIBS spectral signals, composed mostly of narrow emission lines, 
are complex nonlinear functions of concentrations of measured constituents and instrument 
                                                 
1 © Government of Canada 2010 
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parameters. The most important contributors to this nonlinearity are spectral overlapping, 
self-absorption, and the so-called matrix effects. These effects are caused by chemical 
properties and morphological features of the sample matrix that can change the intensity of 
the emitted lines (Eppler et al., 1996; Harmon et al., 2006). In addition, the ambience such as 
pressure, temperature and gas type can vary the heat loss and confinement effect in LIBS 
that results in a change of spectra (Iida, 1990; Lui & Cheung, 2003). All this leads to large 
errors in concentration measurements of minor or trace elements performed in different 
materials. This became a serious impeding factor for using full advantages of LIBS in 
analytical geochemistry in either field geology or planetary exploration. 
Common quantitative spectral data processing algorithms, based on calibration curve method 
have been successfully applied in some cases (St-Onge et al., 2002; Cho et al., 2001), but they 
are limited to application in one class of material and require a priory knowledge about the 
tested sample. An alternative method, called calibration-free method, relies on plasma model 
to calculate plasma temperature using several spectral lines. It shows encouraging results, 
however also subject to a number of limitations (Ciucci et al., 1999; Aguilera et al., 2009).  
Classification & identification techniques are also used in conjunction with LIBS to define 
material identity and even composition. In relatively simple cases classification and 
identification of samples can be achieved by evaluating the line ratios or the patterns of a 
LIBS spectrum (Mönch et al., 1997; Samek et al., 2001; Sattmann et al., 1998). More 
sophisticated classification methods such as, principle components analysis (PCA), soft 
independent modeling of class analogy (SIMCA) and partial least-squares discriminant 
analysis (PLS-DA), have been studied and produced very promising results (Sirven et al., 
2007; Clegg et al., 2009). However, the above techniques being based on linear processing 
have difficulty to take into account nonlinear effects.  
ANN data processing offers to address the above challenges as having the potential to solve 
nonlinear problems (Gurney, 1997; Haykin, 1999). The capabilities of ANN in this area have 
started to be explored recently almost simultaneously by few groups. Inakollu (Inakollu  et 
al., 2009) used ANN to predict the element concentrations in aluminium alloys from its LIBS 
spectrum. Ferreira (Ferreira et al., 2008) selected a set of wavelengths through the “wrapper” 
algorithm and then determined the concentration of copper in soil samples by ANN. 
Sattmann (Sattmann et al., 1998) discriminated PVC from other polymers with the distinct 
chlorine 725.66 nm line. Ramil (Ramil et al., 2008) classified the LIBS spectra of 36 
archaeological ceramics into three groups by ANN. The possibility of using ANN to predict 
composition in natural rocks explored in our earlier works by Motto-Ros (Motto-Ros et al., 
2008) and Koujelev (Koujelev et al., 2009). We also demonstrated the capability of mineral 
and rock sample identification with LIBS combined with ANN (Koujelev et al., 2010). The 
potential of ANN to analyse LIBS spectra has been proven in these studies.  
It is important to note that performing LIBS on geological material: minerals, rocks, and 
soils, is especially challenging. These materials can vary from silica-based basalt rock to 
iron-rich hematite mineral. They exhibit serious matrix effect thus the conventional 
calibration curve method will not be applicable for quantitative study (retrieval of 
composition).  Most importantly, without prior knowing the matrix identity, choosing an 
appropriate calibration curve is impossible.  Identification, or qualitative analysis, is also 
difficult to achieve since there are over few thousand types of minerals so learning all their 
spectra seems impractical. In fact, applying LIBS on rocks, soils or minerals have been 
reported in several studies. Menut (Menut et al., 2006) demonstrated the potential of 
probing europium in argillaceous rocks preconditioned in europium solution. Sharma 
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(Sharma et al., 2007) combined LIBS with Raman spectroscopy to evaluate mineral rocks. 
Bousquet (Bousquet et al., 2007) measured the chromium concentration in 22 soil samples 
doped with chromium. Calibration curve was obtained from the five kaolinite soil samples 
only. They also performed classification by principal components analyses (Sirven et al., 
2006). Belkov (Belkov et al., 2009) showed the possibility of measuring the carbon content in 
11 soil samples. The calibration curve was fit by an exponential function within 2% to 8% 
range. Gaft (Gaft et al., 2009) evaluated the performance of LIBS in sulphur analyses of 
minerals, alloys, and coal mixtures. Two calibration curves were established for two sets of 
coal mixtures. From these examples one can observe that the application of LIBS on 
geological analysis is mainly demonstrative and descriptive. Samples were artificially doped 
and the calibration curves were conditional, either limited by sample type or concentration 
range.  In term of quantitative and qualitative aspects, the application on geological samples 
still remains challenging to the LIBS community. 
This chapter presents a review of our earlier work as well as some new results. The focus is 
made on how we apply and optimise ANN in a particular spectroscopy application. The 
chapter is structured in the following way. After the introduction, the section describing the 
principles of LIBS will be presented so, that the particularities of the LIBS data are 
introduced. Some pre-processing techniques are presented in the LIBS section. The next, 
section is devoted to different ANN architectures used for particular types of data analysis 
and the targeted applications. The first sub-section describes material identification analysis, 
the second sub-section describes quantitative mineralogy analysis, and the third sub-section 
describes quantitative elemental analysis. Conclusions and future works are discussed in the 
last section of the chapter.  

2. LIBS technique 
Before we discuss different ANN spectral processing schemes, it is important to define the 
experimental settings where the raw spectra are obtained. It is also very important to 
address what types of materials are studied and what pre-processing routines are applied 
before the data are inputted to the network.  
A typical LIBS system includes a laser, optical elements to focus laser beam and to collect 
plasma emission, and a spectrometer (Fig. 1). In our studies, the laser source is a Q-switch 
Nd:YAG laser (Spectra Physics, LPY150, 1064nm, 7 ns) operating at 1 Hz repetition rate with 
pulse energy of 20 mJ. The pulse energy is monitored by Joule-meter and adjusted by a λ/2 
plate and a polariser. The beam is focused to a 50 µm spot to ablate the sample. The plasma 
emission is collected and delivered to the Ocean Optics LIBS 2000 spectrometer (200 – 970 
nm, 0.1 mm resolution) through an optical fibre. In the majority of our experiments, the 
distance between the sample and the collection optics was 10 cm. The delays between 
instruments are controlled by a pulse delay generator (BNC 575). The spectra are recorded 
and analysed with a computer and dedicated software. It worth noting that these 
parameters are typical for a low-power LIBS system that may be used on a remote platform, 
such as planetary rover, or as a hand-held instrument in the field conditions. 
Different types of geological materials are studied in our experiments. The samples of 
standard geological materials, mostly silicates in our cases, are supplied in form of powder 
with certified elemental composition by the Brammer Standard Company Inc. They are 
pressed into tablets for easy handling and sampling. Another set of natural rock and mineral 
samples is obtained from Miners Inc (part number: K4009). For these samples, only major 
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composition elements were known based on the type of mineral. Powder-based samples are 
used to train, validate and test the composition retrieval algorithm, while the natural rocks 
and minerals are used only to test the mineral identification capability.  
 

 
Fig. 1. Experimental configuration of a LIBS system. 
 

270 280 290 300 310 320 330 340 350
Wavelength (nm)

AndesiteJA1
Rock71306

Concentration (fraction)
Std name SiO2 Al2O3 MgO CaO Na2O K2O TiO2 Fe2O3 MnO
Rock71306 0.0062 0.001 0.218 0.3002 0.0003 0.00038 0.00015 0.0021 0.00108
AndesiteJA1 0.6397 0.1522 0.0157 0.057 0.0384 0.0077 0.0085 0.0707 0.00157

 
Fig. 2. Examples of LIBS spectra for materials with different composition. 
Let us consider few examples of raw LIBS spectra. Spectral signatures of a carbonate rock 
(Rock 71306) and an andesite (JA1) are shown in Fig. 2. Due to large difference in 
compositions of these two materials, their discrimination can be easily arranged. Here, a 
monitoring of intensities of several key atomic lines (Si, Al, Ca, Ti and Fe in this case) can be 
employed. Therefore, identification or classification of types of minerals with a strong 
difference in composition can be easily achieved using simple logic algorithms. In this case, 
we rather care about the presence of specific spectral lines than the exact measurement of 
their intensity and correspondence to elemental concentration. 
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The situation however, can be much more complex when one deals with identification of 
materials with high degree of similarity, or with retrieval of compositional data 
(quantitative analysis). Such an example is presented in Fig. 3. Here the strategy for these 
two applications may diverge. Such, that for material identification the spectral lines 
showing the largest deviations between materials (Mg in this example) should be used. 
However, for quantitative analysis it is rather useful to select the spectral lines that exhibit 
near-linear correspondence of the intensity and the element concentration (Ti 330 nm – 340 
nm lines in this example). This is why the material identification and quantitative analysis 
that will be discussed in the following sections rely on different spectral line selection. 
 

270 280 290 300 310 320 330 340 350
Wavelength (nm)

AndesiteJA1
AndesiteJA2

Concentration (fraction)
Std name SiO2 Al2O3 MgO CaO Na2O K2O TiO2 Fe2O3 MnO
AndesiteJA1 0.6397 0.1522 0.0157 0.057 0.0384 0.0077 0.0085 0.0707 0.00157
AndesiteJA2 0.5642 0.1541 0.076 0.0629 0.0311 0.0181 0.0066 0.0621 0.00108

 
Fig. 3. Examples of LIBS spectra for materials with similar composition. 

Once LIBS spectra are acquired from the sample of interest, several pre-processing steps are 
performed. Pre-processing techniques are very important for proper conditioning of the 
data before feeding them to the network and account for about 50 % of success of the data 
processing algorithm. The following major steps in data conditioning are employed before 
the spectral data are inputted to the ANN.  
a. Averaging of LIBS spectra. Usually, averaging of up to a hundred of spectral samples 

(laser shots) may be used to increase signal to noise ratio. The averaging factor depends 
on experimental conditions and the desired sensitivity. 

b. Background subtraction. The background is defined as a smooth part of the spectrum 
caused by several factors, such as, dark current, continuum plasma emission, stray 
light, etc. It can be cancelled out by use of polynomial fit.  

c. Selection of spectral lines for the ANN processing. Each application requires its own set 
of selected spectral lines for the processing. This will be discussed in greater details in 
the following sections.  

d. Calculation of normalised spectral line intensities. In order to account for variations in 
laser pulse energy, sample surface and other experimental conditions the internal 
normalization is employed. In our studies, we normalize the spectra on the intensity of O 
777 nm line. This is the most convenient element for normalization since all our samples 
contain oxygen and there is always a contribution of atmospheric oxygen in the spectra in 
normal ambient conditions. The line intensities are calculated by integrating the 
corresponding spectral outputs within the full width half-maximum (FWHM) linewidth. 
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After this pre-processing, the amount of data is greatly reduced to the number of selected 
normalized spectral line intensities, which are submitted to the ANN.  

3. ANN processing of LIBS data  
The ANN usually used by researchers to process LIBS data and reported in our earlier 
works is a conventional three-layer structure, input, hidden, and output, built up by 
neurons as shown in (Fig. 4).  Each neuron is governed by the log-sigmoid function. The first 
input layer receives LIBS intensities at certain spectral lines, where one neuron normally 
corresponds to one line. 
A typical broadband spectrometer has more than a thousand channels. Inputting to the 
network the whole spectrum increases the network complexity and computation time. Our 
attempts to use the full spectrum as an input to ANN were not successful. As a result, we 
selected certain elemental lines as reference lines to be an input to ANN. General criteria for 
the line selection are the following: good signal to noise ratio (SNR); minimal overlapping 
with other lines; minimal self-absorption; and no saturation of the spectrometer channel. 
 

 
Fig. 4. Basic structure of an artificial neural network. 

These criteria eliminate many lines which are commonly used by other spectroscopic 
techniques. For example, the Na 589 nm doublet saturates the spectrometer easily, thus is 
not selected. The C 247.9 nm can be confused with Fe 248.3 nm, therefore is avoided. At the 
same time, the relatively weak Mg 881 nm line is preferred to 285 nm line since it is located 
in a region with less interference from other lines. In addition to these general rules, some 
specific requirements for line selection imposed by particular applications are discussed in 
the following sections.  
The number of neurons in the hidden layer is adjusted for faster processing and more 
accurate prediction. Each neuron at the output layer is associated either to a learnt material 
(identification analysis) or an element which concentration is measured (quantitative 
analysis). The output neurons return a value between 0 and 1 which represents either the 
confidence level (CL) in identification or a fraction of elemental composition in quantitative 
processing. 
The weights and biases are optimized through the feed-forward back-propagation 
algorithm during the learning or training phase. To perform ANN learning we use a 
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training data set. Then to verify the accuracy of the ANN processing we use validation data 
set. Training and validation data sets are acquired from the same samples but at different 
locations (Fig. 5). In this particular example ten spectra collected at each location and 
averaged to produce one input spectrum per location. Five cleaning laser shots are fired at 
each location before the data acquisition. 
 

Learning set
Validation set

 
Fig. 5. Acquiring learning and validation spectra from a pressed tablet sample. The ten spots 
on the left are laser breakdown craters corresponding to the data sets. An emission 
collection lens is shown on the right in the picture. 

3.1 Material identification 
Material identification has been demonstrated recently with a conventional three-layer feed-
forward ANN (Koujelev et al., 2010). High success rate of the identification algorithm has 
been demonstrated with using standard samples made of powders (Fig. 6). However, a need 
for improvements has been identified to ensure the identification is stable with given large 
variations of natural rocks in terms of surface condition, inhomogeneity and composition 
variations (Fig. 7). Indeed, the drop in identification success rate between validation set and 
the test set composed of natural minerals and rocks is from 87 % to 57 % (Fig. 6). Note, at the 
output layer, the predicted output of each neuron may be of any value between 0 (complete 
mismatch) and 1 (perfect match). The material is counted as identified when the ANN 
output shows CL above threshold of 70 % (green dashed line). If all outputs are below this 
threshold, the test result is regarded as unidentified. Additional, soft threshold is introduced 
at 45 % (orange dashed line) such that if the maximum CL falls between 45 % and 70 %, the 
sample is regarded as a similar class. 
An improved design of ANN structure incorporating a sequential learning approach has 
been proposed and demonstrated (Lui & Koujelev, 2010). Here we review those 
improvements and provide a comparative analysis of the conventional and the constructive 
leaning network.  
 Achieving high efficiency in material identification, using LIBS requires a special attention 
to the selection of spectral lines used as input to the network. In addition to the above 
described considerations, we added an extra rational for the line selection. Lines with large 
variability in intensity between different materials, having pronounced matrix effects were 
preferred. In such a way we selected 139 lines corresponding to 139 input nodes of the 
ANN. The optimized number of neurons in the hidden layer was 140, and the number of 
output layer nodes was 41 corresponding to the number of materials used in the training 
phase.  
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Fig. 6. Identification results for ANN with conventional training: powder tablets validation 
and natural rock & mineral test. Green colour corresponds to confidence levels for correct 
identification and red colour corresponds to mis-identification ANN outputs. 
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Fig. 7. Natural rock & mineral samples and their powder tablets counterparts.  
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Fig. 8. Sequential training diagram. 

When dealing with a conventional training the identification success rate drops rapidly if 
natural rock samples are subject to measurement on the ANN trained with powder made 
samples. This is, as we believe, due to overfitting of ANN. To avoid overfitting, the number 
of training cases must be sufficiently large, usually a few times more than the number of 
variables (i.e., weights and biases) in the network (Moody, 1992).  If the network is trained 

1cm 
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only by the average spectrum of each sample corresponding to 41 training cases, then the 
ANN is most likely to be overfitted. To improve the generalization of the network, the 
sequential training was adopted as an ANN learning technique (Kadirkamanathan et al., 
1993; Rajasekaran et al., 2002 and 2006).  
The early stopping also helps the performance by monitoring the error of the validation data 
after each back-propagation cycle during the training process. The training ends when the 
validation error starts to increase (Prechelt, 1998). In our LIBS data sets there are five 
averaged spectra per sample, each used in its own step of the training sequence. At each 
step, the ANN is trained by a subset of spectra with the early stopping criterion and the 
optimized weights and biases are transferred as the initial values to the second training with 
another subset. This procedure repeats until all subsets are used. 
The algorithm implementation is illustrated in (Fig. 9). While the mean square error (MSE) 
decreases going through 5 consecutive steps (upper graph), the validation success rate 
grows up (bottom graph).  
 

 
Fig. 9. Identification algorithm programmed in the LabView environment: the training 
phase.  

Using a standard laptop computer the learning phase is usually completed in less than 20 
minutes. Once the learning is complete, the identification can be performed in quasi real 
time.  The LIBS-ANN algorithm and control interface is shown in (Fig. 10). 
 Identification can be performed on each single laser shot spectrum, on the averaged 
spectrum, or continuously. The acquired spectrum displayed is of the Ilmenite mineral 
sample in the given example. When the material is identified, the composition 
corresponding to this material is displayed. Note, that the identification algorithm does not 
calculate the composition based on the spectrum, but takes the tabular data from the 
training library. The direct measurement of material’s composition is possible with 
quantitative ANN analysis. 
In the event if the sample shows low CL for all ANN outputs it is treated as unknown. In 
such a case, more spectra may be acquired to clarify the material identity. If it is confirmed 
by several measurements that the sample is unknown to the network, it can be added to the 
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training library and the ANN can be re-trained with the updated dataset. Thus, for a remote 
LIBS operation, this mode "learn as you go" adds frequently encountered spectra on the site 
as the reference spectra. This mode offers a solution for precise identification without 
dealing with too large database of reference materials spectra beforehand. The exact identity 
or a terrestrial analogue (in case of a planetary exploration scenario) can be defined based on 
more detailed quantitative analysis, possibly, in conjunction with data from other sensors. 
 

 
Fig. 10. Identification algorithm programmed in the LabView environment: how it works for 
a test sample that has been identified. Upper-left section defines the hardware control 
parameters. Bottom-left section defines the spectral analysis parameters (spectral lines). 
Top-right part displays the acquired spectrum. Bottom-right section displays identification 
results. 

The results of validation and natural rock test identification are shown in (Fig 11) in the 
form of averaged CL outputs.  The CL values corresponding to mis-identification (red) are 
lower than for the conventional training, especially for the part with natural rocks. All 
identifications are correct in this case. The standard powder set includes similar powders of 
andesite, anorthosite and basalt which are treated as different classes during the trainings.  
Therefore, non-zero outputs may be obtained for their similar counterparts.  The lower red 
outputs in sequential training suggests it is more subtle to handle similar class.  Note that 
both training methods confuse andesite JA3, with other andesites.  According to the certified 
data, the concentrations of major oxides for JA3 always lie between those of other andesites. 
As a result, there are no distinct spectral features to differentiate JA3 from other andesites. 
Therefore, mis-identification in this particular case can be acceptable. 
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Fig. 11. Identification results for ANN with sequential training: powder tablets validation 
and natural rock & mineral test. Green colour corresponds to confidence levels for correct 
identification and red colour corresponds to mis-identification ANN outputs. 
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The last two samples, fluorite and molybdenite, are selected to evaluate the network’s 
response to an unknown sample. The technique is capable of differentiating new samples.  
Certainly, if our certified samples included fluorite or molybdenite, the ANN would have 
been spotted these samples easily due to the distinct Mo and F emission lines. 
The comparative of summary the results of the ANN with sequential training with those of 
another ANN trained by conventional method are shown in Table 1. Here, the conventional 
method is referred as a single training with one average spectrum for each sample. The 
prediction of the sequential LIBS-ANN improves with the increasing number of sequential 
trainings. After the 5th training, its performance surpasses that of the conventional LIBS-
ANN. The rate of correct identification rises from 82.4% to 90.7%, while the incorrect 
identification rate drops from 2% to 0.5%.  This is equivalent to only two false identifications 
out of 410 test spectra from the validation set. The rock identification shown is done on 50-
averaged spectra. The correct identification rate for the sequential training method is 100%.  
In conventional training, it is only 57% with the rest results regarded as “undetermined”.  
The outstanding performance of the sequential ANN shows a better generalization and 
robustness of the network. 
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Conventional 87.1 2.0 97.9 11.0 
82.4 2.0 96.7 15.6 
88.5 1.7 97.5 9.8 

Validation set 
(powders) Sequential 

training 

After 1st 
After 3rd 
After 5th 90.7 0.5 99.5 8.8 

Conventional 57.1 0 100 42.9 
Test set (natural 

rocks & 
minerals)1 

Five level sequential 
training 100 0 100 0 

Table 1. Validation and test result of the ANN trained by sequential and conventional 
methods. Average spectrum of a sample is used for testing. 

3.2 Mineralogy analysis 
Measuring presence of different minerals in natural rock mixtures is an important analysis 
that is commonly done in geological surveys. On one hand, LIBS relies on atomic spectral 
signatures directly indicating elemental composition of the material, therefore material 
crystalline structure does not appear to be present in the measurement. On the other hand, 
the information on the material physical and chemical parameters is present in the LIBS 
signal in a form of matrix effect. This, in fact, means that materials with the same elemental 
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Fig. 12. Mineralogy analysis on the sample made of mixture of basalt, dolomite, kaolin and 
ilmenite. Red circles indicate unidentified prediction. 

composition but different crystalline structure (or other physical or chemical properties) 
produce LIBS spectra with different ratios of spectral line intensities. Thus, mineralogy 
analysis can be done based on LIBS measurement where the ratios & intensities of the 
spectral lines are processed to deduce the identity of the mineral matrix.  
One can implement this using the identification algorithm described in the previous section. 
The methodology relies on a series of measurement produced in different locations of the 
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rock, soil or mixture, where only one mineral type is identified in each location. Then, the 
quantitative mineralogy content in percents is generated for the sample based on the total 
result.  
In this section, we describe a mineralogy analysis algorithm and tests that were performed 
in a particular low-signal condition. LIBS setup, described earlier, was used with a larger 
distance between the collection aperture and a sample. The distance was increased up to 50 
cm thus resulting in 25 times smaller signal-to-noise ratio. This simulates realistic conditions 
of a field measurement. Since a lens of longer focal length was used, a larger crater was 
produced. 
Because of low-signal condition, we adjusted ANN structure to produce result that is more 
reliable. First, the peak value is used in this case instead of FWHM-integrated value used 
earlier to represent the spectral line intensity. In a condition of weak lines, the FWHM value 
is difficult to define. Second, the intensities of several spectral lines per element were 
averaged to produce one input value to the ANN. Consequently, the ANN structure 
included 10 input nodes (first layer) corresponding to the following input elements: Al, Ca, 
Fe, K, Mg, Mn, Na, P, Si and Ti. The output layer contained 38 nodes corresponding to the 
number of mineral samples in the library. The hidden layer consisted of 40 neurons. The 
sequential training described above was used. 
In order to test the performance of quantitative mineralogy, an artificial sample was made 
based on the mixture of certified powders. Four minerals such as, ilmenite, basalt, dolomite 
and kaolin, were placed in a pellet so that clusters with visible boundaries can be formed 
after pressing the tablet (Fig. 12a). The measurements were produced by a map of 15x15 
locations with a spacing of 1 mm where LIBS spectra were taken (Fig. 12b). Ten 
measurement spectra were taken at each location. They are averaged and processed by 
ANN algorithm.  
Figure 12c shows the resulting mineralogy surface map. Since the colours of mineral 
powders were different, one may easily compare the accuracy of the LIBS mineralogy 
mapping with the actual mineral content. The results of the scan are summarised in the 
Table 2. The achieved overall accuracy is 2.5 % that is an impressive result demonstrating 
the high potential of the technique.  
 

Mineral Basalt Dolomite Kaolin Ilmenite 

LIBS-ANN measurement, % 17.8 21.8 45.8 13.8 

True value, % 22.2 18.2 46.9 12.7 

Deviation, % 4.4 3.6 1.1 1.1 

Average deviation, % 2.5 

Table 2. Test result of the LIBS-ANN mineralogy mapping.  

It should be noted that the true data are calculated as percentages of the mineral parts 
present on the scanned surface. These percentages are not representative of the entire 
surface of the sample or volume content. This becomes an obvious observation if one 
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considers that the large non-scanned area at the edge of the sample is covered by basalt, 
while its abundance is small on the scanned area. Therefore, the selection of the scanning 
area becomes very important issue if the results are to be generalised on entire sample. 

3.3 Quantitative material composition analysis 
The mineralogy analysis based on identification ANN can be used to estimate material 
elemental composition. This estimation however may largely deviate from true values, 
because it is based on the assumption that each type of mineral (or reference material) has 
well defined elemental composition. In reality, the concentrations of the elements may vary 
in the same type of mineral. Moreover, very often one element can substitute another 
element (either partially or completely) in the same type of mineral. 
This section describes the ANN algorithm for quantitative elemental analysis based directly 
on the intensities of spectral lines obtained by LIBS. The ANN for quantitative assay 
requires much higher precision than the sample identification. The output neurons now 
predict the concentrations, which can range from parts per million up to a hundred 
percents. Thus, to improve the accuracy of the prediction, we introduce the following 
changes to the structure of a typical ANN and the learning process. 
In our earlier development of quantitative analysis of geological samples, the ANN 
consisted of multiple neurons at the output layer. Each output neuron returned the 
concentration of one oxide (Motto-Ros et al., 2008). This network, however, can suffer from 
undesirable cross-talk. During training process, an update of any weights or biases by one 
output can change the values of other output neurons, which may be optimized already. 
Therefore, in this current algorithm, we propose using several networks and each network 
has only one output neuron dedicated to one element’s concentration (Fig. 13). For 
geological materials, we use conventional representation of concentration of element’s oxide 
form. 
Similar to identification algorithm in low-signal condition, the spectral lines identified for 
the same element are averaged producing one input value per element. This minimizes the 
noise due to individual fluctuation of lines.  
Since the concentration of the oxide can cover a wide range, during the back-propagation 
training, the network unavoidably favour the fitting of high concentration values and cause 
inaccurate predictions at low concentration elements. To minimize this bias, the input and 
desired output values are rescaled with their logarithm to reduce the data span and increase 
the weight of the low-value data during the training. 
Without the matrix effect, the concentration of an element can simply be determined by the 
intensity of its corresponding line by using a calibration curve. In reality, the presence of 
other elements or oxides introduces non-linearity. To present this concept in an ANN, 
additional inputs corresponding to other elements are added. Those inputs however should 
be allowed to play only secondary role as compared to the input from the primary element. 
In other words, the weights and biases of the primary neurons should weight more than 
others should. 
To implement this idea, the ANN training is split into two steps. In the first training, only 
the average line intensity of the oxide of interest is fed to the network. This average intensity 
is duplicated to several input neurons to improve the convergence and accuracy. The 
weights and biases obtained from this training are carried forward to the second training of 
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Fig. 13. Architecture of the expanded ANN for the constructive training. The blue dashed 
box indicates the structure of the ANN corresponding to the 1st step training. The red 
dashed box shows the neurons and connections added to the initial network (blue) during 
the 2nd training (constructive). In the 2nd training, the weights and biases of the blue neurons 
are initialled with the values obtained from the first training, while the weights and biases of 
the red neurons are initialized with small values much lower than those of blue neurons. 
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Fig. 14. Screenshots of the training interface of the quantitative LIBS-ANN algorithm 
programmed in LabView environment. Dynamics of the ANN learning and validation error 
while training is shown: (a) – during the 1st step training; (b) – in the beginning of the 2nd 
step training; (c) – at the end of the training. On each screenshot: the menu on the left 
defines training parameters; the graph in middle-top shows mean square error (MSE) for the 
training set; the graph in middle-bottom shows MSE for the validation set; the graph in 
right-top shows predicted concentration vs. certified concentration for the training set; the 
graph in right-bottom shows predicted concentration vs. certified concentration for the 
validation set. 
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a larger network. The expanded network is constructed from the first network with 
additional neurons which handle other spectral lines. This two-step training is referred as 
constructive training. Accuracy is verified by validation data set simultaneously with 
training (Fig. 14).  
This figure illustrates training dynamics on the ANN part responsible for CaO 
measurement. In the first step of training the ANN has one input value per material that is 
copied to 10 input neurons. The number of hidden neurons is 10 and there is only one 
output neuron. As we see, the validation error is very noisy and reaches rather big value at 
the end of the training (~50%) (Fig. 14a). Concentration plot shows large scattering.  When 
the second training starts the error goes down abruptly. In this case the network is 
expanded to 18 input neurons (10 for CaO line and 8 for the rest of elements, one input per 
element). The number of hidden neurons is 18 and there is one output neuron 
corresponding to CaO concentration. The validation error and the level of noise get 
gradually reduced. At the end of the training it reaches 17 % (averaged value for the data 
set). Taking into account that the span of data reaches four orders of magnitude, this is a 
very good unprecedented performance. 
A comparison of the performance between a typical ANN using conventional training and a 
re-structured ANN with constructive training is shown in (Fig. 15a, b). In general, the 
predictions by the constructive ANN fall excellently on the ideal line (i.e., predicted output 
corresponds to certified value).  Although the performance is similar at high concentration 
region (>10%), the data from the conventional ANN method start to deviate at low 
concentration regime. The scattering of data becomes very large at the very low 
concentration region (< 0.1%).  Some data points fall outside the displayable range of the 
plot (e.g. the low concentrated TiO2 and MnO). This observation supports the importance of 
data rescaling for accurate predictions at low concentration range. 
The performance of validation for different oxides is summarized in Table 3. The validation 
by the constructive method is significantly better than that of the conventional training.  The 
deviation of all predictions is less than 20%. The prediction of SiO2 concentration is similar 
in both approaches since it is the most abundant oxide in almost all samples. For the 
conventional ANN method, the deviations of most prediction are in general higher. This is 
attributed to the cross-talk of the neurons.  The deviation for MnO is incredibly large as it is 
usually in the form of impurity of tens of ppm.  Thus the bias in training makes the 
prediction of these low concentrated oxides less accurate. 
 

Oxide Al2O3 CaO FeO K2O MgO MnO Na2O SiO2 TiO2 

Constructive 
ANN error (%) 17.7 14.1 14.3 16.9 14.0 18.9 10.7 7.7 16.6 

Conventional 
ANN error (%) 21.3 33.3 44.2 33.4 53.2 152.5 35.9 7.3 86.6 

 

Table 3. A comparison of the validation error between the constructive and conventional 
ANN. 
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Fig. 15. A comparison of the validation performance between a typical ANN with 
conventional training (a) and the ANN with constructive training (b). 
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The prediction of oxide concentration by the constructive ANN is evaluated by four certified 
samples, which were not part of the training process. They were unknown to network thus 
simulating a new sample. The oxide concentrations obtained are compared with those 
calculated using the calibration curve method and a conventional ANN algorithm (Fig. 16). 
Among these three techniques, both the calibration curve method and the conventional 
ANN give inaccurate prediction for most oxides (Table 4).  
For the calibration curve method, the deviation is mainly due to the serious matrix effects of 
the geological samples. 
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Fig. 16. Comparison of the concentration prediction of the four samples (andesite JA2, basalt 
BCR2, iron ore, orthoclase gabbro) by the constructive ANN, conventional ANN and the 
calibration curve method. 

The prediction of SiO2 has the least deviation as it is the major constitution (i.e., the matrix) 
of the samples.  Minor components such as Al2O3, CaO, FeO and MgO have errors of about 
20 to 30%. Impurities, like MnO, Na2O and TiO2, suffer most from the matrix effect and have 
the worst predictions, which is 40% to 250% inaccuracy. 
The conventional ANN has comparable result as that of the calibration curve. Yet their 
deviation is caused by the limitation of the ANN discussed earlier. The errors for MnO, 
Na2O and TiO2 are still the worst at 50% to over 300% level. For Al2O3, CaO and FeO, the 
variations are around 20%. However, due to cross-talking of the output neutrons, the 
prediction of SiO2 is even worse than that obtained from the calibration curve method.  
Nevertheless, the predictions at low concentration scattered seriously, revealing the bias of 
high-concentration fitting during the training process. 
With the modified ANN, the accuracy of the prediction is drastically enhanced. Those 
scattered data from the calibration curve method and classical ANN at the low 
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concentration region are now brought back to the ideal line.  Both the major oxides (SiO2 
and Al2O3) and the impurities (MnO and Na2O) have similar performance of deviations 
below 20%. The matrix effect and the poor accuracy at low concentration that appear in 
other methods are no longer observed in the optimized constructive ANN technique. 
 

Oxide Al2O3 CaO FeO K2O MgO MnO Na2O SiO2 TiO2 

Constructive 
ANN 

deviation (%) 
2.8 10.2 0.6 6.0 16.7 8.0 8.1 5.6 10.7 

Conventional 
ANN 

deviation (%) 
18.1 24.1 22.9 47.0 25.3 47.2 71.6 17.8 360.3 

Calibration 
curve 

deviation (%) 
20.3 19.6 20.9 37.6 29.0 67.2 241.3 8.3 40.0 

Table 4. The average deviation of the prediction from the certified value for each oxide of 
the four unknown samples. 

Given the success of these two types of analysis demonstrated above: identification and 
quantitative, we merged them in one software tool to facilitate data analysis (Fig. 17).  
The identification part uses ANN with 139 input neurons, 140 hidden and 41 output neurons, 
and the quantitative ANN uses constructive architecture. Two outputs are produced from a 
single LIBS data acquisition: material identification and its composition prediction. Even if the 
sample cannot be identified, its composition is still accurately predicted.  

4. Conclusion 
We demonstrate application of supervised ANN architectures to spectroscopic analysis 
based on LIBS data. Two distinct processing approaches are described targeting material 
identification and quantitative material composition analysis.  
In the first application, such features as early stopping and sequential training are 
introduced enabling exceptional robustness of the algorithm. While the algorithm was 
trained using standard powder-based samples, a 100% successful identification is achieved 
using set of natural rocks and minerals as test samples. Application of material identification 
in quantitative mineralogy analysis is demonstrated using artificial mineral mixture. Overall 
accuracy of 2.5% is achieved. 
In the second application, we introduced constructive learning to ensure algorithm stability 
and robustness, but at the same time to account for matrix effects. The accuracy better than 
20% is achieved for nine elements measured in their oxide form (Al2O3, CaO, FeO, K2O, 
MgO, MnO, Na2O, SiO2 and TiO2) in the working range from 10 parts per million up to a 
hundred percent. It is worth noting that this accuracy is reached with no assumption on the 
type of the material. Geological samples of mineralogy different than those used for training 
the algorithm were successfully tested. This demonstrates the ability of the constructive 
ANN technique to overcome highly nonlinear multi-dimensional problem caused by matrix 
effects in LIBS data. 
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Fig. 17. Measurement of a new sample composition by quantitative ANN-LIBS algorithm 
implemented in LabView environment complemented by material identification ANN 
analysis. Upper-left section defines the network parameters and hardware control 
parameters. Top-right part displays the acquired spectrum. Bottom-right section displays 
the results of ANN analysis (from left to right): sample identity (Coulsonite in this case) and 
its tabulated composition, then the sample composition predicted by quantitative ANN, and 
finally the difference between the predicted composition and the tabulated composition. 

Based on the above algorithms, the integrated software tool has been developed. It provides 
identification, mineralogy, and composition analysis with a single acquisition of LIBS 
spectra. The future works will be directed toward verification of stability of the algorithms 
with data acquired in different experimental settings. Use of sequential training for 
quantitative composition analysis is proposed to enhance this stability. We plan to 
implement comprehensive validation tests in laboratory and in field conditions. 
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1. Introduction 
In today's industry, it is imperative that a thorough knowledge of the mechanical properties 
of materials be known to the designer in order to come up with a design of parts, tools, or 
instruments that will meet the highly competitive industrial requirements. It is well known 
that mechanical properties of various materials are in turn highly affected by the manner in 
which they are subjected to loadings of both static and fatigue types, and by its 
manufacturing process, in particular the heat treatment the material receives during its 
manufacturing. This further makes it required to perform the proper experiments and 
laboratory tests with regard to fatigue in the field of fatigue mechanics in order to obtain the 
necessary knowledge for the material properties for design purposes. It is emphasized that 
such properties obtained from monotonic tests are of no value and by no means 
recommended. To this end, on one hand metallurgical engineers often attempt to obtain 
their desired material properties and efficiencies by making variations in the parameters 
governing the manufacturing process. On the other hand, yet, the high costs of fatigue tests 
as compared with those of the simple monotonic tests, as well as the need for complex 
testing equipment are the major drawbacks in the way of such tests, encouraging the use of 
approximate and empirical mathematical models based on the data obtained from the 
monotonic tests. This has been quite evident among researchers and industry alike, as 
indeed indicated by the variety of ongoing articles published in the field. In the area of 
materials engineering as well, the knowledge of the effect of different manufacturing 
processing parameters on the material properties in view of the highly expensive nature of 
the tests are also of particular interest. Use of Artificial Neural Network (ANN) models is 
considered as a less expensive, less tedious, more efficient, and highly reliable alternative 
means for the estimation of the material fatigue properties using the data obtained from the 
monotonic tests. In addition, the ANN methodology was also employed for the parameter 
estimation related to the manufacturing process of materials. The method was also used to 
investigate and infer the manner in which such material properties are affected by variations 
in the parameters that are the main governing elements of these properties. Many 
researchers have indeed pursued such applications in their studies (Bucar et al., 2006; Genel, 
2004; Han, 1995; Lee et al., 1999; Liao et al., 2008; Malinov et al., 2001; Mathew et al., 2007; 
Mathur et al. 2007; Park & Kang, 2007; Pleune & Chopra, 2000; Srinivasan et al., 2003; 
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Venkatessh & Rack, 1999). Once the ANN model is trained properly, it will be able to offer 
an appropriate estimate of the required output using the given input parameters. 
In this chapter, it is first attempted to give an account of the necessity and benefits of the 
ANN methodology as pertained to the mechanical properties of materials followed by an 
exposition of the necessary knowledge for the proper use of this strong and valuable 
technique. This chapter will then close by the introduction and discussion of a case study. 

2. Artificial Neural Network; an overview 
In recent years, Artificial Neural Network (ANN) has been applied in many fields including 
function approximation and prediction. Artificial neural network is a kind of information 
processing technology, good at handling problems in which complex nonlinear relations 
exist among the input and output variables. The main idea of neural network approach 
resembles the human brain functioning. Artificial neural networks are based on the 
structure and functioning of the biological nervous system. Neurons are the basic unit or 
building blocks of the brain. The human brain consists of about 1011 neurons, leading in 
about 1000 trillion connections. A neuron receives many input signals but it produces only 
one output signal at a time.  
Back propagation network is made up of a large number of interconnected neurons. The 
neurons are arranged in layers: one input layer, one output layer, and one or more hidden 
layer(s) between the input layer and the output layer. Each neuron in the input layer is 
connected to every neuron in the hidden layer which in turn is connected to the neuron in 
the output layer. This topology results in a network commonly known as the Multilayer 
Perceptron, abbreviated as MLP. In the conventional MLP network, there is no connection 
between neurons in the same layer. The connection between two neurons is called synapse, 
and each synapse has an associated strength or weight, which influences the output of the 
neuron. Neurons in the input layer receive the input signals from each training pattern. The 
outputs of the neurons in the input layer are exactly the same as the input signals to those 
neurons. The neurons in the hidden layer then receive the output of the input neurons. This 
signal is then run through a nonlinear activation function to produce the output of each 
neuron of the hidden layer. The output of the neurons of the last hidden layer is in turn sent 
as an input to each output neuron. The more the number of hidden neurons, the more 
complex the model becomes. The predicted output is compared with the desired output and 
the error is sent back to the hidden layer for improving the prediction. The neural network 
architecture is described by the number of hidden layers, the number of neurons in each 
layer, the form of activation function used to nonlinearise the input-output relationship, 
training algorithms, the learning rate, momentum rate, and other pertinent parameters used 
in the network.  
Implementation of a neural network requires one to make three main decisions, namely the 
structure, i.e., the network topology, the type of activation functions, and the learning 
algorithm. The structure of the network deals with the number of hidden layers used in the 
network as well as the number of nodes used in each layer. The activation function refers to 
the transfer function for the neurons of each layer except for the input layer which uses an 
identity activation function. The notion of learning refers to the use of a suitable learning 
algorithm in the network training process.  
Before training, the network architecture must be defined. As a general rule, the number of 
neurons must be large enough to be able to map the implicit relationship existing between 
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the input and output variables for a given problem. On the other hand, it must not be overly 
large, since otherwise its connection weights may not be accurately estimated from the 
available training data. 
Depending on the structure of a neural network designed for use in a certain problem, two 
general neural networks can be designed, namely feedback and feedforward neural 
networks. The most widely used algorithms are in general feedforward networks, which is 
simple from the viewpoint of structure and easily analyzed mathematically. The back 
propagation neural network scheme, with a strong learning ability in training and mapping 
the relations between inputs and outputs, is the most commonly used network model 
(Koker et al., 2007). 
The ANN model applied in materials science belongs to a novel branch subject-Material 
Metrics. ANNs are parallel-interconnected networks of simple computational elements that 
are intended to interact with the objects of the real-world in a similar way to the biological 
nervous system (Muc & Gurba, 2001). Formally, an ANN is an oriented graph in which the 
nodes represent a set of processing units, called neurons, or processing elements, and the 
connections represent the information flow channels. Each connection between two neurons 
has an associated value called weight (Wij) which specifies the strength of the connection 
from unit i to unit j (Bahrami et al., 2005). The choice of a specific class of networks for the 
simulation of a nonlinear and complex problem depends on a variety of factors such as the 
accuracy desired and the prior information concerning the input–output pairs (Mousavi 
Anijdan et al., 2005). The most popular ANN in materials science and engineering 
investigations is the feedforward multi-layer perceptron, where the neurons are arranged 
into an input layer, one or more hidden layers, and an output layer (Muc & Gurba, 2001; 
Bahrami et al., 2005; Mousavi Anijdan et al., 2005; Song et al., 1995). A schematic description 
of a three-layer feedforward network is given in Fig. 1. Assuming that the network consists 
of n, p, and m neurons in the input, hidden, and output layers, respectively, the net input 
(zj) to node j in the hidden layer is of the form 

 
1

, 1,2,...,
n

j ij i j
i

z W x b j p
=

= + =∑  (1) 

 

 
Fig. 1. A schematic description of artificial neural network configuration 
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, where xi is the input of node j of the input layer, Wij is the connection weight associated 
with node i of the input layer and node j of the hidden layer, and bj is the bias associated 
with node j of the hidden layer. The bias neurons do not take any input and they emit a 
constant output value across weighted connections to the neurons in the next layer. 
Each neuron consists of a transfer function expressing internal activation level. The output 
(h) from a neuron is determined by transforming its input using a suitable transfer function 
as follows: 

 
1

, 1,2,...,
n

j ij i j
i

h f W x b j p
=

⎛ ⎞
= + =⎜ ⎟

⎝ ⎠
∑   (2) 

Generally, the transfer functions are sigmoid function, hyperbolic tangent and linear 
function (Fogel, 1994; Wong & Y. W. Wong, 1995).  
In the output layer, the net input zk to node k is of the form: 
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, 1,2,...,
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The output yk of node k of the output layer is then written as: 
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To estimate the degree of accuracy of the network, the database is split into two sub-groups: 
the so-called learning phase used to determine the weights associated with each 
interconnection (training process), and the test or validation phase, which verifies that the 
network is able to predict examples not previously learnt (validation process). The training 
process consists of determining the weights that produce from the inputs the best fit of the 
predicted outputs over the entire training data set. An input vector is then introduced in the 
input layer and is propagated through the network all through the output layer. The 
difference between the computed output vector and the target vector is then used to 
determine the weights using an optimization procedure in order to minimize the suitable 
error function. This form of training is termed the back propagation training algorithm 
(Mousavi Anijdan, 2005). There are several variables that have an effect on the ANN 
training. These variables are the number of training data points (N), network size (number 
of hidden layer and neurons in each layer), and number of training iterations or epochs (C). 
To find the best set of these variables and parameters, these parameters should be varied 
and then the best combinations chosen.  
An important step in building a neural network model is called training, the process of 
fitting the network to the experimental data and this is a computationally intensive process. 
Learning in an MLP neural network model involves the use of a gradient descent algorithm 
in an iterative manner to minimize the mean square error between the actual outputs of the 
network and the desired outputs in response to given inputs. Training in an MLP network is 
performed by a forward followed by a backward operation. The network produces its actual 
output for a certain input pattern using the current connection weights. Subsequently, the 
backward operation is carried out to modify the weights in an attempt to decrease the error 
between the actual and desired outputs. The updates in the weights are affected by two 
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parameters, namely the learning rate η and momentum coefficient α. The learning rate 
defines the speed for the changes that are taking place in the connection weights. The 
momentum coefficient is introduced to improve the learning process to make the learning 
process faster by adding a term to the weight adjustment proportional to the previous 
weight change.  
The error is computed using Eqs. (5) known as average squared error. Here, N denotes the 
total number of samples in training set: 

 
N N

2 2
i i i

i 1 i 1

1 1(e ) (t a )
N N

MSE
= =

= = −∑ ∑  (5) 

Once each input pattern is presented to the neural network and the network error 
corresponding to that input pattern is calculated, this error is propagated back through the 
network and the weights are adjusted according to the well-known backpropagation of 
error learning rule. The next input pattern is then presented to the network and the process 
repeats until all the input patterns get the chance to be presented to the network. When all 
the input patterns are presented to the network once, one epoch is said to be completed in 
the training process. This process is iterated for as many epochs as needed for the error to 
reach a desired minimum level, at which time, the network is said to have learned the 
problem in consideration. Finally, the test data are used to verify the non-linear relationship 
between the input and output data sets. 
NN models can be used for accurate interpolation within the range of input variables used 
for building the model. As far as extrapolation beyond the experimental range used in the 
training set, one must be careful not to place overly trust in the network response, as it may 
not produce a reliable result for inputs too far beyond. 

2.1 Neural network training algorithms 
Artificial neural networks are used as an interdisciplinary tool in many types of nonlinear 
problems. In order to design a neural network for a certain problem, one needs a training 
algorithm. As neural networks function based on samples (patterns), it is necessary to 
prepare a set of examples representing the problem in the forms of system inputs and 
outputs. During the training process, the weights and biases in the network are adjusted to 
minimize the error to obtain a high-performance for the problem.  
There are various training algorithms used in neural network applications. It is normally not 
a simple task to predict which of these training algorithms will be the most appropriate one 
for any problem. It generally depends on a number of factors such as the network 
architecture, and the application at hand (pattern recognition, classification, or function 
approximation). Other issues that may also be important could be the data structure and 
uniformity of the training set, as these will affect the system accuracy and performance.  
During the training process, it is important to avoid overtraining in an effort to obtain the 
best fit. This is a potential problem with the use of powerful non-linear regression methods 
in neural network modeling. An over-trained model tends to remember the relationship 
between input and output variables and therefore lacks generalization capability (Mathew 
et al., 2008). 
During the training session, the network weights are continuously adjusted until the 
difference between the predicted output and experimental value is minimized, i.e. the error 
function defined as the sum of squares of the difference between predicted and 
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experimental value on all the input patterns reaches a set limit or the number of 
predetermined training operations or epochs are completed, whichever comes first. 
Levenburg-Marquardt algorithm, Quasi-Newton algorithm, and Steepest-Descent method 
are some of the optimization techniques employed in the training of the neural networks. 
From these learning algorithms, the one most used in training the MLP networks is the 
Levenburg-Marquardt algorithm due to its fast convergence. Accordingly, a brief account of 
this algorithms is presented below.  
The back propagation learning algorithm which is based on the first order gradient of the 
network error enjoys the benefit of simple implementation as well as the ease of its use. Yet, 
it suffers from the disadvantage of a slow convergence. The Levenberg-Marquardt 
algorithm (Hagan & Menhaj, 1994) is a step taken towards solving the problem of slow 
convergence of the BP method. The LM method is based on a second order gradient of the 
network error. The fast convergence is the immediate consequence of the fact that the 
algorithm takes advantage of making use of only an approximation for the Hessian matrix 
instead of doing a thorough computation of this matrix. It also avoids the singularity of that 
matrix by adding a small term in the approximate calculation of the matrix. It is well known 
that the LM algorithm performs much faster than the usual BP rule at the cost of requiring 
more memory.  The Levenberg–Marquardt training algorithm was indeed found to be the 
fastest training algorithm to date. 
Once the training of the network is completed, the ability of the trained neural network to 
correctly generalize must be checked out using some input-output data not included in the 
training set. This set is commonly known as the test set or validation set. This set is normally 
prepared by randomly taking some 20 to 25 percent of the original data set. It is noted that 
each pattern from the validation set must lie within the range defined by the entire training set.  

3. Some remarks in the use of Neural Networks 
To develop a neural network with good performance, an adequate quantity of experimental 
data must be available. During the training and testing sessions, the network architecture, 
learning algorithm, and other parameters of the neural network should also be optimised to 
the specific problem under investigation. When the neural network is sufficiently optimal, 
and trained based on these data, it then becomes possible to generate satisfactory results 
when presented with any new input pattern it has never experienced before.  
As the number of neurons in the hidden layer increases, so does the number of connections 
and weights to be fitted. The number of neurons and the number of hidden layers cannot be 
increased without limit because one may reach a situation where the number of the 
connections to be fitted is larger than the number of the data pairs available for training. 
Though the neural network can still be trained, the case is mathematically undetermined. 
Mathematically it is not possible to determine more fitting parameters than the available 
data points. For example, two data points are required as a minimum for linear regression, 
three data points for second order polynomial (parabolic) regression and so on. In practice, 
for a reliable regression, much more data than the minimum amounts are used to increase 
statistical significance. For example, if we use two points to determine a slope through linear 
regression, the standard error of the slope calculated will be infinitely large. A slope 
determined through two points has no statistical significance (Sha & Edwards, 2007). 
In order to increase the efficiency of the neural network training techniques, it is necessary 
to use a large database consisting of sufficient number of training patterns to cover the 
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entire working space of the problem under study. Neural network modelling cannot replace 
experimentation; in fact it relies entirely on past experimental results, and because of the fact 
that experiments can be expensive, time consuming, and dangerous, researchers focus on 
the neural network methods. The neural network technique is actually most effective when 
large amount of data are already available in the literature. In such cases, the neural network 
is an effective way of storing and analyzing, with some artificial intelligence, the large 
amount and wide range of data from different sources. Because of the randomness of the 
data, the large size of the data, and the multiple natures of the input variables in most cases, 
it is usually difficult to extract physical rules governing the large data set or quantitative 
physical theories that can describe the problem data. Hence, a neural network model is ideal 
for such situations. In fact, if a limited amount of systematic data is available, efforts would 
be better spent on developing physical models rather than statistical or neural network 
models.  
It is noted that the errors obtained for the testing sets are more important than the errors 
obtained for the training sets, due to the fact that the errors for the testing sets are normally 
much larger and would not compare well with the errors for the training sets. One must also 
note that it is more effective to develop separate models for individual output variables. 
This is because the training time increases significantly when the number and nature of 
outputs increases. Therefore, setting up a series of neural network models, with each model 
dealing with only one output variable significantly improves the network learning and 
simplifies and speeds up the training of the neural network model. 
When determining the inputs, it is imperative to use independent variables as inputs. In 
fact, if there was only one input variable, a neural network would be no better than the 
conventional, simple regression. A neural network in this case does no more or better than 
the "Moving Average" or similar "Trend Line" functions, or even "Smoothed Line" in 
Microsoft Excel. A neural network is best used to model complicated interactions between 
several numbers of input parameters (Sha & Edwards, 2007). 
All through experiences in the use of neural networks in engineering problems, it is 
determined that certain types of networks are normally more appropriate for certain 
problems. For instance, and to be more specific, it is realized that to predict the fatigue life of 
materials or to predict the mechanical behaviour of materials under monotonic and cyclic 
loading, the Multilayer Neural Network along with the Back-Propagation learning 
algorithms have been proven to be very effective and accurate, especially when there is 
sufficient training data (Abdalla & Hawileh; 2010). 

4. Case study: Estimation of cyclic strain hardening exponent and cyclic 
strength coefficient of steels by artificial neural networks (Ghajar et al., 2008) 
In many field test situations, it may be desirable to convert the measured strains to stress in 
order to estimate fatigue life. Stress-strain response of some steels can change significantly 
when subjected to inelastic strains as this may occur at notch roots due to cyclic loading. 
When fatigue failure occurs, particularly at low cycle fatigue, such inelastic straining is 
generally present. Hence, the cyclic stress-strain curve may better represent the steel’s stress-
strain response than the monotonic stress-strain curve (Society of Automotive Engineers 
[SAE], 2000). The relationship between cyclic strain amplitude, Δε/2, and cyclic stress 
amplitude, Δσ/2, can be expressed as (Stephens et al., 2001): 
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 Δε/2 = Δσ/2E+(Δσ/2K')1/n'  (6) 

, where K' is the cyclic strength coefficient, n' is the cyclic strain hardening exponent, and E is 
the modulus of elasticity. The two fatigue properties needed in this correlation are K' and n'. 
The cyclic strength coefficient, K', and the cyclic strain hardening exponent, n', are often 
determined from the cyclic stress plastic strain curve. A family of stabilized hysteresis loops 
at different strain amplitudes can be used to obtain the cyclic stress-strain curve for a given 
material. The tips from the family of multiple loops are connected, as shown in Fig. 2, to 
form the cyclic stress-strain curve. Three methods commonly used to obtain the cyclic stress-
strain curve are the companion, incremental-step, and multiple-step test methods (Stephens 
et al., 2001). These test methods are time-consuming and the testing equipment is more 
complicated and expensive than that required for monotonic tension tests, while monotonic 
stress-strain properties are commonly available in handbooks. Therefore, it is more desirable 
to use approximation methods for estimating the values of K' and n'. 
 

 
Fig. 2. Stable hysteresis loops for determining the cyclic stress-strain curve and comparison 
with the monotonic stress-strain curve (Stephens et al., 2001). 

An approximation of K' and n' can also be calculated from the low-cycle fatigue properties 
by using (Stephens et al., 2001): 

K' = σ'f/(ε'f)b/c  

n' = b/c  
(7)

 

, where σ'f is the fatigue strength coefficient, ε'f is the fatigue ductility coefficient, b is the 
fatigue strength exponent, and c is the fatigue ductility exponent. This estimation method 
has its problems and errors. It requires, in the first place, the four empirical constants that 
must be obtained from fatigue tests. Furthermore, estimating cyclic stress-strain curves 
based on fatigue properties could lead to considerable errors in certain situations (Kim et al., 
2002). So, it is recommended that the values of K' and n' obtained from direct fitting of the 
experimental data are used in fatigue design rather than those calculated from Eq. 7 
(Stephens et al., 2001). 
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It is therefore useful to estimate cyclic strength coefficient and cyclic strain hardening 
exponent on the basis of monotonic tensile tests properties, reported in handbooks or simply 
obtainable from experiments. By doing so, one can covert cyclic strain to cyclic stress only 
by using tensile test properties. 
In this work, the MLP network with back propagation algorithms is used for the estimation 
of cyclic strain hardening exponent, n', and the cyclic strength coefficient, K', of steels. The 
K' and n' are estimated by two separate networks. For these estimations steels tensile data 
used as input to the ANN model, are extracted from the literature (SAE, 2001; Kim et al., 
2002; Roessle & Fatemi, 2000). In order to enhance training performance, both input and 
output variables are normalized before the network is trained. In order to investigate the 
influence of input parameters on the estimation of n' and K', several networks having 
different combinations of tensile data are considered. The mean square error (MSE) between 
the desired output and the ANN response is used. 
A broad range of 82 steels is used for modeling n'. One set of data consist of 60 values was 
used for training the network and another consisting of 22 values was used for testing the 
trained network. Preliminary examinations were performed on different combinations of σy, 
Su, RA%, BHN and E as input data to the ANNs in order to determine the parameters affecting 
the n' estimation. Finally three combinations of tensile data were selected from among them as 
follows: (σy, Su and BHN), (σy, Su, RA% and BHN), and (σy, Su , RA%, BHN and E). 
A number of neural network architectures with different number of neurons in the hidden 
layer (2 to 10 neurons) were also investigated to select the best one. A summary of the 
results is presented in Table 1. The results indicate that the best architecture involves 7 
neurons for the first combination (σy , Su and BHN), 9 neurons for the second (σy , Su , RA% 
and BHN), and 6 neurons for the last (σy , Su , RA% , BHN and E). 
 

No. Of 
Iterations 

Regression for the 
test data  

Regression for the 
training data  

Neurons in the 
hidden layers Input sets 

363 0.563 0.890 6 
367 0.716 0.913 7 

, ,y uS BHNσ  

550 0.726 0.973 7 
120 0.792 0.967 8 
112 0.865 0.973 9 

, , , %y uS BHN RAσ  

700 0.379 0.913 5 
700 0.702 0.962 6 
1000 0.205 0.910 7 

, , , %,y uS BHN RA Eσ  

Table 1. Networks details and architectures of n' 
As mentioned earlier, the performance of the networks was evaluated by calculating MSE 
errors. In order to assess the validity of the networks and their accuracy, it is often useful to 
perform regression analysis between the network response and the corresponding target. 
Obviously, the closer these two data are, the better the performance of the network is. Fig. 3 
shows the regression analysis for the best set of input for the test and training data. The 
regression results of the training data illustrate that networks were trained with a high 
accuracy. Furthermore, comparison of the regression results of the test data indicates that 
the set of inputs (σy , Su , RA% and BHN) provided the best prediction, R=0.866, followed by 
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the set (σy , Su and BHN). The difference in accuracy observed among the different input sets 
shows the importance of input parameters for predicting n'. It may be concluded that σy , Su 
, RA% and BHN have relatively established effects on the prediction of n' while the effect of 
E is not only immaterial, but also confusing. 
 

 
Fig. 3. Regression analysis of n' for the train and test data and (σy , Su , RA% and BHN) as 
the ANN input. 
In addition, the test data were used for a new prediction based on Eq. 7 to evaluate ANN 
test results. Fig. 4 shows the results of this estimation. By comparing ANN and Eq. 7 results 
(Fig. 3 and 4) it may be concluded that the ANN estimations were more accurate than Eq.7. 
Therefore, such estimations seem desirable, especially considering the time and effort that 
are required to obtain the fatigue properties used in the approximations by Eq.7, as 
compared with the monotonic tensile properties used in ANN predictions. 
 

 
Fig. 4. Regression analysis of approximated n' based on Eq. 7 for the test data. 
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Finally, based on the regression analysis results, it is possible to claim that the ANN with 
(σy, Su, RA% and BHN) input set is a useful method for the prediction of cyclic strain 
hardening exponent. 
For K' estimation, the properties of 48 steels reported in the literature (SAE, 2001; Kim et al., 
2002; Roessle & Fatemi, 2000) were used. 36 values of data were used for training the network 
and the others consisting of 12 data values were used for testing the trained network. 
Three combinations of tensile data consisting of σy, Su, RA%, BHN and E were used to 
determine the parameters affecting the K' estimation in the same manner as in the case of n'. 
A number of neural network architectures with different number of neurons in the hidden 
layer (2 to 10 neurons) were also investigated to select the best one. The summary of the 
results are provided in Table 2. Clearly, the best architecture is associated with 6 neurons for 
the combination (σy, Su and BHN), 8 neurons for (σy, Su, RA% and BHN), and 7 neuron for 
(σy, Su, RA% , BHN and E). 
 

No. Of 
Iterations 

Regression for 
the test data  

Regression for 
the training data 

Neurons in the 
hidden layers Input sets 

320 0.901 0.998 6 
200 0.896 0.995 7 

, ,y uS BHNσ  

229 0.926 0.999 6 
87 0.931 0.994 7 
100 0.953 0.996 8 

, , , %y uS BHN RAσ  

166 0.913 0.999 6 
185 0.925 0.999 7 
200 0.853 0.999 8 

, , , %,y uS BHN RA Eσ  

Table 2. Networks details and architectures of K' 
As mentioned previously, the performance of the networks was evaluated by calculating the 
MSE errors. In order to assess the validity of the networks and their accuracies, the  
 

 
Fig. 5. Regression analysis of K' for the train and test data and (σy , Su , RA% and BHN) as 
ANN input. 
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regression analysis was performed between the network response and the corresponding 
target. Fig. 5 indicates the regression analysis for the best set of input for the test and training 
data. It may be seen from this figure that the value of K' obtained from the trained network is 
in close agreement with its experimental value. Moreover, the regression results of test data 
illustrate that amongst the input sets,  the set (σy , Su , RA% and BHN) set of inputs yielded the 
best prediction, R=0.953, followed by the set (σy, Su, RA%, BHN and E). Similar to the case of n' 
estimation, it can be concluded that σy, Su, RA% and BHN have relatively effects on the 
prediction of K' while the effect of E is not only immaterial, but also confusing. 
Additionally, the test data were used for a new prediction based on Eq. 7. Comparing the 
results of this estimation and experimental values for K' is depicted in Fig. 6. There is a poor 
agreement between the experimental values of K' and the predictions obtained from Eq. 7. 
From Fig. 5 and 6, it can be concluded that the ANN estimations are more accurate than Eq. 
7. Therefore, the ANN method is preferred, especially by considering that it only requires 
monotonic tensile properties. 
Finally, similar to n', based on the regression analysis results, it is possible to claim that the 
ANN with (σy, Su, RA% and BHN) input set is a useful method for the prediction of cyclic 
strength coefficient. 
Cyclic strain hardening exponent and cyclic strength coefficient of steels, which characterize 
the stable curves of true stress amplitude versus true plastic strain amplitude, were 
predicted by ANN with high accuracy of 0.865 and 0.953% respectively while accuracy of 
estimations based on approximate relations (Eq. 7) are 0.693 and 0.726%. 
It was concluded that predicted stable cyclic true stress-strain curve properties by trained 
neural network are more accurate compared to approximate relations based on low-cycle 
fatigue properties. 
 

 
Fig. 6. Regression analysis of of approximated K' based on Eq. 7 for test data. 

5. Conclusion 
This chapter presents an exposition of the benefits and advantages of the neural network 
technique in the solution of engineering problems as a whole and materials science 
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problems in particular. A general overview of the neural network models is given followed 
by the introduction of a case study related to some fatigue properties of steels. It is 
emphasized that neural network models are effective techniques for modelling the problems 
in material science as the technique will help a material scientist with the determination and 
estimation of the complex and often nonlinear relationship governing the input/output data 
obtained within an experimental setup. As such, neural network techniques are still an 
ongoing research area as applied to the problems in material science and engineering.  
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1. Introduction 
At present, the main method of the ceramic tool and die materials research is still the 
traditional ‘trial-error’ method which needs a large number of experiments to determine the 
optimum material compositions. This traditional method requires researchers to repeat 
experiments and to face to the complex preparation processes as well as the high cost of the 
experiments, and so on. Therefore, the utilization of advanced and even intelligent design 
technologies for ceramic material design is extremely necessary. 
The computational intelligence (CI) technique, as an offshoot of artificial intelligence (AI), is 
a kind of heuristic algorithm including three categories: neural network, fuzzy system and 
evolutionary computation. Genetic algorithm (GA) and artificial neural network (ANN) are 
the two important computational intelligence techniques. 
In recent, the two techniques especially the ANN have got successful application in the 
material design of ceramics and metal matrix composites, etc. For instance, some researchers 
used ANN to predict the functional properties of ceramic materials from compositions 
(Scott et al, 2007) or the bending strength and hardness of particulate reinforced Al-Si-Mg 
aluminum matrix composites (Altinkok & Korker, 2004) or the mechanical properties of 
ceramic tool (Huang et al, 2002) or the percentage of alumina in Al2O3/SiC ceramic cakes 
and the pore volume fraction (Altinkok & Korker, 2005), etc.  
ANN is a kind of self-learning technology and back propagation (BP) neural network is one 
of the simply and commonly used network architectures. BP is based on the gradient 
descent method where connection weights and thresholds are modified in a direction 
corresponding to the negative gradient of a backward-propagated error measure (Jiang & 
Adeli, 2004). Although BP neural network has an advantage of high accuracy, it is often 
plagued by the local minimum point, low convergence or oscillation effects. In order to 
overcome the disadvantage of BP neural network, GA is usually used to improve the BP 
neural network. GA has a strong searching capability and high probability in finding the 
global optimum solution which is suitable for the early stage of data searching. Although 
these two techniques seem quite different in the number of involved individuals and the 
process scheme, they can provide more power of problem solving than either alone (Yen & 
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Lu, 2002; Yao, 1999; Gen & Cheng, 2000). Therefore, many researchers have attempted to use 
GA to improve BP neural network in order to achieve the complementary advantages 
(Sexton, 1998; Gupta & Sexton, 1999). 
Some successful examples of the improved BP neural network which were optimized by GA 
had been reported to optimize successfully the flow stress of 304 stainless steel under cold and 
warm compression (Anijdan et al, 2007) or the surface roughness in end milling Inconel 718 
(Ozcelik et al, 2005) or the plasma processes (Kim & Bae, 2005), etc. In literature (Zemin et al, 
2010), BP neural network was used to predict punch radius based on the results of air-bending 
experiments of sheet metal. This prediction model was proved to be effective by experiments. 
The compositions and hot pressing parameters are two important factors which can greatly 
affect the mechanical properties of ceramic materials. In the present study, the standard BP 
neural network and the improved BP neural network are used in the optimum design of 
both compositions and hot pressing parameters of ZrO2/TiB2/Al2O3 nano-micro-composite 
ceramic tool and die material. 

2. The improved BP Neural Network 
BP neural network is multi-layered forward feed neural network which is based on the error 
back-propagation algorithm. And the study of BP neural network can be divided into two 
steps which named forward-propagation process and back-propagation process, 
respectively. In forward-propagating process, the input is the known sample data and the 
information will be transmitted in turn for the hidden layer and the output layer. And the 
error between actual output and expected output is calculated in output layer. The back-
propagation process is that the calculated error will modify each connection weight and 
threshold along the original way. The above two processes are iterated and repeated until 
the error satisfies the condition. 
Fig. 1 is the structure of BP neural network. The network is multilayer which is composed of 
some connection neurons according to certain rules. It mainly consists of input layer, hidden 
layer and output layer, and each layer has independent neuron constitution. The layers are 
connected by the weights which can express the link degree between the neurons. And the 
hidden layer is composed of at least one or more layers. 
 

 
Fig. 1. The structure of BP neural network 

The improved BP neural network means using GA to optimize the BP neural network. The 
commonly improved BP neural network mainly has three methods. One is using GA to 
improve the structure of BP neural network which is marked as GA-BP I; the second is using 
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GA to identify the initial connection weight and threshold of BP neural network which is 
marked as GA-BP II; while the third is using GA not only to identify the initial connection 
weight and threshold but also to improve the structure of BP neural network which is marked 
as GA-BP III. The latter two kinds of algorithms will further be discussed in the present study.  

2.1 The GA-BP II algorithm 
BP neural network is very sensitive to the initial vectors and different initial values may lead 
to completely different results. Especially in the specific calculation process, the related 
initial values are usually determined randomly or by experience. Once the initial value is 
not properly determined, it would lead to effect of oscillation or seldom convergence. Even 
if it is convergent, the process will be quite slow because of the too long time of training or 
falling into local minimum. And the best connection weights distribution can not be 
achieved. Used GA to optimize the connection weight and threshold of BP neural network 
(GA-BP II) can solve the kind of problem. 
The principle of the GA-BP II algorithm is as follows: using GA to optimize the connection 
weights and thresholds of BP neural network from its searching space which contains all the 
available individuals. Then, the BP network is trained with these connection weights and 
thresholds so that the error between BP actual output and target output could be reduced. 

2.2 The algorithm of GA-BP III 
Most of the research literatures focused on the utilization of various improved GA to optimize 
the connection weight and threshold ignoring the importance of the structure of BP neural 
network and its close relationship between the structure and the connection weight. In the 
present study, an improved algorithm of BP neural network with GA (GA-BP III) is used for 
the optimum design of nano-micro-composite ceramic tool and die materials. In this 
algorithm, GA is used to fully optimize BP neural network including the comprehensive 
optimization of the structure, the initial connection weight and the threshold. 
It is reported that the structure of BP neural network could greatly affect the network 
processing capabilities. Redundant nodes and connections are not allowed existing in a 
good structure. However, the design of the structure of BP neural network had not 
rigorously and systematically theoretical guidance and remains largely dependent on a 
person's experience. Using GA to solve the optimization problem of the structure can be 
transformed into the process of biological evolution that can be obtained through the 
selection, crossover and mutation, etc. 
According to the Kolmogorov theorem, for three-layer BP neural network, it can achieve any 
given mapping. When the number of the hidden layer neurons is enough, it can use any 
degree of accuracy to approximate any non-linear mapping. The neurons in the input layer 
and output layer are determined on the specific problem; only the number of neurons in the 
hidden layer is variable. Thus, how to determine the number of the hidden layer neurons 
has become a very important issue which is the optimum object of the structure of BP neural 
network. If the number of neurons in the hidden layer is too little, the network may not be 
trained satisfyingly with the results, or the network is not robust enough with the poor 
fault-tolerance. If too many, they will make learning time too long and the error is not 
necessarily the smallest. So there exist an optimal number of the hidden layer neurons. 
It is assumed that the BP neural network is hierarchically fully connected and only the 
neurons of two adjacent layers are possible to be connected and must be connected. If the 
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input and output vector values are in the real number space and there are no effects 
between the connected two neurons, the weight of the two connected neurons will be zero. 
Under the known condition of the input and output neurons, the number of the neurons in 
the hidden layer could only correspond to the number of the connection weight. 
Thus, the principle of the GA-BP III algorithm is as following: Before the optimization, GA is 
used to optimize the number of connection weight, the best connection weight and 
threshold for BP neural network from its searching space which contains all the available 
individuals. After that, a global optimum solution can be achieved. Then the last generation 
of individuals is decoded and the corresponding structure of BP neural network, initial 
connection weights and thresholds can be achieved. With these values work as the structure 
and the initial value, samples are then trained to obtain the precise optimization. The 
optimum structure of BP neural network and these connection weights and thresholds could 
reduce the error between the output of BP neural network and the target output. Therefore, 
the results became more accurate. 

2.2.1 Encoding 
For the BP neural network with n-d-m three-layer where n is the number of neurons of the 
input layer, d is the number of neurons of the hidden layer and m is the number of neurons 
of the output layer, the floating-point type number is used for the connection weight and 
threshold to be encoded. Link the encoding which is encoded by the order of first 
connection weights then thresholds to a long string. The length of the string L is: 

 L=n×d+d+d×m+m (1) 

The scope of d can be ascertained by the empirical formula of the hidden layer neurons (Zhu 
& Shi, 2006) given below: 

 d n m α= + +  (2) 
 

Where n and m can be determined based on the actual problem, α is a constant in the range 
of 1 to 10. Thus, once the length of the string L is determined, the number of hidden layer 
neurons and then the network structure of BP neural network can be determined. The 
individual value after decoding is the corresponding connection weight and threshold. 

2.2.2 Determination of the fitness function 
The relationship between the input and output of the network is available as following (Gu 
et al, 2006): 

 
d n

k jk ij i j k
j 1 i 1

Y V f W X θ r
= =

⎡ ⎤
= ⋅ ⋅ + +⎢ ⎥

⎣ ⎦
∑ ∑  (3) 

where f is the transfer function between layers, Xi is the actual input of the neuron i of the 
input layer, Wij is the connection weight from the neuron i of the input layer to the neuron j 
of the hidden layer, θj is the threshold of the neuron j of the hidden layer, Vjk is the 
connection weight from the neuron j of the hidden layer to the neuron k of the output layer, 
rk is the threshold of the neuron k of the output layer, and Yk is the actual output of the 
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neuron k of the output layer. According to the error between the actual output and the target 
output, a least-squares error function E can be defined as (Gu et al, 2006): 

 
2p m

q q
i i

q 1 i 1

1E(W,V,θ,r) (T Y )
2p = =

= −∑ ∑  (4) 

Where p is the total number of the training samples, Tiq and Yiq is the target output and the 
actual output of the neuron i of the input layer, respectively when the qth training sample 
trains. 
In order to integrate GA and BP, the fitness function of GA is selected as following (Gu et al, 
2006): 

 
( )

1f(W,V,θ,r)
E W,V,θ,r 1

=
+

 (5) 

In this way, once the outputs are available through the BP computation, the relating outputs 
are transferred to the fitness function for comparing and determining the final value. While 
the fitness values are being updated from generation to generation, a new generation of the 
population will be produced and do the same evaluation. When fitness of the population 
reaches the maximum, the output error of the network will become the minimum. This 
process will continue until the end of predetermined generation. 

3. Experimental 
ZrO2/TiB2/Al2O3 nano-micro-composite ceramic tool and die material is a typical three 
phase composite material in which zirconia is the matrix reinforced with titanium diboride 
and alumina. High purity nanometer sized ZrO2 and micrometer sized TiB2 and Al2O3 
powders were used as the starting materials with average sizes of 39nm, 1.5μm and 1.0μm, 
respectively. According to the required volume fraction, the raw material powders were 
blended. The mixtures were subsequently homogenized with absolute alcohol media and 
Polyethylene Glycol (PEG) in a ball mill for 48h. After milling the slurry was dried in 
vacuum and screened.  
In the experiment of compositions optimization, the samples were then formed by vacuum 
hot pressing (HP) technique under the hot pressing temperature of 1445°C, pressure of 
30MPa and time duration of 60min. Sintered bodies were cut with a diamond wheel into 
samples of 3mm×4mm×30mm. The flexural strength was measured in an electronic 
universal testing machine (model INSTRON-5569) by means of the three-point bending 
method with a span of 20mm and a loading rate of 0.5mm/min. The Vickers hardness was 
tested by the testing machine (model Hv-120) with a load of 196N and a holding time of 15s. 
The fracture toughness was determined by the indentation method. The experimental data 
for the compositions optimization are listed in Table 1. 
In the optimization process of hot pressing parameters, the pressure was kept as 35MPa 
limited by the hot pressing equipment. The sintering temperature was initially selected from 
1420 to 1480°C and the holding time was initially selected in the range of 20-80min. All the 
selected hot pressing parameters are shown in Table 2. According to the processing 
technologies mentioned above, the materials were prepared and the mechanical properties 
were tested. 
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Number VZrO2 
(%) 

VTiB2 
(%) 

VAl2O3 
(%) 

Hardness 
(GPa) 

Flexural 
strength (MPa) 

Fracture toughness 
(MPa·m1/2) 

1 90 5 5 10.03 619 9.76 
2 85 5 10 10.20 501 10.59 
3 80 5 15 10.36 509 9.95 
4 85 10 5 10.37 617 10.51 
5 80 10 10 10.71 612 11.37 
6 75 10 15 10.19 565 12.20 
7 80 15 5 9.82 513 7.86 
8 75 15 10 10.22 524 7.91 
9 70 15 15 10.14 520 8.11 

Table 1. The compositions and mechanical properties of ZrO2/TiB2/Al2O3 ceramic material 
 

Number Sintering 
temperature 

(°C) 

Holding 
time (min) 

Hardness 
(GPa) 

Flexural 
strength (MPa) 

Fracture 
toughness 
(MPa·m1/2) 

1 1430 60 13.59 1055 10.57 
2 1440 60 13.78 1010 10.26 
3 1450 60 13.48 878 9.54 
4 1460 60 13.15 914 9.74 
5 1470 60 13.26 835 9.27 
6 1450 20 13.23 569 8.68 
7 1450 40 12.93 671 9.91 
8 1450 80 13.69 785 9.49 

Table 2. The hot pressing parameters and mechanical properties of ZrO2/TiB2/Al2O3 
ceramic material 

4. The compositions optimization 
4.1 The compositions optimization based on the standard BP algorithm 
The BP neural network can achieve the nonlinear relationship between the compositions and 
the mechanical properties. If there are sufficient training data, proper change of the structure 
of the BP neural network which includes the number of neurons in input layer, hidden layer 
and output layer, and the number of the hidden layer, the BP neural network model of the 
optimal compositions can be established. Material compositions can then be optimized 
through the complex non-linear relationship between the compositions of the materials 
preparation and the mechanical properties. In this paper, the training sample data of standard 
BP neural network are the experimental data of the compositions optimization (Table 1).  
The hardness, flexural strength and fracture toughness are the main mechanical properties 
of ceramic tool and die materials. When the processing techniques are determined, the 
mechanical properties of ceramic tool and die material are mainly decided by the 
compositions. Therefore, the inputs of the BP neural network model are the contents of each 
composition and the outputs are the three mechanical properties of the given materials. 
Therefore the model has three input neurons and three output neurons. The sigmoid-type 
function is adopted for the input layer to the hidden layer as the transfer function and 
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linear-type function is adopted for the hidden layer to the output layer. And the simulated 
data are listed in Table 3. 
 

Number VZrO2 
(%) 

VTiB2 
(%) 

VAl2O3 
(%) 

Number VZrO2 
(%) 

VTiB2 
(%) 

VAl2O3  

(%) 
1 85 6 9 12 80 14 6 
2 85 7 8 13 75 11 14 
3 85 8 7 14 75 12 13 
4 85 9 6 15 75 13 12 
5 80 6 14 16 75 14 11 
6 80 7 13 17 60 10 30 
7 80 8 12 18 60 15 25 
8 80 9 11 19 60 20 20 
9 80 11 9 20 60 25 15 
10 80 12 8 21 60 30 10 
11 80 13 7     

Table 3. The simulated data in compositions optimization 

According to the theory of the BP neural network, the computing process is programmed 
with neural network toolbox in MATLAB. Training function is using ‘trainlm’ function and 
network performance parameters are using MSE function which is the mean square error 
between the expected output value and the actual output value to measure the network 
performance. The training parameters are set as following: 
net.trainparam.show=10 
net.train.param.goal=0.001 
net.trainParam.epochs=100 
net.trainParam.lr=0.01 
Other parameters are set by default. 
Through the calculation of the error between the actual output value and the expected 
output value, and according to the BP neural network model, the number of hidden layer 
neurons is initially chosen as 6. So, the final structure of standard BP neural network is 
3×6×3. Based on this BP model, the compositions are optimized and the mechanical 
properties are then predicted. The predicted mechanical properties are listed in Table 4. 
After 62 times of iterations, the training curve of BP neural network is converged to the 
specified accuracy of 0.001 (Fig. 2). And the mean square error MSE is 1.24. 
According to the predicted results, the best flexural strength is 643MPa and the best 
hardness of the materials is 9.94GPa with the corresponding volume fractions of 
85vol%ZrO2, 8vol%TiB2 and 7vol%Al2O3, and the corresponding fracture toughness is 
11.14MPa·m1/2. The highest fracture toughness is 11.76MPa·m1/2 with the corresponding 
volume fractions of 75vol%ZrO2, 14vol%TiB2 and 11vol%Al2O3, but the corresponding 
hardness and flexural strength is low. From comprehensive consideration, it seems that the 
mechanical properties of ZrO2/TiB2/Al2O3 nano-micro-composite ceramic tool and die 
material with the corresponding volume fractions of 85vol%ZrO2, 8vol%TiB2 and 
7vol%Al2O3 is the best. So, this composition is the optimum composition in prediction. 
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Number VZrO2 
(%) 

VTiB2 
(%) 

VAl2O3 
(%) 

Hardness 
(GPa) 

Flexural 
strength (MPa) 

Fracture toughness 
(MPa·m1/2) 

1 85 6 9 9.22 546 10.91 
2 85 7 8 9.06 611 11.05 
3 85 8 7 9.94 643 11.14 
4 85 9 6 9.89 643 10.38 
5 80 6 14 9.89 506 11.27 
6 80 7 13 9.88 510 11.11 
7 80 8 12 9.15 543 11.11 
8 80 9 11 9.87 594 9.33 
9 80 11 9 9.89 594 7.36 
10 80 12 8 9.00 565 6.87 
11 80 13 7 9.72 547 7.24 
12 80 14 6 9.75 530 11.54 
13 75 11 14 9.04 568 9.68 
14 75 12 13 9.06 542 8.39 
15 75 13 12 9.88 528 7.95 
16 75 14 11 9.28 525 11.76 
17 60 10 30 9.24 451 5.91 
18 60 15 25 9.81 504 6.28 
19 60 20 20 9.11 576 9.77 
20 60 25 15 9.12 483 10.97 
21 60 30 10 9.46 454 11.05 

Table 4. The predicted results of standard BP algorithm in compositions optimization 

 
 

 
Fig. 2. The training curve of BP neural network of standard BP algorithm 
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4.2 The compositions optimization based on GA-BP II algorithm 
According to the formerly established BP model in which the number of the neurons of 
hidden layer is 6 and the structure of the BP model is 3×6×3, GA-BP II algorithm is used to 
optimize the compositions and the predicted mechanical properties are listed in Table 5.  
 

Number VZrO2 
(%) 

VTiB2 
(%) 

VAl2O3 
(%) 

Hardness 
(GPa) 

Flexural strength 
(MPa) 

Fracture toughness 
(MPa·m1/2) 

1 85 6 9 10.29 563 10.49 
2 85 7 8 10.36 625 10.16 
3 85 8 7 10.43 645 10.07 
4 85 9 6 10.36 636 10.25 
5 80 6 14 10.35 496 10.88 
6 80 7 13 10.38 505 11.72 
7 80 8 12 10.29 558 11.73 
8 80 9 11 10.23 599 11.51 
9 80 11 9 10.24 617 11.10 
10 80 12 8 10.22 614 10.53 
11 80 13 7 10.25 585 9.54 
12 80 14 6 10.10 541 8.49 
13 75 11 14 10.25 595 11.85 
14 75 12 13 10.26 590 11.14 
15 75 13 12 10.26 565 9.87 
16 75 14 11 10.25 538 8.61 
17 60 10 30 10.12 511 9.94 
18 60 15 25 9.92 458 10.49 
19 60 20 20 9.97 517 10.16 
20 60 25 15 9.63 516 10.07 
21 60 30 10 9.12 462 10.25 

Table 5. The predicted results of GA-BP II algorithm in compositions optimization 

After about 100 generations of searching, the fitness and square error have been stabilized 
respectively as shown in Fig.3. After 12 times of iterations, the training curve of BP neural 
network of GA-BP II algorithm is converged to the specified precision of 0.001 which is 
shown in Fig.4. The mean square error MSE is 1.05 and the elapsed-time is 144.20s. 
According to the predicted results in Table 5, the maximum flexural strength and hardness of 
the materials is 645MPa and 10.43GPa,respectively, when the volume fractions of ZrO2, TiB2 
and Al2O3 is 85vol%, 8vol% and 7vol%respectively while the fracture toughness is 
10.07MPa·m1/2 which is only the better one. The maximum fracture toughness of the material 
is 11.85MPa·m1/2 with the corresponding volume fractions of 70vol%ZrO2, 11vol%TiB2 and 
14vol%Al2O3, while the corresponding flexural strength and hardness is only 595MPa and 
10.25GPa, respectively. Compared with the two compositions, the mechanical properties of the 
material with the volume fractions of 85vol%ZrO2, 8vol%TiB2 and 7vol%Al2O3 is the better. 
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Fig. 3. The curve of square error and fitness of GA-BP II in compositions optimization 
 

 
Fig. 4. The training curve of BP neural network of GA-BP II algorithm in compositions 
optimization 

4.3 The compositions optimization based on GA-BP III algorithm 
According to the compositions optimization, the input layer neuron number is 3, the output 
layer neuron number is 3, and the number of hidden layer neurons is set to d. According to 
GA-BP III algorithm, the string length L can be determined as L=3+7d. In accordance with 
the empirical formula (Eq. 2) which can determine the range of hidden layer neurons, the 
range of d is 4-13. According to the principle of GA-BP III algorithm, the corresponding 
computing process is programmed and run with MATLAB 7.0 software. The corresponding 
parameters are set as following: the initial population number N=30, the cross probability 
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Pc=0.8, the mutation probability Pm=0.1 and the error e=0.001. When the error reaches the 
intended target, the training process of BP neural network is then stopped. 
In the process of GA optimization, with the increase of the evolution of generation, the 
fitness and square error are becoming convergent and finally achieve the best value. At this 
stage, the corresponding connection weights and thresholds of the BP neural network 
become the optimum. Their individuals are decoded as follows: -0.33, 1.00, 0.00, -0.64, -0.09, 
0.18, -0.61, -0.38, 0.13, -0.27, -0.27, 0.91, -0.55, 0.72, 0.57, 0.33, -0.48, 0.36, -0.51, -0.19, -0.19, -
0.05, 0.13, -0.32, -0.52, 0.24, -0.78, 0.29, 0.39, 0.13, -0.46, 0.00, 0.00, 0.47, 1.00, -0.32, -0.59, 0.36, -
0.07, -0.40, -0.34, -0.28, -0.22, -1.00, -0.28, -0.61, 0.19, 0.49, -0.82, 0.00, 0.10, 0.52, 0.63, -0.48, 
0.96, -0.89, 0.23, 0.11, -0.59. Based on the above 59 parameters and L=3+7d, the number of 
hidden layer neurons is ascertained as 8. Therefore the structure of BP neural network is 
3×8×3 and the last 11 parameters are the threshold values. Some connection weights in the 
list above are found to be 0.00 which indicate that the connection between the two 
neighboring neurons is invalid. 
 

 
Fig. 5. The structure of BP neural network of GA-BP III algorithm in compositions 
optimization 
The concrete structure of BP neural network is the improved BP neural network optimized 
by GA which is shown in Fig.5. It can be seen that the first neuron of input layer and the 
third neuron of hidden layer is no connection. The third neuron of hidden layer and the 
second and the third neurons of output layer are also connectionless. The data within the 
range of the experimental results are selected as the data for prediction in order to get the 
optimum compositions corresponding to the best mechanical properties. 
After about 100 generations of searching, the fitness and the square error have been 
stabilized respectively as shown in Fig.6. The curve of BP training target is shown in Fig.7. It 
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indicates that the BP neural network has 8 iterations convergence to the specified accuracy. 
The elapsed-time is 129.939s and MSE is 0.1491. 

 
Fig. 6. The curve of square error and fitness of GA-BP III algorithm in compositions 
optimization 
 

 
Fig. 7. The training curve of BP neural network of GA-BP III algorithm in compositions 
optimization 
The predicted results of GA-BP III algorithm are given in Table 6. It indicates that the 
highest flexural strength is 685MPa and the highest hardness is 10.74GPa with the 
corresponding volume fractions of 85vol%ZrO2, 8vol%TiB2 and 7vol%Al2O3. The fracture 
toughness with the same compositions is 10.38MPa.m1/2 which is slightly less than the best 
value 11.72 MPa.m1/2 when the volume fraction of ZrO2, TiB2 and Al2O3 is 80%, 9% and 11%, 
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respectively. While the flexural strength and hardness with the latter compositions is only 
568 MPa and 10.72GPa, respectively. It suggests that comprehensive good mechanical 
properties of the namo-micro-composite ceramic tool and die material ZrO2/TiB2/Al2O3 can 
be achieved when the volume fraction of ZrO2, TiB2 and Al2O3 is 85%, 8% and 7%, 
respectively. 
 

Number VZrO2 
(%) 

VTiB2 
(%) 

VAl2O3 
(%) 

Hardness 
(GPa) 

Flexural 
strength (MPa) 

Fracture toughness 
(MPa·m1/2) 

1 85 6 9 10.41 581 10.33 
2 85 7 8 10.62 652 10.24 
3 85 8 7 10.74 685 10.38 
4 85 9 6 10.68 674 10.50 
5 80 6 14 10.58 525 10.73 
6 80 7 13 10.69 537 11.28 
7 80 8 12 10.72 547 11.63 
8 80 9 11 10.72 568 11.72 
9 80 11 9 10.66 662 10.66 
10 80 12 8 10.47 657 9.94 
11 80 13 7 10.10 590 9.15 
12 80 14 6 9.89 538 8.39 
13 75 11 14 10.33 539 11.41 
14 75 12 13 10.42 519 10.50 
15 75 13 12 10.46 510 9.69 
16 75 14 11 10.43 517 8.90 
17 60 10 30 9.74 567 7.33 
18 60 15 25 9.75 567 7.27 
19 60 20 20 9.76 567 7.24 
20 60 25 15 9.06 407 7.05 
21 60 30 10 9.76 506 5.75 

Table 6. The predicted results of GA-BP III algorithm in compositions optimization 

4.4 Results and discussion 
According to the above predicted results of three algorithms (BP/GA-BP II/GA-BP III) and 
the analysis, 85%ZrO2, 8vol%TiB2 and 7vol%Al2O3 are chosen as the optimum compositions 
since material with the ingredients will have the best flexural strength, the best hardness 
and the better fracture toughness. Then, ZrO2/TiB2/Al2O3 nano-micro-composite ceramic 
tool and die material with the above optimum compositions is prepared with the vacuum 
hot pressing techniques described in section 3. Compared with the above two algorithms, 
the GA-BP III algorithm has less iteration number, shorter elapsed-time and smaller MSE. 
Both the experimental data and the predicted data of these kinds of methods mentioned 
above are all listed in Table 7 as well as the relative errors between the predicted and 
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experimental data. It can be seen that the two kinds of the improved algorithms of both GA-
BP II algorithm and GA-BP III algorithm all have higher prediction accuracy than the 
standard BP algorithm. However, the GA-BP III algorithm has the least relative error among 
the three algorithms. The least relative error of the hardness, flexural strength and fracture 
toughness is 1.8%, 1.4% and 0.7%, respectively which is approximately 38%, 20% and 32% of 
that of GA-BP II algorithm and 20%, 19% and 9% of that of standard BP algorithm. The 
predicted data of GA-BP III algorithm better coincide with the experimental data. Therefore, 
it can well be used in the compositional design of ceramic tool and die materials with high 
accuracy of prediction and high reliability. 
 

 Hardness
(GPa) 

Relative 
error 
(%) 

Flexural 
strength 
(MPa) 

Relative 
error 
(%) 

Fracture 
toughness 
(MPa·m1/2) 

Relative 
error 
(%) 

Experimental 10.95 / 694 / 10.30 / 
Standard BP 9.94 9.2 643 7.4 11.14 8.1 
GA-BPII 10.43 4.7 645 7.1 10.07 2.2 
GA-BPIII 10.74 1.8 685 1.4 10.38 0.7 

Table 7. Comparison of the optimal results of three algorithms and experimental results of 
the ZrO2 based ceramic tool and die material with 8vol%TiB2 and 7vol%Al2O3 

5. The optimization of hot pressing parameters 
As is known, the mechanical properties of ceramic materials depend on the composition and 
microstructure of the material. So in addition to the material compositions, the hot pressing 
parameters are the main factors affecting the microstructure and the mechanical properties. 
When one of the hot pressing parameters is changed, the sample material is needed to 
prepare and the mechanical properties have to be tested. If it is necessary, microstructural 
and phase analysis will even be needed to do. This will result in the disadvantages of high 
cost and long time-consuming, etc. In this section, the standard BP neural network and the 
improved BP neural network GA-BP II and GA-BP III are used to optimize the hot pressing 
parameters of ZrO2/TiB2/Al2O3 namo-micro-composite ceramic tool and die materials. And 
based on the optimum results, the materials are then prepared and mechanical properties 
are tested in order to validate the optimization algorithms. 

5.1 The optimization of hot pressing parameters based on the standard BP algorithm 
BP neural network can also be used to achieve the nonlinear mapping relationship between 
the hot pressing parameters and the mechanical properties of the ceramic tool and die 
material. 
The training sample data of BP neural network are the experimental data (Table 2). The 
input is the hot pressing parameters, including the sintering temperature and holding time. 
And the output is the main mechanical properties, including hardness, flexural strength and 
fracture toughness. Simulated data are selected from all the data in range of the sintering 
temperature and holding time, which are listed in Table 8. 
Based on the actual optimal problem, there are two inputs and three outputs of the BP 
neural network model. Therefore, the BP model is then established, which has two input 
neurons and three output neurons. The transfer function is sigmoid-type and linear-type in 
the hidden layer and output layer, respectively. 
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Number Sintering 
temperature (ºC) 

Holding 
time (min) 

Number Sintering 
temperature (ºC) 

Holding 
time (min) 

1 1420 20 11 1460 20 
2 1420 40 12 1460 40 
3 1420 60 13 1460 80 
4 1420 80 14 1470 20 
5 1430 20 15 1470 40 
6 1430 40 16 1470 80 
7 1430 80 17 1480 20 
8 1440 20 18 1480 40 
9 1440 60 19 1480 60 
10 1440 80 20 1480 80  

Table 8. The simulated data in the optimization of hot pressing parameters 

According to the theory of the BP neural network, the computing process is programmed 
with neural network toolbox in MATLAB. Training function is using ‘trainlm’ function and 
network performance parameters is using MSE function. The training parameters are set as 
the same as that in the compositions optimization. And other parameters are set by default. 
 

Number Sintering 
temperature (ºC) 

Holding 
time (min) 

Hardness 
(GPa) 

Flexural 
strength (MPa) 

Fracture toughness 
(MPa·m1/2 ) 

1 1420 20 13.55 726 10.26 
2 1420 40 13.58 751 10.03 
3 1420 60 12.94 1151 12.15 
4 1420 80 12.55 1104 11.10 
5 1430 20 13.55 722 10.23 
6 1430 40 13.49 764 10.47 
7 1430 80 12.70 1085 11.97 
8 1440 20 13.45 673 9.76 
9 1440 60 13.78 1001 10.27 
10 1440 80 13.24 984 11.23 
11 1460 20 13.19 543 8.52 
12 1460 40 12.72 700 10.13 
13 1460 80 13.80 722 8.54 
14 1470 20 13.29 521 8.21 
15 1470 40 12.80 700 9.91 
16 1470 80 14.43 614 6.37 
17 1480 20 14.00 371 6.04 
18 1480 40 13.20 635 8.73 
19 1480 60 13.16 816 9.40 
20 1480 80 14.53 618 5.90 

 
Table 9. The predicted results of standard BP algorithm in the optimization of hot pressing 
parameters  
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According to the BP neural network model, the number of hidden neurons is initially 
chosen as 6, so the neural network structure is 2×6×3. Based on this BP model, the hot 
pressing parameters are optimized and the mechanical properties are obtained by 
prediction. Because of the differences of the initial data, the BP neural network is easy to be 
shocked, especially in the optimization parameters. Under such circumstances, four times of 
the separate BP neural network prediction and simulation is carried out, but the result of 
each MSE is not the same. The MSE = 6.45 is selected which is nearly the average value in 
the four times, and the predicted results are listed in Table 9. After 40 times of iterations, the 
training curve of BP neural network is converged to the specified precision of 0.001. 
According to the predicted results, the highest flexural strength and fracture toughness of 
the materials is 1151MPa and 12.15 MPa·m1/2, respectively when the sintering temperature 
is 1420°C and the holding time is 60min, while the hardness is just 12.94GPa. The highest 
hardness of the material is 14.53GPa which corresponds to the sintering temperature of 
1480°C and the holding time of 80min. In this case, the flexural strength of the material is 
618MPa and the fracture toughness is 5.90 MPa·m1/2. The hardness of the material which is 
prepared with these hot pressing parameters reaches the highest, but both flexural strength 
and fracture toughness are relative low. Compared with the mechanical properties of the 
ceramic tool and die materials prepared with different hot pressing parameters, it seems 
that the ceramic tool and die material which is fabricated with sintering temperature of 
1420°C and holding time of 60min has better comprehensive mechanical properties. 
Therefore, these hot pressing parameters are the optimum hot pressing parameters for the 
fabrication of ZrO2/TiB2/Al2O3 namo-micro-composite ceramic tool and die material. 

5.2 The optimization of hot pressing parameters based on GA-BP II algorithm 
According to the formerly established BP model where the number of the neurons of hidden 
layer is 6 and the structure of the BP model is 2×6×3, the GA-BP II algorithm is then utilized to 
optimize the hot pressing parameters. The mechanical properties are obtained and given in 
Table 10. After 40 times of iterations, the training curve of BP neural network of GA-BP II 
algorithm is converged to the specified precision of 0.001. The mean square error MSE is 4.27. 
After analyzing the predicted results, the material is prepared with the sintering 
temperature of 1420°C and the holding time of 60min. It has the best flexural strength and 
the best fracture toughness which is 1052MPa and 10.59 MPa·m1/2, respectively. Under the 
same hot pressing parameters, however, the hardness of the material is 13.36GPa which is 
slightly lower. The highest hardness of the material amounts to be 14.28GPa where the 
corresponding  sintering temperature is 1420°C and the holding time is 80min, while the 
flexural strength is 1051MPa and the fracture toughness is 10.40 MPa·m1/2. Compared with 
the mechanical properties of ceramic tool and die material which is prepared in different hot 
pressing parameters, it suggests that the comprehensive good mechanical properties of 
ZrO2/TiB2/Al2O3 namo-micro-composite ceramic tool and die material can be achieved 
when the sintering temperature is 1420°C and the holding time is 60min. 

5.3 The optimization of hot pressing parameters based on GA-BP III algorithm 
According to the actual problem, the input layer neuron number is 2, the output layer 
neuron number is 3, and the number of hidden layer neurons is set to d. According to GA-
BP III algorithm, the string length L can be determined as L=3+6d. In accordance with the 
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Number Sintering 
temperature (ºC) 

Holding 
time (min) 

Hardness 
(GPa) 

Flexural 
strength (MPa) 

Fracture toughness
(MPa·m 1/2 )  

1 1420 20 14.25 1042 10.39 
2 1420 40 14.27 1035 10.51 
3 1420 60 13.36 1052 10.59 
4 1420 80 14.28 1051 10.40 
5 1430 20 13.37 776 9.91 
6 1430 40 14.17 1037 10.31 
7 1430 80 13.26 1050 10.30 
8 1440 20 12.82 624 9.92 
9 1440 60 13.78 1010 10.26 
10 1440 80 13.31 1035 10.54 
11 1460 20 12.83 857 8.42 
12 1460 40 12.42 870 9.77 
13 1460 80 13.86 597 8.21 
14 1470 20 12.15 1006 8.94 
15 1470 40 12.29 1005 8.92 
16 1470 80 13.29 985 8.87 
17 1480 20 12.23 1000 8.87 
18 1480 40 13.62 826 7.63 
19 1480 60 14.05 704 7.53 
20 1480 80 13.25 831 9.11 

 
Table 10. The predicted results of GA-BP II algorithm in the optimization of hot pressing 
parameters 

empirical formula (Eq. 2) which can determine the range of hidden layer neurons, the range 
of d is 3-12. According to the principle of GA-BP III algorithm, the computing process are 
programmed and run with MATLAB 7.0 software. The corresponding parameters are set as 
following: the initial population number N=30, the cross probability Pc=0.8, the mutation 
probability Pm=0.1 and the error e=0.001. When the error reaches the intended target, the 
training parameters of BP neural network is then stopped.  
The individuals of the connection weight and thresholds are decoded as follows: 0.32, -0.14, 
0.36, -0.29, 0.24, 0.16, 0.24, -0.88, -0.24, 0.16, -0.16, 0.60, 0.44, -0.69, -0.40, 0.03, 0.26, 1, 0.39, -0.29, 
0.21, -0.49, 0.00, 1, -0.20, -1, -1, -0.68, 0.00, 0.00, 0.35, 0.02, 0.32, -0.27, 1, 0.09, -0.13, -0.23, 0.15.  
Based on the above 39 parameters and L=3+6d, the number of hidden layer neurons is 
ascertained as 6. Therefore, the structure of BP neural network is 2×6×3 and the last 9 
parameters are the threshold values. The structure is shown in Fig.8 which is the optimal BP 
neural network of GA-BP III algorithm. It can be seen that the second neuron of input layer 
and the fifth neuron of hidden layer is no connection. The sixth neuron of hidden layer and 
the second and third neurons of output layer are also connectionless. After about 100 
generations of searching, the fitness and the square error have been stabilized respectively 
as shown in Fig. 9. The curve of BP training target is shown in Fig. 10. It is shown that the BP 
neural network has 45 iterations convergence to the specified accuracy. The elapsed-time is 
155.584s and the MSE is 0.1643. 
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Fig. 8. The structure of BP neural network for GA-BP III algorithm simulation in the 
optimization of hot pressing parameters  
 

 
Fig. 9. The curve of square error and fitness of GA-BP III algorithm in the optimization of 
hot pressing parameters  
The predicted results of GA-BP III algorithm are given in Table 11. It can be seen that the 
optimum flexural strength and the optimum fracture toughness is 1010MPa and 10.40 
MPa·m1/2 respectively when the material is prepared with the sintering temperature of 
1420°C and the holding time of 60min. The hardness of the material fabricated in these hot 
pressing parameters is 13.43GPa. The optimum hardness is 14.14GPa which is 
corresponding to the sintering temperature of 1420°C and the holding time of 80min, while 
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Number Sintering 
temperature (ºC) 

Holding 
time (min)

Hardness 
(GPa) 

Flexural strength 
(MPa) 

Fracture toughness 
(MPa·m1/2 ) 

1 1420 20 13.72 1002 10.91 
2 1420 40 13.70 1004 10.38 
3 1420 60 13.43 1010 10.40 
4 1420 80 14.14 804 9.55 
5 1430 20 13.71 996 10.34 
6 1430 40 13.71 1005 10.38 
7 1430 80 14.02 858 8.06 
8 1440 20 13.62 818 9.80 
9 1440 60 13.78 1005 10.27 
10 1440 80 14.06 897 8.20 
11 1460 20 12.08 768 9.82 
12 1460 40 11.95 827 9.31 
13 1460 80 13.52 493 8.56 
14 1470 20 11.69 850 9.96 
15 1470 40 12.30 885 9.67 
16 1470 80 13.63 427 8.38 
17 1480 20 11.70 857 9.96 
18 1480 40 12.96 909 9.19 
19 1480 60 13.42 715 8.46 
20 1480 80 13.66 431 8.37  

Table 11. The predicted results of GA-BP III algorithm in the optimization of hot pressing 
parameters  
the flexural strength and fracture toughness is just 804MPa and 9.55MPa·m1/2, respectively. 
Both values are obviously lower than the optimum. Therefore, the optimum hot pressing 
parameters are that the sintering temperature is 1420°C and the holding time is 60min which 
is the same as that of GA-BP II algorithm. 
 

 
Fig. 10. The training curve of BP neural network of GA-BP III algorithm in the optimization 
of hot pressing parameters  
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5.4 Results and discussion 
According to the predicted results of three algorithms, the sintering temperature of 1420°C and 
holding time of 60min are determined as the optimum hot pressing parameters. Then, with 
these optimized hot pressing parameters, ZrO2/TiB2/Al2O3 nano-micro composite ceramic 
tool and die material with the above optimum compositions is prepared by means of the 
vacuum hot pressing technique described in section 3 and mechanical properties are tested. 
 

 Hardness 
(GPa) 

Relative 
error 
(%) 

Flexural 
strength 
(MPa) 

Relative 
error 
(%) 

Fracture 
toughness 
(MPa·m1/2 ) 

Relative 
error 
(%) 

Experimental 13.3 / 937.0 / 10.17 / 
Standard BP 12.9 2.8 1151.5 22.8 11.10 9.1 
GA-BP II 13.4 0.9 1052.5 12.3 10.60 4.2 
GA-BP III 13.4 0.9 1009.7 7.8 10.40 2.2 

 
Table 12. Comparison of the optimal results of three algorithms and experimental results in 
the optimization of hot pressing parameters 
Table 12 gives the experimental mechanical properties of the ZrO2/TiB2/Al2O3 nano-micro-
composite ceramic tool and die material which is prepared under the optimum hot pressing 
parameters. The predicted results and the relative errors are both listed. 
Compared with the experimental values, the least relative error of flexural strength and 
fracture toughness is 7.8% and 2.2% obtained by GA-BP III algorithm which is approximately 
63% and 48% of that of GA-BP II algorithm and 34% and 24% of that of standard BP algorithm. 
The least relative error of hardness is 0.9% obtained by GA-BP III algorithm which is the same 
as that obtained by GA-BP II algorithm. In addition to the same relative error of hardness by 
GA-BP II algorithm, other relative errors of mechanical properties by GA-BP III are the least. 
So the predicted results of GA-BP III algorithm are the most accurate in these three algorithms. 
The predicted data of GA-BP III algorithm better coincide with the experimental data. 
Therefore, it can well be utilized for the optimum design of hot pressing parameters of ceramic 
tool and die materials with high accuracy of prediction and reliability. 

6. Conclusion 
With the utilization of GA-BP III algorithm for the compositional design of nano-micro-
composite ceramic tool and die material, the iteration number could noticeably be reduced 
and results are more accurate. It can avoid the local minimum problem and can present 
more accurate and reliable results. And it also can overcome the disadvantages of both long 
time and slow speed of the standard BP neural network. Preparation experiments of 
ZrO2/TiB2/Al2O3 nano-micro-composite ceramic tool and die material indicate that the 
relative error between the experimental and predicted results of the hardness, flexural 
strength and fracture toughness is 1.8%, 1.4% and 0.7%, respectively by the GA-BP III 
algorithm which is the least relative error among three kinds of algorithms. The predicted 
data better coincide with the experimental data high accuracy of prediction. 
The GA-BP III algorithm can also well be used in the optimization of hot pressing 
parameters of nano-micro-composite ceramic tool and die material. It can reduce the 
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number of iterations. The optimization results are more precise. The GA-BP III algorithm 
can avoid falling into local minimum which is the shortcoming of standard BP algorithm, 
and can obtain more accurate and reliable optimization results. Compared with the 
experimental results and the predicted result of standard BP neural network, it indicates 
that the improved BP algorithms, especially GA-BP III algorithm are suitable for the 
optimization of hot pressing parameters of ZrO2/TiB2/Al2O3 nano-micro-composite ceramic 
tool and die materials. 
Therefore, the GA-BP III algorithm is one of the fast, effective and reliable algorithms in the 
optimum design of both compositions and hot pressing parameters of nano-micro-
composite ceramic tool and die materials. It suggests that it can also be effectively applied in 
the material design area of other ceramic composites. 
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1. Introduction  
Low alloy steels are the most demanding materials that are used in industrial processes such 
as hot stripping. Hot stripping is a severe plastic deformation which is applied on cast steels 
for a variety of shapes and sizes. A hot strip mill consists of, from start to finish, reheat 
furnaces, roughing mill, finishing mill, runout table with accelerated cooling and finally a 
coiler, as shown in Figure 1. 
 

 
Fig. 1. Schematic illustration of hot strip mill. 

The process enhances the properties of steels by several metallurgical mechanisms which 
take place in different parts of the hot strip mill. This process is illustrated in Figure 2 which 
includes following metallurgical phenomena: 
1. Austenitization, dissolution of microalloy compounds and homogenization of the 

chemical segregation in the reheating furnace. 
2. Deformation and reduction of reheated slab to intermediate thickness which is 

accompanied with recrystallization, grain growth and precipitation of alloying and 
microalloy elements in roughing and finishing mills. 

3. Phase transformation and precipitation during cooling and decreasing the heat to room 
temperature (Ryu, 2008), (Gonzalez, 2002). 

These mechanisms by refinement of structure bring about a simultaneous improvement in 
strength and toughness (Singh et al., 1998).  
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1.1 Grain size effect on mechanical properties 
Grain size is an important aspect of microstructure with respect to mechanical properties of 
steels. The ferrite in low carbon steels is typically strengthened by grain refinement, 
precipitation hardening, and, to a lesser extent, solid-solution strengthening. Grain 
refinement is the most desirable strengthening mechanism because as mentioned earlier it 
improves not only strength but also toughness. According to equation (1) indicating the 
Hall-Petch relation, fine grain size produces higher yield strength, (σyield) (Parker, 1997):   

 1/2
yield init y ασ σ k d −= +  (1) 

where σinit is the yield strength for a polycrystalline material, ky is a constant, and dα is a 
measure of the ferrite grain size. Grain size also has an effect on the ultimate tensile strength 
by changing work-hardening rate. Work-hardening takes place within the grains during 
plastic deformation according to Morrison (Ryu, 2008):  

 1/2n 5 /(10 d )α
−= +  (2) 

 

 
Fig. 2. Related metallurgical phenomena. 

where n is work-hardening exponent and dα  is grain size. Ferrite mainly nucleates at the 
austenite grain boundaries and thus a finer austenite grains produces fine ferrite grains. 
Further ferrite refinement can be achieved by transformation from deformed austenite grains 
because, deformation increases ferrite nucleation rate (Parker, 1997). The effects of chemical 
composition on these properties are an important parameter as well as thermo-mechanical 
processing features such as temperature and final dimensions (Ryu, 2008). The additions of 
some alloying elements affect ferrite transformation and thus control the amount of phases 
present in the final matrix. The presence of microalloying elements generally control the grain 
size and provide precipitation strengthening and have a significant impact on the strength 
(Singh et al., 1998). Therefore, estimating of strength and grain size of hot stripped steel 
products depends on thermo-mechanical behavior of steel, microstructure evolution and 
phase transformation, during hot rolling stages and cooling period. These are complicated 
metallurgical phenomena and strongly depend on chemical composition, therefore developing 
a physical model to analysis these parameters and predict strength as well as final grain size, is 
cumbersome. Also, the accuracy of the models developed so far is somehow questionable and 
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are not suitable for practical purposes. Traditionally, setting the tolerances is carried out by 
making several samples and checking the final results by trial and error approach. Generally, 
these procedures are expensive and time-consuming especially in such a complex 
metallurgical phenomena. Consequently, the overall effects of these features can have an effect 
on rolling design and therefore too many experimental trials are needed to achieve ideal 
tolerances. Since estimating these properties of low carbon steel strips in terms of chemical 
composition and thermo-mechanical parameters is desirable from engineering view point, 
several models are introduced based upon different neural network methods. These models 
are capable of understand very complex and unknown relationships between inputs and 
output data. Furthermore, the models can explore the effect of the individual input on output 
which can be extremely difficult in the experimental tasks. Achieved model for estimating 
tensile strength can be used as a quantitative tool to predict the final tensile strength of these 
commercial low carbon steels with different of input variables. Moreover analysis of the effect 
of input parameters on results may leads to design new steels with different input parameters. 
In the present work also, by selecting more relevant inputs and using hybrid Bayesian 
Artificial Neural Network (ANN) model assisted with Reversible-Jump Markov Chain Monte 
Carlo (RJMCMC, also known as trans-dimensional MCMC), the prediction of final grain size 
in low carbon steel strips is carried out. 

2. Method 
2.1 Artificial Neural Networks 
A neural network is an interconnected network of a set of simple processing units which are 
connected by a set of connections called "weights". They can learn the given information by 
a set of examples and transfer them to their structure. The method which is inspired from 
studying the human brain, is capable of recognizing complex patterns of the training data 
and can be applied to regression and classification tasks. The training is an optimization 
procedure by finding a set of weights which combined with processing units, describes the 
data pattern. There are several advantages in this method. Firstly, there is no need to choose 
the behavior of the model in advance. Secondly, its need to train data, does not grow as fast 
as other conventional regression methods and therefore, growing the complexity and 
dimensionality of the problem doesn't need any further data (Botlani-Esfahani et al., 2009a). 
Basic ANN model with k outputs is  

 ( )
= =

= + +∑ ∑0 0
1 1

, tanh( )
m d

k k kj j ji i
j i

f x w w w w w x  (3) 

where x is a d-dimensional input vector, w denotes the weights, and indices i and j correspond 
to input and hidden units, respectively (Lampinen & Vehtari, 2001). Arrangement of layers 
and units in an ANN called architecture (Doan & Yuiliong, 2004). Figure 3 sketches schematic 
architecture of a feed forward ANN model. In each layer, units receive their input from 
previous layer’s units and send their output to units in the following layer. Output of each 
hidden unit is the transfer function response to the weighted sum of its inputs. 
The number of units in input and output layers are dictated by the problem, but the number 
of hidden units which control the complexity of the model, must be determined. 
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Fig. 3. Schematic architecture of Artificial Neural Network model. 
The processing units for computational convenience, like nonlinear hyperbolic tangent 
sigmoid functions are easily differentiable, and are employed in the present model, 
Equation (4):   

 2tanh( )
(1 exp( 2 )) 1

x
x

=
+ − −

 (4) 

Traditionally the complexity of the ANN has been controlled with early stopping. In which 
part of the training data is used to train the network and other part is used to control the 
complexity of the model. Early stopping is inefficient because the effective complexity may 
be much less than the number of parameters in the model. Consequently, tow different 
Bayesian Learning paradigm for ANN was employed to train models. 

2.2 Bayesian learning for ANN 
In the Bayesian framework which has introduced by MacKay (MacKay, 1992) the weights of 
the network are considered as random variables and the posterior distribution of the 
weights updated according to Bayes’ rule (Xu et al., 2006):  

 likelihood priorPosterior
Evidence

×
=  (5) 

This equation in terms of Artificial Neural Networks is:  

 
( ) ( )

( ) ( ) ( )
( )

p D p
p D L D p

p D
θ θ

θ θ θ= ∝  (6) 

where ( )p θ is prior distribution for the model parametersθ ,D = {(x(1),y(1)),…, (x(n),y(n))} is 
observing data and ( )L Dθ  is likelihood function that gives the probability of the observed 
data as function of the unknown model parameters (Lampinen & Vehtari, 2001). 
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2.3 Reversible jump Markov Chain Monte Carlo method 
Neal has introduced an implementation of Bayesian learning for ANN in which, difficult 
integrations accompanied with this framework are performed using Markov Chain Monte 
Carlo (MCMC). In this application samples (in model parameters space) are generated using 
a Markov Chain Monte Carlo to estimate the desired posterior distributions (Lampinen & 
Vehtari, 2001). In practical problems like the present study, it is usual to measure many 
variables, but it is not necessarily known which one of them is relevant and required to 
solve the problem. To make the model more explainable or to reduce the measurement cost 
and the computation time, it may be useful to select a model with smaller set of input 
variables (Lampinen & Vehtari, 2001). As a consequence, RJMCMC method is applied for 
this modeling. This algorithm allows jumps between models with different dimensional 
parameter spaces with respect to the number of inputs chosen in the model. RJMCMC visits 
the models according to their posterior probability which allows it to be used for model 
selection (Vehtari & Lampinen, 2002). The grain size model was achieved by this method. 

2.4 Bayesian Regularized Neural Network (BRNN) 
Conventional performance function of neural network which optimization applied on it, has 
general form of: 

 2 2

1 1

1 1( ) ( )
N N

i i i
i i

F mse e t a
N N= =

= = = −∑ ∑  (7) 

where mse is mean of squared error. If the performance function is changed by adding a 
term that contains mean of squared weights (msw), yield:  

 (1 )msereg mse mswγ γ= + −  (8) 

where γ is the performance ratio, and 

 2

1

1 n

j
j

msw w
n =

= ∑  (9) 

Using this performance function leads to smaller network weights and biases, which makes 
the network response to be smoother and less likely to over-fit (MathWorks). The main 
remaining problem is to find the ideal value for the performance ratio. Choosing too large 
ratio increases over-fitting likelihood and too small ratio prevents network to fit adequately 
the training data (MacKay, 1992). To find out the best regularization, as mentioned before 
MacKay in his Bayesian framework suggests, assuming the weights and biases as random 
variables with specified distributions and related the regularization parameters to these 
distributions. Another approach suggested by Foresee (Botlani-Esfahani et al., 2009b) in 
which the Levenberg-Marquardt method that is a rapid optimization algorithm employed 
for training. The (BRNN) automatically can control the complexity of the model and prevent 
the over-fitting of training data set. As a result, this model has good prediction accuracy and 
according to MacKay, (MacKay, 1992) in Bayesian framework, there is no need for test data 
set to control the specified network architecture. The acquired model by this approach can 
reveal a good generalization, even if its architecture is an over optimized (MathWorks). 
Consequently, the trial and error approach for finding ideal architecture is reduced. This 
approach was applied to acquire ideal model for prediction of tensile strength of steel strips 
because of its good accuracy as well as fast convergence speed.  
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2.5 Experimental database   
Since an ANN model is empirical, its performance depends on the dataset used for training. 
Annual products data report of Isfahan Mobarakeh Steel Company (MSC) were used for this 
modeling, which input parameters for tensile strength modeling consisted of: 
i. Final thickness  
ii. Initial and final weight  
iii. Initial width  
iv. Reheating furnace temperature, roughing temperature, finishing temperature and 

coiling temperature 
v. The chemical composition, consisting 14 different elements 
vi. The carbon equivalent according to the following formula: 

 Ceq = C + Si/25 + (Mn+Cr)/16 + (Cr+Ni+Mo)/20 + V/15 (10) 

where elements are expressed in weight percent. 
About 70234 examples each consisting of corresponding input and output were available for 
modeling tensile strength. Some further information about the variables are given in Table 1. 
These examples were normalized so that they had zero mean and unity standard deviation 
before computations. 
Data set that was used to model grain size consisted of 624 metallographic images. At this 
company, these images are classified into three groups according to ASTM (E-112), this 
standard assigns larger numbers to finer grain structures. Figure 4 shows an example of 
such a database. Further information is also given in Table 2. The input parameters are 
chemical composition of the strips which include 14 elements. Additional input variables are 
given in Table 3. 
 

 
Fig. 4. One sample of data, microstructure of produced steel with ASTM grain size no. 9.0. 
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 Variables min max mean SD 
Final 

Thickness(mm) 1.5 16 5.244903 3.155532 

Final Weight(kg) 5097 28030 18502.91 3214.769 
Initial 

Weight(kg) 5202 28660 18874.26 3264.811 

Initial 
Width(mm) 650 1850 1277.022 205.7713 

Furnace 
Temp(°C) 1164 1296 1229.77 23.4407 

Roughing 
Temp(°C) 932 1122 1058.281 14.00645 

Finishing 
Temp(°C) 782 960 881.1131 23.32006 

Coiling Temp(°C) 517 729 610.5108 18.02052 
C (wt %) 0.03 0.21 0.126968 0.02545 
Si (wt %) 0 0.347 0.070235 0.084277 

Mn (wt %) 0.175 1.38 0.658662 0.206133 
P (wt %) 0.001 0.026 0.006786 0.002377 
S (wt %) 0 0.02 0.008637 0.002686 

Cu (wt %) 0 0.264 0.029318 0.011597 
Al (wt %) 0.007 0.093 0.045926 0.010957 
N (ppm) 15 90 39.784 9.221 

Nb (wt %) 0 0.06 0.004854 0.009032 
V (wt %) 0 0.043 0.003378 0.001607 
Ti (wt %) 0 0.042 0.001654 0.002318 

Mo (wt %) 0 0.022 0.003654 0.004104 
Cr (wt %) 0.001 0.194 0.011992 0.008007 
Ni (wt %) 0.016 0.243 0.028205 0.004679 

Inputs 

Ceq (wt %) 0.068032 0.437799 0.2443845 0.0534388 
Output Strength (MPa) 299 659 444.64 48.68 

SD: Standard Deviation     Ceq: Carbon Equivalent 

Table 1. Input and output parameter information. 

 
Number of Samples ASTM (E-112) grain no 

162 8.5 
294 9 
167 9.5 

Table 2. Output Data Information 

2.6 Network training  
As mentioned the (BRNN) models have a good predictive accuracy (generalization) and 
specified network architecture in Bayesian framework doesn’t need of test data to adjust its 
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complexity. However, there is still a need for an independent set of data to evaluate the 
ideal network predictive accuracy on unseen data. In this respect, 10% of the total data were 
kept for validation. In the case of tensile strength several models were examined for finding 
the best network architecture. The network architecture was started with a few hidden units 
in a single hidden layer and as the number of hidden units increased the squared error sum 
on both training and test data, decreased. As expected from performance function of the 
BRNN, (Equation 8), when the number of training data is raised, the number of weights 
must also increase. When the number of hidden units is placed within one layer, the 
accuracy of the results is less than when two layers are used. This also indicates that more 
weights are needed in two layer network. Finally, the ideal network was determined with 
23-60-50-1 architecture. Training stopped when the squared error sum, the squared weights 
sum and performance ratio (which are the criteria for training evaluation) became stable. 
Since network training is an optimization procedure, the calculations can become 
cumbersome. For example, for 4541 parameters, more than 55 hours was taken when a dual 
3.2 GHz processor, with 2 gigabyte memory, was used. 
For finding ideal model for grain size prediction the modeling database was divided into 
training and test sets, which include 60 and 40 percents of data respectively. Training was 
started with (14-8-3) architecture and model selection procedure was evaluated by an 
internal procedure of RJMCMC algorithm, as mentioned in sec. 2.3. The result of this 
training indicated a chain of network parameters. When this chain converged into a stable 
distribution, a sample of the chain (network parameters) was selected on the bases of 
minimum classification error of the model on test dataset. 
 

No. Inputs min max Mean SD 
1 C (wt%) 0.032 0.179 0.1272 0.0312 
2 Si (wt%) 0.008 0.218 0.0637 0.0798 
3 Mn (wt%) 0.191 1.15 0.6466 0.211 
4 P (wt%) 0.002 0.025 0.0072 0.0022 
5 S (wt%) 0.001 0.02 0.0089 0.0029 
6 Cu (wt%) 0.004 0.078 0.03 0.0109 
7 Al (wt%) 0.015 0.075 0.0454 0.0119 
8 N (ppm) 16 75 38 8.8 
9 Nb (wt%) 0 0.045 0.0051 0.0105 

10 V (wt%) 0 0.011 0.003 0.0014 
11 Ti (wt%) 0 0.042 0.0017 0.0031 
12 Mo (wt%) 0 0.019 0.0038 0.0045 
13 Cr (wt%) 0.004 0.194 0.0131 0.012 
14 Ni (wt%) 0.02 0.042 0.03 0.0034 

SD: Standard Deviation 

Table 3. Input parameter information 

2.7 Calculation of the weights of individual input variable  
Extracting effective information from a neural network model is not as easy as conventional 
linear regression because the discovered relationships with neural network are much more 
complicated. However when the output layer only consists of one neuron the dependency of 
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output variable on inputs is same as network dependency to input parameters (Botlani-
Esfahani et al., 2009b). On the other hand, in feed-forward networks the path which the 
effects of the input parameters carried is straightforward from input layer to output layer. 
Therefore, the weights which fan out the input units can be considered as their significance, 
like the impact of inputs on output in linear models. The relative importance of individual 
input variable on output variable can be expressed as: (Xu et al., 2006)  

 1
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where Wji is the connection weight from i input neuron to j hidden neuron, N, S are the 
number of input parameters and hidden neurons, respectively. This approach was 
employed to investigate the relative importance of input parameters on tensile strength 
however, in case of grain size such task has carried out automatically by the algorithm.  

3. Results and discussion 
3.1 Performance of the model 
Scatter diagrams of model predictions versus experimental data for both training data and 
validation data are used as a means of showing the tensile strength model generalization. 
Figure 5, indicates that the correlation coefficients of training and validation data are close to 
one, and their differences are negligible. Therefore, it is clear that, the network predictions 
are in good agreement with experimental data. 
Calculation of the misclassification error on test data is a popular way to show the prediction 
accuracy (generalization) of a classifier model. This error is calculated according to:  

 100
 

test data model result
Misclassification error

number of test data
−

= ×∑  (12) 

Therefore, grain size model revealed just 2.439 percent misclassification error, which is very 
low and indicates that, this model has good generalization. More information about 
misclassified error is available in Table 4. 
 

Number of Misclassified Test Target Data Model Result 
2 9 8.5 
2 9.5 9 

Table 4. misclassified case 

3.2 Sensitivity analysis 
Figure 6 shows the importance of input variable relevancies on tensile strength which were 
analyzed by the method mentioned in section 2.7. Figure 6 shows that silicon, carbon, 
manganese, copper, nickel and chromium give a large contribution to the strength. 
Moreover, microalloy elements such as niobium, vanadium and titanium, though less than 
other elements, have a similar effect of strength. Among the processing features, the width 
and thickness of the strip revealed remarkable influence on tensile strength (Botlani-
Esfahani et al., 2009b). 
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The depicting effect of mentioned factors and their interactions with one another, two 
parameters were altered at a time and other parameters were kept on their mean values 
which are tabulated in Table 1. As mentioned RJMCMC method can select potentially useful 
inputs according to marginal probabilities of inputs. The result of this analysis indicates the 
importance of Si, Mn and C contents on grain refinement which is significantly greater than 
the concentration of other elements. The most effective element for grain refinement is 
recognized to be that of vanadium. However, its concentration in these steels is very low. 
 

 
Fig. 5. Behavior of tensile strength model on (a) training data (b) test data. 
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Fig. 6. Relative importance of inputs. 

3.3 Tensile strength model  
Carbon has a major effect on steel properties and increases the strength by interstitial solid 
solution strengthening. This effect is more pronounced in ferritic steels. In ferritic-pearlitic 
steels, the carbon content raises pearlite volume which in turn leads to the increase of alloy 
strength (Singh et al., 1998). Silicon is one of the principal deoxidizers used in steel-making, 
Figure 7a shows silicon effect which enhances the strength by suppressing precipitation of 
cementite from austenite. Thus carbon remains in austenite for subsequent strengthening 
(Bhadeshia et al., 2003). The effect is more pronounced in steels with lower carbon 
concentration because silicon dissolves in the ferrite. Manganese promotes stronger steels by 
stabilizing austenite and solid solution strengthening (Singh et al., 1998). The increase in 
strength is dependent upon the carbon content as is shown in Figure 7b. However the 
concentration of microalloy elements is low, they have a significant influence on several 
stages of rolling. Unlike alloying elements that alter the structure of iron, microalloy 
elements have a great affinity to combine with other elements such as carbon and nitrogen. 
This results in precipitation of several secondary phases (Meyer, 2001). Model reveals the 
effect of niobium concentration as the most effective microalloy. Niobium contributes 
towards the prevention of austenite grain coarsening during reheating period and retards 
the recrystallization temperature during rolling. Niobium also reduces the transformation 
temperature by solute drag effect (Singh et al., 1998),( Hulka, 2003). Figure 7c shows that the 
addition of 0.025 wt% Nb, improves tensile strength more than that of 0.04 wt%. For 
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instance in a steel with a carbon content of 0.15wt%, addition of 0.025% Nb increases tensile 
strength by 150 MPa.  
 

 
Fig. 7. Carbon concentration effect in combination with (a) Silicon (b) Manganese (c) Niobium. 
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Figure 8a, displays the effect of strip thickness versus manganese content on the final tensile 
strength. The results indicate a drop in tensile strength when final thickness is increased. 
This can be attributed to lower cooling rate of thicker strips. Therefore, coarsening takes 
place and the tensile strength decreases (Singh et al., 1998). This figure also illustrates the 
more influential effects of manganese on thinner strips. Figure 8b reveals the significance of 
finishing temperature verses the carbon concentration on tensile strength. It shows that by 
decreasing finishing temperature, the final tensile strength increases. Inter-pass 
recrystallization and grain growth prevention my causes this effect (Preloscan et al., 2002). 
The influence of temperatures on tensile strength is not significant when compared with that 
of chemical composition (in specified ranges) (Botlani-Esfahani et al., 2009b). 
 

 
Fig. 8. Interaction of processing feature (a) Final thickness and manganese concentration, (b) 
Finishing temperature and carbon concentration.  
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3.4 Grain size model results 
The result of this analysis indicates the importance of Si, Mn and C contents on grain 
refinement which is significantly greater than the concentration of other elements. The most 
effective element for grain refinement is recognized to be that of vanadium. However, its 
concentration in these steels is very low. For testing, the results of the model are depicted 
when the concentrations of elements are on their mean values which mentioned in Table 2 
and the microalloying elements (i.e. Nb, Ti and V) are not present. Figure 9 shows the model 
result of this analysis. Manganese stabilizes austenite, therefore decreases austenite to ferrite 
transformation temperature and hence refines the grain structure. In addition, manganese  
 

 
Fig. 9. Model result in respect of silicon and manganese concentration in 0.015 wt %C and 
0.035 wt%Al. (a) Absence micro-alloying elements. (b) Minor addition of vanadium (0.008 
wt %). 
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can enhance the precipitation strengthening of vanadium microalloyed steels and to a lesser 
extent, niobium microalloyed steels (keytosteel). Figure 9a reveals determining role of 
silicon on grain size in the absence of microalloying elements (i.e. Nb, Ti and V). The figure 
shows that silicon concentration divides the figure into three regions include finer, mild and 
coarser grain structures. This figure also indicates that increasing Si content, increases grain 
size. This is because silicon is a ferrite stabilizer and promotes ferrite grain growth 
(Umemoto et al., 2001). Figure 9b shows that addition of small amount of vanadium 
(0.008wt %) to steel severely contracts the coarser grain region. Vanadium acts as a 
scavenger for oxides, and forms nano-scale inter-phase precipitations. This is mainly due to 
the rapid rate of austenite to ferrite transformation which produces these nano-scale 
precipitates (Bhadeshia & Honeycombe, 2006). Furthermore, addition of vanadium also 
reduces the finer grain area somewhat. This is because, vanadium is strong carbide former 
and the majority of such elements is ferrite stabilizer and therefore, promotes ferrite grain 
growth (Zhang & Ren, 2003). The net effect of this minor vanadium addition is to decrease 
the sensitivity of grain size to silicon content, and also reduction of coarse grain area. 

4. Conclusions 
1. The effects of chemical composition and process variables on the tensile strength of hot 

strip mill products were modeled by Artificial Neural Network (ANN) moreover a 
Bayesian ANN model assisted by RJMCMC is capable of predicting the grain size of hot 
strip low carbon steels and can be used as a function of steel composition. The results of 
both models are shown to be consistent with experimental data (acquired from 
Mobarakeh Steel Company data). 

2. The relative importance of each input variable was evaluated by sensitivity analysis for 
tensile strength. The influence of chemical composition on final tensile strength is much 
more pronounced than process parameters. Furthermore, grain size model recognizes 
the effects of relevant elements in grain refining. These are manganese, silicon and 
vanadium. Silicon concentration shows determining role this effect have not reported in 
the literature and vanadium reveals great impact on grain refining phenomena. 

3. The results show the effects of the parameters are too complex to model with a simple 
linear regression technique. The developed ANN models can be used as guide to 
control the final mechanical properties of commercial carbon steel products. The major 
advantage of these methods is selection of useful inputs in complex problems with 
many inputs. Because many problems in materials science and engineering are similar, 
this method is useful for solving them. 
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1. Introduction 
Coal is a chemically and physically heterogeneous and combustible substance that consists 
of both organic and inorganic compounds. It currently is a major energy source worldwide, 
especially among many developing countries, and will continue to be so for many years 
(Miller, 2005).The chemical analysis of coal includes proximate and ultimate analyses. The 
proximate analysis gives the relative amounts of moisture, volatile matter, and ash, as well 
as the fixed carbon content of the coal. The ultimate or elemental analysis gives the amounts 
of carbon, hydrogen, nitrogen, sulfur, and oxygen in the coal (Miller, 2005).  
The measure of the amount of energy that a given quantity of coal will produce when 
burned is kown as calorific value or heating value. Heating value is a rank parameter and a 
complex function of the elemental composition of the coal, but it is also dependent on the 
maceral and mineral composition (Hower and Eble, 1996). It can be determined 
experimentally using a calorimeter. 
Many equations have been developed for the estimation of gross calorific value (GCV) 
based on proximate analysis and/or ultimate analysis (Mason and Gandhi, 1983; Mesroghli 
et al., 2009; Given et al., 1986; Parikh et al., 2005; Custer, 1951; Spooner, 1951; Mazumdar, 
1954; Channiwala and Parikh, 2002; Majumder et al., 2008).  
Regression analyses and data for 775 U.S. coal samples (with less than 30% dry ash) were 
used by Mason and Gandhi (1983) to develop an empirical equation that estimates the 
calorific value (CV) of coal based on its C, H, S, and ash contents (all on dry basis). Their 
empirical equation, expressed in SI units, is: 

 CV = 0.472C + 1.48H + 0.193S +   0.107A – 12.29 (MJ/kg) (1) 

Given et al. (1986) developed an equation to calculate the calorific value of U.S. coals from 
their elemental composition; expressed in SI units, their equation is: 

 CV = 0.3278C + 1.419H + 0.09257S – 0.1379O + 0.637 (MJ/Kg) (2) 

Neural networks, as a new mathematical method, have been used extensively in research 
areas related to industrial processes (Zhenyu and Yongmo, 1996; Jorjani et al., 2007; Specht, 
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1991; Chen et al., 1991; Wasserman, 1993; Chehreh Chelgani et al., 2008; Hansen and 
Meservy, 1996; Patel et al., 2007; Mesroghli et al., 2009; Bagherieh et al., 2008; Jorjani et al., 
2008; Chehreh Chelgani et al., 2010; Khandelwal and Singh, 2010 ; Sahu et al., 2010;  
Yao et al., 2005; Patel et al., 2007; Salehfar and Benson, 1998; Wu et al., 2008; Karacan,  
2007). 
Patel et al. (2007) predicted the GCV of coal utilizing 79 sets of data using neural network 
analyses based on proximate analysis, ultimate analysis, and the density of helium. They 
found that the input set of moisture, ash, volatile matter, fixed carbon, carbon, hydrogen, 
sulfur, and nitrogen yielded the best prediction and generalization accuracy. 
Mesroghli et al. (2009) investigated the relationships of ultimate analysis and proximate 
analysis with GCV of U.S. coal samples by regression analysis and artificial neural network 
methods. The input set of C, Hexclusive of moisture (Hex) , N, Oexclusive of moisture (Oex), S, moisture, 
and ash was found to be the best predictor.  
The adaptive neuro-fuzzy inference system (ANFIS), which consists of both artificial neural 
networks and fuzzy logic, has been used widely in research areas related to industrial 
processes (Boyacioglu and Avci, 2010; Esen and Inalli, 2010; Soltani et al., 2010; Pena et al., 
2010; Chong-lin et al., 2009).  
The aim of the present work is to assess the properties of 4540 samples of U.S. coal from 25 
states with reference to the GCV and possible variations with respect to ultimate and 
proximate analyses using multi-variable regression, the SPSS software package, and the 
ANFIS, MATLAB software package. 
This work is an attempt to answer the following important questions: 
a. Is it possible to generate precise linear or non-linear equations between ultimate and 

proximate analysis parameters and GCV for different U.S. coal samples that have a 
wide range of calorific values from 4.82 to 34.85 MJ/kg? 

b. Is ANFIS a better tool than regression analysis for improving accuracy and decreasing 
errors in the estimation of the calorific value of coal? 

c. Is it possible to improve the accuracy of predictions by changing “total hydrogen and 
oxygen in coal (H and O)” to “Hex, Oex, and moisture?” 

This work is different from previously published work because it involves the first use of 
ANFIS to predict the GCV of coal.  

2. Experimental data 
The data that were used to examine the proposed approaches were obtained from the U.S. 
Geological Survey Coal Quality (COALQUAL) database, open file report 97-134 (Bragg et 
al., 2009). Samples with more than 50% ash and samples that had a proximate analysis 
and/or an ultimate analysis different from 100% were excluded from the database.  
Analysis results for a total of 4540 coal samples were used.  
The sampling procedures and chemical analytical methods are available at the following 
website: http://energy.er.usgs.gov/products/databases/CoalQual/index.htm. The number 
of samples and the range of GCV for different states are shown in Table 1. 
Table 2 shows the ranges of input variables, i.e., C, H, Hex, N, O, Oex, total sulfur, ash, 
moisture, and volatile matter, that were used in predicting GCV.  



Adaptive Neuro-Fuzzy Inference System Prediction  
of Calorific Value Based on the Analysis of U.S. Coals   

 

171 

State Number of samples Range of GCV (MJ/kg) 

Alabama 679 6.05-34.80 
Alaska 51 8.65-27.42 
Arizona 10 18.54-24.36 
Arkansas 52 5.57-34.68 
Colorado 172 7.24-33.81 
Georgia 25 24.03-34.85 
Indiana 101 19.23-28.96 
Iowa 73 16.03-26.59 
Kansas 19 20.87-28.86 
Kentucky 720 18.68-34.03 
Maryland 40 23.04-33.48 
Missouri 68 23.83-28.63 
Montana 140 5.55-20.63 
New Mexico 114 8.81-32.15 
North Dakota 124 4.85-13.61 
Ohio 398 16.43-31.14 
Oklahoma 25 23.89-33.31 
Pennsylvania 498 13.58-33.10 
Tennessee 42 24.61-33.48 
Texas 33 9.54-27.74 
Utah 103 4.82-30.14 
Virginia 368 19.49-34.80 
Washington 10 13.14-27.45 
West Virginia 340 14.29-34.75 
Wyoming 335 6.27-34.23 

Table 1. Number of samples and range of GCV (as-received) for different U.S. states 
 

Variable (%) Minimum Maximum Mean Std. Deviation 

Moisture 0.4 49.60 8.90 9.90 
Volatile matter 3.80 55.70 32.30 6.32 
Ash 0.90 32.90 10.84 5.97 
Hydrogen 1.70 8.10 5.27 0.69 
Carbon 24.10 89.60 65.72 12.02 
Nitrogen 0.20 2.41 1.29 0.33 
Oxygen 0.90 54.70 14.86 11.27 
Sulfur 0.07 17.30 1.90 1.73 
Hex 0.19 5.86 4.36 0.79 
Oex 0.09 22.14 7.50 3.27 

Table 2. Ranges of proximate and ultimate analyses of coal samples (as-received) 
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3. Methods 
3.1 Regression analysis  
Regression nalysis is a statistical tool that is used to investigate the relationships between 
variables. Usually, the investigator seeks to ascertain the causal effect of one variable upon 
another. To explore such issues, the investigator assembles data on the underlying variables 
of interest and employs regression analysis to estimate the quantitative effect of the causal 
variables upon the variable that they influence. The investigator also typically assesses the 
statistical significance of the estimated relationships, that is, the degree of confidence that 
the true relationship is close to the estimated relationship (An introduction to regression 
analysis, Alan O. Sykes). 
Linear regression estimates the coefficients of the linear equation, involving one or more 
independent variables, which are required to have a reliable prediction of the value of the 
dependent variable. All variables must pass the tolerance criterion to be entered in the 
equation, regardless of the entry method specified. The default tolerance level is 0.0001. 
Also, a variable is not entered if it would cause the tolerance of another variable already in 
the model to drop below the tolerance criterion. All independent variables selected are 
added to a single regression model. However, different entry methods can be specified for 
different subsets of variables. Method selection allows specifying how independent 
variables will be entered into the analysis. Using different methods, a variety of regression 
models can be selected from the same set of variables (SPSS Inc., 2004). 
Non-linear regression is a method of finding a non-linear model of the relationship between 
the dependent variable and a set of independent variables. Unlike traditional linear 
regression, which is restricted to estimating linear models, non-linear regression can 
estimate models with arbitrary relationships between independent and dependent variables. 
This is accomplished using iterative estimation algorithms (SPSS Inc., 2004). 
In this study, both single-variable and multi-variable regressions were used to develop 
correlations between ultimate and proximate analyses of coal samples with their gross 
calorific value (GCV). A stepwise procedure for selecting variables was used, and the 
variables were entered sequentially into the model. The first variable considered for use in 
the equation was the one with the largest positive or negative correlation with the 
dependent variable. This variable was entered into the equation only if it satisfied the 
criterion for entry. The next variable, with the largest partial correlation, was considered as 
the second input to the equation. The procedure stops when there are no variables that meet 
the entry criterion (SPSS Inc., 2004). 

3.2 Adaptive neuro fuzzy inference system 
In the artificial intelligence field, the term “neuro-fuzzy” refers to combinations of artificial 
neural networks and fuzzy logic. Fuzzy modeling and neural networks have been recognized 
as powerful tools that can facilitate the effective development of models and integrate 
information from different sources, such as empirical models, physical laws, or measurements 
and heuristics (Babuska, 1998); these two tools were combined in  order to achieve readability 
and learning ability at the same time (Jantzen, 1998). The neuro-fuzzy approach in the fuzzy 
modeling research field is divided into two areas: 1) linguistic fuzzy modeling that is focused 
on interpretability, mainly the Mamdani model and 2) precise fuzzy modeling that is focused 
on accuracy, mainly the Takagi-Sugeno-Kang (TSK) model (Wikimedia Foundation Inc., 2009). 
ANFIS is an architecture that is functionally equivalent to a Takagi-Sugeno-Kang-type fuzzy 
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rule base (Jang & Sun, 1995); it is a class of adaptive, multi-layer, feed-forward networks that is 
functionally equivalent to a fuzzy inference system.  
A fuzzy rule in a Sugeno fuzzy model has the form of:   

 If x is A and y is B then z = f(x, y) , (3) 

where A and B are input fuzzy sets in the antecedent, and, usually, z = f(x, y) is a zero- or 
first-order polynomial function in the consequent. The fuzzy reasoning procedure for the 
first-order Sugeno fuzzy model and equivalent ANFIS structure is shown in Fig. 1. 
Here, the defuzzification procedure in the Mamdani fuzzy model is replaced by the 
operation of the weighted average in order to avoid the time-consuming procedure of 
defuzzification. Defuzzification refers to the way a crisp value is extracted from a fuzzy set 
as a representative value (Jang and Sun, 1995). 
Jang and Sun (1995) and Jantzen (1998) have provided more details about the ANFIS 
architecture, learning algorithms, and training methods.   
 

 
Fig. 1. (a) The Sugeno fuzzy model reasoning; (b) equivalent ANFIS structure (Jang and Sun, 
1995) 

4. Results and discussion 
4.1 Relationships between GCV and individual input variables 
By a least squares mathematical method, the correlation coefficients (R2) of C, H, Hex, N, O, 
Oex, total sulfur, ash, moisture, and volatile matter with GCV were determined to be +0.99,  -
0.25, +0.72, +0.52, -0.86, -0.51, +0.01, -0.05, -0.85, and +0.03, respectively. From the above-
mentioned results, it can be concluded that the worthy relationships are for carbon with 
positive effect and oxygen with negative effect, because they are rank parameters; and 
moisture with negative effect, because it is also a rank parameter at low rank coals and 
because it is a diluent with respect to heating value. Non-linear relationships between 
individual input variables and GCV were examined as well, but the results were not better 
than the results obtained when the linear procedure was used. 
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4.2 Multi-variable relationships of GCV with ultimate and proximate analysis 
parameters 
The best-correlated linear equations, using a stepwise procedure between the various 
mentioned parameters and GCV, can be presented as follows:  
a. Ash, moisture, and volatile matter inputs: 

 GCV (MJ/kg) = 37.777 – 0.647M – 0.387A – 0.089VM                R2 = 0.97 (4) 

b. Carbon, hydrogen, nitrogen, oxygen, sulfur, and ash inputs: 

 GCV (MJ/kg) = 5.833 + 0.284C – 0.321O + 1.031H + 0.519N – 0.046Ash  

 R2 = 0.994    (5) 

c. Carbon, hydrogen exclusive of moisture, nitrogen, oxygen exclusive of moisture, sulfur, 
moisture, and ash inputs: 

 GCV (MJ/kg) = 26.452 + 0.074C – 0.405M + 0.89Hex - 0.446 Oex – 0.256Ash - 0.195S  

 R2 = 0.995 (6) 
Estimated deviations of GCV from target values for equations (4) through (6) are shown in 
Table 3. 
 

Eq. (6) Eq. (5) Eq. (4) GCV deviation from target (MJ/kg) 
78.2% 71.7% 39.4% Less than 0.5 
96.5% 95.2% 72.5% Less than 1 
3.5% 4.8% 27.2% More than 1 

Table 3. Estimated deviations of GVC from target values for various linear regression 
equations 
The non-linear equations were examined as well, and the exponential equation was the best 
predictor of GCV. The results for the input sets of (a), (b), and (c) are shown in the following 
equations: 
a. Ash, moisture, and volatile matter inputs: 

 GCV = 182.667 + 37.564e-0.027M – 0.381e0.042VM – 182.79e0.002A           R2 = 0.988 (7) 

b. Carbon, hydrogen, nitrogen, oxygen, sulfur, and ash inputs: 

GCV = -156.641 – 0.091e-0.073A + 60.15e0.004C – 13.95e-0.322H + 0.33e0.648N + 109.885-0.003O – 0.318 e-0.363S 

 R2 = 0.995 (8)  

c. Carbon, hydrogen exclusive of moisture, nitrogen, oxygen exclusive of moisture, sulfur, 
moisture, and ash inputs: 

 GCV = -278.474 + 4.487e0.016C + 24.485e-0.019M + 7.173e0.013N + 76.532e0.012Hex +  

 189.349e-0.001Oex – 0.033e0.221S – 4.727e0.021A       R2 = 0.999   (9) 

The estimation of GCV deviations from target values for equations (7) through (9) are 
shown in Table 4. By comparing Tables 3 and 4, it can be concluded that exponential 
equations are more precise than linear equations for predicting the GCV of coal.  
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Eq. (9) Eq. (8) Eq. (7) GCV deviation from target (MJ/kg) 
74.8% 28.98% 60% Less than 0.5 
99.1% 71.34% 86.65% Less than 1 
0.9% 28.66% 13.35% More than 1 

Table 4. Estimation of the deviations of GCV from target values for various non-linear 
regression equations 

4.3 ANFIS prediction   
Three input sets, (a), (b) and (c), were used to determine whether ANFIS is able to predict 
GCV better than regression. This was done using the ANFIS menu in the MATLAB software 
package to identify the relationships between  GCV and input variables. 
In a neuro-fuzzy inference system, the first step is to determine the system inputs and 
outputs that will be used to predict GCV. In this study, input set (a) was comprised of three 
variables, i.e., ash, volatile matter, and moisture; input set (b) was comprised of six 
variables, i.e., C, H, N, O, S, and ash; input set (c) was comprised of seven variables, i.e., C, 
Hex, N, Oex, S, ash, and moisture.  
The Sugeno fuzzy inference system was used in this research. The output functions in the 
Sugeno system are linear or constant. A rule in the fuzzy Sugeno model is: 

 If input 1 = x and input 2 = y, then the output is z = ax + by + c  (10) 

In the Sugeno system, for a zero-order model, the z plane is constant (a = b = 0). The plane of 
zi, the output of any rule, is weighted by wi. The final output of the system is the weighted 
average of all outputs, which is calculated as follows: 

 
∑
=

∑
== N

1i iw

N

1i iziw
output final  (11) 

The subtractive clustering scheme was used to cluster data; the best-designed, neuro-fuzzy 
system for input sets (a), (b), and (c) were systems with three, five, and twelve clusters, 
respectively. For input set (a), the range of influence, squash factor, accept ratio, and reject 
ratio were selected as 0.5, 1.25, 0.5, and 0.15, respectively; for input set (b), they were 0.35, 
1.25, 0.5, and 0.15, respectively; and, for input set (c), they were 0.25, 1.2, 0.5, and 0.125, 
respectively. The Gaussian membership function was used. For training of the ANFIS, the 
hybrid method was used with 3200 sets of data; the remaining 1340 sets of data were used  
 

R2 
Number of 

membership 
functions 

Testing set 
size 

Training set 
size Model inputs Basis Model 

0.997 3 1340 3200 Ash, volatile matter, 
moisture As receiveda 

0.999 5 1340 3200 C, H, N, O, S, ash As receivedb 

0.999 12 1340 3200 C,Hex, N, Oex, S, ash, 
moisture As receivedc 

Table 5. Details of the best-correlated neuro-fuzzy models 
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for testing. For the training stage, we selected 100 epochs. Details of the best-correlated 
neuro-fuzzy models are shown in Table 5. As Table 5 shows, the designed neuro-fuzzy 
systems can predict the GCV with acceptable correlation coefficients (R2) of  0.997 , 0.999, 
and 0.999 for the ( a), (b), and (c) input sets, respectively.  
As an example, the neuro-fuzzy design structure for model (c) to predict GCV is shown in 
Fig. 2.  
The estimates of the deviations of the GCV from target values produced by the neuro-fuzzy 
models are shown in Table 6. It can be seen that the prediction precision of GCV from 
ANFIS and using all three input sets (a), (b), and (c) (Table 6) are better than those from 
linear and non- linear regression (Tables  3 and 4).  
 

 
Fig. 2. ANFIS model structure for the prediction of GCV using input set (c) 
 

Model c  
(12-member 

function) 

Model b   
(5-member 
function) 

Model a 
(3-member 
function) 

GCV deviation from target (MJ/kg) 

99.4% 97.6% 83% Less than 0.5 
100% 100% 99.4% Less than 1 
0% 0% 0.5% More than 1 

Table 6. Estimation of deviations of GCV from target values for neuro-fuzzy models 
The GCV predicted (GCVP) by ANFIS in the testing stage for input sets (a), (b), and (c) 
compared to the actual values determined in the laboratory (GCVa) are shown in Figs. 3, 4, 
and 5, respectively. The distributions of the differences between actual and estimated GCVs 
are shown in Figs. 6, 7, and 8 for input sets (a), (b), and (c), respectively. 

5. Technical considerations 
According to Eqs. (4) through (9) and the results presented in Tables 3 and 4, it can be seen 
that the exponential equations are better than linear equations for predicting GCV; among 
the exponential equations, Eq (9) is the most suitable equation. A correlation coefficient of 
0.999 and a deviation from experimentally calculated GCVs that was only 0.9 % more than  



Adaptive Neuro-Fuzzy Inference System Prediction  
of Calorific Value Based on the Analysis of U.S. Coals   

 

177 
 

 
 
Fig. 3. ANFIS-estimated GCV in testing stage versus actual determined value (model a) 

 
 

 
 

Fig. 4. ANFIS-estimated GCV in testing stage versus actual determined value (model b) 
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Fig. 5. ANFIS-estimated GCV in testing stage versus actual determined value (model c) 

 
 

 GCV� difference� (MJ/kg)
 

 

Fig. 6. Distribution of difference between actual and estimated GCV in testing stage (model a) 
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 GCV� difference� (MJ/kg)
 

Fig. 7. Distribution of difference between actual and estimated GCV in testing stage (model b) 
 

 

 GCV� difference� (MJ/kg)
 

Fig. 8. Distribution of difference between actual and estimated GCV in testing stage (model c) 

0.5 (MJ/kg) were achieved by Eq (9). With reference to the above results, it can be concluded 
that the input set of carbon, hydrogen exclusive of moisture, nitrogen, oxygen exclusive of 
moisture, sulfur, moisture, and ash can be used as the best and most-reliable input for the 
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prediction of the GCV of coal using exponential equations. Restating “hydrogen and 
oxygen” in the form of “hydrogen exclusive of moisture, oxygen exclusive of moisture, and 
moisture” can decrease the errors and deviations from experimentally calculated GCV by 
regression. According to Table 5, which presents the correlation coefficients of the ANFIS 
models for the (a), (b), and (c) input sets, the correlation coefficients in the test stage were 
determined ot be 0.997 (model a) to 0.999 (models b and c). In addition, Table 6, which 
presents the deviations of the ANFIS model predictions from targets values, shows that the 
errors and deviations from experimentally calculated GCVs in ANFIS models are less than 
those produced by regression models. Although Mesroghli et al. (2009) reported that 
artificial neural network is not better or very different from regression results when the 
proximate and ultimate analyses are the GCV predictors. However, in the current work, a 
suitable, structured ANFIS model predicted GCV with a high precision that has not been 
reported in previous published works.  

6. Conclusions 
• In this work, proximate and ultimate analyses of 4540 coal samples from 25 U.S. states 

and two mathematical modelling methods, i.e., multi-variable regression and adaptive 
neuro-fuzzy interface systems were used to estimate GCV. 
• The best-correlated linear equation was achieved using input set (c) (C, Hex, N, Oex, 

S, M, ash) with a correlation coefficient of 0.995. The results also showed that, for 
input set (c), the difference between actual and predicted values of GCV in about 
78% of the data was less than 0.5 MJ/kg, and, in 96% of the data, the difference was 
less than 1 MJ/kg.   

• Exponential equations provided improved correlation coefficients in comparison to 
linear equations. The best result was achieved using input set (c) with a correlation 
coefficient of 0.999. The difference between actual and predicted values of GCV in 
about 75% of the data was less than 0.5 MJ/kg, and, in 99% of the data, the 
difference was less than 1 MJ/kg. 

• The neuro-fuzzy modeling system improved prediction accuracy for input sets (a), 
(b), and (c).  

• The neuro-fuzzy rules that were designed using 3, 5, and 12 membership functions 
can predict the GCV with R2 = 0.997, 0.999, and 0.999, respectively. They also 
produced a deviation from target values of less than 0.5 MJ/kg for about 83, 97, 
and 99% of data, respectively, and less than 1 MJ/kg for about 99, 100, and 100% of 
data for input sets (a), (b), and (c), respectively.   

• The GCV prediction precision achieved in the current work using neuro-fuzzy 
systems has not been reported previously in the literature.  
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1. Introduction 
This chapter deals with the detector of saturation level in the magnetic (iron) core of a 
welding transformer. It is based on an artificial neural network (ANN) and requires only the 
measurement of the transformer’s primary current. The saturation level detector could be 
the substantial component of a middle frequency resistance spot welding system (RSWS), 
where the welding current and the flux density in the welding transformer’s iron core are 
closed-loop controlled by two hysteresis controllers. The resistance spot welding systems, 
described in different realizations (Brown, 1987), are widely used in the automotive 
industry. Although the alternating or direct currents (DC) can be used for welding, this 
chapter focuses on the resistance spot welding system (Fig. 1) with DC welding current. The 
resistances of the two secondary windings R2, R3 and characteristics of the rectifier diodes, 
connected to these windings, can slightly differ. Reference (Klopčič et al., 2008) shows that 
combination of these small differences can result in increased DC component in welding 
transformer’s iron core flux density. It causes increasing iron core saturation with the high 
impact on the transformer’s primary current i1, where currents spikes eventually appear, 
leading to the over-current protection switch-off of the entire system. However, the 
problematic current spikes can be prevented either passively or actively (Klopčič et al., 
2008). When the current spikes are prevented actively, closed-loop control of the welding 
current and iron core flux density is required (Klopčič et al., 2008). Thus, the welding 
current and the iron core flux density must be measured. While the welding current is 
normally measured by the Rogowski coil (Ramboz, 1996), the iron core flux density can be 
measured by the Hall sensor or by a probe coil wound around the iron core. In the case, the 
flux density value is obtained by the analogue integration of the voltage induced in the 
probe coil (Deželak et al., 2008). Integration of the induced voltage can be unreliable due to 
the unknown integration constant in the form of the remanent flux and the drift in analogue 
electronic components. The drift can be kept under control by the use of closed-loop 
compensated analogue integrator.  
An advanced, the two hysteresis controllers based control of the RSWS, where the current 
spikes are prevented actively by the closed-loop control of the welding current and flux 
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density in the welding transformer’s iron core, is presented in (Klopčič et al., 2008). The 
modified solution requires measuring of the welding current, while instead of measured 
flux density only information about saturation level in the iron core is required (Deželak et 
al., 2010). Some methods, tested on welding transformer’s iron core, that can be applied for 
saturation level detection are presented in (Deželak et al., 2008). All these methods require 
the Hall sensor or probe coils which make them less interesting for applications in the 
industrial RSWS, due to the relatively high sensitivity on vibrations, the mechanical stresses 
and the high temperatures. In order to overcome these problems, an ANN based iron core 
saturation level detector is introduced in this work. Additionally the method proposed for 
the detecting saturation level of the complete loaded RSWS, completed by ANN, is 
presented. Its only (single) input is the measured transformer’s primary current. 
The ANN, applied in the iron core saturation level detector, is trained to recognize the 
waveform of the current spikes, which appear in the primary current when the iron core is 
approaching the saturated region. Before the ANN can be applied, its structure must be 
defined first, and then the ANN must be trained using an appropriate learning method 
(Pihler et al., 1997). In this paper, the ANN structure appropriate for saturation detection in 
the transformer’s iron core and the appropriate learning method are found with the help of 
properly build dynamic model of the RSWS (Deželak et al., 2010). The mentioned dynamic 
model includes models of the hysteresis controllers and the ANN based saturation level 
detector. The well-known trial and error method was used for defining ANN structure. It is 
shown that the three-layer ANN with 30 neurons in the first layer, 7 neurons in the second 
layer, and 1 neuron in the third layer, gives acceptable results. ANN is trained by the 
resilient backpropagation rule, where the measured and calculated samples of transformer’s 
primary current, with different known levels of saturation in the iron core, are used. The 
calculated and measured results, presented in this paper, show that the proposed ANN 
based iron core saturation level detector can be used as a part of the discussed RSWS, 
improving performances of the entire system 

2. Dynamic model of the resistance spot welding system 
The resistance spot welding system consists of a full wave output rectifier, a single phase 
transformer, an H-bridge inverter and an input rectifier. It is shown in Fig. 1 and described 
in (Klopčič et al., 2008). The three-phase alternating current (AC) voltages u1, u2 and u3, 
supplied from the electric grid, are rectified in the input rectifier in order to produce the DC 
bus voltage. This voltage is used in the H-bridge inverter, where different switching 
patterns and modulation techniques can be applied, to generate AC voltage uH, required for 
supply of the welding transformer. The welding transformer has one primary and two 
secondary windings. They are marked with indices 1, 2 and 3, respectively. The currents, the 
number of turns, the resistances and the leakage inductances of the primary and two 
secondary welding transformer’s windings are denoted by i1, i2, i3, N1, N2, N3, R1, R2, R3, and 
Lσ1, Lσ2, Lσ3. The effects of the eddy current losses are accounted for by the resistor RFe, while 
RL and LL are the resistance and inductance of the load. The output rectifier diodes D1 and 
D2 are connected to both transformer’s secondary coils. They generate the DC welding 
current iL which has a DC value a few times higher than the amplitudes of AC currents i2 
and i3 that appear in the transformer’s secondary coils without rectifier diodes.  
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Fig. 1. The resistance spot welding system 

The supply voltage of the primary coil of the transformer could be generated on the 
different ways (Štumberger et al., 2010). In the existent  system, widely spread in the 
automotive industry, this voltage is generated by the H-bridge inverter applying pulse 
width modulation (PWM) at switching frequency of f = 1 kHz. The PWM principle is shown 
in Fig. 2a, where ut is the triangular voltage, Uref is the reference voltage for PWM, Tp is the 
period of H-bridge inverter output voltage, um is the gate driver input voltage, S1, S4 and S2, 
S3 are the pairs of IGBT-s in the H-bridge inverter (Sabate et al., 1990). 
Additionally Fig. 2b shows the AC voltage generated by the H-bridge applied by PWM, 
where UDC is the DC-bus voltage. 
 

 
Fig. 2. The PWM principle (a) and the AC voltage generated by the H-bridge applied by 
PWM (b) 

As references (Klopčič et al., 2008) and (Deželak et al., 2010) show, the resistances of the 
secondary windings R2, R3 and the characteristics of the rectifier diodes could be slightly 
different. These differences can cause DC component in welding transformer’s iron core flux 
density, which causes increasing iron core saturation with the essential impact on the 
transformer’s primary current i1, where currents spikes appear, leading to the over-current 
protection switch-off of the entire system. 
Aforementioned phenomena could be confirmed by the appropriate dynamic model (Leon 
& Semlyen, 1994) of the complete resistance spot welding system. In this work the model is 
built with the programme package Matlab/Simulink based on the following set of equations 
(1) – (8). 
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 uH = R1i1+Lσ1(di1/dt)+ N1(dφ /dt)   (1) 

 0 = R2i2+Lσ2(di2/dt)+ N2(dφ /dt)+dip1+ RLiL+LL(d(i2+ i3)/dt) (2) 

 0 = R3i3+Lσ3(di3/dt)- N3(dφ /dt)+dip2+ RLiL+LL(d(i2+ i3)/dt) (3) 

 N1ip+N2i2- N3i3=H(B)lic+2δB/μ0  (4) 

 iL = i2+ i3  (5) 

 i1 = iFe+ ip  (6) 

 iFe = N1(dφ /dt)/RFe   (7) 

 φ  = BAFe   (8) 

 θ = N1i1+ N2i2-N3i3   (8) 

In set of equations (1) – (8) φ  stands for magnetic flux, dip1 and dip2 are nonlinear 
characteristics of the output rectifier diodes D1 and D2, H(B) is the magnetizing curve of the 
iron core material, δ is the air gap, B is the iron core flux density, μ0 is the permeability of the 
vacuum, lic is the average length of the magnetic flux line in the iron core, AFe is the cross-
section of the transformer’s iron core and θ is the magnetomotive force. Parameters that 
appear in (1) – (8) are shown in Table 1 and in Table 2. 
 

Parameter Value Unit 
AFe 0.001385 m2 
δ 10 μm 
lic 0.313 m 
f 1000 Hz 

R1 0.01357 Ω 
R2 20 μΩ 
R3 20 μΩ 
RL 100 μΩ 
Lσ1 0.035 mH 
Lσ2 1 nH 
Lσ3 1 nH 
LL 1 μH 
N1 55 / 
N2 1 / 
N3 1 / 

Table 1. Parameters of RSWS dynamic model 
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dip1 - i (A) dip1 - u (V) dip2 - i (A) dip2 - u (V) 
0 0 0 0 

0.003 0.6 0.011 0.6 
0.014 0.65 0.053 0.65 
0.059 0.7 0.25 0.7 
0.247 0.75 1.17 0.75 
1.05 0.8 5.52 0.8 
4.43 0.85 25.9 0.85 
18.75 0.9 121.5 0.9 
79.3 0.95 570 0.95 
335 1 2675 1 
1418 1.05 12555 1.05 
6000 1.1 58912 1.1 

25378 1.15 400416 1.15 
107334 1.2 1297043 1.2 

Table 2. Nonlinear characteristics of the output rectifier diodes D1 - (dip1) and D2 - (dip2) 
With the appropriate dynamic model the two behaviours of RSWS, the symmetrical and 
asymmetrical, could be simulated. Firstly, the symmetrical behaviour is considered by 
parameters shown in Table 3, while obtained results are shown in Fig. 3. The resistances R2 
and R3 in the two secondary welding transformer’s windings are equal, as well the 
characteristics of the output rectifier diodes D1 and D2. Fig. 3 shows the time dependent 
primary current i1 and the magnetic flux density B in the time window of t = 0.1s. 
 

Parameter Value Unit 
R2 20 μΩ 
R3 20 μΩ 
D1 characteristic - dip1 / 
D2 characteristic - dip1 / 

Table 3. Parameters for symmetrical behaviour of the resistance spot welding system 
Different resistances R2 and R3 and different characteristics of the output rectifier diodes D1 
and D2 could cause undesired asymmetry of the spot welding system. In case of considering 
values shown in Table 4, the asymmetrical time dependent magnetic flux density B could be 
obtained by the appropriate model of RSWS. In this way, when the magnetic flux density B 
reaches the saturation level the current spikes appear in the primary current i1, as shown in 
Fig. 4. 
 

Parameter Value Unit 
R2 20 μΩ 
R3 15 μΩ 
D1 characteristic - dip1 / 
D2 characteristic - dip2 / 

Table 4. Parameters for asymmetrical behaviour of the resistance spot welding system 
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Fig. 3. Symmetrical behaviour of the resistance spot welding system 
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Fig. 4. Asymmetrical behaviour of the resistance spot welding system 
As Fig. 4 shows, the iron core becomes more and more saturated, which leads to currents 
spikes in the primary current i1 and finally to the over-current protection switch-off. The 
unwanted current spikes can be prevented passively by using pairs of rectifier diodes with 
matched characteristics, or actively (Klopčič et al., 2008) by controlling the saturation level in 
the iron core. In the letter case, a saturation detector, which generates a signal when the 
preset saturation level is reached, is indispensable for preventing the iron core saturation. 
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This work evaluates the methods appropriate for the detecting saturation level in the stand 
alone transformer’s iron core and in the transformer operating in the resistance spot welding 
system. These methods actually detect the instant when the iron core starts to become 
saturated and generate signals which are used in the control algorithm to prevent iron core 
saturation. All of the presented methods are based on the ANN which is applied as an 
additionally tool for the detection of transformer's core saturation. 

3. The detecting saturation level in the transformer’s iron core 
In this section, the saturation level detection of the stand alone transformer’s iron core, is 
described (Deželak et al., 2008). The iron core of a welding transformer, which is normally 
installed in an industrial resistance spot welding system, is shown in Fig. 5. For test 
purposes, the actual primary and secondary windings were replaced with only one primary 
coil, which was able to produce the same magnetomotive force as the primary and 
secondary winding, together. In Fig. 5, u denotes the primary voltage, i1 is the primary 
current, δ is the length of the air gap, while AFe is the cross-section of the iron core. A 
measurement coil is wound around the iron core for measurement purposes. The primary 
and measurement coils have the same number of turns N. 
 

 
Fig. 5. The iron core of a welding transformer 

The proposed method is based on calculation of dynamic inductance Ld (9), where u is the 
measured induced voltage (10) and i is the measured transformer’s primary current. Fig. 6 
shows the dynamic inductance as a function of primary current i. The dynamic inductance is 
defined by (11), where ψ(i) is the magnetically nonlinear iron core characteristic shown in 
Fig. 6. In the given case, the magnetically nonlinear characteristic of the welding 
transformer’s iron core ψ(i) was determined experimentally using numerical integration 
(12). 

 Ld = u/(di/dt) (9) 

 u= dψ/dt  (10) 

 Ld = ∂ψ/∂I  (11) 

 ψ(t) = ψ(0) + ∫ (u(τ)-R1 i(τ))dτ  (12) 
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In (12) ψ(t) is the time behaviour of the flux linkage, i1(t) and u(t) are the measured primary 
current and voltage, while R1 stands for the resistance of the primary winding. 
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Fig. 6. The dynamic inductance and magnetically nonlinear iron core characteristic 

When the value of dynamic inductance Ld(i), shown in Fig. 6b, drops under the value of Ld(i) 
= 0.0003 Vs/A, which is reached at i = 8 A, the iron core can be considered as saturated. 
However, the signal that represents dynamic inductivity Ld(i) calculated by (9) is 
contaminated with noise, as shown in Fig. 6d. The contamination with the noise is 
substantially increased in the vicinity of the reversal points of the hysteresis, which makes 
reliable iron core saturation level detection almost impossible.  
This problem can be effectively solved by supplementing the calculated values of the 
dynamic inductivity in the vicinity of the reversal points of the hysteresis by a signal 
generated by an artificial neural network. The artificial neural network is a parallel multi 
layer information processing structure, with possibility to include expert knowledge into 
existent process. Fig. 7 shows the three-layer artificial neural network, where x1, x2, … stand 
for input parameters or signals, w(x1)1, w(x2)2, w(x1)2, w(x2)2, …, w56 are the weight 
coefficients, 1, 2, 3, …, 6 are the sum blocks, while tansig and lin stand for the sigmoid and 
linear activation functions. Additionally z1, z2, z3, …, z are the output signals of the sum 
blocks, while y1, y2, y3, ..., y are  output signals of the neurons (Hassoun, 1995). The number 
of neurons used in the three-layer artificial neural network shown in Fig. 7 is six - three in 
the first layer, 2 in the second layer and 1 in the output layer. The neural network can be 
supplemented with the bias vector for the each individual neuron. The artificial neural 
networks accumulate the knowledge during the training process, while the effectiveness of 
the artificial neural network depends on the quality of the training procedure. The 
fundamental aim of the training procedure is to adjust all weights in artificial neural 
network to obtain minimal deviations between the target and calculated outputs (Hoyong et 
al., 1993). 
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Fig. 7. The example of the three layers artificial neural network 

In this chapter the error backpropagation method is applied. For that reason the 
characteristic input patterns must be selected, while the target signal is generated with 
respect to the input patterns. Training with the error backpropagation learning rule consists 
of the initialization of all weights (and bias) with randomly selected initial values and 
calculations of all outputs signals from each neuron. As soon as the output value of the last 
neuron in the output layer is calculated, the squared error for this (last) neuron can be 
calculated and then errors for the rest of neurons, from the output layer towards the input 
layer can be defined too. Finally, when errors of each neuron are obtained, the new values of 
all weights (and bias) can be calculated and the entire procedure can start with the new 
iteration. The number of iterations of described procedure is called the number of epochs. 
The iterations stop when the error reaches predefined value or the maximal number of 
epochs (iterations) is reached. In the given case, the learning signal was build of 170 patterns 
(signals) obtained by measurements, while the target signal was defined afterwards and was 
set to the values one (saturated) or zero (not saturated). Fig. 8 shows five of these patterns. 
In the case when the value of the target signal (Tar.) equals one, the iron core is considered 
as saturated. After extensive testing of different net configurations, the final artificial neural 
network configuration was defined. It contains three-layer with 50 neurons in the first layer, 
8 neurons in the second - hidden layer, and with one neuron in the third - output layer.  
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Fig. 8. The learning and targets signals in the case of the saturation level detection of the 
transformer’s iron core 
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Once the artificial neural network is trained, which means that all of the weights and bias 
are set, it can be tested. First with the patterns used in the training procedure (Fig. 9 left) and 
then with the new samples which were not used in the training procedure (Fig. 9 right). 
Results presented in Fig. 9 show that the artificial neural network trained in this way is 
appropriate for saturation level detection in the transformer’s iron core. However, the 
results of extended analysis showed that the proposed method gives unreliable results when 
the level of iron core saturation further increases. Fig. 10 shows the results obtained by the 
artificial neural network for the case when transformer’s iron core was highly saturated. Fig. 
10 shows output signal of artificial neural network before (Out) and after (Out’) the final bias 
value (Out’ = 0 means iron core is not saturated, Out’ = 1 means iron core is saturated). 
According to the artificial neural network output signals the highly saturated iron core is 
not saturated at all.  
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Fig. 9. Testing of the ANN with the patterns used in the training procedure (left) and with 
the new samples which were not used in the training procedure (right) 

The results presented show that the artificial neural network is not reliable enough to be 
used for iron core saturation level detection as a stand alone algorithm. However, it could be 
very useful as a supplement to the existing algorithms for iron core saturation detection 
which fails when approaching reversal point on the hysteresis loop. In this region the 
artificial neural network can provide reliable information that the system is approaching 
reversal point of the hysteresis loop, which can be used to stabilize existing algorithms for 
iron core saturation level detection. 
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Fig. 10. Testing of the ANN with the patterns of the highly saturated transformer’s iron core 
before Out (left) and after Out’ (right) the final bias value 
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4. The detecting saturation level in the resistance spot welding system 
Now the algorithm for detecting the saturation level in the iron core of the transformer 
operating in the resistance spot welding system can be presented. One of the possible 
solutions for active prevention of the current spikes, is the closed-loop control of the iron 
core flux density and welding current with two hysteresis controllers (Klopčič et al., 2008). 
Thus, the iron core flux density and the welding current must be measured. The iron core 
flux density can be measured by the Hall sensor or by a probe coil wound around the iron 
core, while the welding current is normally measured by the Rogowski coil. The flux density 
value is obtained by an analogue integration of the voltage induced in the probe coil. It is 
well known that the integration of the induced voltage could be unreliable due to the drift in 
analogue electronic components and the unknown integration constant in the form of 
remanent flux. Because of the mentioned drawback, this work proposes an improved 
solution. Instead to measure the flux density only the information about the saturation level 
in the welding transformer’s iron core is required (Fig. 11). In Fig. 11 S1 – S4 stand for the 
adequate switching of the transistors. 
 

 
Fig. 11. The closed-loop control of the transformer primary current i1 and welding current iL 
using the hysteresis controller and the ANN 

To obtain the information about the saturation level an ANN can be applied as an effective 
tool, where the ANN single input is the measured transformer’s primary current i1 (Deželak 
et al., 2010). The idea is to replace one hysteresis controller with ANN. Basically the ANN is 
trained to recognize the waveform of the current spikes, which appear in the primary 
current when the iron core is approaching the saturated region.  

4.1 Hysteresis control with saturation detector 
The H – bridge inverter output voltage uH (Fig. 1) is equal to DC voltage, while its polarity 
depends on the pair of transistors that are switched on. When all four transistors are 
switched off, the voltage uH equals zero. The welding current iL increases when the primary 
voltage of the transformer uH differs from zero. On the other hand the welding current tends 
towards zero when uH equals zero. The magnetic flux density increases when +DC bus 
voltage is applied and decreases when–DC bus voltage is applied. As soon as the magnetic 
flux density exceeds its limit, the transformer’s iron core becomes highly saturated, which 
causes current spikes in the transformer’s primary current i1. The advanced control of the 
RSWS can be applied to prevent the current spikes. The authors in (Klopčič et al., 2008) 
proposed an advanced hysteresis control of the RSWS based on two hysteresis controllers. 
The first one is used for the closed-loop control of the welding current while the second one 
is used for the closed-loop control of a flux density in the transformer’s iron core. The 
advanced hysteresis control requires information that the preset saturation level in the iron 
core is exceeded. Measurement of the iron core flux density B can be avoided. 
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This subsection proposes an ANN based detector of saturation level in the iron core. The 
only input for the proposed detector is the measured welding transformer’s primary current 
i1. The output signal of the ANN based saturation detector (Tar.) is set to the value one when 
the preset saturation level in transformer’s iron core is exceeded. Operation of the advanced 
hysteresis control, supplemented by the proposed ANN based saturation level detector, is 
illustrated in Fig. 12, where iL is the welding current, uH is the applied H-bridge inverter 
output voltage, and t stands for the time. The upper (iLu) and lower (iLl) welding current 
limits must be set before start.  
 

 
Fig. 12. Operation of the advanced hysteresis control, supplemented by the saturation level 
detector  

The advanced hysteresis control of the RSWS, supplemented by the proposed saturation 
level detector, starts at the time t = 0s. The H-bridge inverter generated transformer’s supply 
voltage uH = UDC, is applied. The welding current iL and the iron core flux density B start to 
increase. At the time t1, the ANN based saturation level detector detects that the preset 
saturation level in the iron core is exceeded. Its output signal Out’ is set to the value 1, while 
the transformer’s supply voltage is changed to uH = -UDC. The welding current still increases 
while the iron core flux density starts to decrease. At time t2, the saturation level detector 
detects the exceeded saturation level again. In this case, it is caused by a high negative value 
of the iron core flux density. The transformer’s supply voltage changes to uH = UDC. The 
welding current still increases while the flux density value starts to increase again. 
Thus, whenever the ANN based saturation level detector detects the exceeded saturation 
level, the polarity of the transformer’s supply voltage changes, causing change in the sign of 
the flux density increment, while the welding current increases all the time. The advanced 
RSWS hysteresis control switches the transformer’s supplied voltage according to the 
described pattern as long as the welding current does not reach its upper limit, which 
happens at the time t4. When the upper limit for the welding current is reached, the supply 
voltage uH = 0 is applied. The welding current starts to decrease. At the time t5, it reaches its 
lower limit. The supply voltage with the same polarity as before the time t4 (uH = -UDC) is 
applied again. At the time t6, the saturation level detector detects the increased saturation 
level again, which causes change in the polarity of the transformer’s supply voltage uH = 
UDC. The RSWS operates as described, keeping the welding current between its lower and 
upper limits, until the welding cycle is completed. The transformer’s supply voltage is set to 
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uH = 0 while the welding current decreases to value zero. The advanced hysteresis control 
controlled RSWS is ready for the new welding cycle. 

4.2 Test result 
The ANN structure used to detect the iron core saturation in the stand alone transformer 
cannot be applied when the transformer operates as a part of the RSWS. In the case of the 
stand alone transformer the ANN was used to supplement the calculated value of dynamic 
inductance Ld in order to evaluate the iron core saturation level. In the case of transformer 
operating as a part of RSWS the primary current i1 supplemented by an ANN is used to 
detect the iron core saturation level. Thus the new ANN structure and learning method 
must be defined. This can be obtained with the proper dynamic model of the RSWS with 
included models of the advanced hysteresis control and the ANN based saturation level 
detector. Once the model is built, the proper structure of the ANN and learning method can 
be easily defined by running simulations with different ANN structures. The trial and error 
procedure was applied in the testing. As already mentioned, the ANN accumulates 
knowledge during the learning process. Fig. 13 shows both signals, which are involved in 
the learning process.  
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Fig. 13. The learning and targets signals in the case when the transformer operates as a part 
of the RSWS 

The input learning signal (pattern) of the ANN in the learning process is the absolute value 
of the transformer’s primary current i1 (1 pu = 400 A) obtained with the RSWS dynamic 
model. According to the saturation level in the iron core, the output learning signal (Tar.) 
was set to the value zero or one. The current spikes in the transformer’s primary current 
clearly show that the iron core becomes highly saturated. In that case, the output of the 
ANN based saturation level detector must be set to the value one, which changes the 
polarity of the transformer’s supply voltage in the RSWS controlled by the advanced 
hysteresis control. Fig. 13 shows learning signals during samples 4000 and 4200, while the 
number of all samples is 6000. 
The ANN output signals are very sensitive on the ANN net configuration, therefore an 
extensive testing of different net configurations was performed. The proper net structure 
can be defined with the proper model of a whole RSWS. The high computational effort 
required for simulations of the whole system forced us to apply the trial and error method 
in determining the ANN structure, instead of applying optimization techniques. The 
correlation coefficients between the target signal and calculated outputs were the root mean 
square errors (RMSE). The learning rates were controlled. Based on results of the extensive 
numerical analysis, the ANN structure with 30 neurons in first, 7 neurons in second and 1 
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neuron in last layer was chosen (RMSE = 3.89 %). More or less neurons in the first layer gave 
worse RMSE. In addition for determining the ANN structure, the model was applied also 
for determining the most appropriate learning rule. From all learning rules tested, the 
resilient and Levenberg-Marquardt backpropagation algorithms gave the best RMSE values. 
However, the resilient backpropagation was adopted due to the lowest computational effort 
required.  
As soon as the structure of the ANN and learning rule is defined, they can be applied on to 
the measured signals, while the ANN trained with the measured signals can be applied as a 
saturation level detector in the RSWS controlled by the advanced hysteresis control. Fig. 14 
shows the output signals from the ANN for two different transformer’s primary currents 
(absolute, per unit value, 1 pu = 400 A) measured on the RSWS.  
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Fig. 14. Testing of the ANN with the different patterns 

As soon as the ANN, through the characteristic form of the primary current, detects that the 
saturation level in the iron core is high enough, the value of the ANN output (Out’) changes, 
causing change in the polarity of the applied supply voltage. This leads to the change in the 
sign of the magnetic flux density derivative. The magnetic flux density move in the opposite 
direction until the ANN detects increased saturation level again. The polarity of the applied 
supply voltage is changed again and the complete procedure is repeated. 

5. Conclusion 
This chapter deals with an evaluation of method appropriate for the iron core saturation 
level detection in welding transformer built into resistance spot welding system. The 
welding transformer is a part of a resistance spot welding system, where current spikes in 
the transformers primary current, caused by the iron core saturation, can cause the over-
current protection switches-off of the entire spot welding system. For that reason the 
saturation level detection is an indispensable part of modern resistance spot welding 
systems. It makes the control of the iron core flux possible, which leads to better iron core 
exploitation and prevents over-current protection switch-offs. The main aim of this work is 
to present a reliable method for detection of the iron core saturation that does not require 
any additional sensor. 
Firstly, an artificial neural network supplemented algorithm for detecting the saturation 
level in the iron core of a welding transformer is described. In order to prevent iron core 
saturation and current spikes in the primary current, the iron core saturation level detection, 
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based on the dynamic inductances, is investigated. The drawbacks of the applied method 
could be effectively eliminated by using an artificial neural network as a supplement to the 
existing method. 
After that the algorithm for detecting the saturation level in the iron core of the transformer 
operating as a part of the resistance spot welding system was presented. The proposed 
ANN based detector requires measurement of the welding transformer’s primary current. 
The applied ANN is trained to recognize the waveform of the currents spikes which is used 
for saturation level detection. The applied ANN contains 3 layers with 30, 7 and 1 neuron in 
the first, second and third layer, respectively. It is trained by the resilient backpropagation 
rule using samples obtained by measurements and the dynamic model of the RSWS. 
Performances of the trained ANN were evaluated by the tests performed with the different 
measured samples. The results of the laboratory tests, shown in Fig. 13, are very promising 
and show reliable recognition of the iron core saturation. 
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1. Introduction  
Every system is controlled by certain parameters and works at its best for a certain 
combination of the values of these parameters Input parameters of the system are defined as 
the independent variables or causes, which affect the values of output parameters 
commonly identified as effects. The relationship in many case is typically nonlinear, and 
complex. Different input parameters –apart from their individual influences – may affect the 
output parameter in synergistic or antagonistic way. 
The knowledge of cause-and-effect relationships is important in the solution of problems in 
all fields of endeavor. In the simplest of cases, these relationships may take on a linear form, 
while in others, highly nonlinear and complex, relationships may be appropriate. Some 
relationships are static, while others involve dynamic or time varying elements. 
A complex system like thermal processing requires maximum destruction of undesirable 
microorganisms with minimum loss of freshness, taste, texture and flavor as the outputs, 
with time temperature, can size, etc. as extrinsic causes, along with the composition, 
viscosity, and thermal properties of food material as intrinsic causes. Product development 
happens to be an equally complex system where level and proportion of ingredients are the 
inputs, which determine the sensory parameters, cost and marketability. Modeling of 
bioprocesses for engineering applications is equally challenging task, due to their complx 
nonlinear dynamic behaviour. 
The conditions of best functioning are called optimum operating / functioning conditions. 
Large number of experiments need to be performed under certain set of conditions, for 
obtaining these optimum parameters. Still, the results at selected data points need not 
necessarily represent the optimum functioning of a process, specially for typical nonlinear 
systems. Performing permutations and combination with experimental parameters till the 
optimum combination of parameters is achieved is not only time consuming and laborious, 
but also contributes to increased expenses, hazard possibility and error incorporations. In 
such situation, several structured and unstructured models can be developed from the 
available data, and the possible outputs can be successfully predicted at any combination of 
values, within the frame work. Artificial Neural Network (ANN) is one such tool for 
prediction of outputs for nonlinear systems at various combinations. The process is based on 
learning of the network with the experimental values, thus knowing the system behavior, & 
then predicting the output values of the desired set of parametric combinations. Food 



Artificial Neural Networks - Industrial and Control Engineering Applications 

 

202 

science and technology represents a potential area for application of ANN. Critical review 
by Huang et al. (2007) discusses the basic theory of the ANN technology and its applications 
in food science, providing food scientists and the research community an overview of the 
current research and future trend of the applications of ANN technology in the field. 

2. What is Neural Network? 
Mother nature’s most complex creation, the human brain has evolved over million of years 
and has very complex and powerful architecture. It consists of large number of nerve cells 
called neurons. The axon or output path of a neuron splits up and connects to dendrites or 
input paths of other neurons through a junction known as a synapse (Fig.1) The 
transmission across this junction is chemical in nature, and the amount of signal transferred 
depends on the amount of chemicals (Acetylchloline) released by the axon and in turn 
received by the dendrites. This synaptic strength is modified when the brain learns. Each 
neuron will have of the order of 10,000 dendrites through which they accept inputs.  
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Fig. 1. Biological Neuron 

2.1 Artificial Neural Network (ANN)  
An artificial neural network (ANN) is a data processing system based on the structure of the 
biological neural simulation by learning from the data generated experimentally or using 
validated models. 
Some terms required to be defined for ANN users are: 
• ANN: A neural network is a processing device, either an algorithm, or actual hardware, 

whose inspired by the design in and functioning of animal brains and components 
thereof. It is computer program designed to simulate the brain neurons.  

• Processing element: In an ANN, the unit analogous to the biological neuron is a 
processing elements (PE). Each PE has many inputs and outputs. The network consists 
of many units or neurons, each possibly having a small amount of local memory.  The 
unit by undirectional communication channels “connections” which carry numeric 
data. The units operate only on their local data and on the inputs they receive 
connection. 

• Connection weight: The output path of a processing element is connected to input paths 
of other PEs through connection weights, analogous to the synaptic strength of neural 
connections.  
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• Input, output and hidden layers: A network consists of a sequence of layers with 
connections between successive layers. Data to the network is presented at input layer 
and the response of the network to the given data is produced in the output layer. There 
may be several layers between these two principal layers, which are called hidden 
layers. 

• Training: Most neural networks have some sort of “training“ rule whereby the weights 
of connection are adjusted on the basis of presented patterns. In other words, neural 
network patterns “learn from example”. 

• Error: It is defined as the total sum of the difference between desired output and output 
produced by the network for the set of inputs. 

• Learning rate: A learning rule, which changes the connection weights of the network in 
response to the example inputs and desired output to those inputs. The training of 
neural network model is similar to the way humans or animals are trained by 
reinforcement technique, where certain synapses that connect the neurons selectively 
get strengthened leading to increase in the gain. 

• Recall: Recall refer to how the network processes a data set presented at its input layer 
and produces a response at the output layer. The weights are not changed during the 
recall process. 

 

 
Fig. 2. Artificial Neural Network : A Multilayer Perceptron 

Derived from their biological counterparts, ANNs are based on the concept that a highly 
inter-connected system of simple processing elements can learn complex inter relationships 
between independent and dependent variables. ANNs offer an attractive approach to the 
black-box modeling of highly complex, nonlinear systems having a large number of inputs 
and out puts in the form of massively connected parallel structures. It has three-layered 
system, an input layer, and intermediate layer called hidden layer, and an output layer 
(Fig.2). Each layer contains a number of neurons. The number of neurons in the input layer 
equals the number on inputs to the neural network while the number of neurons in the 
output layer equals the number outputs in the system. Although numerous guidelines have 
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been proposed for selecting the number of units in the hidden layer, they do not work in all 
situations, and the number is often determined heuristically. Each neuron is connected to all 
the neurons in the next layer by means of a “connection weight”. The output from neurons 
can be calculated by suitable “transform equations” provided the inputs and the connection 
weights are known. 
The sequence of neural network modeling is to assume a set of weights initially, compute 
the outputs and the predict error, and then adjust the weights according to an error 
minimization technique until the prediction error falls to an acceptable level. This activity of 
finding optimal weight is called network training. Once the network is so trained, the black 
–box model is ready, and may be used to predict outputs for a set of new inputs, not 
originally part of those used in training.  

2.2 Types of ANN  
1. Back Propogation  Network (BPN)   
Back Propogation Network has been extensively studied, theoretically, and has been the  
most successful. The BPN is usually built from a three layered system consisting of input, 
hidden, and output layers. An equation in the hidden layers (transfer function) determines 
whether inputs are sufficient to produce an output (Hornik et al 1989). There are several 
kinds of transfer functions, e.g. threshold or sigmoid functions. In training a NN, the values 
predicted by the net work are compared to experimental values using the delta rule, an 
equation which minimizes error between experimental values and net work predicted 
values. The errors are then back propagated to hidden and input layers to adjust weights. 
This is repeated many times until errors between predicted and experimental values are 
minimized. General reviews, and references of NN procedure are discussed by Eberhart and 
Dobbins (1990) . 
2. General Regression Neural Network (GRNN)  
General Regression Neural Network are memory based feed forward networks meaning 
that all the training samples are stored in the network. It possess a special property that they 
do not require iterative training. 

3. Neural network vs statistical regression  
In statistical regression, the parameters or constants of the equation are determined for a 
given mathematical equation, which relates the inputs to the output(s), so that the difference 
between the desired output and the output of the equation for the set of inputs is a 
minimum. Here the type and nature of the equation relating the inputs with the output has 
to be initially formulated clearly. Neural Network (NN) doesn’t require such explicit 
relationship between the inputs and the output(s). In Neural network parameter values 
cannot be extracted after the simulation. In statistics the analysis is limited to a certain 
number of possible interactions. However, more terms can be examined for interaction and 
included in Neural Network. By allowing more data to be analyzed at the same time, more 
complex and subtle interactions can be determined. Fuzzy and not so clear data sets can also 
be analyzed and their interaction studied with Neural Network, whereas statistical 
regression analysis will fail in such situation. 
It can perform better than statistical regression analysis for prediction, modeling & 
optimization even if the data is noisy and incomplete. It is also ideally suited when the inputs 
are qualitative in nature and when the inputs or the output can not be represented as 
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mathematical terms (Pandharipande, 2004). Unlike other modeling such as expert system, an 
ANN can use more than two parameters to predict two or more parameters. In addition, ANN 
differs from traditional methods due to their ability to learn about the system to be modeled 
without a prior knowledge of the process parameter. ANN results are straight forward and do 
not need any transformations. ANN is amongst various intelligent modeling methods which 
are able to solve a very important problem –processing of unstructured ,scarce and incomplete 
numerical information about nonlinear and non stationary systems , as well as 
biotechnological processes ( Vassileva et al, 2000).. ANN has the ability for relearning 
according to new data., and it is possible to add new observations at any time. Unlike ANN, 
when new observations are added to the data set in PCR, principal components have to be 
calculated before regression analysis is applied (Vallejo-Cordoba et al ,1995) 

4. Applications of ANN in food technology 
Artificial Neural Networks (ANNs) have been applied in almost every aspect of food 
science over the past two decades, although most applications are in the development stage. 
ANNs are useful tools for food safety and quality analyses, which include modeling of 
microbial growth and from this predicting food safety, interpreting spectroscopic data, and 
predicting physical, chemical, functional and sensory properties of various food products 
during processing and distribution. ANNs hold a great deal of promise for modeling 
complex tasks in process control and simulation and in applications of machine perception 
including machine vision and electronic nose for food safety and quality control.  

4.1 ANN for prediction of food quality, properties and shelf life  
Quality of food is complex term, and is assessed by suitable  combination of physical, 
chemical and organoleptic tests. Physical / chemical parameters- though convenient to 
measure - do not always have straightforward correlations with the sensory evaluation 
results. However, frequent  sensory evaluation is restricted due to the availability of trained 
judges, and proper ambience. Several investigators have attempted to apply ANN models 
for prediction of food properties, and changes during processing and storage of foods.  
Zhang and  Chen (1997) introduced a method of food sensory evaluation employing 
artificial neural networks. The process of food sensory evaluation can be viewed as a multi-
input and multi-output (MIMO) system in which food composition serves as the input and 
human food evaluation as the output. It has proved to be very difficult to establish a 
mathematical model of this system; however, a series of samples have been obtained 
through experiments, each of which comprises input and output data. On the basis of these 
sample data, the back-propagation algorithm (BP algorithm) is applied to "train" a three-
layer feed-forward network. The result is a neural network that can successfully imitate the 
food sensory evaluation of the evaluation panel. This method can also be applied in other 
fields such as food composition optimizing, new product development and market 
evaluation and investigation.  
Lopez et al (1999) have applied ANN for identification of registered designation of origin 
areas of portugese cheese defined by microbial phenotypes and artificial neural networks.  
The human sense of smell is the faculty which has very important role to play in industries 
such as beverages, food and perfumes. Studies have been carried out to construct an 
instrument that mimics the remarkable capabilities of the human olfactory system (Gardner 
et al 1990). The instrument or electronic nose consists of a computer-controlled multi-sensor 
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array, which exhibits a differential response to a range of vapors and odors. The authors 
report on a novel application of artificial neural networks (ANNS) to the processing of data 
gathered from the integrated sensor array or electronic nose. This technique offers several 
advantages, such as adaptability, fault tolerance, and potential for hardware 
implementation over conventional data processing techniques. Results of the classification 
of the signal spectra measured from several alcohols are reported and they show 
considerable promise for the future application of ANNs within the field of sensor array 
processing. Electronic/artificial nose, developed as systems for the automated detection and 
classification of odors, vapors, and gases is generally composed of a chemical sensing 
system (e.g., sensor array or spectrometer) and a pattern recognition system (e.g., artificial 
neural network). Electronic noses for the automated identification of volatile chemicals for 
environmental, medical and food industry applications are being developed  
A similar report on application of electronic nose for classification of pig fat has been reported 
by Carrapsio et al. (2001). Fatty acid analysis is frequently performed in fat and other raw 
materials to classify them according to their fatty acid composition, but the need to carry out 
online determinations has generated a growing interest in more rapid options. This research 
was done to evaluate the ability of a polymer-sensor based electronic nose to classify Iberian 
pig fat samples with different fatty acid compositions. Significant correlations were found 
between individual fatty acids and sensor responses, proving that sensor response data were 
not fortuitously sorted. Significant correlations also appeared between some sensors and water 
activity, which was considered during the sample classification. Two supervised pattern 
recognition techniques were attempted to process the sensor responses: 85.5% of the samples 
were correctly classified by discriminant analysis, but the percentage increased to 97.8% using 
a one-hidden layer back-propagation artificial neural network. 
An artificial olfactory system based on Gas Sensor Array and Back-Propagation Neural 
Network is constructed to determine the individual gas concentrations of gas mixture (CO 
and H2) with high accuracy. Back-Propagation (BP) neural network algorism has been 
designed using MATLAB neural network toolbox, and an effective study to enhance the 
parameters of the neural network, including pre-processing techniques and early stopping 
method is presented in this paper. It is showed that the method of BP artificial neural 
improves the selectivity and sensitivity of semiconductor gas sensor, and is valuable to 
engineering application (Tai et al., 2004). The electronic nose (sensor responses analyzed by 
a neural network) achieved success similar to that obtained using the more usual fatty acid 
analysis by gas chromatography. Similar application in fatty acid analysis of soyabean oil  is 
reported by Kovalenko et al (2006).  
An artificial neural network model is presented for the prediction of thermal conductivity of 
food as a function of moisture content, temperature and apparent porosity. (Sablani and 
Rahman, 2003).The food products considered were apple, pear, corn starch, raisin, potato, 
ovalbumin, sucrose, starch, carrot and rice. The thermal conductivity data of food products 
(0.012-2.350W/mK) were obtained from literature for the wide range of moisture content 
(0.04-0.98 on wet basis fraction), temperature (-42-130oC)and apparent porosity(0.0-0.7).  
Several configurations were evaluated while developing the optimal ANN model. The 
optimal model ANN consisted two hidden layers with four neurons in each layer. This 
model was able to predict thermal conductivity with a mean relative error of 12.6%,a mean 
absolute error of 0.081 W/mK. The model can be incorporated in heat transfer calculations 
during food processing. Rahman’s model (at 0oC) and a simple multiple regression model 
predict thermal conductivity with mean relative error of 24.3%.   
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An interesting application of ANN for identification of organically farmed atlantic salmon 
from wild salmon is by analysis of stable isotopes and fatty acids is discussed by Molkentin 
et al (2007). Using isotope ratio mass spectrometry (IRMS), the ratios of carbon (δ 13C) and 
nitrogen (δ 15N) stable isotopes were investigated in raw fillets of differently grown Atlantic 
salmon (Salmo salar) in order to develop a method for the identification of organically farmed 
salmon. IRMS allowed to distinguish organically farmed salmon (OS) from wild salmon (WS), 
with δ 15N-values being higher in OS, but not from conventionally farmed salmon (CS). The 
gas chromatographic analysis of fatty acids differentiated WS from CS by stearic acid as well 
as WS from CS and OS by either linoleic acid or α-linolenic acid, but not OS from CS. The 
combined data were subjected to analysis using an artificial neural network (ANN). The ANN 
yielded several combinations of input data that allowed to assign all 100 samples from Ireland 
and Norway correctly to the three different classes. Although the complete assignment could 
already be achieved using fatty acid data only, it appeared to be more robust with a 
combination of fatty acid and IRMS data, i.e. with two independent analytical methods. This 
was also favorable with respect to a possible manipulation using suitable feed components. A 
good differentiation was established even without an ANN by the δ 15N-value and the content 
of linoleic acid. The general applicability in the context of consumer protection is 
recommended be checked with further samples, particularly regarding the variability of feed 
composition and possible changes in smoked salmon. 
Experimental measurements of the variation in the solid fraction during crystallization of 
lipid mixtures are often correlated in terms of the so-called Avrami model. Jose et al (2007) 
employed above model to describe measurements taken during the crystallization of blends 
of tripalmitin in olive oil at high concentrations. Although the blends appeared to behave 
ideally, the Avrami model failed to describe the experimental results over the entire range of 
tripalmitin concentration investigated. As an alternative to the description of lipid 
crystallization experiments, the use of continuous-time artificial neural network (ANN) 
approximators is proposed. ANN successfully reproduced the experimentally observed 
behavior for all temperatures and tripalmitin concentrations used.  
ANN based automatic grading and sorting systems for fruits and vegetables have been 
developed by various investigators. Saito et al (2003) have developed eggplant grading 
system using image processing and artificial neural network. The lighting conditions are 
discussed for taking color components of the eggplant image effectively. The shape 
parameters such as length, girth, etc. are measured using image processing. On the other 
hand, bruises of the eggplants are detected and classified based on the color information by 
using artificial neural network. Development of electronc nose for determination of fruit 
ripeness has been reported by Salim et al. (2005). 
A combination of machine vision and artificial neural network model for guava sorting 
which classify from size, weight and defect of guava has been described by Chokananporn 
and Tansakul (2008) and the system was evaluated by comparing with human sorting. 
Furthermore, the surface area of guava could be estimated from the artificial neural network 
model. The major diameter, intermediate diameter, minor diameter, and sphericity were 
used to classify the shape and used as the input parameters of the network. The sorting 
process was controlled by computer software which was well designed and created on 
visual basic 6.0. The experiments were carried out with fresh guava. The results from 
machine vision system were compared with those from human classifying capability. One 
hundred percent coincidence for the extra size and 73.3 percent coincidence for the class I 
and II size were obtained. For surface area estimation, the predicted surface area was found 
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to be nearly the same as that from the standard method. The lowest mean relative error 
(MRE) and mean absolute error (MAE) values were 0.15% and 0.39 cm2, respectively. 
Similar combination system for classification of  beans is  reported by Kilik et al (2007).  
Prediction of Milk shelf – life based on Artificial Predicting Neural networks and head space 
gas chromatographic data has been reported by  Vellejo-Cordoba et al. (1995 ). Pasteurized 
milk was sampled during refrigerated storage at 4oC until termination of shelf life, as 
determined by sensory evaluation, sub samples were incubated at 24 +1oC for 18 hours prior 
to detection of volatiles by dynamic head space gas chromatograph (Cordoba & Nakai, 
1994)). Several volatiles consisting mainly of aldehydes, ketones & alcohols were identified 
in milk. Not only increased peak areas of the compounds already present appeared in poor-
quality milk, new volatiles were also detected, including esters. Cross validation was used 
with 113 training sets, and 21 test sets. In PCR, the independent variables were the first 30 
principal components and the dependent variable was flavor – based shelf life in days. The 
shelf life predictability of ANN was superior to PCR as indicated by carrying out regression 
analysis for experimental vs predicted shelf life and the squared correlation (r2) and the 
standard error of the estimate (SEE). 
The power of computational neural networks (CNN) for growth prediction of three strains 
of Salmonella as affected by pH level, sodium chloride concentration and storage 
temperature was evaluated by Herv’s et al (2001). The architecture of CNN was designed to 
contain above three input parameters and growth as output parameter. The standard error 
of prediction (%SEP) obtained was under 5% and was significantly less than the one 
obtained using regression equations. Similar study by Zurera-Cosano et al (2005) reported 
an Artificial Neural Network-based predictive model (ANN) for Leuconostoc mesenteroides 
growth in response to temperature, pH, sodium chloride and sodium nitrite, was validated 
on vacuum packed, sliced, cooked meat products and applied to shelf-life determination. 
Lag-time (Lag), growth rate (Gr), and maximum population density (yEnd) of L. 
mesenteroides, estimated by the ANN model, were compared to those observed in vacuum-
packed cooked ham, turkey breast meat, and chicken breast meat stored at 10.5°C, 13.5°C 
and 17.7°C. From the three kinetic parameters obtained by the ANN model, commercial 
shelf-life were estimated for each temperature and compared with the tasting panel 
evaluation. The commercial shelf life estimated microbiologically, i.e. times to reach 
106.5 cfu/g, was shorter than the period estimated using sensory methods. 
Application of ANN for prediction of shelf life of green chilli powder (GCP) is reported by 
Meshram (2008).Green Chilli Powder (GCP) prepared by dehydration of Jwala variety of 
chilli in air–Radio Frequency (RF) combo dryer had 1.13% moisture content with 19% ERH. 
Danger and critical points were identified at 60.5 % and 63% ERH corresponding to 7.12% 
and 8.0% moisture content respectively. Storage study was carried out under ambient (25oC, 
65% RH) and accelerated (38oC, 90% RH) conditions for GCP packed in Laminated 
aluminium foil (LAM) and Polypropylene (PP). Half Value Period (HVP) and shelf life at 
different combinations of temperature (T) and relative Humidity (RH%) for 100 g GCP pack 
was calculated based on WVTR  (LAM =2.35, PP =4.16 units at 38oC,90% RH) and packaging 
constant.(Ranganna). Application of Artificial Neural Network (elite-ANN © ) for prediction 
of shelf life as function of T and RH% gave R2 value >0.99 for both packings. 

4.2 ANN in food processing  
Various processing parameters are required to be monitored and controlled simultaneously, 
and it is quite difficult to derive classical structured models, on account of practical 
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problems in conducting required number of experiments and lack of  sufficient data. 
Possibility for application of ANN for optimizing the process parameters is an interesting 
area, with many potential applications.  
The effect of agglomerate size and water activity on attrition kinetics of  some  selected 
agglomerated food powders was evaluated by Hong Yan and Barbosa-Canovas (2001) by 
application of ANN. Investigation of the attrition of agglomerates is very important for 
assessing the agglomerate strength, compaction characteristics, and quality control. A one-
term exponential attrition index model and the Hausner ratio were used to study the effects 
of agglomerate size and water activity on the attrition kinetics of some selected 
agglomerated food powders. It was found that the agglomerate size and water activity 
played significant roles in affecting the attrition: the larger the agglomerate size and higher 
the water activity, higher was the attrition index under the same tap number. The Hausner 
ratio was well correlated with the attrition index at high tap numbers and might be used as 
a simple index to evaluate attrition severity for agglomerates. Knowing the effects of 
agglomerate size and water activity is very useful to minimize the attrition phenomenon 
during the handling and processing of agglomerated powders.  
Modeling and control of a food extrusion process using artificial neural network and an 
expert system is discussed by Popescue et al. (2001). A neural network model is proposed 
and its parameters are determined. Simulation results with real data are also presented. The 
inputs and outputs of the model are among those used by the human operator during the 
start-up process for control. An intelligent controller structure that uses an expert system 
and “delta-variations” to modify inputs is also proposed. 
A hypothesis on coating of food  is put forward by Bhattacharya et al (2008), who have also 
discussed development of a system analytical model based on simulation studies and 
artificial neural network The process of coating of foods is a complex process due to the 
presence of a large number of variables, and unknown relationship between the coating 
variables and coating characteristics. Needs exists to develop a model that can relate the 
important variables and coating parameters that would be helpful in developing coated 
products.  A system analytical model for coating of foods has been hypothesized.  The 
model relates influencing variables to derived parameters that in turn relates the target 
coating parameters. The concentration of solids and temperature of coating dispersions are 
the examples of the influencing variables, whereas rheological parameters (apparent 
viscosity, yield stress, flow and consistency indices) are the derived parameters that finally 
decide the coating parameters such as total uptake, solid uptake and dimensionless uptake 
according to the hypothesized relations y = f(x) and z=g(y). The proposed hypothesis was 
initially examined by performing simulation studies conducted on steel balls  (small and 
big) using sucrose solution and malt – maltodextrin dispersions at different concentrations 
(20-60%) and temperatures (5-80°C), and applying the theory of artificial neural network 
(ANN) for prediction of target parameters.  The hypothesis was tested in actual system 
using corn balls and sucrose solution.  The proposed analytical model has been employed to 
develop sweetened breakfast cereals and snacks. 
Application of ANN in baking has been studied out by few investigators. The bake level of 
biscuits is of significant value to biscuit manufacturers as it determines the taste, texture and 
appearance of the products. Previous research explored and revealed the feasibility of 
biscuit bake inspection using feed forward neural networks (FFNN) with a back 
propagation learning algorithm and monochrome images (Yeh et al 1995). A second study 
revealed the existence of a curve in colour space, called a baking curve, along which the 
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bake colour changes during the baking process. Combining these results, an automated bake 
inspection system with artificial neural networks that utilises colour instead of monochrome 
images is evaluated against trained human inspectors . 
Comparison of Neural Networks Vs Principal component regression for prediction of wheat 
flour loaf volume in baking tests has been reported by Harimoto et al. (1995). The objective 
here was to determine values of four parameters which minimize the standard error of 
estimate (SEE) between prediction of NN & actual, measured remix loaf volumes of the 
flour. Two hundred patterns (i.e. quality test results of 200 flours) were used for training the 
NN. The training tolerance specifies how close each output (remix loaf volume) of the 
network must be to the empirical response to be considered “correct” during training. The 
training tolerance is a percentage of the range of the out put neuron. Net works with smaller 
tolerances require longer time to train. If a network is slow in learning, it is sometimes 
helpful to begin with a wide tolerance and then narrow tolerance. A back-propagation 
neural network has been developed by Ruan et al (1995) to accurately predict the 
farinograph peak, extensibility, and maximum resistance of dough using the mixer torque 
curve. This development has significant potential to improve product quality by minimizing 
process variability. The ability to measure the rheology of every batch of dough will enable 
online process control through modifying process conditions.  
Razmi Rad et al (2007) have shown the ability of artificial neural network (ANN) technology 
for predicting the correlation between farinographic properties of wheat flour dough and its 
chemical composition. With protein content, wet gluten, sedimentation value and falling 
number as input parameters  six farinographic properties including water absorption, dough 
development time, dough stability time, degree of dough softening after 10 and 20 min and 
valorimeteric value as output parameters. The ANN model predicted the farinographic 
properties of wheat flour dough with average RMS 10.794. indicating that the ANN can 
potentially be used to estimate farinographic parameters of dough from chemical composition. 
A neural network based model was developed for the prediction of sedimentation value of 
wheat flour as a function of protein content, wet gluten and hardness index (Razmi et al 2008). 
The optimal model, which consisted of one hidden layer with nine neurons, was able to 
predict the sedimentation value with acceptable error. Thus, ANN can potentially be used to 
estimate other chemical and physical properties of wheat flour. 
Ismail et al (2008) have compared chemometric methods including classical least square 
(CLS), principle component regression (PCR), partial least square (PLS),and artificial neural 
networks (ANN) for estimation of dielectric constants (DC) dielectric loss factor (DLF) 
values of cakes by using porosity, moisture content and main formulation components, fat 
content, emulsifier type (Purawave™, Lecigran™), and fat replacer type (maltodextrin, 
Simplesse). Chemometric methods were calibrated firstly using training data set, and then 
they were tested using test data set to determine estimation capability of the method. 
Although statistical methods (CLS,PCR and PLS) were not successful for estimation of DC 
and DLF values, ANN estimated the dielectric properties accurately (R2, 0.940 for DC and 
0.953 for DLF). The  variation of DC and DLF of the cakes when the porosity value, moisture 
content, and formulation components were changed were also visualized using the data 
predicted by trained network ANN is applied for prediction of temperature and moisture 
content of frankfurters during thermal processing (Mittal and Zhang, 2000). Lou, and Nakai 
(2001). Have discussed application of artificial neural networks for predicting the thermal 
inactivation of bacteria as a combined effect of temperature, pH and water activity.  
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Linear Regression, NN & Induction Analysis to determine harvesting & processing effects 
on surimi quality   is reported by (Peters et al 1996).  Surimi production is highly technical 
process requiring considerable skill.  Harvesting & Processing input combinations and 
product quality attributes for the pacific writing surimi industrial were collected and 
analyzed. Multiple linear regression (MLR), NN, & MS – Induction were used to determine 
significant variables in the industry. MLR incorporated time, temperature and date of 
harvest as the variables, whereas ANN could incorporate other significant variable factors 
intrinsic to the fish (moisture content, salinity, pH , length, weight) and processing variables 
(processing time, storage  temp, harvest date, wash time,  wash ratios) in addition to the 
above three variables. Most variables were highly interactive and non linear. The back 
propagation NN algorithm was used to relate the influences of the variables (inputs) and 
their effects on quality (output) as defined by gel strength the NN model was trained so that 
the model predication was = 10% of the actual value for all data points. 
Comparison of three analytical systems, MLR, NN, &   MS –I showed that time from capture 
to final production, temp of storage  and date of harvest were indicated to be critical to get 
desired gel strength by all systems. ANN & MS-I also identified fish weight and length, 
salinity & moisture of flesh as important processing parameters. In addition, NN analysis 
indicated flesh pH, wash ratios and geographic location were important factors that affect 
quality. NN and MS-I were effective computer based methods for analyzing large data sets 
of complex biological system. They were especially useful for determining factors that affect 
final product quality in a multi-process operation.  
A three-layer feed forward neural network was successfully applied by Paquet et al (2000)  
to model and predict the pH of cheese curd at various stages during the cheese-making 
process. An extended database, containing more than 1800 vats over 3 yr of production of 
Cheddar cheese with eight different starters, from a large cheese plant was used for model 
development and parameter estimation. Very high correlation coefficients, ranging from 
0.853 to 0.926, were obtained with the validation data. A sensitivity analysis of neural 
network models allowed the relative importance of each input process variable to be 
identified. The sensitivity analysis in conjunction with a prior knowledge permitted a 
significant reduction in the size of the model input vector. A neural network model using 
only nine input process variables was able to predict the final pH of cheese with the same 
accuracy as for the complete model with 33 original input variables. This significant 
decrease in the size of neural networks is important for applications of process control in 
cheese manufacturing. 
Optimization of the process of extraction of soy-fiber from defatted soy-flour is reported by 
Gupta and Shastri (2005). Defatted soya flour (DSF)  is a good source of proteins, which are 
extracted in alkaline  medium. The concept of integrated processing of DSF involves 
simultaneous recovery of soya proteins and fiber, which find use in dietetic foods. Process 
needs to be optimized to solubiise maximum protein, which is recovered afterwards as  
Soya Protein Isolate (SPI), with minimum fiber disintegration, and maximum recovery. DSF 
(obtained from Rasoya Ltd. Nagpur) contained 40.3% protein and 25% fiber. Extraction of 
soy-fiber was carried out by alkaline extraction at 11 different concentration-time 
combinations with alkali concentration (range 0.1-0.5N) as variable I, and extraction time 
(range 0.5-1.5 hours) as variable II. Maximum recovery of the fiber after protein 
solubilization was the required output. ANN elite; software (Pandharipande &. Badhe,2003) 
was applied by selecting three hidden layers with 5 neurons, 0.9 learning rate and 0.001 back 
propagation error. Learning of the network was carried out using 9 data points from the 
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experimental data, whereas remaining two data points were used for assessment of  the 
learning status of the  network. The comparison between the experimental and predicted 
results is given in  Fig. (3 ) 
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Fig. 3. Experimental and predicted values for  recovery of fiber  from DSF  

The optimum conditions predicting maximum percentage recovery under the above 
consideration were found to be 0.5 hrs extraction time with 0.5 N alkali(condition I) and 
0.35N alkali for 60 minutes (condition II). Validity of the model  was established by 
confirming the recovery under the selected combinations of alkali concentration and time 
which showed excellent correlation (R2=0.998) with the predicted values, Thus, it can be 
concluded that the developed Artificial Neural Network model has been used effectively as 
a tool in optimizing the process parameter for removal of fiber from DSF. 

5. ANN in the field of biotechnology  
ANN can be a boon in the field of biotechnology in view of the complex nature of 
biocatalysts and microorganisms and their interactions with the environment. Prediction of 
models is usually very difficult on account of the lack of information about the physiological 
and biochemical constraints of biocatalysts, and their effect on physical phenomena like 
solubility of  nutrients, oxygen transfer, and availability of water. ANN has the advantage 
that it can make accurate forecast even when the process behavior is non linear and data is 
unstructured. Since network training is fast, the method is suitable for on-line forecasting. 
Characteristic of the beer production process is the uncertainty caused by the complex 
biological raw materials and the yeast, a living organism. Thus, predicting the speed of the 
beer fermentation process is a non-trivial task. Data sets from laboratory-scale experiments 
as well as industrial scale brewing process were used to develop the neural network and 
descision tree. Simple decision trees were able to predict the classes with 95%–98% accuracy. 
Utility of these methods was checked in a real brewery environment. The neural network 
could, on average, predict the duration of the fermentation process within a day of the true 
value; an accuracy that is sufficient for today's brewery logistics. The accuracy of the 
decision tree in detecting slow fermentation was around 70%, which is also a useful result. 
(Rousu et al 1999). Beluhan and Beluhan (2000) describe estimation of yeast biomass 
concentration in industrial fed-batch yeast cultivation process with separate  arificial neural 
networks combined with balance equations. Static networks with local recurrent memory 
structures were used  for on line estimation of yeast biomass concentration in industrial 
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bioreactor , and the inputs were standard cultivation state variables: respiratory quotient, 
molasses feed rate, ethanol concentration, etc. This hybrid approach is generally applicable 
to state estimation or prediction when different sources of process information and 
knowledge have to be integrated. 
Multivariate statistical methods namely, principal component analysis (PCA) and partial 
least squares (PLS), which perform dimensionality reduction and regression, respectively, 
are commonly used in batch process modeling and monitoring. A significant drawback of 
the PLS is that it is a linear regression formalism and thus makes poor predictions when 
relationships between process inputs and outputs are nonlinear. For overcoming this 
drawback of PCA, an integrated generalized regression neural networks (GRNNs) is 
introduced for conducting batch process modeling and monitoring. The effectiveness of the 
proposed modeling and monitoring formalism has been successfully demonstrated by 
conducting two case studies involving penicillin production and protein synthesis.( 
Kulkarni et al 2004). Application of neural network (ANN) for the prediction of 
fermentation variables in batch fermenter for the production of ethanol from grape waste 
using Saccharomyces cerevisiae yeast has been discussed by Pramanik (2004). ANN model, 
based on feed forward architecture and back propagation as training algorithm, is applied in 
this study. The Levenberg- Marquardt optimization technique has been used to upgrade the 
network by minimizing the sum square error (SSE). The performance of the network for 
predicting cell mass and ethanol concentration is found to be very effective. The best 
prediction is obtained using a neural network with two hidden layers consisting of 15 and 
16 neurons, respectively. 
Online biomass estimation for bioprocess supervision and control purposes is addressed by 
Jenzsch et al (2006), for the concrete case of recombinant protein production with genetically 
modified Escherichia coli bacteria and perform a ranking. As the biomass concentration 
cannot be measured online during the production to sufficient accuracy, indirect 
measurement techniques are required. At normal process operation, the best estimates can 
be obtained with artificial neural networks (ANNs). Simple model-based statistical 
correlation techniques such as multivariate regression and principle component techniques 
analysis can be used as alternative. Estimates based on the Luedeking/Piret-type are not as 
accurate as the ANN approach; however, they are very robust. Techniques based on 
principal component analysis can be used to recognize abnormal cultivation behavior. All 
techniques examined are in line with the recommendations expressed in the process 
analytical technology (PAT)-initiative of the FDA. 
Badhe et al (2002) extended application of ANN to study hydrolysis of castor oil by Pancreatic 
lipase (Biocon India Ltd.) at 35 oC at pH 7.5 in immobilized membrane bio reactor to investigate 
the application of free and immobilized lipase for oil hydrolysis. Effect of three variables, e.g. 
enzyme concentration (range 0.1-0.5 ml), substrate concentration (Range 0.25 to 2.0g) and 
reaction time (range 2 –8 hours) on percent hydrolysis was investigated. Total 30 data points in 
the above mentioned range were subjected to training and validation using eliteANN software 
(Pandharipande & Badhe, 2003) with feed forward, sigmoidal activation function & delta 
learning rule. The topology of the system is described as in Table 1. ANN predictions were 
accurate (R2 =0.998) for predicting the percentage hydrolysis of castor oil by lipase enzyme 
as a function of enzyme concentration, ratio of substrate to buffer concentration and reaction 
time.  
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Number of neurons   input  3 

    Output  1 

First hidden layer    15 

Second hidden layer    07 

Training data  points     26 

Test      04 

Learning rate     0.8 

Table 1. Topology of the ANN network applied for prediction for hydrolysis of castor oil 
using pancreatic lipase. 
Cheese whey proteolysis, carried out by immobilized enzymes, can either change or 
evidence functional properties of the produced peptides, increasing the potential 
applications of this byproduct of the dairy industry. However, no information about the 
distribution of peptides’ molecular sizes is supplied by the mass balance equations and 
Michelis Menten like kinetics. Sousa et al (2003) present a hybrid model of a batch enzymatic 
reactor, consisting of differential mass balances coupled to a “neural-kinetic model,” which 
provides the molecular weight distributions of the resulting peptides. 

6. ANN for prediction of enzyme production  
Mazutti et al (2009) have studies production of inulinase employing agroindustrial residues 
as the substrate to reduce production costs and to minimize the environmental impact of 
disposing these residues in the environment. This study focused on the use of a 
phenomenological model and an artificial neural network (ANN) to simulate the inulinase 
production during the batch cultivation of the yeast Kluyveromyces marxianus NRRL Y-7571, 
employing a medium containing agroindustrial residues such as molasses, corn steep liquor 
and yeast extract. It was concluded that due to the complexity of the medium composition it 
was rather difficult to use a phenomenological model with sufficient accuracy. For this 
reason, an alternative and more cost-effective methodology based on ANN was adopted. 
The predictive capacity of the ANN was superior to that of the phenomenological model, 
indicating that the neural network approach could be used as an alternative in the 
predictive modeling of complex batch cultivations. 
SSF is defined as cultivation of microorganisms on a moist insoluble substrate, which binds 
sufficient water to solubilize the nutrients. The desirable aw  is 0.88 to 0.85 and the amount of 
water to be added is determined by the water binding capacity of the solid substrate. 
Although wheat bran is widely recommended ingredient in SSF, several other 
lignocellulosic agrowastes may be incorporated as inducers for specific products.  
(Deshpande et al 2008). On account of difference in water binding capacity of such varied 
substrates, it becomes necessary to optimize the amount of water for achieving maximum 
productivity. The system can be described as a unstructured model, on account of several 
undefined parameters and interactions. Possibility of application of ANN for prediction of 
extracellular enzyme production under SSF conditions was examined  for  several  systems, 
specially to define optimum level of water in combination of solid substrate containing  
components with different water binding properties.  
Production of Pectin Trans Eliminase (PTE) by Penicillium oxalicum was carried out on wheat 
bran medium by incorporation of de-oiled orange peel  (DOP), which was  incorporated at 
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different levels (range 25 – 75%) as first  input parameter and levels of substrate: moisture 
ratio (range 2-3) as second input variable. Enzyme activity units /ml of crude enzyme 
extract (CEE) was first output parameters and specific activity (enzyme activity units/mg 
proteins) was second output parameter. ANN topology employed for the study had three 
hidden layers, each with 10 neurons, learning rate 0.9 and back propogation error =0.0014. 
The model was used for prediction of experimental conditions within the system framework 
for optimum enzyme production and the output predicted by ANN showed excellent 
concurrence with experimental results (Fig.4). Results clearly indicate that DOP is a good 
inducer, because increase in orange peel % increases the enzyme activity but to enhance the 
activity, it is necessary to increase moisture content simultaneously since orange peel has   
more moisture binding capacity.  Optimum combination for high productivity as per the 
ANN analysis was found to be 60-65% DOP, with 90% moisture. (Yadav et al. 2003). 
 

 
                                      (a)                                                                                    (b) 

Fig. 4. Experimental and predicted values for production of Pectin Trans Eliminase by 
Penicillium oxalicum  on Wheat bran : Deoiled Orange Peel medium under SSF conditions   
(a) Enzyme units /ml of Crude enzyme extract 
(b) Specific activity  
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Fig. 5. Experimental and predicted values for specific activity of Amylase produced by 
Aspergillus oryzae  on sorghum grit and sorghum stalk medium under SSF conditions    
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Similar Study was carried out for production of amylase by Aspergillus oryzae by using 
combination of sorghum stalk and sorghum grits as substrate (Pandharipande et al. 2003). 
Sorghum stalk content varied between 0-100%, and the level of moisture varied between 
(30-70%) with total 33 data sets. Amylase activity units/ml in CEE, as well as the specific 
activity were the output parameters. The data was processed by eliteANN software 
(Pandharipande and Badhe, 2003), with three hidden layers of 20 neurons each, learning rate 
of 0.9, and back propogation error 0.0001. The experimental results are shown in Fig. 5. 
It was observed that the amount of inducer influenced the amount of water to be added. The 
optimum specific activity was obtained at inducer level 70% and moisture level 65% 
experimentally as against the predicted values of 85% inducer and 60% moisture. 
Application of ANN for prediction of cellulase and xylanase production by  Solid State 
Fermentation (SSF) was studied using microorganisms Trichoderma reesei and Aspergillus 
niger (Singh et al. 2008, 2009). Experiments were performed with three variables on the 
production of xylanase and cellulase enzyme by T.reesei and A.niger by SSF. Total 60 
different combination of wheat bran-sugarcane bagasse composition, water: substrate ratio 
and incubation time were selected as shown in Table 2. 
 

Variable Range 
Low       High

1. Bran% 0           100 
2.Water Substrate Ratio(v/w) W:S 1.875    3.125 
3.Time of Incubation (hrs) 24          168 

Table 2. Range of variables selected for study of cellulase & xylanase production 
Experimental data was divided into two data series. First set, consisting of about 75-80% of 
the data points, named as ‘Training Set’. It was used for training of ANN to develop 
independent models for xylanase and cellulase production, each containing three inputs 
(%wheat bran, W:S Ratio, and Hours of incubation) and one output (IU/ml), three hidden 
layers (10 nodes each) , learning rate 0.6 and final error 0.002. Adequacy and predictability 
of the model was tested by giving input parameters for the second data set named as ‘Test 
set’ and comparing the predicted and experimental values for T. reese (Fig.  6a & 6b,) and 
A.niger  (Fig. 7a & 7b) respectively by using elite-ANN© software.  
 

 
             (a)CMCase (R2=0..846; RMSE0=.082)        (b) Xylanase (R2= 0.900 RMSE= 0.371) 

Fig. 6. Comparison between actual and predicted values of enzyme production  for test data 
set of T.reesei   (a) CMCase  (b) Xylanase  
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(a) CMCase R2= 0.875 RMSE= 0.152                 (b) Xylanase R2= 0.800  MSE = 0.085598 

Fig. 7. Comparison between actual and predicted values of enzyme production  for test data 
set of A niger (a) CMCase  (b) Xylanase  
Adequacy and predictability of the developed ANN mode l is judged by the comparison of 
the actual and the predicted values (Fig.6 &7), which show a satisfactory match as indicated 
by the correlation coefficients (0.0.90 & 0.81 for xylanase and 0.85 & 0.87 for cellulase) and 
root mean square error (0.35 & 086  for xylanase and 0.082 & 0.15 for cellulase) for T.reesei 
and A. niger respectively. Minor variations in the prediction may be due to complexity and 
inherent variability of biological system. (Pandharipande et al. 2007) 
Production of CMCase and Xylanase by A.niger and T.reesei under SSF condition is a 
function of %baggasse (which acts as an inducer) and aw (which supports the growth). Since 
wheat bran and baggasse differ in their water absorption capacity (WAC), proportion of 
water required to achieve desirable aw in combined substrate needs to be predicted. The 
observations indicate that CMCase and Xylanase production is optimum (>0.6 units) with 
greater than 50% baggasse, and ratio of water to substrate being 2.0. Thus it can be 
concluded that the model developed is validated for the given set & range of process 
conditions and can be used for the prediction of the enzyme activity at different 
combinations of parameters and selection of most appropriate fermentation conditions. 
 

Xylanase Cellulase 
Wheat  
Bran % 

W : S 
Ratio 

Hours PredictedActi
vity IU/ml- 

Wheat  
Bran %

W : S 
Ratio 

Hours Predicted Activity 
IU/ml- 

90 2.75 168 1.769 55 2.5 120 0.527 
65 2.5 156 1.491 50 2.25 144 0.497 
60 2.5 168 1.387 45 2.25 120 0.443 
55 2.25 120 1.524 40 2.75 120 0.426 

Table 3. ANN based  predicted combinations for optimized production of enzymes by T. reesei  

 
Xylanase Cellulase 

Wheat 
Bran % 

W : S 
Ratio 

Hours Predicted 
Activity IU/ml

Wheat 
Bran % 

W : S 
Ratio 

Hours Predicted 
Activity IU/ml 

90 1.875 108 0.9503 80 1.750 108 0.5489 
80 1.750 144 0.9741 75 1.875 120 0.5483 
75 2.259 120 0.9027 70 2.000 136 0.4315 
60 2.000 136 0.8836 65 2.250 144 0.4832 

Table 4. ANN based predicted combinations for optimized roduction of enzymes by A.niger,  
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Above data was subjected to Response Surface Methodology, for Box Behnken model using 
second order regression equation obtained for the model expressed as follows: 

2 2 2
0 1 1 2 2 3 3 11 1 22 2 33 3 12 1 2 23 2 3 31 3 1y x x x x x x x x x x x xβ β β β β β β β β β= + + + + + + + + +  

where  x1, x2,and x3 are inputs, y is the output, The Statistical analysis was done using 
Minitab1511. The correlation coefficient and MSE obtained by these two models is compared  
in Table  3 indicating suitability of both models.  
 

T.reesei    A,niger      Parameter  
Xylanase CMCase Xylanase CMCase 

R2 by ANN 0.9 O.846 0.8 0.875 
R2  by RSM 0.987 0.79 0.99 0.87 
MSE ANN  0.371 0.082 0.856 0.152 
MSE RMS 0.034 0.028 0.06 0.076  

Table 5. Comparison of ANN and RSM for prediction of cellulase and xylanase  production 
by  Solid State Fermentation (SSF) 

7. Future prospects 
Modern systems with diverse application areas demand expert & accurate calculations 
within a nick of time. For Such diverse and cutting-edge technology conventional systems 
have proved expendable and arduous. It is when the Artificial Neural Networks and Fuzzy 
Systems have proved their speed competitive potentials and expandability. In the last years 
several propositions for hybrid models, and especially serial approaches, were published 
and discussed, in order to combine analytical prior knowledge with the learning capabilities 
of Artificial Neural Networks (ANN). The intelligent modeling approach of models 
employing Artificial Neural Network in combination with other data analysis  systems is 
able to solve a very important problem - processing of scarce, uncertainty and incomplete 
numerical and linguistic information about multivariate non-linear and non-stationary 
systems as well as biotechnological processes (Vassileva et al ,2000, Beluhan and Beluhan, 
2000). 
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1. Introduction 
The market of meat and meat products is growing continuously. In the sector of meat, there 
are many problems and challenges associated with the evaluation of meat quality at 
industrial level. The methods with the potential of industrial application should be accurate 
but also rapid, non-destructive, with no health or environment hazards, with benefits of 
automation and lower risk of human error. The lack of such methods represents a drawback 
for meat industry and the research focusing on the possible application of rapid methods is 
emerging. Many new promising techniques are being tested in meat science such as NIR 
(near infrared) and FT-IR (Fourier transformed infrared) spectroscopy, mass spectrometry, 
hyper- and multispectral imaging techniques, machine/computer vision, biosensors, 
electronic noses (array of sensors), ultrasound techniques, etc. However, the enormous 
amount of information provided by these instruments demands an advanced data treatment 
approach. The artificial intelligent methods can be used for such purposes since their 
primary target is to distinguish objects or groups or populations. Artificial neural networks 
(ANN) are a well-known mathematical tool widely used and tested lately for the problems 
in meat production and technology. Its advantages are in the ability to handle with non-
linear data, highly correlated variables and the potential for identification of problems or 
classification. In particular promising applications of ANN in relation to meat sector is in 
carcass classification, quality control of raw material, meat processing, meat spoilage or 
freshness and shelf-life evaluation, detecting off-flavours, authenticity assessment, etc. In 
this chapter an overview of published studies dealing with the application of ANN in meat 
science is given. In the first part of the chapter basic concepts of artificial neural networks 
(ANN) are presented and described. The next part of the chapter summarizes the relevant 
publications on the use of ANN in case of meat production and technology issues and is 
divided in several paragraphs presenting the relevant research work with the most 
interesting applications of ANN. 

2. Basic concepts of ANN 
The ANN is a machine learning method evolved from the idea of simulating the human 
brain (Rosenblatt, 1961; Zou et al., 2008). Once regarded as an eccentric and unpromising 
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algorithm for the analysis of scientific data, ANN has been developed into a powerful 
computational tool in the past decades (Cartwright, 2008) used in many fields of chemistry 
and biology. The key characteristic of ANN is its ability to learn. Important assets of ANN 
are related to its ability to handle large data sets, to find out interesting relationships or 
behaviour among complex data. It is highly adaptable and has an excellent fault tolerance. 
When a data set is well explained by an appropriate mathematical model (e.g. linear 
regression), a neural network is unlikely to be needed. It becomes useful in the cases where 
the rules that underlie the data are not known, or are only partially known. In this case a 
mechanistic model cannot be derived; instead, a data-driven model may be developed and 
for this purpose the ANN method is well suited.  The functional relationship between input 
and output is formed during the learning process. This chapter will give only a brief and 
elementary description of the ANN used in various studies related to meat production and 
technology. For more detailed information a reader is advised to address the literature 
specialized in description and mathematical concepts of ANN. Different types of ANN are 
known, Kohonen, counter-propagation (CP), back-propagation ANN, the latter being the 
most often applied in studies on meat. Like in the biological neural network, the artificial 
ANN has an interconnection of neurons with three vital components: i) node character 
which controls signals i.e. the number of inputs and outputs, the weights and activation 
function associated with the node, ii) network topology defining how nodes are organized 
and connected and iii) learning rules for the initialization and adjustment of weights. There 
are two groups of ANN, supervised and unsupervised, which differ in the strategy of 
learning. In unsupervised learning, the input data is organised and processed without 
reference to the target, whereas in supervised learning, both the input and target (output) 
are used. Kohonen ANN is an example of unsupervised learning, where no referential 
(output) data are used in training of the network, and the algorithms used are excellent for 
establishing the relationship among complex sets of data. Counter-propagation ANN 
represents an up-grade of Kohonen ANN and is based on two-step learning procedure, 
unsupervised in the first step, and supervised in the second. CP-ANN is the most suitable 
method for classification of data, but can be used also as a method for developing predictive 
models for new objects of unknown properties. Back-propagation ANN is another example 
of supervised learning, where one or more target values are predicted from input data, 
meaning that both inputs and outputs should be known for the training dataset. A special 
type of ANN is radial basis function network which ordinarily does not involve the training 
of network, but is determined using a certain transformed function. However, the majority 
of algorithms work according to an iterative principle, which is similar to training of the 
network.  

2.1 Feed-forward neural network 
Feed-forward neural network was the first type of ANN developed. In this network, the 
information moves only in one direction, forward from the input neurons through the 
hidden neurons (if any) to the output nodes. There are no cycles or loops in the network. 
Perceptron (a linear classifier) is the simplest kind of feed-forward ANN. The most popular 
form is back-propagation (BP) ANN, a multilayer feed-forward network based on back-
propagation learning algorithm. The BP-ANN consists of supervised learning algorithm that 
corrects the weights within each layer of neurons in proportion to the error of the preceding 
layer level i.e. backwards, from the last (output) layer towards the first (input) layer of 
neurons (Zupan, 1994). Giving the input vectors and targets, this network can approximate 
a function or classify input vectors in a way defined by the user. Typical BP-ANN has three 
layers (Fig. 1): the input neurons that receive the information from a data file, the output 
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neurons that provide a response to the input data, in between are the hidden neurons which 
communicate with other neurons, they are a part of the internal pattern which provides a 
solution. In BP-ANN the information flows from one processing element to another within a 
set of weights. During the training, the interconnections can strengthen or weaken, so that a 
neural network produces a more correct answer. The number of neurons in the hidden layer 
influences the number of connections, which affect significantly the network performance 
and should be optimised. If the number of hidden neurons is too low the learning process 
can be obstructed, if the number of hidden neurons is too big the network can be over-
trained. When developing BP-ANN, besides the mentioned number of neurons in hidden 
layer, the following parameters of network should be optimized: learning rate (0.1-0.9), 
momentum term (0.0-1.0), and number of epochs (starting with sample size, optimized on 
test-set error). When ANN is trained to a satisfactory level, the weighted links among the 
units are saved and later used as an analytical tool to predict results for a new set of input 
data.    

2.2 Self-organizing maps (SOM) or Kohonen neural networks  
Kohonen ANN was initially developed with the aim to mimic human brain functioning. In 
human brains similar information is stored in certain regions (neighbouring neurons) of 
cortex. This is related to the mapping of inputs in the Kohonen map which represents a type 
of unsupervised learning strategy and can be rationalised by the way how young children 
learn to recognize objects. They do not have to know the words of objects, they just look at 
the images and they automatically relay e.g. the houses in the same group of objects, no 
matter how many windows or chimneys they have. For the unsupervised learning strategy, 
only the description of objects are needed, i.e. the independent variables for the input 
vectors. The properties are not given, so the map obtained shows only the relationship 
between the independent variables of the objects, regardless of their property that may be 
known, but is not represented in object vectors. The main goal of Kohonen ANN is to project 
or map objects from m-dimensional into two-dimensional space on the basis of input data 
(similarity among objects). Thus Kohonen ANN is most frequently applied for visualization 
and clustering purposes. 
The Kohonen ANN (Fig. 1) has only one (active) layer of N neurons represented as weights 
Wj=(wj1, wj2, wji,…wjm). Each neuron (j=1...N) has several weight levels (i=1...m). There are as 
many weight levels as there are input variables. The learning in the Kohonen network is 
based on unsupervised competitive learning, where only one neuron from the layer is 
selected for each input. Input is a vector of variables i.e. descriptors (Xs=xs1, xs2, xsi,…xsm). The 
winning neuron Wc is the neuron with weights closest to the input Xs according to the 
Euclidean distance. The weights of the winning neuron and its neighbouring neurons are 
corrected so that their weights become more similar to the input variable. A trained 
Kohonen network consists of m-dimensional neurons organised in Nx × Ny matrix with 
weights accommodated to the training set objects. Presenting the entire set of objects to the 
trained network we obtain the locations of the winning neurons in the Nx × Ny map, excited 
by individual objects. If we mark the excited neurons in the map by labels corresponding to 
individual objects, we obtain so-called top-map. The labels can be chosen according to 
known properties of the objects (e.g. feeding regime, breed, quality class, geographical 
location). In the top-map one can find clusters of objects, empty spaces (neuron that were 
not excited by any of the training objects), or conflicts (neurons, excited by two or more 
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objects from different classes or having different properties). Clusters and empty spaces can 
be inspected without prior knowledge of property (dependent variables) of the studied 
objects, while the conflicts can only be determined knowing the properties as well. When 
developing Kohonen ANN the following parameters of network should be optimised: net 
size (number of neurons in x and y direction), boundary condition, neighbourhood 
correction, learning rate (minimal, maximal), number of epochs (starting with sample size, 
optimized on test-set error), the latest being the most influential parameter. 

2.3 Counter-propagation artificial neural networks (CP-ANN) 
The CP-ANN (Fig. 1) is based on a two-steps learning procedure, which is unsupervised in the 
first step. The first step corresponds to the mapping of objects in the input layer (also called 
Kohonen layer). This part is identical to the Kohonen learning procedure described above. The 
second step of the learning is supervised, which means that for the learning procedure the 
response or target value is required for each input. The network is thus trained with a set of 
input-target pairs {Xs,Ts}, where Ts is the vector representing dependent variables. 
The training of the CP-ANN means adjusting the weights of the neurons in such a way that 
for each input sample Xs from the training set the network would respond with the output 
Outs identical to the target Ts. The training is an iterative procedure similar to the procedure 
described for the Kohonen neural network, only that dependent variables or target vectors 
are considered as well. It involves the feeding of all input-output pairs {Xs,Ts} to the 
network, finding the central neuron in the input layer for each Xs, and correction of weights 
of the neurons, not only in the input but also in the output layer, according to the differences 
between the targets and current outputs (Ts - Outs). As already stressed, the targets are 
needed only in the last part of each iterative learning step. The unsupervised element in the 
CP-ANN learning procedure is the mapping of the objects vectors into the Kohonen layer, 
which is based solely on the independent variables, i.e. X-part of the {Xs,Ts} pairs  of the 
objects from the training set. For this step no knowledge about the target vector (property) is 
needed. Once the position (central neuron c) of the input vector is defined, the weights of 
the input and output layer of the CP-ANN are corrected accordingly. 
When developing CP-ANN the same network parameters should be optimised as 
previously explained for Kohonen ANN. Properly trained CP-ANN can be used as 
predictive models for new objects of unknown properties. First the object is located in the 
Kohonen layer (on the most similar neuron) regarding the independent variables, which 
describe the unknown object. Then the position of the neuron is projected to output layer, 
which gives us the prediction of the sought properties. CP-ANN is also a suitable device for 
clustering, classification and determination of outliers. 

2.4 Differences between CP-ANN and BP-ANN  
There are two main differences between CP-ANN and BP-ANN which relate to the learning 
strategy and the connection between layers (Novič, 2008). Firstly, in contrast to BP-ANN, the 
learning strategy of CP-ANN is not supervised in all subsequent stages of the training 
process. The two steps are iteratively repeated for all objects of the training data: (i) finding 
the position of the object in the two-dimensional map (the most similar neuron in the input 
or Kohonen layer), which is unsupervised routine based solely on the object representation 
or independent variables, and (ii) correction of the weights, which also encompasses the 
output neurons and consequently the property or target values are needed for this purpose. 
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In this stage, the supervised part is introduced into the training process. Secondly, there is 
no hidden layer in the CP-ANN. The output (Grossberg) layer is positioned directly below 
input (Kohonen) layer, with a one-to-one correspondence of neurons. This means that each 
neuron from the input layer at a position (Nx, Ny) has an ascribed property stored in the 
output layer at the same position (Nx, Ny). In fact, the output layer, when properly trained, 
serves as a lookup table for all neurons from the input layer. It has to be stressed here that, 
in the process of training, all the neurons are affected, not only the central neurons fired by 
the object. The neighbouring neurons around the central one may remain “unoccupied” at 
the end of the training; consequently, the output layer contains also values different from 
the properties of the training objects (interpolated values between those from two occupied 
neurons). However, there is no chance to obtain predictions out of the range of properties of 
the training data, which means that extrapolations are not feasible with the CP-ANN. This 
can be regarded as an advantage, because it prevents unreliable extrapolated predictions, 
not viable in the experience-based ANN. 

2.5 Radial basis function networks 
Radial basis function networks (RBF networks) represent a special type of ANN, which are 
closely related to density estimation methods. A thorough mathematical description of RBF  
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networks is given by Broomhead & Lowe (1988), a short introduction can be found in 
Lohninger (1993). RBF networks are considered as intermediate between regression models 
and nearest neighbour classification schemes, which can be looked upon as content-
addressable memories (some workers in the field do not regard it as neural networks at all). 
The behaviour of a RBF network can be controlled by a single parameter which determines 
if the network behaves more like a multiple linear regression or a content-addressable 
memory. RBF networks (Fig. 1) have a special architecture, they have only three layers 
(input, hidden, output) and there is only one layer where the neurons show a nonlinear 
response (Lohninger, 1999). Some authors have suggested including some extra neurons 
which serve to calculate the reliability of the output signals (extrapolation flag). The input 
layer has, as in many other network models, no calculating power and serves only to 
distribute the input data among the hidden neurons. The hidden neurons show a non-linear 
transfer function which is derived from Gaussian bell curves. The output neurons in turn 
have a linear transfer function which makes it possible to simply calculate the optimum 
weights associated with these neurons. 

3. Novel technologies using ANN in meat quality evaluation and control 
Meat quality is a very complex term and it comprises various aspects which can differ 
according to the user’s standpoint i.e. different factors or properties are important for animal 
producer, meat processor or consumer. From the animal production perspective the quality 
mainly refers to lean meat content on which the payment to the farmer is based. Processing 
industry on the other hand is interested in meat technological quality (suitability for further 
processing) and factors affecting consumer’s choice. The consumer is sensitive about meat 
appearance (colour, lean to fat ratio), its sensory quality, nutritional value (macro and micro 
nutrients) and safety (presence/absence of toxic compounds, drugs, and pathogen or 
spoilage micro flora).  Other factors like the way meat is produced (animal welfare, ecology) 
can also affect consumer’s choice. In meat production and technology, different properties 
can play an important role in quality classification of meat for different purposes or can be 
critically appraised by consumers (often their basis for meat selection or rejection). In pork 
for example, water-holding capacity of meat has big significance, whereas in beef, 
tenderness is an important attribute. Spoilage detection or meat shelf-life is also an 
important issue in meat sector. In the last decades, the methods used in meat evaluation, 
meat quality control, or inspection have undergone important developments with the 
application of novel technologies like computer (machine) vision, spectral imaging, 
spectroscopy, electronic nose or bio-sensing technologies. Since the application of ANN in 
meat science and technology is mainly associated with novel technologies, a brief 
presentation of technologies encountered is given.  
Electronic nose (also electronic sensing or e-sensing) is an array of electronic chemical 
sensors with partial specificity and an appropriate pattern-recognition system, capable of 
detecting specific or complex odours (Craven et al., 1996). These instruments contain an 
array of sensors that utilize various technologies like organic polymers, metal oxides 
(Harper, 2001). The recognition process is similar to human olfaction and is performed for 
identification, comparison, quantification and other applications. These instruments show 
potential but are presently still in developmental phase due to many weaknesses (sensitivity 
to humid conditions, high alcohol concentration, instrumental drift, sensor span life) that 
should be overcome (Harper, 2001). 
Computer vision is concerned with the theory behind artificial systems that extract 
information from images. The image data can take many forms, such as video sequences, 
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views from multiple cameras, or multi-dimensional data from a medical scanner. The 
application of computer vision in the industry, where information is extracted for the 
purpose of supporting a manufacturing process, is called machine vision. Ultrasonography 
is a kind of imaging technique which uses ultrasound for diagnostic purposes. The reflection 
signature can reveal details about the inner structure of the medium. Spectral imaging or 
spectral analysis comprises different techniques such as hyper-, multi- and ultraspectral 
imaging. In contrast to the human eye, which can see only visible light, hyperspectral 
imaging collects and processes information from across the electromagnetic spectrum. 
Certain objects leave unique ‘fingerprints’ across electromagnetic spectrum. The differences 
among hyper-, multi- and ultraspectral imaging are based mainly on the type of 
measurements i.e. discrete or continuous bands, broad or narrow bands.    
Near infrared (NIR) spectroscopy is a spectroscopic method which extracts the information 
about chemical and physical properties of organic substances on the basis of vibrations of 
bounds caused by NIR light (800 nm to 2500 nm). The characteristics of NIR spectra are 
molecular overtones and combination vibrations which are typically very broad in this part 
of the electromagnetic spectrum. It can be very useful in probing bulk material with little or 
no sample preparation.  
Bio-sensing technology combines a sensitive biological element (e.g. enzymes, 
microorganisms, antibodies, etc.) with a physicochemical detector of an analyte (optical, 
piezoelectric, electrochemical). The physicochemical detector transforms the interaction of 
the analyte with the biological element into a signal which can be measured and quantified. 
The results are displayed in a user-friendly way. 
The mentioned techniques generally produce enormous amounts of very complex information 
(spectra, images, etc.) which require sophisticated data treatment i.e. multivariate calibration 
methods. Due to its dynamic self-adapting system using a learning strategy ANN is able of 
pattern recognition, dealing with complexity of data and non-linear relationships, performing 
complex prediction and classification tasks.  ANN has thus been applied also for solving the 
problems in meat science and technology. New methods were developed to either complete or 
replace subjective sensory testing (e.g. analysis of odour or flavour), to handle complex 
properties (e.g. meat tenderness), to speed up the process or replace human operator in on-line 
inspection. Literature review (Tables 1-4) demonstrates examples of successful or promising 
applications of ANN in meat technology in association with novel technologies.  

4. Application of ANN in meat quality evaluation and meat chemical 
composition analysis 
Artificial intelligence methods (ANN) were mainly investigated for the evaluation of meat 
sensory quality i.e. the properties that are subjectively evaluated or classified such as 
tenderness (Li et al., 1999; Li et al., 2001; Tian et al., 2005; Chandraratne et al., 2006), colour 
(Santé et al., 1996; Lu et al. 2000; Tan et al., 2000; Sheridan et al., 2007) or marbling score/level 
(Brethour, 1994; Qiao et al., 2007a).  There were also studies dealing with water-holding 
capacity of pork (Prevolnik et al., 2009; Qiao et al., 2007b), quality of meat products (Dong, 
2009; Valous et al., 2010) and categorization to different pork (Qiao et al., 2007a) or beef quality 
classes (Shiranita et al, 2000). The majority of studies were carried out on beef and pork (Table 
1), and only a few of them to other species such as poultry (Santé et al., 1996) and lamb 
(Sebastian et al., 2004; Chandraratne et al., 2006). Contrary to the frequent use of ANN for meat 
quality assessment, this approach was seldom used for the prediction of meat chemical 
properties (Mittal & Zhang, 2000; Sebastian et al., 2004; Prevolnik et al., 2009). In the studies of 
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meat quality assessment, variants of computer (machine) vision were often applied. The 
overview of the studies (Table 1) shows that ANN was used for the assessment of meat 
properties based on digital images of meat surface (Li et al., 1999; Lu et al., 2000; Shiranita et 
al., 2000; Tan et al., 2000), or based on near infrared spectra (Prevolnik et al., 2009), mass 
spectroscopy (Sebastian et al., 2004), hyperspectral imaging (Qiao et al., 2007a,b), 
ultrasonography (Brethour, 1994; Huang et al., 1998). Only few studies based application of 
ANN for meat quality assessment using just several simple physical measurements of meat 
(Santé et al., 1996; Prevolnik et al., 2009) or carcass traits (Hill et al., 2000).  In the vast majority 
of the reported studies a supervised learning strategy of ANN (multi-layer perceptron neural 
networks with back-propagation learning, back-propagation ANN, feed-forward ANN, multi-
layer perceptron) was used for addressing the issues of meat quality and composition, 
denoting an interest for prediction ability. There was only one study (Prevolnik et al., 2009) 
where a combination of unsupervised (Kohonen ANN) and supervised learning (CP-ANN 
and BP-ANN) and was used. Generally the presented studies (an overview is given in Table 1) 
demonstrate good results, and an improvement when compared to other  
multivariate techniques of data the analysis. The accuracy of classification 
 
OBJECTIVE SAMPLE  INPUT  DATA RESULTS REFERENCE 

CMarbling  
Bovine LD 
n=161 

Ultrasonography, pattern 
recognition  84% correctness Brethour, 

1994 

CMeat colour  
Turkey 
breast, 
n=68+40 

pH, L*, a*, b*, T, haem 
pigment, dielectric loss 
factor 

70% correctness Santé et al., 
1996 

 PWBSF, fat, moisture, 
collagen, sacromere 
length, calpastatine  

Bovine LD 
Wavelet textural features 
from ultrasonic  
elastograms 

R2=0.91-0.99 
Huang et al., 
1998 

PCooked meat 
tenderness 

Bovine loin 
 n=97 

Computer vision (digital 
colour image of meat) R2=0.70 Li et al., 1999 

C,PWBSF 
Bovine LTL
 n=1452 Carcass traits 

PR2=0.37-0.45                

C51-53%  
Hill et al., 
2000 

PMeat colour  
Pork LD 
 n=44 

Computer vision, image 
analysis R2=0.56 

Lu et al., 
2000 

PTemperature and 
moisture during 
cooking 

Frankfurters

ratio fat/protein, initial & 
ambient T, radius, initial 
moisture, relative 
humidity 

System is 
convenient and 
accurate 

Mittal & 
Zhang, 2000 

CMeat grade  
Bovine loin 
 n=36 Image processing 

Effective system, 
difference in 
grades < 1 

Shiranita et 
al., 2000 

CMeat colour  
Pork LD 
 n>200 Colour machine vision 86% correctness Tan et al., 

2000 
CMeat tenderness 
(tough or tender) 

Bovine loin 
 n=59 Image texture analysis 83% correctness Li et al., 2001 

PWBSF, collagen and 
lipid content 

Lamb LD 
 n=120  

Curie point pyrolysis-
mass spectrometry 

r=0.85-0.90,  
10-12% error   

Sebastian et 
al., 2004 

Table 1. The application of ANN in meat chemical composition and quality analysis 
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OBJECTIVE SAMPLE  INPUT DATA RESULTS REFERENCE 
PCooked meat 
tenderness  

Bovine LD 
n=50 

Computer vision 
technology R2=0.62 

Tian et al., 
2005 

PWBSF 
Lamb loin  
n=160 

Image surface 
texture analysis R2=0.62-0.75 

Chandraratne 
et al., 2006 

PMoisture content 
Cooked 
bovine 
joints 

Computer vision 
(colour features) r=0.75 Zheng et al., 

2007 

CPork quality 
class, marbling 

Pork loin 
 n=40 

Hyperspectral 
imaging  

>70 % 
correctness 

Qiao et al., 
2007a 

PDrip loss, L*, pH   
CWHC classes 

Pork loin 
 n=80 

Hyperspectral 
imaging  

Pr=0.77, 0.55 
and 0.86 for drip 
loss, pH and L*, 
respectively 
Csuccessful 

Qiao et al., 
2007b 

CDiscoloration 
(fading) 

Cured ham 
L*, a*, b or 
spectral 
reflectance 

Successful 
discriminating 
different stages 
of fading  

Sheridan et 
al., 2007 

PWHC (drip loss) 
Pork LD 
 n=312 

pH, L*, a*, b*  
NIR 
spectroscopy 

R2=0.37-0.51,  
error=2.2-2.5% 

Prevolnik et 
al., 2009 

Sensory texture Cooked 
sausage 

Instrumental 
texture 
measurements 

Lower errors  as 
compared to  
regression 
analysis 

Dong, 2009 

Quality class Cooked 
ham Computer vision 84-96% 

correctness 
Valous et al., 
2010 

LD – longissimus dorsi; TB – triceps brahii; LTL – longissimus thoracis et lumborum; R2 – coefficient of 
determination; r – correlation coefficient; P – prediction; C – classification; WHC – water holding 
capacity; WBSF – Warner-Bratzler shear force; NIR – near infrared. 

Table 1. Continued. Application of ANN in meat chemical composition and quality analysis 
reported is high (70 to 85 %). In case where ANN approach was used for prediction, the 
results varied from moderate to excellent; however, for the most part the authors consider 
application of ANN as promising and successful.  

5. Application of ANN for carcass quality or classification 
Meat industry is interested in lean and conformed carcasses which provide high meat yields. 
The so called carcass grading or classification (used for pig, bovine, lamb carcasses) is 
performed at the end of the slaughter line and represents a basis for the payment to the 
farmer.  Another example is in poultry, where the carcasses are inspected at the slaughter line 
for the wholesomeness and those with an abnormal aspect (tumorous, bruised, skin-torn, 
septicemic, cadaver, air-sacculitis) are discarded. The mentioned procedures are mostly based 
on the visual appraisal and thus subjected to human limitations (speed, error, fatigue). The 
overview of the problems encountered in this field of research, where possible application of 
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ANN was investigated, is given in Table 2. In regard to carcass classification of domestic 
mammals, the research was mainly focused on either improving or replacing methods that 
are currently used. Many studies were carried out on classification or carcass quality 
evaluation in bovine carcasses (Borggaard et al., 1996; Hwang et al., 1997; Díez et al., 2003; 
Hatem et al., 2003; Lu & Tan, 2004), but also for lamb (Chandraratne et al., 2007) or goat (Peres 
et al., 2010). In these species the principle of grading is similar and consists of visual notes given 
by the classifier, which are the indicators of lean meat quantity. In these cases the aim was 
either to predict carcass lean meat content (Hwang et al., 1997; Berg et al., 1998; Lu & Tan, 
2004) or to replace the classifier using automated grading (Borggaard et al., 1996).  
 

OBJECTIVE SAMPLE INPUT DATA RESULTS REFERENCE 
Inspection – carcass 
wholesomeness 

Poultry 
n=87 

Multispectral 
imaging 

83-97% success 
in sorting 

Park & Chen, 
1994 

PConformation, 
fatness, fat colour, 
rib eye area, 
saleable meat % 

Bovine 
n=3,500 Computer vision 

R2=0.66-0.93,  
20% lower error 
as classifier 

Borggaard et 
al., 1996 

Inspection – carcass 
wholesomeness 

Poultry 
n=559 

VIS-NIR 
spectroscopy 

93–97% success 
in sorting 

Chen et al., 
1996 

Inspection – carcass 
wholesomeness 

Poultry 
n=288 

Multispectral 
imaging 

91% success in 
sorting 

Park et al., 
1996 

Inspection – carcass 
wholesomeness Poultry VIS-NIR 

spectroscopy 
>95% success in 
sorting 

Chen et al., 
1998a 

Inspection – carcass 
wholesomeness Poultry VIS-NIR 

spectroscopy 
98% success in 
sorting 

Chen et al., 
1998b 

Lean meat content 
prediction (carcass 
and prime cuts) 

Pig 
 n=50 

Electromagnetic 
scanning 

Improvement  in 
comparison to 
linear regression 

Berg et al., 
1998 

Inspection – carcass 
wholesomeness 

Poultry 
 n=91 

Multispectral 
imaging 

90-93% success 
in sorting 

Park et al., 
1998 

Inspection – carcass 
wholesomenes Poultry Machine vision 

(dual-camera) 
80-100% success 
in sorting 

Chao et al., 
2000 

Table 2. Application of ANN for carcass classification 
Other studied applications were interested in prediction of fat depots based on in vivo 
measurements (Peres et al., 2010) or prediction of carcass maturity (Hatem et al., 2003). In 
the case of pig classification, studies using ANN are rare (Berg et al., 1998), probably 
because the current classification methods are based on objective measurements on the 
carcass which are well correlated to lean meat content thus providing sufficient accuracy 
using standard regression methods. There was an interesting study in bovine carcass 
classification addressing the problem of classifier effect and repeatability in bovine carcass 
grading (Díez et al., 2003), demonstrating another possible application of ANN for the 
purposes of monitoring. Much work has also been devoted to the automatic inspection of 
wholesomeness of chicken carcasses using different optical techniques (Park & Chen, 1994; 
Chen et al., 1996, Park et al., 1996, 1998; Chen et al., 1998a,b; Chao et al., 2000, 2002; Ibarra et  
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OBJECTIVE SAMPLE INPUT DATA RESULTS REFERENCE 
Inspection – carcass 
wholesomeness Poultry Spectral 

imaging 
83–91% success in 
sorting  

Park & Chen, 
2000 

Inspection – carcass 
wholesomeness 

Poultry 
n=14,591 

Machine vision 
(dual-camera) 

87-94% success in 
sorting 

Chao et al., 
2002 

Inspection – carcass 
wholesomeness- 
diseased air sacks 

Poultry 
 n=100 

Computer 
vision - color 
classification 

97% success rate Ibarra et al., 
2002 

Classifier effect and 
repeatability  

Bovine  
n=227 

Computer 
vision (image 
analysis) 

Higher 
uncertainty when 
grading light 
than standard 
carcasses 

Díez et al., 
2003 

Skeletal maturity 
grading 

Bovine 
cartilage 
 n=138 

Machine vision  
(colour features 
of cartilage) 

65-75% 
correctness 

Hatem et al., 
2003 

Lean weight and 
lean percentage 
prediction 

Bovine  
n=241 

Computer 
vision (image 
analysis) 

No advantage to 
linear methods  Lu & Tan, 2004 

Carcass grading  Lamb 
 n=160 

Computer 
vision (image 
analysis) 

87-100% 
correctness 

Chandraratne 
et al., 2007 

Fat depots 
assessment  

Goats, 
n=56 

Ultrasound 
technology 

R2=0.82-0.96, 
RPD=1.7-4.3 

Peres et al., 
2010 

LD – longissimus dorsi; VIS – visible; NIR – near infrared; R2 – coefficient of determination;  
r – correlation coefficient; P – prediction; C – classification; RPD – residual predictive deviation. 

Table 2. Continued. Application of ANN for carcass classification 

al., 2002). The usefulness of ANN as coupled with computer vision for such purposes has been 
demonstrated by several studies. The success rate of such classification is very high, typically 
above 90%. In all studies dealing with carcass classification or inspection a supervised learning 
strategy was applied, mainly BP-ANN, with the exception of a few studies using other types of 
ANN such as RBF networks (Peres et al., 2010) or learning vector quantization (Ibarra et al., 
2002). In general, ANN showed its potential and advantage over conventional regression 
methods especially in case of non-linearity between system inputs and outputs. 

6. Application of ANN for spoilage identification/storage time assessment 
Meat and meat products are highly susceptible to spoilage or contamination, affecting the 
quality and safety of the products. Many of the methods used for the detection of spoiled or 
contaminated meat are based on immunological or nucleic acid based procedures which are 
time consuming, laborious and demand trained personnel. At present no method is 
available for a real-time, non-destructive, reagentless, quantitative and relatively 
inexpensive monitoring. According to Ellis & Goodacre (2001) interesting analytical 
approaches include biosensors, electronic noses, infrared spectroscopy upgraded with 
machine learning methods (ANN, genetic algorithms).  
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OBJECTIVE SAMPLE INPUT DATA RESULTS REFERENCE 
Pstorage time, 
spoiled meat 

Ground beef, 
pork n=20 

Electronic 
nose Successful Winquist et al., 

1993 

PMeat freshness Chicken Electronic 
nose 

Successful 
prediction of 
storage time  

Galdikas et al., 
2000 

PBacterial 
growth (L. sake) 

Cooked meat 
products T, aw, CO2 

Max. specific 
growth rate 
R2=0.94, 
RMSE=0.011 
Lag phase λ  
R2=0.97, 
RMSE=6.70 

Lou & Nakai, 
2001 

PBacterial 
growth (L. 
monocytogenes)  

Meat broth 
Fluctuating 
conditions (T, 
pH, NaCl, aw) 

ANN can be used 
to 
describe/predict 
bacterial growth in 
dynamic 
conditions  

Cheroutre-
Vialette & 
Lebert, 2002 

PInternal 
temperature 
estimation  

Chicken 
n=85 

IR and laser 
range 
imaging 

R2=0.94-0.96 Ma & Tao, 2005 

PShelf-life 
estimation 

Cooked meat 
products 

T, pH, NaCl, 
NaNO2 

Error, bias and 
accuracy factors 
show successful 
validation 

Zurera-Cosano 
et al., 2005 

CIdentification 
of spoiled meat 

Bovine LD 
n=156 

Electronic 
nose 

83-100% 
correctness 

Panigrahi et al., 
2006 

PSurvivival of 
Escherichia coli 

Fermented 
sausage 

pH, aw, iso-
thiocyanate 
concentration 

Accurate ANN 
based models 

Palanichamy et 
al., 2008 

C,PMeat 
spoilage 
identification 

Bovine LD 
n=156 

Electronic 
nose 

Sorting accuracy 
>90%  
Microbial count 
R2>0.70 

Balasubramanian 
et al., 2009 

C,PSpoilage 
identification 

Beef fillets 
n=74 

FT-IR 
spectroscopy 

Sorting accuracy  
81-94% 
Satisfactory 
prediction of 
microbial counts 

Argyri et al., 
2010 

 

LD – longissimus dorsi; R2 – coefficient of determination; r – correlation coefficient; P – prediction;  
C – classification; IR – infrared. 
Table 3. Application of ANN for spoilage or storage time prediction  
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7. Various other applications of ANN in meat science and technology 
In addition to the mentioned subjects of interest for ANN application in meat science there 
are various other applications related to meat technology issues (Table 4). These involve 
identification of animal species in ground meat mixtures (Winquist et al., 1993) or fat tissue 
(Beattie et al., 2007), recognition of animal origin (distinction between Iberian and Duroc 
 

OBJECTIVE SAMPLE INPUT DATA RESULTS REFERENCE 
Species  
recognition  

Ground beef, 
pork, n=20 

Electronic 
nose Successful Winquist et al., 

1993 
Visual guidance 
of evisceration Pig carcasses Computer 

vision 
Efficient ANN 
based system  

Christensen et 
al., 1996 

Lean tissue 
extraction 
(image 
segmentation) 

Bovine LD 
n=60 

Computer 
vision (hybrid 
image) 

Better efficiency 
and robustness of 
ANN based 
system 

Hwang et al., 
1997 

Fermentation 
monitoring Sausage Electronic 

nose 

Lowest error in 
case of ANN 
compared to 
regression  

Eklöv et al., 
1998 

Estimation of 
meat internal T  

Cooked 
chicken meat IR imaging 

Great potential 
for monitoring of 
meat doneness 
(error of ±1°C)  

Ibarra et al., 
2000 

Determination 
of RN- 
phenotype  

Pig 
n=96 

NIR 
spectroscopy 96% correctness  Josell et al., 

2000 

Identification of 
feeding and 
ripening time 

Pig; dry-
cured ham 

Electronic 
nose 

Best prediction 
for N at 250°C; 
misclassified 
hams ≈8% 

Santos et al., 
2004 

Species  
recognition on  
adipose tissue  

Lamb, beef 
chicken,pork 
n=255 

Raman 
spectroscopy >98% correctness Beattie et al., 

2007 

PCooking 
shrinkage 

Bovine TB 
 n=25 

Computer 
vision 
technique 

r=0.52-0.75  Zheng et al., 
2007 

Walk-through 
weighing  Pigs Machine 

vision 
relative error  
≈3% 

Wang et al., 
2008 

Differentiation 
of Iberian and 
Duroc  

Pigs 
n=30 

VIS-NIR 
spectroscopy  >95% correctness del Moral et al., 

2009 

LD – longissimus dorsi; TB – triceps brachii; R2 – coefficient of determination; r – correlation coefficient;  
P – prediction; C – classification; VIS – visible; NIR – near infrared; IR - infrared. 

Table 4. Other applications of ANN in meat science and technology  
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pigs) as affected by rearing regime and/or breed (del Moral et al., 2009), hybrid image 
processing for lean tissue extraction (Hwang et al., 1997), detection of RN- phenotype in pigs 
(Josell et al., 2000), the “walk-through” weighing of pigs (Wang et al., 2008), the efficiency of 
ANN for visual guidance of pig evisceration at the slaughter line (Christensen et al., 1996) 
and the use of ANN for the processing control of meat products (Eklöv et al., 1998; Ibarra et 
al., 2000; Santos et al., 2004). Again, in the majority of studies, ANN approach was an 
instrument to deal with the complex output signal of novel technologies applied. Again, 
based on the literature reports, supervised learning strategy of ANN (BP-ANN, RBF) was 
applied in the majority of studies. There were also a few studies where unsupervised 
learning has been tested (Winquist et al., 1993; Beattie et al., 2007). A bibliographic overview 
given in Table 4 demonstrates the efficiency and successful classification rate of ANN based 
systems.  

8. Conclusions and future perspectives 
The existing research work of ANN application in meat production and technology 
provided many useful results for its application, the majority of them in association with 
novel technologies. Among interesting ideas that have not been encountered in the literature 
review is the combination of ANN with bio-sensing technology. ANN shows great potential 
for carcass and meat (product) quality evaluation and monitoring under industrial 
conditions or bacterial growth and shelf-life estimation. However, the potentially interesting 
relevance of ANN, for which the literature information is scarce, is its application for meat 
authenticity or meat (product) quality forecast based on the information from rearing phase. 
Overall the presented applications are relatively new and the full potential has not yet been 
discovered. 
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1. Introduction 
1.1 Background and significance of the research 
Currently, the world's fuel vehicle is growing by the rate of 30 million per year. It is 
estimated that the total amount of the world's fuel vehicle for the whole year will reach one 
billion. The sharp increase demand in oil’s resources, further aggravate the shortage of oil 
resources in the world [1-2]. Fuel vehicle exhaust emission is the main source of urban air 
pollution today, and the negative impact on the environment is enormous. Environment is 
closely related to the survival and development of human society. In the case of the energy 
shortage and environmental protection urgent need to improve, governments invest 
enormous human and material resources to seek new solutions. This is also bringing the 
development of electric vehicle [3-6]. 
As power source and energy storage of HEV, battery is the main factors of impacting on the 
driving range and driving performance of HEV [7-8]. At present, the most important 
question is the capacity and battery life issues with HEV application. Only estimate SOC as 
accurate as possible can we ensure the realization of fast charging and balanced strategy. 
The purpose of that is to prevent over charge or discharge from damaging battery, and 
improve battery life. This also has practical significance in increasing battery safety and 
reducing the battery cost [9]. 
How accurate tracking of the battery SOC, has been the nickel-hydrogen battery’s 
researchers concerned about putting in a lot of energy to study. Currently, it is very popular 
to estimate the SOC with Ampere hours (Ah) algorithm as this method is easy to apply in 
HEV. The residual capacity is calculated by initial capacity minus capacity discharged. But 
Ah algorithm has two shortcomings. First, it is impossible to forecast the initial SOC. 
Second, the accumulated error cannot be ignored with the test time growing [10]. The 
researchers also used a new method that the battery working conditions will be divided into 



 Artificial Neural Networks - Industrial and Control Engineering Applications 

 

244 

static, resume, three states of charge and discharge. Then estimate on the three state of SOC 
separately. It can disperse and eliminates the factors that affect the SOC value in the 
estimation process. Particularly in the charge-discharge state, they improve Ah algorithm by 
using the dynamic recovery value based on the coulomb efficiency factor. It solves the cause 
of the problem of accumulated error by Ah counting method, but this method cannot be 
displayed its accuracy in the complex conditions [11]. After analysis the large amounts of 
data under different charge or discharge test conditions, the researchers developed the 
battery model by cell theory and the external characteristics of the battery pack. Through a 
large number of experiments, the battery model is improved step by step. At last they 
completed the final model for measuring SOC in online and real-time. Through Digital 
model, the battery system’s state equation and observation equation can be established. 
Kalman Filter is use to achieve the minimum mean square error (MMSE) of SOC estimation. 
The precision of the algorithm is analyses by a experiment in Different charge and discharge 
test conditions. Through continuous improvement, they can get the algorithm which does 
not demand exact conformity to initial SOC value. However, this method need researcher’s 
high capacity and is too complicated to fit for the current application [12]. 
In addition, there have some other methods, such as open circuit voltage, resistance 
measurement, discharge experiment, the load voltage method and so on [13-15]. But they 
still cannot meet the requirements of the control requirement of HEV. 

1.2 Main content 
EV or hybrid electric vehicles (HEV) are mainly used secondary battery in power batteries. 
Than any other batteries, Ni-MH battery has many advantages: rapid charge or discharge 
high current, high resistance to charging and discharging capacity, low temperature 
performance, high mass-power ratio, environmentally friendly (no cadmium mercury or 
lead) and so on [16].Therefore, this paper studies how to fast and accurately track the SOC 
based on Ni-MH battery. 
This paper designs an artificial neural network (ANN) for predicting Ni-MH batteries in 
EVs. For achieving the predictability of the network, the text use some basic characteristics 
of the ANN algorithm such as the ability of non-linear mapping, adapting to the self-
learning, parallel processing method, and so on[16-17]. The influence between the current 
SOCt of Ni-MH battery and the previous SOCt-1 is not considered in most of published 
paper for the sake of tracking SOC by ANN when they select input variable. So the previous 
SOCt-1 is interpolated into input variable in this paper. That is to say, the input variable of 
this discourse are: battery discharging current I, battery terminal voltage U, and previous 
SOCt-1. Through training a lot of samples, ANN can study and adapt the unknown system’s 
dynamic characteristics, and the characteristic will conserve inside the connected weight of 
ANN. Simulation results show that the proposed ANN algorithm can accurately predict Ni-
MH hybrid vehicle battery SOC, and the average error of output results to reach about 5% in 
a short time. 

2. General layout of ANN 
2.1 Basic principles of ANN 
The ANN comprises by input layer, hidden layer and output layer. The hidden layer may be 
one or more layers. The topology of the network is illustrated as figure 1[18-20]: 
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Fig. 1. The model of multilayer perceptron 

The number of neurons in input layer is equal to the dimensions of the input signal, the 
number of hidden layers and hidden nodes depends on the special details, and the number 
of neurons in output layer is equal to the dimensions of the output signal. In addition to 
input and output layer, the multilayer perceptron includes one or more hidden units. The 
hidden units make the network be able to complete a more complex task by picking up 
more useful information from the input mode. Many synapses of the multilayer perceptron 
make the network more connective, the changes of the connection domain and connection 
weights will influence its connectivity. Multilayer perceptron has a unique learning method, 
which is the famous BP algorithm. Therefore the multilayer perceptron is frequently called 
the BP network. 
It is supposed that the input units are n, the output units are m, and the effect of the 
network is the map from n-dimension space to m-dimension space. It can be proved that 
anyone of the nonlinear maps f can accomplish by a 3-layer network. That is to say, it will 
come true only by one hidden layer. The dimensions m, n of the vector have no any limiting 
condition. This makes many practical problems with the ANN method to solve possible. In 
theory, the BPNN can realize any link function map and its range of application is very 
wide. 

2.2 Selection of sample 
The performance of ANN is related to the choosing of samples. To successfully develop the 
useful ANN, the extraction of data samples is the key step. It contains initial data collection, 
data analysis, variable selection and data pretreatment. Only by these measures can ANN be 
for effective learning and training. 
In this text, we collect once data every 10ms in many driving cycle which set up different 
initial condition (such as charge and discharge current). After receiving the real-time data of 
current, voltage and other basic parameters of hybrid car batteries, we can calculate the real-
time SOC of the battery by Ampere hours (Ah) algorithm. 
The collected data have a certain similarity, for example, directly extract training samples 
result in containing many redundant data. So they need preliminary sorting. It contain 
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abandon various kinds of irrational points that causing severe mutations of SOC, periodicity 
or consistently data also be selected only one group.  
To a complex issues, how many data should be selected, which is also the key issues. System 
input-output relationship is contained in these data samples, so generally the more select 
data, the more learning and training result reflect the relationship between input-output 
data. But selecting too many data would increase the cost of the collecting data, the analysis 
data and network training; of course, selecting too few data could not receive the correct 
result. In fact, the number of the data depends on many factors, such as the size of the 
network, the need of the network test and the distribution of the input-output and so on. 
The size of the network is the most important, and ordinarily the larger network need the 
more training data [21]. 
Be inclusive of needing to pay attention to the attending training neural network data, also 
consider after the neural network finished, needing other test data to chow test the network, 
and the text data should be independent data assemble.  

2.3 Establish the ANN model 
The article focus on how to predict battery SOC in real-time according to the battery tested 
data (cell current、voltage)based on neural network. Generally, its usual operation is that 
choose the simple network also meet the request. Design a new network type seems 
difficult. Currently, among the practical application of ANN, the most majority of neural 
network has adopted BP. Many studies have shown that BPNN with three layers could 
reach to factual function f( ), thus the article has introduced the triple layers most commonly 
used BP neural network. The battery current,voltage act as the measured parameter basis for 
the battery, it must compose the input parameter in neural network. Given the certain 
relationship between battery SOC changes and its previous SOC, therefore it has to elect the 
SOCt-1 as its input parameter among building the neural network. 
Under current time t, determined that HEV Ni-MH battery SOCt and the current It, voltage 
Ut as well as the raletionship with the preceding time SOCt-1, this is a forecast to the function 
curve. We can also understand the SOCt as a three circular function f which is constituted 
with It, Ut and SOCt-1.This has determined the input and the output parameter of the neural 
network. 
After having determined input and output variable, the node number of the network 
difference level and the output level also determined along with it. Regarding to the layer 
number of the hidden layer, we first only consider to how to choose a hidden layer, and the 
left question is how to choice the node point number of the hidden layer. In neural 
network's design, increases the number of the hidden layer's neurons can improve the 
precision which the network and the training set match, but the more of the hidden layer's 
neurons is not better. Too many number of the neuron will let the network remember all 
training data including noise. It will reduce pan-ability of the network. In the foundation of 
it can reflect correctly the relationships between input and output, selects the few hidden 
layer nodal point number. This makes the network to be as simple as possible [20]. After 
contrast simulation according to cut and try method the result discovered that neural 
network's hidden layer uses 10 neurons can describe curve relations about the input variable 
and the output variable quite accurately. 
The ANN structure is used in this experiment shown in Fig. 2. 
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Fig. 2. Two layers of neural network structure 
In the Fig. 2, w expresses the connection of weight between the two layers, b means every 
neuron’s threshold, f expresses ANN’s transfer function. Superscript on the w11.1 expresses 
this value is the connection weights between input layer and hidden layer, while the weight 
of hidden layer and output layer expressed by number 2; the first number 1 of subscript 
means input is Ut, and the input It, SOCt-1 are expressed by number 2, 3; the second number 
1 of subscript expresses the connection weights between the first neuron of the hidden layer 
and the input value. The superscript of b11 means hidden layer neurons, and output layer 
neurons express with number 2. The subscript of b11 means the first neuron of current layer. 
The a1 expresses the first neuron’s output in the hidden layer.  
The output SOC of ANN’s output layer defined as:  

 
2 1 1 2[ * ( * )]SOC f w f w x b b= + +  (1) 

x  is the input value of ANN, and linear transfer function is ( )f x  which equal to x  in 
upper equation. 

3. Training algorithm 
In general, BP neural network is a kind of three or more than three multilayer neural network, 
it's about each neuron between the layers to achieve full connectivity, namely each layer in the 
left and right layers of neurons has a connection. BP network learning by a teacher's training. 
When a mode of learning provided to the network, its activation values of neurons will 
transmit from the input layer to the middle layer, land up output layer at last. Corresponds to 
the input mode, each neuron will export network response in the output layer. Then, follow 
the reduction of the desired output and actual output error principle, from the output layer 
through an intermediate layer, and finally back to the input layer connection weights layer by 
layer correction. This correction process is carried out from the output to the input layer. So it 
is called error back propagation algorithm. As this error back propagation constant training, 
the network input mode for the correct response rate is also rising. 
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It adopts the training and emulating alternate work model to avoid the net excess training. 
After the training samples achieve an net training, it keep the net weight value and 
threshold constant, validation samples data is used as the net input, running the net in 
forward direction and examining the average output error. During the simulation, the 
previous time simulation output is used for the next time simulation input, 

( ) ( 1)SOC i SOC i′= − , 1i > and is integral number. If continue training cannot decrease the 
average error, the net training is over. If we modify the parameter of NN such as learning 
rate slightly and keep the input and output constant, the average output error cannot 
decrease also, so we consider this net is the optimization result in the case of keeping the 
input and the Network Structure constant. 
Commonly used BP algorithms exists a long time and slow convergence disadvantage etc. 
So this paper used the proportion conjugation gradient training algorithm. Conjugation 
gradient algorithm is required to search network linearly and then adjust its direction at 
each training cycle. This linear search at each search must be repeated for calculating all 
samples, this consumes a lot of time. While proportion conjugation gradient algorithm 
combines value trust region algorithm with the conjugation gradient algorithm, effectively 
reduce the search time mentioned above and improve the training speed of the network[22]. 
The BP neural network training process used in this article is shown in Fig. 3. 
 

 
Fig. 3. The training flow chart of BPNN 
Input training samples U and I are datum based on t moment in the Fig. 3. SOC is the data 
based on t-1 moment. ε represent a pre-set training ending goal. This goal is not the smaller 
the better, because over-training problem is existed in the network. Before we input the NN 
training sample, it must firstly assign the initial net parameter. ANN calculates the output of 
hidden neurons, and gets the Output of Output layer neuron. It also calculates every layer 
neuron output error. If the error is too big, we must modify the net weight value and 
threshold. After the sample are all trained, if the NN average error is smaller than the setting 
object for ending the training, the training is over, or else it keeps on new training after 
updating the total training steps. 
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4. Experiment results and analysis 
4.1 Experiment and result 
4.1.1 Training 
In accordance with the above training methods, we first use the training sample to get a 
neural network and recorded it as network 1. In this topic research, we don't use the 
traditional authentication method, as lead the validation data into the model, and analyze 
difference value between the model prediction value and real value. The specific flow chart 
is shown in Figure 4. In the actual application, it only supplies the initial value or even the 
wrong initial value when we use battery management system to estimate electrokinetic cell 
SOC. In the research of this topic, we completely use the prediction technique. In the first 
time of prediction, we can get the input current, voltage and battery SOC, which the 
primary neural network model is needed. In the second prediction, we only input the 
collected current and voltage. The battery SOC is as the predication results as last time. In 
such a way, it can reflect the model's ability of self-adapting and tracing whole. When we 
have traced many times and amended the parameters such as network learning rate and so 
on, the output average error of the network still can't diminish. We will consider this 
network as the best result at present during the network input parameters are not changed. 
This paper will replace the network with the network 1 finally. 
In the similar way, we can continue to add training samples b into the network 1, and obtain 
the network 2 by training. By parity of reasoning, when we have added the training sample 
of c, d and e, we can get network of 3, 4 and 5 respectively. The average error of each 
network at different time is shown in chart 1. As can be seen from chart 1, the average error 
of the output from the neural network 1 to neural networks 4 is gradually reduced, but it 
begin to increase from the network 5. It shows in the same case of input samples and 
training algorithm, network 4 is the best results we can get. This paper uses the network 4 as 
the neural network model, which will be tested finally. In which the training samples used 
as input of neural network's output comparison chart is shown in Fig.5. It uses the 
validation sample as input of neural network's output comparison chart is shown in Fig.6. 
 

 
Fig. 4. The flow chart of checking model 
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Fig. 5. The output result waveform of the training sample 
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Fig. 6. The output result waveform of the checking sample is input. 

 

 Net 1 Net 2 Net 3 Net 4 Net 5 

training sample 29.9% 13.9% 8.9% 7.3% 8.1% start time error 
checking sample 17.3% 9.7% 7.5% 9.5% 8.4% 
training sample 29.8% 13.3% 8.2% 6.7% 7.5% 3minutes 20seconds 

after error checking sample 23.7% 7.1% 4.7% 4.2% 4.3% 

Table 1. Different network’s average error 
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4.1.2 Test and result 
When you are sure the neural network which you have got is the best, use the validation 
sample and training sample to test the tracking of network respectively. That is in the any 
case of initial value setting of SOC, how long the neural network required to reduce output 
error to an acceptable extent. All samples’ sampling time is 10ms. The initial value of SOC is 
obtained by Ah algorithm or is set arbitrarily (0, 30, 50, 70, 100 separately). Since the 
emulated waveform contains a number of fluctuations which are caused by current's 
mutation and voltage's mutation, this experiment uses a weighted filtering to process 
results. It consider the first few moments of factors in the current results (their own value 
instead of the output value at the start time). Through testing, the weighted parameters of 
all time choose the best one. Chart 2 shows the average error of some samples for the 
artificial neural network 4's forecast of results, which is in the condition of different initial 
value of SOC. 
 

 Sample time 
t/s 

average prediction 
error  Sample time 

t/s 
average prediction 
error 

87 6.9% 64 7.2% 

150 4.8% 150 6.9% 
Checking 
sample 

200 4.2% 

Training
sample 

200 6.7% 

Table 2. The average error of ANN output 

4.2 Result analysis 
4.2.1 Training result 
As can be seen from Table 1, we calculate the average error of the output from the initial 
moment. The inaccuracy of five networks which respectively use the training sample as the 
input are reduce at first, then its increase, and the NO.4 network’s inaccuracy is the smallest. 
The inaccuracy of five networks changes to be quite disorderly which use the confirmation 
sample as the input. But apart from the network 1, the other four networks errors are about 8% 
and the differences are not large. As we calculate the average error of output from 3 minutes 
and 20 seconds, the inaccuracy of five networks are reduce at first which respectively use the 
training sample as the input, then its increase. The NO.4 network is the smallest. Regarding 
other abilities of ANN, generally we pay more attention to its generalization ability and 
tracking ability of the network running. From experimental results in Table 1, we know this 
paper focuses on change of the output’s average error, which ANN uses the validation sample 
as input and start from 3 minutes and 20 seconds. At last the auto-adapted ability of Network 
4 is the best, and the forecasting result is most accurate. From the comparison ware-form of 
output result in Fig.5, Fig.6 and Fig.7, we know, the output wave-form of network 4 is more 
close to the real value than other networks. 
As Shown in Fig.7, it’s the comparison chart of five network output value which ANN uses 
the validation sample as input value. Compares with other network's output result, the 
output result profile of network 4 and the network 5 are obviously closer the changes 
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Fig. 7. Test Chart of five sample test network 

waveform of real value in Fig.7. But from the Table 1 we know, the output average error of 
network 4 which calculated after a period of time after is smaller than the value of the 
network 5. Therefore, the network 4 is the networks which this laboratory needs. 
Through the above analysis of training results, we use the network 4 as Neural Network 
which predicts the car battery SOC. Network structure of the network 4 as shown in Fig.8. 
And the weight of concealment level to output level is middle line of data in Fig.8. The 
weight of input level to conceals between the level as shown in Table 3. 
 

 
Fig. 8. Actual structure of neural network. 
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Hidden layer neuron 1 2 3 4 5 

U/v 0.7 -0.3 0.1 0.02 0.6 

I/A 0.3 0.5 0.9 0.7 -0.6 

SOC/% -0.8 -0.4 0.6 -1 -0.7 

Hidden layer neuron 6 7 8 9 10 

U/v 0.5 -0.2 -0.9 0.7 0.03 

I/A -0.2 0.9 0.8 -0.2 0.7 

SOC/% -0.6 -0.5 0.2 -0.5 -0.6 

Table 3. The weight between input level and concealment level 

4.2.2 Analysis of test results 
In this paper, we illustrate the tracking performance of the neural network though the 
training sample and validation sample results. The SOC initial value of simulation 
respectively supposes 0, 30, 50, 70, 100 and the sample real value. The simulation result of 
training samples and confirmation sample of network 4 are shown in Fig.9. 
 

 
Fig. 9. The forecasting result of ANN as set the different SOC initial value 

From Table 2, Table 3 and Fig. 9, we can draw that neural network can basically overcome 
prediction effect of the initial value of sample SOC set arbitrarily after training samples pass 
64 seconds and checking samples pass 87 seconds. For checking samples, error comes to 
6.9% after 87 seconds when the initial value is arbitrarily set 0, which is smaller than average 
error of 9.5% when the initial value is set true value. For training samples, error comes to 
7.2% after 64 seconds when the initial value is arbitrarily set 0, which is smaller than average 
error of 7.3% when the initial value is set true value. As the time passes by, whatever the 
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initial value of experiment it is, the prediction average error of neural network is smaller 
and smaller, and the average error values are less than 10%. Through the above analysis, we 
can see that the neural network after training can be close to the target value of training 
network at a very short time and it has strong self-adaptive ability.   
The waveform of the sample input variant U, I is shown in Fig. 10 and the sampling time is 
10s. 
 

 
Fig. 10. Experimental data of current and voltage 

The waveform of sample input variant U, I is shown in Fig.10 and the sampling time is 10s. 
Compared prediction waveform in Fig. 9 with the trend of sample current, voltage in Fig. 
10, we can also see that the prediction ability of BP neural network algorithm can better 
reflect the trend of battery current and voltage. That is, when the current is negative, 
prediction result of SOC turns to decrease respectively. Output average error within 10% 
and the correspondence between input variable U, I demonstrate that it is very accurate to 
predicting the SOC of automotive power battery with BP neural network algorithm. 

5. Conclusion 
In order to predict the SOC of nickel hydrogen battery in real-time when the car is running, 
and at the same time guarantee the accuracy of prediction and good self-adaptive capacity, 
this paper designs a artificial neural network with three inputs and ten neurons and one 
output that can be used to predict the SOC of nickel hydrogen power battery. The neural 
network puts previous state of charge that is SOCt-1 to the prediction of the neural network, 
thus the effect of SOCt-1  toward predicting SOCt is considered, so the self-adaptive ability of 
neural network is improved. Proportion conjugation gradient algorithm is used in the 
neural network training process, the connection weight value of the network is constantly 
changed via alternative training simulation and finally form fixed memory model for the 
prediction of the SOC. In the training network, but still pay attention to the selection of data, 
it has a great influence that different data sample finally forecast accuracy of network. Each 
training the neural network, it will gain a better simulation results, and then again add the 
data to back training network. At the same time, according to the comparison of the 
different neural networks, we can avoid over-training network. Simulation of the samples 
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indicate that artificial neural network built by experiment can accurately predict the SOC of 
the nickel hydrogen power battery of hybrid automobile and the self-adaptive is good. 
These features make the algorithm has a very high application value. 

6. Future work 
In recent years, the new energy industry and electric cars were pushed to unprecedented 
level, which will generate a new round of development opportunities. The battery is 
essential to new energy, automotive and other industries as the energy storage device. In 
response to industrial restructuring, the healthy development of the emerging  
industry requirements, the battery capacity technology have higher requirements, the  
development of remaining battery capacity of prediction is very urgent.  
In this environment, this article from the battery capacity forecasting technology's current 
present situation and the trend of development, combined with the actual situation of 
nickel-metal hydride batteries, and established a BP neural network model. The algorithm in 
predicting SOC values more consider the weight factors which can be measured, and other 
unpredictable factors do not consider. To further improve the algorithm accuracy and 
reliability in harsh environments, much work will need to be done: 
1. In order to effectively improve the accuracy of the algorithm, so that parallel operation, 

it also need to increase the inclusiveness of the data and add another algorithm in the 
neural network. 

2. To take further the reliability of the quantitative analysis, this method only changes in 
charge and discharge current mode of qualitative analysis and evaluation, and no 
failure mode of the system reliability parameters, such as the quantitative calculation of 
system failure. 

3. In addition to the above-mentioned factors, there are other factors to consider in the 
battery of the work environment, such as battery temperature of their environment, the 
consumption of battery life and other factors. Future research needs to take these factors 
into account, so it makes BP neural network is more complete and has better 
predictability. 
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1. Introduction 
In some digital application systems, power system frequency tracking is an important task. 
Accurate power frequency estimation is a necessity to check the state of health of power 
index, and a guarantee for accurate quantitative measurement of power parameters such as 
voltages, currents, active power and reactive power, in multi-function power meters under 
steady states. Many researches have been done in this area.  
Three criteria that a frequency tracking method should satisfy is given as follows 
(Akke,1997):  
1. Fast speed of convergence 
2. Accuracy of frequency estimation 
3. Robustness to noise. 
He compares traditional modulation with new modulation. Traditional demodulation 
introduces a double frequency component that needs to be filtered away. For signals with 
low noise, the filter to reduce the double frequency component can often limit the speed of 
the frequency estimation algorithm. The purpose of this section is to show that the proposed 
method eliminates this problem. If other filters are the bottle-neck of the estimation 
algorithm, we will not capitalise on the benefits. 
Many well-proven techniques such as zero-crossing technique, level-crossing technique, 
least squares error technique, Newton method, Kalman filter, Fourier transform, and 
wavelet transform have been used for power harmonic frequency estimation in the fields of 
measurement, instrumentation, control and monitoring of power systems. Besides, a 
comprehensive analysis of discrete Fourier transform (DFT) error is given in some 
researches, including the cases of synchronous sampling and error rises when sampling 
frequency does not synchronize with signal frequency. A frequency tracking method based 
on linear estimation of phase (LEP) has been introduced. Also, a processing unit for 
symmetrical components and harmonic estimation based on an adaptive linear combiner 
has been proposed. 
This section presents the application of a complex adaptive linear neural network 
(CADALINE) in tracking the fundamental power system frequency. In this method, by 
using stationary-axes Park transformation in addition to producing a complex input 
measurement, the decaying DC offset is effectively eliminated. As the proposed method 
uses a first-order differentiator to estimate frequency changes, a Hamming filter is used to 
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smoothen the response and cancel high-frequency noises. The most distinguishing features 
of the proposed method are the reduction in the size of observation state vector required by 
a simple adaptive linear neural network (ADALINE) and increase in the accuracy and 
convergence speed under transient conditions. This section concludes with the presentation 
of the representative results obtained in numerical simulations and simulation in 
PSCAD/EMTDC software as well as in practical study. 

2. ADALINE structure to track fundamental frequency 
Figure 1 depicts the ADALINE structure to track fundamental frequency which is a 
proposed in this section. 
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Fig. 1. ADALINE structure to track fundamental frequency 

Assume that the voltage waveform of power system comprises unknown fundamental, 
harmonics and decaying DC offset components as: 

 ( )0 1
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where 1V  and 1Φ  are the amplitude and phase of the fundamental frequency respectively. 
vA and τ  are the amplitude and time constant of decaying DC offset respectively; N is the 

total number of harmonics; and 0ω is the fundamental angular frequency in (rad/sec). Time-
discrete expression of (1) is: 

 ( ) 0.
1

1
( ) sin

N

l v
l

V k V l A e
θ

τ ωθ
⎛ ⎞
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= + Φ +∑  (2) 

where 2
s

k
N

πθ = and sN  is sampling rate given by
0

s
s

fN
f

= , in which sf  is sampling 

frequency and 0f  is fundamental frequency of power system. By using the triangular 
equality: 

 ( ) ( ) ( ) ( ) ( )sin sin cos sin cosα β α β β α+ = +  (3) 

Equation (2) can be rewritten as: 
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Rearranging the above equation in the matrix form, we obtain: 

 ( ) ( )T
VV k X k= Ψ ×  (5) 

where ( )V k  represents the measurement at each sampling, ( )X k is the time varying 
observation matrix and VΨ  is the parameter at each iteration to be tracked. ( )X k and VΨ  
are shown in the following formula: 
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 (6) 

According to Fig. 1, at kth iteration, the input vector ( )X k  is multiplied by the weighting 
vector ( ) ( ) ( ) ( )1 2 ... PW k w k w k w k= ⎡ ⎤⎣ ⎦ , and then these weighted inputs are summed to 
produce the linear output ( ) ( ) ( )Ty k W k X k= × . In order for the ADALINE output to 
precisely mimic the desired value ( )d k , the weight vector is adjusted utilizing an adaptation 
rule that is mainly based on least mean square (LMS) algorithm. This rule is also known as 
Widrow–Hoff delta rule [27] and is given by: 

 ( ) ( ) ( ) ( )
( ) ( )

1 T
e k X k

W k W k
X k X k

α
+ = +

×
 (7) 
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where α  is the constant learning parameter and ( ) ( ) ( )e k y k d k= −  is the error. When 
perfect learning is attained, the error is reduced to zero and the desired output becomes 
equal to ( ) ( )0

Td k W X k= × , where 0W  is the weight vector after the complete algorithm 
convergence. Thus, the neural model exactly predicts the incoming signal. To track 
harmonic components of a voltage signal with ADALINE, the variables ( )V kΨ  and ( )V k  
are simply assigned to ( )W k  and ( )d k  respectively, with 2 2P N= × + . 
After mentioned error converges to zero, the weight vector yields the Fourier coefficients of 
power signal as: 
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Voltage amplitude and phase angle of Nth harmonic are: 

 
( ) ( )

( )
( )

2 2
0 0

1 0
,

0

2 1 2

2 1tan 2

N

V N

V W N W N

W N
W N

−

= − +

⎛ − ⎞Φ = ⎜ ⎟
⎝ ⎠

 (9) 

Voltage amplitude and phase angle of fundamental frequency extracted by (9) are: 
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By sampling current signal with the same approach, discrete expression of current is: 
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in which, variables ( )I kΨ and ( )I k are simply assigned to ( )W k and ( )d k  respectively, with 
2 2P N= × +  [27]. ( )I kΨ  is defined as: 
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Current amplitude and phase of Nth harmonic are calculated as follows: 
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Current amplitude and phase of fundamental frequency are achieved by: 
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To track frequency, a center frequency is assumed to be the actual value. It would be the 
operational frequency of the power system which is usually 50 Hz or 60 Hz. Under 
situations that the base power frequency changes, the kth sample of fundamental component 
of voltage or current signal is modeled: 

 ( ) sin(2 )s x ss kT A f kTπ φ= ⋅ +  (15) 

that can be rewritten as: 

 1 0 2 0( ) sin(2 ) cos(2 )s s ss kT x f k T x f k Tπ π= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅  (16) 

Where 1x  is the in-phase component, 2x  is the quadrature phase component, 0f  is the 
center frequency (60 Hz), 1f  is the frequency deviation, and sT  is the sampling interval 

1
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⎛ ⎞
⎜ ⎟
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. Before calculating the frequency deviation ( 1f ), 1x  and 2x  pass through a FIR 

Hamming window and parameters 1y  and 2y  are obtained as: 
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where ( )H i  is the ith coefficient of the FIR Hamming window coefficients and 0N  is the 

sampling rate given by 0
0

sfN
f

⎛ ⎞
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⎝ ⎠

. The cut frequency for the low pass Hamming window is 

20 Hz and the length of filter is 40. Fig. 2 shows the impulse response of this Hamming 
window. By using DSOPC principle, 1f  is obtained as: 
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1y′  and 2y′  are first-order discrete derivatives defined as: 
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Finally, the real value of fundamental frequency ( xf ) is calculated by adding the frequency 
deviation to the assumed center frequency as: 



 Artificial Neural Networks - Industrial and Control Engineering Applications 

 

264 

 0 1xf f f= +  (20) 
 

 
Fig. 2. Impulse response of the Hamming window with 20 Hz cut frequency 

3. Complex ADALINE structure to track fundamental frequency 
The proposed complex ADALINE (CADALINE) structure is based on the Widrow–Hoff 
delta rule, explained earlier. The improvement in ADALINE structure is made by 
introducing a complex observation vector. This approach reduces the number of weight 
updates, and so, the number of parameters to be estimated. To produce a complex vector 
measurement the use of the stationary-axes Park transformation is proposed. Stationary-
axes Park transformation is widely employed to study the behavior of rotating electrical 
machines in transient conditions. However, it can be considered a more general and 
powerful tool to study the behavior of three-phase systems. This transformation applied to 
the signals ( ), ( )a by t y t  and ( )cy t  (voltages or currents) of a three-phase system leads to the 
Park components ( ),dy t ( )qy t and 0( )y t  defined as: 
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where [ ]T  is the orthogonal matrix defined as: 
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In the d-q frame, it is then possible to define the Park vector as a complex quantity as: 

 d qy y jy= +  (23) 

This vector is used as a desired value. The complex observation matrix Z  is introduced by: 

 0 0 02( ) , , , 1,s s s
Tj kT j kT jN kT

s sZ kT e e e kTω ω ω⎡ ⎤= −⎣ ⎦…  (24) 

0ω  is the center angular frequency (rad/sec), defined as 0 02 fω π= . The complex harmonic 
vector to be tracked at kth sample is ( )skTΓ  and is defined as: 

 [ ]1 2 1 2( ) ( ), ( ) ( ), ( ), ( ) T
s s s N s N s N skT A kT A kT A kT A kT A kT+ +Γ = …  (25) 

where 1( )sA kT  is the complex phasorial expression of center frequency in the d-q frame. 
According to LMS rule, weight update is: 
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( )se kT
G

 is the complex error obtained as follows: 
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where ( )s sY kT  is the complex estimation of the actual values of ( )sy kT  in d-q frame. 
It should be noted that under conditions where power system operates with the nominal 
frequency, 1( )sA kT  is a constant vector, which does not rotate with respect to the time in the 
complex frame. When the base frequency changes, 1( )sA kT  becomes a rotating vector. It is 
the result of the fact that when the base frequency changes, 1( )sA kT  components appear as 
modulated signals and their carrier is the occurred frequency-drift. Therefore, the rate of 
this rotation is the key element to track the frequency deviation from the center frequency. 
The frequency deviation ( 1f ) is achieved by normalizing and differentiating 1( )sA kT . For 
the types of power swing events studied here, it has been found that the non-fundamental 
components cannot be characterized as harmonics. A middle-filter is, therefore, required so 
that the signal is dominated by the fundamental component. The middle-filter, used here, is 
the FIR Hamming type filter as has been used in [18]. It is the same which has been used in 
Section 2. 1( )sA kT  passes through the FIR Hamming window and 1( )sAh kT  is obtained as: 

 ( ) ( )( ) ( )
0

1 1
1

1
N

s s
i

Ah kT A i k T H i
=
⎡ ⎤= − + ⋅⎣ ⎦∑  (28) 

1( )sAh kT  should be normalized to produce the rotating operator ( ( )12 sj f kTe π ). ( )12 sj f kTe π  
stands for a normal rotating vector which its amplitude is unity and 1f  is the frequency 
deviation. Therefore, complex normalized rotating state vector 1( )sAn kT  is obtained as: 
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( )

1
1

1

( )( )
( )

s
s

s

Ah kTAn kT
abs Ah kT

=  (29) 

where ( )abs x  stands for absolute value of x . By using the first-order discrete differentiator, 
1f  is obtained as: 

 1 1
1

1

( ) ( )1( )
2

s s s
s

s s

An kT An kT Tf kT
j An k T Tπ

⎛ ⎞ ⎛ ⎞− −
= ⋅⎜ ⎟ ⎜ ⎟

⋅ ⋅ ⋅ ⎝ ⎠⎝ ⎠
 (30) 

It can be seen that observation matrix size and the parameters to be estimated have been 
reduced to ( 2N + ) elements in comparison with the simple ADALINE which uses ( 2 2N + ) 
elements. Furthermore, owing to the fact that data from three phases are combined, the most 
important aspect of the proposed technique is that the convergence speed is considerably 
improved. After all, decaying DC offset is effectively eliminated by applying stationary-axes 
Park transformation and using CADALINE. Fig. 3 shows the complex ADALINE structure 
to track fundamental frequency. 
 

 
Fig. 3. Complex ADALINE structure to track fundamental frequency 

4. Review of Kalman and DFT approaches 
4.1 Kalman filter to track fundamental frequency 
Kalman filter has also been used to track fundamental frequency in power system. Consider 
the following deterministic state-variable equation for a periodic signal having harmonic 
components up to Nth order with samples kz , at time kt , ( )2 1n +  samples per period. 

 1k k

k k

x F x
z Q x

+ = ×
= ×

 (31) 
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where ( )2 1N + -dimensional state vector kx  is as follows: 
( )2 1 :kx i − real component of the ith harmonic phasor, 

( )2 :kx i imaginary component of the ith harmonic phasor, 
( )2 1 :kx i + decaying DC component, 

where the ith element of kx  is represented by ( )kx i , and F is: 

 

( )
( )

( )

1 0 0 0
0 2 0 0

0 0
0 0 0 1

f
f

F
f N

ψ
ψ

ψ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥

⋅⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

# # " # #
" #
"

 (32) 

where 0 sTψ ω= , 0ω  is the fundamental supply angular frequency in (rad/sec) and sT  is the 
sampling interval in seconds. 

 ( ) ( ) ( )
( ) ( )

cos sin
1,2, ,

sin cos
i i

f i i N
i i
ψ ψ

ψ
ψ ψ

⎡ ⎤−
= =⎢ ⎥
⎣ ⎦

…  (33) 

and Q is a ( 1  (2n + 1) × ) matrix which gives the connection between the measurement ( kz ) 
and the state vector ( kx ). The sampled value of the signal is considered to be the sum of the 
real components of the harmonic phasors and the decaying DC component. Therefore, Q is 
given by: 

 [1,0,1,0, ,1,0,1]Q = "  (34) 

The harmonic components ih  (RMS) are given by: 

 
( )2 2

2
(2 1) (2 )

1,2, ,
2

k k
i

x i x i
h i N

− +
= = …  (35) 

The problem of estimating the present state of the signal model (Eq. 31) from measurements 
( k z ) involves the design of standard state observers [33]. The observer state can be 
represented by: 

 ( )1ˆ ˆ ˆk k k kx F x P z Qx+ = × + × −  (36) 

where ˆkx  denotes the estimate of the state vector kx  and P is the observer gain matrix. The 
primary objective in choosing P is to obtain a stable observer, which is achieved by 
assigning the eigenvalues of the matrix F PQ−  within the unit circle. The locations of the 
eigenvalues determine, among other things, the transient response of the observer. For the 
purpose of frequency tracking, the speed of response and tracking ability are of particular 
importance. After studying various choices, the following case is considered. 

 [0.248,0.0513,0.173,0.046,0.0674,0.0434,0.00916,

0.0236, 0.000415,0.113,0.0802]T
P =

−
 (37) 
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To estimate fundamental frequency, the approach is based on DSPOC which has been 
described in Eqs. 15–20 is used. 

4.2 DFT filter to track fundamental frequency 
Under situation of frequency change, the kth sample of fundamental voltage or current signal 
is described as denoted in Eq. 15. By using a DFT dynamic window, parameters 1x  and 2x  
in Eq. 16 can be achieved as follows: 

 
1

1
0

2( ) ( ) ( ) (2 )
sN

s s
ks s

kx kT s kT sin
N N

π
−

=

⎡ ⎤
= ⋅⎢ ⎥

⎣ ⎦
∑   

 
1

2
0

2( ) ( ) ( ) (2 )
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s s
ks s

kx kT s kT cos
N N

π
−

=

⎡ ⎤
= ⋅⎢ ⎥

⎣ ⎦
∑  

(38)
 

The fundamental frequency tracking process includes the same approach that has been 
expressed in Eqs. 15–20. 

5. Adaptive linear element 
ADALINE (Adaptive Linear Neuron or later Adaptive Linear Element) is a single layer 
neural network as the 'least mean square' (LMS) learning procedure, also known as the delta 
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rule. It was developed by ProfessorBernard Widrow and his graduate student Ted Hoff at 
Stanford University in 1960. It is based on the McCulloch–Pitts neuron. It consists of a 
weight, a bias and a summation function.The difference between Adaline and the standard 
(McCulloch-Pitts) perceptron is that in the learning phase the weights are adjusted 
according to the weighted sum of the inputs (the net). In the standard perceptron, the net is 
passed to the activation (transfer) function and the function's output is used for adjusting 
the weights.  The main functional difference with the perceptron training rule is the way the 
output of the system is used in the learning rule. The perceptron learning rule uses the 
output of the threshold function (either -1 or +1) for learning. The delta-rule uses the net 
output without further mapping into output values -1 or +1. The ADALINE network shown 
below has one layer of S neurons connected to R inputs through a matrix of weights W. 
This network is sometimes called a MADALINE for Many ADALINEs. Note that the figure 
on the right defines an S-length output vector a. 
The Widrow-Hoff rule can only train single-layer linear networks. This is not much of a 
disadvantage, however, as single-layer linear networks are just as capable as multilayer 
linear networks. For every multilayer linear network, there is an equivalent single-layer 
linear network. 

5.1 Single ADALINE 
Consider a single ADALINE with two inputs. The following figure shows the diagram for 
this network. 
 

 
The weight matrix W in this case has only one row. The network output is: 

 ( ) ( ) ( )a purelin n purelin Wp b Wp b= = + = +  (39) 

Equation a can be written as follows: 

 1,1 1 1,2 2a w p w p b= + +  (40) 

Like the perceptron, the ADALINE has a decision boundary that is determined by the input 
vectors for which the net input n is zero. For n = 0 the equation Wp + b = 0 specifies such a 
decision boundary, as shown below: 
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Input vectors in the upper right gray area lead to an output greater than 0. Input vectors in 
the lower left white area lead to an output less than 0. Thus, the ADALINE can be used to 
classify objects into two categories. 
However, ADALINE can classify objects in this way only when the objects are linearly 
separable. Thus, ADALINE has the same limitation as the perceptron. 

5.2 Networks with linear activation functions: the delta rule 
For a single layer network with an output unit with a linear activation function the output is 
simply given by: 

 
1

n

i i
i

y w x θ
=

= +∑  (41) 

Such a simple network is able to represent a linear relationship between the value of the 
output unit and the value of the input units. By thresholding the output value, a classifier 
can be constructed (such as Widrow's Adaline), but here we focus on the linear relationship 
and use the network for a function approximation task. In high dimensional input spaces 
the network represents a (hyper) plane and it will be clear that also multiple output units 
may be defined. Suppose we want to train the network such that a hyper plane is fitted as 
well as possible to a set of training samples consisting of input values pd  and desired (or 
target) output values pd . For every given input sample, the output of the network differs 
from the target value pd by ( )p pd y− where py  is the actual output for this pattern. The 
delta-rule now uses a cost- or error-function based on these differences to adjust the 
weights. The error function, as indicated by the name least mean square, is the summed 
squared error. That is, the total error E  is denoted to be: 

 ( )21
2

p p p

p p
E E d y= = −∑ ∑  (42) 

Where the index p ranges over the set of input patterns and pE represents the error on 
pattern p . The LMS procedure finds the values of all the weights that minimize the error 
function by a method called gradient descent. The idea is to make a change in the weight 
proportional to the negative of the derivative of the error as measured on the current pattern 
with respect to each weight: 



A Novel Frequency Tracking Method Based  
on Complex Adaptive Linear Neural Network State Vector in Power Systems 

 

271 

 
p

p j
j

Ew
w

γ ∂Δ = −
∂

 (43) 

where γ is a constant of proportionality. The derivative is 
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Because of the linearity, 
p

j

E
w
∂
∂

is as follows: 

 ( )
p

p p

j

E d E
w
∂

= − −
∂

 (46) 

Where p p pd Eδ = − is the difference between the target output and the actual output for 
pattern p .The delta rule modifies weight appropriately for target and actual outputs of 
either polarity and for both continuous and binary input and output units. These 
characteristics have opened up a wealth of new applications.  

6. Simulation results 
Simulation examples include the following three categories. Numerical simulations are 
represented in Section 5.1. for two cases, simulation in PSCAD/EMTDC software is 
presented in Section 5.2. Lastly, Section 5.3. presents practical measurement of a real fault 
incidence in Fars province, Iran. 

6.1 Simulated signals 
Herein, a disturbance is simulated at time 0.3 sec. Three-phase non-sinusoidal unbalanced 
signals, including decaying DC offset and third harmonic, are produced as: 
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 (47) 

After disturbance at 0.3 sec, signals are: 
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where 0ω  is the base angular frequency and xω  is the actual angular frequency after 
disturbance. 

6.1.1 Case 1  
In this case, a 1-Hz frequency deviation occurs and tracked frequency using CADALINE, 
ADALINE, Kalman, and DFT approaches is revealed in Fig. 4; three-phase signals are 
shown in Fig. 5. Estimation error percentage according to the samples fed to each algorithm 
after frequency drift is shown in Fig. 6. Second set of samples including 100 samples, 
equivalent to two and half cycles, which is fed to all algorithms is magnified in Fig. 6. It can 
be seen that CADALINE converges to the real value after first 116 samples, less than three 
power cycles, with error of -0.4 %; and reaches a perfect estimation after having more few 
samples. Other methods’ estimations are too fare from real value in this snapshoot. DFT, 
ADALINE and Kalman respectively need 120, 200 and 360 samples to reach less than one 
percent error in estimating the frequency drift. It should be considered that for 2.4-kHz 
sampling frequency and power system frequency of 60 Hz, each power cycle includes 40 
samples. The complex normalized rotating state vector 1( )sAn kT  with respect to time and in 
d-q frame is shown in Fig. 7. It has been seen that for 1-Hz frequency deviation ( 1 1f = Hz), 
CADALINE has the best convergence response in terms of speed and over/under shoot. 
ADALINE method convergence speed is half that in the CADALINE and shows a really 
high overshoot. Besides, Kalman approach shows the biggest error. in the first 7 power 
system cycles, it converges to 61.7 Hz instead of 61 Hz and its computational burden is 
considerably higher than other methods. In this case, presence of a long-lasting decaying DC 
offset affects the DFT performance. Consequently, its convergence speed and overshoot are 
not as improved as CADALINE. 
 

 
Fig. 4. Tracked frequency (Hz) 
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Fig. 5. Three-phase signals 
 

 
Fig. 6. Estimation error percentage according to samples fed to each algorithm after 
frequency drift 

As can be seen in Fig. 7, 1( )sAn kT  starts rotation simultaneously when the frequency 
changes at time 0.3 sec. 
 

 
Fig. 7. Complex normalized rotating state vector ( 1An ) 
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6.1.2 Case 2 
In this case, a three-phase balanced voltage is simulated numerically. The only change 
applied is a step-by-step 1-Hz change in fundamental frequency to study the steady-state 
response of the proposed method when the power system operates under/over frequency 
conditions. The three-phase signals are: 
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⎪
⎪ =⎨
⎪
⎪

=⎪⎩

 (49) 

where 2x xfω π= , and values of xf  are shown in Table I. The range of frequency that has 
been studied here is 50–70 Hz. Results are revealed in Table I and average convergence time 
is shown in Fig. 8 for CADALINE, ADALINE, Kalman filter and DFT approaches. The 
results from this section can give an insight into the number of samples that each algorithm 
needs to converge to a reasonable estimation. According to the fact that each power cycle is 
equivalent to 40 samples, average number of samples that is needed for each algorithm to 
have estimation with less than one percent error is represented in Table I.  
 

 
Fig. 8. Average convergence time (cycles) to track static frequency changes 

6.2 Simulation in PSCAD/EMTDC software 
In this case, a three-machine system controlled by governors is simulated in 
PSCAD/EMTDC software, shown in Fig. 9. Information of the simulated system is given in 
Appendix I. A three-phase fault occurs at 1 sec. Real frequency changes, estimation by use of 
ADALINE, CADALINE and Kalman approaches are shown in Fig. 10. Instead of DFT 
method, the frequency measurement module (FMM) performance which exists in PSCAD 
library is compared with the presented methods. Phase-A voltage signal is shown in Fig. 11. 



A Novel Frequency Tracking Method Based  
on Complex Adaptive Linear Neural Network State Vector in Power Systems 

 

275 

 Approaches 

(Hz)xf CADALINE KALMAN ADALINE DFT

70 95 360 202 111 

69 97 421 188 114 

68 93 358 186 118 

67 90 384 187 114 

66 95 385 178 114 

65 97 305 138 139 

64 92 361 211 114 

63 93 328 193 116 

62 98 430 206 115 

61 96 360 231 116 

60 92 385 220 112 

59 83 234 155 97 

58 81 281 181 116 

57 88 313 197 117 

56 98 216 178 123 

55 97 377 192 117 

54 96 336 206 122 

53 90 331 195 114 

52 96 290 190 108 

51 96 374 184 120 

50 105 405 113 112 

Table I Samples needed to estimate with 1 percent error for 50-70 frequency range  

The complex normalized rotating state vector ( 1( )sAn kT ) is shown in Fig. 12. The best 
transient response and accuracy belongs to ADALINE and CADALINE, but CADALINE 
has faster response with a considerable lower overshoot, as can be seen in Fig. 10. Kalman 
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approach has a suitable response in this case, but its error and overshoot in estimating 
frequency are bigger than that in CADALINE. The PSCAD FMM shows drastic fluctuations 
in comparison with other methods proposed and reviewed here. 
 

 
Fig. 9. A three-machine connected system simulated in PSCAD/EMTDC software 
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Fig. 10. Tracked frequency (Hz) 
 

 
Fig. 11. Phase-A voltage (kV) 
 

 
Fig. 12. Complex normalized rotating state vector ( 1An ) 
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6.3 Practical study 
In this case, a practical example is represented. Voltage signal measurements are applied 
from the Marvdasht power station in Fars province, Iran. The recorder’s sampling frequency 
( sf ) is 6.39 kHz and fundamental frequency of power system is 50 Hz. A fault between 
pahse-C and groung occurred on 4 March 2006. The fault location was 46.557 km from 
Arsanjan substation. Main information on the Marvdasht 230/66 kV station and other 
substation supplied by this station is given in Tables II and  III, presented in Appendix II. 
Fig. 13 shows the performance of CADALINE, ADALINE, Kaman and DFT approaches. 
Besides, phase-C voltage and residual voltage are revealed in Fig. 14 (A) and Fig. 14 (B) 
respectively. Complex normalized rotating state vector ( 1An ) is shown in Fig. 15. 
 

 
Fig. 13. Tracked frequency (Hz), case V.C. 

 

 
Fig. 14. (A): phase-C voltage and (B): residual voltage, case V.C.  
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Fig. 15. Complex normalized rotating state vector ( 1An ), case V.C. 

7. Conclusion 
This section proposes an adaptive approach for frequency estimation in electrical power 
systems by introducing a novel complex ADALINE (CADALINE) structure. The proposed 
technique is based on tracking and analyzing a complex rotation state vector in d-q frame 
that appears when a frequency drift occurs. This method improves the convergence speed 
both in steady states and dynamic disturbances which include changes in base frequency of 
power system. Furthermore, the proposed method reduces the size of the state observer 
vector that has been used by simple ADALINE structure in other references. The numerical 
and simulation examples have verified that the proposed technique is far more robust and 
accurate in estimating the instantaneous frequency under various conditions compared with 
methods that have been reviewed in this section. 

8. Appendices 
8.1 Appendix I. multi-machine system information simulated in PSCAD/EMTDC 
software 
1. Basic data of all generators are: 

Number of machines: 3 
Rated line-to-neutral voltage (RMS): 7.967 [kV] 
Rated line current (RMS): 5.02 [kA] 
Base angular frequency: 376.991118 [rad/sec] 
Inertia constant: 3.117 [s] 
Mechanical friction and windage: 0.04 [p.u.] 
Neutral series resistance: 1.0E5 [p.u.] 
Neutral series reactance: 0 [p.u.] 
Iron loss resistance: 300.0 [p.u.] 

2. Fault characteristics: 
Fault inductance: 0.00014 [H] 
Fault resistance: 0.0001 [Ω] 

3. Load characteristics: 
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Load active power: 190 [MW] 
Load nominal line-to-line voltage: 13.8 [kV] 

8.2 Appendix. II  
Main information on the Marvdasht 230/66 (kV) station and other substation supplied by 
this station is given in Tables II and III. 
 

1-PHASE SHORT 
CIRCUIT 

CAPACITY (MVA) 

3-PHASE SHORT 
CIRCUIT 

CAPACITY (MVA) 

FEEDER 
NO. TAG 

SUBSTATION 
NAME NO. 

1184 1460 - Marvdasht 230/66 
(kV) 1 

640 896 602 Marvdasht City 2 
423 631 601 Mojtama 3 
718 1005 607 Kenare 4 
500 751 603 Sahl Abad 5 
121 203 604 Dinarloo 6 
237 381 608 Seydan 7 
84 145 605 Arsanjan 8 

Table II Marvdasht substation capacities 
 

Z  
(Ω ) 

1-PHASE 
SHORT 

CIRCUIT 
CURRENT 

(kA) 

3-PHASE 
SHORT 

CIRCUIT 
CURRENT 

(kA) 

FEEDER 
NO. TAG 

SUBSTATION 
NAME NO. 

2.983562 10.35731 12.77169 - Marvdasht 230/66 
(kV) 1 

4.861607 5.598548 7.837967 602 Marvdasht City 2 
6.903328 3.70029 5.519818 601 Mojtama 3 
4.334328 6.280871 8.79147 607 Kenare 4 
5.800266 4.373866 6.569546 603 Sahl Abad 5 
21.45813 1.058475 1.775789 604 Dinarloo 6 
11.43307 2.073212 3.332886 608 Seydan 7 
30.04138 0.734809 1.268421 605 Arsanjan 8 

Table III Marvdasht substation three-phase and single-phase short circuit capacities and 
impedances ( Z ) 

9. References 
J.K. Wu, Frequency tracking techniques of power systems including higher order harmonics 

devices, Proceedings of the Fifth IEEE International Caracas Conference, vol. 1, (3–5 
Nov. 2004), pp. 298–303. 

M. Akke, Frequency estimation by demodulation of two complex signals, IEEE Trans. Power 
Del., vol. 12, no. 1, (Jan. 1997), pp. 157–163. 



A Novel Frequency Tracking Method Based  
on Complex Adaptive Linear Neural Network State Vector in Power Systems 

 

281 

P.J. Moore, R.D. Carranza and A.T. Johns, Model system tests on a new numeric method of 
power system frequency measurement, IEEE Trans. Power Del., vol. 11, no. 2, (Apr. 
1996), pp. 696–701. 

M.M. Begovic, P.M. Djuric, S. Dunlap and A.G. Phadke, Frequency tracking in power 
networks in the presence of harmonics, IEEE Trans. Power Del., vol. 8, no. 2, (April 
1993), pp. 480–486. 

C.T. Nguyen and K.A. Srinivasan, A new technique for rapid tracking of frequency 
deviations based on level crossings, IEEE Trans. Power App. Syst., vol. 103, no. 8, 
(April 1984), pp. 2230–2236. 

I. Kamwa and R. Grondin, Fast adaptive schemes for tracking voltage phasor and local 
frequency in power transmission and distribution systems, IEEE Trans. Power Del., 
vol. 7, no. 2, (April 1992), pp.789–795. 

M.S. Sachdev and M.M. Giray, A least error square technique for determining power system 
frequency, IEEE Trans. Power App. Syst., vol. 104, no. 2, (Feb. 1985), pp. 437–443. 

M.M. Giray and M.S. Sachdev, Off-nominal frequency measurements in electric power 
systems, IEEE Trans. Power Del., vol. 4, no. 3, (July 1989), pp. 1573–1578. 

V.V. Terzija, M.B. Djuric and B.D. Kovacevic, Voltage phasor and local system frequency 
estimation using Newton-type algorithm, IEEE Trans. Power Del., vol. 9, no. 3, (Jul. 
1994), pp. 1368–1374. 

M.S. Sachdev, H. C. Wood and N. G. Johnson, Kalman filtering applied to power system 
measurements for relaying, IEEE Trans. Power App. Syst., vol. 104, no. 12, (Dec. 
1985), pp. 3565–3573. 

A.A. Girgis and T.L.D. Hwang, Optimal estimation of voltage phasors and frequency 
deviation using linear and nonlinear Kalman filter: Theory and limitations, IEEE 
Tran. Power App. Syst., vol. 103, no. 10, (1984), pp. 2943–2949. 

A.A. Girgis and W.L. Peterson, Adaptive estimation of power system frequency deviation 
and its rate of change for calculating sudden power system overloads, IEEE Trans. 
Power Del., vol. 5, no. 2, (Apr. 1990), pp. 585–594. 

T. Lobos and J. Rezmer, Real time determination of power system frequency, IEEE Trans. 
Instrum. Meas., vol. 46, no. 4, (Aug. 1997), pp. 877–881. 

A.G. Phadke, J.S. Thorp and M.G. Adamiak, A new measurement technique for tracking 
voltage phasors, local system frequency, and rate of change of frequency, IEEE 
Trans. Power App. and Systems, vol. 102, no. 5, (May 1983), pp. 1025–1038. 

J.Z. Yang and C.W. Liu, A precise calculation of power system frequency, IEEE Trans. 
Power Del., vol. 16, no. 3, (July 2001), pp. 361–366. 

J.Z. Yang and C.W. Liu, A precise calculation of power system frequency and phasor, IEEE 
Trans. Power Del., vol. 15, no. 2, (Apr. 2000), pp. 494–499. 

S.L. Lu, C.E. Lin and C.L. Huang, Power frequency harmonic measurement using integer 
periodic extension method, Elect. Power Syst. Res., vol. 44, no. 2, (1998), pp. 107–
115. 

P.J. Moore, R.D. Carranza and A.T. Johns, A new numeric technique for high speed 
evaluation of power system frequency, IEE Gen. Trans. Dist. Proc., vol. 141, no. 5 
(Sept. 1994), pp. 529–536. 

J. Szafran and W. Rebizant, Power system frequency estimation, IEE Gen. Trans. Dist. Proc., 
vol. 145, no. 5, (Sep. 1998), pp. 578–582. 



 Artificial Neural Networks - Industrial and Control Engineering Applications 

 

282 

A.A. Girgis and F.M. Ham, A new FFT-based digital frequency relay for load shedding, 
IEEE Trans. Power App. Syst., vol. 101, no. 2, (Feb. 1982), pp. 433–439. 

H.C. Lin and C. S. Lee, Enhanced FFT-based parameter algorithm for simultaneous multiple 
harmonics analysis, IEE Gen. Trans. Dist. Proc., vol. 148, no. 3, (May 2001), pp. 209–
214. 

W.T. Kuang and A.S. Morris, Using short-time Fourier transform and wavelet packet filter 
banks for improved frequency measurement in a Doppler robot tracking system, 
IEEE Trans. Instrum. Meas., vol. 51, no. 3, (June 2002), pp. 440–444. 

V.L. Pham and K. P. Wong, Wavelet-transform-based algorithm for harmonic analysis of 
power system waveforms, IEE Gen. Trans. Dist. Proc., vol. 146, no. 3, (May 1999), 
pp. 249–254. 

V.L. Pham and K.P. Wong, Antidistortion method for wavelet transform filter banks and 
nonstationary power system waveform harmonic analysis, IEE Gen. Trans. Dist. 
Proc., vol. 148, no. 2, (March 2001), pp. 117–122. 

M. Wang and Y. Sun, A practical, precise method for frequency tracking and phasor 
estimation, IEEE Trans. Power Del., vol. 19, no. 4, (Oct. 2004), pp. 1547–1552. 

D.W.P. Thomas and M.S. Woolfson, Evaluation of a novel frequency tracking method, 
Transmission and Distribution Conference, vol. 1, (11–16 April 1999), pp. 248–253. 

M.I. Marei, E.F. El-Saadany and M.M.A. Salama, A processing unit for symmetrical 
components and harmonics estimation based on a new adaptive linear combiner 
structure, IEEE Trans. Power Del., vol. 19, no. 3, (July 2004), pp. 1245–1252. 

P.J. Moore, J.H. Allmeling and A.T. Johns, Frequency relaying based on instantaneous 
frequency measurement, IEEE Trans. Power Del., vol. 11, no. 4, (Oct. 1996), pp. 
1737–1742. 

D.W.P. Thomas and M.S. Woolfson, Evaluation of frequency tracking methods, IEEE Trans. 
Power Del., vol. 16, no. 3, (July 2001), pp. 367–371. 

G. J. Retter, Matrix and Space-Phasor Theory of Electrical Machines, Akademiai Kiado, 
Budapest, Rumania, (1987). 

G.H. Hostetter, Recursive discrete Fourier transformation, IEEE Trans. Speech Audio 
Process., vol. 28, no, 2, (1980), pp. 184–190. 

R.R. Bitmead, A.C. Tsoi and P.J. Parker, A Kalman filtering approach to short-time Fourier 
analysis, IEEE Trans. Speech Audio Process., vol. 34, no. 6, (1986), pp. 1493–1501 

T. Kailath, Linear Systems, Prentice-Hall, New Jersey, (1980). 



14 

Application of ANN to Real and  
Reactive Power Allocation Scheme 

S.N. Khalid, M.W. Mustafa, H. Shareef and A. Khairuddin 
Universiti Teknologi Malaysia  

Malaysia 

1. Introduction      
This chapter describes the implementation of ANN for real and reactive power transfer 
allocation. The 25 bus equivalent power system of south Malaysia region and IEEE 118 bus 
system are used to demonstrate the applicability of the ANN output compared to that of the 
Modified Nodal Equations (MNE) which is  used as trainers for real and reactive power 
allocation. The basic idea is to use supervised learning paradigm to train the ANN. Then the 
descriptions of inputs and outputs of the training data for the ANN are easily obtained from 
the load flow results and each method used as teachers respectively. The proposed ANN 
based method provides promising results in terms of accuracy and computation time. 
Artificial intelligence has been proven to be able to solve complex processes in deregulated 
power system such as loss allocation. So, it can be expected that the developed methodology 
will further contribute in improving the computation time of transmission usage allocation for 
deregulated system.     

2. Importance of deregulation 
Deregulated power systems unbundles the generation, transmission, distribution and retail 
activities, which are traditionally performed by vertically integrated utilities. Consequently 
different pricing policies will exist between different companies. With the separate pricing of 
generation, transmission and distribution, it is necessary to find the capacity usage of different 
transaction happening at the same time so that a fair use-of-transmission-system charge can be 
given to individual customer separately. Then the transparency in the operation of 
deregulated power systems can be achieved. In addition, the capacity usage is another 
application for transmission congestion management. For that reason the power produced by 
each generator and consumed by each load through the network should be trace in order to 
have acceptable solution in a fair deregulated power system. In Malaysian scenario the future 
electricity sector will be highly motivated to be liberalized, i.e. deregulated. Thus the proposed 
methodology is expected to contribute significantly to the development of the local 
deregulated power system. Promising test results were obtained from the extensive case 
studies conducted for several systems. These results shall bring about some differences from 
those based on other methods as different view-points and approaches may end up with 
different results. This chapter is offering the solution by an alternative method with better 
computational time and acceptable accuracy. These findings bring a new perspective on the 
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subject of how to improve the conventional real power allocation methods. A technically 
sound approach, to determine the real power output of individual generators, is proposed. 
This method is based on current operating point computed by the usual laod flow code and 
basic equations governing the load flow in the network. The proposed MNE method has also 
been extended to reactive power allocation. The simulation results have also shown that of 
reactive power supply and reception in a power system is in conformity with a given 
operating point. The study results and analysis suggest that, the proposed MNE Method 
overcome problems arising in the conventional reactive allocation algorithms. From these two 
methods, the calculations results might bring about some differences because of the deviation 
in the concept applied by the proposed method. For example the proposed methods use each 
load current as a function of individual generators’ current and voltage. This is different from 
the Chu’s Method (Chu & Liao, 2004), where each load voltage is represented as a function of 
individual generators’ voltage only. The proposed MNE Method for reactive power allocation is 
enhanced by utilizing ANN. When the performances of the developed ANN are investigated, it 
can be concluded that the developed ANN is more reliable and computationally faster than that 
of the MNE Method. Furthermore, the developed algorithms and tools for the proposed 
techniques have been used to investigate the actual 25 bus system of South Malaysia. The 
proposed methods have so far been focused on the viewpoint of suppliers. It is also very 
useful to develop and test the allocation procedures from the perspective of consumers. Both 
MNE Method and Chu’s Method are equally suitable for modification in this respect. 
Additionally, this technique requires handling of future expansions into an ANN structure to 
make it a universal structure. Moreover adaptation of appropriate ANN architecture for the 
large real life test system is expected to deliver a considerable efficiency in computation time, 
especially during training processes. It may be a future work to analyze the performance of the 
algorithm for every change in the network topology. 

3. Modified nodal equations method 
The derivation, to decompose the load real powers into components contributed by specific 
generators starts with basic equations of load flow. Applying Kirchhoff’s law to each node 
of the power network leads to the equations, which can be written in a matrix form as in 
equation (1) (Reta & Vargas, 2001): 

 =I YV  (1) 
where: 
       V: is a vector of all node voltages in the system 
        I: is a vector of all node currents in the system 
       Y: is the Y-bus admittance matrix 
The nodal admittance matrix of the typical power system is large and sparse, therefore it can 
be partitioned in a systematic way. Considering a system in which there are G generator 
nodes that participate in selling power and remaining L= n-G nodes as loads, then it is 
possible to re-write equation (1) into its matrix form as shown in equation (2): 

  
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

G GG GL G

L LG LL L

I Y Y V
I Y Y V

 (2) 

Solving for IG and IL using equation (2), the relationship can be obtained as shown in 
equations (3) and (4). 
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 = +G GG G GL LI Y V Y V  (3) 

 = +L LG G LL LI Y V Y V  (4) 

From equation (3), VG can be solved as depicted in equation (5): 

 ( )1−= −G GG G GL LV Y I Y V  (5) 

Now, on substituting equation (5) in equation (4) and rearranging it, the load currents can 
be presented as a function of generators’ current and load voltages as shown in equation (6): 

 ( )1 1− −= + −L LG GG G LL LG GG GL LI Y Y I Y Y Y Y V  (6) 

Then, the total real and reactive power SL of all loads can be expressed as shown in equation (7): 

 ∗=L L LS V I  (7) 

where ( ∗ ) stands for conjugate,  
Substituting equation (6) into equation (7) and solving for SL   the relationship as shown in 
equation (8) can be found; 
 

( ) ( )( )
*

* *1 1  − −= + −L L LG GG G L LL LG GG GL LS V Y Y I V Y Y Y Y V

( )( )** 1

1
Re  −

=

⎧ ⎫⎪ ⎪= Δ + −⎨ ⎬
⎪ ⎪⎩ ⎭
∑ Gi
nG

I
L L LL LG GG GL LL

i
V I V Y Y Y Y V

(8) 

where 

( ) *1

1
 − ∗ ∗

=
= Δ∑ Gi

nG
I

LG GG G L
i

Y Y I I  

nG : number of generators 
Now, in order to decompose the load voltage dependent term further in equation (8), into 
components of generator dependent terms, the equation (10) derivations are used. A 
possible way to deduce load node voltages as a function of generator bus voltages is to 
apply superposition theorem. However, it requires replacing all load bus current injections 
into equivalent admittances in the circuit. Using a readily available load flow results, the 
equivalent shunt admittance YLj of load node j can be calculated using the equation (9): 

 1 Lj
Lj

Lj Lj

S
Y

V V

∗
⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (9) 

SLj is the load complex power on node j and VLj is the bus load voltage on node j. After 
adding these equivalences to the diagonal entries of Y-bus matrix, equation (1) can be 
rewritten as in equation (10): 

 ' 1−= GV Y I  (10) 
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where 'Y is the modified Y.  
Next, adopting equation (10) and taking into account each generator one by one, the load 
bus voltages contributed by all generators can be expressed as in equation (11): 

 *

1=
= Δ∑ Gi

nG
I

L L
i

V V  (11) 

It is now, simple mathematical manipulation to obtain required relationship as a function of 
generators dependent terms. By substituting equation (11) into equation (8), the 
decomposed load real and reactive powers can be expressed as depicted in equation (12): 

 ( )( )** * 1

1 1
 −

= =

= Δ + Δ −∑ ∑Gi Gi
nG nG

I I
L L LL LG GG GL LL L

i i
S V I V Y Y Y Y V  (12) 

This equation shows that the real and reactive power of each load bus consists of two terms 
by individual generators. The first term relates directly to the generator’s currents and the 
second term corresponds to their contribution to load voltages. With further simplification 
of equation (12), the real and reactive power contribution that load j acquires from generator 
i is as shown in equation (13): 

 
1 1

L L
nG nG

I V
Lj Lji Lji

i i
S S SΔ Δ

= =

= +∑ ∑  (13) 

where: 
L

ji
I

LSΔ : current dependent term of generator i to SLj  
LV

LjiSΔ : voltage dependent term of generator i to SLj 

All procedures of the computation mentioned above can be demonstrated as a flowchart 
illustrated in Figure 1. Vector SLj  is used as a target in the training process of the proposed 
ANN.  

3. Test conducted on the practical 25-bus equivalent power system of south 
Malaysia region 
3.1 Application of ANN to real and reactive power allocation method  
This section presents test conducted on the practical 25-bus equivalent power system of 
south Malaysia region. An ANN can be defined as a data processing system consisting of a 
large number of simple, highly interconnected processing elements (artificial neurons) in an 
architecture inspired by the structure of the cerebral cortex of the brain (Tsoukalas & Uhrig, 
1997). The processing elements consist of two parts. The first part simply sums the weighted 
inputs; the second part is effectively a nonlinear filter, usually called the activation function, 
through which the combined signal flow. These processing elements are usually organized 
into a sequence of layers or slabs with full or random connections between the layers. 
Neural network perform two major functions which are training (learning) and testing 
(recall). Testing occurs when a neural network globally processes the stimulus presented at 
its input buffer and creates a response at the output buffer. Testing is an integral part of the 
training process since a desired response to the network must be compared to the actual 
output to create an error function. 
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Start

Obtain load flow solution for the system to 
be studied

Partitions the system Y-bus matrix 
according to equation (2) 

Modify the diagonal elements of admittance 
matrix Y, to obtain Y’

End

Obtain load current as a function of the 
generators’ current and load voltages with 

equation (6)

Calculate the  real and reactive power 
contribution to loads by individual 

generator using equations (12) and (13) 

Obtain the total real and reactive power  SL
of all loads using equations (7) and (8) 

Calculate the equivalent admittance of each 
load bus with equation (9) 

Obtain the load bus voltages contributed by 
all generators with equation (11)

 
Fig. 1. Flow chart of the proposed real and reactive power allocation method 

3.1.1 Structure of the proposed neural network in real and reactive power allocation 
method 
In this work, 3 fully connected feedforward neural networks under MATLAB platform are 
utilized to obtain both real as well as reactive power transfer allocation results for the 
practical 25-bus equivalent power system of south Malaysia region as shown in Figure 2. 
This system consists of 12 generators located at buses 14 to 25 respectively. They deliver 
power to 5 loads, through 37 lines located at buses 1, 2, 4, 5, and 6 respectively. All 
discussions on designing of each of these ANN below are for this 25-bus equivalent system. 
Each network corresponds to four numbers of generators in the test system and each 
consists of two hidden layers and a single output layer. This means that in the first network 
is associated with four numbers of generator located at buses 14 to 17. This realization is 
adopted for simplicity and to reduce the training time of the neural networks. 
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Fig. 2. Single line diagram for the 25-bus equivalent system of south Malaysia 

The input samples for training is assembled using the daily load curve and performing load 
flow analysis for every hour of load demand. Again the load profile on hourly basis (Cheng, 
1998) is utilized to produce 24 hours loads here also. Similarly the target vector for the 
training is obtained from the proposed method using MNE. Input data (D) for developed 
ANN contains independent variables such as real loads (P1, P2, P4 to P6) or reactive loads 
(Q1, Q2, Q4 to Q6) for real and reactive power transfer allocation respectively, bus voltage 
magnitude (V1  to V13) for both real as well as reactive power, real power (Pline1 to Pline37) or  
reactive power (Qline1 to Qline37) for line flows of real and reactive power transfer allocation 
respectively, and the target/output parameter (T) which is real or reactive power transfer 
between generators and loads placed at buses 1, 2, 4 to 6. This is considered as 20 outputs for 
both real as well as reactive power transfer allocation. Hence the networks have twenty 
output neurons. For the neural network 1, the first five neurons represent the contribution 
from generator 14 to the loads and the remaining outputs neurons correspond to the other 
three generators located at buses 15 to 17 respectively. Tables 1 and 2 summarize the 
description of inputs and outputs of the training data for each ANN for real and reactive 
power allocation respectively. 
 
Input and Output (layer) Neurons Description (in p.u) 

I1 to I5 5 Real loads 
I6 to I18 13 Bus voltage magnitude 
I19 to I55 37 Real power for line flows 

O1 to O20 20 Real power transfer between generators and loads 

Table 1. Description of inputs and outputs of the training data for each ANN for real power 
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Input and Output (layer) Neurons Description (in p.u) 
I1 to I5 5 Reactive loads 
I6 to I18 13 Bus voltage magnitude 
I19 to I55 37 Reactive power for line flows 

O1 to O20 20 Reactive power transfer between generators and loads 

Table 2. Description of inputs and outputs of the training data for each ANN for reactive 
power 

3.1.2 Training 
Neural networks are sensitive to the number of neurons in their hidden layer. Too few 
neurons in the hidden layer prevent it from correctly mapping inputs to outputs, while too 
many may impede generalization and increasing training time. Therefore number of hidden 
neurons is selected through experimentation to find the optimum number of neurons for a 
predefined minimum of mean square error in each training process. To take into account the 
nonlinear characteristic of input (D) and noting that the target values are either positive or 
negative, the suitable transfer function to be used in the hidden layer is a tan-sigmoid 
function. Non linear activation functions allow the network to learn nonlinear relationships 
between input and output vectors. Levenberg-Marquardt algorithm has been used for 
training the network. After the input and target for training data is created, next step is to 
divide the data (D and T) up into training, validation and test subsets. In this case 100 
samples (60%) of data are used for the training and 34 samples (20%) of each data for 
validation and testing. Table 3 shows the numbers of samples for training, validation and 
test data for real and reactive power allocation respectively.  
 

Data Types Number of Samples (Hour) 
Training 100 

Validation 34 
Testing 34 

Table 3. The number of samples for training, validation and test set  

The error on the training set is driven to a very small value i.e. 3.5× 10-8 . If the calculated 
output error becomes much larger than acceptable, when a new data is presented to the 
trained network, then it can be said that the network has memorized the training samples, but 
it has not learned to generalize to new situations. Validation sets is used to avoid this 
overfitting problem. The test set provides an independent measure of how well the network 
can perform on data not used to train it. In real power allocation scheme, the performance of 
the training for the ANN with two hidden layers having different number of neurons i.e. 15 
and 10 respectively is as shown in Figure 3. From Figure 3, it can also be seen that the training 
goal is achieved in 12 epochs with a mean square error of 8.897× 10-9. For reactive power 
allocation scheme, the performance of the training for the ANN is also made with two hidden 
layers having different number of neurons i.e. 10 and 15 respectively as shown in Figure 4. 
In this Figure 4 the training goal is achieved in 13 epochs with a mean square error of 
9.50128× 10-9. Note that the mean square error is not much different for both real as well as 
reactive power transfer allocation. This indicates that the developed ANN can allocate both 
real as well as reactive power transfer between generators and loads with almost similar 
accuracy. 
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Fig. 3. Training curve with two hidden layers having different number of  neurons i.e. 15 
and 10 respectively for real power allocations  
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Fig. 4. Training curve with two hidden layers having different number of  neurons i.e. 10 
and 15 respectively for reactive power allocations  

The result is reasonable, since the test set error and the validation set error have similar 
characteristics with the training set, and it doesn’t appear that any significant overfitting has 
occurred. The same network setting parameters is used for training the other 2 networks. 

3.1.3 Pre-testing and simulation 
After the networks have been trained, next step is to simulate the network. The entire 
sample data is used in pre testing. After simulation, the obtained result from the trained 
network is evaluated with a linear regression analysis. In real power allocation scheme, the 
regression analysis for the trained network that referred to contribution of generator at bus 
15 to load at bus 1 is shown in Figure 5. 
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Fig. 5. Regression analysis between the network output and the corresponding target for 
real power allocation 

The correlation coefficient, (R) in this case is equal to one which indicates perfect correlation 
between MNE Method and output of the neural network. The best linear fit is indicated by a 
solid line whereas the perfect fit is indicated by the dashed line. Subsequently, similar 
results is obtained on regression analysis for reactive power allocation method for the 
trained network that referred to contribution of generator at bus 14 to load at bus 2 as 
shown in Figure 6. 
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Fig. 6. Regression analysis between the network output and the corresponding target for 
reactive power allocation 

Finally, both real as well as reactive power contribution to loads is determined and 
compared with the MNE Method’s output. Daily load curves for every load bus are shown 
in Figures 7 to 8 and the target patterns for generator located at buses 14 and 22 are given in 
Figures 9 to 12. 
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Fig. 7. Real power allocation method daily load curves for different buses 
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Fig. 8. Reactive power allocation method daily load curves for different buses 
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Fig. 9. Selected target patterns of generator at bus 14 of real power allocation scheme within 
168 hours 
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Fig. 10. Selected target patterns of generator at bus 22 of real power allocation scheme 
within 168 hours 
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Fig. 11. Selected target patterns of generator at bus 14 of reactive power allocation scheme 
within 168 hours 
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Fig. 12. Selected target patterns of generator at bus 22 of reactive power allocation scheme 
within 168 hours  
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4. Real power allocation results for 25-bus test system 
At different loads, comparison of results of (Bialek, 1996) Method with the proposed method 
is as shown in Table 4. It is observed that, the results of proposed method is very much 
comparable with (Bialek, 1996) Method. Due to the different approach the difference of 
allocation factor lies between the results of proposed method and (Bialek, 1996) Method 
occurred at each load buses 1, 2, and 4 to 6. This difference does not exist i.e. zero 
contribution in the (Bialek, 1996). Method for about half count  buses while the proposed 
method distribute allocation factor to all load buses. The other difference of the proposed 
method is due to the use of basic system nodal equations which minimize the simplifying 
assumptions such as the proportional sharing and lossless network as considered in Bialek’s 
Method. From Table 4, it can also be observed that the sum of the real power contributed by 
each generator is in conformity with the solved load flow. In this system, (Bialek, 1996) 
Method and the proposed method can compute the required relationship with similar 
computation time i.e. within 46 msec. Hence, it is proven that the proposed methodology 
provides reasonable and acceptable results to real power transfer allocation as compared to 
(Bialek, 1996) Method. 
 
Supplied Load bus no. 

by Modified Nodal Equations Method Bialek's Method 
(MW) 1 2 4 5 6 1 2 4 5 6 

Gen-14 1.150 15.041 8.519 11.475 15.318 0 71.274 0 0 0 
Gen-15 1.150 15.041 8.519 11.475 15.318 0 71.274 0 0 0 
Gen-16 1.489 16.741 96.602 14.772 18.816 0 0 85.144 0 0 
Gen-17 1.456 16.257 93.268 14.388 18.307 0 0 82.090 0 0 
Gen-18 0.93393 10.786 7.210 9.402 12.027 2.181 0 16.593 21.805 13.444 
Gen-19 1.064 11.538 64.478 10.35 13.108 0 0 56.392 0 0 
Gen-20 0.97752 11.451 7.619 9.919 12.717 2.353 0 17.903 23.527 14.505 
Gen-21 1.343 17.026 9.602 13.087 17.626 0 19.446 0 0 51.670 
Gen-22 1.376 17.389 9.759 13.337 17.997 0 19.446 0 0 51.670 
Gen-23 1.376 16.756 11.011 14.275 18.408 3.586 0 27.292 35.863 22.111 
Gen-24 1.248 14.774 9.796 12.739 16.358 3.070 0 23.362 30.699 18.927 
Gen-25 1.554 18.643 12.308 15.982 20.564 3.931 0 29.912 39.306 24.234 
Total  
Load 15.120 181.443 338.691 151.202 196.564 15.121 181.440 338.688 151.200 196.561 

Actual  
Load 15.12 181.44 338.69 151.2 196.56 15.12 181.44 338.69 151.2 196.56 

Table 4. Comparison of the real power distribution by each generator to load at  buses 1, 2, 4 
to 6 for the practical 25-bus equivalent power system 

The proposed MNE Method has been simulated to reveal the accuracy of the developed 
ANN. The case scenario is that the real and reactive load is decreasing in 10% from the 
nominal trained pattern. Furthermore, it is also assumed that all generation is divided 
proportionally according to the load demands, to ensure that all real power generation of 
generator at buses 14 to 25 varies in respond to the daily load pattern of the loads at least by 
a small amount rather than to give the unbalance load only to the slack generator. Figure 13 
shows the real power transfer allocation results due to generator located at bus 14 by the 
ANN output along with the result obtained through to proposed method for loads at buses 
1, 2, and 4 to 6 within 168 hours. 
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Fig. 13. Distribution of real power from generator at bus 14 to loads within 168 hours 

Results obtained from the ANN output are indicated with lines having circles and the solid 
lines represent the output of the MNE Method. From Figure 13, it can be observed that the 
developed ANN can allocate real power transfer between generators and load with very 
good accuracy, almost 100 %. In this simulation, ANN computes within 45 msec whereas the 
MNE Method takes 1314 msec for the same real power transfer allocation. Consequently, it 
can be concluded that the ANN is more efficient in terms of computation time. Moreover, 
the final allocation of real power to loads on hours twelve out of 168 hours using developed 
ANN is presented in Table 5 along with the result obtained through MNE Method. Note 
that the result obtained by the ANN output is comparable with the result of MNE Method. 
The difference of real power between generators in both methods is very small which is less 
than 0.0053 MW. 
 

Supplied Load bus no. 
by ANN Output Modified Nodal Equations Method 

(MW) 1 2 4 5 6 1 2 4 5 6 
Gen-14 1.150 15.042 8.519 11.476 15.319 1.150 15.041 8.519 11.475 15.318 
Gen-15 1.150 15.043 8.519 11.477 15.32 1.150 15.041 8.519 11.475 15.318 
Gen-16 1.489 16.744 96.603 14.773 18.816 1.489 16.741 96.602 14.772 18.816 
Gen-17 1.456 16.258 93.273 14.388 18.308 1.456 16.257 93.268 14.388 18.307 
Gen-18 0.93393 10.786 7.210 9.402 12.027 0.93393 10.786 7.210 9.402 12.027 
Gen-19 1.064 11.538 64.477 10.35 13.108 1.064 11.538 64.478 10.35 13.108 
Gen-20 0.97752 11.451 7.619 9.919 12.717 0.97752 11.451 7.619 9.919 12.717 
Gen-21 1.343 17.026 9.602 13.087 17.626 1.343 17.026 9.602 13.087 17.626 
Gen-22 1.375 17.389 9.759 13.336 17.996 1.376 17.389 9.759 13.337 17.997 
Gen-23 1.376 16.755 11.01 14.275 18.407 1.376 16.756 11.011 14.275 18.408 
Gen-24 1.248 14.773 9.795 12.739 16.357 1.248 14.774 9.796 12.739 16.358 
Gen-25 1.553 18.642 12.307 15.981 20.563 1.554 18.643 12.308 15.982 20.564 
Total  
Load 15.120 181.446 338.697 151.202 196.564 15.120 181.443 338.691 151.202 196.564 

Actual  
Load 15.12 181.44 338.69 151.2 196.56 15.12 181.44 338.69 151.2 196.56 

Table 5. Analysis of real power allocation for the practical 25-bus equivalent power system 
of south Malaysia 
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5. Reactive power allocation results for 25-bus test system 
Table 6 shows a comparison of reactive power distribution of generators at buses 14 to 25 
obtained through the Chu’s Method (Chu & Liao,2004)  and proposed MNE Method. By 
comparing the values depicted in Table 6, it is obvious that the reactive power allocation 
made by the proposed method is slightly difference from that of Chu’s Method. The 
difference in the result between both methods is only noticeable for load at bus 4 while the 
results of others load buses are almost similar. This may due to the concept applied by the 
proposed method which represents each load current as a function of individual generators’ 
current and voltage. On the other hand the Chu’s Method represents each load voltage as a 
function of individual generators’ voltage. 
 
Supplied Load bus no. 

by Modified Nodal Equations Method Chu's Method 
(MVAr) 1 2 4 5 6 1 2 4 5 6 
Gen-14 0.31492 17.18 0.96389 1.5687 4.5436 0.31492 17.18 2.5279 1.5687 4.5436 
Gen-15 0.31492 17.18 0.96389 1.5687 4.5436 0.31492 17.18 2.5279 1.5687 4.5436 
Gen-16 0.74182 1.2167 36.688 3.4787 4.0287 0.74182 1.2167 23.467 3.4787 4.0287 
Gen-17 0.73775 1.2058 36.835 3.4491 3.9978 0.73775 1.2058 23.325 3.4491 3.9978 
Gen-18 0.97819 1.6864 3.2764 4.7926 5.484 0.97819 1.6864 8.6761 4.7926 5.484 
Gen-19 0.57913 0.93221 30.051 2.6715 3.1082 0.57913 0.93221 18.266 2.6715 3.1082 
Gen-20 0.99247 1.7194 3.3289 4.8834 5.5814 0.99247 1.7194 8.8266 4.8834 5.5814 
Gen-21 0.28846 3.2488 0.89633 1.9222 5.2149 0.28846 3.2488 2.4623 1.9222 5.2149 
Gen-22 0.28846 3.2488 0.89633 1.9222 5.2149 0.28846 3.2488 2.4623 1.9222 5.2149 
Gen-23 1.2757 2.2432 4.2971 6.3601 7.2436 1.2757 2.2432 11.44 6.3601 7.2436 
Gen-24 1.248 2.1686 4.1895 6.1571 7.0321 1.248 2.1686 11.118 6.1571 7.0321 
Gen-25 1.2941 2.2928 4.3687 6.4951 7.3842 1.2941 2.2928 11.655 6.4951 7.3842 
Total 
Load 9.05392 54.3227 126.755 45.2694 63.377 9.05392 54.32271126.7541 45.2694 63.377 

Actual 
 Load 9.0539 54.323 126.75 45.269 63.377 9.0539 54.323 126.75 45.269 63.377 

Table 6. Reactive power distribution of generators to loads for the 25-bus  equivalent system 
 

A number of simulations have been carried out to demonstrate the accuracy of the 
developed ANN with the same 25-bus equivalent system of south Malaysia. The scenario is 
a decrement by 10% of the real and reactive load demand from the nominal trained pattern. 
Besides it also assumed that all generators also decrease their production proportionally 
according to this variation in the load demands. Figure 14 shows the reactive power transfer 
allocation result for generator located at bus 14 calculated by the ANN along with the result 
obtained through MNE Method for loads at buses 1, 2, and 4 to 6 within 168 hours. 
The pattern used for results is same as of real power allocation. From Figure 14, it can be 
observed that the developed ANN can allocate reactive power transfer between generators 
and load with very good accuracy, almost 100%. In this simulation, ANN computes within 
45 msec whereas the MNE Method took 908 msec for the calculation of same reactive power 
transfer allocation. Therefore it can be concluded that the ANN is more efficient in terms of 
computation time. From Table 7, it can be noted that the result obtained by the ANN output 
in this thesis is compared well with the result of MNE Method. 
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Fig. 14. Distribution of reactive power from generator at bus 14 to loads within 168 hours 

  
Supplied Load bus no. 

by ANN Output Modified Nodal Equations Method 
(MVAr) 1 2 4 5 6 1 2 4 5 6 
Gen-14 0.31492 17.18 0.96386 1.5686 4.5436 0.31492 17.18 0.96389 1.5687 4.5436 
Gen-15 0.31492 17.18 0.96386 1.5687 4.5435 0.31492 17.18 0.96389 1.5687 4.5436 
Gen-16 0.74181 1.2167 36.689 3.4786 4.0286 0.74182 1.2167 36.688 3.4787 4.0287 
Gen-17 0.73775 1.2058 36.835 3.449 3.9978 0.73775 1.2058 36.835 3.4491 3.9978 
Gen-18 0.97821 1.6865 3.2764 4.7927 5.4841 0.97819 1.6864 3.2764 4.7926 5.484 
Gen-19 0.57914 0.9322 30.05 2.6715 3.1082 0.57913 0.93221 30.051 2.6715 3.1082 
Gen-20 0.99249 1.7194 3.3288 4.8834 5.5815 0.99247 1.7194 3.3289 4.8834 5.5814 
Gen-21 0.28846 3.2489 0.89634 1.9223 5.2152 0.28846 3.2488 0.89633 1.9222 5.2149 
Gen-22 0.28845 3.2487 0.89632 1.9222 5.2147 0.28846 3.2488 0.89633 1.9222 5.2149 
Gen-23 1.2756 2.2431 4.2971 6.3599 7.2433 1.2757 2.2432 4.2971 6.3601 7.2436 
Gen-24 1.2479 2.1685 4.1894 6.1569 7.0319 1.248 2.1686 4.1895 6.1571 7.0321 
Gen-25 1.2941 2.2928 4.3687 6.4949 7.3839 1.2941 2.2928 4.3687 6.4951 7.3842 
Total  
Load 9.05375 54.3226 126.755 45.2687 63.3763 9.05392 54.32271 126.755 45.2694 63.377 

Actual Load 9.0539 54.323 126.75 45.269 63.377 9.0539 54.323 126.75 45.269 63.377 

Table 7. Analysis of reactive power allocation for the 25-bus equivalent system 

The difference of reactive power between generators in both methods is very small, which 
are less than 10-3 MVAr. The consumer located at bus 4 consumed the highest demand 
compared to other consumers in this hour. Consequently, the contribution of reactive power 
due to generators 16, 17 and 19 located at the same bus provides more reactive power to 
load at bus 4 by both methods as well. For this reason the acquired result illustrates that the 
contribution of individual generators are mostly confined in their neighborhood. 

6. Test conducted on the IEEE 118 bus system 
The proposed methods have also been tested on IEEE 118 bus system.  This system consists 
of 186 lines, 33 physical reactive power sources and 54 real power generators. 
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6.1.1 Application of RBFN in real and reactive power allocation method 
One of the main purposes of this work is to incorporate RBFN into real and reactive power 
allocation method between generators and load. The structure of the proposed RBFN for 
each allocation scheme is discussed in the following sub-sections. 

6.1.2 Real power allocation method 
In this case study, RBFN with one hidden layer and one output layer has been chosen. The 
proposed allocation method is elaborated by designing an appropriate RBFN for the IEEE 
118 bus system as shown in Figure 15. This system consists of 54 generators located at 
selected buses which lies in between buses numbered as 1 to 118. They deliver power to 64 
loads, through 186 branches located at selected buses which lies in between buses numbered 
as 1 to 118. 
 

 
Fig. 15. Single line diagram for the IEEE 118 bus system 

The input samples for training is assembled using the daily load curve and performing load 
flow analysis for every hour of load demand. Again the load profile on hourly basis (Cheng, 
1998) is utilized to produce 24 hours loads here also. Similarly the target vector for the 
training is obtained from the proposed method using nodal equations. Input data (D) for 
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developed ANN contains independent variables such as real power generation located at 
selected buses which lies in between buses numbered as (Pg1, to Pg118), real loads located at 
selected buses which lies in between buses numbered as (P2 to P118), reactive loads located at 
selected buses which lies in (Q2  to Q118), average power for line flows (Pline1 to Pline186)  and 
the target/output parameter, (T) which is real power transfer between generators and loads 
placed at  selected buses which lies in between buses numbered as 2 to 118. This is 
considered as 3456 outputs and therefore the networks have three thousand, four hundred 
and fifty six output neurons. Each generator allocates to the sixty four output neurons which 
correspond to the loads located at selected buses which lies in between buses numbered as 2 
to 118. For example, the first sixty four neurons (1-64) represent the contribution from 
generator at bus 1 to the sixty four loads, the second sixty four neurons (65-128) represent 
the contribution from generator at bus 4 to the sixty four loads and so on for generators 
located at selected buses which lies in between buses numbered as 1 to 118. Table 8 
summarizes the description of inputs and outputs of the training data for the RBFN. 
 

Input and Output (layer) Neurons Description (in p.u) 
I1 to I54 54 Real power generations 

I55 to I118 64 Real loads
I119 to I182 64 Reactive loads
I183 to I368 186 Average power for line flows 

O1 to O3456 3456 Real power transfer between gen. and loads 

Table 8. Description of inputs and outputs of the training data for the RBFN 

6.1.3 Reactive power allocation scheme 
In this case study, structure and description of input and output of each RBFN is similar to 
those of the real power allocation scheme. Table 9 shows the details of inputs and outputs of 
the training data for the RBFN. 
 

Input and Output (layer) Neurons Description (in p.u) 
I1 to I54 54 Real power generations

I55 to I118 64 Real loads
I119 to I182 64 Reactive loads
I183 to I368 186 Average power for line flows 

O1 to O3456 3456 Reactive power transfer between gen. and loads 

Table 9. Description of inputs and outputs of the training data for the RBFN 

6.1.4 Unsupervised learning to choose the centers of training samples 
The well-known k-means clustering algorithm is used to find a set of centers for the training 
samples. In k-means clustering, the number of desired centers (k), must be decided in 
advance. One simple way of choosing the value of k is to set it equal to a fraction of total 
training data samples. The k-means algorithm is as follows (Abdullah, 2008): 
Step 1: Assign the input data to random k sets. 
Step 2: Compute the mean of each set. 
Step 3: Reassign each point to a new set according to which is the nearest mean vector. 
Step 4: Recomputed the mean of each set. 
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Step 5: Repeat steps 3 and 4 until there is no further change in the grouping of data points. 
Step 6: The mean of the sets will be the RBFN center. 

6.1.5 Training 
After the input and target for training data is created, it can be made more efficient to scale 
(preprocess) the network inputs and targets so that they always fall within a specified range. 
In this case the minimum and maximum value of input and output vectors is used to scale 
them in the range of -1 and +1. Next step is to divide the input data and target data up into 
training. In this case 14 samples (60%) of data are used for the training as shown in Table 10. 
 

Data Types Samples (Hour) 
Training 1,6,11,16,21,3,8,13,18,23,5,10,15,20

Table 10. The Numbers of Samples for Training 

The training of the RBFN consists of two separate stages. First step is to find the centers 
parameter by using the k-means clustering algorithm. Initially, the number of trials with 
different number of k keeping the β  constant and vice versa is set. In both real and reactive 
power allocation scheme, the k is taken as 14 samples equal to number of hours and the β  
as 10, resulting in reasonable accuracy of the output of the RBFN with the target. For this 
k=14 and β =10, the computed training time i.e. 187 msec taken by the RBFN is same for 
both of the real and reactive power allocation scheme. Total number of the second layer 
weights influencing the individual output is, 14. Therefore, the minimum number of data set 
required to train the network is 14. In the second training stage, the second layer weights in 
connections between the hidden layer and the output layer are determined using the least 
squares based on minimization of quadratic errors of RBFN network output values over the 
set of training input-output vector pairs. At that stage, the weights in connections between 
the input layer and the hidden layer and the parameters of the radial basis functions of the 
hidden layer are already set as determined in the first training stage and are not subject to 
any further changes. During this training, the RBFN network is presented with individual 
input vectors from the set of training samples and responds with certain output vectors. 
These output vectors are compared with the target output vectors also given in the training 
set, and the individual weights are updated in a way ensuring a decrease of the difference 
between the actual and target output vectors. The individual input-output training pairs are 
presented to the RBFN network repeatedly until the error decreases to an acceptable level. 

6.1.6 Pre-testing and simulation 
In first step using MATLAB, the network is to be trained. In the second step involves 
simulating the network. The entire sample data is used in pre testing. After simulation, the 
obtained result from the trained network is evaluated with a linear regression analysis. The 
regression analysis for the trained network that referred to contribution of generator at bus 1 
to load at bus 2 is shown in Figure 16. 
The correlation coefficient, (R) in this case is equal to one which indicates perfect correlation 
between MNE Method and output of the neural network. The best linear fit is indicated by a 
solid line whereas the perfect fit is indicated by the dashed line. Moreover, performing 
regression analysis of reactive power allocation scheme for the trained network, similar 
results is obtained which refers to contribution of generator at bus 1 to load at bus 16 as 
shown in Figure 17. 
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Fig. 16. Regression analysis between the network output and the corresponding  target 
keeping k =14 and β =10 for real power allocation 
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Fig. 17. Regression analysis between the network output and the corresponding  target 
keeping k =14 and β =10 for reactive power allocation 

6.1.7 Real power allocation results for IEEE 118 bus system 
The case scenario is that increment by 10% of the real and reactive load demand from the 
nominal trained pattern. In addition it is also assumed that all generation is divided linearly 
according to the load demands. Figure 18 shows the real power transfer allocation result for 
generator located at bus 69 calculated by the RBFN along with the result obtained through 
to the MNE Method for loads at buses 41, 43, 44, 45, 47, 48, 53, 57, 58 and 79 within 24 hours. 
Results obtained from the RBFN are indicated with lines having circles, and the solid lines 
represent the output of the MNE Method. From Figure 18, it can be observed that the 
developed RBFN can allocate real power transfer between generators and load with very 
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Fig. 18. Distribution of real power from generator at bus 69 to loads within 24  hours 

good accuracy, almost 100%. In this simulation, RBFN computes within 15 ms, whereas the 
MNE Method took 3000 ms for the calculation of same real power transfer allocation. For 
that reason it can be concluded that the RBFN is more efficient in terms of computation time. 
Moreover, the final allocation of real power to loads using proposed RBFN on hours 12 out 
of 24 hours is presented in Table 11 along with the result obtained through MNE Method. It 
can be noted that the result obtained by the proposed RBFN compares well with the result 
of MNE Method. The difference of real power between generators in both methods is too 
small i.e. less than 7.687 × 10-4MW. It is worth noting that the total contributions of each 
generator to loads are reasonable since it is less than its total production. For example, the 
total contribution of generator at bus 107 to all loads is 56.609 MW and this value does not 
exceed its generation i.e. 60MW. 
 
Bus Actual RBFN Output Modified Nodal Equations Method 
no. load Gen-107 Gen-110 Gen-111 Gen-112 Gen-113 Gen-116 Gen-107 Gen-110 Gen-111 Gen-112 Gen-113 Gen-116 

 (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) 
2 33.742 0.17641 0.07029 0.074479 0.084484 0.26015 0.54608 0.17642 0.070304 0.074488 0.084469 0.26018 0.54609 
3 34.936 0.0011481 0.02429 -0.00184 -0.00487 -0.12908 0.08572 0.0011802 0.024295 -0.00184 -0.00487 -0.12913 0.08577 
7 20.532 -0.50109 -0.08008 -0.22335 -0.26714 -1.397 -1.139 -0.50109 -0.08014 -0.22334 -0.26723 -1.397 -1.139 
11 22.044 -0.079927 -0.01767 -0.03514 -0.04149 -0.19599 -0.19864 -0.079927 -0.01767 -0.03514 -0.04150 -0.19607 -0.19855 
13 21.964 0.3324 0.16024 0.13762 0.15281 0.33545 1.124 0.33242 0.16026 0.13762 0.15282 0.33547 1.124 
14 20.691 0.16734 0.085524 0.068802 0.075821 0.1413 0.58286 0.16735 0.085535 0.068803 0.075822 0.14129 0.58291 
16 20.85 0.27669 0.12888 0.115 0.12823 0.30286 0.92001 0.2767 0.12889 0.115 0.12823 0.30278 0.92001 
17 21.089 -1.328 -0.44117 -0.5697 -0.65629 32.756 -3.794 -1.328 -0.44119 -0.5698 -0.65648 32.755 -3.795 
20 21.168 0.20442 0.13588 0.080957 0.085462 0.015533 0.815 0.20441 0.13587 0.080954 0.085448 0.015482 0.81502 
21 20.85 0.41409 0.21672 0.16975 0.18646 0.34599 1.435 0.41409 0.21673 0.16975 0.18646 0.34593 1.435 
22 21.487 0.42325 0.22155 0.1735 0.19058 0.36393 1.456 0.42326 0.22155 0.17351 0.19058 0.3639 1.456 
23 22.839 -0.66814 -0.25275 -0.28345 -0.323 0.080557 -1.915 -0.66823 -0.25273 -0.28347 -0.32303 0.080539 -1.916 
28 18.463 0.13753 0.078981 0.055688 0.060326 0.46697 0.50158 0.13752 0.078984 0.055685 0.060323 0.46693 0.50158 
29 35.015 0.08196 0.056481 0.032272 0.033801 0.71278 0.3329 0.081951 0.056484 0.032257 0.033798 0.7128 0.33289 
33 42.177 0.59022 0.2685 0.24595 0.275 0.66717 1.956 0.59024 0.26853 0.24594 0.275 0.66711 1.956 
35 26.261 -0.22153 -0.11404 -0.09094 -0.1002 -0.19487 -0.78481 -0.22151 -0.11404 -0.09099 -0.10018 -0.19497 -0.78503 
39 29.445 0.15404 0.18401 0.052954 0.045775 -0.16485 0.90055 0.15401 0.18401 0.05296 0.045736 -0.16498 0.90052 

Table 11. Analysis of real power allocation for selected generators in the IEEE  118 bus 
system 
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41 29.445 -0.38925 0.034202 -0.18297 -0.22959 -0.89799 -0.58842 -0.38924 0.034191 -0.18297 -0.2296 -0.89814 -0.58843 
43 30.24 0.50245 0.24314 0.20791 0.23076 0.47352 1.729 0.50243 0.24313 0.20792 0.23077 0.4735 1.729 
44 28.649 0.57406 0.30863 0.23452 0.25662 0.45607 2.082 0.57406 0.30864 0.23453 0.25663 0.45605 2.082 
45 42.177 0.28215 0.1641 0.11407 0.12332 0.20542 1.066 0.28215 0.16412 0.11406 0.12331 0.20536 1.066 
47 58.889 0.23569 0.15323 0.093944 0.099664 0.152 0.93871 0.23577 0.15319 0.093967 0.099666 0.15199 0.93889 
48 47.748 0.055997 0.023694 0.023554 0.026538 0.048013 0.18169 0.056017 0.023724 0.023556 0.026553 0.04797 0.18162 
50 29.445 0.21457 0.12709 0.086539 0.093283 0.1485 0.82321 0.21457 0.12708 0.086535 0.093279 0.14849 0.82322 
51 29.445 0.40261 0.22604 0.16355 0.17781 0.28905 1.506 0.40262 0.22604 0.16356 0.17781 0.28903 1.506 
52 30.24 0.63096 0.34321 0.25738 0.28115 0.46243 2.325 0.63096 0.34321 0.25738 0.28115 0.46242 2.325 
53 26.261 -0.10263 0.055608 -0.05283 -0.07115 -0.17384 -0.00468 -0.10269 0.055604 -0.05285 -0.07121 -0.17391 -0.00487 
57 33.424 -0.08542 0.13265 -0.05248 -0.07895 -0.22284 0.28771 -0.085465 0.13258 -0.05248 -0.07897 -0.22301 0.28766 
58 19.895 -0.31289 0.063793 -0.15073 -0.19292 -0.4379 -0.36759 -0.31304 0.063805 -0.15073 -0.19294 -0.43799 -0.36768 
60 62.072 0.012021 0.17156 -0.01134 -0.03242 -0.12428 0.58579 0.011923 0.17159 -0.01138 -0.03239 -0.12441 0.58567 
67 22.282 0.13199 0.10379 0.050696 0.051522 0.068946 0.59666 0.13198 0.10379 0.050696 0.051512 0.068944 0.59664 
75 37.403 0.18798 -0.02875 0.092096 0.11654 0.17113 0.048409 0.18811 -0.02816 0.091987 0.1166 0.17089 0.049178 
78 56.502 0.54436 0.46 0.23461 0.24055 0.25415 1.780 0.54457 0.46035 0.23476 0.2407 0.25441 1.780 
79 31.036 0.37995 0.40042 0.15918 0.15374 0.17367 1.528 0.37987 0.40043 0.15914 0.15373 0.17364 1.528 
82 42.973 0.8622 0.77475 0.32579 0.31954 0.41579 2.577 0.86217 0.77462 0.3258 0.31954 0.41581 2.577 
83 15.916 0.31408 0.27243 0.11957 0.11858 0.14553 0.86389 0.31408 0.27244 0.11958 0.11856 0.14552 0.86388 
84 87.538 0.018614 -0.17347 0.029182 0.054584 -0.03262 -0.56264 0.018548 -0.17346 0.029177 0.054564 -0.03262 -0.56274 
86 16.712 -0.1309 -0.23078 -0.03578 -0.01950 -0.08321 -0.6854 -0.13092 -0.2308 -0.03580 -0.01955 -0.08323 -0.6857 
88 38.198 0.87967 -0.05461 0.43983 0.54895 0.14802 -0.5368 0.87941 -0.05460 0.43979 0.54891 0.14805 -0.53752 
93 95.496 -0.25741 -0.11605 -0.07175 -0.07622 -0.10564 -0.3485 -0.25755 -0.11608 -0.07176 -0.07621 -0.10566 -0.34858 
94 23.874 1.668 0.63315 1.507 1.794 -0.19487 -1.373 1.6685 0.63318 1.507 1.794 -0.19489 -1.374 
95 33.424 0.6563 0.80719 0.22336 0.18961 0.34821 2.309 0.65622 0.80733 0.22336 0.18955 0.34821 2.31 
96 30.24 0.4655 0.60166 0.1647 0.13912 0.25282 1.886 0.46548 0.60158 0.16469 0.13909 0.25282 1.886 
97 11.937 -0.19377 0.23982 -0.09554 -0.1436 -0.05865 0.77291 -0.1938 0.23974 -0.09558 -0.14365 -0.05867 0.77298 
98 27.057 0.8291 0.49602 0.59536 0.68224 0.08842 0.61209 0.82889 0.49604 0.59535 0.68216 0.088447 0.6121 
101 97.088 3.857 2.371 1.911 2.107 0.9018 3.569 3.857 2.371 1.911 2.107 0.90182 3.569 
102 11.937 0.007438 -0.34445 0.09218 0.15069 -0.13734 -1.125 0.007336 -0.34441 0.092196 0.15065 -0.13734 -1.125 
106 34.219 42.439 -0.57113 1.485 1.895 -0.54923 -2.923 42.438 -0.57107 1.485 1.895 -0.5493 -2.923 
108 89.13 12.297 3.114 2.377 2.603 0.57067 1.915 12.296 3.114 2.377 2.602 0.57067 1.915 
109 14.324 -1.378 12.968 17.664 20.427 -0.53203 -2.062 -1.378 12.968 17.664 20.427 -0.53203 -2.062 
114 14.324 0.050762 0.069213 0.01661 0.013121 1.568 0.32816 0.050775 0.069204 0.016619 0.013128 1.567 0.32813 
115 17.508 0.081997 0.050169 0.0329 0.035261 0.48282 0.30947 0.081973 0.050169 0.032889 0.035252 0.48282 0.30945 
117 15.916 0.26975 0.14147 0.11056 0.1214 0.2092 0.95213 0.26977 0.14147 0.11056 0.12141 0.20917 0.95212 
118 26.261 0.20535 0.22663 0.074181 0.067384 0.093782 1.021 0.20527 0.22663 0.074156 0.067356 0.093762 1.021 

Total: 56.609 18.605 24.406 28.148 29.977 26.348 56.609 18.607 24.405 28.148 29.977 26.354 

Table 11. Analysis of real power allocation for selected generators in the IEEE  118 bus 
system (cont.) 

6.1.8 Reactive power allocation results for IEEE 118 bus system 
For case scenario, the real and reactive load demand from the nominal trained pattern is 
increased by 10%. Figure 19 shows the reactive power transfer allocation result for generator 
located at bus 69 calculated by the RBFN along with the result obtained through to the MNE 
Method for loads at buses 2, 3, 11, 13, 14, 16, 17, 20, 21 and 22 within 24 hours. The pattern 
used for results is same as of real power allocation. From Figure 6.7, it can be observed that 
the developed RBFN can allocate reactive power transfer between generators and load with 
very good accuracy, almost 100%. In this simulation, RBFN computes within 15ms, whereas 
the MNE Method took 2911ms for the calculation of same reactive power transfer allocation. 
As a result it can be concluded that the RBFN is more efficient in terms of computation time. 
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Furthermore, the final allocation of reactive power to loads at hour 12 using developed 
RBFN is presented in Table 12 along with the result obtained through MNE and found close 
match between their results. The difference of reactive power between generators in both 
methods is very small i.e. <0.0067Mvar. 
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Fig. 19. Distribution of reactive power from generator at bus 69 to loads within 24  hours 
 

Bus Actual RBFN Output Modified Nodal Equations Method 
no. load Gen-107 Gen-110 Gen-111 Gen-112 Gen-113 Gen-116 Gen-107 Gen-110 Gen-111 Gen-112 Gen-113 Gen-116 

 (MVAr) (MVAr) (MVAr) (MVAr) (MVAr) (MVAr) (MVAr) (MVAr) (MVAr) (MVAr) (MVAr) (MVAr) (MVAr) 
2 22.442 0.006014 -0.06158 0.00882 0.017496 0.36319 -0.2018 0.00603 -0.06151 0.00884 0.017491 0.36318 -0.2017 
3 22.282 0.070593 0.02632 0.02990 0.034195 0.11366 0.21179 0.07059 0.02634 0.02998 0.034208 0.11366 0.21241 
7 22.282 0.3418 0.30944 0.1272 0.12409 -0.45274 1.656 0.34178 0.30957 0.12725 0.12405 -0.45274 1.655 
11 22.839 0.03888 0.04396 0.01367 0.01214 -0.09954 0.21848 0.03895 0.04395 0.01364 0.012157 -0.09952 0.21858 
13 22.76 0.083069 -0.08600 0.04681 0.066985 0.78692 -0.1534 0.08310 -0.08600 0.04681 0.066996 0.78688 -0.1536 
14 21.487 0.057507 -0.03771 0.03022 0.041412 0.42551 -0.0309 0.05756 -0.03767 0.03027 0.041406 0.42552 -0.0309 
16 21.487 0.058085 -0.07633 0.03432 0.050523 0.67031 -0.1639 0.05811 -0.07632 0.03432 0.050547 0.67026 -0.1639 
17 21.884 0.23004 0.56429 0.05054 0.002111 18.211 2.346 0.22997 0.56432 0.05057 0.002159 18.212 2.348 
20 22.919 0.1559 -0.01169 0.07312 0.091547 0.6119 0.2164 0.15603 -0.01170 0.07315 0.091584 0.61188 0.21644 
21 22.76 0.15113 -0.08834 0.07843 0.10628 0.94974 -0.0719 0.15116 -0.08837 0.07845 0.10632 0.9498 -0.0719 
22 22.362 0.15457 -0.09030 0.08020 0.10867 0.92085 -0.0853 0.15456 -0.09031 0.08021 0.1087 0.92084 -0.0854 
23 21.248 0.028327 0.24962 -0.01151 -0.04082 -0.38525 0.95643 0.02828 0.24965 -0.01150 -0.04088 -0.3852 0.95638 
28 22.68 0.069909 -0.02159 0.03437 0.044734 0.59457 0.03467 0.06986 -0.02162 0.03436 0.04475 0.59454 0.03472 
29 22.282 0.068016 -0.00258 0.03164 0.039312 0.64619 0.10095 0.06805 -0.00250 0.03164 0.039349 0.64619 0.10104 
33 31.036 0.10281 -0.17039 0.06418 0.097457 1.096 -0.4001 0.10277 -0.17036 0.06419 0.097468 1.096 -0.4 
35 23.078 -0.063832 0.05199 -0.03457 -0.04824 -0.3362 0.05991 -0.0638 0.05203 -0.03457 -0.04825 -0.33624 0.06035 
39 22.282 0.31646 0.07433 0.13858 0.16323 0.52581 0.82355 0.3163 0.07434 0.13864 0.16325 0.52581 0.82333 
41 22.282 0.50263 0.3398 0.19844 0.20875 0.23008 2.061 0.50257 0.33997 0.19845 0.20874 0.23008 2.060 
43 22.282 0.12944 -0.12873 0.07239 0.10316 0.61613 -0.2036 0.12945 -0.12871 0.07240 0.10316 0.61614 -0.2039 
44 22.282 0.23245 -0.11355 0.11843 0.15832 0.55532 0.02799 0.23244 -0.11352 0.11843 0.15837 0.55533 0.02814 
45 30.24 0.14994 -0.04177 0.07327 0.094882 0.26658 0.12454 0.14991 -0.04186 0.073299 0.094987 0.26655 0.12442 
47 46.156 0.17256 -0.01586 0.08128 0.10203 0.22298 0.23989 0.17253 -0.01587 0.081271 0.10205 0.22294 0.23954 
48 30.24 0.0083913 -0.01704 0.00552 0.008596 0.026759 -0.0438 0.00826 -0.01704 0.00550 0.008619 0.026778 -0.0437 
50 22.282 0.1219 -0.02881 0.05915 0.076116 0.17817 0.12473 0.12205 -0.02880 0.059164 0.076136 0.17818 0.12482 

Table 12. Analysis of reactive power allocation for selected generators in the IEEE  118 bus 
system 
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51 22.282 0.19109 -0.06871 0.09492 0.12455 0.29682 0.1205 0.19108 -0.06869 0.09494 0.12458 0.2968 0.12057 

52 22.282 0.26658 -0.12054 0.13482 0.17936 0.43472 0.08783 0.26662 -0.12039 0.13488 0.17942 0.43477 0.08748 

53 22.282 0.26907 0.1425 0.11017 0.12086 0.20019 0.98043 0.26922 0.14249 0.11021 0.12087 0.20023 0.98073 

57 30.24 0.46583 0.21367 0.19396 0.2167 0.37681 1.584 0.46596 0.21368 0.19399 0.21671 0.37688 1.584 

58 30.24 0.52403 0.31769 0.21048 0.22596 0.3542 2.042 0.52395 0.31771 0.21051 0.226 0.35413 2.043 

60 38.198 0.46826 0.17973 0.19827 0.22563 0.39709 1.499 0.46806 0.17974 0.1983 0.22566 0.39709 1.500 

67 22.282 0.14639 0.0104 0.066526 0.08103 0.16252 0.31679 0.14638 0.0104 0.066528 0.08104 0.16252 0.31678 

75 22.282 -0.28563 -0.17173 -0.11374 -0.12204 -0.18192 -0.9441 -0.2856 -0.17227 -0.11379 -0.12211 -0.18193 -0.9455 

78 36.607 0.68374 0.15851 0.3118 0.36798 0.36303 0.61565 0.68472 0.15851 0.31193 0.36825 0.36319 0.61571 

79 25.466 0.71643 0.21628 0.32115 0.37354 0.37132 0.8582 0.71669 0.21646 0.32128 0.3736 0.37138 0.85835 

82 29.445 1.215 0.18154 0.54397 0.65232 0.45164 0.53679 1.215 0.18158 0.54398 0.65233 0.45166 0.53681 

83 30.24 0.41881 0.057094 0.18851 0.22664 0.14244 0.13402 0.41883 0.057092 0.18848 0.22665 0.14244 0.13402 

84 29.445 -0.50926 -0.19681 -0.21449 -0.24384 -0.1796 -0.5477 -0.5092 -0.19685 -0.2145 -0.24384 -0.1796 -0.5476 

86 30.24 -0.50221 -0.14519 -0.21664 -0.25197 -0.15772 -0.34537 -0.5023 -0.1451 -0.21667 -0.25204 -0.15773 -0.3453 

88 30.24 -1.130 -0.67583 -0.4443 -0.47638 -0.42418 -1.861 -1.130 -0.6758 -0.44431 -0.47644 -0.42418 -1.861 

93 29.445 -0.06821 0.16569 -0.03630 -0.06254 0.0097741 0.29743 -0.0682 0.16568 -0.03632 -0.06256 0.0097718 0.29774 

94 28.649 -0.71453 1.372 -0.21517 -0.41236 -0.27547 -0.48801 -0.7145 1.372 -0.21517 -0.41237 -0.27545 -0.4876 

95 30.24 1.539 0.37092 0.67386 0.79238 0.43411 0.66494 1.539 0.37096 0.67379 0.79239 0.43415 0.66502 

96 27.853 1.172 0.32145 0.51324 0.59942 0.39961 0.77962 1.172 0.32148 0.51324 0.59942 0.39965 0.77957 

97 31.036 0.89174 0.47193 0.37349 0.41072 0.39477 1.548 0.89179 0.47195 0.37348 0.41077 0.39481 1.548 

98 22.282 0.59015 0.72166 0.32989 0.33026 0.11952 0.20614 0.59018 0.72167 0.32991 0.33027 0.11959 0.20652 

101 19.895 2.097 0.47469 1.034 1.226 0.15317 -1.702 2.096 0.47475 1.034 1.226 0.15325 -1.703 

102 22.282 -0.99718 -0.23722 -0.4167 -0.48922 -0.2573 -0.56698 -0.9971 -0.2371 -0.41669 -0.48921 -0.25731 -0.5664 

106 20.691 3.952 1.101 -1.209 -1.611 -0.39309 -0.02700 3.953 1.101 -1.209 -1.610 -0.39313 -0.0261 

108 16.712 2.931 0.77924 1.349 1.583 -0.042595 -1.570 2.931 0.77967 1.349 1.583 -0.042592 -1.570 

109 18.303 -2.189 17.388 -0.87222 -2.934 -0.071792 1.069 -2.189 17.381 -0.87225 -2.934 -0.071785 1.069 

114 22.282 0.13799 0.036191 0.060094 0.070396 1.404 0.34794 0.13803 0.03614 0.060138 0.070399 1.404 0.34807 

115 21.487 0.05025 -0.00954 0.02414 0.030845 0.48589 0.045807 0.05031 -0.0094 0.024152 0.030837 0.48589 0.04580 

117 22.282 0.10023 -0.05713 0.05187 0.070141 0.68789 -0.02434 0.10024 -0.0571 0.051878 0.070164 0.68786 -0.0244 

118 19.895 0.40966 0.092916 0.18067 0.21309 0.30092 0.6676 0.40954 0.09295 0.18067 0.21317 0.30094 0.66786 

 

Table 12. Analysis of reactive power allocation for selected generators in the IEEE  118 bus 
system (cont.) 

7. Conclusion 
The proposed real and reactive power allocation methods have been tested in this  
chapter for 25 bus and IEEE 118 bus systems. Table 13 shows the advantages and 
improvement in the computation time of the developed ANN and RBFN vs. MNE Method. 
In the 25 bus system, the developed ANN is compared with the MNE Method while for 
large system like IEEE 118, RBFN is compared with MNE because for large bus system ANN 
requires large number of networks and hence large computational time for training.  
It is observed that, as the number of buses increase (i.e. IEEE 118) the computational time in 
the MNE Method increases proportionally (i.e. for real power allocation is 3,000 msec and 
for reactive power is 2,911 msec) while for developed RBFN it remain almost same (i.e.  
for real power allocation is 15 msec and for reactive power is 15 msec) as shown in  
Table 13. 
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Computational time in msec 
MNE ANN RBFN Test 

System Real 
Power 

Allocation

Reactive 
Power 

Allocation

Real 
Power 

Allocation

Reactive 
Power 

Allocation 

Real 
Power 

Allocation 

Reactive 
Power 

Allocation 
25 bus 1314 908 45 45 --- --- 

IEEE 118 
bus 3000 2911 --- --- 15 15 

Table 13. Comparative computational time for MNE, ANN, and RBFN methods for different 
bus system 
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1. Introduction 
Artificial Neural Networks (ANN) provide a broad spectrum of functions which are 
required in the field of engine applications (modelling, especially for controller design, on-
board testing and diagnostics). Exhaust emissions laws are becoming progressively more 
stringent, while the pressure on fuel economy has been intensifying significantly in the last 
few years.  For diesel engines, a large number of technologies, such as, multi-pulse injection 
and variable valve actuation, show significant promise to both improve fuel economy and 
reduce exhaust emissions.   
Such technologies lead to high degree of freedom systems. Therefore, the engine management 
system has to handle this increased complexity. The traditional orthogonal grid look up tables 
will increase exponentially as the degrees of freedom increase. This will increase the 
complexity and cost of the mapping and calibration. The electronic control unit (ECU) memory 
consumption will increase in parallel. Use of non-linear functions and in particular neural 
networks is offering one important route to managing the data tables and achieving the overall 
goal of reducing the emissions and improving fuel economy. The need for speed and accuracy 
in the modelling process tends to militate against phenomenological methods 
Moreover, in the general control system design, variables, such as exhaust temperature and 
exhaust manifold pressure, are the usual feedback signals. The brake specific fuel-
consumption (BSFC) and emissions (concentration or specific) are the objective variables to 
which the controller set points are set in order to achieve minimum values. All of these 
variables can potentially be represented by black-box models. Brahma et al. proposes a 
dynamic model as the basis for a fuel path control system (Brahma et al., 2004).  Wu et al. 
demonstrated a neural network approach to represent air flow rate (Wu et al., 2004), Maass 
et al presented a NOx  prediction neural network model (Maass et al., June 2009) and Maass 
et al presented a smoke  prediction neural network model (Maass et al., November 2009].   
Real-time operation and the mapping of complex, highly non-linear and dynamic patterns 
in engine behaviour are challenges that have to be met in modern combustion engines. 
Neural networks can handle single-input single-output up to multiple-input multiple-
output problems, classification tasks and also function approximation. Their generalisation 
to unforeseen situations enables a wide application if the design of input data captures all 
the dynamics of the system. In addition, architectures and combinations of networks have a 
considerable impact on the performance level. We will address these challenging areas. 
Firstly, this chapter will address some data collection procedures, from the design of the 
experiment to neural network identification. The data acquisition for network development 
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is crucial and the design of experiments has a significant impact on the model performance 
and data collection length, especially for engine systems. We will explain how to choose 
data perturbation signal, design of experiment to achieve minimum data. We will use 
practical engine examples to demonstrate these issues. For the application to engines, the 
relation should be explainable through the chosen inputs and the choice is influenced by the 
understanding of relations between inputs and outputs. Acquisition of data needs to be 
done accurately. It needs to be determined if transient behaviour or steady-state operation 
provide sufficient features for training and validation. The more features the training data 
covers, the better the network is trained for generalisation of engine behaviour. 
Secondly, this chapter addresses architectures and combinations of networks, the 
application of ANN and combination of those in engine diagnostics and controller 
development. Combinations of ANN into groups are described achieving improved overall 
model behaviour. Here, task distribution into special subtask or error reduction through 
model redundancy can lead to the best possible result. The combination of ANN includes 
specialised networks trained for subtasks combined with others resulting in a superior task 
solution. Task distribution helps in overcoming generalisation problems by including 
redundant networks whose best result is chosen for solution of a specific task. 
Thirdly, practical application examples are shown in the domain of emission modelling and 
estimation of on-board diagnostics of NOx and PM for heavy- and medium-duty diesel 
engines (Maass et al., 2009; Maass et al., 2009). It will also cover Non-linear autoregressive 
exogenous input (NLARX) neural networks to represent intake manifold pressure, exhaust 
manifold temperature, exhaust manifold pressure to support control system development 
(Deng et al., 2010).  Neural networks are chosen due to their capability to represent complex 
and highly nonlinear input/output relationships and can be used to represent the plant 
during control simulation, and the behaviour of nonlinear control methods.  

2. Architecture choices of neural networks 
2.1 Introduction of architectures 
The choice of network architecture is dependent on the problem. Classification, linear or 
non-linear problems, with or without underlying system dynamics guides the choices of 
network composition and the topology. In general it can be distinguished between three 
types of networks: 
• Single-Feedforward Networks (SLFN) 
• Multi-Layer Feedforward Networks (MLFN) 
• Recurrent Networks (RNN). 
Where the single feedforward network describes a simple mapping network it can be used 
in classification or for mapping of simple input output functionality. It is defined through a 
single layer of neurons. Hence, the knowledge storage capacity is restricted and only simple 
logic relations can be mapped. An extension of this is the multi-layer feedforward network, 
also found as multi-layer perceptron. This network architecture is defined through a 
minimum of one hidden layer of neurons. The number of hidden layers can be increased 
dependent on the problem. However, literature states (reference) that a multi-layer 
perceptron with three hidden layers is sufficient to map every continuous function by 
adding a certain number of neurons to meet required complexity. However, big growing 
networks can be ill-posed for overtraining and be difficult to implement in real-time 
applications. Therefore, recurrent structures of networks are in place that will accommodate 
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the underlying output dynamics, a feature that is of particular interest with engine 
applications. In turbocharged combustion engines intake and exhaust shows related 
dynamics through the turbine and compressor connection. Those dynamics can be taken 
into consideration with output recurrent network structures. 
The automotive sector has applied neural networks models in several different cases. Their 
main implementation is seen in control design in the area of engine operation. Hence, in 
engine development neural networks are used for control problems such as fuel injection, 
output performance or speed (Hafner et al., 2000; Ouladsine et al., 2004). In addition, 
advanced control strategies as variable turbine geometry (VGT), exhaust gas recirculation 
(EGR) or variable valve timing (VVT) have been in the focus of ANN modelling (Thompson 
et al., 2000). Nevertheless, the application is also used for virtual sensing such as emissions 
(Hanzevack, 1997; Atkinson, 2002) or as described in Prokhorov (Prokhorov, 2005)  for 
misfire detection, torque monitoring or tyre pressure change detection.  
The combustion process itself has been investigated and parameters been modelled with 
neural networks by different authors (Potenza et al., 2007; He et al., 2004). Potenza et al. 
developed a model estimating Air-to-Fuel Ratio (AFR) or in-cylinder pressure and 
temperature on the basis of crankshaft kinematics and its vibrations. In the work of He et al. 
combustion parameters and emissions are modelled under the consideration of boost 
pressure and EGR. 
Typical network structures in these investigations have been the NLARX as has also 
presented in the example application in the previous section. The NLARX structure can 
accommodate the dynamics of the system by feeding previous network outputs back into 
the input layer. It also enables the user to define how many previous output and input time 
steps are required for representing the systems dynamics best. Other network structures 
include the radial-basis function networks or single layer feedforward networks for 
classification problems such as misfire indication or component failure detection.  
This section describes the commonly applied architecture of the NLARX model. In addition 
recent investigations on combinations of artificial neural networks for more efficient 
applications are presented in a practical example for smoke emission output prediction. 

2.2 The NLARX architecture 
Amongst several architecture styles the NLARX model structure is a commonly used 
structure and is presented here. For further topologies the literature shows many examples 
as can be found in Haykin or Hagan (Haykin, 2001; Hagan, 1999). 
A typical structure of a NLARX model is illustrated in Figure 1. The inputs are represented 
by  and the outputs are described by . The inputs are represented by  and the 
outputs are described by . The formulation of this NLARX model can be described as: 

  (1) 

where  is number of past output terms used to predict the current output,  is the 
number of input terms used to predict the current output. 
Each output of an NLARX model is a function of regressors that are transformations of past 
inputs and past outputs. Usually this function has a linear block and a nonlinear block. The 
model output is the sum of the outputs of the two blocks. Typical regressors are simply 
delayed input or output variables. More advanced regressors are in the form of arbitrary 
user-defined functions of delayed input and output variables.  
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Fig. 1. Canonical representation of a NLARX model structure 

The NLARX model training can be cast as a non-linear unconstrained optimization problem:  

  
(2)

 
where  is a training data set,  represents the measured output 
which is the measured soot in the training set,  is the NLARX output,  is a 2-norm 
operation, and  is a parameter vector, where  and  is the number of 
parameters. The training process can be described as follows: Given a neural network 
described by equation 1, there is an error metric, that is referred to as performance index of 
equation 2. This index is to be minimised and represents the approximation of the network 
to some given training patterns. The task will be to modify the network parameters  to 
reduce the index  over the complete trajectory to achieve the minimal value.  

3. Data collection 
Data collection should capture as much information possible from the engine application, 
either through design of experiment or using perturbation signals. This section will discuss 
the definition of the engine test where the target of the modelling exercise is to represent 
gaseous emissions, using random signals as perturbation signals and design of experiment 
method to decide the data requirements. . 
Data acquisition is a key element for successful modelling of systems behaviour. In the field 
of neural network modelling the training data is crucial for creating a good generalising 
network covering a broad range of the systems behaviour. Hence, a sufficient design of 
experiments is a key for a successful neural network design.  
An efficient and sufficient training requires a data generation strategy that defines the least 
required data covering the broadest engine operation range. This data set does not 
necessarily need to contain all different operation states. If it contains the main system 
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dynamics represented in characteristic features the network would be able to generalise 
engine states in between recorded data. However, missing out extreme states in the 
operation may result in a lack of training information. Neural networks cannot extrapolate 
states that are not covered by the training data as shown in the subsection. 
Data collection can be divided into the following categories for diesel engine applications: 
1. Predefined engine tests that are used for engine calibration or meeting legislation 

requirements.  
2. Pseudo-random signal generation for engine parameters such as fuel-rail pressure or 

start of injection that explore a broader range of engine performance.  
3. Design of experiment, such as classical, space-filling or optimal design experiments. 
This section will use the examples to cover these three aspects of the data collection. 

3.1 Predefined engine tests 
New emission regulations are going to take effect within the next years in Europe and North 
America. These implementations bring more and more stringent Emission standards.  
Different regions have different engine requirement tests. The Non-Road Transient Cycle 
(NRTC) is an engine dynamometer transient driving schedule of total duration of about 
1200 seconds. The speed and torque during the NRTC test is shown in Figure 2.  It is a cycle 
that was devised by the Environmental-Protection Agency (EPA) of the United States of 
America to represent the range of operating conditions of off-highway machinery.  It is the 
standard test cycle for Tier 4 emissions standards. Normally, the motivation for this choice 
of cycle is twofold.  Firstly, experience has shown that this is one of the most challenging 
cycles in terms of emissions modelling. Secondly, engine manufacturers must conform the 
emissions legislation of which the NRTC cycle is an integral part. The current trend is to 
design engines that pass legislative emission tests by a small margin, but where that margin 
must be provably robust against deterioration in engine systems. For this the data generated 
by this cycle is of critical importance. 
 

 
Fig. 2. Non-Road-Transient-Cycle (NRTC) displayed in normalized speed and torque 
characteristics – used for generation of Data set I [Dieselnet, 2009] 
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The data used in this section originates from two independent experiments to show the 
general applicability of the proposed method of prediction. The first data set is created with 
a NRTC as it is used for certification of non-road engines meeting EPA and EU standards. In 
the second test a composition of test cycles is operated also including the NRTC. 
DATA SET I – The first data set consists of 12 inputs and the NOx emission output displayed 
in Figure 3. It is predicted on the foundation of the inputs such as: torque, boost pressure, 
engine speed, liquid pilot fuel quantity, final fuel injection, back pressure, intake manifold 
temperature, exhaust temperature, intake depression and coolant temperatures in and out. 
The data is sampled at a rate of 1Hz and recorded over the whole NRTC cycle range of 1200 
seconds. 
 

 
Fig. 3. Data set I - NOx emission output generated in NRTC mode 
 

 
Fig. 4. Test cycle composition of NRTC, ramped modal (8 points), full load and key steady 
state points 
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DATA SET II – The second data set consists of 16 inputs to predict the NOx emission output. 
The data is also sampled at 1Hz sampling frequency. The operated cycle is a composition of 
a NRTC, a ramped modal cycle, a full load and some key steady state points as it can be seen 
in Figure 4. This cycle is repeated 28 times and varied in the engine calibration maps for 
start of injection (SOI), fuel rail pressure (FRP) and fuel quantity. 

3.1.1 Data pre-processing 
Both data sets require prior processing in order to ease the training process of the NLARX 
model. In view of the data variability the sets are normalized to reduce the range of the 
inputs data. Then a further step of processing is done as follows. 
DATA SET I – The initial data set provides limited data in terms of different runs and 
variation in signal features. Consequently, the data set is re-arranged to spread features into 
sets of training and validation. The signal is first divided into quarters and then arranged 
into training sets of the first quarter & third quarter and second quarter & fourth quarter. 
The result can be seen in Figure 5. 
The figure shows a better distribution of signal characteristics. Each set contains a part with 
high frequent, high amplitudes and a lower frequency section with lower amplitudes. 
 

 
Fig. 5. Pre-processed NOx output signal. Rearranged and composed training and validation set 
 

 
Fig. 6. Data set II training cycle of NOx target output 
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DATA SET II – The second data set is split into a training set represented by the first cycle 
and the residual 27 cycles serve as validation sets individually. Each cycle varies slightly in 
its range due to the fact of cyclic variations but more importantly that different engine 
calibration maps are used. Start of injection (SOI), fuel-rail pressure (FRP) and fuel quantity 
are changed over all 28 cycles systematically. A training output can be seen in Figure 6. 

3.1.2 Results 
The NLARX models are “teacher forced” trained with an output target as shown before in 
Figure 4. and Figure 5.  
DATA SET I RESULTS - The neural network is fed with the training data and trained 
manually. The results are promising with R2=0.96 for the training set and R2=0.94 for the 
validation set. The correlation of predicted results with the output target is realized with the 
correlation method coefficient of determination R2 that is expressed through: 

  

(3) 

Where  describes the measured data,  the prediction and  the mean value of the output 
data. The coefficient of determination shows the explained variability of the systems output 
by the regression model. A result of =1 means an accurate model has been found whereas 
with a  value of 0 there is no correlation between the system and the model output. 
The predicted signal shows a good correspondence with the measured signal as it can be 
seen in Figure 7. 
 

 
Fig. 7. Correlation of measured NOx output with predicted neural network signal 

However, the model introduces some noise in the second half of the signal. Here, the 
measured signal fluctuates less but the prediction is characterized with an overreaction. This 
is assumed to be a side effect of the good correspondence in the more oscillatory region of 
the test. The model is trained for a more frequent change in the signal and tends to react 
“nervously” on less varying patterns. 
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DATA SET II RESULTS – This second data set is to investigate the flexibility of the chosen 
network architecture. The data set stretches the signal spectrum not only by cycle variances 
but also with different calibration maps. For the training set a correlation of  =0.95 is 
achieved as displayed in Figure 8. 
Subsequently, this model is individually applied to the residual 27 cycles with the result 
displayed in Figure 9. It shows the  values over the 27 validation test cycles (black line). A 
 

 
Fig. 8. Correlation between measured target output and predicted output with an R2 = 0.95 
 

 
Fig. 9. Trend of prediction for 28 validation test cycles - decreasing correlation with 
increasing SOI timing (black line) and overcoming calibration variation with multiple 
training cycles (blue line) 



Artificial Neural Networks - Industrial and Control Engineering Applications 

 

318 

general decreasing trend is recognized whose characteristic seems to result from the 
increase of SOI timing. With more advanced SOI the NOx output increases and the signal 
amplitudes rise.  This variance introduces an offset to the signal that cannot be handled by 
the present model. Hence, the calibration variance has a significant impact on the model 
performance. The other two calibration variables, FRP and fuel quantity show less impact 
on the model performance. In order to overcome this performance variance with changing 
engine calibration settings additional training data is required. Additional features teach the 
network for a broader application spectrum. The result in performance can also be seen in 
Figure 8. The  output over all 28 cycles settles above 0.95 that is an acceptable and 
sufficient result (blue line). This shows that an increase of teaching features improves the 
knowledge area of the network and underlines the importance of sufficient engine 
characteristics within a predefined test cycle. 

3.1.3 Conclusion 
This section shows the data collection for neural network training with a predefined engine 
test. It is used to create a broad spectrum of engine NOx output response of two 
independent heavy-duty diesel engines. 
Due to a limited stock of data in the first set the training and validation set is built from a 
single set of data consisting of 13 channels – 12 inputs and 1 output. As a consequence of 
this lack of data the available set is recomposed for a better distribution of signal 
characteristics. This leads through manual training of the NLARX model towards a  value 
of 0.96 and 0.94 for training and validation set respectively. 
The second data set provides a broader validation spectrum because of calibration variances 
in SOI, FRP and fuel quantity over 28 test cycles. The training results achieve an  value of 
0.97 whereas the validation value ranges between =0.88 down to =0.76. An increase in 
SOI timing causes an offset in the signal that cannot be handled by the trained model. This 
problem requires a broader featured training set that actually includes the peaks caused 
from particular input characteristics such as, for example, an increasing load demand. 
Hence, a training set of five cycles from data set II is created that covers different calibration 
settings. The correlation result improves significantly over the whole set of data with the  
value settling above 0.95. 

3.2 Random signal for data generation 
In order to capture as much dynamic information as possible, random steps are used as 
input signals. They are discrete time signals where steps of random magnitude may occur at 
sampling instants with a certain probability p. The input signal r can be expressed as 
follows: 

  
(4)

 
where  is an integer,  is a discrete time white noise process with zero mean and standard 
deviation. In the following a modelling approach is presented with following input signals: 
• Start of injection timing 
• Rail pressure 
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• Dwell time  
• Fuel ratio (quantity ratio between two pulses). 
These signals are used to predict exhaust temperature and pressure, compressor mass-air 
flow and the NOx output of an engine. Figure 10 and Figure 11 show the random input 
signals of start of injection timing and fuel-rail pressure for both training and validation 
purposes. They are representative for the four generated input signals. These figures show 
the random frequency and amplitude changes of SOI and FRP. 
 

 
Fig. 10. Random signal of SOI for training and validation 

 

 
Fig. 11. Random signal of FRP for training and validation 
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The experiment plan was designed to cover the whole range of fuel injection space as 
models are effective in interpolating within the range of the training data, but not 
extrapolating beyond the range.  With the engine running at speed of 1440 rpm and torque 
of 466 Nm, the injection timing spanned a range from -3 degree to 6 degree before top dead 
center (BTDC), rail pressure from 45 MPa to 75 MPa, dwell from 0.4 ms to 0.5 ms, fuel ratio 
from 0.5 to 1. Data logged for 2000 seconds was used for training purpose and data logged 
for a period of 2500 seconds data was used for validation.   

3.2.1 Results 
The results are summarized in Table 1. Four combinations of input and output are tested. 
Each output is predicted on the basis of all four inputs. Hence, four different models are 
created and trained. The correlation of the predicted results with the actual measured results 
is quantified using the correlation coefficient, R2 (see (1)). 
 

Test Output R2 Validation  

  Training  Validation Fig. 

1 Exhaust manifold temperature 0.9998 0.9997 11
  

2 Compressor mass flow 0.9998 0.9997 12 

3 Exhaust manifold pressure 0.9957 0.9936 13 

4 NOx 0.9999 0.9999 14 

Table 1. Results for NLARX models for random signal training 
 

 
Fig. 12. Correlation of engine exhaust temperature with predicted neural network signal 
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The results show that the NLARX network is well able to represent the fuel path behaviour.  
The NLARX model has shown itself useful as a way of representing engine behaviour and 
that could be used as the basis for a diagnosis algorithm or as a fast measurement.   
 
 

 
Fig. 13. Correlation of engine compressor mass-air flow with predicted neural network signal 

 
 
 

 
Fig. 14. Correlation of engine exhaust pressure with predicted neural network signal 
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Fig. 15. Correlation of engine NOx with predicted neural network signal 

3.2.2 Conclusions 
The investigation of fuel path dynamics in regard to the development of a fuel path control 
algorithm is a novel field of study.  This section has shown some initial results intended to 
support control systems development. The data generated for network training is created 
with a random signal that is used to perturb engine operation and create a variance in the 
engine response for exhaust manifold temperature and pressure, engine compressor mass-
air flow and the NOx output. The inputs SOI, fuel rail pressure, dwell timing between 
injection events and the fuel ratio are varied over a reasonable range at a fixed operation 
point.  This can be applied for several operation points in order to create wider engine 
behaviour characteristic. Those points can then be used for teaching a single neural network 
or a combination of networks applied for specific tasks.  
A single NLARX model is used for each output parameter measured: exhaust temperature, 
compressor mass air-flow, exhaust pressure and NOx.  The models demonstrate excellent 
performance at the operating conditions judged by correlation coefficients close to unity. 
Further work is required to evaluate the potential for the NLARX model to represent 
behaviour across a number of operating points.  Such a non-linear model is capable of 
supporting diagnosis processes as well as being a fast model for controls design and 
evaluation. 

3.3 Design of experiment for data generation 
This section shows using a design of experiment method to minimise the test and collect 
informative data for neural networks training and validation.  
Figure 16 shows the schematic diagram of a diesel engine. The original engine used for 
generation of neural network training and validation data is a Caterpillar C6.6 heavy-duty 
diesel engine with EGR, VGT and VVT function. This engine is modelled in Dynasty 9.4.1 in 
order to simulate cost effective the engines behaviour. Dynasty is a dynamic simulation tool 
designed for modelling, simulation and analysis of physical systems in both transient and 
steady state conditions. During the simulation study, the fuel injection timing and quantity 
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are held constant.  The data for both neural network training and validation are extracted 
using the Dynasty simulation software. Figure 17 shows the intake and exhaust valve lift. 
Both inlet and exhaust valve profiles can be changed freely either in the transient or steady 
state during the simulation. 
The experiment plan is designed to cover the whole operating range of the engine. The 
engine speed spanned a range from 660 RPM to 2000 RPM, torque from 45 Nm to 1000 Nm, 
EGR from 0.1 to 0.9, VGT from 0 to 1, inlet valve phase shift from 330 degrees to 360 degrees  
and exhaust valve phase shift from 100 degrees to 140 degrees. The experiment was 
designed by using the stratified Latin hypercube design method available within the Matlab 
R2009b Model Based Calibration Toolbox. This design method belongs to the space-filling 
design style that is used for modelling processes where the system understanding is 
rudimentary. The purpose is to cover most of the operating range. This design created a 
total of 196 test points for all parameters. 168 of these test points were used for training 
purpose and 28 test points were used for validation purpose.  
 

 
Fig. 16. Schematic drawing of a diesel engine and auxiliaries 

 

 
Fig. 17. Valve-Lift profile for inlet and exhaust valve 
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Additional designs of experiments styles are the classical approach and an optimal 
approach. The classical approach has been used for simple operation areas with a small 
number of parameters. . In case of an optimal design of experiments the system knowledge 
is high and the desired model type is already known. The stratified Latin hypercube design 
enables the definition of how many operation points per parameter are of interest and leads 
to an even representation of the multidimensional operation hypercube created by the six 
parameters in this case. 

3.3.1 Results 
The first neural network has one output: intake manifold pressure; and six inputs: engine 
speed, torque, EGR, inlet valve phase and exhaust valve phase. The results are promising 
with =1 for the training set and =0.9925 for validation set. 
Figure 18 shows that the intake manifold pressure predicted from the neural network 
correlates closely with the generated signal of the Dynasty simulation. 
The second neural network is designed to predict BSFC based on six inputs: engine speed, 
torque, EGR, inlet valve phase and exhaust valve phase. The results are promising with 

=1 for the training set and =0.9975 for the validation set. It can be seen in Figure 19 the 
predicted BSFC output of the neural network shows a good correspondence with the 
measured BSFC from the Dynasty model. 
 

 
Fig. 18. Correlation of engine intake manifold pressure with predicted neural network signal 

 

 
Fig. 19. Correlation of engine BSFC with predicted neural network signal 
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3.3.2 Conclusion 
The design of experiments is a powerful tool in the optimisation of the modelling process. 
Progressively more complex system architectures make it difficult and eventually 
impossible to cover each operating point. Depending on the system knowledge different 
strategies for designing an experiment dictate the sampling coverage for successful 
modelling processes. The often small knowledge base of parameters effects on the systems 
response makes the space-filling design style in particular useful for neural network design. 
This approach allows an even distribution across the operating window and hence covering 
the main response characteristic for all parameters. 
In this particular case for both training and validation data, the sampling points need to be 
increased significantly. The test points cover a minor operating range of the engine and in 
order to use neural networks for prediction their generalisation capability has to be 
increased by additional engine operation characteristics. The approach is presented for the 
demonstration of a design of experiment and how to use the data in teaching a NLARX that 
can predict intake manifold pressure and BSFC. 

4. Combining Neural Networks 
The complexity of today’s systems makes it occasionally impossible to find a sufficiently 
performing single network composition, even in the case of a highly complex recurrent 
structure. Hence, the combination of networks has become popular where tasks are either 
distributed across separate networks or competitive structures with redundant networks are 
created (Sharkey, 1999). The literature distinguishes between modular and ensemble 
structures. Modular applications are defined by the fact that each network is trained for a 
subtask and all networks together form a superior solution. In an ensemble networks are 
trained differently or show different topological features but are predicting all the same 
output. A superior decision instance compares the results and votes for the best 
performance. This approach can create a more reliable performance since the optimum can 
be chosen from a variety of results. A third approach is the combination of modular 
structures and ensembles.  In the following example a parallel neural network structure is 
composed where three individual NLARX networks are used in order to predict a superior 
signal that is a combination of all three. Similar to the previous NOx example, here the 
smoke emissions are investigated and the behaviour is modelled by a neural network 
structure. The smoke signal represents in this case the solid component of particulate 
emissions. Smoke is assumed to be a good proxy for this emission formation. 
The experiment for data generation was conducted on a heavy-duty diesel engine that is run 
under the conditions of an NRTC. It is applied to generate emission data for training and 
validating the neural network which is presented in the graph in Figure 20. The smoke 
output signal is predicted on the basis of 12 inputs such as torque, boost pressure, engine 
speed, liquid pilot fuel quantity, final fuel injection, back pressure, intake manifold 
temperature, exhaust temperature, intake depression and coolant temperatures for flows in 
and out. All parameters were used from the beginning and investigated and revised for 
their impact on the model. 
The initial output signal shows two characteristic halves. In the first half strong fluctuations 
and high peaks are present, whereas the second half displays a much flatter characteristic 
with small oscillations. The approach of modelling and estimating the signal requires a 
training and validation data set. Therefore the signal is bisected. However, a training set 
requires preferably a broad spectrum of features provided by the signal. The signal is first 
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divided into quarters accordingly and then newly-arranged. As a result the training and 
validation set cover a high oscillating part with high peaks and a flat, low oscillating part –
Figure 20. Every set consists of a correspondingly split smoke output and twelve inputs. As 
well as the data partitioning a normalisation process is applied to the inputs and output. 
 

 
Fig. 20. Processed smoke output signal 

In an initial approach of modelling the signal with an single NLARX network it was 
recognised that noise is introduced by the model. This occurs especially then, if the signal 
contains large amplitudes and high-frequencies. In Figure 21 the modelling results of a 
single NLARX model are plotted over the measured signal. The early phase of the signal is 
well predicted. However, in the second phase of the characteristic the prediction data starts 
oscillating in high-frequencies as well as an underlying lower frequency. The model 
becomes unstable. This is assumed to be forced by the training on high amplitudes in the 
first stage and hence the development of a hypersensitive behaviour. Other approaches are 
known to overcome those issues such as fuzzy logic and wavelet networks (Parasuraman & 
Elshorbagy, 2005). They offer a much better response to highly fluctuating signals. 
Among those approaches, Guoyin et al. (Guoyin & Hongbao, 1995) introduced three classes 
of parallel network systems. Here, a parallel network system with multiple tasks is chosen. 
Lee (Lee, 1997) states that due to the approach of more than one network the risk of settling 
in a local minimum decreases. Additionally, the performance increases due to the fact that 
particular networks handle a specific subspace instead of dealing with the whole problem. 
In the current work the signal is divided into different vertical layers. Consequently the 
amplitudes are cut and the frequency of the residual signal part is decreased. With lower 
frequencies the NLARX model promises satisfying results regarding performance and cost. 
By trial and error three layers are determined as a reasonable degree of divisions. The first 
layer called lower layer (LL) contains the signal noise and low frequencies. The remaining 
part is split into a mid layer (ML) and a top layer (TL). The ML covers a part of the signal 
with a medium density of oscillations and peaks in the smoke value up to y=0.3. The 
residual signal peaks are covered by the TL. Its characteristic is marked by only a few single 
peaks, the occurrence of which is not distracted by noise or smaller peaks. The division 
borders in this approach are chosen as outlined in Table 2 and illustrated in Figure 22. 
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Fig. 21. Single NLARX model: measured output signal correlated versus predicted output 
signal   

 
 0   LL  0.035  =>  LLyΔ = 0.035   

0.035 < ML < 0.3   => MLyΔ  = 0.265   

0.3 < TL < 1   => TLyΔ = 0.7   

Table 2. Division borders of layer approach 

Each division is processed and estimated independently. This leads to a parallel processing 
model structure as shown in Figure 23. The input vector U with its twelve input signals is 
used for all three independent layers whereas the predicted output is split into the three 
divisions, top, mid and low. After estimation they are combined to  and compared 
against the overall measured output. 
 

 
Fig. 22. Layer approach with correlating divisions 
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Fig. 23. Scheme of applied parallel model structure 

Results - An estimation is processed by initially training and then validating an artificial 
neural network with the corresponding signals. Every layer is estimated independently. The 
NLARX-model are initialised with an arbitrarily state and taught with the corresponding 
training data set. Based on this data the NLARX-model is designed to estimate the desired 
output signal. The designing process consists of changing the design parameters in Matlab 
R2009b by teacher-forced learning until a satisfactory result is achieved. The design 
parameters are the input/output delays. 
The lower part is marked by 1) the lowest values of the higher oscillations of the signal and 
2) small oscillations that are introduced by noise. By cutting off a lower part of the signal a 
more homogeneous distribution of the height of oscillations is created. This enables a better 
estimation with the chosen NLARX approach. 
The training of the network generates a correlation between the measured and estimated 
signal of =0.97. Validating the network leads to a performance of =0.95 which 
demonstrates the practicability of the chosen design. However, the model introduces 
additional noise to the signal. This effect is discussed in more detail in the following sections. 
The middle layer represents the central section of the high peaks and the medium peaks. 
The lowest values of the large signal excursions are included in the lower layer. Through 
training the NLARX model achieves a correlation of =0.93 with the measured signal. The 
model's quality is confirmed by the validation set, which achieves a performance of =0.9. 
The performance is predictably lower than in the first layer due to the higher frequencies. 
Higher frequencies occur because of an expanded range of y-values. 
The characteristic of the graph is marked by noise in the second, low oscillating part of the 
signal. It is assumed that this noise is introduced as a result of the network design. There is a 
fast response identified by the network when managing high oscillating signals. In 
consequence, this leads to an oscillating estimation signal. 
The top layer covers the high peaks of the signal. Consequently high frequencies are 
introduced and a lower correlation performance is expected. The design process achieves a 
result of =0.83 compared to a =0.92 for the validation data. Validation shows a better 
result because the main peaks of the validation signal are predicted well, whereas the 
training signal shows some missing details in the middle part for three consecutive spikes. 
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Fig. 24. Overall Performance: Training and validation sets estimation of measured and 
predicted signal 

The overall estimation is achieved by adding the three estimated signals together and 
correlating it with the measured output – see Table 3. The comparison of the measured and 
predicted signal shows a distribution around the linear correlation in Figure 25. The reason 
that a cluster of points forms close to the origin is due to the fact that the most of the data 
samples are measured in the lower data scope. However, the results of overall correlations 
of the smoke output signal are =0.97 and =0.96 for training and validation set 
respectively as illustrated in Figure 24. It can be seen that parts intially classified as difficult 
due to big amplitude differences and high frequencies are modelled well. The patterns of 
high peaks and high density of oscillations show appropriate correlations. However, the 
flatter parts are marked by the introduction of noise through the model design as mentioned 
earlier. 
 

 
Fig. 25. Overall Performance: Training and validation sets estimation in correlation to 
measured data 
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Layer NLARX-Model  
  train   valid  
TL 0.8330   0.9163 
ML 0.9328   0.9006 
LL 0.9743   0.9164 
 Total 0.9706   0.9616   

Table 3. RMS performance indication 

Conclusion – Here a parallel neural network structure is presented to predict the smoke 
output of a diesel engine based on NLARX-models. The model is chosen due to its good 
generalisation. Its weakness of not being capable of high-frequency signals which is shown 
with a single NLARX model for comparison, is overcome by an approach of frequency 
filtering. 
The NLARX architecture is cut into different layers to reduce the frequency bands resulting 
in a better overall performance. A lower layer for the signal scope that covers noise and the 
base of higher peaks, followed by a middle layer for medium density of oscillations and a 
top layer for the peak tops. This approach demonstrates the application of network 
combination. Three independent networks trained for different tasks can predict if 
combined the overall signal at a sufficient performance. 
Another approach is the training of three networks with the same task just slightly different 
training data and in case of the prediction performance the network with the best 
performance wins. Here, the networks are redundant and a competitive approach is used to 
find the optimum output. 

5. Summary 
The chapter presents the application of artificial neural networks on engine applications. 
Several practical examples show the applicability of artificial neural networks in the domain 
of virtual sensing and control development support. 
A critical part of for a successful modelling of engine behaviour is the generation of 
comprehensive system characteristic. The better the training data describes the system 
dynamics the better the generalisation capability of the model. A crucial part is the planning 
of data generation. Here the chapter presents three differen approaches: 
• Predefined engine tests such as the NRTC for off-highway diesel applications 
• Random control signal generation for engine response measurements 
• Systematic design of experiment approach. 
Another crucial part is the choice of the right model structure for the problem at hand. The 
chapter presents a recurrent network structure that is applicable for highly non-linear and 
dynamic systems. The NLARX network is presented in several different applications. A 
successful implementation can be seen in the virtual sensing of diesel engine emissions. 
However, the network has also been implemented for combustion modelling. 
A last part describes the investigation of combinations of networks. Increasing complexity of 
systems leads to difficulties of finding cost effective network structures in view of training 
and operation costs. An approach is presented where a superior task, the prediciton of 
smoke emissions of a diesel engine is split into three individual tasks solved by independent 
network compounds. Other approaches can be implemented with competetive structures of 
redundant networks whose results are competing against each other. 



The Applications of Artificial Neural Networks to Engines 

 

331 

Artificial neural networks can be a powerful tool for monitoring of engine operation or the 
design of controller applications. However, the correct training data and the optimal design 
are crucial for a successful modelling process.  
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1. Introduction 
The machining process exhibits piecewise behaviour and cannot be linearly extrapolated in 
a wide range. It cannot be modelled effectively using theories and equations. Thus, expert 
systems have emerged as a major tool for decision-making in such complicated situations 
(Singh & Raman, 1992). 
The conventional method for selecting machining parameters such as cutting speed and 
feed rate is based on data from machining hand books and/or on the experience and 
knowledge of the operator or CNC programmer. The parameters chosen in most cases are 
extremely conservative to protect over- matching errors from tool failures such as deflection, 
wear, breakage, etc. Accordingly, the metal removal rate is low due to the use of such 
conservative machining parameters (Park & Kim, 1998). 
Guidelines on machinability data selection is normally made on the basis of the 
manufacturer’s machinability hand book (Hashmi et al., 2003). Using machining data 
handbook for the choice of cutting conditions for material hardness that lies in the middle of 
a group is simple and straight forward. But there exists a degree of vagueness in boundary 
cases, where two choices of cutting speeds are applicable for one choice of material 
hardness. In this situation, the skilled operator makes a decision on the appropriate cutting 
speed, based on his experience. However, this method of data selection by individual 
operators is not very desirable, because it may vary from operator to operator. Therefore, it 
is desirable to have an operator independent data selection system for choosing machining 
operation (Hashmi et al., 1998). 
While the output variables of the machining process depend on the cutting conditions, the 
decision concerning the selection of the cutting parameters have an important influence on 
the extent, cost and quality of the production. Due to the increased use of CNC machines 
and severe competition between the makers, the importance of precise optimization cutting 
conditions has increased (Cus & Zuperl, 2006). 
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Fuzzy logic can be applied to any process in which a human being plays an important role 
which depends on his subjective assessment (EL Baradie, 1997). 
For the selection of machining parameters different methods have been proposed. Hashmi 
et al. (1998, 1999) applied fuzzy logic with triangular shape for selecting cutting conditions 
in machining operations using single input (material hardness) and single output (cutting 
speed) model.  El Baradie (1997) presented the development of a fuzzy logic model for 
machining data selection using material hardness (input) and cutting speed (output) with 
triangular shape. A study was made by Wong et al (1999) to obtain a generalized model for 
metal cutting data selection. Wong and Hamouda (2003a) developed an online knowledge-
based expert system for machinability data selection using two input-one output model for 
cutting speed and one input-one output model for feed rate. 
Cus and Zuperl (2006) proposed a neural network approach for the optimization of cutting 
conditions. Neural networks were used by Wong and Hamouda (2003b) in the 
representation of machinability data to predict optimum machining parameters. Zuperl and 
Cus (2003) proposed a neural based approach to optimization of cutting parameters to 
represent the manufacturer’s preference structure. 
Lee and Tarng (2000) used a polynomial network to construct the relationship between the 
machining parameters and cutting performance. An optimization algorithm of sequential 
quadratic programming method was used to solve the optimal machining parameters. A 
gradient based multi criteria decision making approach was applied by Malakooti and 
Deviprasad (1989) to aid the decision-maker in setting up machining parameters in metal 
cutting. The optimal machining parameters for continuous profile machining for turning 
cylindrical stock were determined by Saravanan et al. (2003) using simulated annealing and 
genetic algorithm. Vitanov et al. (1995) introduced a knowledge-based interactive approach 
for optimum machining parameter selection in metal cutting using multi-objective 
probabilistic geometric programming and artificial techniques. The machining parameters 
were optimized based on the Taguchi method in a proposed model by Nian et al. (1999) 
considering the multiple performance characteristics including tool life, cutting force and 
surface finish.  
The fuzzy logic approach is used in different applications. For example, Hashmi et al. (2000) 
have used the fuzzy logic model to select drilling speeds for different materials in a drilling 
operation. A fuzzy logic based expert system was developed by Liu at el. (1996) for 
diagnosing defects in rolling element bearing and offering instructions and guidelines for 
the detection of these defects. A user friendly fuzzy-expert system was introduced by 
Yilmaz et al. (2006) for the selection of electro discharge machining process parameters 
using triangular membership function and expert rules. Arghavani et al. (2001) presented 
the application of a fuzzy decision support system by applying fuzzy logic theory for gasket 
selection and gasket sealing performance. 
Researchers have applied ANN methods in a wide variety of fields, ranging from science to 
business and engineering (Ghiassi & Saidene, 2005). Neural networks have the potential to 
provide some of the human characteristics of problem solving that are difficult to simulate 
using the logical, analytical techniques of expert system and standard software technologies. 
The immediate practical implication of neural computing is its emergence as an alternative 
or supplement to conventional computing systems and AI techniques. As an alternative, 
neural computing can offer the advantage of execution speed once the network has been 
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trained. The ability to train the system with data sets, rather than having to write programs, 
may be more cost effective (Medsker, 1996). 
In this chapter the performance of Speed-Feed Fuzzy (SFF) intelligent system is compared 
with Artificial Neural Networks in finding the selection of machining parameters which can 
result in a longer tool life, a lower cutting force and better surface finish. The proposed 
system is expected to contribute in the selection of optimal parameters that will assist 
process planners, CNC programmers, production engineers and machinists with easy access 
to data necessary for effective machining process.  

2. Fuzzy model for machinability data selection  
2.1 Fuzzy logic concept  
The fuzzy logic first proposed at 1965 by Lotfi Zadeh( Zadeh, 1965). The fuzzy set theory 
provides means for representing uncertanity. It is used to model the kind of uncertainity 
associated with imprecision. It offers the concept to compute a model with words using 
human expertise used in daily language. The fuzzy set theory provides a mechanism to 
represent linguistic constructions. The fuzzy inference engine build on a set of rules, so, it is 
called  fuzzy- rule based system. These rules are supplied by  an expert or a decsion-maker 
to formulate the mapping of the system which can perform approximate reasoning similar 
to but much more primal than that of the human brain (Sivanandam, 2007). 

2.2 Fuzziness and fuzzification 
In a fuzzy set, the fuzziness is characterized by its membership function. It classifies the 
element in the set, whether it is discrete or continuous. The membership functions can also 
be formed by graphical representations. The fuzzification procedure is used to control the 
fuzziness of the fuzzy set and it is an important concept in  the fuzzy logic theory where the 
crisp quantities are converted to fuzzy quantities (Arghavani et al., 2001; Sivanandam et al., 
2007). 

2.3 Membership functions for fuzzy variables 
The SFF model use multi input- multi output fuzzy variables for the selection of machining 
parameters (Fig. 1). The multi inputs are material hardness (BHN) and depth of cut (DOC) 
and the multi outputs are cutting speed and feed rate. The fuzzy expressions for the inputs 
and outputs are shown in Table 1.  
The model is applied for turning operation for wrought carbon steels using different types 
of tools. The extracted data from Machining Data Handbook (Metcut Research Associates 
Inc., 1980) are tabulated as shown in Table 2. 
Different applications of the fuzzy control technique use a specific shape of the fuzzy set. 
There is no standard method of choosing the proper shape of the fuzzy sets of the control 
variables. Trial and error methods are usually exercised (Hashmi et al., 2003). In this model 
an equal sided triangular shape membership function is selected for both inputs BHN and 
DOC and for the cutting speed as shown in Figures 2-5. As for the feed rate, an unequal 
sided triangular shape (Figures 6 - 8)   was chosen because of the variation of the feed rate 
for different values of depth of cut (1-8) mm and 16 mm with their corresponding hardness 
85-175 and 175-275 respectively, for the types of cutting tools listed in Table 2. 
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Fig. 1a. Structure of SFF model 

 

 
Fig. 1b. Structure of ANN model 



A Comparison of Speed-Feed Fuzzy Intelligent 
System and ANN for Machinability Data Selection of CNC Machines 

 

337 

                   Inputs                                                                                   Outputs  

Material hardness         Depth of cut                       Cutting speed                   Feed rate 
      (BHN)                          (mm)                                    (m/min)                         (mm/rev)          

Very soft (VS)                   Very shallow (VSH)                  Very slow (VSL)                Very slow (VSLO) 
Soft (S)                               Shallow (SH)                              Slow (SL)                            Slow (SLO) 
Medium (M)                     Medium (M)                              Medium slow (MSL)         Medium (M) 
Medium hard (MH)        Medium deep (MD)                  Medium high (MHI)         Medium fast (MFA) 
Hard (H)                           Deep (D)                                     High (HI)                            Fast (FA) 
Very hard (VH)                Very deep (VD)                         Very high (VHI)              Very fast (VFA)     

 
Table 1. Fuzzy expressions for inputs and outputs 
 
 
 
 
 
 
 
 
 
 
                                                High speed             Carbide tool                     Carbide tool       Carbide tool 
                           Material               Depth                 steel tool                 Uncoated                          Uncoated            Coated 
Condition         hardness              of cut                    Brazed                   Indexible 
                              BHN                    mm                    (S4, S5)                (ISO P10-P40)           (ISO P10-P40)     (ISO CP10-CP30)  
                                                                                        Speed     Feed        Speed    Feed           Speed    Feed      Speed      Feed 
                                                                                                       m/min    mm/rev    m/min   mm/rev     m/min   mm/rev      m/min    mm/rev 
 
                
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-Material: Wrought carbon steels.   
              
Hot rolled 85-125       1 56 0.18 165 0.18 215 0.18 320 0.18 
Normalized        4 44 0.40 135 0.50 165 0.50 215 0.40 
Annealed        8 35 0.50 105 0.75 130 0.75 170 0.50 
Cold drawn      16 27 0.75   81 1.00 100 1.00   -   - 
Hot rolled 125-175       1 46 0.18 150 0.18 195 0.18 290 0.18 
Normalized        4 38 0.40 125 0.50 150 0.50 190 0.40 
Annealed        8 30 0.50 100 0.75 120 0.75 150 0.50 
Cold drawn      16 24 0.75   75 1.00   95 1.00   -    - 
Hot rolled 175-225       1 44 0.18 140 0.18 175 0.18 260 0.18 
Normalized        4 35 0.40 115 0.50 135 0.50 170 0.40 
Annealed        8 29 0.50   90 0.75 100 0.75 135 0.50 
Cold drawn      16 23 1.00   72 1.00   81 1.00   -   - 
Hot rolled 225-275       1 38 0.18 125 0.18 155 0.18 230 0.18 
Normalized        4 29 0.40 110 0.50 120 0.50 150 0.40 
Annealed        8 23 0.50   87 0.75   95 0.75 120 0.50 
Cold drawn      16 18 1.00   67 1.00   73 1.00   -   - 

 
Table 2. Machining parameters for workpiece-tool combination, turning process. 
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Fig. 2. Hardness membership function 

 

  
Fig. 3. Depth of cut membership function   

 
 
                     
 
 
 
 
 
 
 
  

Fig. 4. Speed membership function for HSS tool 

 

  
Fig. 5. Speed membership function for carbide tool 
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Fig. 6. Feed membership function (BHN=85-175,HSS) 

 

 
Fig. 7. Feed membership function (BHN=175-275, HSS)   

 
 

 
Fig. 8. Feed membership function for carbide tool 

2.4 Fuzzy rules 
The point of fuzzy logic is to map an input space to an output space and the primary 
mechanism for doing this is a set of IF-THEN rules with the application of fuzzy operator 
AND or OR. These if-then rules are used to formulate the conditional statements that comprise 
fuzzy logic. By using the rules, then the fuzzy inference system (FIS) formulates the mapping 
form. Mamdani’s fuzzy inference system, which is used in this work, is the most commonly 
seen fuzzy methodology (The MathWorks, Inc., 2009). The relationship between the input 
variables and output variables is characterized by  if-then rules defined based on experimental, 
expert and engineering knowledge (Yilmaz et al., 2006). The two common methods for the FIS 
engine are Max-Min method and Max-Product method. The difference between them is the 
aggregation of the rules. The first use truncation and the last use multiplication of the output 
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fuzzy set. Both methods are tested and the Max-Min method gives more accurate results, 
therefore, it is used in all calculations in the fuzzy system. 
In this study, there are two input variables hardness and depth of cut each of six fuzzy sets, 
and then the fuzzy system of a minimum of 6 x 6 = 36 rules can be defined. Table 3 shows a 
part of the rules in linguistic form. By using these rules the input-output variables in a 
network representation can be drawn as in Figs. 9 and 10. 
 
 
Rule 1:  IF hardness is very soft AND depth of cut is very shallow THEN speed is very high and feed is very slow. 
 
Rule 2:  IF hardness is very soft AND depth of cut is shallow THEN speed is very high and feed is slow. 
 
Rule 3:  IF hardness is very soft AND depth of cut is medium THEN speed is medium high and feed is medium. 
 
Rule 4:  IF hardness is very soft AND depth of cut is medium deep THEN speed is medium slow and feed is medium. 
. 
. 
. 
. 
. 
. 
. 
. 
Rule 35:  IF hardness is very hard AND depth of cut is deep THEN speed is very slow and feed is very fast.                       
 
Rule 36:  IF hardness is very hard AND depth of cut is very deep THEN speed is very slow and very fast. 

 
Table 3. Part of fuzzy rules in linguistic form. 
 

Fig. 9. Network representation for the first output- cutting speed. 
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Fig. 10. Network representation for the second output- feed. 

2.5 Defuzzification 
Defuzzification is the process of converting the fuzzy quantities to crisp quantities. There are 
several methods used for defuzzifying the fuzzy output functions: the centroid method, the 
centre of sums, the centre of largest area, the max-membership function, the mean-max 
membership function, the weighted average method, and the first of maxima or the last of 
maxima. The selected defuzzification method is significantly affecting the accuracy and 
speed of the fuzzy algorithm. The centroid method provides more linear results by taking 
the union of the output of each fuzzy rule (Arghavani et al., 2001; Sivanandam et al., 2007) 
and this method is adopted in this study.  

3. Artificial Neural Network (ANN) model 
Neural networks attempt to model human intuition by simulating the physical process upon 
which intuition is based, that is, by simulating the process of adaptive biological learning. It 
learns through experience, and is able to continue learning as the problem environment 
changes (Kim & Park, 1997). 
A typical ANN is comprised of several layers of interconnected neurons, each of which is 
connected to other neurons in the ensuing layer. Data is presented to the neural network via 
an input layer, while an output layer holds the response of the network to the input. One or 
more hidden layers may exist between the input layer and the output layer. All hidden and 
output neurons process their inputs by multiplying each input by its weight, summing the 
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product, and then processing the sum using a non-linear transfer function to generate a 
result (Chau, 2006). 
The most commonly used approach to ANN learning is the feed-forward back propagation 
algorithm. The parameters of the model such as the choice of input nodes, number of 
hidden layers, number of hidden nodes (in each hidden layer), and the form of transfer 
functions, are problem dependent and often require trial and error to find the best model for 
a particular application (Ghiassi & Saidene, 2005). 
There is no exact rule to decide the number of the hidden layers. There are four methods of 
selecting the number of hidden nodes (NHN) (Kuo et al., 2002; Yazgan et al., 2009). The four 
methods are   dependent on: the number of input nodes (IN), the number of output nodes 
(ON), and the number of samples (SN):   

 NHN 1= (IN x ON)1/2  (1) 

 NHN 2= ½ (IN + ON) (2) 

 NHN 3= ½ (IN + ON)+ (SN)1/2 (3) 

 NHN 4= 2 (IN) (4) 
 

The ANN in this study (Fig.11) uses feed-forward back-propagation algorithm. It is 
composed of two neurons for the two inputs material hardness and depth of cut. The 
outputs from the neural network are speed and feed; therefore two output neurons are 
required. 

 

 

BHN 

DOC 

Speed 

Feed 

Input layer

Hidden layer

Output

.

 
Fig. 11. Neural network structure for machining parameters 
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4. Results and discussion 
Both SFF-ANN are used to predict optimum machining parameters using data extracted 
from the Machining Data Handbook (MDH) (Table 2). 
A user-friendly viewer of the SFF model is shown in Fig. 12 enabling an easy and time 
saving way for operator for interring the inputs and getting the outputs.   

 

 
Fig. 12. User-friendly viewer for the SFF model (from MATLAB) 

The viewer shown in Fig.12 is used to generate the input-output samples. The values are 
tabulated in Tables 4 and 5. The tables show the validation of the predicted values of cutting 
speed and feed found by the SFF model with the Machining Data Handbook. Seventy two 
different values of wrought carbon steel hardness from (85-275) BHN and depth of cut from 
(1-16) mm were selected for this comparison. For demonstration purpose two tool types are 
used: high speed steel (HSS) tool and uncoated brazed carbide (Carbide) tool. The SFF 
model is applied to obtain the outputs speed and feed and the values are then compared. 
The absolute error percentage is calculated for each value and the mean absolute error 
percentages are obtained for the 36 samples. The mean error percentage is almost 7% for 
speed and 4% for feed when using high speed steel tool and for carbide tool is almost 8% for 
speed and 7% for feed (Table 6). In order to get better results, the density of the selected 
samples can be increased.   
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                                               Cutting speed (m/min)                                                Feed (mm/rev) 
 No.       Material         Depth             MDH          SFF            Abs.                        MDH              SFF               Abs.  
              hardness         of cut           (Table 2)      model         error                     (Table 2)         model           error  
                (BHN)           (mm)                                                      (%)                                                                        (%) 

1 85 1 56 53.4 4.6429 0.18 0.171 5.0000 
2 85 4 44 47.5 7.9545 0.4 0.361 9.7500 
3 85 8 35 37 5.7143 0.5 0.4680 6.4000 
4 85 16 27 25.6 5.1852 0.75 0.7540 0.5333 
5 105 1 56 49.3 11.9643 0.18 0.1760 2.2222 
6 105 4 44 46.8 6.3636 0.4 0.37 7.5000 
7 105 8 35 37 5.7143 0.5 0.5050 1.0000 
8 105 16 27 25.6 5.1852 0.75 0.7550 0.6667 
9 120 1 56 48.4 13.5714 0.18 0.171 5.0000 
10 120 4 44 46.2 5.0000 0.4 0.3610 9.7500 
11 120 8 35 37 5.7143 0.5 0.5050 1.0000 
12 120 16 27 25.6 5.1852 0.75 0.7540 0.5333 
13 145 1 46 44.1 4.1304 0.18 0.1740 3.3333 
14 145 4 38 41.8 10.0000 0.4 0.3670 8.2500 
15 145 8 30 32.8 9.3333 0.5 0.5010 0.2000 
16 145 16 24 25.6 6.6667 0.75 0.7550 0.6667 
17 180 1 44 37.8 14.0909 0.18 0.1770 1.6667 
18 180 4 35 37 5.7143 0.4 0.3680 8.0000 
19 180 8 29 29.4 1.3793 0.5 0.5030 0.6000 
20 180 16 23 24.6 6.9565 1 0.9630 3.7000 
21 190 1 44 38.2 13.1818 0.18 0.1710 5.0000 
22 190 4 35 35.3 0.8571 0.4 0.3580 10.5000 
23 190 8 29 29.4 1.3793 0.5 0.5030 0.6000 
24 190 16 23 23.1 0.4348 1 0.9630 3.7000 
25 220 1 44 37.9 13.8636 0.18 0.1750 2.7778 
26 220 4 35 30.7 12.2857 0.4 0.3650 8.7500 
27 220 8 29 29.2 0.6897 0.5 0.5030 0.6000 
28 220 16 23 20.8 9.5652 1 0.9630 3.7000 
29 245 1 38 38.2 0.5263 0.18 0.1710 5.0000 
30 245 4 29 31 6.8966 0.4 0.3580 10.5000 
31 245 8  23 25.3 10.0000 0.5 0.5030 0.6000 
32 245 16 18 20.5 13.8889 1 0.9630 3.7000 
33 265 1 38 35.5 6.5789 0.18 0.1710 5.0000 
34 265 4 29 31 6.8966 0.4 0.3580 10.5000 
35 265 8 23 24.6 6.9565 0.5 0.5030 0.6000 
36 265 16 18 20.6 14.4444 1 0.9630 3.7000 

 
 
 
 
 

Table 4. Comparison of the results from SFF model with MDH for high speed steel tool 
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                                                Cutting speed (m/min)                                                Feed (mm/rev) 
  No.       Material         Depth             MDH          SFF            Abs.                        MDH              SFF               Abs.  
               hardness         of cut           (Table 2)      model         error                     (Table 2)         model           error  
                 (BHN)           (mm)                                                      (%)                                                                        (%) 

1 95 1 165 151 8.4848 0.18 0.1700 5.5556 
2 95 4 135 143 5.9259 0.5 0.4200 16.000 
3 95 8 105 116 10.4762 0.75 0.6750 10.000 
4 95 16 81 86.6 6.9136 1 0.9510 4.9000 
5 110 1 165 147 10.9091 0.18 0.1710 5.0000 
6 110 4 135 141 4.4444 0.5 0.4260 14.800 
7 110 8 105 118 12.3810 0.75 0.6750 10.000 
8 110 16 81 86.6 6.9136 1 0.9500 5.0000 
9 140 1 150 136 9.3333 0.18 0.1760 2.2222 

10 140 4 125 130 4.0000 0.5 0.4370 12.600 
11 140 8 100 116 16.000 0.75 0.6750 10.000 
12 140 16 75 86.6 15.4667 1 0.9490 5.1000 
13 195 1 140 119 15.000 0.18 0.1700 5.5556 
14 195 4 115 109 5.2174 0.5 0.4200 16.000 
15 195 8 90 96.4 7.1111 0.75 0.6750 10.000 
16 195 16 72 77 6.9444 1 0.9520 4.8000 
17 210 1 140 119 15.000 0.18 0.1700 5.5556 
18 210 4 115 100 13.0435 0.5 0.4650 7.0000 
19 210 8 90 96.4 7.1111 0.75 0.6980 6.9333 
20 210 16 72 73.7 2.3611 1 0.9510 4.9000 
21 230 1 125 119 4.8000 0.18 0.17 5.5556 
22 230 4 110 101 8.1818 0.5 0.4510 9.8000 
23 230 8 87 92 5.7471 0.75 0.7510 0.1333 
24 230 16 67 73.4 9.5522 1 0.9510 4.9000 
25 240 1 125 119 4.8000 0.18 0.1700 5.5556 
26 240 4 110 101 8.1818 0.5 0.4320 13.600 
27 240 8 87 86.5 0.5747 0.75 0.7870 4.9333 
28 240 16 67 73.3 9.4030 1 0.9520 4.8000 
29 255 1 125 116 7.2000 0.18 0.1770 1.6667 
30 255 4 110 99.6 9.4545 0.5 0.4840 3.2000 
31 255 8  87 84.2 3.2184 0.75 0.7120 5.0667 
32 255 16 67 74.3 10.8955 1 0.9480 5.2000 
33 270 1 125 110 12.000 0.18 0.1700 5.5556 
34 270 4 110 101 8.1818 0.5 0.4420 11.600 
35 270 8 87 84 3.4483 0.75 0.6870 8.4000 
36 270 16 67 73.3 9.4030 1 0.9520 4.8000 

 
Table 5. Comparison of the results from SFF model with MDH for carbide tool 
 

Mean absolute error percentage (Using HSS tool) 
         -Speed= 7.19% 
         -Feed= 4.19% 
 
Mean absolute error percentage (Using carbide tool) 
         -Speed= 8.29% 
          -Feed= 7.13% 

Table 6. Mean absolute error using 36 samples 
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Figures 13-16 show the results from Tables 4 and 5 in graphical representation. From these 
figures it can be seen that the fuzzy cutting speed and feed obtained by the SFF model lie 
close to the recommended values from the Machining Data Handbook. 
 

 
Fig. 13. Cutting speed for high speed steel 

 
 

 
Fig. 14. Feed for high speed steel 
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Fig. 15. Cutting speed for carbide tool 

 
Fig. 16. Feed for carbide tool 

The ANN model is composed of two input neurons, material hardness and depth of cut, and 
two output neurons speed and feed. The values of inputs and outputs are not of the same 
scale. So, all data are normalized. Tables 7 and 8 contain a set of 18 training and 18 testing 
samples in normalized form for HSS tool and Carbide tool respectively.  
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No.    Input 1          Input 2             Output 1     Output 2               No.    Input 1             Input 2            Output 1      Output 2 
         Hardness    Depth of cut        Speed           Feed                               Hardness     Depth of cut        Speed            Feed   
Training set                                                                                         Testing set 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 0.0137 0.0038 0.0436 0.0100 19 0.0289 0.0307 0.0240 0.0293 
2 0.0137 0.0153 0.0388 0.0210 20 0.0289 0.0613 0.0201 0.0562 
3 0.0137 0.0307 0.0302 0.0273 21 0.0305 0.0038 0.0312 0.0100 
4 0.0137 0.0613 0.0209 0.0440 22 0.0305 0.0153 0.0288 0.0209 
5 0.0169 0.0038 0.0403 0.0103 23 0.0305 0.0307 0.0240 0.0293 
6 0.0169 0.0153 0.0382 0.0216 24 0.0305 0.0613 0.0189 0.0562 
7 0.0169 0.0307 0.0302 0.0294 25 0.0354 0.0038 0.0310 0.0102 
8 0.0169 0.0613 0.0209 0.0440 26 0.0354 0.0153 0.0251 0.0213 
9 0.0193 0.0038 0.0395 0.0100 27 0.0354 0.0307 0.0239 0.0293 

10 0.0193 0.0153 0.0378 0.0210 28 0.0354 0.0613 0.0170 0.0562 
11 0.0193 0.0307 0.0302 0.0294 29 0.0394 0.0038 0.0312 0.0100 
12 0.0193 0.0613 0.0209 0.0440 30 0.0394 0.0153 0.0253 0.0209 
13 0.0233 0.0038 0.0360 0.0101 31 0.0394 0.0307 0.0207 0.0293 
14 0.0233 0.0153 0.0342 0.0214 32 0.0394 0.0613 0.0168 0.0562 
15 0.0233 0.0307 0.0268 0.0292 33 0.0426 0.0038 0.0290 0.0100 
16 0.0233 0.0613 0.0209 0.0440 34 0.0426 0.0153 0.0253 0.0209 
17 0.0289 0.0038 0.0309 0.0103 35 0.0426 0.0307 0.0201 0.0293 
18 0.0289 0.0153 0.0302 0.0215 36 0.0426 0.0613 0.0168 0.0562 

 
Table 7. Training-testing data for high speed steel tool 

 

 
No.    Input 1          Input 2             Output 1     Output 2               No.    Input 1             Input 2            Output 1      Output 2 
         Hardness    Depth of cut        Speed           Feed                               Hardness     Depth of cut        Speed            Feed   
Training set                                                                           Testing set 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 0.0136 0.0038 0.0402 0.0083 19 0.0301 0.0307 0.0257 0.0342 
2 0.0136 0.0153 0.0381 0.0206 20 0.0301 0.0613 0.0196 0.0466 
3 0.0136 0.0307 0.0309 0.0331 21 0.0330 0.0038 0.0317 0.0083 
4 0.0136 0.0613 0.0231 0.0466 22 0.0330 0.0153 0.0269 0.0221 
5 0.0158 0.0038 0.0391 0.0084 23 0.0330 0.0307 0.0245 0.0368 
6 0.0158 0.0153 0.0375 0.0209 24 0.0330 0.0613 0.0195 0.0466 
7 0.0158 0.0307 0.0314 0.0331 25 0.0344 0.0038 0.0317 0.0083 
8 0.0158 0.0613 0.0231 0.0465 26 0.0344 0.0153 0.0269 0.0212 
9 0.0201 0.0038 0.0362 0.0086 27 0.0344 0.0307 0.0230 0.0386 

10 0.0201 0.0153 0.0346 0.0214 28 0.0344 0.0613 0.0195 0.0466 
11 0.0201 0.0307 0.0309 0.0331 29 0.0365 0.0038 0.0309 0.0087 
12 0.0201 0.0613 0.0231 0.0465 30 0.0365 0.0153 0.0265 0.0237 
13 0.0279 0.0038 0.0317 0.0083 31 0.0365 0.0307 0.0224 0.0349 
14 0.0279 0.0153 0.0290 0.0206 32 0.0365 0.0613 0.0198 0.0464 
15 0.0279 0.0307 0.0257 0.0331 33 0.0387 0.0038 0.0293 0.0083 
16 0.0279 0.0613 0.0205 0.0466 34 0.0387 0.0153 0.0269 0.0217 
17 0.0301 0.0038 0.0317 0.0083 35 0.0387 0.0307 0.0224 0.0337 
18 0.0301 0.0153 0.0266 0.0228 36 0.0387 0.0613 0.0195 0.0466 

 
Table 8. Training-testing data for carbide tool 

The first half of the data in each table is used for training the network with different number 
of hidden nodes: two, four, and eight, extracted using the equations (1-4). The models are 
trained with different training parameters and different activation functions as shown in 
Tables 9 and 10. The mean square error (MSE) value is used as the stop criteria. 
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Input         Hidden       Output         Training             Transfer            Epochs           Performance    
Nodes        Nodes         Nodes          Function            Function         
 
     2                   2                    2                  TRAINLIM              TANSIG                150                    3.61807e-006 
     2                   4                    2                  TRAINLIM              TANSIG                150                    3.43611e-006 
     2                   8                    2                  TRAINLIM              TANSIG                100                    5.66618e-007 
                               
     2                   2                    2                  TRAINLIM              SIGMOID              200                   3.23253e-006 
     2                   4                    2                  TRAINLIM              SIGMOID              350                   3.78049e-007 
     2                   8                    2                  TRAINLIM            SIGMOID             350                   3.117 65e-007 
  

Table 9. ANN model parameters for HSS tool 

 
 
Input         Hidden       Output         Training             Transfer            Epochs           Performance   
Nodes        Nodes         Nodes          Function            Function         
 
     2                   2                    2                  TRAINLIM              TANSIG                350                    9.96923e-007 
     2                   4                    2                  TRAINLIM              TANSIG                250                    8.26549e-007 
     2                   8                    2                  TRAINLIM              TANSIG                190                    2.19803e-007 
                               
     2                   2                    2                  TRAINLIM              SIGMOID              250                   9.87903e-007 
     2                   4                    2                  TRAINLIM              SIGMOID              236                   5.12694e-007 
     2                   8                    2                  TRAINLIM            SIGMOID             145                   1.325 60e-007 

 
Table 10. ANN model parameters for carbide tool. 
The trained neural network was tested based on the second half of the input-output samples 
in Tables 7 and 8. The performance of the best training processes is shown in Fig.17. Fig.18 
shows the architecture of the best feed forward neural network (2-8-2) model.  
 

  
(a) 2-8-2 ANN model using Tansig function for HSS tool 
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(b) 2-8-2 ANN model using Sigmoid function for HSS tool 

 

  
(c) 2-8-2 ANN model using Tansig function for carbide tool 
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(d) 2-8-2 ANN model using Sigmoid function for carbide tool 

Fig. 17. Performance curves for best tested ANN models 

 

 
Fig. 18. Architecture of 2-8-2 ANN model (from MATLAB) 

From Tables 9 and 10 and Fig.17 (b) and (d), it can be seen that the 2-8-2 ANN model gives a 
small error. The error is 3.11765e-007 for high speed steel and 1.3256e-007 for carbide tool 
and the trained network is considered valid. 
The ANN model is simulated based on the test data set (19-36) from Tables 7 and 8. The 
outputs from the network simulation are shown in Tables 11 and 12. These tables show the 
comparison between the values obtained by SFF and the values predicted by ANN for the 
two types of the tools used in the demonstration. From the tables it can be seen that the 
obtained values closely matches the predicted values of the ANN model.  
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                       Output- Speed                                                                      Output- Feed       
                                              
No.       SFF model        ANN model        Difference                    SFF model      ANN model      Difference   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

19 0.0239 0.0240 0.0001 0.0293 0.0293 0 
20 0.0199 0.0201 0.0002 0.0561 0.0562 0.0001 
21 0.0310 0.0312 0.0002 0.0100 0.0100 0 
22 0.0287 0.0288 0.0001 0.0212 0.0209 -0.0003 
23 0.0233 0.0240 0.0007 0.0294 0.0293 -0.0001 
24 0.0192 0.0189 -0.0003 0.0562 0.0562 0 
25 0.0302 0.0310 0.0008 0.0101 0.0102 0.0001 
26 0.0277 0.0251 -0.0026 0.0207 0.0213 0.0006 
27 0.0225 0.0239 0.0014 0.0293 0.0293 0 
28 0.0169 0.0170 0.0001 0.0564 0.0562 -0.0002 
29 0.0297 0.0312 0.0015 0.0102 0.0100 -0.0002 
30 0.0268 0.0253 0.0015 0.0204 0.0209 0.0005 
31 0.0210 0.0207 -0.0003 0.0293 0.0293 0 
32 0.0166 0.0168 0.0002 0.0560 0.0562 0.0002 
33 0.0291 0.0290 -0.0001 0.0104 0.0100 -0.0004 
34 0.0248 0.0253 0.0005 0.0209 0.0209 0 
35 0.0202 0.0201 -0.0001 0.0293 0.0293 0 
36 0.0165 0.0168 0.0003 0.0561 0.0562 0.0001  

Table 11. Comparison of outputs for HSS tool 
 
                       Output- Speed                                                                      Output- Feed       
                                              

  No.       SFF model        ANN model        Difference                    SFF model      ANN model      Difference    
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

19 0.0257 0.0255 0.0002 0.0342 0.0340 0.0002 
20 0.0196 0.0196 0 0.0466 0.0466 0 
21 0.0317 0.0314 0.0003 0.0083 0.0084 -0.0001 
22 0.0269 0.0269 0 0.0221 0.0221 0 
23 0.0245 0.0239 0.0006 0.0368 0.0365 0.0003 
24 0.0195 0.0196 -0.0001 0.0466 0.0466 0 
25 0.0317 0.0310 0.0007 0.0083 0.0084 -0.0001 
26 0.0269 0.0267 0.0002 0.0212 0.0224 -0.0012 
27 0.0230 0.0228 0.0002 0.0386 0.0385 0.0001 
28 0.0195 0.0196 -0.0001 0.0466 0.0465 0.0001 
29 0.0309 0.0305 0.0004 0.0087 0.0083 0.0004 
30 0.0265 0.0264 0.0001 0.0237 0.0227 0.001 
31 0.0224 0.0226 -0.0002 0.0349 0.0349 0 
32 0.0198 0.0196 0.0002 0.0464 0.0465 -0.0001 
33 0.0293 0.0299 -0.0006 0.0083 0.0082 0.0001 
34 0.0269 0.0267 0.0002 0.0217 0.0216 0.0001 
35 0.0224 0.0222 0.0002 0.0337 0.0336 0.0001 
36 0.0195 0.0195 0 0.0466 0.0465 0.0001  

Table 12. Comparison of outputs for carbide tool 
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No.    Input 1          Input 2             Output 1     Output 2               No.    Input 1             Input 2            Output 1      Output 2
         Hardness    Depth of cut        Speed           Feed                               Hardness     Depth of cut        Speed            Feed   
Training set                                                                                       Testing set 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 0.0136 0.0038 0.0454 0.0102 19 0.0301 0.0307 0.0235 0.0282 
2 0.0136 0.0153 0.0357 0.0226 20 0.0301 0.0613 0.0187 0.0564 
3 0.0136 0.0307 0.0284 0.0282 21 0.0330 0.0038 0.0357 0.0102 
4 0.0136 0.0613 0.0219 0.0423 22 0.0330 0.0153 0.0284 0.0226 
5 0.0158 0.0038 0.0454 0.0102 23 0.0330 0.0307 0.0235 0.0282 
6 0.0158 0.0153 0.0357 0.0226 24 0.0330 0.0613 0.0187 0.0564 
7 0.0158 0.0307 0.0284 0.0282 25 0.0344 0.0038 0.0357 0.0102 
8 0.0158 0.0613 0.0219 0.0423 26 0.0344 0.0153 0.0284 0.0226 
9 0.0201 0.0038 0.0454 0.0102 27 0.0344 0.0307 0.0235 0.0282 

10 0.0201 0.0153 0.0357 0.0226 28 0.0344 0.0613 0.0187 0.0564 
11 0.0201 0.0307 0.0284 0.0282 29 0.0365 0.0038 0.0308 0.0102 
12 0.0201 0.0613 0.0219 0.0423 30 0.0365 0.0153 0.0235 0.0226 
13 0.0279 0.0038 0.0373 0.0102 31 0.0365 0.0307 0.0187 0.0282 
14 0.0279 0.0153 0.0308 0.0226 32 0.0365 0.0613 0.0146 0.0564 
15 0.0279 0.0307 0.0243 0.0282 33 0.0387 0.0038 0.0308 0.0102 
16 0.0279 0.0613 0.0195 0.0423 34 0.0387 0.0153 0.0235 0.0226 
17 0.0301 0.0038 0.0357 0.0102 35 0.0387 0.0307 0.0187 0.0282 
18 0.0301 0.0153 0.0284 0.0226 36 0.0387 0.0613 0.0146 0.0564 

 
Table 13. Training-testing data from MDH for high speed steel tool 

The performance of the SFF is compared with ANN and MDH using high speed steel tool as 
a demonstration example (Table 13). 
The performance of the best training process using network architecture 2-8-2 with 950 
epochs is shown in Fig. 19 where the value is 3.92694e-007.   
 

 
Fig. 19. Performance curve for best tested ANN model 

The output from the simulated network using test data set (19-36) from Table 13 is shown in 
Figures 20 and 21. The Figures show the comparison between the values obtained by SFF 
model and the predicted values by ANN model and values from MDH.  
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Fig. 20. Comparison of speed values between SFF, ANN and MDH  

 

 
Fig. 21. Comparison of feed values between SFF, ANN and MDH 

5. Conclusion 
In this study, a fuzzy logic using expert rules and ANN model are used to predict 
machining parameters. 
The fuzzy inference engine used in the model has successfully formulated the input-output 
mapping enabling an easy and effective approach for selecting optimal machining 
parameters. ANN was also found to be accurate in predicting the optimal parameters.   
Both approaches can be easily expanded to handle more tool-workpiece materials 
combinations and it is not limited to turning process only and can be used for other 
machining processes like: milling, drilling, grinding, etc. 
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However the SFF is more user-friendly and compatible with the automation concept of a 
flexible and computer integrated manufacturing systems. It allows the operator, even 
unskilled to find the optimal machining parameters for an efficient machining process that 
can lead to an improvement of product quality, increase production rates and thus reducing 
product cost and total manufacturing costs.  
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1. Introduction  
Artificial Neural Networks (ANN) have traditionally enjoyed considerable attention in 
process control applications. Thus, the paper is focused on real system control design using 
neural networks. The point is to show whether neural networks bring better performances 
to nonlinear process control or not. 
Artificial Neural Network is nowadays a popular methodology with lots of practical and 
industrial applications. As introduction, some concrete examples of successful  application 
of ANN can be mentioned, e.g. mathematical modeling of bioprocesses [Montague et al., 
1994], [Teixeira et al., 2005], prediction models and control of boilers, furnaces and turbines 
[Lichota et al., 2010] or industrial ANN control of calcinations processes, or iron ore process 
[Dwarapudi, et al., 2007]. 
Specifically in our paper, the aim is to explain and describe usage of neural network in the 
case of nonlinear reactor furnace control. 

2. Controlled system 
Real system (controlled plant) is a reactor furnace, which is significantly nonlinear system. 
Furnace is an equipment of the research laboratory of the Department of Physical Chemistry 
at the University of Pardubice, Czech Republic.  
Reactor furnace is used for research of oxidation and reduction qualities of catalyzers under 
different temperatures by controlled heating of the reactor (where the chemical substance is 
placed). The temperature profile of the reactor is strictly defined. It is linear increasing up to 
800 °C, then keeping the constant value of 800 °C till the end of the experiment. The difference 
between the setpoint and controlled variable (furnace temperature) has to be less than 10 °C.  
The basic premise is so strict, that it is not possible to use standard control techniques as PID 
controller. Thus, an artificial neural network represents one of the available techniques for 
overcoming this obstacle. 

2.1 System description 
Reactor furnace base is a cored cylinder made of insulative material, described in [Mareš et 
al., 2010a].  On the inner surface there are two heating spirals (powered by voltage 230 V). In 
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the middle of the cylinder there is a reactor. The reactor temperature is measured by one 
platinum thermometer (see Figure 1).  
 

 

Thermocouple 

 
Fig. 1. Reactor furnace chart 

The system is a thermal process with two inputs (spiral power and ambient temperature) and 
one output (reactor temperature). Thus, the controlled variable is the reactor temperature and 
the manipulated variable is the spiral power with the ambient temperature as measured error. 
The plant is significantly nonlinear system. Nonlinearity is caused by heat transfer 
mechanism. When the temperature is low, heat transfer is provided only by conduction. 
However, when the temperature is high, radiation presents an important transfer principle. 

2.2 Nonlinear model 
Nonlinear mathematical model of reactor furnace consists of four parts. Differential 
equations describing isolation, heating spiral, inner space and reactor were derived. 
Because variables changes along devices dimension are irrelevant, process behavior can be 
considered as a lumped system. 
Nonlinear mathematical model is possible to describe by equations (1) to (4), more in [Mares 
et al., 2010a].  
Isolation 
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Spiral 
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Inner space 
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Reactor 
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where 
A is isolation 
B is spiral 
C is inner space 
D is reactor 

ijα  ,J.K-1.m-2.s-1, is transfer coefficient between i and j 

ijS  , m2, is surface of contact between i and j 

S1,S ,S3,S4 are surfaces of reactor, isolation inside and outside surface of the furnace 
mi , kg, is weight of i 
β , K-1, is spiral temperature coefficient  
ci , J.K-1.kg-1, is capacity of i 
σ , J.K-4.m-2.s-1, is Stefan-Bolzmann constant 
From the model it is evident that the system is strongly nonlinear and very difficult to 
control. Thus complex techniques are necessary to use. 

3. Control techniques 
Several control techniques with neural network were chosen, applied and compared to 
classical ones. One of the objectives is to find out whether control techniques with neural 
networks bring any improvement to control performances at all. Brief description of the 
applied techniques is given below. 

3.1 Internal model control 
Standard internal model control (IMC) is technique closely connected to direct inverse control 
which brings some limitations to system to be controlled. On the other side, IMC has some 
convenient features, e.g. it is able to cope well with output disturbances. The concept of IMC is 
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presented in [Rivera et al., 1986]. IMC for nonlinear systems is introduced in [Economou et al., 
1986] and IMC with neural networks is described e.g. in [Norgaard et al., 2000]. 
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Fig. 2. Internal model control scheme 

Internal model controller requires a forward model as well as an inverse model of the system 
to be controlled. Both models are replaced with adequate neural network model - design of 
both models is described in [Nguyen et al., 2003]. Then, control loop can be put together – see 
Fig. 2, where wS, u, v, yS, and yM are reference variable, control signal, output disturbance, 
control variable and forward model output. It can be shown, that equation (5) is valid in case 
of ideal inverse and forward neural model. In some cases, filtering can be applied ahead of 
inverse controller to smooth reference variable to eliminate negative influence of sudden 
changes. In the case of linear continuous-time IMC, filter usage is essential. 

 1 0S Sy w v= +  (5) 

The equation above is unattainable in real processes but can be approximately approached if 
discrete neural models are used. 
In section 4.3, control experiments with neural models of linear IMC as well as IMC with 
neural models are demonstrated 

3.2 Predictive control 
Predictive control is used in two variants. The first one is typical Model Predictive Control 
and the second one is Neural Network Predictive Control. 

3.2.1 Model predictive control 
Model predictive control (MPC) is widely used technique for process control in industry, 
where better control performance is necessary. MPC is a general strategy which comes from 
the process model, therefore MPC controllers are truly-tailor-made.  The working principle 
is briefly described in this chapter (the description is not in general, but only for SISO 
systems), more in [Camacho, 2007].  
The mathematical model of the controlled system is assumed in the form of equation (6). 

 1 1 1( ) ( ) . ( ) ( 1) ( ) ( )dA z y k z B z u k C z e k− − − −= − +  (6) 
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where A, B, C are polynomials, y(k) is model output, u(k) is model input e(k) is output error. 
The model without errors and without output delay is supposed, therefore C(z-1) = 0 a d = 0. 
Then it is possible to rewrite (6) to the form of (7).  

 1 1( ) ( ) ( ) ( 1)A z y k B z u k− −= −  (7) 

The model is used for the calculation of future output prediction. There are several different 
methods how to calculate it. One of the simplest ways (using the inverse matrix) is 
described in this chapter.  
The prediction of N steps is possible to write by the set of equations (8). 

 

1 2

1 1 2 1

1 2

1 1 2 1

1 2

1 1

( 1) ( ) ( 1) ...
... ( ) ( ) ( 1) ... ( )

( 2) ( 1) ( ) ...
... ( 1) ( 1) ( ) ... ( 1)

( 3) ( 2) ( 1) ...
... ( 2) ( 2)

n m

n m

n

y k b u k b u k
b u k n a y k a y k a y k m

y k b u k b u k
b u k n a y k a y k a y k m

y k b u k b u k
b u k n a y k

+ +

+ +

+

+ = + − +
+ − − − − − − −

+ = + + +
+ − + − + − − − − +

+ = + + + +
+ − + − + − 2

1

1 2

1 1

2 1

( 1)
.. ( 2)

( ) ( 1) ( ) ...
... ( 1) ( 1)

( ) ... ( 1)

m

n

m

a y k
a y k m

y k N b u k N b u k N
b u k N n a y k N

a y k N a y k N m

+

+

+

+ −
− − +

+ = + − + + +
+ + − + − + − −

− + − − + − +

 (8) 

 

In matrix form it is possible to write 

 

( 1) ( ) ( 1) ( )
( 2) ( 1) ( 2) ( 1)

( ) ( 1) ( ) ( )

y k u k u k y k
y k u k u k y k

y k N u k N u k n y k m

+ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

+ + − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

A B B A  (9) 
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Output prediction y(k+i) is possible to calculate by multiplying the equation (9) by the 
inverse matrix A -1, equation (10). 

( 1) ( ) ( 1) ( )
( 2) ( 1) ( 2) ( 1)

( ) ( 1) ( ) ( )

y k u k u k y k
y k u k u k y k

y k N u k N u k n y k m

− − −

+ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

+ + − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1 1A B A B A A  (10) 

Because the last two terms describe only the system history, it is possible to put them 
together to the matrix F and the vector of historical output and input [ ]T=h y u . Thus, it is 
possible to rewrite the equation of prediction to the form of equation (11). 

 = +y Gu Fh  (11) 
 

The aim of MPC is to calculate the vector of manipulated variable by minimizing the cost 
function (12), described in [Baotic, 2006]. 

 . . .T T
N NJ λ= +e e u u  (12) 

 

where e is vector of control errors (length N), u is vector of manipulated variables (length N) 
and λ is weighting coefficient. 
The cost function can be modified using output prediction (10) and set point vector w. 

 ( ) ( ) .TJ λ= − − − − + Tw G.u F.h w G.u F.h u .u  (13) 
 

It is possible to calculate the vector of manipulated variable u analytically using the square 
norm, equation (14). 

 λ −= + −.(w F.h)T 1 Tu (G .G .I) .G  (14) 

Only one actual value of the manipulated variable (the first element of the vector) is needed, 
therefore the final form of the control law is equation (15). 
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⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥−⎣ ⎦⎩ ⎭

K F  (15) 

3.2.2 Method modification 
GPC theory is formulated in detail for the group of linear systems but in the case of 
nonlinear systems it is not possible to use it because linear models are not able to describe 
nonlinear processes well enough. Nonlinear process control needs better description using 
piecewise linearized model. 
In the case of linearized MPC several points where the linearization is done are chosen and 
for each point controller setting (matrices G and F) is pre-calculated. Then the controller 
switches between pre-calculated settings during control experiment (according to actual 
reactor temperature) and it is possible to interpolate between two adjoining settings. Thus, 
nonlinear behavior of the system is substituted by piecewise linearized model, more in 
[Mares et al., 2010b]. 
Control law can be transformed to equation (16). 
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w t u t n

u
y t

w t N y t
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⎢ ⎥⎢ ⎥+ −⎢ ⎥⎢ ⎥= − ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

+ −⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

K F  (16) 

where vector K is the same as in equation (14) and vector F is product of matrices K and F 
multiplying. Interpolation is the main reason of multiplying (it is simpler to interpolate 
between vectors than matrices). 
The whole algorithm can be written as: 
1. Pre-control 

fill the data history 
 calculate vectors TLIN, KLIN and LINF  
2. Control 
a. measure actual temperature 
b. choose the interval KTi KTi+1 and TiF a 1Ti+F  
c. using interpolation calculate vectors K a F for the control law 
d. calculate the actual value of manipulated variable u  
e. actualize the data history 
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Vectors TLIN, KLIN and LINF are defined as 
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3.2.3 Neural network predictive control 
There are several variations of neural network predictive controller. This approach uses a 
neural network model of nonlinear plant to predict future plant performance. The controller 
then calculates the control input that will optimize plant performance over a specified future 
time horizon. 
The first stage of neural network predictive control is to design a neural network which 
represents the dynamics of the plant. The prediction error between the plant output and 
neural network output is used as the neural network training signal [Nguyen et al., 2003]. 
Obtained neural network predicts the plant response over a specified time horizon. The 
predictions are used by some search technique to determine the control signal that 
minimizes the following performance criterion over the specified horizon N 

 . . .T T
N NJ λ= + Δ Δe e u u  (17) 
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Fig. 3. Neural network predictive control 
where e is vector of control errors and Δu is vector of controller outputs differences in time. 
The following figure illustrates the neural network predictive control process. The controller 
consists of the neural network plant model and the optimization block. The optimization 
block determines the values of u’ that minimize the criterion J and the optimal u’ is input to 
the plant. 
In section 4.4, experimental results of typical Model Predictive Control performance are 
compared to Neural Network Predictive Control ones. 

3.3 Discrete controller tuning online 
This technique amplifies the basic feedback control loop. It aims to tune any discrete controller 
online. For this purpose the knowledge of the controlled system model (e.g. neural model) and 
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reference variable course over known future finite horizon is necessary. Based on this, the 
parameters of any chosen discrete controller are determined repeatedly every discrete time 
instant so that the control response computed via the neural model over future horizon is 
optimal (according to chosen performance criterion). Simplified scheme is depictured in Fig. 4. 
The search of discrete controller parameters has to run repeatedly in every single step of the 
sampling interval, which puts great demands on computing time of the search algorithm. 
Naturally, usage of some iterative optimization algorithm with only one iteration realization 
every time instant is suggested. Gradient descent techniques seem inconvenient because of 
neural model usage. Neural model is black-box-like model so it is not possible to determine 
gradient descent analytically. On the other hand, evolutionary search techniques (genetic 
algorithm, differential evolution, … see [Coello et al., 2002]) appear to be suitable because 
these techniques do not require any particular information about search problem. The other 
indisputable advantage is its operating principle. In each iteration, evolutionary search 
techniques explore not only one value of input variables but whole set of them (one 
generation of individual solutions), which lowers significantly troubles with initial 
parameters random choice. In this particular case, differential evolution is chosen. The 
reasons are, among others, that differential evolution works with decimal input values 
(contrary to genetic algorithm) and population of possible solutions is kept more diversified. 
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Fig. 4. Controller tuning online using neural network 
The control method which is described here does not require any special form of discrete 
controller. According to some experiments [Dolezel et al., 2009a], [Dolezel et al., 2009b], 
controller form 

 0 1 2 3( ) ( ) ( ) ( 1) ( 2) ( 1)u k p w k p y k p y k p y k u k= − − − − − + −  (18) 

was considered to be convenient. For some p0 …  p3 parameters combinations, controller (18) 
acts like discrete PID controller. In general, however, it has one additional independent 
parameter. Suitable control performances can be obtained by well-tuned controller (18). 
Because of the evolutionary algorithm, cost function can be selected from huge number of 
possibilities. One of suitable definitions is 
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1 1

1
2

1

1 ( ) ( ) ( 1)
1

k N k N

i k i k

hJ e i u i h e k N
N N

+ − + −

= = +
= ⋅ + ⋅ Δ + ⋅ + −

−
∑ ∑  (19) 

 

where Δu(i) = u(i) - u(i-1), e(i) is control error, h1 is function parameter influencing 
manipulated variable differences, h2 is function parameter influencing the state on the end of 
future horizon, N is future horizon length and w(i) is reference variable. 
Note that definition (19) can be changed in order to get any particular control performance. 
The whole algorithm of the above described control method is compiled in the following 
points: 
1. Create dynamical neural model of controlled system – see [Nguyen, 2003] 
2. Choose future horizon length N 
3. Choose differential evolution parameters (number of individual solutions in one 

generation NP – any solution represents one particular quaternion of controller 
parameters p0 …  p3, crossover constant CR, mutation constant F) and their initial values 

4. Measure controlled variable y(k) 
5. Perform one iteration of differential evolution (based on the knowledge of controlled 

variable y(k), course of its reference w(k) till w(k+N-1) and neural model of controlled 
system)  

a. perform control simulation with discrete controller and the neural model over future horizon N 
and evaluate cost function for all the individual solutions from current generation 

b. Apply cross-over and mutation (see [Coello et al., 2002]) so that offspring generation of 
solutions is bred 

c. Evaluate cost functions of offspring (see step a)) 
d. Choose the best individual solution from the offspring generation 
6. Evaluate manipulated variable u(k) with discrete controller determined by the best 

individual solution obtained in step 5d) 
7. k = k +1, go to step 4 

4. Experimental results 
4.1 Dynamical neural model of the plant 
Control techniques described above need neural plant model to be designed. In [Nguyen, 
2003], whole algorithm of neural model design is presented in detail. First, a training set of 
process data is to be measure. For this purpose, a simple control experiment with reactor 
furnace and PI controller is performed – see Fig. 5. 
Data (sampling interval 3s) are slotted according to Table 1 so that neural network 
corresponds to difference equation (20) 

 ( ) [ ( 1), ( 2), ( 1), ( 2)]M M M
D D DT k T k T k E k E kϕ= − − − −  (20) 

Input Output 
TDM(k-1) TDM (k-2) E(k-1) E(k-2) TDM(k) 
TDM(2) TDM(1) E(2) E(1) TDM(3) 
TDM(3) TDM(2) E(3) E(2) TDM(4) 

… … … … … 
TDM(N-1) TDM(N-2) E(N-1) E(N-2) TDM(N) 

Table 1. Training set 1 
It is possible to choose higher order of difference equation (20), but after many experiments, 
second order seems convenient. Formal scheme of the neural model can be found in Fig. 6. 
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Fig. 5. Control performance with PI controller – Training set experiment 
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Fig. 6. Formal scheme of the neural model 

Now, topology of the neural network has to be optimized. Several neural networks with 
different number of hidden neurons were trained (Levenberg-Marquardt Algorithm was 
used) and cost function courses are depictured in Fig. 7. 
For control experiments neural model with network of 4-6-1 topology is chosen, because 
networks with more complex topologies do not bring considerably improved performances. 
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Fig. 7. Topology optimizing I 

4.2 Inverse neural model of the plant 
For IMC control an inverse plant model is needed. Inverse neural model control design is 
formally the same as feedforward model, the only difference is, that data of training set has 
to be slotted in another way. Inverse difference equation of equation (20) can be obtained by 
actual input-actual output interchanging – equation (21).  

 ( 1) [ ( ), ( 1), ( 2), ( 2)]M M M
D D DE k T k T k T k E kϕ− = − − −  (21) 
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Input Output 
TDM(k) TDM(k-1) TDM (k-2) E(k-2) E(k-1) 
TDM(3) TDM(2) TDM(1) E(1) E(2) 
TDM(4) TDM(3) TDM(2) E(2) E(3) 

… … … … … 
TDM(N) TDM(N-1) TDM(N-2) E(N-2) E(N-1) 

Table 2. Training set 2 

Equation above lacks time causality. However, it can be used to training set slotting – see 
Table 2. 
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Fig. 8. Topology optimizing II 
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Topology is optimized as well as in section 4.1. Cost function courses are depictured in 
Fig. 8. Now, inverse neural model with 4-10-1 topology is chosen. 

4.3 Neural internal model control 
If both feedforward and inverse neural models are designed, control loop can be put 
together – see Fig. 9. 
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Fig. 9. Reactor Furnace controlled using Neural IMC 

Control response for the desired plant output course is shown below compared to response 
obtained by classical IMC (for linear model design, same data is used). 
For ramp as reference, reactor temperature courses are similar for both control techniques 
(in addition, control response with classical IMC is smoother), so for reactor furnace control, 
it is no need to extend classical IMC technique with neural networks. 
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Fig. 10. Neural IMC control response 
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Fig. 11. Classical IMC control response 

4.4 Neural network predictive control 
As shown in section 3.2.3, only feedforward neural model of the plant is needed for neural 
network predictive control. Control experiment is performed according to section 3.2.3 with 
golden section search routine [Fletcher, 1987], prediction horizon N = 20 and weighting 
coefficient λ = 0.1. Control response is shown in Fig. 12. 
Alternatively, control response gained by piecewise linearized model predictive controller 
(the same prediction horizon and weighting coefficient – see section 3.2.1 and 3.2.2) is 
plotted in Fig. 13. It is obvious that neural network predictive controller provides less 
suitable controlperformance. However, it has to be mentioned, that neural network 
predictive controller is much simpler to design than piecewise linear model predictive 
controller. 
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Fig. 12. Neural Network Predictive control response 
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Fig. 13. Piecewise Linearized Model Predictive control response 

4.5 Discrete controller tuning online 
Control loop of this technique is connected in a way introduced briefly in section 3.3. 
Differential evolution is chosen as search technique. After some experiments, eligible 
parameters are chosen this way: NP = 30; CR = 0.85; F = 0.6; N = 20. Cost function is selected 
according to Eq. (19), where h1 = 0.1, h2 = 0.01. Control response is depicted in Fig. 14. 
There is no exact alternative in classical control theory to this technique. However, in a 
certain way it is close to predictive control, therefore it can be compared to Fig. 13. 
It is remarkable, that control response shown in Fig. 14 provides the most suitable 
performance of all experiments. But, on the other hand, it is highly computationally 
demanding technique. 
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Fig. 14. Discrete controller tuned online 

5. Conclusion 
The aim of this work was to design a controller, which provides control performance with 
control error less than 10°C. Because of the nonlinearity of the plant, two groups of 
advanced control techniques were used. The first group is based on artificial neural 
networks usage while the second one combines their alternatives in modern control theory. 
Generally speaking, neural networks are recommended to use when plant is strongly 
nonlinear and/or stochastic. Although reactor furnace is indispensably nonlinear, it is 
evident that control techniques without neural networks can control the plant sufficiently 
and in some cases (especially predictive control and internal model control) even better. 
Thus, neural network usage is not strictly necessary here, although especially Discrete 
Controller Tuning Online brings extra good performance. 
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1. Introduction 
Applications of Artificial Neural Networks (ANNs) attract the attention of many scientists 
from all over the world. They have many advantages over traditional algorithmic methods. 
Some of these advantages are, but not limited to; ease of training and generalization, 
simplicity of their architecture, possibility of approximating nonlinear functions, 
insensitivity to the distortion of the network and inexact input data (Wlas et al., 2005). As for 
their applications to Induction Motors (IMs), several research articles have been published 
on system identification (Karanayil et al., 2003; Ma & Na, 2000; Toqeer & Bayindir, 2000; 
Sjöberg et al. 1995; Yabuta & Yamada, 1991), on control (Kulawski & Brys, 2000; Kung et al., 
1995; Henneberger & Otto, 1995), on breakdown detection (Raison, 2000), and on estimation 
of their state variables (Simoes & Bose, 1995; Orłowska-Kowalska & Kowalski, 1996).  
The strong identification capabilities of artificial neural networks can be extended and 
utilized to design simple yet good performance nonlinear controllers. This chapter 
contemplates this property of ANNs and illustrates the identification and control design 
processes in general and then for a given system as a case study.  
To demonstrate its capabilities and performance, induction motors which are highly 
nonlinear systems are considered here. The induction machine, especially the squirrel-cage 
induction motor, enjoys several inherent advantages like simplicity, ruggedness, efficiency 
and low cost, reliability and compactness that makes it the preferred choice of the industry 
(Vas, 1990; Mehrotra et al., 1996; Wishart & Harley, 1995; Merabet et al., 2006; Sharma, 2007). 
On the other hand, advances in power switching devices and digital signal processors have 
significantly matured voltage-source inverters (VSIs) with the associated pulse width 
modulation (PWM) techniques to drive these machines (Ebrahim at el., 2010). However, IMs 
comprise a theoretically challenging problem in control, since they are nonlinear 
multivariable time-varying systems, highly coupled, nonlinear dynamic plants, and in 
addition, many of their parameters vary with time and operating condition (Mehrotra et al., 
1996a; 1996b; Merabet et al., 2006).  
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2. System identification 
This chapter will carry out the system identification of an induction motor using the 
artificial neural network and precisely the Back Propagation Algorithm. The procedure used 
to identify the system is as described in Fig.1. 
 

Data Collection
(Experimental Work)

Selecting the Model
Structure

Fitting the Model
to the Data

Validating the Model

Accepting the Model ?

Yes

No

M
od

el
 st

ru
ct

ur
e 

is 
no

t g
oo

d

D
at

a 
is

 n
ot

 g
oo

d
In

se
rt

 F
ilt

ra
tio

n 
Fa

ct
or

 
if 

N
ec

es
sa

ry

 
Fig. 1. System identification loop 
Now, the system identification problem would be as follows: We have observed inputs, u(t), 
and outputs,  y(t), from the plant under consideration (induction motor): 

 ( ) ( ) ( )1 , 2 , ,tu u u u t= ⎡ ⎤⎣ ⎦  (1) 

 ( ) ( ) ( )1 , 2 , ,ty y y y t= ⎡ ⎤⎣ ⎦  (2) 

where  tu  is the input signal to the plant (input to the frequency inverter) and ty  is the 
output signal (measured by the tacho-meter representing the motor’s speed). We are looking 
for a relationship between past 1 1,t tu y− −⎡ ⎤

⎣ ⎦  and future output, y(t): 

 ( ) ( )ˆ | ,y t g tθ ϕ θ= ⎡ ⎤⎣ ⎦  (3) 

where ŷ  denotes the model output which approximates the actual output ( )y t , g  is a 
nonlinear mapping that represents the model, ( )tϕ  is the regression vector given by 

 ( ) ( )1 1,t tt u yϕ ϕ − −=  (4) 
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and its components are referred to as regressors. Here, θ  is a finite dimensional parameter 
vector, which is the weights of the network in our case (Bavarian, 1988; Ljung & Sjöberg, 
1992; Sjöberg et al. 1995). 
The objective in model fitting is to construct a suitable identification model (Fig. 2) which 
when subjected to the same input ( )u t  to the plant, produces an output ( )ŷ t  which 
approximates ( )y t . However, in practice, it is not possible to obtain a perfect model. The 
solution then is to select θ in Eq. (3) so as to make the calculated values of ( )ˆ |y t θ  fit to the 
measured outputs ( )y t  as close as possible. The fit criterion will be based on the least 
square method given by 

 ( )min ,NV t
θ

θ ϕ⎡ ⎤⎣ ⎦  (5) 

where 

 ( ) ( ) ( ) 2

1

1 ˆ, |
N

N
t

V t y t y t
N

θ ϕ θ
=

⎡ ⎤ = ⎡ − ⎤⎣ ⎦ ⎣ ⎦∑  (6) 

Hence, the error ε  is given by 

 ( ) ( ) ( )ˆ |t y t y tε θ= −  (7) 
This is illustrated in Fig. 2. 
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Fig. 2. Forward plant modelling 

3. Artificial Neural Networks 
Strong non-linearities and model uncertainty still pose a major problem for control 
engineering. Adaptive control techniques can provide solutions in some situations however 
in the presence of strongly non-linear behaviour of the system traditional adaptive control 
algorithms do not yield satisfactory performance. Their inherent limitations lie in the 
linearization based approach. A linear model being a good approximation of the non-linear 
plant for a given operation point cannot catch up with a fast change of the state of the plant 
and poor performance is observed until new local linear approximation is built. 
Artificial neural networks offer the advantage of performance improvement through 
learning using parallel and distributed processing. These networks are implemented using 
massive connections among processing units with variable strengths, and they are attractive 
for applications in system identification and control. 
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3.1 The network architecture 
Figure 3 shows a typical two-layer artificial neural network. It consists of two layers of 
simple processing units (termed neurons).  
The outputs computed by unit j of the hidden-layer and unit k of the output-layer are given 
by: 

 ( )              1,  2,  ...,  j h jx f H j h= =  (8) 

 ( )             1,  2,  ...,  k o ky f I k m= =  (9)  

respectively, where hf  and of  are the bounded and differentiable activation functions. 
Thus, the output unit k  will result in the following:  

 k kj ji i
j i

y f w f v u
⎡ ⎤⎛ ⎞

= ⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑  (10) 

where ky  here is the vector representing the network output.  
It has been formally shown (Lippman, 1987; Fukuda & Shibata, 1992) that Artificial Neural 
Networks with at least one hidden layer with a sufficient number of neurons are able to 
approximate a wide class continuous non-linear functions to within an arbitrarily small 
error margin. 
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Fig. 3. A two layer artificial neural network 

3.2 The training agorithm 
In developing a training algorithm for this network, we want a method that specifies how to 
reduce the total system error for all patterns through an adjustment of the weights. This 
chapter uses the Back-Propagation training algorithm which is an iterative gradient algorithm 
designed to minimize the mean square error between the actual output of a feed-forward 
network and the desired output (Lippman, 1987; Weber et al., 1991; Fukuda & Shibata, 1992).  
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The back-propagation training is carried out as follows: the hidden layer weights are 
adjusted using the errors from the subsequent layer. Thus, the errors computed at the 
output layer are used to adjust the weights between the last hidden layer and the output 
layer.  Likewise, an error value computed from the last hidden layer output is used to adjust 
the weights in the next to the last hidden layer and so on until the weight connections to the 
first hidden layer are adjusted.  In this way, errors are propagated backwards layer by layer 
with corrections being made to the corresponding layer weights in an iterative manner.  The 
process is repeated a number of times for each pattern in the training set until the criterion 
minimization is reached. This is illustrated in Fig. 4. Therefore, we first calculate the 
predicted error at each time step s (we refer to s here to introduce the discrete time factor). 
Then, an equivalent error is calculated for each neuron in the network. For example the 
equivalent error δk of the neuron k in the output layer is given by (taking into account that 
the derivative of the output layer’s activation function is unity because it is a linear 
activation function): 

 ( ) ( ) ( ) ( )ˆk k k ks s y s y sδ ε= = −  (11) 

The equivalent error δj of neuron j in the hidden layer is given by: 

 ( )
( )( )
( ) ( )j

j k kj
kj

df H s
s s w

dH s
δ δ= ∑  (12) 

Weights connecting the hidden and output layers are adjusted according to: 

 
( ) ( ) ( )
( ) ( ) ( ) ( )

1

1
kj kj kj

kj k j kj

w s w s w s

w s s x s w sαδ β

= − + Δ

Δ = + Δ −
 (13) 

where: α  and β  are the learning rate and the momentum parameters respectively. 
Weights connecting the input and hidden layer are adjusted according to: 

 
( ) ( ) ( )
( ) ( ) ( ) ( )

1

1
ji ji ji

ji j i ji

v s v s v s

v s s u s v sαδ β

= − + Δ

Δ = + Δ −
 (14) 
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Fig. 4. Back-propagation algorithm 

In summary, the training algorithm is as follow: the output layer error is calculated first 
using Eq. (11) and then backpropagated through the network using Eq. (12) to calculate the 
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equivalent errors of the hidden neurons. The network weights are then adjusted using 
Eq. (13) and Eq. (14). 

3.3 Model validation 
In order to check if the identified model agrees with the real process behavior, model 
validation is necessary. This is imperative as to taken into account the limitations of any 
identification method and its final goal of model application. This includes a check to 
determine if the priori assumptions of the identification method used are true and to 
compare the input-output behaviour of the model and the plant (Ljung & Guo, 1997).  
To validate the model, a new input will be applied to the model under validation tests. The 
new outputs will be compared with the real time outputs and validation statistics is 
calculated. These statistics will decide whether the model is valid or not. 
To carry out the validation task, we use the following statistics for the model residuals: 
The maximal absolute value of the residuals 

 ( )1maxN t NM tε ε≤ ≤=  (15) 

Mean, Variance and Mean Square of the residuals 

 ( )
1

1 N

N
t

m t
N

ε ε
=

= ∑  (16) 

 ( )
2

1

1 N

N N
t

V t m
N

ε εε
=

⎡ ⎤= −⎣ ⎦∑  (17) 

 ( ) ( )22

1

1 N

N N N
t

S t m V
N

ε ε εε
=

= = +∑  (18) 

In particular we stress that the model errors must be separated from any disturbances that 
can occur in the modelling. As this can correlates the model residuals and the past inputs. 
This plays a crucial role. Thus, it is very useful to consider two sources of model residuals or 
model errors ε . The first error originates from the input ( )u t  while the other one originates 
from the identified model itself. If these two sources of error are additive and the one that 
originates from the input is linear, we can write  

 ( ) ( ) ( ) ( )t q u t v tε = Δ +  (19) 

Equation (19) is referred to as the separation of the model residuals and the disturbances. 
Here, v(t) would not change, if we changed the input u(t). To check the part of the residuals 
that might originate from the input, the following statistics are frequently used: 

If past inputs are ( ) ( ) ( ) ( ), 1 , , 1 Tt u t u t u t Mφ = ⎡ − − + ⎤⎣ ⎦  and ( ) ( )
1

1 N T
N

t
R t t

N
φ φ

=
= ∑ , then the 

scalar measure of the correlation between past inputs ( )tφ  and the residuals ( )tε  is given by: 

 1M T
N u N ur R rε εξ −=  (20) 
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where ( ) ( )0 , , 1 T
u u ur r r Mε ε ε= ⎡ − ⎤⎣ ⎦   

with ( ) ( ) ( )
1

1 N

u
t

r t u t
Nε τ ε τ

=
= −∑ . 

The obtained model should pass the validation tests of a given data set. Then we can say 
that our model is unfalsified. Here, we shall examine our model when the validation test is 
based on some of the statistics given previously in Eqs. (15-20). 
Let us first assume that the model validation criterion be a positive constant 0μ >  for the 
maximal absolute value of the residuals NMε  stated in Eq. (15) 

 ( ) ( ),   is not validated iff  Ng t Mεϕ θ θ μ⎡ ⎤ ≤⎣ ⎦  (21) 

The problem of determining which models satisfy the inequality of Eq. (21) is the same 
problem that deals with set membership identification (Ninness & Goodwin, 1994). 
Typically this set is quite complicated and it is customary to outerbound it either by an 
ellipsoid or a hypercube. Therefore, it is agreed that a reasonable candidate model for the 
true dynamics should make the sample correlation between residuals ( ) ( ) ( )ˆ, |t y t y tε θ θ= −  
and past inputs ( ) ( )1 , ,u t u t m− −  small within certain criterion. One possible validation 
criterion is to require this correlation to be small in comparison with the Mean Square of the 
Model Residuals NSε  stated in Eq. (18). This is given by: 

 ( ) ( ) ( ),  is not validated iff M
N Ng t Sεϕ θ ξ θ γ θ⎡ ⎤ ≤⎣ ⎦  (22) 

where γ  is a subjective threshold that will be selected according to the application. 

4. The neurocontroller 
Conceptually, the most fundamental neural network based controllers are probably those 
using the inverse of the plant as the controller. The simplest concept is called direct inverse 
control, which is used in this chapter. Before considering the actual control system, an 
inverse model must be trained. There are tow ways of training the model; generalized 
training and the specialized training. This chapter uses the generalized training method. 
Figure 5 shows the off-line diagram of the inverse plant modelling. 
 

Plant
Plant

PC ( )ε t

( )y t( )u t ( )u t( )r t

 
Fig. 5. Inverse plant modelling 

Given the input-output data set which will be referred to as NZ  over the period of time 
1 t N≤ ≤  

 ( ) ( ) ( ) ( ){ }1 , 1 ,..., ,NZ u y u N y N=  (23) 
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where u(t) is the input signal and ( )y t  is the output signal, the system identification task is 
basically to obtain the model ( )θ|ˆ ty  that represent our plant; 

 ( ) ( )ˆ | , Ny t g Zθ θ=  (24) 

where ŷ  denotes  the model output and g  is some non-linear function parameterized by θ  
which is the finite dimensional parameter vector, the weights of the network in our case 
(Ljung & Sjöberg 1992; Ljung, 1995; Sjöberg, 1995). 
The objective with inverse plant modelling is to formulate a controller, such that the overall 
controller-plant architecture has a unity transfer function, i.e., if the plant can be described 
as in Eq. (24), a network is trained as the inverse of the process: 

 ( ) ( )1ˆ | , Nu t g Zθ θ−=  (25)  

However, modelling errors perturb the transfer function away from unity. Therefore, 
( )1ˆ , Ng Zθ− will be used instead of ( )1 , Ng Zθ− . 

To obtain the inverse model in the generalized training method, a network is trained off-line 
to minimize the following criterion instead: 

 ( ) ( ) ( )( )2
1

1 ˆ, |
N

N
N

t
W Z u t u t

N
θ θ

=
= −∑  (26)  

In other words, our aim is to reduce the error ε  where: 

 ( ) ( ) ( )ˆ |t u t u tε θ= −  (27)  

Once we carry out that, the inverse model is subsequently applied as the controller for the 
system by inserting the desired output (the reference) instead of the system output. This is 
illustrated in Fig. 6. 
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Fig. 6. Direct inverse control 

5. Simulation and results 
The first step is to collect training data from the real plant, which is a three phase squirrel-
cage induction motor with the following ratings: 380V, 50Hz, 4-pole, 0.1kW, 1390rpm, and is 
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Y-connected. That was carried out by using a data acquisition card to interface the induction 
motor and the inverter and its inputs and outputs to the computer. A voltage signal is to be 
sent to the frequency inverter which changes the three phase lines frequency into a new 
signal with different frequency to drive the induction machine speed. That was the input 
signal. The output signal is taken from a tachometer connected directly to the rotor shaft 
and back to the interfacing data acquisition card as the speed signal. Figure 7 shows the 
overall experimental system setup. 
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Fig. 7. The experimental work 

5.1 Results of system identification 
The input data set is designed to be a PRBS signal chosen randomly, both in amplitude and 
frequency, to fully excite the whole speed range which allows the network to recognize the 
overall system’s behaviour. In addition, the sampling time is made to be 40 times smaller 
than the settling time of the system to obtain more accurate model and avoid aliasing 
problems. The input-output data set is shown in Fig. 8. The data set will be divided into two 
sets; a network training set and a model validation set. 
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Since the system is a single-input single-output nonlinear system, this work uses a second 
order NARX model. This means that the regressor vector is as follows: 

 ( ) ( ) ( ) ( ) ( )1 , 2 , 1 , 2t y t y t u t u tϕ = ⎡ − − − − ⎤⎣ ⎦  (28) 

The network structure is a two-layer hyperbolic tangent sigmoidal feed-forward 
architecture (one hidden layer with a tanh activation function and one output layer with a 
linear activation function). The weights for both hidden layer and output layers are initially 
randomized around the values of -0.5 and +0.5 before the training. This is useful so that the 
training would fall in a global minima rather than a local minima (Patterson, 1996). 
Too many hidden neurons can cause the over-fitting, while too few neurons cause the 
under-fitting (Patterson, 1996). Moreover, a big network (many neurons) causes the training 
process to become very slow. The training showed good results when a five hidden neurons 
is used and 3000 samples are used as a training set. During each back propagation iteration 
the Sum of Squared Errors (SSE) are computed and compared to an error criteria α , i.e. 

 ( ) ( ) 2

1
ˆ

N

i
SSE y t y t α

=
= ⎡ − ⎤ <⎣ ⎦∑  (29) 

 
The SSE decreased gradually during the training process until it is within the criteria 
threshold after approximately 370 iterations. To test whether the network can produce the 
same output as the plant or not, and considering the over-fitting problem, the output 
( )ˆ |y t θ  of the model will be compared with the plant output ( )y t  to calculate the residuals 
( ) ( ) ( )ˆ |t y t y tε θ= − . The results of applying both training and validation data sets are 

shown in Table 1. 
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Fig. 9. The Sum Squared Error during the training process 
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Residual Statistics Training data set Validation data set 
Mean Square NSε  42.869 10−⋅  42.936 10−⋅  

Maximal Absolute Value NMε  2.9692%  3.0286%  

Table 1. Residual Analysis 

From the table we can see that there are only small differences in the residual statistics 
between the training data set and the validation data set. Thus the inequality of Eq. (21) is 
satisfied. However, one should check the correlation M

Nξ  between the residuals ( ),tε θ  and 
past inputs ( ) ( )1 , ,u t u t m− −  because the residual statistics are not enough to judge the 
quality of the network model. This is done by constructing the past input vector and then 
calculating the correlation function.  
The correlation results are shown in Fig. 9, where it can be seen that the auto-correlation of 
the residuals lies within the 99% confidence limits which gives a strong indication that the 
model is acceptable. Furthermore, we can see that the cross correlation between the past 
inputs and the residuals lies between the 99% confidence limits also.  
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5.2 Results of inverse training and control  
As mentioned earlier, it is clear that the plant is a single-input single-output (SISO) system. 
First the regressors are chosen based on inspiration from linear system identification. The 
model order was chosen as a second order which gave us good results. Clearly, the input 
vector to the network contains two past plant outputs and two past plant inputs. 

 ( ) ( ) ( ) ( )1 , 2 , 1 , 2NZ y t y t u t u t= ⎡ − − − − ⎤⎣ ⎦  (30)  

The network structure is a two layer hyperbolic tangent sigmoidal feed-forward architecture 
(one hidden layer with a tanh activation function and one output layer with a linear 
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activation function). The network weights are initially randomised  around the values -0.5 
and +0.5 before the training. 
The back-propagation training showed good results when using a network structure with 
two layer feed forward architecture neuron and 3000 samples as a training set.  The network 
architecture contains one hidden layer with a hyperbolic tangent (tanh) activation function 
and one output layer with a linear activation function. The hidden layer consists of six 
hidden neurons while the output layer consists of one neuron. The results of the inverse 
plant model training algorithm is shown in Fig. 10 where α  is chosen as 1.  
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The final step after obtaining the inverse model is to implement the controller. The same 
setup of Fig. 7 is used to control the speed of the motor. First, to check the controller 
performance, a step input signal with the value of 1390rpm is fed to the system. The 
resulting response and error between the reference signal and the measured output speed  
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Fig. 12. Speed error due to a step reference signal 
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are illustrated in Figs. 11 and 12 respectively. It can be seen from Fig. 12 that the speed of the 
induction motor followed the reference signal with an acceptable steady state error equals to 
0.2878%. The results of Figs. 11 and 12 also show a maximum overshoot of less than 13%. 
To investigate the tracking capabilities of the system, different reference signals were fed to 
the controller and its performance is examined. The following real time tests will explore 
 

0 2 4 6 8 10 12 14 16
0

500

1000

1500

Time  [seconds]

S
pe

ed
 [r

pm
]

S ine  Wave Reference  and S peed Response  of Direct Inve rse  Control Scheme .Speed Response to Sine-wave Reference Signal

Sp
ee

d 
[rp

m
]

Time [sec]  

Fig. 14. System response to a sine wave reference signal 
 

0 2 4 6 8 10 12 14 16
0

200

400

600

800

1000

1200

1400

1600

Time  [seconds]

S
pe

ed
 [r

pm
]

Ramp Wa ve  Refe rence  and S pee d Response  of Dire ct Inve rse  Control S che me.Speed Response to Ramp-wave Reference Signal

S
pe

ed
 [r

pm
]

Time [sec]  

Fig. 15. System response to a saw-tooth wave reference signal 



Direct Neural Network Control via Inverse Modelling: Application on Induction Motors 

 

391 

the response to three different types of speed reference signals; square wave (Fig. 13), sine 
wave (Fig. 14), and saw-tooth wave (Fig. 15) reference signals. In addition, the steady state 
errors are recorded in Table 2. 
 
 

Reference Signal Min. Error Max. Error 

Square wave 0.31%−  0.56%+  

Sine wave 0.43%−  1.00%+  

Saw-tooth wave 0.65%−  0.29%+  

Table 2. Steady state errors analysis for different reference signal types 
 
The previous figures suggest that the direct inverse model control scheme can track changes 
in the reference signal while maintaining good performance. 
Next, to test the system under disturbances in the form of load torque conditions, a step 
reference signal representing 1390 rpm is fed to the system while a load torque step signal of 
2 N.m (which is the full load) is applied to the shaft during the period of 4 to 8 seconds. The 
results are shown in Fig. 16. It can be seen from the figure that the direct inverse controller 
could recover the disturbance caused by the applied load torque. The induction motor speed 
followed the reference signal in a short time. 
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6. Conclusion 
In this chapter, the nonlinear black box modelling for an induction motor is carried out 
using the back propagation training algorithm. Half of the experimentally collected data 
was employed for ANN training and the other half was used for model validation. 
Applying the validation tests, the network model could pass the residual tests and the cross 
correlation tests resulting into a simple yet a highly accurate model of the induction motor. 
The same method was then used to model the inverse model of the system. The real time 
implementation for the direct inverse neural network based control scheme has been 
presented and its performance has been tested over different types of reference signals and 
applied load torque. The controller tracked the given reference speed signals and overcame 
the applied load torque disturbance demonstrating the strong capabilities of artificial neural 
networks in nonlinear control applications. 
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1. Introduction 
Unmanned aerial vehicles (UAVs) are becoming more and more popular in a wide field of 
applications nowadays. UAVs are used in number of military application for gathering 
information and military attacks. In the future will likely see unmanned aircraft employed, 
offensively, for bombing and ground attack. As a tool for research and rescue, UAVs can 
help find humans lost in the wilderness, trapped in collapsed buildings, or drift at sea. It is 
also used in civil application in fire station, police observation of crime disturbance and 
natural disaster prevention, where the human observer will be risky to fight the fire. There 
is wide variety of UAV shapes, sizes, configuration and characteristics. Therefore, there is a 
growing demand for UAV control systems, and many projects either commercial or 
academic destined to design a UAV autopilot were held recently. A lot of impressive results 
had already been achieved, and many UAVs, more or less autonomous, are used by various 
organizations. 
An Artificial Neural Network (ANN) [3] is an information processing paradigm that is 
stimulated by the way biological nervous systems, such as the brain, process information. 
The key element of this paradigm is the novel structure of the information processing 
system.  Basically, a neural network (NN) is composed of a set of nodes (Fig. 1). Each node is 
connected to the others via a set of links. Information is transmitted from the input to the 
output cells depending of the strength of the links. Usually, neural networks operate in two 
phases. The first phase is a learning phase where each of the nodes and links adjust their 
strength in order to match with the desired output. A learning algorithm is in charge of this 
process. When the learning phase is complete, the NN is ready to recognize the incoming 
information and to work as a pattern recognition system. 
ANNs, like people, learn by example. An ANN is configured for a specific application, such 
as pattern recognition or data classification, through a learning process. Learning in 
biological systems involves adjustments to the synaptic connections that exist between the 
neurons.  
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In recent years, there is a wide momentum of ANNs in the control system arena, to design 
the UAVs. Any system in which input is not proportional to output is known as non-linear 
systems. The main advantages of ANNs are having the processing ability to model 
nonlinear systems. ANNs are very suitable for identification of non-linear dynamic systems. 
Multilayer Perceptron model have been used to model a large number of nonlinear plants. 
We can vary the number of hidden layers to minimize the mean square error. ANNs has 
been used to formulate a variety of control strategies [1] [2]. The NN approach is a good 
alternative for physical modeling techniques for nonlinear systems. 
 

 
Fig. 1. General Neural Network Architecture 

A fundamental difficulty of many non-linear control systems, which potentially could 
deliver better performance, is extremely difficult to theoretically predict the behavior of a 
system under all possible circumstances. In fact, even design envelope of a controller often 
remains largely uncertain. Therefore, it becomes a challenging task to verify and validate the 
designed controller under all possible flight conditions. A practical solution to this problem 
is extensive testing of the system. Possibly the most expensive design items are the control 
and navigation systems. Therefore, one of main questions that each system designer has to 
face is the selection of appropriate hardware for UAV system. Such hardware should satisfy 
the main requirements without contravening their boundaries in terms of quality and cost. 
In UAV design this kind of consideration is especially important due to the safety 
requirements expressed in airworthiness standards. Therefore question is how to find the 
optimal solution. Thus, simulation is necessary. Basically there are two type of simulation is 
needed while designing UAVs systems, they are Software-In-the-Loop (SIL) [5] simulation 
and Hardware-In-the-Loop (HIL) simulation [4]. 
To utilize the SIL configuration, the un-compiled software source code, which normally runs 
on the onboard computer, is compiled into the simulation tool itself, allowing this software 
to be tested on the simulation host computer. This allows the flight software to be tested 
without the need to tie-up the flight hardware, and was also used in selection of hardware. 
HILS simulates (Fig. 2) a process such that input and output signals show the time-
dependent values as real-time operating components. It is possible to test embedded system 
under real time with various test conditions. It provides the UAV developer to test many 
aspects of autopilot hardware, finding the real time problems, test the reliability, and many 
more. 
The simulation can be done with the help of Matlab Simulink program environment. This 
program can be considered as a facility fully competent for this task.  Simulink is the most 
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Fig. 2. UAV Architecture: Hardware-in-the-loop Simulation 

popular tool, it was not only used for a SIL Simulation of the complete UAV system but also 
to create the simulation code of a HIL Simulator that runs in real time. 
The system identification is the first and crucial step for the design of the controller, 
simulation of the system and so on. Frequently it is necessary to analyze the flight data in 
the frequency domain to identify the UAV system. This paper demonstrates how ANN can 
be used for non linear identification and controller design. The simulation processes consists 
of designing a simple system, and simulates that system with the help of model reference 
control block in Matlab/Simulink [6]. 
The paper is organized as follows: Section 2 describes some related work. Section 3 deals 
with system identification and control on the basis of NNs. Details of design and control 
system with NNs approaches is describes in section 4. In section 5, simulations are 
performed on RUAVs system and finally, conclusions are drawn in section 6. 

2. Related work 
Robust control techniques are capable for adapting themselves for changing the dynamics 
which are necessary for autonomous flight. This kind of controller can be designed with the 
help of system identification. 
There are lots of work had already done in UAV area in the context of ANNs. Mettler B. et 
al., [12] describe the process and result of the dynamic modeling of a model-scale unmanned 
helicopter using system identification. E. D. Beckmann et al., [13] explained the nonlinear 
modeling of a small-scale helicopter and the identification of its dynamic parameters using 
prediction error minimization methods. NN approaches have excellent performance than 
classical technique for modeling and identifying nonlinear dynamic systems [15] [16]. 
There is also numerous system identification techniques had been developed to model 
nonlinear systems. Some of them are Fuzzy identification [20] [27], state-space identification 
[21], frequency domain analysis [22], NN based identification [23] [26]. The exception is 
given by LPV identification [25] which is applicable for the entire flight envelope. The 
learning ability is the beauty of NN that has been utilized widely for system identification 
and control applications. Shim D. H. et al. [28] described time-domain system identification 
approaches to design the control system for RUAVs. 
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3. System identification and control 
The main idea of system identification is often to get a model that can be used for controller 
design. System identification (SI) [7] provides the idea of making mathematical models of 
dynamics systems, starting from experimental data, measurements, and observations.  
It is widely used for applications ranging from control system design and signal processing 
to time series analysis. The system identification is used to verify and test the control system 
parameters that are associated with the six-degree-of-freedom system using the test flight 
data. The simulation results and the statistical error analysis are provided for both the cases. 
Fig. 5 shows the flow of control system design with the system identification model. 
Basically System identification is the experimental approach to process modeling and it 
includes the following five steps as shown in Fig. 3 
The system considered as a black box (Fig. 4) which receives some inputs that lead to some 
output. The concern here is: what kind of parameters for a particular black box can correlate 
the observed inputs and outputs?  
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Network

……………...

Parameter Estimation
-Prior Knowledge, Random, 

Prior Model
…………..
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Plant Model
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……………….
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……………..

Optimization Scheme
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Gauss-Newton, 
Generic Algorithms, 

Backpropagation
……………..

 
Fig. 4. System Identification Modeling Procedure 
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Black Box
Input Output

 
Fig. 5. Black box view of System Identification 

Can these parameters help designer to predict the outputs for a new given set of inputs? This 
is the basic problem of system identification. Neural networks have been applied successfully 
in the identification and control of dynamic systems. Popular neural network architectures for 
prediction and control that have been implemented in the NN Toolbox™ software are: 
• Model Predictive Control 
• NARMA-L2 (Feedback Linearization) Control 
• Model Reference Control 
There are typically two steps involved when using neural networks for control systems: 
• System identification 
• Control design 
In the system identification stage, we develop a neural network model of the plant that we 
want to control.  The flow of control system design with system identification is shown in 
Fig 5. In the control design stage, we use the neural network plant model to design (or train) 
the controller using the propagation of the controlling error through the NN model. 
Training produces the optimal connection weights for the networks by minimizing the 
errors between NN output and the plant output over the entire set of samples. Among many 
network training algorithms Levenberg-Marquardt (LM) algorithm [14] is performed. This 
approach provides a gradient based technique allowing fast error minimization. The major 
aim of training is to get the appropriate values of the weights for closest possible prediction 
through repetitive iterations. The LM method works on the principle of minimizing the 
mean squared error between actual output of the system and predicted output of the 
network and can be calculated with the following formula.  
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 ˆ( ) ( , ( ))y t g tθ φ=  (2) 

 1 2 1 2( , ,... , , , )na nba a a b b bθ =  (3) 

 ( ) ( ( 1),.. ( ), ( ),.. ( 1))t y t y t na u t nk u t nk nbφ = − − − − − +  (4) 

Here φ is the matrix of past inputs and outputs. To find the coefficientθ , there are many 
assumptions and detailed knowledge of the plant is required. 
In each of the three control architectures mention above, system identification stage is 
identical but control design stage is different. For model predictive control, the plant model 
is used to predict future behavior of the plant, and an optimization algorithm is used to 
select the control input that optimizes future performance.  
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Fig. 5. Flow of Control System Design with System Identification 
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Fig. 6. Neural Network MRC architecture 

For NARMA-L2 control, the controller is simply a rearrangement of the plant model. We 
used model reference control to simulate the nonlinear identification and control of UAV. 
For model reference control, the controller is a neural network that is trained to control a 
plant so that it follows a reference model. The neural network plant model is used to assist 
in the controller training. 
The neural model reference control architecture uses two neural networks: a controller 
network and a plant model network, as shown in the Fig. 6. The plant model is identified 
first, and then the controller is trained so that the plant output follows the reference model 
output. The system identification error can be defined by  

 ˆIe y y= −  (5)  

and the tracking error 
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 ce y d= −  (6) 

Controller parameters are updated based on error computed from the system output and 
the NN model of the plant. 
They describe the input /output behavior of the system using a set of weights. Such models 
can be interpreted as a weighted combination of several local models resulting in a 
nonlinear global model. Hence the mismatch between the nonlinearities of local models and 
process is less significant compared with single nonlinear model. Therefore neural network 
modeling has been applied especially to modeling tasks with uncertain nonlinearities, 
uncertain parameters and or high complexity. 
In the case of multi-input multi-output (MIMO) plants, the plant identification stage is same 
as that for single-input single-output (SISO) except that the NN model has many neurons in 
the output layer as the number of outputs of actual plant. Fig. 7 shows the control of a 
MIMO plant using NN controller. 
 

 
Fig. 7. Control of a MIMO plant using NN controller 

3.1 Training of model using NN 
Iterative training is conducted to minimize mean square error (MSE) using Levenberg 
Marquardt (LM) algorithm. The LM is gradient based approach that allows fast error 
minimization. The mission of training is to obtain the most suitable and optimized values of 
the weights for closest prediction through iterations.  
The training process (Fig 8) is an iterative and can be stopped either when total training 
error reaches a bottom threshold or when training error ceases to decrease any further. 
There is flexibility for varying number of neurons in the hidden layers to optimize error. 
Starting from a small number of neurons, the number can be gradually increased or 
decrease until an accepted training error is achieved. Once the NN is successfully trained, it 
can be used to obtain a linear model of the plant from the available input and output values. 
Figure shows the behavior of plant input and output. It can be seen that the output response 
is different in each time slot with the variation of input weights. As a typical case, 1000 
different sets of initial weights are considered for the network with 10 hidden neurons. 
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Fig. 8. Plant Input/output behavior during training 

The network architecture for MIMO model of NN is shown in figure 9. In a particular 
equilibrium condition, no inertial and aerodynamic coupling, the behavior of RUAV can be 
divided into lateral and longitudinal dynamics mode and train with MIMO. The 
longitudinal cyclic deflection and collective control input is used to control the longitudinal 
dynamics mode whereas lateral cyclic deflection and pedal control input is used to control 
the lateral dynamics mode. The NN has trained with four system inputs and six outputs. 
The number of hidden layer is considered. The network is trained with different sets of data 
collected from the real flight tests of the RUAV.  
Figure 9 describes the longitudinal dynamics mode as longitudinal cyclic deflection and 
collective control are provided as inputs (U) to the system and pitch rate and forward 
velocity (u) are considered as the outputs (Y) of the system that results four outputs pitch 
angle (θ ), forward velocity (u),vertical velocity (w) and pitch angular rate (q).  Similarly, 
lateral cyclic deflection and pedal control are provided as inputs to the system and vertical 
velocity and roll rate are considered as the outputs of the system that results roll angle (ϕ ), 
lateral velocity (v), roll angular rate (p), yaw angular rate (r). 
Figure 10 illustrates a scenario of getting performance behavior of the identification with 
plant process during training (21 Epochs), where the training data and testing data are 
following almost same behavior. 
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Fig. 9. MIMO model of NN 

 
Fig. 10. A scenario of getting  performance behavior of the  identification with plant process 
during training (Trainlm at 21 Epochs), where the training data and testing data are 
following almost same behavior 
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4. Design of control system 
The key challenge to deploy the designed control system of UAV is the potential risk and 
cost. So, to minimize the cost and the potential risk, we have to test and simulate the control 
system rigorously to get high degree of precision of safeness.  Design, testing and simulation 
are the iterative process and this can be accomplished by executing several pair of design, 
test, and simulation. The simulation of UAV control system consist a group of nonlinear 
Simulink models which is used to estimate the capabilities of controllers. Generally, these 
models are employed both in evolutionary search to estimate the robustness of a particular 
controller, and later to verify and validate the designed controllers through extensive 
simulation with several test cases in different conditions. An UAV represents a complex 
non-linear system with 6 Degree of Freedom (6-DOF), and having high degree of coupling. 
It is anticipated that the most effective control on such a system can be gained with an 
appropriate non-linear controller. 
NNs have attracted a great deal of attention owing to their ability to learn non-linear 
functions from input-output data examples [8]. Applied to control field, NNs are essentially 
nonlinear models that can be useful to solve non-linear control problems [9]. 

4.1 Mathematical model of RUAV dynamics 
Basic starting point for UAV control design is to find out the state space matrix from 6-DOF 
equations of motion by linearizing with proper assumptions. The state of a system is a set of 
variables (Fig. 11) such that the knowledge of these variables and the input functions will, 
with the equations describing the dynamics, provide the future state and output of the 
system. The state of the system is described by the set of the first-order differential equations 
written in terms of state variables [x1 x2 ………xn]. 

 
Fig. 11. System inputs and outputs 

The state space is defined as the n-dimensional space in which the components of the n state 
vector represent its coordinate axes. The state equations of a system are a set of n first-order 
differential equations, where n is the number of independent states. Many control problems, 
however, that require multiple outputs be controlled simultaneously, to do control of such 
system, multiple inputs must be manipulated, usually they are orchestrated as MIMO. The 
helicopter is a complex MIMO system with high correlation. UAV autopilot is an example of 
MIMO where speed, altitude, pitch, roll, and yaw angles must be maintained and throttle, 
several rudders, and flaps are available as control variables. 
The UAV systems consist of a six degree of freedom, nonlinear complex systems. Budiyono 
A. et al., [11] illustrate the nonlinear rigid body equations of motion of helicopter (Eq.7-15) 
that describes the vehicle’s translational motion and angular motion about three reference 
axes. 
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 ( ) sinX m u rv qw mg θ= − + +∑  (7) 

 ( ) sin cosY m ru v pw mg φ θ= + − −∑  (8) 

 ( ) cos cosZ m qu pv w mg φ θ= − + − −∑  (9) 

 ( )xx yy zzL I p I I qr= − −∑  (10) 

 ( )yy zz xxM I q I I pr= − −∑  (11) 

 ( )zz xx yyN I r I I pq= − −∑  (12) 

 ( sin cos )tanp q rφ φ φ θ= + +  (13) 

 cos sinq rθ φ φ= −  (14) 

 ( sin cos )secq rϕ φ φ θ= +  (15) 

Where the vector u, v, w and p, q, r are the fuselage velocities and angular rates in the body 
coordinate system, respectively. X, Y, Z are the external forces acting on the helicopter center 
of gravity and L, M, N are the external moments. State space and transfer-function models 
can be generalized to MIMO models. These first-order differential equations can be written 
in a general form that can be represented in matrix notation.  

 
x Ax Bu
y Cx Du
= +
= +

 (16) 

Where 

 1 1s sx u w q a v p r bθ φ ′
= ⎡ ⎤⎣ ⎦  (17) 

And  

 long coll lat pedu δ δ δ δ⎡ ⎤= ⎣ ⎦  (18) 

The MIMO transfer-function matrix can be obtained from state space model by 
1( ) ( )G s C sI A B D−= − + where * * * *, , ,n n n m l n l mA B C D∈ ∈ ∈ ∈ . The descriptions of all 

parameters are shown in Table 1 and Table 2. 
Where A, B and C are the representation of the system matrix, input matrix and output matrix 
respectively. A, B, C and D depends on the flight regime with nominal parameter values for 
hovering and cruising. Then, u is a vector of the inputs, x is the element state vector, and y is a 
vector containing outputs. It is easy to see that each linear state space system of Equation (16) 
can be expressed as a linear time invariant (LTI) transfer functions. The procedure is to take 
Laplace transformation of the both sides of Equation (16) and use an algorithm is given by 
Leverrier-Fadeeva-Frame formula [10]. Another approach is to use Matlab functions directly. 
Let us take a transfer function of UAV (Eq. 19-20) to model and simulate. 
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Parameter Symbol Description 
u Forward velocity 
v Lateral velocity 

Fuselage 
Linear Motion 

 w Vertical velocity 
p Roll Angular Rate 
q Pitch Angular Rate 

Fuselage 
Angular 
Motion r Yaw Angular Rate 

a1s Longitudinal Flapping Angle Rotor Tip-
Path-Plane b1s Lateral Flapping Angle 

Pitch θ  Pitch Angle 
Roll φ Roll Angle 

Table 1. Model states. 
 

Control Description Units 

longδ  Longitudinal Cyclic 
Deflection Dimensionless [-1, 1] 

latδ  Lateral Cyclic 
Deflection Dimensionless [-1, 1] 

pedδ  Pedal control Input Dimensionless [-1, 1] 

collδ  Collective Control Input Dimensionless [0, 1] 

Table 2. Control input variables. 

 

1 1

1 1

1 1

1 1

1 1

0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

u

w a s r b s

u a s v b s

a s b s

v

u a s v b s

w p r

a s b s

X g g
Z Z Z Z

M M M M

A A
A Y g g

L L L L
N N N

B B

− −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 (19) 

                                                                

0 0 0 0
0 0 0
0 0 0

0 0 0 0
0 0
0 0 0
0 0 0 0

0 0
0 0 0 0
0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

col

col

lon lat

ped

col ped

lon lat

Z
M

A A
B

Y

N N

B B

                                                 (20) 
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1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

C
 (21) 

 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

D
 (22) 

 

The descriptions of all parameters used in Eq. 19-20 are shown in Table 3 
 
 

Parameter Description 
Zw  Zr  Zbls  Zals Yv Xu Nw  
Nr  Np 
Mv  Mu Mbls Mals 
Lv  Lu Lals  Lbls Bals Bbls 
Aals Abls 

 
Stability derivative 

g Force of gravity 
Zcol Yped Ncol Nped Mcol Control derivative 
Blon Blat  Alat  Alon Cyclic input sensitivity 

 

Table 3. Parameters of model constants for fuselage linear motion equations, model 
constants for tip-path-plane and augmented yaw dynamics, and model constants for 
angular motion. 

The objective of training a NN is to minimize the error between the output of NN and the 
desired output. First, we use models (Eq. 19-20) to generate training data. Then by 
propagation algorithm, all the weights in NN plant can be adjusted through the training sets 
until the NN plant outputs are very close to the plant outputs. This completes the system 
identification. Second, we will choose a reference model which allows the desired behavior. 
Let us use a flight data from Eq. 23-24 for design and simulation. 
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0.78501 0 0 9.8 9.8 0 0 0 0 0
0 0.065145 0 0 56.659 0 0 0.79784 0.0045036 1344.1

0.35712 0 0 0 92.468 0.063629 0 0 0 56.515
0 0 1 0 0 0 0 0 0 0
0 0 1 0 11.842 0 0 0 0 7.1176
0 0 0 0 0 0.11245 0 0 9.8 9.8

0.46624 0 0 0 0.6588 0.083441 0 0 0 131.19
0 1.0349 0

A =

− − −
− − − −

−

− − −

− −
0 0 0 9.9435 0.30115 0 0

0 0 0 0 0 0 1 0 0 0
0 0 0 0 2.1755 0 1 0 0 14.687

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

 
(23)

 

 

0 0 0 0
0.71986 0 0 0
1.4468 0 0 0

0 0 0 0
0 11.198 0 4.3523
0 0 204.28 0
0 0 0 0

3.5204 0 7.5159 0
0 0 0 0
0 2.9241 0 11.712

B =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (24)   

Eigenvalues: 
The key dynamics can be seen from the system’s Eigen values and Eigen vectors, are listed 
in Table 4. The system is stable with damping because all the real parts of the eigenvalues 
are negative. The simulation (Fig. 12) shows clearly that the system is stable but having 
damping. 
 

Sno Eigenvalue Damping Freq. (rad/s)
1 -2.01e-002 + 8.27e-003i 9.25e-001 2.17e-002 
2 -2.01e-002 - 8.27e-003i 9.25e-001 2.17e-002 
3 -1.83e-001 + 9.01e-001i 1.99e-001 9.19e-001 
4 -1.83e-001 - 9.01e-001i 1.99e-001 9.19e-001 
5 -2.82e-001 + 5.79e-001i 4.37e-001 6.44e-001 
6 -2.82e-001 - 5.79e-001i 4.37e-001  6.44e-001 
7 -5.93e+000 + 6.22e+000i 6.90e-001 8.59e+000 
8 -5.93e+000 - 6.22e+000i 6.90e-001 8.59e+000 
9 -7.37e+000 + 1.06e+001i 5.73e-001 1.29e+001 
10 -7.37e+000 - 1.06e+001i 5.73e-001 1.29e+001 

Table 4. Eignevalues of the helicopter system 
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Fig. 12. Transfer function of system  

5. Experimental results and analysis 
In this experiment we used NN approach to train MIMO model and capture the phenomena 
of flight dynamics. This simulation is divided into two parts longitudinal mode and Lateral 
mode. The NN approach considers separate lateral and longitudinal network with inertial 
coupling between the networks taken into consideration. These networks trained 
individually by making it MIMO model. Basically system identification process consists of 
gathering experimental data, estimate model from data and validate model with 
independent data. NN controller is designed in such a way that makes the plant output to 
follow the output of a reference model. The main target is to play with fine tuning of 
controller in order to minimize the state error.  
The experiment is carried out with System identification procedures with Prediction Error 
Method (PEM) algorithm using System Identification Toolbox using Levenberg-Marquardt 
(LM) algorithm. We observe NN approach to get better result of System identification that 
shows the perfect matching and shown as RUAV Longitudinal Dynamics and RUAV Lateral 
Dynamics in the following fig. 13-18  
The prediction error of the output responses is described in Fig. 14. The autocorrelation 
function almost tend to zero and the cross correlation function vary in the range of -0.1to 0.1. 
This shows the dependency between prediction error and collδ , longδ but the dependency 
rate is very less. 
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Longitudinal Dynamics Mode Analysis 
 

 
(a)  Pitch Angle (θ ) 

 
(b) Forward Velocity (u) 

 
(c) Vertical velocity (w) 
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(d) Pitch Angular Rate (q) 

 

Fig. 13. Output response with network response in Longitudinal dynamics mode 

 
 
 

 
(a) Pitch Angle (θ ) 
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(b) Forward velocity (u) 

 
(c) Vertical velocity (w) 
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(d) Pitch Angular Rate (q) 

 

Fig. 14. Autocorrelation and Cross-correlation of output response in longitudinal mode 

The histogram of prediction error is shown in Fig. 15. 
 
 
 

 
 

Fig. 15. Histogram of Prediction errors in Longitudinal Mode 
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Lateral Dynamics Mode Analysis 
 

 
(a) Roll Angle (ϕ ) 

 
(b) Lateral Velocity (v) 

 
(c) Roll Angular Rate (P) 
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(d) Yaw Angular Rate (r) 

Fig. 16. Output response with network response in lateral dynamics mode 

The prediction error of the output responses is described in Fig. 17. Similarly, in lateral 
mode also, the autocorrelation function almost tend to zero and the cross correlation 
function vary in the range of -0.1to 0.1. This shows the dependency between prediction error 
and latδ , pedδ but the dependency rate is very less. 

 
 

 
 

(a) Roll Angle (ϕ ) 
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(b) Lateral Velocity (v) 

 
(c) Roll Angular Rate (P) 
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(d) Yaw Angular Rate (r) 

Fig. 17. Autocorrelation and Cross-correlation of output response in lateral mode 

The histogram of prediction error is shown in Fig. 18. 

6. Conclusion 
UAV control system is a huge and complex system, and to design and test a UAV control 
system is time-cost and money-cost. This chapter considered the simulation of identification 
of a nonlinear system dynamics using artificial neural networks approach. This experiment 
develops a neural network model of the plant that we want to control. In the control design 
stage, experiment uses the neural network plant model to design (or train) the controller. 
We used Matlab to train the network and simulate the behavior.  
This chapter provides the mathematical overview of MRC technique and neural network 
architecture to simulate nonlinear identification of UAV systems. MRC provides a direct 
and effective method to control a complex system without an equation-driven model. NN 
approach provides a good framework to implement MEC by identifying complicated 
models and training a controller for it. 
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Fig. 18. Histogram of Prediction errors in Longitudinal Mode 
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Using Artificial Neural Network 
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 Taiwan 

1. Introduction 
In today’s sophisticated manufacturing industry maintenance personnel are constantly 
forced to make important, and often costly, decisions on the use of machinery. Usually, 
these decisions are based on practical considerations, previous experiences, historical data 
and common sense. However, the exact determination of machine conditions and accurate 
prognosis of incipient failures or machine degradation are key elements in maximizing 
machine availability. 
The practice of maintenance includes machine condition monitoring, fault diagnostics, 
reliability analysis, and maintenance planning. Traditionally, equipment reliability studies 
depend heavily on statistical analysis of data from experimental life-tests or historical failure 
data. Tedious data collection procedures usually make this off-line approach unrealistic and 
inefficient for a fast-changing manufacturing environment (Singh & Kazzaz, 2003). Over the 
past few decades technologies in machine condition monitoring and fault diagnostics have 
matured. Many state-of-the-art machine condition monitoring and diagnostic technologies 
allow monitoring and fault detection to perform in on-line, real-time fashion making 
maintenance tasks more efficient and effective. Needless to say, new technologies often 
produce new kinds of information that may not have been directly associated with the 
traditional maintenance methodologies. Therefore, how to integrate this new information 
into maintenance planning to take advantages of the new technologies has become a big 
challenge for the research community. 
From the viewpoint of maintenance planning, Condition Based Maintenance (CBM) is an 
approach that uses the most cost effective methodology for the performance of machinery 
maintenance. The idea is to ensure maximum operational life and minimum downtime of 
machinery within predefined cost, safety and availability constraints. When machinery life 
extension is a major consideration the CBM approach usually involves predictive 
maintenance. In the term of predictive maintenance, a two-level approach should be 
addressed: 1) need to develop a condition monitoring for machine fault detection and 2) 
need to develop a diagnostic system for possible machine maintenance suggestion.  
The subject of CBM is charged with developing new technologies to diagnose the machinery 
problems. Different methods of fault identification have been developed and used 
effectively to detect the machine faults at an early stage using different machine quantities, 
such as current, voltage, speed, efficiency, temperature and vibrations. One of the principal 
tools for diagnosing rotating machinery problems is the vibration analysis. Through the use 
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of different signal processing techniques, it is possible to obtain vital diagnostic information 
from vibration profile before the equipment catastrophically fails. A problem with 
diagnostic techniques is that they require constant human interpretation of the results. The 
logical progression of the condition monitoring technologies is the automation of the 
diagnostic process. The research has been underway for a long time to automate the 
diagnostic process. Recently, artificial intelligent tools, such as expert systems, neural 
network and fuzzy logic, have been widely used with the monitoring system to support the 
detection and diagnostic tasks. 
In this chapter, artificial neural network (ANN) technologies and analytical models have 
been investigated and incorporated to present an Intelligent Diagnostic System (IDS), which 
could increase the effectiveness and efficiency of traditional condition monitoring diagnostic 
systems. 
Several advanced vibration trending methods have been studied and used to quantify 
machine operating conditions. The different aspects of vibration signal and its processing 
techniques, including autoregressive (AR) parametric modeling and different vibration 
trending methods are illustrated. An example of integrated IDS based on real-time, multi-
channel and neural network technologies is introduced. It involves intermittent or 
continuous collection of vibration data related to the operating condition of critical machine 
components, predicting its fault from a vibration symptom, and identifying the cause of the 
fault. The IDS contains two major parts: the condition monitoring system (CMS) and the 
diagnostic system (DS). A neural network architecture based on Adaptive Resonance 
Theory (ART) is introduced. The fault diagnostic system is incorporated with ARTMAP 
neural network, which is an enhanced model of the ART neural network. In this chapter, its 
performance testing on simulated vibration signals is presented. An in-depth testing using 
lab bearing fault signals has been implemented to validate the performance of the IDS. The 
objective is to provide a new and practicable solution for CBM. 
Essentially, this chapter presents an innovative method to synthesize low level information, 
such as vibration signals, with high level information, like signal patterns, to form a rigorous 
theoretical base for condition-based predictive maintenance. 

2. Condition monitoring system 
The condition monitoring system developed contains four modules (see Fig. 1): data 
acquisition, Parameters Estimation (PE), Performance Monitoring (PM), and Information 
Display and Control (IDC). The entire system was coded using C programming language. 
We have developed a user friendly graphic interface that allows for easy access and control 
in monitoring an operating machine. The system has been tested and verified on an 
experimental lab setting. The detailed procedure of ISDS and programming logic is 
discussed in the following sections. 

2.1 Data acquisition module 
The data acquisition module is more hardware related than the other modules. Vibration 
signals were acquired through accelerometers connected to a DASMUX-64 multiplexer 
board and a HSDAS-16 data acquisition board installed in a PC compatible computer. The 
multi-channel data acquisition program controlling the hardware equipment has been 
coded. 
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Fig. 1. Overview of intelligent diagnostic system 

2.2 Programming logic for Parameter Estimation (PE) module 
The parameter estimation module is designed to estimate the parameters of the normal 
condition of a machine. It provides a procedure to set up the machine positions considered 
to be critical locations of the machine. The PE module must be executed before running the 
PM module. The information to be calculated in the PM module needs to be compared to 
the base-line information generated in the PE module. 
The normal operating condition of a machine position is usually defined by experience or 
from empirical data. Generally speaking, a particular operation mode of a machine is 
selected and then defined as a “normal condition”. However, this normal condition is not 
unchangeable. Any adjustment to the machine, such as overhaul or other minor repairs, 
would change its internal mechanisms. In this case, the normal condition must be redefined, 
and all the base-line data of the monitored positions on the machine need to be reset. 
The PE procedure starts with specifying the ID of a machine, its location ID, and several other 
parameters related to each position, such as channel number and sampling rate. Then the 
upper control limits of the Exponentially Weighted Moving Average (EWMA) (Spoerre, 1993) 
and Root Mean Square (RMS) (Monk, 1972; Wheeler 1968) vibration trending indices are 
determined and an adequate Autoregressive (AR) order is computed. The AR time series 
modelling method is the most popular parametric spectral estimation method which translates 
a time signal into both frequency domain and parameter domain (Gersch, 1976). Once the AR 
order is determined, the AR parameters can be estimated through several normal condition 
signals collected from the particular position. A major issue with the parametric method is 
determining the AR order for a given signal. It is usually a trade-off between resolution and 
unnecessary peaks. Many criteria have been proposed as objective functions for selecting a 
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“good” AR model order. Akaike has developed two criteria, the Final Prediction Error (FPE) 
(Akaike, 1969 ) and Akaike Information Criterion (AIC) (Akaike, 1974). The criteria presented 
here may be simply used as guidelines for initial order selection, which are known to work 
well for true AR signals; but may not work well with real data, depending on how well such 
data set is modelled by an AR model. Therefore, both FPE and AIC have been adapted in this 
research for the AR order suggestion. 
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Fig. 2. Flowchart of parameter estimation (PE) module 
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A setup file is then generated after the PE procedure is completed. This file, given a name 
that combines the machine ID and the position ID, consists of all the parameters associated 
with the specific position. The number of setup files created depends on the number of 
positions to be monitored in the PM mode, that is, each monitored position is accompanied 
by a setup file. 
In order to perform a multi-channel monitoring scheme a setup log file is also generated. 
This file contains all the names of setup files created in the PE mode. Every time a new 
position is added its setup file name is appended to the setup log file. The setup log file is 
very important. It not only determines the channels needing to be scanned when the PM 
program is executed, it also provides the PM program with paths to locate all the necessary 
information contained in the setup files. Fig. 2 shows the programming logic of the PE 
module. In practice, after the PE procedure is completed, on-line performance monitoring of 
the machine (the PM mode) begins. 

2.3 Programming logic for Performance Monitoring (PM) module 
In the PM module, vibration data arrive through the data acquisition hardware and are 
processed by AR, EWMA, ARPSD, RMS, FFT spectrum, and hourly usage calculation 
subroutines. After each calculation the current result is displayed on the computer screen 
through the Information Display and Control (IDC) module. Fig. 3 illustrates the flow chart 
of the PM programming logic. 
IDC is in charge of functions such as current information displaying, monitoring control, 
and machine status reasoning. Details of these functions are given in the following section. 

2.4 Information Display and Control (IDC) module 
Eight separate, small windows appear on the computer screen when the IDC module is 
activated. Each window is designed to show the current reading and information related to 
each calculation subroutine (e.g. AR, EWMA, ARPSD, RMS, and FFT spectrum) for the 
current position being monitored. 
Window 1 is designed to plot the current time domain data collected from the data 
acquisition equipment. Window 2 displays both the AR parameter pattern of the current 
signal and the normal condition AR parameter pattern stored in the setup file generated in 
the PE module. Window 3 plots the current EWMA reading on a EWMA control chart and 
its upper control limit. Window 4 plots the current RMS value and its upper control limit on 
a RMS control chart. Both the RMS and EWMA upper control limits are calculated in the PE 
module. Window 5 displays the hourly usage and other information of the position. The 
hourly usage of the position is calculated based on the vibration level of that position. It is 
an estimated running time of the component up to the calculating point from the time this 
position is set up. Window 6 indicates the current performance status of the position. Three 
different levels of performance status: normal, abnormal, and stop, are designed. Each status 
is represented by a different colour: a green light signals a normal condition; a yellow light 
represents an abnormal condition; and a red light indicates an emergency stop situation. 
The determination of the status of a position based on the current readings is discussed in 
the next section. Window 7 gives the current ARPSD spectrum, which is calculated based on 
the AR parameters from Window 2. Finally, Window 8 displays the current FFT spectrum 
by using the time domain data from Window 1. 
In addition to real-time information display, the IDC module also provides a user-friendly 
graphic interface for monitoring control. A user can utilize the mouse to navigate around 
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the computer screen and click on an icon to perform the specified function. For instance, to 
switch to another channel one can click on the “CH+” or “CH-” icon. Fig. 4 shows the IDC 
screen layout developed. 
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Fig. 3. Flowchart of PM and IDC modules 
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Fig. 4. Condition monitoring information display and control (IDC) Screen layout 

2.5 Vibration condition status reasoning 
Based on the criteria stored in the setup file and the current readings, the EWMA and RMS 
control charts show whether the current readings are under or above their respective upper 
control limit. If both readings are under their corresponding control limits, then the position 
is in a normal condition. However, if either one of the control readings exceeds its upper 
control limit, the performance status reasoning program would turn on the yellow light to 
indicate the abnormality of the position. In this case, the fault diagnostic system is activated. 

2.6 Condition monitoring sample session 
Data collection, in the form of vibration signals, was conducted using the following test rig 
(see Fig. 5): a 1/2 hp DC motor connected to a shaft by a drive belt, two sleeve bearings 
mounted on each end of the shaft and secured to a steel plate, an amplifier to magnify 
signals, a DASMUX-64 multiplexer board, and a HSDAS-16 data acquisition board installed 
in a personal computer. Vibration signals were collected from the bearing using 328C04 PCB 
accelerometers mounted on the bearing housings. Using the test rig, the following sample 
session was conducted. 
Assume that when the motor was turned on initially, it was running in normal condition. 
Later, a small piece of clay was attached to the rotational element of the test rig to generate 
an imbalance condition. This was used as an abnormal condition in the experiment. In the 
beginning, the setup procedure (PE) needed to be performed in order to obtain the base-li 
information. The sampling rate used was 1000 Hz and the sampling time was one second. 
 



 Artificial Neural Networks - Industrial and Control Engineering Applications 

 

428 

 
PC with

Da ta Acq uisition Board

Moto r

Accelerometer
Power

Supplier
Multiplexer

Accelerometer

Moto r Belt

Sleeve Bearing

Hub

Sleeve B ear ing

Accelerometer

 
Fig. 5. The test rig for ISDS experiment 
The PE program first acquired eight samples and then took their average. Using the average 
normal signal, the AIC and FPE criteria were calculated. An AR order suggestion for the 
normal condition of the test rig was made. The AR order was fixed throughout the entire 
experiment. Once the AR order was known, the program started estimating the AR 
parameters and upper control limits of RMS and EWMA by collecting another eight data 
sets, calculating eight sets of AR parameters, and then averaging them. Finally, all 
parameters were stored in the setup file which would be used in the PM stage. An example 
of the normal condition parameters from a setup file are listed below: 
• Machine ID: TESTRG 
• Position ID: CHN1 
• Channel number: 1 
• Sampling rate: 1000 
• AR order: 32 
• AR parameters: .... 
• EWMAUCL: 0.8912 
• RMSUCL: 0.0367 
When the machine was running in normal condition the readings of EWMA were 
approximately -0.486 far below the EWMAUCL of 0.8912. The readings of RMS were about 
0.01895, and therefore, they were below the RMSUCL. As soon as an imbalance condition 
was generated the EWMA and RMS readings jumped to values of 3.3259 and 0.0504, 
respectively. The EWMA and RMS readings indicated the test rig was in an abnormal 
condition since both readings exceeded their respective control limits. 
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The machine condition monitoring mode switches to diagnostic mode when at least one 
index exceeds its control limit. Once the system is in the diagnostic system, a detailed 
automatic analysis begins to identify the machine abnormality occurred. The next section 
explains the fault diagnostic system designed for this research. 

3. ARTMAP-based diagnostic system 
3.1 Introduction to ARTMAP neural network 
The diagnostic system in this paper employs a neural network architecture, called Adaptive 
Resonance Theory with Map Field (ARTMAP). The fault diagnostic system is based on the 
ARTMAP fault diagnostic network developed by Knapp and Wang (Knapp & Wang, 1992). 
The ARTMAP network is an enhanced model of the ART2 neural network (Carpenter, 1987; 
Carpenter, 1991). The ARTMAP learning system is built from a pair of ART modules (see 
Fig. 6), which is capable of self-organizing stable recognition categories in response to 
arbitrary sequences of input patterns. These ART modules (ARTa and ARTb) are linked by 
Map Field and an internal controller that controls the learning of an associative map from 
the ARTa recognition categories to the ARTb recognition categories, as well as the matching 
of the ARTa vigilance parameter (ρ′). This vigilance test differs from the vigilance test inside 
the ART2 network. It determines the closeness between the recognition categories of ARTa 
and ARTb (Knapp, 1992). 
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Fig. 6. ARTMAP architecture 

A modified ARTMAP architecture has been adopted in this paper in order to perform the 
supervised learning. The modified ARTMAP architecture is based on the research by Knapp 
and Huang, which replaces the second ART module (ARTb) by a target output pattern 
provided by the user (Huang, 1993; Knapp, 1992). The major difference between the 
modified ARTMAP network and the ART2 network is the modified ARTMAP permits 
supervised learning while ART2 is an unsupervised neural network classifier. Fig. 7 shows 
the modified ARTMAP architecture. 
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3.2 Performance analysis of ARTMAP-based diagnostic system 
The performance of the ARTMAP-based diagnostic system was validated by employing 
vibration signals from test bearings. A small adjustment was made on the experimental test 
rig shown in Figure 5. The two sleeve bearings were replaced by two ball bearings with steel 
housings. The new setup allows easy detachment of the ball bearing from the housing for 
exchanging different bearings. Figure 8 shows the modified experimental setup. 
Six bearings with different defect conditions were made. Table 1 describes these defective ball 
bearings. A two-stage vibration data collection was conducted for each bearing. Five sets of 
vibration signals were collected in the first batch, three sets in the second batch. A total of eight 
sets of vibration signals were collected under each defect. Therefore, there were a total of 48 
data sets. All time domain vibration signals were transformed and parameterized through the 
ARPSD algorithm. The AR order used was 30. Thus, the dimension number for each AR 
parameter pattern was 31 (i.e., 30 AR parameters plus one variance). These 48 AR parameter 
patterns were used to train and test the ARTMAP-based diagnostic system. 
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Fig. 7. Modified ARTMAP architecture 
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Bearing # Defect 
1 Good bearing 
2 White sand in bearing 
3 Over-greased in raceway 
4 One scratch in inner race 
5 One scratch in one ball 
6 No grease in raceway 

Table 1. Test ball bearings 

 
Pattern Bearing Number 
Number 1 2 3 4 5 6 

 1 Train Train Train Train Train Train 
 2 1 3 2 6 3 1 4 2 5 6 6 2 
Batch 1 3 1 6 2 6 3 1 4 2 5 4 6 1 

 4 1 6 2 6 3 1 4 2 5 4 6 2 

 5 1 6 2 6 3 1 4 2 5 6 6 1 
 1 1 3 2 6 3 1 5 4 5 4 6 5 
Batch 2 2 1 3 2 6 3 1 5 4 5 4 6 5 

 3 1 3 2 6 3 1 5 4 5 4 6 5 

Table 2. Bearing test results of ARTMAP-based ISDS 

Note that the 512 frequency components in each ARPSD spectrum were compressed to only 
31 parameters in each AR model indicating the system dealt with a significantly reduced 
amount of data; this is extremely beneficial in real-time applications. 
Fig. 8 shows the plots of AR parameter patterns from the six defective bearings. The first 
column displays the six training patterns, which is the first one of the eight data sets from 
each bearing type. The second column illustrates some of the other seven test patterns, 
where the solid lines represent data from the first collection batch and the dotted lines are 
from the second batch. As can be seen from Fig. 8, the profiles of the AR parameter patterns 
within each group are very similar. Only a few deviations can be seen between the first and 
second batches. The deviations come from the very sensitive but inevitable internal 
structure changes of the setup during the bearing attachment and detachment operations 
between the two data collections. 
The experimental procedure began with using the first pattern of all the conditions for 
training and then randomly testing the other seven patterns. In addition, the modified 
ARTMAP network was designed to provide two suggested fault patterns (i.e., the outputs of 
the first two activated nodes from the F2 field). Table 2 summarizes the test results on 
diagnosing the 42 test patterns. The first column of Table 2 for each bearing type is the first 
identified fault from the network. It shows only 3 of the 42 test cases were mismatched in 
the first guess but they were then picked up correctly by the network in the second guess 
(see bold-face numbers in Table 2). Interestingly, these three mismatched patterns were from 
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the second batch. If the profiles of Bearings 4 and 5 in the second batch (the dotted profiles 
in the second column of Fig. 8) were compared, then one could see the test patterns of 
Bearing 4 from the second batch were much closer to the training pattern of Bearing 5 than 
that of Bearing 4. This is why the network recognized the test patterns of Bearing 4 as 
Bearing 5 in its first guess. These test results clearly display the capability and reliability of 
the ARTMAP-based diagnostic system and the robustness of using AR parameter patterns 
to represent vibration signals. For the efficiency of the ARTMAP training, the training time 
of one 31-point AR parameter pattern was less than one second on a PC. 
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Fig. 8. AR parameters patterns of defective bearings 

4. Summary and conclusions 
This paper presents an integrated Intelligent Diagnostic System (IDS). Several unique 
features have been added to ISDS, including the advanced vibration trending techniques, 
the data reduction and features extraction through AR parametric model, the multi-channel 
and on-line capabilities, the user-friendly graphical display and control interface, and a 
unique machine diagnostic scheme through the modified ARTMAP neural network. 
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Based on the ART2 architecture, a modified ARTMAP network is introduced. The modified 
ARTMAP network is capable of supervised learning. In order to test the performance and 
robustness of the modified ARTMAP network in ISDS, an extensive bearing fault 
experiment has been conducted. The experimental results show ISDS is able to detect and 
identify several machine faults correctly (e.g., ball bearing defects in our case). 

5. Appendix 
5.1 Time series autoregressive (AR) parametric model 
According to the features representation requirements in signal pattern recognition, if the 
features shown by raw data are ambiguous, then it is necessary to use a preprocessor or 
transformation method on the raw data. Such a preprocessor should have feature extraction 
capability that can invariably transfer raw data from one domain to another. The objective of 
this preprocessing stage is to reveal the characteristics of a pattern such that the pattern can 
be more easily identified. 
The most important feature provided in vibration signals is frequency. Therefore, the 
characteristics of vibration signals can be shown clearly in the frequency domain. 
Traditionally, the Fast Fourier Transform (FFT) based spectral estimators are used to estimate 
the power spectral density (PSD) of signals. Recently, many parameter estimation methods 
have been developed. Among them, the autoregressive (AR) modeling method is the most 
popular (Gersch & Liu, 1976). The major advantage of using the parametric spectral estimation 
method is its ability to translate a time signal into both frequency (PSD) domain and parameter 
domain. In addition, parametric spectrum estimation is based on a more realistic assumption 
and does not need a long data record to get a high resolution spectrum. 

5.2 Parametric autoregressive spectral estimation 
Vibration signals can be treated as if they were generated from a time series random 
process. Now consider a time series xn,  

 ,   , ,0, ,nx n = −∞ ∞… …  (A.1) 

where the observed interval is from n = 1, ..., N. The autoregressive model of xn is given in 
Equation (A.2). 

 1 1 2 2n n n p n p nx a x a x a x e− − −= − − − − +…  (A.2) 

where en is the prediction error, and p is the order of the model. The parametric spectrum 
may be computed by plugging all p ak parameters into the theoretical power spectral density 
(PSD) function defined from Equation (A.3). 
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where S is the sampling rate used in data acquisition, f is the fraction of the sampling rate, p 
is the prediction lag or order of the AR model, and σ2 is the variance. Therefore, if the 
prediction coefficients, ak, can be estimated accurately, the parametric spectrum, PAR(f), of 
the random process can be calculated correctly through Equation (A.3). 
Several approaches are available for estimating the AR model parameters. It has been 
observed that if the data consist of sinusoids with white noise, the peak location in the AR 
spectral estimate critically depends on the phase of the sinusoid (Swingler, 1980). The 
degree of phase dependence varies with different parameter estimation methods. Of all the 
AR parameter estimation methods, the modified covariance method appears to yield the 
best results (Kay, 1988). The modified covariance method appears to yield statistically stable 
spectral estimates with high resolution (Kay, 1988). For data consisting of sinusoids with 
white noise, a number of desirable properties have been observed (Kay, 1988; Marple, 1987): 
1.  The shifting of the peaks from the true frequency locations due to additive noise 

appears to be less than many other AR spectral estimators. 
2.  The peak location affected by initial sinusoidal phase is considerably reduced. 
3.  Spectral line splitting in which a single sinusoidal component gives rise to two distinct 

spectral peaks has never been observed. 

5.3 AR order selection 
A major issue with the parametric method is determining the AR order for a given signal. It 
is usually a trade-off between resolution and unnecessary peaks. Many criteria have been 
proposed as objective functions for selecting a “good” AR model order. Akaike has 
developed two criteria, the final prediction error (FPE) (Akaike, 1969) and Akaike 
information criterion (AIC) (Akaike, 1974). The FPE for an AR process is defined as follows: 

 ( ) 2 +( +1)ˆFPE ( )
-( +1)p

N pp
N p

σ=  (A.4) 

where N is the number of data samples, p is the order, and ,?^ p
2 is the estimated variance at 

order p. The order p selected is the one for which the FPE value is the minimum. The AIC for 
an AR process has the following form: 

 ( ) ( ) ( )2ˆAIC ln lnpp N p Nσ= +  (A.5) 

The criteria presented here may be simply used as guidelines for initial order selection, 
which are known to work well for true AR signals; but may not work well with real data, 
depending on how well such data set is modeled by an AR model. Therefore, both FPE and 
AIC have been adapted in this research for the AR order suggestion. 
Figure 3.3 displays an example of FPE and AIC criteria map. The signal used here is the 
same one shown in Figure 3.2. All rescaled FPE(p) and AIC(p) values at different AR order p 
are calculated and plotted in Figure A.1. The order searching range is from 1 to 80. The AIC 
reaches its minimum at p equal to 49. With the FPE, the minimum values are obtained when 
AR order is 59. Comparing these two orders by looking at their AR spectra, an order of 49 is 
able to produce a relatively good resolution spectrum while an order of 59 does not improve 
the resolution by much. Therefore, 49 may be selected as the AR model order for this signal. 
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Fig. A.1 Criteria map of FPE and AIC 
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Fig. A.2 AR parameters and PSD estimation flow chart 
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Fig. A.2 summarizes the flow chart of calculating AR parameters and ARPSD to conclude 
this section. 

5.4 Trending techniques for vibration condition 
In order to monitor the condition of a machine throughout its operational life, several 
vibration trending techniques have been investigated. Vibration trending indices allow the 
relative machine condition to be plotted with respect to time. From the trending plot most 
gradual changes relating to the condition of machines can be detected. 
Each signal could have more than one trending index associated with it. Furthermore, each 
trending index, which may be treated as a different aspect of the signal, carries different 
sensitivities for different machine fault types. In the case of vibration, several trending 
monitoring techniques have been developed and studied (Mathew, 1989; Dyer & Stewart, 
1978; Mathew & Alfredson, 1984; Spoerre, 1993). In this instance, EWMA (Exponential 
Weighted Moving Average), RMS (Root Mean Square). The mathematical description of 
each method is given in the following sections. 

5.5 ART2 neural network 
Adaptive Resonance Theory (ART) is first introduced by Grossberg in 1976 (Grossberg, 1976a). 
This theory emerged through an analysis of neural networking mechanisms, namely, the 
hypothetical STM (Short-Term Memory) and the LTM (Long-Term Memory) architectures of 
the human brain. The theory has been claimed to be capable of self-organizing and self-
stabilizing learning in real time in an arbitrarily changing complex input environment 
(Banquet & Grossberg, 1987; Grossberg, 1976a; Grossberg, 1976b). Over the years, ART has 
steadily developed as a physical theory to explain cognitive information processing and has 
been applied to many pattern classification problems (Carpenter et al., 1991). 
The architecture designed by the ART algorithm performs pattern clustering and is trained 
without supervision. Analyses showed this type of top-down feedback learning scheme 
could significantly overcome the problem of unstable learning, such as local minimum 
problem in the back propagation algorithm (Grossberg, 1987a).  

5.6 Basic concept of the adaptive resonance theory 
The basic ART architecture includes two subsystems, an attentional subsystem and an 
orienting subsystem. When learning or classification occurs within the ART architecture 
these two functionally complementary subsystems are activated to process familiar and 
unfamiliar patterns. Fig. A.3 illustrates the anatomy of the ART attentional-orienting system. 
At first, familiar patterns are processed within the attentional subsystem, which is built up 
from a competitive learning network. The second subsystem, the orienting subsystem, resets 
the attentional subsystem when a unfamiliar pattern occurs. Interactions between these two 
subsystems help to express whether a novel pattern is familiar and well represented by an 
existing category code, or unfamiliar and in need of a new category code. 
In the attentional subsystem two successive stages, the feature representation field (F1) and 
the category representation field (F2), encode input patterns into a form of short term 
memory. Bottom-up and top-down pathways between F1 and F2 contain long term memory 
traces. Those traces are represented as weight vectors Bij and Tji in Fig. A.3 When a new 
input pattern arrives, it is then transformed into an activating pattern as an STM form in F1. 
This STM pattern is then multiplied, or gated, by the pathway’s bottom-up LTM traces. 



Intelligent Vibration Signal Diagnostic System Using Artificial Neural Network   

 

437 

After the LTM gated signal reaches F2, the signal is quickly transformed by interactions 
among the nodes in F2. The resulting pattern is then stored as another STM in F2. Just like 
the new pattern gated by the bottom-up adaptive filter, the STM pattern in F2 is gated by 
the top-down LTM traces and summed up as an internal pattern which is then called a top-
down template, or learned expectation to F1. As soon as a top-down template is generated, 
F1 acts to match the top-down template against the current STM pattern in F1. If a mismatch 
occurs in F1, the orienting subsystem is engaged, thereby leading to deactivate the current 
STM in F2. After that, a new active STM pattern in F2 is produced. This generates a new top-
down template pattern through top-down traces again. The search ends when an STM 
pattern across F2 reads out a top-down template which matches the current STM in F1 to the 
degree of accuracy required by the level of the vigilance parameter. In this case, the bottom-
up and top-down LTM traces are adaptively adjusted according to the current internal STM 
in F1. Otherwise, a new classification category is then established as a bottom-up code and a 
new top-down template is learned. 
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Fig. A.3 typical ART module. 
By this fashion, a rapid series of the STM matching and resets may take place. Such an STM 
matching and reset series controls the system's hypothesis testing and search of the LTM by 
sequentially engaging the novelty-sensitive orienting subsystem. 
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5.7 ART2 system dynamics  
The mathematical representation of ART2 dynamics is discussed in this section. Fig. A.4 
illustrates an ART2 architecture that includes the principal components of ART modules, the 
attentional subsystem, and the orienting subsystem. In the attentional subsystem, there are 
three separate fields: an input preprocessing field, F0, an input representation field, F1, and 
a category representation field, F2. Fig. A.4 also displays the ART2 dynamics by arrows, 
circles, and filled circles where arrows represent the processing directions and filled circles 
represent the normalization operations (i.e., Euclidean Normalization). 
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1. Introduction 
On-line monitoring of manufacturing process is extremely important in modern 
manufacturing for plant safety, maximization of the production and consistency of the 
product quality (Song et al., 2003).  The development of diagnostic systems for the industrial 
applications has started in early 1970s. The recent developments in the microelectronics 
have increased their intelligence and let them found many industrial applications in last two 
decades (Mendonca et al., 2009; Shi & Sepehri, 2004). The intelligent data analysis 
techniques are one of the most important components of the fault diagnosis methods (Uppal 
et al, 2002; Uppal & Patton, 2002).  In this study, the faults of a pneumatic system will be 
monitored by using the artificial neural networks (ANN). 
When the speed control and magnitude of the applied force is not critical, pneumatic 
systems are the first choice. They are cheap, easy to maintain, safe, clean, and components 
are commercially available. They have even been used for precise control of industrial 
systems (Nazir & Shaoping, 2009; Ning & Bone, 2005). Unfortunately, their nonlinear 
properties and some limitations at their damping, stiffness and bandwidth characteristics 
avoid their widespread applications (Belforte et al., 2004; Tsai & Huang, 2008, Bone & Ning, 
2007; Taghizadeh et al., 2009; Takosoglu et al., 2009).   
The interest for the development of diagnostic methods for pneumatic and hydraulic 
systems has increased in the last decade (Nakutis & Kaškonas, 2008). Researchers 
concentrated on the detection of the faults of the components. The condition of the 
pneumatic and hydraulic cylinders (Wang et al., 2004), and digitally controlled valves 
(Karpenko et al., 2003) were the main focus of the studies.  Some of the other considered 
faults were leakage of the seals (Nakutis & Kaškonas, 2005, 2007; Yang, 2006; Sepasi & 
Sassani, 2010), friction increase (Wang et al., 2004; Nogami et al., 1995) and other 
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malfunctions (Bouamama et al., 2005). The monitored signals can be divided into two 
groups according to their frequencies.  Acoustic emission is an excellent example of high 
frequency monitoring signal (Yang, 2006; Chena et al., 2007).  The frequency of the pressure, 
flow, and timing signals are low (Sepasi & Sassani, 2010; Nogami et al., 1995; Bouamama et 
al., 2005; Nakutis & Kaškonas, 2005, 2008; Wang et al., 2004; Karpenko et al., 2003; Li & Kao, 
2005; McGhee et al., 1997). The gathered signals are encoded to obtain their most descriptive 
features.  The encoded signals were classified by using various classification techniques 
such as ANNs (Karpenko et al., 2003; Nakutis & Kaškonas, 2003; Sepasi & Sassani, 2010; 
Nogami et al., 1995; McGhee et al., 1997), fuzzy method (Mendonca et al., 2009; Uppal & 
Patton, 2002), neuro fuzzy method (Shi & Sepehri, 2004; Uppal & Patton, 2002), statistical 
technique (Song et al., 2003),  bond graphs (Bouamama et al., 2005), genetic programming 
(Wang et al., 2004; Yang, 2006), and expert/intelligent systems (Chen & Mo, 2004). 
It is not difficult to develop programs for classification of the sensory signals of pneumatic 
systems.  However, these programs should be carefully modified when the characteristics of 
the signals change. Many researchers have worked on the development of ANNs.  
Generally, most of the ANNs are ready to take the advantage of future parallel hardware.  
By considering these facts ANNs will be used for the classification in this study. 
Mainly, there are two types of ANNs: supervised and unsupervised.  The supervised ANNs 
require an initial training.  Unsupervised ones may start to monitor the signals without any 
training.  Among the supervised ANNs, the feed-forward ANNs (FFNN) have been widely 
used.  The Back-propagation (BP) algorithm is the most popular one for estimation of the 
weights and were used in many applications (Bryson & Ho, 1969,  Rumelhart et al., 1976, 
Huang  et al., 2007; Lu  et al., 2000; Tansel et al., 2009; Aykut et al., 2010; Tansel & Demetgul 
& Sierakowski, 2009; Demetgul et al., 2009).  Quasi-Newton approaches such as Levenberg-
Marquardt was developed to increase the speed of the estimation and is available in the 
MATLAB ANN Toolbox (Beale et al., 2010).  Fuzzy ARTMAP method (Carpenter et al., 1991, 
Carpenter et al., 1992) allowed the use of the Adaptive Resonance Theory (ART) for the 
supervised learning (Grossberg, S., 1987). Among the unsupervised ANNs Adaptive 
Resonance Theory 2 (ART2) (Grossberg, S., 1987, Carpenter& Grossberg, 1987, 
Rajakarunakaran et al., 2008, Lee et al., 2003, Belforte et al., 2004) has been successfully used 
for classification in many applications. This approach was improved further by the 
development of fuzzy ART (Carpenter et al., 1991a, Carpenter et al., 1991b).  In this study 
the data was classified by using the BP, fuzzy ARTMAP, ART2 and fuzzy ART. 
In the following section the theoretical background of the ANNs will be presented very 
briefly.  The experimental setup, results and the conclusion will follow it. 

2. Theoretical background of the tested ANNs 
In this section the ANNs will be very briefly reviewed since detailed information is available 
at the listed references.   

2.1 Supervised ANN 
In this study, two supervised ANNs were used. FFNN became popular with the widespread 
use of the BP (Bryson & Ho, 1969, Rumelhart et al., 1976) algorithm. The FFNN have 
multiple layers. Generally, single hidden layer is used. The user determines the number of 
the hidden neurons of this layer by trial and error.  The number of the neurons of the input 
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and output layers depends on the application.  The BP estimates the weights of the neurons 
by updating them after the forward and backward propagation of error.  The learning rate 
and the momentum are two important parameters of the BP for training the network 
successfully (Chen & Mo, 2004; McGhee et al., 1997). Levenberg-Marquardt algorithm (Beale 
et al., 2010) generally estimates the parameters of the FFNNs. It finds the best weights by 
minimizing the function. It works effectively for many applications. Levenberg-Marquardt 
algorithm available at the MATLAB toolbox was used in this study (Beale et al., 2010). 
Fuzzy ARTMAP (Carpenter et al., 1991, Carpenter et al., 1992 ) use the fuzzy logic and ART 
ANNs. It evaluates the similarity by considering the fuzzy subsethood and ART category 
choice. The vigilance is used to determine the size of the “category boxes” or sensitivity of 
the ANN.  One of the very important advantages of the ARTMAP with or without the fuzzy 
component over the FFNNs is the use of the vigilance based on our experience. Aaron 
Garrett’s (Garrett, 2003) code was used for the training and testing of the fuzzy ARTMAP 
method. 

2.2 Unsupervised ANN 
ART2 type ANN evaluates the characteristics of the inputs and assign them a category 
(Carpenter & Grossberg, 1987; Lee et al., 2003, Yang et al., 2004, Na et al., 2008).  If the signal 
looks like one of the previously presented signals, it will be classified in the same category.  On 
the other hand, if the signal is different than the previously presented ones a new category is 
assigned for it. The sensitivity of ART2 depends to the vigilance. At the low vigilances, it has 
higher tolerance. When the vigilance approaches to one it will be more selective. 
Fuzzy ART use fuzzy set theory in the ART1 type ANN structure.  With the help of the MIN 
operator of the fuzzy set theory the classification of the binary and analog input patterns is 
possible. The vigilance parameter adjust the selectivity of the ANN. In this study Aaron 
Garrett (Garrett, 2003) implementation of the fuzzy ART was used. 

3. Experimental setup and performed experiments: 
The diagram of the experimental setup is presented in Fig.1.  The pneumatic system created 
motions along the X and Y axes.  The operation of the system was managed by an SPC 200 
two axis servopneumatic controller. Each axes could be operated in the coordinated or 
autonomous mode. Controller was also responsible from the digital I/O including the 
communications with the other devices. A pressure transducer was used to measure the 
supply pressure of the system. 5/3-way proportional valves controlled the flow of the 
pressurized air into the proper chambers of the cylinders. 
A proportional valve (Festo MPYE-5 1/8 LF-010B) controlled the displacement of pneumatic 
cylinder in the x direction.  The valve was connected to the both chambers of the pneumatic 
rodless cylinder (Festo DGPL-25-450-PPV-A-B-KF-GK-SV). The stroke length and the 
diameter of the cylinder were 450 mm and 25 mm respectively. A linear potentiometer 
(Festo MLO-POT-450-TLF) was attached to the side on the actuator to measure the piston 
position.  The valve had the neutral spool position under 5 V control voltage.   
Another pneumatic rodless cylinder (Festo DGPIL-25-225-PPV-B-KF-AIF-GK-SV-AV) created 
the motion in the Y direction. The stroke length and the diameter of the cylinder were 225 mm 
and 25 mm respectively. A contactless absolute magnetostrictive linear displacement sensor 
was used to measure the strokes of the piston. A gripper was attached to the cylinder. 
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1. Air compressor 
2. Service Unit 
3. SPC 200 Controller 
4. Analog Pressure Transducers 
5. Gripper 
6. Y axis 
7. Linear Potentiometer for x axis 
8. X axis 
9. NI Compact FieldPoint System 
10. Power Supply 

Fig. 1. Servo-pneumatic positioning system of the Festo Didactic.  The components of the 
system are the following: 

Experimental data was collected by using the National Instrument (NI) compact FieldPoint 
measurement system with control modules. The LabVIEW program environment controlled 
the measurement system.  The values of four analog parameters were monitored.  Three of 
these parameters were the pressure readings of the cylinders creating the motion in the x 
and y directions and the overall system.  The Fourth analog input was the readings from the 
linear potentiometer. The gripper action was monitored from the digital signals coming 
from data acquisition card.  The diagram of the components of the servo-pneumatic system 
is shown in Figure 2.  
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Fig. 2. The servo-pneumatic system components for X axis. (1. Measuring system, 2. Axis 
interface, 3. Smart positioning controller SPC 200, 4. Proportional directional control valve, 
5. Service unit, 6. Rodless cylinder) ((festodidactic.com, 2010) 

The servo-pneumatic system simulated the operation of food preparation. Jars were put 
individually on a conveyor belt by the packaging system. A handling device with servo-
pneumatic NC axis transferred these jars to a pallet. The precise motion of the NC axis is 
essential for completion of the task (Festo Didactic, 2010).  
The user interface of the LabVIEW program is presented in Fig. 3. The display shows the 
pressures of the overall system and two cylinders creating the motions along the X and Y 
axes. Also the displacement of one of the cylinder and gripper action (pick and place) is 
demonstrated.  
In this study, the pneumatic system was operated at the normal and 4 different faulty 
conditions. The experimental cases are listed in Table 1. There were 15 experimental cases.  
The data was collected at the same condition 3 times when the system was operated in the 
normal and 4 faulty modes. 
 

Operational condition                                                   Experiment #         Recalled as 
 
Normal operation of the Servo Pneumatic System                 1                   Normal 
x axis error positioning              2                   Fault 1 
y axis error positioning                                                          3                   Fault 2 
Pick  faults for gripper                                           4                   Fault 3 
Place faults for gripper              5                   Fault 4  

Table 1. Operating conditions 



Artificial Neural Networks - Industrial and Control Engineering Applications 

 

446 

 
Fig. 3. Data collection visual front panel of LabVIEW 

The signals of the gripper pick (Fig.4) and place (Fig.5) sensors, the pressure sensors of the 
cylinders in the x (Fig.6) and y (Fig.7) directions, the voltage output of the linear 
potentiometer of the x axis (Fig.8) are presented in the corresponding figures. 
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Fig. 4. Gripper Pick  
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Fig. 5. Gripper Place Sensor 
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Fig. 6. X Axis Pressure  
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Fig. 7. Y Axis Pressure Sensor 
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Fig. 8. X Axis linear potentiometer signal 

4. Proposed encoding method 
The sensors provided long data segments during the operation of the system. To represent 
the characteristics of the system the sensory signals were encoded by selecting their most 
descriptive futures and presented to the ANNs. 
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Two gripper sensor signals were monitored one for pick (Fig.4) and one for place (Fig.5).  
Their outputs were either 0 V or 1V. The gripper pick and place signals were encoded by 
identifying the time when the value raised to 1V and when it fell down to 0V. The signals of 
the pressure of x axis (Fig.6), pressure of y axis (Fig.7) and main pressure were encoded by 
calculating their averages. For the linear potentiometer (Fig.8) the times when the signal fell 
below 7V and when it went over 7V were identified and used during the classification. 

5. Results 
The expected results from the ANN classification are presented in Fig.9. Ideally, once the 
ANN experiences the normal and each faulty mode, someone may expect it to identify each 
one of them accurately. In our case this means, an unsupervised ANN create maximum 5 
categories and assign each one of them to the normal and 4 fault modes. Similarly, the 
output of the supervised ANNs are supposed to be an integer value between 1 and 5 
depending on the case. It is very difficult to classify the experimental data in 5 different 
categories unless the encoded cases have very different characteristics, repeatability is very 
high and noise is very low. In the worst case, we expect the ANN to assign at least two 
categories and locate the normal operation and faulty ones in separate categories. The 
output of the supervised ANN could be 0 and 1 in such cases. The ANN estimates in the 
ideal and accdptialbe worst case scenario are demonstrated in Fig.9. In the following 
sections, the performance of the supervised and the unsupervised ANNs are outlined. 
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Fig. 9. The output of the ANNs for classification of normal and 4 faulty modes. 
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5.2 Performance of the supervised ANNs:  
Performance of the feed-forward-network (FFN) was evaluated by using the Levenberg 
Marquardt algorithm.  The FFN had 9 inputs and 1 output.  The outputs of the cases were 1, 
2, 3, 4, 5 for Normal, Fault1, Fault2, Fault3 and Fault4 respectively.  For training only one 
sample of the normal and 4 faulty cases were used.  Since the FNN type ANNs do not have 
any parameters to adjust their sensitivity they have to be trained with very large number of 
cases which will teach the network expected response for each possible situation.  Since, one 
sample for each one of the normal and 4 faulty cases was too few for effective training, we 
generated semi experimental cases.  The semi-experimental cases were generated from these 
samples by changing the each input with ±1% steps up to ±10%.  We generated 100 semi-
experimental cases in addition to the original 5 cases with this approach.  The FNN had 8 
neurons at the hidden layer.  The FFN was trained with 105 cases. 
The FFN type ANN was trained by using the Levenberg-Marquardt algorithm of the Neural 
Network Toolbox of the MATLAB. The training was repeated several times.  The same semi-
experimental data generation procedure was used to generate 200 additional test cases from 
the 10 experimental cases which had 2 tests at each condition (1 normal and 4 faulty ones).  
The average estimation errors were 5.55e-15% for the training and 8.66% for the test cases.  
The actual and estimated values for the training and test cases are presented in Fig.10 and 
Fig.11 respectively. The ANN always estimated the training cases with better than 0.01% 
accuracy. The accuracy of the estimations of the test cases was different at each trail.  These 
results indicated that, without studying the characteristics of the sensory signals very  
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Fig. 10. The FFN type ANN estimations for the training cases. 
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Fig. 11. The FFN type ANN estimations for the test cases. 

carefully, the ANN may estimate the normal and faulty cases; however, for industrial 
applications the characteristics of the data may change in much larger range than ours and 
working with much larger experimental samples are advised. 
The same analysis was repeated by using the fuzzy ARTMAP.  The fuzzy ARTMAP adjusts 
the size of the “category boxes” according to the selected vigilance value. The ANN 
estimates the category of the given case as -1 if the fuzzy ARTMAP do not have proper 
training. So, we did not need to use the semi-experimental data.  The fuzzy ARTMAP was 
trained by using 5 cases (normal and 4 fault modes).  It was tested by using the 10 cases (2 
normal and 8 faulty cases (2 samples at each fault modes)).  The vigilance was changed from 
0.52 to 1 with the steps of 0.02.  The identical performance was observed for the training and 
test cases when the vigilance was selected between 0.52 and 0.83 (Fig.12). All the training 
cases were identified perfectly.  The normal and all the faulty ones were distinguished 
accurately. The fuzzy ARTMAP only confused two test cases belong to Fault 2 and 3.  The 
performance of the fuzzy ARTMAP started to deteriorate at the higher vigilances since the 
“category boxes” were too small and the ANN could not classify some of the test cases.  The 
number of the unclassified cases increased with the increasing vigilance. 
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Fig. 12. The performance of the fuzzy ARTMAP type ANN. 

5.1 Performance of the unsupervised ANNs: 
Performance of the ART2 is shown in Table 2. It distinguished the normal and faulty cases.  
Among the faults, the Fault 3 was identified all the time by assigning a new category and 
always estimating it accurately.  The ART2 could not distinguish Fault 1, 2 and 4 from each 
other.  The best vigilance values were in the range of 0.9 and 0.9975.  When these vigilances 
were used ART2 distinguished the normal operation, faulty cases and Fault 3.  The same 
results are also presented with a 3D graph in Fig.13. 
The results of the Fuzzy ART program are presented in Fig.14.  The number of assigned 
categories varied between 2 and 15 for the vigilance values of 0.5 and 1.  When the 
vigilance was 0.5, the Fuzzy ART distinguished the normal and faulty operation but could 
not classify the faults.  Fuzzy ART started to distinguish Fault 4 when the vigilance was 
0.65. It started to distinguish Fault 3 and 4 for the vigilance value of 0.77.  When the 
vigilance reached to 0.96 it could distinguished 10 categories and classified all the cases 
accurately. Multiple categories were assigned to the normal and some of the faulty 
operation modes. 
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Vigilance values Condition 
of the 

system 

Experiment 
0.9 - 

0.9975 
0.998 0.9985 0.999 0.9995 

Test 1 1 1 1 1 1 
Test 2 1 2 2 2 2 

Normal 

Test 3 1 2 2 2 2 
Test 1 2 3 3 3 3 
Test 2 2 3 3 3 4 

Fault 1 

Test 3 2 3 3 3 4 
Test 1 2 3 3 3 4 
Test 2 2 3 3 3 4 

Fault 2 

Test 3 2 3 3 3 5 
Test 1 3 4 4 4 6 
Test 2 3 4 4 4 6 

Fault 3 

Test 3 3 4 4 4 6 
Test 1 2 3 3 3 5 
Test 2 2 3 3 3 5 

Fault 4 

Test 3 2 3 3 3 7 

Table 2. The estimated categories with the ART 2 algorithm 
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Fig. 13. The graphical presentation of the ART2 results in the Table 1. 
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Fig. 13. The estimations of the Fuzzy ART  

6. Conclusion 
A two axis servopneumatic system was prepared to duplicate their typical operation at the 
food industry. The system was operated at the normal and 4 faulty modes. The 
characteristics of the signals were reasonably repetitive in each case. Three pressure, one 
linear displacement and two digital signals from the gripper were monitored in the time 
domain. The signals were encoded to obtain their most descriptive futures. There were 15 
experimental cases. The data was collected at the same condition 3 times when the system 
was operated in the normal and 4 faulty modes. The encoded data had 9 parameters. The 
performances of two supervised and two unsupervised neural networks were studied.   
The 5 experimental cases were increased to 105 by generating semi experimental data. The 
parameters of the FFN was calculated by using the Levenberg-Marquardt algorithm. The 
average estimation errors were 5.55e-15% for the training and 8.66% for the test cases. The 
fuzzy ARTMAP was trained with 5 cases including one normal and 4 faulty modes. It 
estimated the 8 of the 10 test cases it never saw before perfectly.  It confused the two faulty 
cases among each other. 
The ART2 and fuzzy ART were used to evaluate the performance of these unsupervised 
ANNs on our data.  Both of them distinguished the normal and faulty cases by assigning 
different categories for them. They had hard time to distinguish the faulty modes from each 
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other. Since they did not need training, they are very convenient for industrial applications.  
However, it is unrealistic to expect them to assign different categories for the normal 
operation and each fault modes, and classify all the incoming cases accurately. 
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1. Introduction 
Before moving a robot arm, it is of considerable interest to know whether there are any 
obstacles present in its path. Computer-based robots are usually served in the joint space, 
whereas objects to be manipulated are usually expressed in the Cartesian space because it is 
easier to visualize the correct end-effector position in Cartesian coordinates than in joint 
coordinates. In order to control the position of the end-effector of the robot, an inverse 
kinematics (IK) solution routine should be called upon to make the necessary conversion (Fu 
et al., 1987). 
Solving the inverse kinematics problem for serial robot manipulators is a difficult task; the 
complexity in the solution arises from the nonlinear equations (trigonometric equations) 
occurring during transformation between joint and Cartesian spaces. The common approach 
for solving the IK problem is to obtain an analytical close-form solution to the inverse 
transformation, unfortunately, close-form solution can only be found for robots of simple 
kinematics structure. For robots whose kinematics structures are not solvable in close-form; 
several numerical techniques have been proposed; however, there still remains several 
problems in those techniques such as incorrect initial estimation, convergence to the correct 
solution can not be guarantied, multiple solutions may exist and no solution could be found 
if the Jacobian matrix was in singular configuration (Kuroe et al., 1994; Bingual et al., 2005). 
A velocity singular configuration is a configuration in which a robot manipulator has lost at 
least one motion degree of freedom DOF. In such configuration, the inverse Jacobian will 
not exist, and the joint velocities of the manipulator will become unacceptably large that 
often exceed the physical limits of the joint actuators. Therefore, to analyze the singular 
conditions of a manipulator and develop effective algorithm to resolve the inverse 
kinematics problem in the singular configurations is of great importance (Hu et al., 2002). 
Many research efforts have been devoted towards solving this problem, one of the first 
algorithms employed was the Resolved Motion Rate-Control method (Whitney, 1969), 
which uses the pseudoinverse of the Jacobian matrix to obtain the joint velocities 
corresponding to a given end-effector velocity, an important drawback of this method was 
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the singularity problem. To overcome the problem of kinematics singularities, the use of a 
damped least squares inverse of the Jacobian matrix has been later proposed in lieu of the 
pseudoinverse (Nakamura & Hanafusa, 1986; Wampler, 1986). 
Since in the above algorithmic methods the joint angles are obtained by numerical 
integration of the joint velocities, these and other related techniques suffer from errors due 
to both long-term numerical integration drift and incorrect initial joint angles. To alleviate 
the difficulty, algorithms based on the feedback error correction are introduced (Wampler & 
Leifer, 1988). However, it is assumed that the exact model of manipulator Jacobian matrix of 
the mapping from joint coordinate to Cartesian coordinate is exactly known. It is also not 
sure to what extent the uncertainty could be allowed. Therefore, most research on robot 
control has assumed that the exact kinematics and Jacobian matrix of the manipulator from 
joint space to Cartesian space are known. This assumption leads to several open problems in 
the development of robot control laws (Antonelli et al., 2003). 
Intelligent control has been introduced as a new direction making control systems able to 
attribute more intelligence and high degree of autonomy. Artificial Neural Networks (ANN) 
have been widely used for their extreme flexibility due to the learning ability and the 
capability of non linear function approximation, a number of realistic control approaches 
have been proposed and justified for applications to robotic systems (D'Souza et al.,2001; 
Ogawa et al., 2005; Köker, 2005; Hasan et al., 2007; Al-Assadi et al., 2007), this fact leads to 
expect ANN to be an excellent tool for solving the IK problem for serial manipulators 
overcoming the problems arising. 
Studying the IK of a serial manipulator by using ANNs has two problems, one of these is 
the selection of the appropriate type of network and the other is the generating of suitable 
training data set (Funahashi, 1998;Hasan et al., 2007).  
Different methods for gathering training data have been used by many researchers, while 
some of them have used the kinematics equations (Karilk & Aydin, 2000; Bingual et al., 
2005), others have used the network inversion method (Kuroe et al., 1994; Köker, 2005), 
another have used the cubic trajectory planning (Köker et al., 2004) and others have used a 
simulation program for this purpose (Driscoll, 2000). However, there are always kinematics 
uncertainties presence in the real world such as ill-defined linkage parameters, links 
flexibility and backlashes in gear train. 
A learning method of a neural network has been proposed by (Kuroe et al., 1994), such that 
the network represents the relations of both the positions and velocities from the Cartesian 
coordinate to the joint space coordinate. They’ve driven a learning algorithm for arbitrary 
connected recurrent networks by introducing adjoin neural networks for the original neural 
networks (Network inversion method). On-line training has been performed for a 2 DOF 
robot. 
(Graca and Gu, 1993) have developed a Fuzzy Learning Control algorithm. Based on the 
robotic differential motion procedure, the Jacobian inverse has treated as a fuzzy matrix and 
has learned through the fuzzy regression process. It was significant that the fuzzy learning 
control algorithm neither requires an exact kinematics model of a robotic manipulator, nor a 
fuzzy inference engine as is typically done in conventional fuzzy control. Despite the fact 
that unlike most learning control algorithms, multiple trials are not necessary for the robot 
to “learn” the desired trajectory. A major drawback was that it only remembers the most 
recent data points introduced, the researchers have recommended neural networks so that it 
would remember the trajectories as it traversed them. 
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The solution of the Inverse kinematics, which is mainly solved in this chapter, involves the 
development of two network’s configurations to examine the effect of the Jacobian Matrix in 
the solution. 
Although this is very difficult in practice (Hornik, 1991), training data were recorded 
experimentally from sensors fixed on each joint (as was recommended by (Karilk and 
Aydin, 2000). Finally the obtained results were verified experimentally. 

2. Kinematics of serial robots 

For serial robot manipulators, the vector of Cartesian space coordinates x  is related to the 
joint coordinates q  by:  

 ( )x f q=  (1) 

Where ( )f ⋅ is a non-linear differential function. 
If the Cartesian coordinates x  were given, joint coordinates q can be obtained as: 

 1( )q f x−=  (2) 

Using ANN to solve relation (2), for getting joint position q, mapping from the joint space to 
the Cartesian space is uniquely decided when the end effector’s position is calculated using 
direct kinematics (Köker et al., 2004; Ogawa et al., 2005; Hasan et al., 2006), as shown in 
Figure 1(a). However, the transformation from the Cartesian to the joint space is not 
uniquely decided in the inverse kinematics as shown in Figure 1(b). 
 

 
Fig. 1. Three DOF robot arm. 
a) Joint angles and end-effector’s coordinates (forward kinematics). 
b) Combination of all possible joint angles (Inverse Kinematics). 
Model-based methods for solving the IK problem are inadequate if the structure of the robot 
is complex, therefore; techniques mainly based on inversion of the mapping established 
between the joint space and the task space of the manipulator’s Jacobian matrix have been 
proposed for those structures that cannot be solved in closed form. 
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If a Cartesian linear velocity is denoted by V , the joint velocity vector q
•

 has the following 
relation: 

 V J q
•

=  (3) 

Where J  is the Jacobian matrix. 
If V , is a desired Cartesian velocity vector which represents the linear velocity of the 
desired trajectory to be followed. Then, the joint velocity vector q

•
 can be resolved by: 

 1q J V
•

−=  (4) 

At certain manipulator configurations, the Jacobian matrix may lose its full rank. Hence as 
the manipulator approaches these configurations (singular configurations), the Jacobian 
matrix becomes ill conditioned and may not be invertible. Under such a condition, 
numerical solution for equation (4) results in infinite joint rates. 
In differential motion control, the desired trajectory is subdivided into sampling points 
separated by a time interval tΔ  between two terminal points of the path. Assuming that at 
time it  the joint positions take on the value ( )iq t , the required q at time ( )it t+ Δ is 
conventionally updated by using: 

 ( ) ( )i iq t t q t q t
•

+ Δ = + Δ  (5) 

Substituting Eqns. (2) and (4) into (5) yields: 

 1 1( ) ( )( )i iq t t f x t J V t− −+ Δ = + Δ  (6) 

Equation (6) is a kinematics control law used to update the joint position q  and is evaluated 
on each sampling interval. The resulting ( )iq t t+ Δ  is then sent to the individual joint motor 
servo-controllers, each of which will independently drive the motor so that the manipulator 
can be maneuvered to follow the desired trajectory (Graca & Gu, 1993). 

3. Data collection procedure 
Trajectory planning was performed to generate the angular position and velocity for each 
joint, and then these generated data were fed to the robot’s controller to generate the 
corresponding Cartesian position and linear velocity of the end-effector, which were 
recorded experimentally from sensors fixed on the robot joints. 
In details, trajectory planning was performed using cubic trajectory planning method .In 
trajectory planning of a manipulator, it is interested in getting the robot from an initial 
position to a target position with free of obstacles path. Cubic trajectory planning method 
has been used in order to find a function for each joint between the initial position, 0θ , and 
final position, fθ  of each joint. 
It is necessary to have at least four-limit value on the ( )tθ  function that belongs to each 
joint, where ( )tθ  denotes the angular position at time t . 
Two limit values of the function are the initial and final position of the joint, where: 
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 0(0)θ θ=  (7) 

 ( )f ftθ θ=  (8) 

 

Additional two limit values, the angular velocity will be zero at the beginning and the target 
position of the joint, where: 

 (0) 0θ
•

=  (9) 

 ( ) 0ftθ
•

=  (10) 

 

Based on the constrains of typical joint trajectory listed above, a third order polynomial 
function can be used to satisfy these four conditions; since a cubic polynomial has four 
coefficients. 
These conditions can determine the cubic path, where a cubic trajectory equation can be 
written as: 

 2 3
0 1 2 3( )t a a t a t a tθ = + + +  (11) 

The angular velocity and acceleration can be found by differentiation, as follows: 

 2
1 2 3( ) 2 3t a a t a tθ

•
= + +  (12) 

 2 3( ) 2 6t a a tθ
••

= +  (13) 

Substituting the constrains conditions in the above equations results in four equations with 
four unknowns: 
 

0 0 ,aθ =  
2 3

0 1 2 3 ,f f f fa a t a t a tθ = + + +  

00 ,a=  
2

1 2 30 2 3f fa a t a t= + +  

(14) 

 

The coefficients are found by solving the above equations. 
 

0 0 ,a θ=  

1 0,a =  

2 02
3 ( ),f
f

a
t

θ θ= −  

3 03
2 ( )f
f

a
t

θ θ−
= −  

(15) 
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Angular position and velocity can be calculated by substituting the coefficients driven in 
Eqn. (15) into the cubic trajectory Eqns. (11) and (12) respectively (Köker et al., 2004), which 
yield: 

 2 3
0 0 02 3

3 2( ) ( ) ( ) ,i i if i if i
f f

t t t
t t

θ θ θ θ θ θ= + − − −  (16) 

2
0 02 3

6 6( ) ( ) ( )i if i if i
f f

t t t
t t

θ θ θ θ θ
•

= − − −  

1,2,...........,i n=     Where n  is the joint number. 
(17) 

 

Joint angles generated ranged from amongst all the possible joint angles that do not exceed 
the physical limits of each joint. Trajectory used for the training process has meant to be 
random trajectory rather than a common trajectory performed by the robot in order to cover 
as most space as possible of the robot’s working cell. 
The interval of 1 second was used between a trajectory segment and another where the final 
position for one segment is going to be the initial position for the next segment and so on for 
every joint of the six joints of the robot. 
After generating the joint angles and their corresponding angular velocities, these data are 
fed to the robot controller, which is provided with a sensor system that can detect the 
angular position and velocity on one hand and the Cartesian position and the linear velocity 
of the end-effector on the other hand; which are recorded to be used for the networks’ 
training. As these joints are moving simultaneously with each other to complete the 
trajectory together. 

4. Artificial Neural Networks  
Artificial neural networks (ANNs) are collections of small individual interconnected 
processing units. Information is passed between these units along interconnections. An 
incoming connection has two values associated with it, an input value and a weight. The 
output of the unit is a function of the summed value. ANNs while implemented on 
computers are not programmed to perform specific tasks. Instead, they are trained with 
respect to data sets until they learn the patterns presented to them. Once they are trained, 
new patterns may be presented to them for prediction or classification (Kalogirou, 2001). 
The elementary nerve cell called a neuron, which is the fundamental building block of the 
biological neural network. Its schematic diagram is shown in Figure 2. 
A typical cell has three major regions: the cell body, which is also called the soma, the axon, 
and the dendrites. Dendrites form a dendritic tree, which is a very fine bush of thin fibbers 
around the neuron's body. Dendrites receive information from neurons through axons-Long 
fibbers that serve as transmission lines. An axon is a long cylindrical connection that carries 
impulses from the neuron. The end part of an axon splits into a fine arborization. Each 
branch of it terminates in a small end bulb almost touching the dendrites of neighbouring 
neurons. The axon-dendrite contact organ is called a synapse. The synapse is where the 
neuron introduces its signal to the neighbouring neuron (Zurada, 1992; Hasan et al., 2006), 
to stimulate some important aspects of the real biological neuron. An ANN is a group of 
interconnected artificial neurons usually referred to as “node” interacting with one another 
in a concerted manner; Figure 3 illustrates how information is processed through a single 
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Fig. 2. Schematic diagram for the biological neuron 

 
Fig. 3. Information processing in the neural unit 
node. The node receives weighted activation of other nodes through its incoming 
connections. First, these are added up (summation). The result is then passed through an 
activation function and the outcome is the activation of the node. The activation function 
can be a threshold function that passes information only if the combined activity level 
reaches a certain value, or it could be a continues function of the combined input, the most 
common to use is a sigmoid function for this purpose. For each of the outgoing connections, 
this activation value is multiplied by the specific weight and transferred to the next node 
(Kalogirou, 2001; Hasan et al., 2006). 
An artificial neural network consists of many nods joined together usually organized in 
groups called ‘layers’, a typical network consists of a sequence of layers with full or random 
connections between successive layers as Figure 4 shows. There are typically two layers 
with connection to the outside world; an input buffer where data is presented to the 
network, and an output buffer which holds the response of the network to a given input 
pattern, layers distinct from the input and output buffers called ‘hidden layer’, in principle 
there could be more than one hidden layer, In such a system, excitation is applied to the 
input layer of the network. 
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Fig. 4. Schematic diagram of a multilayer feedforward neural network 
Following some suitable operation, it results in a desired output. Knowledge is usually 
stored as a set of connecting weights (presumably corresponding to synapse efficiency in 
biological neural system) (Santosh et al., 1993). A neural network is a massively parallel-
distributed processor that has a natural propensity for storing experiential knowledge and 
making it available for use. It resembles the human brain in two respects; the knowledge is 
acquired by the network through a learning process, and interneuron connection strengths 
known as synaptic weights are used to store the knowledge (Haykin, 1994).  
Training is the process of modifying the connection weights in some orderly fashion using a 
suitable learning method. The network uses a learning mode, in which an input is presented 
to the network along with the desired output and the weights are adjusted so that the 
network attempts to produce the desired output. Weights after training contain meaningful 
information whereas before training they are random and have no meaning (Kalogirou, 
2001).  
Two different types of learning can be distinguished: supervised and unsupervised learning, 
in supervised learning it is assumed that at each instant of time when the input is applied, 
the desired response d of the system is provided by the teacher. This is illustrated in Figure 
5-a. The distance ρ  [d,o] between the actual and the desired response serves as an error 
measure and is used to correct network parameters externally. Since adjustable weights are 
assumed, the teacher may implement a reward-and-punishment scheme to adopt the 
network's weight. For instance, in learning classifications of input patterns or situations with 
known responses, the error can be used to modify weights so that the error decreases. This 
mode of learning is very pervasive. 
Also, it is used in many situations of learning. A set of input and output patterns called a 
training set is required for this learning mode. Figure 5-b shows the block diagram of 
unsupervised learning. In unsupervised learning, the desired response is not known; thus, 
explicit error information cannot be used to improve network’s behaviour. Since no 
information is available as to correctness or incorrectness of responses, learning must 
somehow be accomplished based on observations of responses to inputs that we have mar-
ginal or no knowledge about (Zurada, 1992). 
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Fig. 5. Basic learning modes 
The fundamental idea underlying the design of a network is that the information entering 
the input layer is mapped as an internal representation in the units of the hidden layer(s) 
and the outputs are generated by this internal representation rather than by the input vector. 
Given that there are enough hidden neurons, input vectors can always be encoded in a form 
so that the appropriate output vector can be generated from any input vector (Santosh et al., 
1993). 
As it can be seen in figure 4, the output of the units in layer A (Input Layer) are multiplied 
by appropriate weights Wij and these are fed as inputs to the hidden layer. Hence if Oi are 
the output of units in layer A, then the total input to the hidden layer, i.e., layer B is: 

 B i ij
i

Sum O W=∑  (18) 

And the output Oj of a unit in layer B is: 

 ( )j BO f sum=  (19) 

Where f is the non-linear activation function, it is a common practice to choose the sigmoid 
function given by:  

 1( )
1 jj Of O

e−
=

+
 (20) 

As the nonlinear activation function.  
However, any input-output function that possesses a bounded derivative can be used in 
place of the sigmoid function. If there is a fixed, finite set of input-output pairs, the total 
error in the performance of the network with a particular set of weights can be computed by 
comparing the actual and the desired output vectors for each presentation of an input 
vector. The error at any output unit eK in the layer C can be calculated by: - 

 K K Ke d O= −  (21) 

Where dK is the desired output for that unit in layer C and OK is the actual output produced 
by the network .the total error E at the output can be calculated by: 



 Artificial Neural Networks - Industrial and Control Engineering Applications 

 

468 

 21 ( )
2 K K

K
E d O= −∑  (22) 

Learning comprises changing weights so as to minimize the error function and to minimize E 
by the gradient descent method. It is necessary to compute the partial derivative of E with 
respect to each weight in the network. Equations (19) and (19) describe the forward pass 
through the network where units in each layer have there states determined by the inputs they 
received from units of lower layer. The backward pass through the network that involves 
“back propagation “ of weight error derivatives from the output layer back to the input layer is 
more complicated. For the sigmoid activation function given in Equation (20), the so-called 
delta-rule for iterative convergence towards a solution maybe stated in general as:  

 JK K JW OηδΔ =  (23) 

Where η  is the learning rate parameter, and the error Kδ  at an output layer unit K is given 
by: 

 (1 )( )K K K K KO O d Oδ = − −  (24) 

And the error Jδ  at a hidden layer unit is given by:  

 (1 )J J J K JK
K

O O Wδ δ= − ∑  (25) 

Using the generalize delta rule to adjust weights leading to the hidden units is back 
propagating the error-adjustment, which allows for adjustment of weights leading to the 
hidden layer neurons in addition to the usual adjustments to the weights leading to the 
output layer neurons. A back propagation network trains with two step procedures as it is 
 

 
Fig. 6. Information flow through a backpropagation network 
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shown in figure 6, the activity from the input pattern flows forward through the network 
and the error signal flows backwards to adjust the weights using the following equations:  

 IJ IJ J IW W Oηδ= +  (26) 

 JK JK K JW W Oηδ= +  (27) 

Until for each input vector the output vector produced by the network is the same as (or 
sufficiently close to) the desired output vector (Santosh et al., 1993).  
ANNs while implemented on computers are not programmed to perform specific tasks. 
Instead, they are trained with respect to data sets until they learn the patterns presented to 
them. Once they are trained, new patterns may be presented to them for prediction or 
classification (Kalogirou, 2001). 

5. ANN implementation 
Two supervised feedforward ANN have been designed using C programming language to 
overcome the singularities and uncertainties in the arm configurations. Both networks 
consist of input, output and one hidden layer, every neuron in each of the networks is fully 
connected with each other, sigmoid transfer function was chosen to be the activation 
function, generalized backpropagation delta learning rule (GDR) algorithm was used in the 
training process. 
Off-line training was implemented; Trajectory planning was performed for 600 data set for 
every 1-second interval from amongst all the possible joint angles in the robot’s workspace, 
then data sets were recorded experimentally from sensors fixed on the robot joints as was 
recommended by (Karilk and Aydin, 2000), 400 set were used for the training while the 
other 200 sets were used for the testing the network. 
All input and output values are usually scaled individually such that overall variance in 
data set is maximized, this is necessary as it leads to faster learning, all the vectors were 
scaled to reflect continuous values ranges from –1 to 1. 
FANUC M-710i robot was used in this study, which is a serial robot manipulator consisting 
of axes and arms driven by servomotors. The place at which arm is connected is a joint, or 
an axis. This type of robot has three main axes; the basic configuration of the robot depends 
on whether each main axis functions as a linear axis or rotation axis. The wrist axes are used 
to move an end effecter (tool) mounted on the wrist flange. The wrist itself can be wagged 
about one wrist axis and the end effecter rotated about the other wrist axis, this highly non-
linear structure makes this robot very useful in typical industrial applications such as the 
material handling, assembly of parts and painting. 
The networks’ implementation carried out on two phases, the first was the training phase 
where the performance of the two networks were compared, and then the network that has 
shown better response has been chosen to apply the testing data during the testing phase, 
which has been implemented through two stages. The first stage was the simulation then 
the results were verified experimentally. 

5.1 Training phase 
To examine the effect of considering the Jacobian Matrix for the Inverse Kinematics solution 
two networks have been designed and compared. ANN technique has been utilized where 
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learning is only based on observation of the input output relationship unlike other schemes 
that require an explicit system model. 

5.1.1 The first configuration (3 - 6 configuration) 
As in our previous research (Hasan et al., 2006; Hasan et al., 2007), the input vector for the 
network consists of the position of the end effector of the robot along the X, Y and Z 
coordinates of the global coordinate system, while the output vector was the angular 
position of each of the 6 joints as can be seen in Figure 7. 
 
 

X Y Z
Cartesian Position 

1θ 2θ 3θ 5θ 6θ
Angular Position

4θ

 
 

Fig. 7. The topology of the first configuration network 

Although the number of training patterns was doubled, number of neurons in the hidden 
layer still the same as previous which is 43 only a little difference in the learning factor was 
experienced which was 0.5 in this case by trial and error. 
Figure 8 shows the building knowledge curve for this configuration while Table 1 shows the 
percentage of error of each of the 6 joints after the training was finished after 1.5 million 
iterations. 
 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 

13.193% 10.855% 3.478% 14.748% 12.243% 8.348% 

Table 1. Error percentages obtained after training (first configuration) 
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Fig. 8. The learning curve for the first configuration 

5.1.2 The second configuration (4 – 12 configuration) 
To examine the effect of considering the Jacobian matrix to the IK solution, another network 
has been designed, as in Figure 9, the new network consists of the Cartesian Velocity added 
to the input buffer and the angular velocity of each of the 6 joints added to the output buffer 
of the previous network. 
Number of the neurons in the hidden layer was set to be 77 with constant learning factor of 
0.9 by trial and error. 
Figure 10 shows the building knowledge curve while table 2 shows the percentage of error 
of each of the 6 joints after the training was finished after 1.5 million iterations. 
 
 

 Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 
Angular 
Position 2.817 % 1.645% 0.88% 3.163% 3.125% 2.09% 

Angular 
Velocity 2.65% 3.018% 1.683% 3.208% 2.525% 1.6% 

 

Table 2. Error percentages obtained after training (second configuration) 
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Y Z V

1θ 6θ2θ 3θ 4θ 5θ 1ω 2ω 3ω 4ω 5ω 6ω

Angular VelocityAngular Position

X
 VelocityCartesian Position  

Fig. 9. The topology of the second configuration network 

 
 

 
 

Fig. 10. The learning curve for the second configuration 
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5.1.3 Networks’ performance 
The performance of the two networks was measured as the difference between desired and 
actual system output. 
To drive the robot to follow a desired trajectory, it will be necessary to divide the path into 
small portions, and to move the robot through all intermediate points. To accomplish this 
task, at each intermediate location, the robot’s IK equations are solved, a set of joint 
variables is calculated, and the controller is directed to drive the robot to the next segment, 
when all segments are completed, the robot would be at the end point as desired. 
Figures 11 to 13 show the experimental trajectory tracking for the robot over the X, Y and Z 
Coordinates of the global coordinates system for both of the networks compared to each 
other verses the desired trajectory. 
As can be seen through these Figures, the performance of the first network has improved 
when considering the Jacobian Matrix in the second network, in terms of precision and 
iteration 
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Fig. 11. Trajectory tracking for both configurations compared to each other after the training 
was finished for the X coordinate 
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Fig. 12. Trajectory tracking for both configurations compared to each other after the training 
was finished for the Y coordinate 
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Fig. 12. Trajectory tracking for both configurations compared to each other after the training 
was finished for the Z coordinate 
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5.2 Testing phase 
New data that has never been introduced to the network before have been fed to the second 
configuration network to test its ability to make prediction and generalization to any set of 
data later (as it has shown better response than the first configuration network). 
Testing data were meant to pass through singular configurations (fourth and fifth joints); 
these configurations have been determined by setting the determinant of the Jacobian matrix 
to zero. 
Table 3 shows the percentages of error for the testing data set for each joint during 
simulation stage. 
 

 Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 
Angular 
Position 1.8% 0.245% 0.2% 5.32% 9.885% 0.08% 

Angular 
Velocity 3.82% 2.875% 1.47% 2.64% 3.28% 1.41% 

Table 3. Error percentages obtained for testing data through simulation stage 

In order to verify the testing results during simulation stage, experiment has been 
performed to make sure that the output is the same or sufficiently close to the desired 
trajectory, and to show the combined effect of error, Figures 13, 14 and 15 show the 
predicted trajectory tracking of the X, Y, and Z coordinates respectively. Locus of which 
robot is passing through singular configurations are also shown. 
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Fig. 13. Predicted trajectory for the X coordinate 
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Fig. 15. Predicted trajectory for the Z coordinate 
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The error percentages in the experimental data are shown in table 4. 
 

X Y Z 
6.444% 16.355% 0.462% 

Table 4. Error percentages obtained for testing data through experimental stage 

6. Conclusions and recommendations 
In order to overcome the drawbacks of some control schemes which depends on modeling 
the system being controlled, ANN technique has been utilized where learning is done 
iteratively based only on observation of input-output relationship unlike most other control 
schemes, which is a significant advantage of using ANN technology.  
In the first network, although the number of hidden neurons was the same with the previous 
research despite the fact that the number of training patterns was doubled, an important 
remark is that the error percentage was higher than it was in the previous research which leads 
to a conclusion that this network configuration does not have the ability to learn huge number 
of patterns and its use will be limited to small number of data patterns. 
As this research has shown, the consideration of the Jacobian Matrix in the solution of the 
Inverse Kinematics problem using neural networks gives a better response. As compared to 
the Fuzzy Learning Control algorithm results, the trained network was able to remember 
not only the training data but also was able to predict unknown trajectories as well as can be 
seen through the testing phase which is a significant advantage of using this approach. 
Backpropagation algorithm has been used as a learning algorithm with sigmoid transfer 
function as an activation function in all neurons, we would like to recommend that a different 
learning algorithm, different activation function and/or different number of hidden layers to 
be used in order to achieve, if possible, a better response in terms of precision and iteration. 
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